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ABSTRACT

Wind loads on buildings can be quantified through synchronous measurements of pressure over building
model surfaces or by high frequency force balance (HFFB) measurements. Although this loading infor-
mation can be directly utilized for building design applications, current design practice often requires the
transformation of dynamic wind loading to the equivalent static wind loads (ESWLs). This paper addresses
prediction of wind load effects and modeling of associated ESWLs of buildings with uncoupled mode
shapes of vibration. Both building response in primary directions and that contributed by the combined
actions of wind loads in different directions are studied. Various approaches used in the development of
ESWLs associated with the peak wind load effects of buildings are critically evaluated with some new
insights that lead to improved modeling of wind loading for design applications.

INTRODUCTION

Wind loads on buildings can be derived through synchronous measurements of pressure over building
model surfaces or by high frequency force balance (HFFB) measurements (e.g., Kareem and Cermak 1979;
Tschanz and Davenport 1983; Boggs and Peterka 1989; Isyumov 1999). Buildings with symmetric plan
and coincident centers of mass and resistance generally have mode shapes which are one-dimensional,
i.e., uncoupled in two orthogonal translational and rotational directions. This permits discussion of wind
loads and their effects (building response) in each primary direction independently. On the other hand,
for buildings characterized by three-dimensional (3-D) coupled mode shapes and/or closely-spaced modal
frequencies, a 3-D coupled response analysis framework should be utilized that takes into account the cross-
correlation of wind loads acting in different directions and the inter-modal coupling of modal responses
(e.g., Kareem 1985; Chen and Kareem 2005a and b).

The wind load effects can be generally separated into the mean (static), background (quasi-static) and
resonant components. Predictions of the mean and background response components using the static and
quasi-static analyses involving influence functions result in more accurate estimates than the modal analysis
restricted to the fundamental mode. Whereas, the modal analysis offers sufficiently accurate prediction of
the resonant response component. The synchronous pressure measurements provide a detailed loading
information for response analysis, while the HFFB technique requires empirical mode shape correction and
assumption of neglecting higher mode contributions to the background response.

The measured dynamic wind loading information can be directly utilized for building design applica-
tions. However, current design practice often requires the transformation of dynamic wind loading to the
equivalent static wind loads (ESWLs). The modeling of ESWLs seeks static load distributions whose static
effects on buildings are equal to the actual dynamic wind load effects. This load representation allows
designers to follow a relatively simple static analysis procedure for prediction of building response to spa-
tiotemporally varying dynamic loads, and is often more suitable to current design practice. This format
serves as pivotal information for estimating response under the combined action of wind and other loads,
and is widely used in current building codes and standards worldwide.

This paper addresses prediction of wind load effects and modeling of associated ESWLs of buildings
with uncoupled mode shapes. Both building response in primary directions and that contributed by the
combined actions of wind loads in different directions are studied. Various approaches used in the develop-
ment of ESWLs associated with the peak values of these responses are critically evaluated with some new
insights that lead to improved modeling of wind loading for design applications.
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PEAK RESPONSE IN PRIMARY DIRECTIONS

Consider building response along the primary translationalx direction at a given wind speed and direc-
tion. The wind load per unit height at elevationz above the ground has a mean component ofP̄x(z) and
fluctuating component ofPx(z, t), which can be obtained through synchronous measurements of pressure
over the building model surfaces. Any building response (e.g., displacement, bending moment, shear force
and member forces),Rx(t), can be separated into the mean (static), background (quasi-static), and resonant
components, and are quantified by the static, quasi-static analysis, and modal analysis involving only the
fundamental mode, respectively. The mean response and root mean square (RMS) background and resonant
responses are expressed as (e.g., Chen and Kareem 2004)

R̄x =
∫ H

0
µx(z)P̄x(z)dz (1)

σRxb
=

√∫ H

0

∫ H

0
µx(z1)µx(z2)RPxx(z1, z2)dz1dz2 (2)

σRxr =

∫ H
0 m(z)Θx(z)µx(z)dz

∫ H
0 m(z)Θ2

x(z)dz

√
π

4ξx

fxSQx(fx) (3)

SQx(f) =
∫ H

0

∫ H

0
Θx(z1)Θx(z2)SPxx(z1, z2, f)dz1dz2 (4)

whereH = building height;µx(z) = influence function indicating the responseRx under unit load acting at
the elevationz in x direction;m(z) = mass per unit height;Θx(z) = fundamental mode shape;fx andξx =
fundamental frequency and damping ratio (including aerodynamic damping), respectively;RPxx(z1, z2)
andSPxx(z1, z2, f) = covariance and cross power spectral density (XPSD) function betweenPx(z1, t) and
Px(z2, t); SQx(f) = power spectral density (PSD) function of the generalized modal force.

The expected peak response (excluding the mean response),Rmax, is obtained by combining the back-
ground and resonant components:

Rxmax =
√

g2
bσ

2
Rxb

+ g2
rσ

2
Rxr

(5)

wheregb andgr = peak factors for the background and resonant response components, respectively, typi-
cally ranging in value between 3 and 4.

It is noted that the background response analysis using the influence function implicitly includes the
contributions of all structural modes to the background response. Therefore, it results in a more accurate
response prediction compared to the modal analysis involving only the fundamental mode. Consideration
of the contributions of higher modes to the background response is important for low- and middle-rise
buildings, although for high-rise buildings their contributions may be negligible as the resonant response
generally dominates the total response.

In the case where the spatiotemporally varying wind loading is not available, but the integrated wind
loading in terms of base bending moment,Mx(t), is quantified through the HFFB measurements using
scaled building model, the generalized force can then be estimated as

SQx(f) =
η2

x(f)

H2
SMx(f) (6)

η2
x(f) =

∫ H
0

∫ H
0 Θx(z1)Θx(z2)SPxx(z1, z2, f)dz1dz2∫ H

0

∫ H
0 (z1/H)(z2/H)SPxx(z1, z2, f)dz1dz2

(7)

whereη2
x(f) = the mode shape correction factor which has to be estimated by using an empirical formulation

(e.g., Vickery et al. 1985; Boggs and Peterka 1989; Xu and Kwok 1993; Zhou et al. 2002; Holmes et
al. 2003; Chen and Kareem 2004). Accordingly, the resonant response is estimated by Eq. (3), and the
background response can be expressed in terms of the measured base bending moment as

σRxb
=

∫ H
0 m(z)Θx(z)µx(z)dz

∫ H
0 m(z)Θx(z)(z/H)dz

σMx

H
(8)
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whereσMx = RMS base bending moment.
It is worth mentioning that while the above formulation is based on the modal analysis involving only the

fundamental mode, as the measured base bending moment involves all mode contributions, the contribution
of higher modes are consequently considered in the predicted background response, but with an assumption
that the response contribution of higher modes is identical for all response components. However, bending
moments at higher elevations and shear forces at all elevations are generally more affected by higher modes.
In particular, if the first mode was linear, the higher modes would provide no contributions to the base
bending moment but other response components. Therefore, amplification of response relative to the value
computed from Eq. (8) may be introduced for improved response prediction. Similar consideration has
been made in building codes for seismic design including International Building Code (IBC) 2000 (e.g.,
Chopra 2000), in which the response prediction was based on the base shear force and an reduction factor
was introduced for predicted bending moment.

Formulations of the response in the other two directions can be accordingly developed. For building
response in torsion,Rθ(t), the background and resonant components are expressed in terms of the base
torqueMθ(t) as

σRθb
=

∫ H
0 I(z)Θθ(z)µθ(z)dz

∫ H
0 I(z)Θθ(z)dz

σMθ
(9)

σRθr
=

∫ H
0 m(z)Θθ(z)µθ(z)dz

∫ H
0 I(z)Θ2

θ(z)dz
ηθ(fθ)

√
π

4ξθ

fθSQθ
(fθ) (10)

η2
θ(f) =

∫ H
0

∫ H
0 Θθ(z1)Θθ(z2)SPθθ

(z1, z2, f)dz1dz2∫ H
0

∫ H
0 SPθθ

(z1, z2, f)dz1dz2

(11)

whereµθ(z) = influence function indicating the responseRθ under unit load acting at the elevationz
in torsion; I(z) = polar moment per unit height;Θθ(z) = fundamental mode shape in torsion;fθ and
ξθ = fundamental frequency and damping ratio (including aerodynamic damping) in torsion, respectively;
SMθ

(f) andσMθ
=PSD and RMS value ofMθ(t); andSPθθ

(z1, z2, f) = XPSD between the dynamic torque
per unit height at elevationz1, i.e.,Pθ(z1, t), and at elevationz2, i.e.,Pθ(z2, t).

PEAK RESPONSE TO COMBINED LOADING

Consider a responseR(t) that is influenced by the actions of loadings in three primary directions

R(t) = Rx(t) + Ry(t) + Rθ(t) (12)

whereRs (s = x, y, θ) = response component associate with loading in thes direction.
The RMS background response ofR(t) is given by the combination of its components using the com-

plete quadratic combination (CQC) rule:

σRb
=

√ ∑

s1=x,y,θ

∑

s2=x,y,θ

σRs1b
σRs2b

rRs1s2b
(13)

whereσRs1b
= RMS background response due to wind loading in thes1 direction; rRs1s2b

= correlation
coefficient between the background responses ofRs1(t) andRs2(t), and is defined as

rRs1s2b
=

∫ H

0

∫ H

0
µs1(z1)µs2(z2)RPs1s2

(z1, z2)dz1dz2/(σRs1b
σRs2b

) (14)

It is noted that when the background response in each primary direction is approximated by the respec-
tive contribution of the corresponding fundamental mode,rRs1s2b

becomes independent of response and is
identical to the correlation coefficient of generalized forces,Qs1(t) andQs2(t):

rRs1s2b
= rQs1s2

=
∫ H

0

∫ H

0
Θs1(z1)Θs2(z2)RPs1s2

(z1, z2)dz1dz2/(σQs1
σQs2

) (15)
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whereσQs (s = x, y, θ) = RMS value ofQs(t). Furthermore, when the background response is directly
evaluated based on the base bending moment or torque in Eq. (8) or (9),rRs1s2b

is then identical to the
correlation coefficient of the base bending moments and torque,Ms1(t) andMs2(t).

Similarly, the resonant response ofR(t) is given by

σRr =
√ ∑

s1=x,y,θ

∑

s2=x,y,θ

σRs1rσRs2rrs1s2r (16)

wherers1s2r = rjkr = the correlation coefficient of thejth andkth resonant modal response components that
correspond to the fundamental modes ins1 ands2 directions, which can be approximated by the following
closed-form expressions (Der Kiureghian 1980; Chen and Kareem 2005a and b):

rjkr = αjkrρjkr (17)

αjkr = Re[SQjk
(f)]/

√
SQj

(f)SQk
(f)|f=fj or fk

(18)

ρjkr =
8
√

ξjξk(βjkξj + ξk)β
3/2
jk

(1− β2
jk)

2 + 4ξjξkβjk(1 + β2
jk) + 4(ξ2

j + ξ2
k)β

2
jk

(19)

whereβjk = fj/fk with 0 ≤ ρjkr ≤ 1, ρjjr = ρkkr = 1 andρjkr = ρkjr ¿ 1 whenfj, andfk are well
separated;SQjk

(f) = XPSD between the generalized forcesQj(t) andQj(t). It is worth mentioning that
the parameterαjkr represents the partially correlated feature of the generalized forcesQj(t) andQk(t).
In general,|αijr| ≤ 1, in the case of building response under partially correlated multiple inputs of wind
loading. Consideration of this parameter for correct use of the CQC rule is critical. Unfortunately, it
has neither been completely recognized in the literature concerning the analysis of wind load effects on
buildings and structures nor it has been implemented in current wind tunnel practice (e.g., Xie et al. 2003).
It is also noted that the correlation coefficients among background response components in three primary
directions are generally different from those among the resonant response components.

EQUIVALENT STATIC WIND LOADING FOR RESPONSE IN PRIMARY DIRECTIONS

For a given peak response, a variety of ESWL distributions may be defined based on different con-
siderations. The load distribution is not necessary unique simply because that different load distributions
can result in identical building response. The challenge of equivalent loading representation for a given
building is to develop load distributions that are physically meaningful, and are insensitive to individual re-
sponse. Consequently, the number of loading distributions for a variety of important response components
of consideration can be limited.

The ”gust loading factor” (GLF), or ”gust response factor” (GRF) approach (Davenport 1967) has been
used in most major building codes and standards around the world. In this scheme, the equivalent wind
loading used for design is equal to the mean wind load multiplied by a GRF, often for the building top
displacement. The GRF is defined as the ratio of peak dynamic response to it mean value. Although the
traditional GRF method is simple to use in the building design process, the GRF may widely vary for
different response components of a structure and may have significantly different values for structures with
similar geometric configuration and associated wind load characteristics but different structural systems.
As illustrated in Chen and Kareem (2004), among others, for alongwind response of buildings, the GRFs
for the top displacement and base bending moment are almost the same which are generally larger than that
for the base shear force. The GRF for building response at higher elevation generally is markedly larger
than that for the top displacement or base bending moment. Therefore, the equivalent loading given by
the mean load multiplied by the GRF for the top displacement or base bending moment generally leads
to underestimation of building response at higher elevations. Furthermore, for the crosswind and torsional
responses, which are typically characterized by low values of mean wind loading and associated response,
particularly, in the cases of symmetric buildings, although similar GRF concepts may be invoked (Kareem
and Zhou 2003), the corresponding GRFs may not have the same physical meaning as the traditional GRF
for the alongwind response.
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Similar to the GRF approach, the dynamic response factor (DRF) approach has been adopted in some
building codes (Holmes 2002a). The DRF has been defined as the ratio of peak dynamic response (includ-
ing the mean, background, and resonant components) to the response caused by the peak dynamic load
that includes the mean and the background load effects but excludes any reduction due to loss of spatial
correlation of wind loading. The DRF for responseRx is expressed as

DRx =
R̄x +

√
g2

bσ
2
Rxb

+ g2
rσ

2
Rxr

R̄x + gbσ′Rxb

(20)

σ′Rxb
=

∫ H

0
µx(z)

√
RPx(z)dz = σRxb

/Bz (21)

Bz =

√∫ H
0

∫ H
0 µx(z1)µx(z2)RPxx(z1, z2)dz1dz2∫ H

0 µx(z1)RPx(z)dz
(22)

whereRPx(z) = RPxx(z, z); Bz = background factor representing the reduction effect with respect to the
responseRx due to loss of spatial correlation of wind loading.

The relationship between the DRF and GRF can be expressed as

DRx =
1 +

√
G2

Rxb
+ G2

Rxr

1 + GRxb
/Bz

(23)

whereGRxb
= gbσRxb

/R̄x andGRxr = grσRxr/R̄x = background and resonant GRFs, respectively.
The DRF approach leads to an ESWL description which is similar to the peak dynamic pressure/wind

load (including the mean load) but scaled by the DRF:

FeRx = DRx

(
P̄x(z) + F ′

ebx(z)
)

(24)

whereF ′
ebx(z) = gbRPx(z) = gust loading envelope.

Separation of the ESWLs into background and resonant components provides a physically more mean-
ingful description of loading (Davenport 1985; Kasperski 1992; Holmes et al. 2000; Zhou and Kareem
2000; Chen and Kareem 2001 and 2004; Kareem and Zhou 2003). It is straightforward to express the
resonant ESWL (RESWL) as the modal inertial load, which depends on the mass distribution and mode
shape:

Fexr(z) =
grm(z)Θx(z)

∫ H
0 m(z)Θ2

x(z)dz

√
π

4ξx

fxSQx(fx) (25)

The advantage of this load description over the traditional GRF approach is that it leads to a universal
load distribution for all response components. Within the traditional GRF approach, different GRFs and as-
sociated loads have to be assigned for accurate predictions of distinct response components. This advantage
is attributed to the presumption that the resonant response is only contributed by the fundamental mode and
the higher mode contributions are negligible.

Compared to the straightforwardness of RESWL, modeling of background ESWL (BESWL) is rela-
tively complex which is attributed to the nature of partially correlated multiple inputs of wind loading.
Under the action of dynamic loading, different background response components generally reach their
peaks at different time instants. When the BESWL for a given peak background response is directly derived
from the conditional sampling and subsequent ensemble average of dynamic pressures over the building
surface at the instant when the desired peak load effect occurs, the load distribution varies with individual
response of consideration (e.g., Tamura et al. 2003a). The ensemble averages of this conditional sampling
of dynamic pressures is very close to the load distribution provided by using the load-response-correlation
(LRC) approach (Kisperski 1992), which results in a most probable load distribution for a given peak re-
sponse. According to the LRC approach, the BESWL forRxbmax = gbσRxb

can be expressed as

FeRxb
(z) =

gb

σRxb

∫ H

0
µx(z1)RPxx(z, z1)dz1 (26)
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Its efficacy can be readily illustrated as

gbσRxb
=

∫ H

0
µx(z)FeRxb

(z)dz (27)

As this load distribution depends on the influence function of response under consideration, each re-
sponse component corresponds to a distinct spatial load distribution. This feature may limit its potential
application to design standards or practice. To eliminate the dependence of load distribution on individual
response, an approximate modeling of BESWL has been suggested in Holmes (1996). This scheme pro-
vided an identical load distribution for any building response at the same building elevation, but the response
components at different elevations have distinct load distributions. In light of this scheme, the BESWL for
building response at elevationz0 may be defined as that for the shear force. The influence function of the
shear force is given asµx(z) = 1 whenz ≥ z0 andµx(z) = 0 whenz ≤ z0. Accordingly, the BESWL can
be approximated as

Febx(z) =
gb

∫ H
z0

RPxx(z, z1)dz1√∫ H
z0

∫ H
z0

RPxx(z1, z2)dz1dz2

(28)

The LRC-based BESWL can be further expressed in terms of the loading modes derived from the
proper orthogonal decomposition (POD) of the loading correlation function. Akin to the modal analysis
in structural dynamics, the POD loading modes serve as intrinsic functions for characterizing the spatial
variations of dynamic loading and associated equivalent load distribution (e.g., Chen and Kareen 2005c).
Thejth loading modeΦj(z) with an eigenvalueλj is defined by the following eigenvalue problem:

∫ H

0
Φj(z1)RPxx(z, z1)dz1 = λjΦj(z) (29)

∫ H

0
Φi(z)Φj(z)dz = δij (i, j = 1, 2, ...) (30)

whereδij = Kronecker delta.
By expressing the load correlation function in terms of loading modes, the background response and

associated equivalent loading based on the LRC approach can be expressed as

RPxx(z1, z2) =
∑

j

λjΦj(z1)Φj(z2); σRxb
=

√∑

j

λjc2
j (31)

FeRxb
(z) = gb

∑

j

λjcjΦj(z)/
√∑

j

λjc2
j ; cj =

∫ H

0
µx(z)Φj(z)dz (32)

wherecj = building responseRx under the action of load distributionΦj(z). Clearly, the contribution of
each loading mode depends on individual response. When only the first loading mode with the largest eigen-
value is considered, the equivalent loading can be reduced to the first loading mode, which is independent
of response under consideration:

FeRxb
(z) = gb

√
λ1Φ1(z) (33)

A universal load distribution for all background response components has been suggested in Katsumura
et al. (2004) with application to a large span cantilever roof. According to this scheme, the BESWL for any
peak background response is expressed as a linear combinations of the firstN loading modes with larger
eigenvalues:

Fexb(z) =
N∑

j=1

ajΦj(z) (34)

where the combination factorsaj (j = 1, 2, ..., N) are determined based on theM peak response compo-
nents of interests (whereM >> N) in a least square sense to ensure the response components of interests
under this universal loading distribution are close to their actual values. It is noted that a universal load
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distribution for any response component (including both background and resonant components) was also
suggested by Repetto and Solari (2004), in which a polynomial expansion was utilized for describing the
load distribution over the building height.

Chen and Kareem (2004) has proposed the gust loading envelope (GLE) approach for modeling the
BESWL:

FeRb
(z) = BzF

′
ebx(z) = Bzgb

√
RPx(z) (35)

This approach results in a load distribution similar to the gust loading envelope but scaled by a back-
ground factor. The background factor depends on individual response. For a global response, the back-
ground factor is much less than unity, while for a local response, it is close to unity. The background
factor is potentially insensitive to the individual response thus simplification of equivalent loading may be
achieved. It is obvious that when the wind loads are fully correlated, i.e.,RPxx(z1, z2) =

√
RPx(z1)RPx(z2),

Bz reduces to unity and the BESWLs based on the LRC and GLE approaches converge to the gust loading
envelope.

Once the RESWL and the BESWL have been determined, the corresponding peak resonant and back-
ground response components are calculated following a static analysis procedure. These are then combined
for the total peak response (excluding the mean component) using the square root of the sum of squares
(SRSS) approach. It is important to note that the ESWL for the total peak response cannot be determined
by directly combining the background and resonant loading components using the SRSS approach. How-
ever, the following linear combination scheme offers an alternative (Boggs and Peterka 1989; Chen and
Kareem 2001 and 2004; Holmes 2002):

FeRx(z) =
(
gbσRxb

F ′
eRxb

(z) + grσRxrFerx(z)
)
/
√

g2
bσ

2
Rxb

+ g2
rσ

2
Rxr

(36)

When both the background and resonant response components are approximated by the fundamental
mode response, the ESWL for any total peak response becomes identical to the modal inertial loading
involving contributions of both background and resonant response components. It can be expressed by
distributing the base bending moment response over the building height as

Fex(z) =
m(z)Θx(z)

∫ H
0 m(z)Θx(z)(z/H)dz

σMx

H

√√√√g2
b + g2

rk
2
x

π

4ξx

fxSMx(fx)

σ2
Mx

(37)

kx =

∫ H
0 m(z)Θx(z)(z/H)dz

∫ H
0 m(z)Θ2

x(z)dz
ηx(fx) (38)

wherekx = modified mode shape correction factor.
Whenm(z) = m0 andΘx(z) = (z/H)β, then

Fex(z) = (β + 2)
(

z

H

)β σMx

H2

√√√√g2
b + g2

r

(2β + 1)2

(β + 2)2
η2

x(fx)
π

4ξx

fxSMx(fx)

σ2
Mx

(39)

Based on this framework, the formulations of the equivalent loading associated with building response in
the other two directions is immediate. For building response, when both background and resonant response
components are approximated by the corresponding fundamental response in torsion, the equivalent loading
in terms of torque per unit height can be expressed by distributing the base torque response over the building
height as

Feθ(z) =
I(z)Θθ(z)

∫ H
0 I(z)Θθ(z)dz

σMθ

√√√√g2
b + g2

rk
2
θ

π

4ξθ

fθSMθ
(fθ)

σ2
Mθ

(40)

kθ =

∫ H
0 I(z)Θθ(z)dz

∫ H
0 I(z)Θ2

θ(z)dz
ηθ(fθ) (41)
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WhenI(z) = I0 andΘθ(z) = (z/H)β, then

Feθ(z) = (β + 1)
(

z

H

)β σMθ

H

√√√√g2
b + g2

r

(2β + 1)2

(β + 1)2
η2

θ(fθ)
π

4ξθ

fθSMθ
(fθ)

σ2
Mθ

(42)

By further introducing the nondimensional bending moment coefficients,CMx(t) = Mx(t)/(qHBH2)
andCMy(t) = My(t)/(qHDH2), and torque coefficient,CMθ

(t) = Mθ(t)/(qHBDH) (whereqH = wind
speed pressure at the building top;B andD = the representative width and depth of the building), the afore-
mentioned formulations can be readily used to develop equivalent static loading in each primary direction
on a variety of tall buildings for design applications. The force coefficients can be quantified using empir-
ical formulas developed based on extensive wind tunnel tests using HFFB measurements or synchronous
measurements of pressure over scaled building models, or directly estimated from aerodynamic loading
database (Zhou et al. 2003).

EQUIVALENT LOADING FOR COMBINED WIND LOAD EFFECTS

Corresponding to Eq. (13), the 3-D equivalent static loading associated withRbmax = gbσRb
can be

expressed in terms of the loadings in each primary direction as

F ′
eRbs1

(z) = Ws1Rb
FeRs1b

(z); Ws1Rb
=

( ∑

s2=x,y,θ

σRs2b
rRs1s2b

)
/σRb

(s1 = x, y, θ) (43)

Similarly, corresponding to Eq. (16), the 3-D equivalent static loading associated withRrmax = grσRr

can be expressed in terms of the modal inertial loading in each primary direction as

F ′
eRrs1

(z) = Ws1RrFes1r(z); Ws1Rr =
( ∑

s2=x,y,θ

σRs2rrs1s2r

)
/σRr (s1 = x, y, θ) (44)

In fact, there are infinite combinations of peak equivalent loads in three primary directions for a given
peak wind load effect. However, the aforementioned combination scheme leads to a most probable load
distribution. When the background loading in each primary direction is presented in terms of gust loading
envelope or approximated in terms of the modal inertial loading, or other universal loading, the equivalent
static loading for any response have similar spatial distribution but scaled by different weighting factors.
These weighting factors generally depend on individual response.

Consider a resonant response contributed by the modal responses in two primary translationalx andy
directions, e.g., the first two modes. In light of Eq. (44), the combination (weighting) factors become

WxRr =
1 + (σRyr/σRxr)rxyr√

1 + (σRyr/σRxr)
2 + 2rxyr(σRyr/σRxr)

(45)

WyRr =
rxyr + (σRyr/σRxr)√

1 + (σRyr/σRxr)
2 + 2rxyr(σRyr/σRxr)

(46)

For the case in whichσRxr = σRyr andrxyr = 0, it results inWxRr = WyRr = 0.707, which corresponds
to the combination factor of 0.75 adopted in ASCE 7-02 standard and NBCC code.

Alternatively, the following combinations can be defined:

W
(1)
xRr

= 1; W
(1)
yRr

=
(√

1 + (σRyr/σRxr)
2 + 2rxyr(σRyr/σRxr)− 1

)
(σRxr/σRyr) (47)

W
(2)
xRr

=
(√

1 + (σRxr/σRyr)
2 + 2rxyr(σRyr/σRxr)− 1

)
(σRyr/σRxr); W

(2)
yRr

= 1 (48)

WhenσRxr = σRyr , Eqs. (47) and (48) lead to

W
(2)
yRr

= W
(1)
xRr

=
√

2 + 2rxyr − 1 (49)
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which corresponds to the combination rule that takes into account the modal correlation adopted in AIJ-
RLB-2004 (Asami 2000; Tamura et al. 2003b). By further settingrxyr = 0, it leads toW

(2)
yRr

= W
(1)
xRr

≈
40%, i.e., the 40% rule, which has been widely adopted in building codes for earthquake loadings.

These simplified combination rules eliminate the dependence of the weighting factors on the individual
response, and further on the modal correlation coefficient. Their performance can be investigated by com-
paring their estimates with those according to the CQC rule for differentrxyr andcxyr = σRyr/σRxr . The
combination rule that takes into account the modal correlation leads to more conservative results than the
CQC rule, and offers a better performance than the 40% and 75% rules, provided the modal correlation co-
efficient can be adequately estimated. The 40% and 75% rules result in very conservative estimates in some
cases but nonconservative in others. For example, whenrxyr = −0.6 andcxyr = 1, or whenrxyr = 0.6 and
cxyr = −1, the response ratios with respect to CQC rule are 1.57 and 1.68, respectively, for the 40% and
75% rules, which means an overestimate of the response. On the other hand, whenrxyr = 0.6 andcxyr = 1,
or whenrxyr = −0.6 andcxyr = −1, the response ratios are 0.78 and 0.84, respectively, which means
underestimation of the response. Further investigation on the combination factors for a variety of response
components, which are important for building design, are needed in order to limit the number of equivalent
static loads for design applications.

CONCLUDING REMARKS

The prediction of wind loads and modeling of associated ESWLs were addressed for buildings with uncou-
pled mode shapes, based on the loading information obtained through either synchronous measurements of
pressure over building model surfaces or HFFB measurements. Separation of wind load effects and ESWLs
into background and resonant components led to physically more meaningful modeling. The modal iner-
tial load distribution significantly simplifies the equivalent static loading for resonant response. Various
approaches proposed in the literature for better modeling of background equivalent static loading were crit-
ically evaluated. Some new insights were provided on the correct use of the CQC rule for predicting wind
load effects influenced by wind loads in different primary directions, and on their combinations. It is envis-
aged that the results presented in this study would aid in improved modeling of wind loading on buildings
for design applications.
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