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ARMA REPRESENTATION OF WIND FIELD 

Yousun Li* and A. Kareem** 

AE3sTRAcr 

The dynamic response analysis of structures subjected to a stochastic wind field is 
carried out in the time domain by a step-by-step integration approach. The loading is repre- 
sented by simulated time histories of the aerodynamic force. The auto-regressive and 
moving average (ARMA) recursive models are utilized to simulate time series of wind 
loads. Depending on the system dynamic characteristics, the time-integration schemes 
require that the time increment should not exceed a prescribed value. This study focuses on 
the development of ARMA representation based procedures to simulate realizations of wind 
loading with small time increments required by the time-integration schemes. A three- 
stage-matching method and a scheme which combines ARMA and digital interpolation 
filters are presented to efficiently generate correlated time histories of wind loads at the 
prescribed time increments. 

INTRODUCITON 

The dynamic response analysis of structures is often performed in the frequency 
domain for the sake of computational expedience. However, there are cases such as 
system nonlinearities where a straightforward application of the frequency domain analysis 
becomes computationally prohibitive and the time domain solution provides a convenient 
alternative. The input to the numerical time domain solution requires corresponding time 
histories of the space-time variations in the loads. The simulated time series are required to 
match single-point power spectral density functions and multi-point correlation structure. 
One of the traditional approaches for simulation is to utilize a superposition of trigonometric 
functions, e.g., cosine functions, with statistically independent phase angles (Shinozuka, 
197 1). The simulated numbers can be convenientlv incoroorated in a Monte Carlo 
simulation of the response of a system utilizing a &mericai integration scheme. The 
procedure in principle is applicable not only to scalar processes, but may be applied to 
multivariate and/or multidimensional fields. However, the summation of a large set of 
trigonometric terms involved in the simulation procedure renders this approach computa- 
tionally inefficient (Shinozuka and Jan, 1972; Wittig and Sinha, 1975). In this context, it 
has been noted that the digital generation of the sample time histories can be carried out 
efficiently with the aid of the Fast Fourier Transform (FFT) algorithm. 
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The use of a FFT based simulation improves the computational efficiency, but not 
without the expense of increased demand on computer storage. This difficulty magnifies 
manifold in the event that the simulated data is required over a long period or when the 
problem in hand involves multivariate and/or multi-dimensional processes. ARMA model 
representation of random fields has been utilized for simulating sample functions of target 
random processes and fields (e.g., Samaras, et al., 1985 and Naganuma, et al., 1987). 
The recursive nature of this approach substantially helps to reduce demand on memory 
space and CPU time for generating desired sample functions. 

The parameters associated with ARMA models are determined in such a manner that 
the spectral description of the system response to white noise approximates the target 
spectral characteristics in an optimum sense (e.g., Mignolet and Spanos, 1987). The 
coefficient matrices in this manner may be determined by the maximum entropy method 
(MEM). However, for the multi-variate ARMA models MEM requires solving a large 
number of nonlinear equations. This has led to the development of many other techniques. 
The two-stage matching method is one popular approach (e.g, Spanos and Schultz, 1985). 
Most of the studies reported in the literature have focussed on matching a univariate or a 
multivariate ARMA model to a prescribed spectral description; little attention has been given 
to the influence of time increment on the simulation. The time-integration schemes often 
require a small time step to ensure that the energy content of the highest frequency 
component of the excitation is accurately described. This paper provides efficient simula- 
tion techniques to generate time series concerning wind field with small time steps utilizing 
ARMA models. 

WIND FIELD & LOAD EFFECTS 

Under the influence of wind, structures experience force in the alongwind, 
acrosswind and torsional directions (Kareem, 1987). The alongwind force is primarily 
resulting from drag. In order to formulate fluctuating alongwind force acting on a struc- 
ture, it is necessary to establish a description of the multi-point statistics of the wind 
velocity fluctuations. Appropriate aerodynamic transfer functions are introduced to trans- 
form wind velocity fluctuations to corresponding wind loads. Accordingly, the wind load 
effects on structures can be simulated either by generating space-time structure of random 
wind field or by directly generating fluctuating loads induced by wind fluctuations. 
Additional details concerning the space time description of wind field may be found in the 
following: Davenport (1961), Simiu and Scanlan (1986) and Kare~m (1987). 

The first approach, requires generation of a vector containing time series of 
fluctuating wind velocities at the centroids of various sections, u(nAt), by a multi-variate 
ARMA model, which is followed by computing the associated vector of the wind force 
time series. In the second approach, a vector of time series of wind loading, F(nAt) is 
directly generated by a multi-variate ARMA model matched to the wind force spectral 
description. 

ARMA MODELING 

An autoregressive and moving average (ARMA) model of orders P and Q is def'med 
as a linear fiher that permits simulation of the wind velocity or force vector y(At) (Mxl) by 
its past time histories and the past and present white noise processes: 
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P 

y(nAt) + Z Ary[(n-r)At] = Br en-r, 
r=  I r=0  

(1) 

in which A r and B r ale AR and MA coefficient matrices, and en_ r is a vector containing 
white noise with a zero mean and a unit variance. The coefficient matrices are determined 
from the specified spectral description of the random field to be simulated. A desirable 
feature of ARMA modeling is that the model orders and the error are small, since the total 
order translates into the number of multiplications and additions at each discrete time 
interval during the simulation procedure. 

ARMA models are characterized by poles and zeroes. A low-order ARMA model 
could produce a small error if the coefficients are suitably selected. The application of the 
maximum entropy condition to a multivariate ARMA model requires the solution of a large 
number of nonlinear equations. Therefore, some techniques have been developed to cir- 
cumvent this difficulty. One of these approaches is the two-stage-matching method, by 
which an ARMA model is developed based on a prior AR model. There are a number of 
different approaches that follow the two-stage-matching method e.g., (Samaras et al., 1984 
and Spanos and Shultz, 1985). In this manner, an ARMA model can be formulated by the 
solution of a number of linear equations. This procedure is computationally convenient. 
However, ARMA model coefficients with given P and Q are not unique, since they depend 
on the prior AR order P'. 

Altogether, there are three parameters to be selected: P', P, Q and At. Samaras et 
al. (1984) gave an empirical relationship, 

P - - Q  and P ' > P + Q + 2 .  (2) 

Optimal model orders may only be obtained from a larger number of combinations of the 
above parameters. In the present study, an interactive computer algorithm is developed to 
study the effects of various combinations of the parameters on the model accuracy. An 
empirical relation based on this study suggests 

P' -- 3 (P + Q). (3) 

Then for a fixed P+Q, a selection of P and Q can affect the model error. For the wind 

field, it is recommended to use 

P > Q.  (4) 

The time increment, At, also influences the model error. Approximately, the 
ARMA model involves a window of time period (P+Q) At. A decrease in At could increase 
the model error. The shape of the wind spectral density function can affect significantly the 
model accuracy. For example, an ARMA model used to match the wind spectrum with a 
finite value at the zero frequency, such as the Harris spectrum, has higher accuracy than an 
ARMA model for the wind spectrum with a zero value at the zero frequency, such as the 
Davenport spectrum. It is important to note that the ARMA matching is also sensitive to the 
accuracy of the correlation functions derived from a given spectral density function. 
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Typical examples of the comparisons between the target spectra and the estimated 
spectra are shown in Fig. 1, and the comparisons of  the coherence functions are shown in 
Fig. 2. It is noted that an ARMA model can be matched to the Harris wind spectrum with 
almost no error in the entire frequency range. The main difficulty in matching the 
Davenport wind spectrum is due to the representation of  the sharp drop in the spectral 
ordinates near the zero frequency. 

In most of  the above examples, the time series were simulated for large At (>2 sec), 
in which the spectral density of  the wind velocity at the Nyquist frequency still has 
significant energy. However, it is generally required to have a much smaller At for the 
following reasons: 1) The natural frequency of  the structure may be high; 2) The structure 
may be subjected to other environmental loads, such as wave loads, earthquake, etc., 
which have high frequencies, hence, the time series of wind loads must have a small time 
increment to be consistent with the time series of  other loads; 3) Depending on the 
numerical scheme, the accuracy and stability during the time-integration procedure requires 
that the time increment not exceed a prescribed maximum value. If the required time incre- 
ment is 0.5 sec., then the Nyquist frequency would be 1 Hz, but generally a significant 
portion of wind energy is less than 0.1 Hz. Also the coherence function is often significant 
only within a small portion of  the entire frequency range. Therefore, it becomes quite 
difficult to match an ARMA model to wind fields with small At. In the following sections, 
the discussion focuses on two methodologies: a three-stage-matching method and 
interpolation models. 

THREE-STAGE MATCHING METHOD 

A three-stage-matching method is proposed that involves the introduction of a 
suitable parameter cc which transforms y(Ant) into z(nAt). 

z(nAt) = y(nAt) - ct y[(n-1)At]. (5) 

Using the backshift operator B, the preceding equation reduces to 

z(nAt) = (1 - c~B) y(nAt). (6) 

The (i,j) th element of the spectral density matrix of  z(t) becomes 

Gzij(f) = [1 + o~ 2 - 2 cos(2~fAt)] 2 Gyij(f). (7) 

If  c~=1, then Eq. (6) is similar to the seasonal difference method in the Box-Jenkins 
approach (Box & Jenkins, 1970). However, {z=l leads to a zero spectral ordinate in 
Eq. (7), and it is not invertible. Hence, ~ is selected such that 0 < ~ < 1 which ensures a 
slow decrease in the spectral ordinates of  z(nAt) with an increase in frequency. For the 
Harris wind spectrum, it is recommended to use c¢=0.94~.98. 

An example of  wind loads acting on a tall building with the lowest natural 
frequency equal to 0.2 Hz (the wind and the wind force data are listed in Table I) is used to 
illustrate this approach. The building face is divided into five segments. It is required to 
have the wind load simulated at an interval of at least 0.5 sec. Figure 3 demonstrates the 
spectral densities of  the wind loads at the 5 th level before and after the transformation with 
a,---0.955. It is noted in this figure that the wind load spectral ordinates are negligible 
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within the frequency range 0.1-1Hz. However, after the transformation, the spectrum 
covers the entire frequency range up to the Nyquist frequency and decays slowly with the 
frequency. 

z(nAt) can be matched by an ARMA model utilizing the two-stage-matching 
procedure discussed in the preceding section, 

5"PZ 
z(nAt) + ~ A~z[(n-r)At] = B r  ~,n-r , (8)  

r = l  r=0  

which, after substitution in Eq. (6), takes the form of Eq. (1), in which 

and 

P = P Z + I ,  

I 
a 0 . . . 0  

0 a . . . O  
A 1  --  A 1  - • : . . .  0 

0 . . . . . . . . .  

(9) 

A r = A Z - ( ~ A  z f o r t >  1 
r -1  

(10) 

In this example, an ARMA (4,4) model from a prior AR (30) model has been 
matched for z(nAt). Subsequently, ARMA model (5,4) for y(nAt) is formulated. The 
spectral density of the target wind load and those represented by the ARMA model are 
plotted in Fig. 4. The results demonstrate the closeness between the target and estimated 
spectral functions. 

The ARMA model representation given by the three-stage-matching method is 
especially suitable for describing the high frequency spectra. If the low frequency wind 
loads are not important, it is possible to obtain a very low order ARMA model, e.g., 
ARMA (3,1) for the above example. The three-stage-matching method involves a selection 
of the parameter a,  in addition to P', P and Q. However, it does improve the shape of the 
spectral density functions, which facilitates a convenient modeling, but it cannot improve 
the shape of the coherence functions. Hence, the error in the correlation functions may not 
be small. Additional details may be found in Li and Kareem (1990). This method can be 
applied to most of the wind spectra, such as the Harris or Kareem spectra (Kareem, 1987). 
For some wind spectra, such as the Davenport spectrum, which has a zero ordinate at the 
zero frequency, this method is not suitable. 

INTERPOLATION MODELS 

A more general procedure to simulate time series of wind field involves a 
combination of an ARMA model and the interpolation model. Let the time increment in the 
ARMA model be At, such that the corresponding Nyquist frequency is a little larger than 
the frequency beyond which the wind has insignificant energy. Suppose that the time- 
integration scheme for the solution of the dynamic system requires a much smaller time 
increment St, where At /8 t  is an integer S. It is required to formulate time series 
y[(nS+l~)St] from y(nAt) in which 1~ < S. There are a number of interpolation methods 
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available in the literature (e.g., Oppenheim & Schafer, 1989). Recently, new interpolation 
techniques with applications in engineering mechanics have been developed (Li, 1988). 
Their details will be reported elsewhere. Here some concepts relevant to wind engineering 
are introduced. First, it is important that the interpolation following an ARMA model 
satisfy the following requirements: 

Local interpolation: y[(nS+~)&] is simulated from y(mAt) with m= n-Q1-, n-Qi-+l ..... n, 
.... n+Qi +, in which QI- and QI + are small integer numbers. The conventional global 
interpolation involving the total time series is not suitable for the present application. 

Stability: The interpolation is said to be stable if a bounded time series after interpolation 
still remains bounded. 

Accuracy: The spectral density functions represented by y[(nS+13)St] are the same as those 
of y(nAt) when the frequency is less than 1/2At, and zeros in the frequency range 
1/2At- 1/28t. 

The interpolation techniques may be classified as linear, polynomial and 
trigonometric. Frequently, a piecewise linear interpolation of the discrete data is utilized. 
This method is the simplest, but it may introduce a large error in the spectral density func- 
tion. The polynomial interpolation is the next level of interpolation. For example, Li 
(1988) developed a cubic polynomial interpolation, which results in a process continuous at 
its first-order time derivative, involving three multiplications and additions at each discrete 
time interval. The trigonometric interpolation suggested by Saunders and Collings (1980), 
is further developed in this study, and it is perceived to be the most suitable choice for 
wind engineering applications. In the following a basic concept of the trigonometric 
interpolation developed herein is presented: 

pulses: 
The discrete time series can be viewed as a process, yat(t), consisting of numerous 

yAt(t) = ~ y(nAt) At 8(t - nAt), (11) 

in which 8(t-nAt) is the Dirac delta function. Its Fourier transform is written as 

yAt(f) = ~ y(nAt) exp(-j2~f nat) At, 
n =  - ~  

(12) 

which is a discrete Fourier transformation. The preceding equation shows that yAt(f) is 
cyclic with a cycle 1/At, and yat(f) =yat(1/A t _ ~ in which the overbar is the conjugate 
si~gn. Similarly, the time series with a time increment 8t can be viewed as a pulse process 
y~t(t), and the corresponding Fourier transformation becomes 

ySt(f) = Z y(m8t) exp(-j 2~f mSt) St. (13) 

Define a transfer function H(f) which satisfies 
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H(f) = ySt(f) (14) 
yat(0 " 

For the ideal case, H(f)=l for f < I/2At and H(f)=0 for 1/28t < f < I/2At. Additional 
details are available in Li and Kareern (1990). The f'mal expression for ySt(t) is given by 

y&[m&] = r=-SQ I+~1 h (r &) yat[(m-r)SX] , (15) 

in which QI is the interpolation order, and h(rAt) the convolution kernel for interpolation is 
given by 

m r  
h(r&) : H(rnAf) exp ( j  g ) / ( 2 S Q ' )  , (16) 

As an example, Fig. 5 demonstrates a comparison of an ideal transfer function, 
with the transfer function given by Saunders and Collings (1980) and the present study. It 
is noted that with the same interpolation model order, the transfer function represented by 
the interpolation form introduced in the present study is closer to the ideal transfer function. 

Considering that yat(m&)--0 for m&-,~At in which n is an arbitrary integer number, 
Eq. (15) can be rewritten as 

¢ - d  

YSt[(Sn+l])&] = r=-~+~l hl~r Yat[(n + r) At], (17) 

in which hi3 r is a rearrangement of h(r&). Hence, virtually, the interpolation is carried out 
at each tim'e interval (Sn+l])& by 2Q I multiplications and additions, 

y[(Sn+13)&] = £ hl]r y[(n + r) At]. (18) 
~-QI+I 

An example of this interpolation model is considered here. A fluctuating compo- 
nent of wind velocity according to the Davenport spectrum is simulated by an ARMA 
model with At=2 see., and is further interpolated to form the wind velocity with 5t=0.5 
sec. This interpolation is performed by the above described interpolation model of order 8. 
In order to validate the interpolation model, the discrete time series before interpolation is 
taken from a continuous time function instead of an ARMA model. In Fig. 6, the continu- 
ous time function and the discrete time series before and after the interpolation are plotted. 
It is noted in this figure that the continuous function and the time series simulated by 
interpolation are almost coincident. 

CONCLUDING REMARKS 

The simulation of wind velocity and wind force fields can be performed by ARMA 
models. These models are developed to match the prescribed spectral description utilizing, 
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among others, the two-stage-matching procedures. However, the nature of the dynamic 
systems and the numerical schemes utilized for the solution of the dynamic response often 
require a small time increment, which renders a straightforward application of ARMA 
models difficult. A three-stage-matching method is developed, in which a multivariate 
ARMA model of small time increments can be matched to a target wind spectrum. A salient 
feature of this method is that despite the low order of the model the spectral density 
function of the simulated data is in good agreement with the target spectral density function. 

A more general technique utilizing an interpolation approach is presented. First, the 
time series is generated from an ARMA model with the time increment selected according to 
the maximum frequency of interest. Then by the interpolation technique the generated time 
series with large time increment is transformed into a time series with a smaller time 
increment. In this research a digital filter based on trigonometric interpolation is developed 
utilizing discrete convolution of finite and infinite waveforms. The two-stage proposed 
approach based on an ARMA model combined with an interpolation scheme offers a 
computationally efficient simulation procedure. 
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T A B L E  I. W I N D  A N D  W I N D  L O A D I N G  C O N D I T I O N S  

W I N D  P A R A M E T E R S  

SPECTRUM ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  HARRIS 

MEAN WIND VELOCITY AT 32.8 ft HIGH ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29.g4 ft/sec 

POWER EXPONENT ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.34 

LENGTH SCALE ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4000 ft. 

WIND SURFACE STRESS COEFFICIENT ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.05 

DECAY PARAMETER (HORIZONTAL & VERTICAL) .... . . . . . . . . . . . . . . . . .  10, 16 

AIR DENSITY ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.0019 Slug/ft 3 

W I N D  D A T A  O N  E A C H  S E C T I O N  

NO z(ft) U (ft/s) Cu(ftz/s a) 

1 540 77.34 287.1 168.2 125.6 98.17 76.01 

2 420 71.01 168.2 287.1 162.7 118.4 87.74 

3 300 63.33 125.6 162.7 287.1 154.8 105.9 

4 180 53.23 98.17 118.4 154.8 287.1 144.9 

5 60.  36.64 76.01 87.74 105.9 144.9 287.1 

W I N D  F O R C E  D A T A  O N  E A C H  S E C T I O N  

NO Ca W(ft) H(ft) MEAN(kN) C~(kN 2) 

I 1.2 100 120 81.83 855.8 566.2 394.9 265.6 142.5 

2 1.2 100 120 68.98 566.2 705.8 444.3 284.6 147.5 

3 1.2 100 120 54.87 394.9 444.3 544.6 312.2 153.0 

4 1.2 100 120 38.77 265.6 284.6 312.2 373.3 170.6 

5 1.2 100 120 18.37 142.5 147.5 153.0 170.6 158.3 
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Fig. 5 Transfer  Functions of  Interpolation Models  
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Fig. 6 Continuous, Discrete and Interpolated Time Series 


