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ABSTRACT: This study presents a framework with closed-form solutions for the bimodal coupled
bridge aerolastic system, and points out the control parameters which critically influence the generation
of inter-modal coupling and aerodynamic damping. Accordingly, this information helps in developing a
guideline for the selection of most important structural modes in a coupled flutter analysis. The role of
each flutter derivative and the potential influence of the self-excited drag force on bridge flutter are also
discussed. Finally, a closed-form formula for quantifying the critical flutter speed is introduced which
can be regarded as an extension of the empirical Selberg’s formula for generic bridges.
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1 INTRODUCTION
Many analysis examples have shown that coupled bridge flutter is dominated by the aerodynamic cou-
pling of a few important structural modes (e.g., Jones et al. 1998; Chen et al. 2000). From the point of
view of flutter prediction, the clarification of the most important modes may not be an important issue,
because the analysis even involving a larger number of modes, e.g., 50 modes, is actually not com-
putational expensive. However, improved understanding of the most important modes helps in better
capturing the underlying physics of coupled flutter. It also offers equally valuable guidance for design
and interpretation of wind tunnel studies using full aeroelastic bridge models. While information on
the modal participation in flutter has been obtained from a variety of bridge examples, a simple and
physically insightful guidance on the selection of bridge modes has not been reported in the literature.

Another important issue in flutter analysis is concerning the modeling of self-excited forces. It has
generally been understood that the self-excited lift and pitching moment on a bridge deck caused by
vertical and torsional motions are most important in the generation of coupled flutter. However, since the
interesting finding concerning the noticeable contribution of the self-excited drag force on the coupled
flutter of Akashi Kaikyo Bridge (Miyata et al. 1994), the force modeling with total eighteen flutter
derivatives instead of the traditional eight flutter derivatives is becoming increasingly prevalent (Sarkar et
al. 1994; Chen and Kareem 2002; Chen et al. 2002). While this modeling increases the accuracy of flutter
prediction, it considerably complicates and undermines the efforts of better capturing the fundamental
flutter characteristics of bridge deck sections with a minimal number of flutter derivatives (Matsumoto
1999; Chen and Kareem 2006). It becomes an important issue to clarify why and under what conditions
these additional flutter derivatives can be excluded in a flutter analysis.

In this paper, the aerodynamic coupling of two modes are discussed using closed-form formulations,
which reveals the control parameters most influencing the generation of inter-modal coupling and aero-
dynamic damping. This discussion leads to improved understanding of the most important modes in
flutter. Based on the closed-form solutions of bimodal coupled flutter, the role of each flutter derivative
on coupled flutter is identified, which clarifies why and under what conditions the modeling of self-
excited forces can be simplified with a small number of most important flutter derivatives. Finally, a
closed-form formula for estimating the critical flutter speed is introduced which serves an extension of
Selberg’s formula (Selberg 1961) for generic bridges with bluff deck sections.
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2 IMPORTANT MODES IN FLUTTER
From the closed-form formulations for estimating the modal frequencies, damping ratios and inter-modal
coupling of a bimodal coupled bridge aeroelastic system developed in this study, it is clear that the con-
trol parameters influencing the inter-modal coupling, especially, the modal damping are the frequency
ratio, damping ratios, mass parameters, coupled aerodynamic stiffness and damping terms between these
two modes. Therefore, a mode comprising of large values of coupled aerodynamic stiffness and damping
terms with the fundamental torsional mode is more likely to be important for coupled flutter. Further-
more, this coupling will be enhanced when its damping is low and its frequency is close to the torsional
modal frequency. For example, the fundamental vertical bending mode often has higher similarity in
shape with the fundamental torsional mode, which leads to larger coupled aerodynamic terms between
these two modes. Therefore, the fundamental vertical bending mode is more likely to be coupled with
the torsional mode than other higher vertical bending modes whose mode shapes have less similarity
with the fundamental torsional mode, although their frequencies may be closer to the torsional modal
frequency. In this context where the fundamental torsional mode is anti-symmetric, the corresponding
fundamental bending mode is referred to as the fundamental anti-symmetric mode. Otherwise, both are
referred to as fundamental symmetric modes. Some modes may become locally important at a certain
wind speed region where their frequencies are close to the torsional modal frequency.

3 IMPORTANT FLUTTER DERIVATIVES
For a bimodal coupled bridge system involving only the fundamental vertical and torsional modes, when
only the self-excited lift and pitching moment are considered, the closed-form formulations explicitly
unveil the role of different force components on modal damping (Chen and Kareem 2006). The un-
coupled aerodynamic forces, i.e., the lift caused by vertical motion and the pitching moment caused by
torsion in terms of the flutter derivativesH∗

1 , H∗
4 , A∗

2 andA∗
3, result in positive damping to the vertical

and torsional modal branches, respectively. The effects of the coupled forces, i.e., the lift caused by
torsion and the pitching moment caused by vertical motion in terms of the flutter derivativesH∗

2 , H∗
3 , A∗

1

andA∗
4, however, produce negative damping to the torsional modal branch. The flutter derivativesH∗

3 ,
A∗

1, A∗
2 andA∗

3 are most influential to coupled flutter.
Similar discussion on the role played by each flutter derivative can also be made when the self-excited

forces are modeled in terms of eighteen flutter derivatives. For the aforementioned bimodal coupled
system, for example, the aerodynamic stiffness and damping terms relevant to the torsional mode can be
expressed as

As22 = (2k2)(P ∗
4 Gp2p2 + bP ∗

3 Gp2α2 + bA∗
6Gp2α2 + b2A∗

3Gα2α2) (1)

Ad22 = (2k)(P ∗
1 Gp2p2 + bP ∗

2 Gp2α2 + bA∗
5Gp2α2 + b2A∗

2Gα2α2) (2)

whereP ∗
i andA∗

i are the flutter derivatives;Grisj
=

∫
span ri(x)sj(x)dx (wherer, s = h, p, α) are the

modal integrals;B = 2b is the bridge deck width;k = ωb/U is the reduced frequency;U is the mean
wind speed;ω is the frequency of motion.

Obviously, the importance of additional flutter derivatives on bridge flutter depends on their values and
associated mode shape integrals. For instance, the contribution ofP ∗

1 , P ∗
2 andA∗

5 in Ad22 is equivalent
to a change inA∗

2 given byP ∗
1 Gp2p2/(b

2Gα2α2) + P ∗
2 Gp2α2/(bGα2α2) + A∗

5Gp2α2/(bGα2α2). While this
change is generally small in magnitude, it may have a markable effect on the critical flutter speed when
the value ofA∗

2 itself is low. Similar statements apply to other flutter derivatives.
To demonstrate the potential influence of drag force component on a coupled flutter, the following

parametric study on a suspension bridge with a center span of about 2000 m is carried out. Three cases
with different values ofH∗

1 ∼ H∗
4 andA∗

1 ∼ A∗
4 are considered. Case A:H∗

1 ∼ H∗
4 andA∗

1 ∼ A∗
4 are

determined through Theoderson function; Case B:H∗
1 ∼ H∗

4 are the values of Case A divided by 5, and
A∗

2 andA∗
3 are the values of Case A divided by 10; and Case C:H∗

1 ∼ H∗
4 , A∗

2 andA∗
3 take the values of
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Case A divided by 10. The self-excited drag force is the same and modeled by invoking the quasi-steady
theory in all cases.
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Fig. 1 Equivalent changes inA∗2 due toP ∗
i
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Fig. 2 Effect ofP ∗
i on the modal damping

Fig. 1 shows the equivalent change inA∗
2 as the result ofP ∗

i . Fig. 2 portrays the effect ofP ∗
i on

the modal damping ratios at varying wind velocities. The potential influence of the self-excited drag
force on a bridge flutter can be discussed in light of the flutter characteristics featured by the rate of
change in modal damping with increasing wind speed. In the case of a soft-type coupled flutter where
the level of damping is low and it changes slowly with increasing wind speed around the critical flutter
speed, even a little influence of additional self-excited drag force on the modal damping may result in
a markable change in the predicted critical flutter speed as indicated by Cases B and C. Consequently,
careful modeling of the self-excited forces with the consideration of drag force may become critical for
an accurate flutter prediction. The structural damping also becomes considerably beneficial to this type
of flutter. However, majority of bridges are considered to exhibit a hard-type flutter characterized by
modal damping that changes rapidly with increasing wind speed around the flutter onset as indicated by
Case A. This type of flutter typically associated with large values of self-excited lift and pitching moment
caused by the vertical and torsional motion of bridge deck. For this type of flutter, the structural damping
and the additional damping caused by the self-excited drag force or auxiliary damping through a tuned
mass damper generally have little effects on the critical flutter speed (e.g., Chen and Kareem 2003).

4 CLOSED-FORM FORMULA FOR CRITICAL FLUTTER SPEED
In the case of well separated modal frequencies and a low level of damping, the critical flutter speed can
be estimated by

Ucr = γωs2b

√
(1− η2)

(
mr

ρb3

)
(3)

γ = {[(−kA∗
2) + 2kξs2(1 + υA∗

3)
1/2/υ]/[(−k2H∗

3 )(kA∗
1)(k

2A∗
3)]}1/4/

√
2D (4)

whereρ is the air density;η = ωs1/ωs2 = frequency ratio;ωs1 andωs2 are the circular frequencies of the
vertical and torsional modes, respectively;ξs2 is the damping ratio of the torsional mode;υ = ρb4/I;
m = m1/Gh1h1 and I = m2/Gα2α2 = mr2 are the effective mass and polar moment of inertia per
unit span, respectively;r is the radius of gyration of the cross-section;D = Gh1α2/(Gh1h1Gα2α2)

1/2 is
the similarity factor between the vertical and torsional mode shapes. Eq. (3) withk2

0 = (ωs2b/Ucr)
2 =

k2(1 + υA∗
3) provides an alternative format for estimating the critical flutter speed and flutter frequency.

The parameterγ is insensitive to the value of the reduced wind speed over the reduced wind speed
range of interest, i.e.,U/fB=10 to 20. This feature makes Eq. (3) very attractive for an expeditious
assessment of flutter performance of a given deck section, based on their flutter derivatives but without
implementing flutter analysis. This formula provides not only an analytical basis for the well known
Selberg’s formula, but also is regarded as its extension to generic bridges with bluff deck sections. It
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clearly points at the significance of structural and aerodynamic characteristics on bridge flutter perfor-
mance, which helps to better understand how and where the structure features may be tailored for better
flutter performance.

5 CONCLUDING REMARKS
The fundamental vertical bending and torsional modes are two dominant modes in coupled flutter. The
participation of other modes depends on the similarity in mode shapes and their modal frequencies as
compared to the fundamental torsional mode.

The flutter derivativesH∗
3 , A∗

1, A∗
2 andA∗

3 are the most important for characterizing the flutter perfor-
mance of a section. For a soft-type flutter, additional aerodynamic damping of the drag force may have
a markable influence on the critical flutter speed. However, a majority of bridges are characterized by a
hard-type flutter, for which the effect of drag force is negligibility small. Therefore, inclusion of eighteen
flutter derivatives may not be necessarily important in these cases in light of minimal improvement in
flutter prediction.

The closed-form formula for estimating critical flutter speed provided an analytical basis for the well
known Selberg’s formula and can be regarded as its extension to generic bridges with bluff deck sec-
tions. It clearly points at the significance of structural and aerodynamic characteristics on bridge flutter
performance, which helps to better understand how and where the structure may be tailored for better
flutter performance.
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