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ABSTRACT

This study addresses recent developments on the evaluation of multimode coupled bridge response and
modeling of equivalent static wind loading on bridges when subjected to strong winds. First, the coupled
bridge flutter is studied with an emphasis placed on the participation of structural modes in flutter, not
only based on their amplitudes in flutter motion, but more importantly, by delving into their contributions
to flutter modal damping. The bimodal coupled flutter is then revisited based on a framework with closed-
form formulations that sheds more insights to the underlying physics of coupled flutter. This discussion was
followed by a unified analysis framework of integrating both flutter and buffeting analysis that better points
out the roles of both self-excited and buffeting forces on bridge response to wind fluctuations. Finally, the
methodology for modeling equivalent static wind loading associated with multimode coupled buffeting is
discussed with applications to bridge design.

KEYWORDS:Flutter; Buffeting; Aeoelasticity; Aerodynamics; Wind Load; Bridges; Random Vibration

INTRODUCTION

An increase in the span length of cable-supported bridges leads to a concomitant decrease in their
natural frequencies. Consequently, the reduced design wind velocity, which is defined as the ratio of design
wind velocity to the bridge frequency and deck width and serves as a non-dimensional measure of strong
winds, significantly increases for longer spans. Furthermore, a decrease in bridge weight, damping and
frequency ratio between torsional and vertical modes renders long span bridges very vulnerable to strong
winds. These facts, coupled with the increased demand on reliability and cost-effectiveness of bridges,
makes long span design very challenging. This challenge calls for improved understanding of bridge-wind
interaction and development of advanced tools for quantifying bridge response under strong winds. This
would help to tailor advanced design of bridges with superior aerodynamic and structural characteristics
hence their improved performance.

Evaluation of bridge buffeting and flutter generally requires use of multimode coupled analysis frame-
works that facilitate synthesis of information concerning wind climate at the bridge site, aerodynamic forces
on the bridge sections, and the finite element model of the entire bridge (e.g., Jones et al. 1998; Matsumoto
1999; Miyata et al. 1999; Chen et al. 2000a and b). Within these frameworks, the flutter analysis is per-
formed through the solution of a complex eigenvalue problem. This analysis not only offers the prediction
of critical flutter velocity, but also provides information concerning the influence of self-excited forces on
the modal properties as wind velocity increases. That helps in understanding the changes in modal damping
and the development of coupled flutter. On the other hand, the buffeting analysis is often conducted in the
frequency domain through spectral analysis, while the time domain frameworks are more appropriate for
nonlinear problems of either structural or aerodynamic origin, and for bridges under nonstationary wind
excitations (Diana et al. 1999; Chen and Kareem 2000b and 2003). The frequency domain buffeting anal-
ysis involves the evaluation of complex frequency response matrix (transfer matrix) of aeroelastic bridge
system. For a linear system with frequency independent parameters, the transfer matrix is readily expressed
in terms of its modal properties. However, it is not the case for an aeroelastic bridge system that involves
frequency dependent parameters attributed to unsteady aerodynamic forces. Consequently, the information
of modal properties at varying wind velocities predicted through flutter analysis has not yet been explicitly
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employed in predicting and interpreting buffeting response. As a result, in current analysis frameworks,
the predictions of flutter and buffeting have to be treated as two separate procedures without establishing
an explicit nexus between them. This practice has limited our ability to better understand the aeroelastic
behavior of long span bridges to strong winds.

This study addresses recent developments on the evaluation of multimode coupled bridge response and
modeling of equivalent static wind loading on bridges when subjected to strong winds. First, the coupled
bridge flutter is studied with an emphasis placed on the participation of structural modes in flutter, not
only based on their amplitudes in flutter mode, but more importantly, by delving into their contributions
to flutter modal damping. This investigation highlights the important role of the bimodal coupled flutter
analysis and section model testing in wind tunnel, consisting of the fundamental vertical and torsional
modes. The bimodal coupled flutter is then revisited based on a framework with closed-form formulations
that sheds more insights to the underlying physics of coupled flutter. This discussion was followed by a
unified analysis framework of integrating both flutter and buffeting analysis that better points out the roles
of both self-excited and buffeting forces on bridge response to wind fluctuations. Finally, the methodology
for modeling equivalent static wind loading associated with multimode coupled buffeting is discussed with
applications to bridge design.

MULTIMODE COUPLED BRIDGE FLUTTER

The equations of bridge motion subjected to wind excitations with the mean wind direction normal to
the bridge deck axis can be expressed as follows in terms of the generalized modal coordinates (e.g., Chen
et al. 2000a and b):

Mq̈ + Cq̇ + Kq = Qse + Qb (1)
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whereM, C andK = generalized mass, damping and stiffness matrices;mj, ξsj, andωsj = jth generalized
mass, damping ratio and frequency;Qse andQb = generalized self-excited and buffeting force vectors;
As(k) andAd(k) = aerodynamic stiffness and damping matrices, which are functions of flutter deriva-
tives and structural mode shapes;Abu(k) andAbw(k) = buffeting force matrices, which are functions of
static force coefficients, aerodynamic admittance functions, coherence functions of aerodynamic forces,
and structural mode shapes;u andw = longitudinal and vertical component vectors of wind fluctuations;
ρ = air density;U = mean wind velocity;B = 2b = bridge deck width;k= ωb/U = reduced frequency;
ω = frequency of motion. It is worthy of mention that asAd(k) andAs(k) are frequency dependent and
non-diagonal matrices, the equations of motion of bridge aeroelastic system become frequency dependent
and coupled.

The influence of self-excited forces on bridge modal properties at a given wind velocity can be quantified
through the solution of the following complex eigenvalue problem (e.g., Chen et al. 2000a):
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2
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λj = −ξjωj + iωj

√
1− ξ2
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whereλj andΦj = jth complex eigenvalue and eigenmode (mode shape);ωj andξj = jth complex modal
frequency and damping ratio;kj = ωjb/U ; i =

√−1.
Fig.1 and 2 show the predicted modal frequencies and damping ratios of a suspension bridge with a cen-

ter span of nearly 2000 m. The flutter derivatives were calculated using Theodorsen function. The structural
mode damping ratio for each mode was assumed as 0.0032. Analyses involving different combinations of



structural modes were conducted where modes 2, 8 and 11 are the first, second and third symmetric verti-
cal bending modes, mode 9 the second symmetric lateral bending mode, and mode 10 the first symmetric
torsional mode. The bimodal flutter analysis that involves modes 2 and 8 results in a critical flutter velocity
of 68.3m/s, which is very close to 69.3m/s predicted when involving first 15 modes. Considering the curve
veering of the frequency and damping loci of the modal branches 9 and 10, the results involving multiple
modes are consistent with the bimodal coupled system.
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wind velocities

Selection of participating structural modes in a multimode flutter analysis is usually not a difficult issue
in practice. In fact, in most cases involving only a few important modes, as demonstrated by the afore-
mentioned example, can provide an adequately accurate estimate of flutter behavior. The significance of
structural modes in bridge flutter may be identified through their amplitudes in the flutter motion. How-
ever, clarification of their contributions to the damping of flutter mode offers more accurate information
regarding the role played by each structural mode in the generation of coupled flutter (Chen et al. 2000a).

The modal damping can be related to the change in system energy during a cycle of vibration. The
generalized modal displacementq(t) in the flutter mode is expressed as

q(t) = {|Φ|i sin(ωt + ϕi)} (7)

where |Φ|i and ϕi = the amplitude and phase angle ofith modal displacement determined through the
complex mode shape;ω is the vibration frequency.

The increase in system energy during a cycle of vibration,∆E, can be expressed by the work done by
the generalized aerodynamic forces as (excluding the contribution of the structural damping force):
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= contributions of the aerodynamic damping and stiffness
coupling betweenith andjth structural modes, respectively;N = the total modal number.

The maximum potential energy of the system can be expressed as
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Accordingly, the logarithmic aerodynamic damping ratio is given by
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δdij
= −∆Edij

/(2E); δsij
= −∆Esij

/(2E) (13)

whereδdij
= δdji

andδsij
= δsji

= contribution to the aerodynamic damping due to aerodynamic damping
coupling and stiffness coupling betweenith andjth structural modes, respectively.

Fig. 3 shows the flutter motion in terms of the participation of structural modes with different amplitudes
and phase angles. Fig. 4 shows the aerodynamic damping associated with the coupling among bridge modes
at the critical flutter velocity of 68.9 m/s when modes 2, 8, 9, 10 and 11 were considered in analysis. For
instance, the terms (2,2) represent the damping when the bridge is vibrating in the single mode 2. The
term (2,10) indicates the damping attributed to the cross-terms ofAs andAd relevant to modes 2 and
10. The summation of all these terms plus structural damping equal to zero at critical flutter velocity.
Obviously, the two fundamental modes, modes 2 and 10, are most important modes in coupled flutter
while other modes have secondary contributions. The large amplitudes of modes 8 and 9 are due to their
resonance to coupled motion as their frequencies are close to the flutter frequency, while their contributions
to aerodynamic damping are relatively small. The important role of the two fundamental modes in coupled
flutter has been demonstrated by many flutter analysis examples. Therefore, the bimodal coupled flutter
analysis that involves only the two fundamental modes remains a sufficiently accurate and useful tool for
quickly evaluating bridge flutter performance at preliminary design stage, specially for seeking best bridge
deck sections with superior aerodynamic characteristics. The spring-mounted bridge section model tests in
wind tunnels developed since the investigation of Tacoma Narrows collapse continues to serve as a useful
tool for estimating critical flutter velocity without the need to quantify the flutter derivatives.
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Fig. 3 Flutter motion in terms of participation of the structural modes (U=69.3 m/s)
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Fig. 4 Aerodynamic damping due to
aerodynamic coupling among modes
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BIMODAL COUPLED FLUTTER

Improved understanding of the bimodal coupled flutter promises to gain insights to multimode coupled
flutter. When only the two fundamental modes are considered, the dynamic displacements of the bridge
deck in vertical direction and torsion are given ash(x, t) = h1(x)q1(t) andα(x, t) = α2(x)q2(t), where
h1(x) andα2(x) are mode shapes,q1(t) andq2(t) are the generalized modal coordinates. The self-excited
lift (downward) and pitching moment (nose-up) acting on the bridge deck section per unit length are given



by (Scanlan 1978)
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whereH∗
j andA∗

j (j = 1, 2, 3, 4) = flutter derivatives which are functions of reduced frequency.
The aerodynamic matricesAs(k) andAd(k) for bimodal coupled system are expressed as
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whereGrisj
=

∫
span ri(x)sj(x)dx (wherer, s = h, α; i, j = 1, 2) = modal integral.

While bimodal coupled flutter analysis can be carried out through Eq. (4), the framework with closed-
form solutions presented in Chen and Kareem (2005) and Chen (2005a) offers more insight to the under-
lying physics of coupled flutter. Following this framework, the modal frequency and damping ratio of the
torsional modal branch, and the associated amplitude ratio,Ψ, and phase difference between the vertical
motion and torsion,ψ, as defined byq10/(bq20) = Ψeiψ, are given by

ω2 = ωs2(1 + υA∗
3 + µυD2Ψ′cosψ′)−1/2 (17)

ξ2 = ξs2ωs2/ω2 − 0.5υA∗
2 − 0.5µυD2Ψ′sinψ′ (18)
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4) + ψ (23)

ω̄1 = ωs1[1− µ(ω2/ωs1)
2H∗

4 ]1/2 (24)

ξ̄′1 = ξs1ωs1/ω̄1 − 0.5µ(ω2/ω̄1)H
∗
1 − ξ2ω2/ω̄1 (25)

µ = ρb2/m; υ = ρb4/I; m = m1/Gh1h1 andI = m2/Gα2α2 = mr2= effective mass and polar moment of
inertia per unit span, respectively;r = the radius of gyration of the bridge cross-section.

While iterative calculations for modal frequencies and damping ratios are required, these converge
rapidly and even can be eliminated when their values at lower wind velocity are utilized as the initial values
of calculations. The only assumption made in this framework is low level of system damping. This assump-
tion is by no means restrictive. Therefore, as illustrated by many examples, this framework is expected to
be applicable to bridges with a variety of deck sections.

In the case of well separated modal frequencies, the damping ratio of the torsional modal branches can
be further simplified as

ξ2 = ξs2ωs2/ω20 − 0.5υA∗
2 + 0.5µυD2(H∗

3A
∗
1 + H∗

2A
∗
4)/[1− (ω10/ω20)

2] (26)

whereω10 andω20 are the modal frequencies of the corresponding uncoupled system:

ω10 = ωs1(1 + µH∗
4 )−1/2; ω20 = ωs2(1 + υA∗

3)
−1/2 (27)

This framework helps to better understand the development of coupled motions. The generation of
coupled vertical motion in the torsional branch with a frequencyω2 can be interpreted as follows. The



torsional motion causes lift force with an amplitude proportional toω2
2

√
(H∗

2 )2 + (H∗
3 )2 and a phase angle

tan−1(H∗
2/H

∗
3 ), indicating that this lift force leads the torsional displacement. This lift force, as an input

of a single degree of freedom (SDOF) system which has a frequencyω̄1 and damping ratiōξ′1, generates an
output of vertical motion. This vertical motion lags the lift force by the angleθd2 = tan−1{2ξ̄′1ω2/ω̄1/[1−
(ω2/ω̄1)

2]}, which is function of frequency ratioω2/ω̄1 and damping ratiōξ′1. Asω2/ω̄1 > 1, θd2 is between
π/2 andπ, and will be very close toπ for the system with well separated modal frequencies and low level of
damping. Similar discussion can be made for the vertical modal branch. Detailed studies ontan−1(H∗

2/H
∗
3 )

for a number of slender bridge sections have indicated that the flutter modal branch corresponds to a coupled
motion in which the torsional motion lags vertical motion.

The proposed framework also explicitly unveil the role of different aerodynamic force components
on modal damping. The uncoupled aerodynamic forces, i.e., the lift caused by vertical motion and the
pitching moment caused by torsion in terms ofH∗

1 , H∗
4 , A∗

2 andA∗
3, result in positive damping to both modal

branches. The contribution of the coupled forces, i.e., the lift caused by torsion and the pitching moment
caused by vertical motion in terms ofH∗

2 , H∗
3 , A∗

1 andA∗
4, to the torsional modal branch damping, depend

on the arithmetic sign ofsinψ′, whereψ′ = tan−1(H∗
2/H

∗
3 ) + tan−1(A∗

1/A
∗
4)− θd2. Based on the values of

flutter derivatives of slender bridge sections, it is seen that the coupled self-excited forces produce a negative
damping to the torsional modal branch, but a positive damping to the vertical modal branch. Fig. 5 shows
the role of aerodynamic forces on torsional modal branch damping of a long span suspension bridge with
a streamlined box section. When the negative aerodynamic damping exceeds the positive aerodynamic and
structural damping, bridge becomes negatively damped which leads to the occurrence of flutter instability.
The critical flutter velocity of this bridge is 69.1 m/s when the structural damping was neglected.

The role of coupled self-excited forces on modal damping can also be observed from the simplified
formulation given by Eq. (26). For general slender bridge sections,(H∗

3A
∗
1 + H∗

2A
∗
4), is dominated by

the value ofH∗
3A

∗
1, and is negative valued. Accordingly, the coupled self-excited forces produce negative

damping to the torsional modal branch asω10/ω20 < 1. The significance of structural characteristics on
bridge flutter can also be clearly identified from the proposed framework. This provides a critical insight
to improved understanding of coupled flutter which lends itself to better tailoring of bridge systems for
superior flutter performance.

ESTABLISHING RELATIONSHIP BETWEEN FLUTTER AND BUFFETING

The analysis of multimode coupled buffeting is often carried out in the frequency domain by spectral
analysis. The power spectral density (PSD) matrix ofq, and the PSD function of any response component
of interest (e.g., displacement, acceleration, and member force),v = DTq, are expressed as

Sq(ω) = Hq
∗(ω)SQb(ω)Hq

T (ω); Sv(ω) = DTSq(ω)D (28)

Hq(ω) =
(
− ω2M + iωC1(k) + K1(k)

)−1

(29)

SQb(ω) = (
1

2
ρU2)2

(
A∗

bu(k)Su(ω)AT
bu(k)/U2 + A∗

bw(k)Sw(ω)AT
bw(k)/U2

)
(30)

whereSQb(ω), Su(ω) andSw(ω) = power spectral density matrices ofQb, u andw, respectively;D =
modal participation coefficients to responsev; Hq = complex frequency response matrix/transfer matrix;
SuperscriptT denotes matrix transpose operator. While the cross-power spectra between longitudinal and
vertical wind fluctuations are neglected in Eq. (30), those can be readily included in a straightforward
manner. The mean square value of the response is then quantified by integrating its power spectrum over
the frequency range. The expected maximum response is determined by its root-mean-square (RMS) value
multiplied by a peak factor which usually ranges between 3 and 4.

It is emphasized that while this currently used buffeting analysis framework is straightforward, it offers
less information on how the complex modal properties affect the buffeting response. The determination
of Hq(ω) by Eq. (29) involves inverse of complex-valued matrix over a frequency range that demand
considerable amount of computation. A unified framework for buffeting analysis is presented in Chen



(2005b), in which the transfer matrix is directly expressed in terms of the complex modal properties obtained
from the flutter analysis. This framework establishes a clear nexus between bridge flutter and buffeting
response and is simpler and illustrative.

This unified framework is based on the observation that the frequency response matrix and response
spectra generally have very high peaks in close proximity of modal frequencies. Subsequently, the inte-
gration of response spectra in close neighborhoods of modal frequencies dominates the response variance
and covariance. Within the vicinity of each modal frequency, the frequency dependent aerodynamic stiff-
ness and damping terms can be approximately regarded as constants by taking their values at the modal
frequency. This approximation is generally acceptable because it is applied only in a very small range of
frequency, and also the aerodynamic parameters rarely markedly vary with frequency. Subsequently, the
frequency response matrix can be approximately expressed in terms of the complex modal properties as
(Chen 2005b):

Hq(ω) =
N∑

j=1

(ΦjΘ
T
j /mj

iω − λj

+
Φ∗

jΘ
∗T
j /mj

iω − λ∗j

)
=

N∑
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Hj0(ω)
(
(iω)Ej + Fj

)
(31)

Ej = (ΦjΘ
T
j + Φ∗

jΘ
∗T
j ); Fj = −(ΦjΘ

T
j λ∗j + Φ∗

jΘ
∗T
j λj) (32)

Hj0(ω) =
1

mj(ω2
j − ω2 + i2ξjωjω)

(33)

whereΘj = the eigenvector (mode shape) of the transpose of system matrix associated withλj:

ΘT
j

(
λ2

jM + λjC1(kj) + K1(kj)
)

= 0 (34)

and is normalized as
ΘT

j

(
2λjM + C1(kj)

)
Φj = mj (35)

This new scheme is not only computationally more effective than the traditional framework which re-
quires inverse of the complex matrix at discrete frequencies [Eq (29)], but also sheds more physical insight
to bridge aeroelastic response by explicitly linking the effects of the self-excited and buffeting forces. The
self-excited forces affect the modal properties of the system thus influence the way bridge responds to wind
fluctuations. Obviously, when wind velocity exceeds the critical flutter velocity, the contribution of flutter
mode becomes infinite, thus system turns to be unstable.

Fig. 6 compares the RMS values of the deck displacements of a long span suspension bridge predicted
based on the two different approaches. The results indicated by “Exact” are based on the traditional ap-
proach in whichHq(ω) is directly evaluated using Eq. (29). The results denoted by “Approx.” represent
those based on Eq. (31). These results illustrated the accuracy of the proposed scheme.
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Fig. 6 The RMS values of bridge deck displacements



This framework also permits time domain simulation of multimode coupled buffeting response. The
modal response can be expressed in the frequency domain as

q(ω) = Hq(ω)Qb(ω) =
N∑

j=1

(
(iω)EjYj(ω) + FjYj(ω)

)
(36)

Yj(ω) = Hj0(ω)Qb(ω) (37)

Consequently, the generalized displacement can be expressed in the time domain as

q(t) =
N∑

j=1

(
EjẎj(t) + FjYj(t)

)
(38)

whereYj(t) is given as follows for its elementY j
n (t) (n = 1, 2, ..., N):

Ÿ j
n (t) + 2ξjωjẎ

j
n (t) + ω2

j Y
j
n (t) = Qn(t) (39)

This framework can be used for time domain simulation of buffeting response without generating time
histories of self-excited forces. The influence of self-excited forces on buffeting response is accounted
through the complex modal properties. The time histories of buffeting forces can be either generated based
on their spectra or calculated based on the time histories of wind fluctuations. In the later format, the rational
function approximation technique can be utilized to model the frequency dependent features of the unsteady
buffeting forces instead of using quasi-steady assumption (Chen and Kareem 2000b and 2002). The time
domain simulation technique with generation of time histories of self-excited and buffeting forces is more
appropriate when aerodynamic nonlinearities are taken into consideration (Chen and Kareem 2003).

EQUIVALENT STATIC WIND LOAD

The equivalent static wind loading representation is very effective for extracting design wind loads
on bridges from full aeroelastic and/or section model wind tunnel tests. The equivalent static wind loads
associated with multimode coupled buffeting response can be expressed in terms of the modal inertial loads,
which are a function of structural mass distribution, mode shape and modal accelerations (Davenport and
King 1984; Irwin 1998; Holmes 1999; Chen and Kareem 2001). It provides physically more meaningful
design loads than the traditional gust response factor approach that results in a load distribution similar to
the mean wind loads.

The bridge dynamic displacement in the vertical, lateral and torsional directionh(x, t), p(x, t) and
α(x, t), respectively, are expressed as

h(x, t) =
∑

j

hj(x)qj(t); p(x, t) =
∑

j

pj(x)qj(t); α(x, t) =
∑

j

αj(x)qj(t) (40)

wherehj(x), pj(x) andαj(x) = jth mode shapes in the vertical, lateral and torsional directions, respectively;
andx = the spanwise position.

The lift, drag and pitching moment components of the equivalent static modal load associated with the
jth mode are given in terms of modal inertial loads as

Lej(x) = m(x)hj(x)ω2
jsσqj

; Dej(x) = m(x)pj(x)ω2
jsσqj

; Mej(x) = I(x)αs(x)ω2
jsσqj

(41)

wherem(x) andI(x) = mass and rotational inertia per unit length, respectively;σqj
= RMS value ofqj.

The equivalent static load for a given peak response can be expressed in terms of linear combinations of
these modal inertial loads as

Le(x) = g
N∑

j=1

Lej(x)Wj; De(x) = g
N∑

j=1

Dej(x)Wj; Me(x) = g
N∑

j=1

Mej(x)Wj (42)



whereWj = weighting factor or combination factor.
For instance, for an arbitrary dynamic response of interestz(t) (e.g., bending moment, shear force, and

other member forces), its expected peak value is estimated as

zmax = gσz = g
( ∑

j

∑

k

ΓjΓkσqj
σqk

rjk

)1/2

(43)

and the weighting factor of thejth modal inertial load is given by

Wj =
∑

k

rjkρkσqk
/σz (44)

whereg = the peak factor, generally in the range 3 to 4;rjk = rkj = σ2
qjk

/(σqj
σqk

) andσ2
qjk

= the correlation
coefficient and covariance betweenjth andkth modal responses;Γj = jth modal participation coefficient.

In fact, there are many ways to define the weighting factor hence the equivalent static load for a given
peak response, but Eqs. (42) and (44) is based on the load-response-correlation approach and provides the
most probable peak load distribution for the specified maximum response (Kasperski 1992). The equivalent
static load distributions depend on the influence function of the specific response and are unique for each
response component. It is also worth noting that only the relative value of the influence function is needed
for determining these weighting factors.

The dynamic displacement response can be quantified through a full aeroelastic model test. Using this
equivalent static load approach, full bridge aeroelastic model test not only can be used as a final confirmation
of the performance of an important bridge, but can also be used to gain useful insight into the description
of the design wind loads (King 1999).

A long span suspension bridge with a main span of approximately 2000 m is considered as an example
to illustrate the aforementioned methodology. The buffeting displacement is predicted based on a three-
dimensional multimode coupled buffeting analysis. First fifteen natural modes with the frequencies over
the range of 0.03 to 0.2 Hz are included in the analysis.

Bending moments in lateral and vertical directions, and the displacement in torsion at the main span
center at the mean wind speed of 60 m/s are selected as the response components of interest for the equiv-
alent static loads. Fig. 7 shows the corresponding equivalent static load distributions. The peak factor was
assumed to be 3.5. It is clear that for different response components the equivalent static load distributions
are different. It is also shown that the aerodynamic coupling has a significant influence on the equivalent
static load distribution. For potential application in design practice, it is necessary to limit the number
of distributions to only critical response components and to simplify the mode shapes for a convenient
description of the load distributions.
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CONCLUDING REMARKS

This paper discussed a number of useful analysis frameworks recently developed at the authors’ labora-
tories, which offer advanced prediction and a clearer explanation of the multimode coupled bridge response



to strong wind excitations. By exploring the contribution of bridge modal coupling to flutter modal damping
through the viewpoint of energy change during a cycle of vibration, the important role of the fundamental
vertical and torsional modes in flutter was identified. This also pointed out the consistency in the underlying
physics of the multimode coupled flutter with the bimodal coupled flutter, and confirmed the usefulness of
bimodal coupled flutter analysis for an expeditious assessment of bridge aerodynamic performance. The
framework with closed-form solutions for bimodal coupled system provided enhanced understanding of the
generation of coupled motion and the evolution of flutter, and offered insights to how and where the structure
be modified for tailoring of better flutter performance. The proposed framework for buffeting analysis ex-
plicitly integrated the aeroelastic modal information, e.g., aerodynamic damping and inter-modal coupling,
gained through flutter analysis, and is indeed more illustrative. This has helped to better understand the
role of both self-excited and buffeting forces on the buffeting response. Finally, the modeling of equivalent
static loading provided a useful tool for extracting underlying design wind loads on bridges experiencing
multimode coupled dynamic response to strong winds.
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