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The time histories of stochastic ocean wave-related processes are simulated by 
means of computatlonally efficient parametric models The parametric models 
utdlzed here include the autoregresslve and moving averages (ARMA) algorithms 
for the simulation of wave height fluctuations, discrete convolution models for 
linear transformations of given time histories, discrete differentlatmn models for 
obtaining denvatwes, discrete interpolation models for interpolating time series at 
intermediate time increments and their hybrid combination. The recurswe 
simulatmn of fluctuation in wave height Is accomplished by ARMA algorithm 
based on a two-stage model-fitting approach that provides simulated processes 
consistent with the prescribed spectral descriptions The sensitivity of the model 
order to the wave spectral descnptmn is presented The parametric simulation 
schemes of linearly related processes, e,g wave load effects, are conducted by 
means of discrete convolution models utilizing finite and infinite wave forms. A 
parametric model representing differentiation in the context of a linear 
transformatmn is employed to simulate derivatives of response processes. A 
hybrid combination of discrete convolutmn and dlfferentmtion models provides 
an efficient simulation scheme for evaluating wave loads at the instantaneous 
posmon of comphant platforms. Interpolation of time histories is carned out 
utilizing double subscripted digital filters The selectmn of appropriate models and 
their orders is chscussed m the context of their stabdlty, accuracy and robustness. 
Detmled examples are given to illustrate the practical features of these models 

1 I N T R O D U C T I O N  

The simulation of random processes has been pnmarily 
carried out utilizing methods based on the summatmn of  
trigonometric functions (wave superposition) or its 
modifications such as the use of fast Fourier algorithm 
(FFT) 1-4 The methods based on summation of  trigono- 
metric functions are computationally very inefficient 
The use of  FFT, though, improves the computational 
efficiency drastically, but not without the expense of  
increased demand on computer storage The length of 
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time series being simulated is often governed by the 
avadable computer memory. These shortcomings can be 
eliminated by employing digital filtenng schemes. The 
parametric time series models in this context, e g. 
ARMA,  provide recurslve relationships that connect 
the random quantity being simulated at successwe time 
increments. 5-~° Unlike the FFT-based techmques, th~s 
approach does not demand a larger computer memory; 
rather, only a limited amount of  information, e.g. filter 
coefliclent matrices, is stored and long-duration time 
series may be simulated through recurswe relationships 
This feature provides the slgmficant computational 
advantage of digital filtering schemes over FFT-based 
schemes and the development of these techmques 
for apphcatlons in stochastic mechanics is receiving 
increasing attention. 
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In thxs study, parametric models are used to simulate 
a wide range of random processes related to wave 
kinematics and wave load effects Based on the 
apphcatlon, these p a r a m e m c  models can be dwided 
into three main categories, the models for simulation of 
tame series from spectral description of one or several 
correlated stochastic processes (e.g. A R M A  models), 
the models for realization of hnear transforms of  a 
given stochastic time series (e.g, discrete convolution 
and discrete d~fferentiatmn models), and the models 
for changing the time increment of  simulated time 
series (e g discrete interpolation models) The basic 
criteria in fitting a parametric model are that the model 
order should be small and error between the model and 
target transfer function should not exceed a prescribed 
hmlt 

2 B A C K G R O U N D  

The A R M A  model approach has been used m the 
ocean, earthquake and wind engineering fields It 
has been apphed to the simulation of waves. 
For  example, Samu and Vandlver 11 developed an 
A R M A  (21,21) model to represent the wave height 
spectrum which provided very close comparison 
with the target Bretschnelder spectrum_ Spanos 12 
utdlzed an A R M A  (4,2) to simulate time series 
for the Plerson-Moskowitz  spectrum by allowing 
some spectral error m the low frequency range. 
This discrepancy may not be of  any signxficance 
for general apphcatlon in offshore dynamics, but 
for the dynamic analysis of  tension leg platforms 
(TLPs) an accurate modelhng in low frequency 
range may become important  In a subsequent 
study, Spanos and Mignolet 8 examined the 
mathematical  peculiarities of  the P - M  spectrum and 
presented a Z-transform modelhng of P - M  wave 
spectrum Also, an efficient A R M A  model for wave 
slmulatmn was developed based on an lnlhal AR 
approxlmatmn.  Thxs paper  addresses ~ssues concerning 
selection of an A R M A  model m the context of  stability 
and accuracy 

The discrete convolution method has been used m the 
simulatmn of wave kinematics. 13 The number of  
arithmetic operations during the discrete convolutmn 
is often large, e.g. Burke and Tighe 14 used 120 
multiphcatxons and addmons for the slmulatmn of  the 
wave particle velocity at each time interval. Samii and 
Vandlver ~1 used a three-step procedure to transform 
wave kinematics from one locaUon to another utxhzing 
discrete convolutions to account for the vertical and 
horizontal separatmns and Hflbert transform for 
introducing a 90 ° phase shift. In this study, the time 
series of  wave kinematics and diffraction forces are 
directly simulated from a reference time history by a 
discrete convolution filter. This helps to mimmlze 

accumulated errors inherent xn the discrete convolutmn 
process The discrete convolution model containing the 
least number of  arithmetic operations introduced here 
can be estabhshed from any gwen form of the transfer 
function. The appllcauon of the discrete convolution 
technique in th~s study is not limited to the wave 
kinematics and diffraction forces. It is further developed 
into a d~screte retardation form, mvolwng d~ffractlon- 
radiation considerations, for sxmulatmg radiation force 
based on the platform response 

Discrete d.fferentlatlon operatmn is also expressed in 
terms of a non-recurslve model A hybrid model ~s 
introduced which combxnes features of  the discrete 
convolution and dlfferentmtion models. 

Interpolatmn of simulated time series required 
for changing the ume increment Is also accomphshed 
by a parametric model with double subscripted 
coefficients. The model xs designed to ensure that it 
satisfies the stablhty condmons and meets the prescribed 
accuracy 

In the following sections a brief dlscussmn of 
these models, their design considerations and some 
examples are presented to illustrate the modelhng 
procedures 

3 ARMA M O D E L S  

3.1 AR, MA and A R M A  models 

Although a discussion of AR, MA and A R M A  
models is available in numerous papers and texts on 
signal processing and stochastic processes, a brief 
introduction is nevertheless included here for the sake 
of completeness 

An autoregresslve (AR) model of order P permits 
simulation of a stochastic process ),(nAt) at time nAt 
from its previous time histories and corresponding 
excitation based on the following 

P 

y(nAt) = - E A r y [ ( n -  r)At] + Boe(nAt) (l) 
r - 1  

where e(nAt) Is a white noise process with zero mean 
and unit variance, Ar is the r th AR coefficient, and B 0 
denotes a coefficient. 

A moving average (MA) model of  order Q is a filter 
that permits simulation of a stochastic process y(nAt)  at 
time nAt based on the previous and present input white 
noise processes 

Q 
y(nAt)  = Z Brer[(n - r)At] (2) 

r - -0  

in which B, is the r th MA coefficient 
An autoregresswe and moving average (ARMA) 

model of  order P and Q is a filter that permits 
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simulation of  vector y(nAt) at time nat  by its 
previous time histories and the previous and 
present white noise processes: 

p Q 

y(nAt) + Z A~y[(n - r)At] = Z B~e,[(n - r)At]. 
r = l  r = 0  

(3) 
In other words the vector y IS defined as an A R M A  
process of order P and Q If it results from the 
response of  a linear recurslve relationship given m 
eqn (3) to a zero mean and uncorrelated white noise 
process. It is desirable that the ARMA model orders P 
and Q are low and the simulated vector y(At)  has 
an error within prescribed limits. The error in an 
A RMA model can be expressed in terms of  the target 
and estimated cross-spectral density functions as given 
below 

I0 fmax IG(f) G(f)ldf 
E = (4) 

I~m~'14(f)ldf 

where E is the error of the estimated spectral density 
function The spectral density function estimated from 
the model is expressed as 

G ( f )  = 2At I;'(f) I?* ( f )  

~'(f)=[I+e~=lArexp(-27rfrAt)] -l 

X[Or~=oBrexp(-27rfrAt) (5) 

where ) ' ( f )  represents the Fourier transform of  eqn (3), 
and the superscript * denotes the conjugate operation. 
Besides the accuracy requirement, an ARMA model 
must satisfy the stationanty requirement The necessary 
and sufficient condmon for stationarity of  an ARMA 
model is that all the moduli of the elgenvalues of  the 
matrix • should be larger than 1. 

P 

1 + Z A r ~ r = o  (6) 
r = l  

where q~ is a matrix (M, M) defined as the complex 
roots of the preceding equation. The maxtmum entropy 
method (MEM) 15 Is often utilized to match an ARMA 
model satisfying the above accuracy and stationarity 
conditions. In the following sections various methods of 
fitting an AR MA model to a given spectrum including 
the maximum entropy method and its approximate 
forms are discussed. 

3.2 AR model and the Yule-Walker  equation 

In order to simplify the discussion, the ARMA model is 

reduced to a unit variate AR model in eqn (1). By 
post-multiplying eqn (1) with y[ (n-  m)At] (in which 
0 <_ m _< n) and taking expectations 

P 

Z ArCyy[(r - re)At] : --Cyy[mAt] (m # O) 
r = l  

and 

P 

B~o = Cyy(O) + Z ArCyy(rAt) (7) 
r = l  

where Cyy(rAt) denotes the covarlance of time series 
y(rAt) The preceding equations are known as the Yule- 
Walker Equattons, and are based on the fact that 

Cy~(mAt)=O for m > 0  

Cy,(mAt) = Bo for m = 0 (S) 

and 

Cvy(m ) = Cyy(-m) = E(y(nAt)y[(n + m)At]) (9) 

where Cy,(mAt) denotes the covariance between y(nAt) 
and e(nAt). 

The Yule-Walker equations can also be written in a 
matrix form as 

CA = C' 

where the Toephz matrix, 
sub-matrices. 

[ c .  (o) cv> (At) 
C= I C~(~t) C,,v(O) 

I LC~>[(p- l )At]  C~r[(P- 2)At] 

(10) 

C, contains (P ,P)  

Cry (eAt) ] 
C,.,[(p - llm]] 

C,,(0) J 
(11) 

and A and C '  are AR coefficient and covariance 
matrices: A = [AIA2 . Ap] r and C ' = - - [ C y y ( A t ) ,  , 
-Cyy(PAt)] r, respectively. The solution of eqn (10) is 
dependent on the order P of the AR model. 

B~0 is a positive definite matrix, therefore, following 
eqns (6) and (7), the Toeplitz matrix (in the right-hand 
side of  eqn (11)) becomes a posiUve definite matrix In 
practice, it is possible that some of the target spectra 
may not satisfy this condition due to mathematical 
considerations and numerical round-off errors 
Fortunately, experience has shown that wave spectra do 
satisfy this condition provided some restnctions are 
imposed A detailed description of these restrictions 
will be addressed In the following sections It can be 
shown that the Yule-Walker  equations also satisfy the 
M E M  condmons. In other words, an AR model ~s 
an MEM model, t6 

Despite the convenience of an AR model, one may 
observe many small peaks in the spectral density 
function represented by the AR model due to all-pole 
characteristics of the filter. For  example, the zeros of the 
AR weights of  the P - M  wave height spectrum are all 
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within or close to the orcle Iz] = 1 m the complex plane 
The estimated spectrum Is, therefore, not smooth 
regardless of  the order of  AR model, s 

3.3 ARMA model and the modified Yule-Walker 
equations 

The maximum entropy method may not be com- 
putatlonally convenient to determine the coefficient 
matrices of  an A R M A  model because it requires the 
solutions of  a large number of non-linear equations_ 
Alternatively, one of  the frequently used methods 
utilizes the modified Yule- Walker equations 17, 18 
This technique is considered to be close to the 
maximum entropy condition_ This method offers a 
wMe range of applications However, the matching 
of  A R M A  coefficients by this method involves the 
solution of a number of  quadratic equations Also, 
the simulation of narrow-banded processes such 
as wave height fluctuations, renders the apphcatlon 
of this approach computatlonally inconvenient 
due to the numerical singularity of  the Toephtz 
matrix 

3.4 Two-stage matching for ARMA models 

In summary,  the A R  model characterized by maximum 
entropy and all-poles IS formulated by the solution of a 
set of  linear equations, whereas the A R M A  model 
characterized by poles and zeros is fitted by the solution 
of a set of  non-linear equations. The advantages of  both 
methods are combined by the two-stage matching 
method, m which the A R M A  model is obtained from 
an AR model 

The two-stage matching method can be realized by 
a few possible schemes. 7'19 Here the method of the 
Auto/Cross-Correlatton matching (ACM) is briefly 
introduced This method was utilized by Samaras 
et al 7 for fitting a multl-variate A R M A  model with the 
same AR and MA orders In this study, this method is 
further extended to include A R M A  models with 
different AR and MA orders. 

Let a pre-AR model of order P' be formulated by 
eqn (7). The A R M A  model is based on matching 
the correlation m a t r i c e s  Cyy(mpAt) with 0 < mp < P 
directly from the target spectra, and cross-correlation 
matrices Cy~(mqAt) with 0 < mq < Q from the 
pre-AR model according to eqn (8) I f  both sides 
of  eqn (3) are post-multiplied by e [ ( n -  mq)At] and 
y [ n - m e ) A t  ] in which m q -  1,2, ,Q and m e =  
1 ,2 ,_  ,P  respectively, the following relations are 
obtained 

mm(mq, P) 

C v ~ ( - m q A t )  q- Z ArCv([(r - mq)At]  = Bmq 
r - I  

(12) 

and 

P 
C,,~(-mpAt) + Z A~C,,[(r - rap)At] 

r = l  

Q 

= ~ BrCv, [(m e - r)At]. (13) 
r=0  

These two equations may be expressed in a matrix form, 

DA = C (14) 

In the preceding matrix equation, D is an 
M(P + Q)M(P + Q) matrix and consists of  four parts 

o : I :  ,1,) 
where C is the Toeplitz m a m x  described in eqn (11) and 
C'  contains (PQ) sub-matrices, and the (r,s) th 
sub-matrix is 

C~r~=-Cy~[(r-s)At] If ( r < s )  or 

Cr~ = 0 otherwise 

contains coefficient matrices 

(16) 

of the The matrix A 
A R M A  model: 

A = [B 1 , B2, , BQ, A I, A2, , Ap] r (17) 

and the matrix C contains P + Q covarlance matrices 
obtained from the pre-AR model and the target 
cross-spectral density matrix, and it IS given by 

C = [C . ( ( -A t ) ,  , C , , , ( -QAt ) , -C ,v (At  ), 

- C . , ( P A t ) ) ]  T I 1 8 )  

Based on the experience gained during the course of  
this study, it is suggested that this approach provides a 
computationally convenient means of matching the 
target spectral characteristics for the simulation of 
wave height fluctuation Therefore, this method is 
employed for the study presented here 

4 ARMA MODELS FOR WAVE FIELDS 

The P - M  and the JONSWAP spectra are used to 
simulate random wave surface profile at a point 20 The 
ACM technique is utilized to develop A R M A  models 
for wave surface fluctuation. Typical results are 
provided in Figs I and 2 for the P M and JONSWAP 
spectra, respectively These figures provide the target 
spectra and estimated spectra from the models Also 
included in the figures are the AR and A R M A  orders, 
and the simulation time increment At It is noted that 
the target and the estimated spectra based on the 
A R M A  models are almost coincident. The order of these 
models is low and varies between 6 and 20. In the following 
sections Issues concerning guidelines for the order selection 
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Fig. 1. Companson of estimated and target spectra (P-M wave 
surface elevation spectrum). 

of the models, m the light of several parameters that 
influence this selection process, are addressed. 

A necessary condition for the existence of a finite A R  
representation of the process y(nAt) is given by the 
following .21 

J:N log[Gy(f)]df > -oo (19) 

m which f s  is the Nyquist  frequency and Gy( f )  is the 
spectral density funcuon of  the process being simulated 
The P-M and JONSWAP  spectra have a zero of  infinite 
order at the zero frequency that results in violating the 
preceding inequality. Regarding the P - M  spectra, 
Spanos 12 modified the spectral description such that 
the order of  zero at the zero frequency was changed 
from infimty to 27 by introducing a Taylor series 
expansion, thus satisfying the above inequality It  is 
noted during the course of  this study that the preceding 
inequality (eqn (19)) Is violated for nearly all forms of 
wave spectra due to numerical round-off error and 
underflow problems within a certain low frequency 
range. 22'1° In order to overcome this difficulty, m this 
study white noise with a very small varmnce was added 
m the target spectra. In the examples shown m Figs 1 
and 2, white noise of  spectral ordinate ranging 
(O-O001~O001) 2/fN was added to the target 
spectrum, where o ~ represents the overall variance 
associated with the spectra 21 It is important  that the 
added noise should be small enough that its influence 

I 

2 
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Fig. 3. Spectral error versus pre-AR order P' (P-M wave 
spectrum) 

does not introduce any sizeable addition to the wave 
surface profile. The introduction of white noise offers 
robustness and precludes any other pre-modelhng 
mathematical  manipulation necessary otherwise 

The next step involves the selecUon of pre-AR order, 
P', and the orders P and Q for the A R M A  model. In 
order to reduce the number  of  parameters  in this two- 
step selection process, one may impose the condition 
P = Q. Subsequently, for a fixed P', different choices 
of  P = Q can result in different levels of  errors as noted 
m Figs 3 and 4 for the P - M  and JONSWAP (7 = 3 3) 
spectra. The spectral error is defined as the integral of  
the difference between estimated and target spectra 
normalized by the integral of  the target spectra up to the 
Nyquist frequency. It  is noted that the higher pre-AR 
order does not necessarily result in an A R M A  model 
with a lower spectral error For  wide-banded processes 
such as wind fluctuation, it is found that an increase in 
pre-AR order generally provides a favorable decrease m 
the spectral error. 23 However, for the narrow-banded 
wave height fluctuation the spectral error is minimum at 
a certain value and as such does not follow any distract 
trend 

Although A R M A  models with equal A R  and MA 
orders are widely reported in the hterature, in the 
present study it is found that different AR and MA 
orders may improve the model accuracy, especially for 
the narrow-banded process. For  the P - M  spectrum, 
P =  8 and Q = 7 provides lower spectral error in 
comparison with the model based on P = Q = 7 with 
P' being equal to 59 m both cases (Fig 5). The 
JONSWAP wave elevation spectrum for P'= 27 and 

Fig. 
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Fig. 4. Spectral error versus pre-AR order (JONSWAP wave 
spectrum) 
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Fig. 5. Spectral error versus MA order (P-M wave spectrum) 

P + Q = 1 6 ,  in which P =  12 and Q = 4 ,  provides 
generally lower error as compared to the case where 
e = Q = 8 (Fig. 6). 

It is noted that for the cases m which Q is greater 
than P, not only results in a lower accuracy but also 
leads to a non-positive definite matrix in eqn (16). This 
results In a non-stationary ARMA model Therefore, it 
is recommended that P > Q to alleviate these problems. 

In summary, P ' ,  P and Q are three independent 
parameters, and only by a suitable combination of 
these parameters, one can obtain the optimal ARMA 
model. The choice of  these parameters IS generally made 
rather empirically utilizing an interactive computer 
code. l° Samaras et al 7 have suggested the following 

guidelines 

P ' >  e + a + 2  (20) 

However, it is found in Fig. 4 that for the JONSWAP 
spectrum a model with P ' =  19 and P = Q =  10 
provides an optimal choice for P '  < 25, but it does not 
meet the above gmdeline 

5 DISCRETE CONVOLUTION MODELS 

The wave-related processes are fully coherent. 
Therefore, a set of  fully-coherent random processes 
may be simulated by a convolution with a reference 
random process utilizing an appropriate kernel_ 
The wave surface profile, wave kinematics and the 
associated wave-mduced forces which are all fully 

12 

9 
8 

~6 . 

0 -  

~ p'=19, P+Q=18 ] 

A t=2 sec 

3 5 7 9 
MA Order Q 

Fig. 6. Spectral error versus MA order (JONSWAP wave 
spectrum) 

coherent processes are simulated in this study by a 
convolution of  a reference process, a.e wave elevation, 
7/(t), at the origin of the space-fixed coordinate 
system, with the corresponding kernels Ll,13 24 How- 
ever, the preceding convolution involves an integral 
over an infinite time period which may impose 
computational difficulties In order to overcome this 
difficulty attention is focused here on simphfylng 
techniques in which these integrals are recast m 
nonrecurslve digital models revolving a hmlted number 
of arithmetic operations. 

Let the transfer function between a random process 
Y(t) and the reference process r/(t) be given by the 
following 

Y ( f )  (21) 
H ( f )  - rl(f  ) 

where Y ( f )  and r / ( f ) =  Fourier transform of y(t) 
and T/(t), respectively. The convolution kernel h(t) 
corresponding to the transfer function, H ( f ) ,  is given 

by 

h(t) = H ( f )  exp(j27rft)df (22) 
~ 3  

The random process y(t) can be simulated for known 
r/(t) by the convolution given below 

y(t) = h(r)~(t - r)dr (23) 
~ Of3 

The integration over a time period - ~  to +oo m the 
preceding equation needs to be evaluated numerically. If 
the preceding integral is performed by the trapezoidal 
rule, and the infinite time may be truncated into a finite 
length of time from T_ to T÷, then the discrete form of 
the preceding equation may be recast in the following 

form 

Q+ 

y(nAt) = Z hrrl[(n - r)At] (24) 
r ~ - Q  

where the discrete convolution coefficients hr are equal to 
h(rAt)At,  in w h l c h r = - Q - , . .  , - 2 , - 1 , 0 , 1 , 2 , -  ,Q+ 
and the discrete convolution orders Q- and Q+ are Dven 
by 

T -  Q+ T+ (25) 
Q- = ~ -  and = A--t- 

It is desirable to keep the order of the preceding 
discrete convolution model to a minimum and at the 
same time to minimize the error introduced by 
discretizing the convolution integral The discrete 
convolution model can be formulated from the discrete 
Fourier transformation of finite and infinite duration 
waveforms. 25 Both approaches have their merits and 
applications 
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5.1 Discrete convolution model utiliTing the finite 
duration waveforms 

Let the frequency range from zero to Nyqmst frequency 
be discretized at Q discrete frequencies. The discrete 
inverse Fourier transform of H ( f )  is given by 

/~(rAt) = /-/* (sAf) exp - jT r~  

+ Z H ( s A f )  exp 7r A f  (26) 
s=0  

for r = - Q + l ,  . . , - 1 , 0 , 1 ,  . ,Q  and A f = I / 2 Q A t .  
The corresponding coefficients of the discrete 
convolution are given by 

hr = ft(rAt)At (27) 

which has the order Q + =  Q and Q - =  Q - 1  (total 
order is 2Q, including zeroth coefficient). 

If  the transfer function is a real variable (e.g. the 
second-order derivative), the model of order Q in 
eqn (24) appears as given below 

Q - I  

y(nAt) : Z hr{rl[(n - r)Af] + n(n + r)Af} 
r=l 

+ ho~7(nAf) + ho~[(n - Q)Af] (28) 

in which the coefficients hr(r = 0, 1 , . . . ,  Q) are given by 

Q-I 
h~ = H(O) + H(QAf)  + 2 Z H(sAI) 

×COS(jTrQ)}AfAt (29) 

and the corresponding estimated transfer function is 

Q - I  

I~I(s'f) : E 2hrcos(27rL) ~- ho --~ h Q (30)  
r = l  

where L is the total length of the time series. Similarly, 
for the imaginary transfer functions (e.g. derivative), the 
recursive model of order Q - 1 is given by 

Q - 1  

y(nAt) = E h,{~7[n - r ]A t -  ~(n + r)At} (31) 
r = l  

where the coefficients h,(r = 1,2, , Q - 1, total Q - 1 
terms) are given below 

0 '  
hr = Z 2H(sAU) sm 7r A t A f  (32) 

s = l  

and the corresponding estimated transfer function is 
given by 

Q - I  

ISl(s6f) : E 2hrs in(27rL)  (33) 
r = l  

In a general case, taking discrete Fourier transforma- 
tion of both sides of eqn (24) leads to the estimated 
transfer function, 

iSI(s6f)_ Y(s6f) Q ( rs) (34) 
rl(s6f-----ff-- E hrexp -jZw-~ 

r=l-Q 

The frequency increment 6f in the discrete Fourier 
transform of Y(sSt) is 

1 
6f = LAt  (35) 

The length L of a discrete process to be simulated is 
an arbitrary integer number, and generally Q << L. It is 
a discrete convolution of an mfinite and a fimte duration 
waveform (see Ref. 25). Let 2L =/3Q in which /3 is a 
positive integer number. In this case at the frequency 
equal to/3n6f(where n is an integer) the transfer function 
estimated from the model is just the inverse discrete 
Fourier transform of eqn (26). Thus, the model transfer 
function is exactly the target transfer function expressed 
by eqn (21). 

ISI (/3nSf ) = H(/3n6f ). (36) 

However, at frequency (/3n+a)6f with a </3, 
H[(/3n + a)6f] generally provides a poor representation 
of the transfer function between H(/3n6f) and 
H[/3(n + 1)8./']. Many tests m this study showed that 
this approach is mainly useful for some real transfer 
functions. For example, it may be used to fit the fourth- 
order derivative for real transfer functions. It is 
demonstrated m Fig. 7 that the total model order 
Q = 5 yields six points coincident with the exact transfer 
function With an increase in the model order to Q = 23, 
the number of coincident points increases to 24. 
Accordingly, there is a significant improvement in the 
high frequency part as is shown in Fig 8 However, m 
the low frequency part as seen in Fig. 9 (which zooms in 
on the low frequency part) the estimated transfer 
function with Q = 23 exhibits oscillations. If this 
method is used in odd-order derivatives, e.g. the third- 
order derivative for the imaginary transfer function 
(Fig. 10), there is an error in the high frequency part in 
addition to the error m the low frequency part that is the 
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Fig. 8. Comparison of estimated and target transfer functions 
(fourth-order denvatlve) 

same as the even order derivative. The error reduces 
slowly with an increase in the model order. 

5.2 Discrete convolution models utilizing infinite duration 
waveform 

An alternative method is to let the number  of 
frequencies Q in eqn (26) be much larger than any 
possible length of  the time series As a result eqn (26) 
becomes a discrete convolution of two mfimte duration 
waveforms In the order to make this practical, let the 
discrete convolution model order in eqn (24) (here it 
denotes by Nf) approach infinity and truncate it at 
orders Q+ and Q- .  This is only possible provided the 
following two convergence conditions are satisfied 

hm [1(rAt) = h(rAt) (37) 
NI~±~ 

where [z(rAt) is the discrete Fourier transform of 
transfer function H(rAf),  and h(rAt) is an exact 
transfer function, and 

hm h(rAt) = 0 (38) 

These convergence requirements also imply the 
following 

(1) The discrete Fourier t ransform of  H(rAf)  with 
r = 1,2,. ,Nj is close to the discrete Fourier 
transform of  H(rAf) with r = 1,._ , Nf + 1 

(2) ]~(rAt) < e/~rnax for all r > Q+ and r < - Q  , in 
which Q÷ and Q-  are posltlVe integers, e is the 
coeffioent convergence indicator, e g. 2%, and 
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Fig. 9. Comparison of estimated and target transfer functions 
(fourth-order denvatwe) 
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Fig. 10. Comparison of estimated and target transfer functions 
(third-order derlvatwe)_ 

hmax is the maximum value of all the estimated 
convolution kernels Furthermore, the model 
order should be large enough to account for the 
low frequency part  A number of  test runs in this 
study suggest that 2 / (Q ÷ + Q-)At  -<fmm, where 
from Is the minimum frequency of interest 

Considering the fact that in practice only the positive 
frequencies in the discrete Fourier transforms are used, 
the coefficients of  the discrete convolution model 
representing convolutions of  two infinite duration 
waveforms are given by 

h r =/~(rAt) for 0 < r < Q+ 

h r = / ~ [ ( 2 N f + l + r ) A t ] A t  for - Q  _ < r < 0  (39) 

where the discrete mverse Fourier transform in eqn (26) 
is given by 

rs  
/7 ( rAt)  = l i m  H(sAf) exp  7r (40) 

&/~l] S = 0  

and the transfer function H(sAf)  with s > Nj is a 
reflection of  H(sAf)  with s < N I 

H[(2Nf+ 1 - s)Af] = I-F(sAf). (41) 

The corresponding discrete convolution model is given 
by 

Q+ 

y(nAt) = ~ hrI'l[(n -- r)L~t] (42) 
r= Q 

The estimated transfer function by the discrete 
convolution model is expressed by the following 

Q- 

/ 4 ( f ) =  ~ hrexp(-j27rfrAt) (43) 
r =  Q 

A discrete convolution model has a vahd frequency 
range within which the estimated transfer function is 
close to the target one. The vahd maxzmum frequency 
frnax tS the Nyquist  frequency 1/(2At) and the valid 
minimum frequency from depends on the total model 
order Q+ + Q + 1 It is recommended to use the relation 
2 / (Q + + O-)At  >- frn,n 
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Fig. 11. Discrete convolution model order for describing wave 
particle velocities. 

The preceding convergence criteria may be satisfied by 
both real and complex transfer functions. Test cases 
have shown that the wave-related processes, such as the 
wave surface elevation, wave particle velocity and global 
wave diffraction force on a rigid body, such as TLP can 
satisfy the convergence requirement. A mathematical  
description of  the conditions of  convergence for a 
transfer function in a general form is beyond the scope 
of  this presentation. Only a few examples of  the several 
cases examined in this study will be given in the 
following sections. 

5.3 Discrete  convolution models  for the wave-related 
processes 

Let us define the wave surface elevation at (0,0,0) in the 
space-fixed coordinate system as the reference time 
series which is generated by an A R M A  model described 
in the previous section. The transfer functions that relate 
the wave surface elevation to the horizontal and vertical 
wave particle velocities are given by 

Hue - .  ( f )  = 27rfexp (kz) exp ( - jk~)  

and 

H=z _ ~ ( f )  = j 27rfexp (kz) exp (-jk~) (44) 

where Hu~_ n ( f )  and/4= z_" represent transfer functions 
that relate wave surface elevation to horizontal and 
vertical water particle velocities, k is the wave number, 

50 

40 

~ 30 

20 

Fig. 13. 

0 
0 I0  20 30 40 50 

Water d e p t h  d ( m )  

Discrete convolution model order for vertical 
component of wave particle velocities 

IS the horizontal location along the direction of wave 
propagat ion and z is the vertical location 

The basic objective in the selection of  a parametric 
model is to have the lowest order filter with an 
acceptable level of  error. There are a number of  factors 
which influence the filter order Figures 11-13 illustrate 
how the order of  the discrete convolution model 
describing the horizontal and vertical wave particle 
velocities is influenced by the vertical location of a point 
Generally, near the water surface for the vertical 
component  of  water particle velocity, a higher order 
model is required. In these figures u~(10, -d)  and 
uz(lO,-d) etc. denote the horizontal and vemcal  
velocities at ~ = 10 and z = - d  The results in Fig. 14 
show that the time increment At has a significant 
influence on the model order. A larger value of time 
increment tends to reduce the significant influence on the 
model o rde r  A larger value of  time increment tends to 
reduce the model order. 

A suitable choice of  the reference time series is also 
very important  Figure 15 demonstrates the reason for 
choosing water surface elevation as the reference time 
series instead of  the horizontal water particle velocity, 
which could require a discrete convolution model of  
order as high as 180 

The fact that the model orders are high for wave 
particle velocities at locations close to water surface 
implies that a better reference time series representing an 
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Fig. 12. Discrete convolution model order for wave particle 
velocities at different locations in the honzontal direction. 
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Fig. 14. Discrete convolution model order for wave particle 
velocmes at different depths and time increments. 



72 Yousun Lt, A Kareem 

200" 

150 

00 

50 
From u(t)  at (0,0)  to Uz(t ) at (0,-d) 

. . . .  i . . . .  i . . . .  i . i i i I , , , , 0 
0 10 20 30 40 50 

Depth d (m) 

Fig. 15. Discrete convolutmn model order for relating different 
components of wave partmle velocities 

arbttrary wave surface elevation can be used to reduce 
the model order, which is defined by 

~71(f, fl) = exp(kfl)7/(f) with z I > 0 (45) 

This modificatmn has httle physical meaning, but serves 
as a means of  shifting Figs 12-13 to the right by a 
distance z t The corresponding transfer functmns for the 
horizontal and vertical wave particle velocitms are given 
by 

H~e_ j ( f  ) = 27rf exp[k(z + zl)] exp(- jk{)  

and 

H,= oI(J) =j27rfexp[k( z + zI)] exp(- jk{)  (46) 

The discrete convolution model can also be used to 
simulate wave elevations at a deswed horizontal location 
{, which causes viscous drift forces m the splash zone of 
the structure The transfer function of ~7({, t) with 
respect to r/(t), is 

H,j(~) ,l(f) = exp(-jk~) (47) 

Similarly, the dlffractmn force vector F~(t) acting 
on a rigid body of large size in terms of  wave- 
length is simulated by the discrete convolution 
models The convolution filter coefficients are 
obtained by the Inverse Fourier t ransform of the 
transfer function vector H e , -  r l ( f)  The diffraction 

~12 ,~ 
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Fig. 17. Diffraction phase (surge) 

transfer function vector H r _ , ( f )  may be obtained by 
the boundary element method, which accounts for the 
&ffractlon force on a rigid body by a deterministic wave 
of frequence f and unit elevation Figures 16-21 
illustrate comparison of the amplitudes and phases of 
the target transfer functions with those estimated from 
the discrete models for a typical T L P  An excellent 
agreement is noted in these figures These &gltal filters 
provide a very useful input to a time domain analysis of 
a TLP exposed to random waves  

The preceding approach for simulating time series 
of  wave kinematics and diffraction forces utlhzing 
convolution techniques is different from the methods 
reported in the literature For  example, Samu and 
Vandlver II simulated the wave particle velocmes at any 
location by three convolutions representing the vertical 
attenuation, horizontal wave propagation and Hllbert 
t ransform (90 ° phase change) Each &screte convolution 
has a specified form A succession of convolutions may 
result in accumulation of e r ro r  However, by utlhzmg 
the method developed in this study, it is possible to 
obtain the discrete convolution model accordmg to 
any transfer functmn The wave kmematlcs at any 
location can be simulated by one discrete convolutmn 
model Thus, both the accumulated error and the 
total number of  arithmetic operations may be reduced 
Furthermore,  it becomes possible to s~mulate the 
time series of  the wave &ffractlon forces by the 
transfer functions obtained from the boundary element 
method. 
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Fig. 19. Diffraction phase (heave) 

5.4 Special form of discrete convolution model 

The coefficients of  a convolution model in some cases 
may have an analytical form whose characteristics can 
be utilized to form a nonrecursive model with a low 
order and high accuracy. The case in point is for 
example a quadrature filter Its transfer function is all- 
pass with a 90 ° phase shift (e.g. f rom vertical to 
horizontal wave particle velocity) 

H(f) = - j s g n ( f )  (48) 

The response of a quadrature filter to a process with real 
values only is called the Hilbert transform (see Ref 26). 
The Hilbert t ransform has been utilized for the 
simulation of the vertical wave particle velocity Uz(t, r) 
from the horizontal wave particle velocity u¢(t, r) at the 
location r.i~ The analytical form of the convolution is 
given by 26 

u~(t) = -u~(t)* --1 =-1  °[+~ u~(~-) d~- (49) 
7rt 7rj_~ t -  7- 

The elevation of the preceding expression is not 
numerically efficient A discrete form of the Hilbert 
transform was developed in this study. By imposing that 
the cut-off frequency be equal to the Nyqmst  frequency, 
the convolution kernel of  the Hflbert transform is 
expressed by the following: 

hr = { Io.lexp(j27rfrAt)df 

-~o')exp(--j27rfrAt)df)At (50) 
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Fig. 20. Diffraction transfer function (pitch). 
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which, after integration reduces to 

2 
h r = - -  for r = + 1 , + 3 , + 5 ,  ., 

71-r 

and 

h r = 0  for r = 0 , 4 - 2 , 4 - 4 ,  (51) 

Another  example is the transfer function between two 
time processes Y(t) and rl(t ) given by 

Hr-o(f) = 27rf. (52) 

The discrete convolution coefficients of  this function are 

h , = ~ / ( 2 A f )  for r = 0  

h, = -2/(Trr2At) for r = 4-1,4-3,4-5, , 

and 

h , - - 0  for r=4-2 ,4 -4 ,4 -6 ,  (53) 

The above two examples have the following 
characteristic features 

(1) Symmetry of  the model coefficients, 1.e h r = h_r, 
reduces the total multiplications to a half. 

(2) The model coefficients h r are equal to 0 if r is an 
even number  except for r =  0 This feature 
reduces multiplication by another half 

(3) Convergence m the discrete convolution 
coefficients is rapid, especially in the second 
example 

(4) The convergence of coefficients with r ~ oo is 
independent of  the time increment At  

The corresponding convolution model can be simply 
recast in the following form- 

a 

y(nAt) =hoT(nAt ) + Z hr{~[(n- 2r + 1)At 
r = l  

4- (n + 2r - 1)At]} (54) 

in which ' - '  represents the first case and ' + '  the second 
case. By utilizing these features, the order of  a model 
may be reduced. An application of  this approach will be 
shown in the description of the hybrid model in a later 
section 
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6 D I S C R E T E  R E T A R D A T I O N  M O D E L  

The simulation of fully coherent random processes with 
respect to a reference process utilizing discrete con- 
volution models was highlighted in the preceding 
sections Typically, the wave particle kinematics are 
simulated from the fluctuations in the wave surface 
elevation at a reference location. The simulated process 
at any time is viewed as a linear combination of the past, 
the present and the future time histories of  the reference 
process However, in some cases the future time history 
of the reference process is unknown, for example, the 
structural response X(t) which is taken as the reference 
process for simulating radiation force It may be 
possible to express the time process to be simulated as 
a linear combination of the past and present time history 
of the reference process only in terms of a one-sided 
discrete convolution model 

Q 
y(nAt) = ~ hrx[(n - r)At] (55) 

r=0 

where 

~ ( s )  
hr = llm ~ H(s6f)  exp 27r 6 f A t  (56) 

~f~O s ~ O  

However, the convergence requirement of  the con- 
volutlon kernels for Nj ~ ~ in one-sided discrete 
convolution are only satisfied in some special cases 

In order to circumvent this difficulty, each particular 
application needs to be examined individually A typical 
example is the radiation force, fR(t), which describes the 
loads induced by a large rigid body oscillating with 
displacement amplitude given by vector x(t) in an 
otherwise still water The radiation force is generally 
expressed in the frequency domain. Its Fourier com- 
ponents FR(f ) ,  are related to the Fourier components  of  
the displacement, X ( f ) ,  by the added mass A ( f )  and 
radiation damping C ( f )  

FR(f )  = - A ( f ) X ( f )  - C ( f ) X ( f )  

The time history of the radiation force is expressed in 
terms of the added mass and radiation damping by the 
following equation 27 

f R ( f )  ~ Ax(t)  + c(r)k(t - r)dr (57) 
0 

where the retardation function matrix c(t) ts given by 

c(t) = 4 C ( f )  cos 27rft d f  (58) 
0 

and the constant added mass matrix is 

1 1~ c(t) sin 21rfotdt (59) h ~ A(fo) + 2--@- ° o 

with J0 = system natural frequency 

Accordingly, the radiation force in the discrete form 
can be simulated by a discrete retardation model as 
defined below 

It(nAt) = - Ax(nAt)  - Cox(nAt) 

Q 
- Z Crk[(n - r)At] (60) 

r - I  

where the retardation coefficients are obtained by the 
discrete cosine transform, 

4 Q C ( s A f ) c o s ( ~ f )  cr =0s_  1 (61) 

In which Q is the model order and the retardation added 
mass is given by 

/k ~ A(fo) + 2-~OOr~= ° Cr sin(2rrforAt) (62) 

The quality of  the retardation model may be assessed 
by comparing the added mass and radiation damping 
estimated from the retardation model with the exact 
ones expressed on the left-hand side of eqn (57) The 
estimated added mass matrix is obtained by taking the 
Fourier transform of both sides of  eqn (60) 

1 o 
A ( f )  = A - ~ f  ,~_l Cr sln(2~rfrAt) (63) 

and the estimated radiation damping coefficient is given 
by 

C ( f )  = ~ Cr cos(27rfrAt) (64) 
r=0 

Examples concerning a typical TLP are given in 
Figs 22-25 The model coefficients are obtained 
from the convolution kernel of  finite duration waveform 
described earlier in this paper These figures demon- 
strate that the estimated and exact radiation damplngs 
are in good agreement, whereas there are some 
discrepancies between the estimated and exact added 
mass due to imposing frequency independence 
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Fig. 22. Added mass using retardation model (surge and 
heave) 
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Fig. 23. Added mass using retardation model (pRch)_ 

to the constant added mass. However, a correct 
representation of radiation damping (Fig. 25) may be 
more important. The error m the simulation of the 
platform response caused by the approximation of the 
added mass (Fig. 22) may not be very significant. 

7 DISCRETE INTERPOLATION M O D E L  

It has been stated earher that the time historms of  the 
wave hmght fluctuation may not be simulated at the time 
increment equal to that required by the numerical 
scheme revolving time integratmn of  the equatmns of  
motion The reason for this different time increment is 
primarily due to the following: (1) The time increment in 
a numerical integration scheme for the solution of  the 
dynamic equatmns of  motmn needs to be smaller 
than any natural period of  the dynamic system to 
ensure numerical stabihty and accuracy. Also the time 
increment must be smaller than the lowest period at 
which the input loading contains slgmficant energy. (2) 
Different load processes, for example, wind, and 
earthquake processes, have &fferent t]me mcrements 
after they are simulated by their own respective 
parametric models. Therefore, a Dtscrete Interpolation 
Model is needed to interpolate a time series with time 
increment At rote a time series w~th desired ume 
increment 6t. 

A discrete interpolation model must satisfy the 
following condltmns (in this manner a &screte process 
y(nAt) in which n is an integer, becomes the discrete 
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Fig. 24. Added mass using retardation model (surge-pttch) 
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Fig. 25. Ra&atlon damping using retardation model (surge) 

process I~(n + a)At] in which c~ is a fraction number)' 

(1) Local Interpolation: y[(n + a)At] is interpolated 
according to Y[(n + r)At] wRh r = - Q - ,  . , - 2 ,  
- 1 , 0 ,  1,2, . .  ,Q+ m whmh Q-  and Q+ are small 
integers. The conventional global interpolation 
involving all the input data is not suitable for the 
present apphcatlon 

(2) Accuracy" The interpolation changes the Nyquist 
frequency from 1/(2At) to 1/(26t) The spectral 
density function is expected to remain the same 
for the frequencies lower than 1/(2At) and zero 
wRh the frequency range l / (2At)  to 1/(2&). The 
ideal transfer function of  an interpolation model 
is unit for f <  1/(2At) and 0 for 1 / ( 2 & ) >  
f >  1/(2At) 

The trigonometric interpolation has been frequently 
used m interpolation of  random processes. Li 
and Kareem 23 further expressed It into a discrete 
convolution form with double subscripted coefficients 

Q* 

y[Sn +/3)6t1 = Z hory[(n + r)At] (65) 
r = - Q l + l  

in which 2Q t 1s the interpolation order, S = At~St is an 
integer, and /3= 0 , 1 , 2 , . . . , S - 1  In reality, this is a 
convolution of two finite duration waveforms. The 
double subscripted coefficients are derived from the 
Fourier transform of transfer function H(mAf) ,  

h~3 r = 

SQ 1 

Z H(mAf )  
m = - S Q t +  1 

x exp~,jTr--~)/(2Q I) 

in whmh 

H(mAf )  = 1 

1 
H(mA f )  = -~ 

H(mAf )  = 0 

with r ' = r s + / 3 ( 6 6 )  

for -QI_<m<Q~ 

for m = + ( Q I +  l) 



76 Yousun Ll, A Kareem 

1 

-2 

-3 

Given 
Inlerpo,aUon 

. . . .  ! . . . .  | . . . .  i . . . .  i . . . .  i . . . .  i . . . .  i . . . .  i . . . . . . . . .  

10 20 30 40 50 60 70 80 90 ,130 

T l m e ( ~ c )  

2 

-2 

Matching from At=2soc to &=O 5 sec 
-3 . . . .  | . . . .  ! . . . .  i . . . .  i . . . .  | . . . .  i . . . .  | . . . .  i . . . .  i . . . .  

100 110 120 ,30 140 150 160 ,70 180 ,90 200 
T i m e  ( s e e )  

Fig. 26. a. Continuous, discrete and interpolated time series (0-100 seconds) b Continuous, discrete and interpolated time series 
(100-200 seconds) 

for QX + 1 < m <_ SQ I and _QI  _ 1 > m > - S Q  I + 1 
and A f =  I / 2 Q A t  

With the increasing value of  order 2Q 1, the accuracy is 
increased. It is recommended to use Q I =  8 ~ 10 
Figure 26 provides an example, in which the solid line is 
the known continuous random process, the empty 
squares are discrete time series of  time Increment At 
picked from the continuous time process, and then black 
squares are the discrete time series of  small time 
increment 6t obtained by interpolating the time series 
represented by empty squares. A good agreement 
between the known time process and the discrete time 
series obtained by interpolation is observed. The mare 
advantage of  the trigonometric interpolation is that 
its transfer function is close to being ideal. However, its 
disadvantage is that it requires too many  multiplications 
at each time step 6t, i e. 2Q I + 1_ 

An alternative approach is the polynomial inter- 
polation, which ensures continuity up to 3'th order 
derivatives at time nAt. The polynomial  interpolation 
has a stability problem The Interpolation is said to be 
stable if a bounded &screte process after the inter- 
polation remains bounded as time increases to lnfimty. 
The interpolation stability IS also the stability of  the 
estimated derivatives up to the 3th order I f  a process 
Y(nAt) to be interpolated consists of  all zero values and 
non-zero initial derivatives, then one can have 

y(*)(nAt)  = Dy(*)[(n - 1)At] (67) 

where y(*)(nAt)  denotes the vector of derivatives up to 
th 3' order 

y(nAt)  

y(nAt)  

y(*)(nAt)  = (68) 

3,(~) (nAt) 

and D is an % 3' matnx  Therefore, the interpolator is 
stable if all the absolute values of the eigenvalues of  the 
matrix D are less than 1 

The interpolation between y(nAt)  and y[(n + 1)At] 
according to y(nAt) ,  ~(nAt), y [ ( n + l ) A t ]  and 
y[(n + 2)At] has the form given below 

y[(n + t~)At] = caa 3 + c2~ 2 + clc~+ c0 for 

n = 0 , 1 , . .  , and 0 < c ~ < l  (69) 

where the coefficients c , ( z=0 ,  1,2,3) are obtained 
by a matching method A mathematical  mampulat ion 
leads to another double subscripted parametric 
model: 

- )  

y[(n + a)At] = Z Ir~y[(n + r)At] 
r=O 

+ I~y(nAt) (70) 
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where the model coefficients are given by 

-~c~ + a  At 

3 7 tx 2 I0~=~a3-4 + 1 

lla -- -Or3 + 202 

and 

1 3 lcz2 (71) 
I2~ =~ t~  - 4  

and the derivative is given by a recurslve model, 

1 

~(nAt )  + d'y[(n - l)At] = E d~y[(n + r)At] (72) 
r = - I  

where the coefficients are given by d ~-- 1/2, 
d_t = - 5 / ( 4 A t ) ,  do = i / A t  and di = 1/(4At). The 
initial derivative of y(0) can be obtained by a cubic 
interpolation of  the points y(0), y(At),  y(2At) and 
y(3At). Concerning the stability, D = -0 .5  of  eqn (67) 
satisfies the necessary stability condition. 

This method offers simplicity as it is based on smooth 
fitting without taking into consideration the frequency 
contents of  the time series. A problem of  spectral 
contamination after the interpolation may be intro- 
duced. In order to reduce the error induced by 
interpolation, it is recommended that the Ume series to 
be interpolated must have insignificant level of  energy in 
the high frequency range, e.g. in the frequencies higher 
than 0-4 of the Nyquist frequency. 

8 DISCRETE DIFFERENTIATION M O D E L S  

The numerical differentiation by the central difference 
method or other related methods may be viewed as 
another form of  parametric model in which a parent 
process is transformed to its derivatives, e.g. from wave 
particle velocities to wave particle accelerations. A two- 
sided dlscrete differentiation model may be defined 
utilizing the central difference method'  

O 
y(n6t) = E Dr{y[(n + r)6t] - y[(n - r)6t]} (73) 

r = l  

where 

1 
Dl = ~ if Q = 1, 

o r  2} 
D i = ~ - ~  if Q = 2  (74) 

1 
D2 - 128t 

The choice of  order Q directly affects the accuracy and 
the error is given by e = O ( A t  o+ t) 

Similarly, the oneisided dzscrete differentiation model is 
defined by a backward or a forward difference scheme, 

O 
y(n6t) = E Dry[(n - r)St] (75) 

r = 0  

where 

Do = - ~  

and if Q = 1, (76) 

1 
D 1 = ~'~ 

o r  

D ° - -  26t if Q = 2  (77) 
2 

Dl = ~  

1 
D2 -- 26t 

The error in a one-sided differentiation model is 
expressed by ~ = O(AtO).  

The discrete differentiation models expressed by 
eqns (73) and (75) appear to have the same form as the 
discrete convolution model given by eqn (24). However, 
there are some essential differences between these two 
models; namely, 

(1) The inverse Founer  transform of  the coefficients 
in a discrete differentiation model approximates 
the target transfer function in the low frequency 
range (i.e. near to the zero frequency), whereas a 
discrete convolution model has a valid frequency 
range that spans the entire frequency up to the 
Nyquist frequency except at very low frequencies. 

(2) The valid maximum frequency of  the discrete 
differentiation model is a fraction of the Nyquist 
frequency. Hence, it is recommended to use very 
small time increments to increase the Nyqmst 
frequency and consequently to increase valid 
minimum frequency. Recall that the discrete 
convolution model requires a large time incre- 
ment for a correct representation of  the transfer 
function at low frequencies. The salient features 
of these models are listed in Table 1. 
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Fig. 27. Second-order feedback transfer function by discrete 
differentiation model. 
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Table 1. Discrete convolution and discrete differentiation models 

Model Application 
name 

Time Vahd max Vahd freq Model 
increment frequency range order 

Discrete Wide 
convolution 

Discrete Limited 
dxfferentlatlon 

Large Same as All, except High 
Nyquist freq_ very low freq 

Small Less than Low freq Low 
Nyqulst freq 

An example of  the application of the discrete 
differentiation model is the second-order feedback 
transfer function h~21(f) (described in the following 
section), which IS given in terms of  a fourth-order 
derlvatwe It is noted in Fig. 27 and in Fig 28, which 
is a closer look at the low frequency part  of  Fig 27, that 

the estimated transfer function by the discrete dif- 
ferentiation model is close to the target transfer function 
only in the frequency range smaller than 0-25 Hz for the 
model time increment 6't equal to 0.4 seconds At each 
time interval only three multiplications and additions 
are required for the simulation_ 

9 H Y B R I D  M O D E L S  

A hybrid model is proposed in which a combination of 
the discrete convolution and differentiation models is 
utilized to benefit from the individual features of  these 
models The formulation of a hybrid model is illustrated 
by the following example 

The preceding wave-related time processes were 
generated in this study by linear transformation of the 
wave surface fluctuation at a reference location These 
processes are referred to as a space-fixed location. But in 
the case where a body experiences large excursions, it ts 
Important  to evaluate the wave-related processes at the 
displaced position of  the body, e g. a TLP Typically, the 
wave drag force and the diffraction force must be 
evaluated at the instantaneous displaced position of the 
platform. 

Let y(t) be a wave-related process, which may 
represent a time process for wave surface elevation, 
wave particle velocity, wave particle acceleration or 
diffraction force, at a space-fixed location coincident 
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Fig. 28. Second-order feedback transfer function by &screte 
dlfferentlatmn model 

with the lnmal location of the center of a structural 
component  And let y(t,() be the same wave-related 
process evaluated at ( whLch is the instantaneous 
displacement of  the structural component  from its 
initial location along the wave propagat ion direction. 
y(t) is linearly related to the wave surface fluctuation at 
a reference location, ~(t), expressed as 

y(t) = L(zl(t)) (78) 

Then y(t, ~) must be 

y(t, ~) = L07(t, ~)) (79) 

where q(t, () is the wave surface elevation at a location 
apart  from the reference location along the direction of 
wave propagation 

A mathematical  manipulation leads to 

y(t, ~) = y ( t ) +  O(t)~(t) + OP](t)~2(t)+ (80) 

y as a function of structural displacement in terms of v 
evaluated at the initial structural plus feedback terms. 29 
The feedback coefficients, however, are time-dependent, 
and are linear transforms of the process at the structural 
initial location. The time processes representing the 
feedback coefficients can be simulated by discrete 
convolution models In the deepwater case, these 
coefficients can be written as 

I °c [ d Y ( t _ T ) + d Y ( t + T ) J d T  o(t)= ho(T) 
o 

with 

(81) 

and 

1 04y(t) (83) 
012}( t ) -  g 2 0 t  4 

The time series of  the second-order feedback coefficients 
can be realized by a discrete differentiation model. 

The first-order feedback coefficient may be regarded 
as the convolution (the corresponding transfer function 
is 27r f )  of  the time derivative of  the input load. The 
discrete convolution with the transfer function as 27rnAf 
has been shown in eqn (53). Hence, a combination of 
eqn (53) for the discrete convolution and eqn (73) for the 

ho(t) = 2 27rfcos(27rft)df (82) 
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Fig. 29. Ftrst-order feedback transfer function by hybrid 
model 

discrete differentiation provides 

Q/2 
O(n6' t) = hoy(n6' t ) + ~-~ h2r{ y[(n + 2r)6'] 

r = l  

+ y[(n - 2r)6't]} (84) 

where order Q is an even number, and the model 
coefficients are given by 

_ 7r (82)  
ho 4gtSi t 2 

h2r-1 [. 1 1 .] and (86) 
7rg6't 2 ( 2 r +  1) 2 ( 2 r -  1) 2 

- 1  
h9_ = 7rg6't2(Q _ l) 2 . (87) 

Both the valid maximum and minimum frequenoes 
(fmax and fmLn) should be taken into consideration when 
making a choice concerning the time increment and the 
order of a hybrid model A recommended value of the 
time increment is given here' 

1 
6 ' t  - - -  (88) 

10fmax 

The order Q of  the hybrid model largely depends on 
the minimum frequency from. An empirical relationship 
describing the order Q in terms of  6't and 
fm,n established during the course of  this study is 

o 007 
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Frequency (Hz) 

Fig. 30. First-order feedback transfer function by hybrid 
model 

given below 

1 (89) 
Q - 8gtfmm 

For example, if the time increment of a hybrid model is 
0-4 seconds and the model order is 10, the valid 
frequency range is 0-03 Hz to 0-25 Hz (Figs 29 and 30). 

10 EXAMPLE 

The dynamic response of a tension leg platform 
under a random wave field in the time domain is an 
example used herein to illustrate the application of  the 
parametric models to offshore engineering. The example 
of a TLP has been selected as all the models discussed m 
this paper are needed for the simulation of  a TLP 
response m the time domain The simulation of wind 
and wave-drift forces, which are important to the TLP 
motions, is beyond the scope of this presentation A 
typical TLP configuration and the front vmw of the 
four-column TLP are shown in Figs 31a and 31b The 
TLP is modelled as a six-degree-of-freedom rigid body. 
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L~ 

Fig. 31. a Schematic diagram and degrees of freedom of a 
TLP b Example of a TLP elevaUon 
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Fig. 32. Synthesis of parametric models for TLP response 
evalulaUon 

The basic equaUons of motion are expressed m the 
following matrix form 

Mx(t) + CstrX(t ) - fR(x, x ) +  K(x)x(t) 

= f~(t, k) +fa(t,  x, x) (90) 

In the left-hand side of  the preceding equauon, x(t) is 
the rigid body &splacement, M, C~t, and K(x) are the 
mass, structural damping and nonlinear stiffness 
matrices (all 6 × 6), and fR(x, x) is the radiation force 
due the platform osollauon.  In the right-hand side, 
f~(t, x) and fa(t, x, x) are the wave diffraction and drag 
forces computed at the displaced posmon of the 
platform, x_ The global dlffracuon force can be &rectly 
formulated from global diffraction transfer functions 
The drag force Is computed by &scret~zing the entire 
platform m a number  of  elements_ The global drag 

force is the summation of the drag lbrces on each 
element 

The process of  simulating these forces and associated 
responses is illustrated by Fig 32, m which the 
vertical direction represents the flow of the com- 
putauonal  procedure, and the horizontal direction 
indicates the time shift among various parametric 
models The explanation of each block of this figure Is 
given below' 

(a) 'Umvana te  A R M A '  The Ume series of  the wave 
surface fluctuation at a reference location is 
generated by an A R M A  model designed to 
represent a prescribed design wave spectrum 
The horizontal reference location is generally the 
centre of  the TLP The time step is At, which is 
determined by the maximum frequency of interest 
as 1/3 of  l / (2At)  A segment of  wave surface 
fluctuaUon based on JONSWAP wave spectrum Is 
plotted in Fig. 33, 

(b) 'Discrete Convolution Model '  The discrete 
convoluUon model, is used to simulate the time 
series of  the global diffraction force J,(t) and the 
wave particle velocity at the tth element center 
u,(t) and wave surface elevaUon at the l th column 
q,(t) based on the wave surface fluctuation at the 
reference location. A segment of  diffraction force 
time history is shown m Fig. 34 The ume 
increment remains At These processes are 
related to the imUal location of the structure 
Altogether, many Ume series should be simulated 
using individual discrete convolution models 
Each model has its own best orders Q+ and Q-  
In the computer  code, it is recommended to use 
flexible length vectors to store these model 
coefficients for saving CPU time and storage 
The maximum time window in the discrete 

+ 
convolution models is (Qmax + Qm,.)At 

(c) "Interpolation Model" The Ume increment of the 
above Ume processes is changed to a small value 
6t. which must satisfy the requirement in the 
solution of dynamic eqn (90) 

(d) 'Hybrid Model '  This model facihtates 
computat ion of the time-dependent feedback 
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Fig. 33. Time history of wave surface elevation 
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Fig. 34. Time history of surge dlffractmn force. 

coefficients, O,,(t) and 0n(t), as linear transforms 
of  the wave particle velocities or wave forces The 
hybrid models involve fewer multiplications. The 
small time increment required by the hybrid 
model is satisfied since it is introduced after 
interpolation. 

(e) 'Feedback': From the wave processes related to 
the structural initial posmon, the displacements of 
the platform at the previous time step or previous 
iteration and the feedback coefficients, we can 
obtain the corresponding processes f~(t,x) and 
u,(t, x) at the displaced position of the platform 

(f) 'Hydrodynamic Load Transformation" The drag 
force is quadratic in terms of the relative fluid- 
structure velocity 

fd( t ,x ,x)  = Z r, co,[u,(t,x) - T, rk(t)] 

x [u,(t ,x)- T, rx(t)[ (91) 

m which T, and Ty denote the local to global and 
global to local coordinate transformation 
matrices, respectively, CD, is the component drag 
coefficient. 

(g) 'Dynamic System" In the discrete form, by 
introducing the retardation model, the dynamic 
equations of  motion can be recast into 

( M + A)x(m6t) + (Cst r -k- Co)Sc(m6t) + K(x)x(mSt) 

9. 
= f,(mat, x) + fd(mat, x, 5c) -- y ~  Crx[(n - r)at] 

r = l  

(92) 

in which the symbols for the retardation have 
been defined previously. Considering the stiffness 
K(x), as well as the wave diffraction and drag 
force being displacement-dependent, an iteratwe 
scheme is needed for response evaluation. L1 and 
Kareem 28 suggested a special Newmark/3 form, in 
which the response in the present time becomes a 
linear combinatmn of the response and the loads 
in the past time history. Since the past loads only 
depend on the past response, no iteration is 

(h) 

needed. This approach is based on the central 
&fference method, which was cast as a two-sided 
&fference model m eqn (74) A time shift leads to 
the following 

x[(m - 1)6t] = x(m6t) - x[(m - 2)6t] 
26t 

and 

5/[(m- 1 ) 6 t ] - x ( m 6 t ) - 2 x [ ( m -  1)6t]+x[(m-Z)6t] 
6t 2 

(93) 

Let the left-hand side of  eqn (92) bef(m6t, x). We 
can recast the dynamic equation into 

(M+A_~ Cstr+C0"~ , _ ,  
~t 2 -2~ )xtmOt) 

= f [ ( m  1)6t, x] 2M - + ~ x [ ( m  - 1)6t] 

{ M  W A Cstr + Co.)x[(m _ 2)6t ] (94) 
+ \ - T f f - -  + 26--~- 

Hence, the solution of the final equations of 
motion is a combination of  the discrete 
retardation and differentiation models 
'One-sided Differentiation" The displacement 
response has to be further transformed to 
velocity response for formulation of the drag 
force in the next time step Since the displacement 
in the future ~s unknown, one-side differentiation 
is used. Hence, in the same algorithm, we have 
two kinds of parametric models used to describe 
the response velocities from the displacements: 
two-sided differentiation model m 'Dynamic 
System' and one-sided differential model for 
drag force simulation. The preceding discussion 
illustrates how the various parametric models 
serve as means of simulatmg time series 
representing wave height, wave kinematics and 
wave loads and how these models can be 
integrated m the overall computatmn of the 
platform response. 
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11 CONCLUDING REMARKS 

Various parametric models are presented that offer 
computationally efficient means of generating time 
histories of wave surface profile and related wave 
kinematics and load effects The models are placed in 
three categories, namely ARMA,  convolution and 
interpolation schemes. In the following a summary of 
these models is presented that highlights the key features 
of  the models, their order and associated errors 

(l)  Recursive Simulation of  Unl-variate Time Series. 
Uni-varlant A R M A  models are uhllzed for simulating 
the wave surface elevation consistent with a prescribed 
spectral description It  is desirable to design AR and 
MA models with the lowest orders and m i m m um  model 
error This requirement may be satisfied if the maximum 
entropy method is utilized. However, the algorithm for 
the general MEM method involves a significant level of  
computat ional  effort In this study a two-stage model 
fitting approach is used in which the maximum entropy 
is satisfied with some imposed restrictions Thus, the 
decision concerning the A R M A  order becomes a 
selectmn by the user from a host of  multiple options 
This is accomplished through a direct comparison of the 
target and estimated spectra, or other crlterm, e g 
goodness of  fit may be utlhzed. 

(2) Non-recurslve Simulation by Linear Transforma- 
tions' The second application involves simulation of 
linearly related processes The common form of a linear 
transformation may be the convolution, based on which 
the discrete convolution model has been defined_ This 
non-recursive model has two forms, namely the model 
representing a convolution of an infinite and finite 
duration waveform and the model representing a 
convolutmn of  two infinite duration waveforms The 
application of  the former seems to be limited since the 
estimated transfer function slowly converges or even 
estimates fall to converge to the target transfer function 
The latter is widely used in this study, mainly for 
simulating wave kinematics and diffraction forces based 
on the wave surface elevation at a reference location. 
Since this non-recurslve model is only a discrete and 
truncated version of the convolution integral over an 
infinite time period, the model order may be determined 
by the decay of the convolution kernel This model may 
be viewed as a filtered output of  the past, the present 
and the future time histories of  a parent process. 

In the case of radiation force simulation, the future 
time history of the response of  the parent process is 
unknown. Thus the retardation model is Introduced in a 
manner  such that the radiation force is a linear 
combination of  the past and the present time histories 
of  the response. The associated filter is developed by 
sacrificing shghtly the accuracy of the frequency- 
dependent added mass However, the accuracy of the 
added mass may not be very Important.  A better 
description of the radiation damping as a function of 

frequency is more important  because at the low 
natural frequency of a compliant structure it is nearly 
zero and at wave frequencies It could lead to higher 
values 

Discrete differentiation is another non-recurslve 
model used here in the context of  linear transforma- 
tion It has the same form as the discrete convolution 
model, however, its transfer function is only vahd in the 
low frequency range. This model is used in this study for 
several cases, e.g_ to simulate the velocity response from 
the displacement response. The time Integration scheme 
for the solution of the dynamic equations of  motion can 
be based on this model 

A hybrid model is Introduced which combines the 
attractive features of  the discrete convolution and 
differentiation models The time variant first-order 
feedback coefficients, needed to describe the wave 
loading at the Instantaneous displaced position of the 
platform, are efficiently evaluated by means of a hybrid 
model 

(3) Parametric Interpolation Model: Interpolation of 
the time histories is carried out by parametric models 
The transfer function of an interpolation model is the 
same as that of  a lowpass filter Both trignometrtc and 
polynomial interpolation techniques are utilized in this 
study 

The parametric models presented in this paper offer a 
very efficient computational  tool for the time domain 
analysis of  wave load effects on offshore platforms. 
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