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The time histories of stochastic ocean wave-related processes are simulated by
means of computationally efficient parametric models The parametric models
utilized here include the autoregressive and moving averages (ARMA) algorithms
for the simulation of wave height fluctuations, discrete convolution models for
linear transformations of given time histones, discrete differentiation models for
obtaining denivatives, discrete interpolation models for interpolating time series at
mtermediate time increments and their hybrid combination. The recursive
simulation of fluctuation 1n wave height 1s accomplished by ARMA algorithm
based on a two-stage model-fitting approach that provides simulated processes
consistent with the prescnibed spectral descriptions The sensitivity of the model
order to the wave spectral description 1s presented The parametnic simulation
schemes of linearly related processes, e.g wave load effects, are conducted by
means of discrete convolution models utilizing finite and infinite wave forms. A
parametric model representing differentiation mm the context of a linear
transformation 1s employed to simulate derivatives of response processes. A
hybrid combination of discrete convolution and differentiation models provides
an efficient simulation scheme for evaluating wave loads at the instantaneous
position of compliant platforms. Interpolation of time histories 1s carried out
utilizing double subscripted digital filters The selection of appropnate models and
their orders is discussed n the context of their stability, accuracy and robustness.
Detailed examples are given to illustrate the practical features of these models

1 INTRODUCTION time series being simulated 1s often governed by the
available computer memory. These shortcomings can be
eliminated by employing digital filtering schemes. The
parametric time series models in this context, eg.
ARMA, provide recursive relationships that connect
the random quantity being simulated at successive time

increments.’~'® Unlike the FFT-based techniques, this

The simulation of random processes has been primarily
carried out utihzing methods based on the summation of
trigonometric functions (wave superposition) or its
modifications such as the use of fast Fourier algorithm
(FFT)'~* The methods based on summation of trigono-

metric functions are computationally very inefficient
The use of FFT, though, improves the computational
efficiency drastically, but not without the expense of
increased demand on computer storage The length of
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approach does not demand a larger computer memory;
rather, only a limited amount of information, e.g. filter
coefficient matrices, is stored and long-duration time
series may be simulated through recursive relationships
This feature provides the significant computational
advantage of digital filtering schemes over FFT-based
schemes and the development of these techniques
for applications in stochastic mechanics 1s receiving
increasing attention.
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In this study, parametric models are used to simulate
a wide range of random processes related to wave
kinematics and wave load effects Based on the
application, these parametric models can be divided
into three main categories. the models for simulation of
time sertes from spectral description of one or several
correlated stochastic processes (e.g. ARMA models),
the models for realization of linear transforms of a
given stochastic time series (e.g. discrete convolution
and discrete differentiation models), and the models
for changing the time increment of simulated time
series (e g discrete interpolation models) The basic
criteria 1n fitting a parametric model are that the model
order should be small and error between the model and
target transfer function should not exceed a prescribed
limit

2 BACKGROUND

The ARMA model approach has been used in the
ocean, ecarthquake and wind engineering fields It
has been appled to the simulation of waves.
For example, Samn and Vandiver'' developed an
ARMA (21,21) model to represent the wave height
spectrum which provided very close comparison
with the target Bretschneider spectrum. Spanos'?
utithzed an ARMA (4,2) to simulate time series
for the Pierson—Moskowitz spectrum by allowing
some spectral error in the low frequency range.
This discrepancy may not be of any significance
for general application 1n offshore dynamics, but
for the dynamic analysis of tension leg platforms
(TLPs) an accurate modelling 1mn low frequency
range may become important In a subsequent
study, Spanos and Mignol.‘:t’3 examined the
mathematical peculiarities of the P-M spectrum and
presented a Z-transform modelling of P-M wave
spectrum Also, an efficient ARMA model for wave
simulation was developed based on an immtial AR
approximation. This paper addresses 1ssues concerning
selection of an ARMA model 1n the context of stability
and accuracy

The discrete convolution method has been used 1n the
simulation of wave kinematics.> The number of
arithmetic operations during the discrete convolution
1s often large, e.g. Burke and Tighe14 used 120
multiplications and additions for the simulation of the
wave particle velocity at each time interval. Samii and
Vandiver!! used a three-step procedure to transform
wave kinematics from one location to another utilizing
discrete convolutions to account for the vertical and
horizontal separations and Hilbert transform for
mtroducing a 90° phase shift. In this study, the time
series of wave kinematics and diffraction forces are
directly simulated from a reference time history by a
discrete convolution filter. This helps to mimimize

accumulated errors inherent 1n the discrete convolution
process The discrete convolution model contaming the
least number of arithmetic operations introduced here
can be established from any given form of the transfer
function. The application of the discrete convolution
technique 1n this study 1s not lumited to the wave
kinematics and diffraction forces. It 1s further developed
into a discrete retardation form, mvolving diffraction-
radiation considerations, for simulating radiation force
based on the platform response

Discrete differentiation operation 1s also expressed in
terms of a non-recursive model A hybnid model 1s
introduced which combines features of the discrete
convolution and differentiation models.

Interpolation of simulated time series required
for changing the time increment 1s also accomplished
by a parametric model with double subscripted
coefficients. The model 1s designed to ensure that it
satisfies the stability conditions and meets the prescribed
accuracy

In the following sections a brief discussion of
these models, their design considerations and some
examples are presented to illustrate the modelling
procedures

3 ARMA MODELS
3.1 AR, MA and ARMA models

Although a discussion of AR, MA and ARMA
models 1s available in numerous papers and texts on
signal processing and stochastic processes, a brief
mtroduction 1s nevertheless included here for the sake
of completeness

An autoregressive (AR) model of order P permits
stmulation of a stochastic process y(nAf) at time nAt
from its previous time histories and corresponding
excitation based on the following

v(nAr) = —iA,y[(n ~ P)AT] + Boe(nAt) (1)

r=1

where e(nAr) 1s a white noise process with zero mean
and unit variance, 4, 1s the r'™ AR coefficient, and B,
denotes a coefficient.

A moving average (M A4) model of order Q 1s a filter
that permits simulation of a stochastic process y(nAr) at
time nAt based on the previous and present input white
noise processes

Q
y(nAt) =" Bie[(n—r)A1 (2)
r=0

in which B, is the '™ M4 coefficient
An autoregressive and moving average (ARMA)
model of order P and Q 1s a filter that permuts
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simulation of vector y(nAf) at time nAfr by its
previous time histories and the previous and
present white noise processes:

y(nAr) +ZA,y[ n—r)Af =

r=1

ZB e|(n — rAt].
3

In other words the vector y 1s defined as an ARMA
process of order P and Q if 1t results from the
response of a linear recursive relationship given in
eqn (3) to a zero mean and uncorrelated white noise
process. It 1s desirable that the ARMA model orders P
and Q are low and the simulated vector y(Af) has
an error within prescribed limits. The error in an
ARMA model can be expressed in terms of the target
and estimated cross-spectral density functions as given
below

Smax
|, 160~
E= YA
[, 160

where E is the error of the estimated spectral density
function The spectral density function estimated from
the model is expressed as

G(f) =2MtY ()T (f)

G(N)ldf

(4)

Yf) =

P -1
I+ Z A, exp(—27rfrAt)]

r=1

[
Z B, exp(—2nfrAr)

r=0

(5)

where Y(f) represents the Fourier transform of eqn (3),
and the superscript * denotes the conjugate operation.
Besides the accuracy requirement, an ARMA model
must satisfy the stationarnty requirement The necessary
and sufficient condition for stationarity of an ARMA
model 1s that all the moduli of the eigenvalues of the
matrix ® should be larger than 1.

P
1+ZA,<IJ’:0 (6)
r=1

where ® 1s a matrix (M, M) defined as the complex
roots of the preceding equation. The maxumum entropy
method (MEM)15 1s often utilized to match an ARMA
model satisfying the above accuracy and stationarity
conditions. In the following sections various methods of
fittng an ARMA model to a given spectrum including
the maximum entropy method and its approximate
forms are discussed.

3.2 AR model and the Yule—Walker equation

In order to simplify the discussion, the ARMA model is

reduced to a unit variate AR model in eqn (1). By
post-multiplying eqn (1) with y[(n — m)A¢] (in which
0 < m < n) and taking expectations

ZA Wl(r—m)Af] = —C, [mAf]  (m #0)
and
P
B} = C,,(0) + ) _ 4,C,,(rAl) (7)

r=1

where C),(rAt) denotes the covariance of time series
y(rAr) The preceding equations are known as the Yule—
Walker Equations, and are based on the fact that

C,(mAr) =0 for m>0
C)(mAt) =By for m=0 (8)
and

C_vy(m) = ny(_m) = E(y(nAt)y[(n + m)At]) (9)

where C,.(mAt) denotes the covariance between y(nAt)
and e(nAr).

The Yule—Walker equations can also be written 1n a
matrix form as

CA=C (10)
where the Toeplhz matrix, C, contains (P,P)
sub-matrices.

C,,(0) C,, (A1) C,,(PAY)

Cc— Co(An) C,(0) Cyl(P— 1A

va[(P_ l)At] Cw[(P_ Z)At] Cn(o)

(11)
and 4 and C’ are AR coefficient and covariance
matrices: A = [414; . AP]T and C'=—[C),(Ar),
—ny(PAt)]T, respectively. The solution of eqn (10) 1s
dependent on the order P of the AR model.

B} 1s a positive definite matrix, therefore, following
eqns (6) and (7), the Toeplitz matrix (in the right-hand
side of eqn (11)) becomes a positive definite matrix In
practice, it is possible that some of the target spectra
may not satisfy this condition due to mathematical
considerations and numerical round-off errors
Fortunately, experience has shown that wave spectra do
satisfy this condition provided some restrictions are
mmposed A detailed description of these restrictions
will be addressed in the following sections It can be
shown that the Yule—Walker equations also satisfy the
MEM conditions. In other words, an AR model 1s
an MEM model.'®

Despite the convenience of an AR model, one may
observe many small peaks in the spectral density
function represented by the AR model due to all-pole
charactenstics of the filter. For example, the zeros of the
AR weights of the P-M wave height spectrum are all
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within or close to the circle |z| = 1 1n the complex plane
The estimated spectrum 1s, therefore, not smooth
regardless of the order of AR model.?

3.3 ARMA model and the modified Yule— Walker
equations

The maximum entropy method may not be com-
putationally convenient to determine the coefficient
matrices of an ARMA model because it requires the
solutions of a large number of non-linear equations.
Alternatively, one of the frequently used methods
utilizes the modified Yule-Walker equations'”!®
This technique 1s considered to be close to the
maximum entropy condition. This method offers a
wide range of applications However, the matching
of ARMA coefficients by this method 1nvolves the
solution of a number of quadratic equations Also,
the smmulation of narrow-banded processes such
as wave height fluctuations, renders the application
of this approach computationally inconvenient
due to the numercal singulanity of the Toeplitz
matrix

3.4 Two-stage matching for ARMA models

In summary, the AR model characterized by maximum
entropy and all-poles 1s formulated by the solution of a
set of linear equations, whereas the ARMA model
characterized by poles and zeros 1s fitted by the solution
of a set of non-linear equations. The advantages of both
methods are combined by the two-stage matching
method, 1n which the ARMA model 1s obtained from
an AR model

The two-stage matching method can be realized by
a few possible schemes.”! Here the method of the
Auto/Cross-Correlation matchimg (ACM) 1s bnefly
introduced This method was utilized by Samaras
et al” for fitting a multi-variate ARMA model with the
same AR and MA orders In this study, this method 1s
further extended to include ARMA models with
different AR and MA orders.

Let a pre-AR model of order P’ be formulated by
eqn (7). The ARMA model 1s based on matching
the correlation matrices C,,(m,At) with 0 <m, <P
directly from the target spectra, and cross-correlation
matrices C (m,Af) with 0<m, <Q from the
pre-AR model according to eqn (8) If both sides
of eqn (3) are post-multiplied by e[(n —m,)A¢] and
yin—my)Al mm which m, =12, ,Q and m,=
1,2, . , P respectively, the following relations are
obtained

mn(m,, P)

Col=mAt)+ Y A4,C,[(r —m)All = B,
r=1

(12)

and

,
Cp (=mpAD) + Y~ A4,C,,[(r = m,)Al]

r=1

Y
=Y " B.C,[(m, — r)Ad]. (13)
r=0

These two equations may be expressed m a matrix form,
DA=C (14)
In the preceding matrix equation, D 1s an
M(P+ Q)M(P + Q) matrix and consists of four parts
I c”

o (15)

where C 1s the Toeplitz matrix described in eqn (11) and
C' contains (PQ) sub-matrices, and the (r, 5)™
sub-matrix 1s

Cli=—=Clr—s)Af 1f (r<s) or
C/, =0 otherwise (16)

The matrix A contains coefficient matrices of the
ARMA model:

A:[BI~BQV *BQ1A11A2| 1AP]T (17)

and the matrix C contains P+ Q covariance matrices
obtained from the pre-AR model and the target
cross-spectral density matrix, and it 1s given by

C:{Cw((_At)‘ va(_QA[)*—Cw(A[)‘
= Cy(PAN)] (18)

Based on the experience gained during the course of
this study, 1t is suggested that this approach provides a
computationally convenient means of matching the
target spectral characteristics for the simulation of
wave height fluctuation Therefore, this method 1s
employed for the study presented here

4 ARMA MODELS FOR WAVE FIELDS

The P-M and the JONSWAP spectra are used to
simulate random wave surface profile at a point 2 The
ACM technique is utilized to develop ARMA models
for wave surface fluctuation. Typical results are
provided 1n Figs 1 and 2 for the P-M and JONSWAP
spectra, respectively These figures provide the target
spectra and estimated spectra from the models Also
included 1n the figures are the AR and ARMA orders,
and the simulation time increment A¢ It is noted that
the target and the estimated spectra based on the
ARMA models are almost comncident. The order of these
models is low and varies between 6 and 20. In the following
sections 1ssues concerning guidelines for the order selection
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Fig. 1. Comparnison of estimated and target spectra (P-M wave
surface elevation spectrum).

of the models, in the light of several parameters that
influence this selection process, are addressed.

A necessary condition for the existence of a finite AR
representation of the process y(nAf) is given by the
following'21

In
|, 108ty (s > ~oc (19)

in which fy is the Nyquist frequency and G,(f) is the
spectral density function of the process being simulated
The P—M and JONSWAP spectra have a zero of infinite
order at the zero frequency that results in violating the
preceding 1nequality. Regarding the P-M spectra,
Spanos'? modified the spectral description such that
the order of zero at the zero frequency was changed
from infimty to 27 by introducing a Taylor series
expansion, thus satisfying the above inequality It 1s
noted during the course of this study that the preceding
inequality (eqn (19)) 1s violated for nearly all forms of
wave spectra due to numerical round-off error and
underflow problems within a certain low frequency
range.”>!° In order to overcome this difficulty, 1n this
study white noise with a very small variance was added
n the target spectra. In the examples shown 1n Figs 1
and 2, white noise of spectral ordinate ranging
{0-0001 ~ 0 001)o?/fy was added to the target
spectrum, where o° represents the overall vanance
associated with the spectra 2' It 1s important that the
added noise should be small enough that 1ts influence
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Fig. 2. Companson of estimated and target spectra
(JONSWAP waves spectrum).
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Fig. 3. Spectral error versus pre-AR order P’ (P-M wave
spectrum)

does not introduce any sizeable addition to the wave
surface profile. The introduction of white noise offers
robustness and precludes any other pre-modelling
mathematical manipulation necessary otherwise

The next step involves the selection of pre-AR order,
P’, and the orders P and Q for the ARMA model. In
order to reduce the number of parameters in this two-
step selection process, one may impose the condition
P = Q. Subsequently, for a fixed P’, different choices
of P = Q can result in different levels of errors as noted
in Figs 3 and 4 for the P-M and JONSWAP (y=33)
spectra. The spectral error 1s defined as the integral of
the difference between estimated and target spectra
normalized by the integral of the target spectra up to the
Nyquist frequency. It 1s noted that the higher pre-AR
order does not necessarily result in an ARMA model
with a lower spectral error For wide-banded processes
such as wind fluctuation, it is found that an increase in
pre-AR order generally provides a favorable decrease in
the spectral error.”? However, for the narrow-banded
wave height fluctuation the spectral error 1s mimimum at
a certain value and as such does not follow any distinct
trend

Although ARMA models with equal AR and MA
orders are widely reported in the literature, in the
present study 1t is found that different AR and MA
orders may mmprove the model accuracy, especially for
the narrow-banded process. For the P-M spectrum,
P=8 and Q=7 provides lower spectral error 1n
comparnison with the model based on P = Q =7 with
P’ bemg equal to 59 mn both cases (Fig 5). The
JONSWAP wave elevation spectrum for P’ =27 and

20
P=Q=8
R 151 * P=Q=9
b | +  pP=Q=
E P=Q=10
= 104 p
g L  At=4sec
w51
0 L] L] T T T
10 15 20 25 30 35 40
Pre-AR Order P'
Fig. 4. Spectral error versus pre-AR order (JONSWAP wave
spectrum)



68 Yousun Li, A Kareem
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Fig. 5. Spectral error versus MA order (P-M wave spectrum)

P+Q =16, m which P=12 and Q =4, provides
generally lower error as compared to the case where
P=Q =28 (Fig. 6).

It 1s noted that for the cases 1n which @ 1s greater
than P, not only results i a lower accuracy but also
leads to a non-positive definite matrix i eqn (16). This
results 1n a non-stationary ARMA model Therefore, 1t
is recommended that P > Q to alleviate these problems.

In summary, P, P and Q are three independent
parameters, and only by a suitable combination of
these parameters, one can obtain the optimal ARMA
model. The choice of these parameters is generally made
rather empincally utilizing an nteractive computer
code.!® Samaras et al’ have suggested the following
guitdelines

PP>P+Q+2 (20)

However, 1t 1s found 1n Fig. 4 that for the JONSWAP
spectrum a model with P'=19 and P=Q =10
provides an optimal choice for P’ < 25, but 1t does not
meet the above guideline

5 DISCRETE CONVOLUTION MODELS

The wave-related processes are fully coherent.
Therefore, a set of fully-coherent random processes
may be simulated by a convolution with a reference
random process utilizing an approprate kernel.
The wave surface profile, wave kinematics and the
associated wave-induced forces which are all fully

12
- p'=19, P+Q=18
9 4 - P'=27,P+Q=16
:
<6
Eé.&
[ZZ I
A t=2 sec
0 — v - T ™

5
MA Order Q

Fig. 6. Spectral error versus MA order (JONSWAP wave
spectrum)

coherent processes are simulated in this study by a
convolution of a reference process, 1.e wave elevation,
n(7), at the omngin of the space-fixed coordmate
system, with the corresponding kernels 1324 How-
ever, the preceding convolution mvolves an integral
over an nfinite time period which may impose
computational difficulties In order to overcome this
difficulty attention is focused here on simplifying
techniques 1 which these tegrals are recast 1n
nonrecursive digital models mnvolving a limited number
of arithmetic operations.

Let the transfer function between a random process
Y(r) and the reference process 7(t) be given by the
following

H(f)=—x (21)

where Y(f) and n(f) = Fourier transform of y(r)
and 7(7), respectively. The convolution kernel A(l)
corresponding to the transfer function, H(f), is given
by

+oc

H(f)exp(;2nft)df. (22)

—20

h(t) =J

The random process y(¢) can be simulated for known
n(t) by the convolution given below

h(T)n(t — 7)dr (23)

The integration over a time period —oo to +oo in the
preceding equation needs to be evaluated numerically. If
the preceding integral is performed by the trapezoidal
rule, and the infinite time may be truncated into a finite
length of time from T_ to T, then the discrete form of
the preceding equation may be recast in the following
form

Q+
ynAry = > hal(n—r)Aq (24)

r=—Q°

where the discrete convolution coefficients h, are equal to
h(rADAL, in which r = -Q7,.. . —2,~1,0,1,2,. o
and the discrete convolution orders Q~ and Q% are given
by

T+

and Q" =-—— (25)

_ T-
@ =A7 At

At
It 1s desirable to keep the order of the preceding
discrete convolution model to a minimum and at the
same tme to munimize the error introduced by
discretizing the convolution mtegral The discrete
convolution model can be formulated from the discrete
Fourier transformation of fimte and infinite duration
waveforms.” Both approaches have their merits and
applications
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5.1 Discrete convolution model utilizing the finite
duration waveforms

Let the frequency range from zero to Nyqust frequency
be discretized at Q discrete frequencies. The discrete
mnverse Fourier transform of H(f) 1s given by

h(rAt) { Z H*(sAf) exp (—]TF Q)

+ ;H(sAf) exp(jwr—Qs) }Af (26)

for r=—Q+1, ..,-1,0,1, .,Q and Af=1/2QAt.
The corresponding coefficients of the discrete
convolution are given by

h, = h(rAt)At (27)

which has the order Ot =Q and Q" =Q — 1 (total
order is 2Q, including zeroth coefficient).

If the transfer function 1s a real variable (e.g. the
second-order derivative), the model of order Q in
eqn (24) appears as given below

y(nAt) Z hAn[(n — VOS] + n(n+ r)Af}

+ hon(nAf) + honl(n — Q)Af] (28)

1 which the coefficients 4,(r = 0,1,...,Q) are given by

0-1
h, = {H(O) +H(QAS) +2 ) H(sAf)

X COS (jﬂ' Q) }AfAt (29)

and the corresponding estimated transfer function is

A(s8f) = Z 2h, cos (271' ) +hy + hy (30)

where L 1s the total length of the time series. Similarly,
for the imaginary transfer functions (e.g. derivative), the
recursive model of order Q@ — 1 is given by
o-1
y(nAt) =" h{nln — At — n(n + r)At} (31)

r=1

where the coefficients A,(r = 1,2,
terms) are given below

,0—1, total Q — 1

0-1
h, = ; 2H(sAf) sin (w’—é) ALASf (32)

and the corresponding estimated transfer function is
given by

A(séf) = ZZh sm(27r ) (33)

In a general case, taking discrete Fourier transforma-
tion of both sides of eqn (24) leads to the estimated
transfer function,

0 ry
H(sb‘f)— W ) Z h exp(—jZﬂ'Z) (34)

The frequency increment 6f in the discrete Fourier
transform of Y(sét) is

1
=1a;

The length L of a discrete process to be simulated is
an arbitrary integer number, and generally Q <« L. It is
a discrete convolution of an wnfinite and a finite duration
waveform (see Ref. 25). Let 2L = 5Q in which 5 1s a
positive integer number. In this case at the frequency
equal to Snéf (where n is an integer) the transfer function
estimated from the model is just the inverse discrete
Fourier transform of eqn (26). Thus, the model transfer
function is exactly the target transfer function expressed
by eqn (21).

H(pnéf) = H(Bnéf ). (36)

However, at frequency (On+a)ff with a<f,
H[(Bn + a)df] generally provides a poor representation
of the transfer function between H(Onéf) and
H[B(n+ 1)éf]. Many tests in this study showed that
this approach 1s mainly useful for some real transfer
functions. For example, it may be used to fit the fourth-
order denivative for real transfer functions. It 1s
demonstrated in Fig. 7 that the total model order
Q = 5 yields six points coincident with the exact transfer
function With an increase in the model order to Q = 23,
the number of comncident points increases to 24.
Accordingly, there 1s a significant improvement 1n the
high frequency part as is shown in Fig 8 However, in
the low frequency part as seen 1n Fig. 9 (which zooms in
on the low frequency part) the estimated transfer
function with Q@ =23 exhibits oscillations. If this
method is used in odd-order derivatives, e.g. the third-
order derivative for the imaginary transfer function
(Fig. 10), there is an error in the high frequency part in
addition to the error 1n the low frequency part that 1s the

(35)

Targetl
Sk Esumated

b Model order=5, At=2 sec

Amplitude of Transfer Function
(sec

0 P S iadk -
000 005 010 015 020 025
Frequency (Hz)

Fig. 7. Comparison of estimated and target transfer functions
(fourth-order derivative)
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Fig. 8. Comparison of estimated and target transfer functions
(fourth-order denivative)

same as the even order derivative. The error reduces
slowly with an increase in the model order.

5.2 Discrete convolution models utilizing infinite duration
waveform

An alternative method 1s to let the number of
frequencies Q 1n eqn (26) be much larger than any
possible length of the time series As a result eqn (26)
becomes a discrete convolution of two nfimite duration
waveforms In the order to make this practical, let the
discrete convolution model order in eqn (24) (here it
denotes by N;) approach mfimity and truncate it at
orders Q" and Q. This is only possible provided the
following two convergence conditions are satisfied-

N,lin;x h(rAt) = h(rAe) (37)

where A(rAf) 1s the discrete Fourier transform of
transfer function H(rAf), and h(rAf) 1s an exact
transfer function, and

111;1 h(rAf) =0 (38)

These convergence requirements also 1mply the
following

(1) The discrete Fourier transform of H(rAf) with
r=1,2,. ,N;is close to the discrete Fourier
transform of H(rAf) withr=1,.. Ny +1

(2) A(rAt) < ehpay for all r > Q% and r < —Q7, n
which QF and Q™ are positive integers, e 1s the
coefficient convergence indicator, ¢ g. 2%, and

008
007 F Model order=23, At=2 sec
006 F
005 F
004
003 F
002 F
601 f,"= °"

000
000 002 004 006 008

Frequency (Hz)

Targel
- Estimated |4

Amphtude of Transfer Punction
(sec™®)

Fig. 9. Companison of estimated and target transfer functions
(fourth-order denvative)
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hpax 18 the maximum value of all the estimated
convolution kernels Furthermore, the model
order should be large enough to account for the
low frequency part A number of test runs in this
study suggest that 2/(Q" + Q7 )At < foun, Where
S 18 the minimum frequency of interest

Considering the fact that 1n practice only the positive
frequencies in the discrete Fourier transforms are used,
the coefficients of the discrete convolution model
representing convolutions of two infinite duration
waveforms are given by

h,=h(rAr) for 0<r<Qt

hy = W[2N;+1+1)AJAr for —Q <r<0 (39)

where the discrete inverse Fourier transform in egn (26)
1s given by

AN/ -1
h(rdt) = lim 3 H(sAf) exp (pr;,—s/) (40)
ar—0 §=0 N

and the transfer function H(sAf) with s> N, 15 a
reflection of H(sAf) with s < N,

H[2N;+ 1 —5)Af] = H (sAf). (41)

The corresponding discrete convolution model 1s given
by

Q+
y(nAl) = Y hal(n - A (42)

r=—-Q"

The estimated transfer function by the discrete
convolution model 1s expressed by the following

o
H(fy= Y hexp(—j2nfral) (43)
r=—0Q°

A discrete convolution model has a valid frequency
range within which the estimated transfer function 1s
close to the target one. The valid maximum frequency
Jfmax 1S the Nyquist frequency 1/(2A¢) and the valid
mmimum frequency fn., depends on the total model
order Q" + @ + 1 It is recommended to use the relation

2/(Q" + Q)AL > frn
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Fig. 11. Discrete convolution model order for descnbing wave
particle velocities.

The preceding convergence criteria may be satisfied by
both real and complex transfer functions. Test cases
have shown that the wave-related processes, such as the
wave surface elevation, wave particle velocity and global
wave diffraction force on a ngid body, such as TLP can
satisfy the convergence requirement. A mathematical
description of the conditions of convergence for a
transfer function 1n a general form is beyond the scope
of this presentation. Only a few examples of the several
cases examined i1n this study will be given 1n the
following sections.

5.3 Discrete convolution models for the wave-related
processes

Let us define the wave surface elevation at (0,0,0) in the
space-fixed coordinate system as the reference time
series which 1s generated by an ARMA model described
in the previous section. The transfer functions that relate
the wave surface elevation to the horizontal and vertical
wave particle velocities are given by

H, _,(f) = 2nfexp(kz) exp(—jke)
and
H, _.(f) =j2nfexp (kz)exp (—jk¢€) (44)

where H,,f_,,( f) and H, _, represent transfer functions
that relate wave surface elevation to horizontal and
vertical water particle velocities, k is the wave number, £

30 | Tt From wave surface elevation T\(t)

At=2 sec

5 20
-d
§ o 10.-d)
% u (10,-d)
S 1w} "
. u§(25,»d)
. uE(SO,-d)
0 ————r—r ———
0 10 20 30 40 50
Water depth d (m)

Fig. 12. Discrete convolution model order for wave particle
velocities at different locations in the honzontal direction.
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Fig. 13. Discrete convolution model order for vertical
component of wave particle velocities

1s the horizontal location along the direction of wave
propagation and z is the vertical location

The basic objective in the selection of a parametric
model is to have the lowest order filter with an
acceptable level of error. There are a number of factors
which influence the filter order Figures 11-13 illustrate
how the order of the discrete convolution model
descrnibing the horizontal and vertical wave particle
velocities 1s influenced by the vertical location of a point
Generally, near the water surface for the vertical
component of water particle velocity, a higher order
model 1s required. In these figures u(10,—d) and
u,(10,—d) etc. denote the horizontal and vertical
velocities at £ = 10 and z = —d The results in Fig. 14
show that the time increment Az has a significant
mfluence on the model order. A larger value of time
increment tends to reduce the significant influence on the
model order. A larger value of time increment tends to
reduce the model order.

A suitable choice of the reference time series is also
very mmportant Figure 15 demonstrates the reason for
choosing water surface elevation as the reference time
series tnstead of the horizontal water particle velocity,
which could require a discrete convolution model of
order as high as 180

The fact that the model orders are high for wave
particle velocities at locations close to water surface
implies that a better reference time series representing an

100 -
19 At=0 5 sec p
]® At=1 sec
807 a At=2 sec

0 10 20 30 40 50
Water depth d (m)

Fig. 14. Discrete convolution model order for wave particle
velocities at different depths and time increments.
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Fig. 15. Discrete convolution model order for relating different
components of wave particle velocities

arbitrary wave surface elevation can be used to reduce
the model order, which is defined by

n'(f,2") = exp(kz')n(f) with 2/ >0 (45)

This modification has little physical meaning, but serves
as a means of shifting Figs 12—13 to the right by a
distance z' The corresponding transfer functions for the
horizontal and vertical wave particle velocities are given
by

H, _,J(f) = 2nfexplk(z + 2)) exp(—ske)
and

H, _I(f) =j2nfexplk( z + z')] exp(—ske) (46)

The discrete convolution model can also be used to
simulate wave elevations at a desired horizontal location
&, which causes viscous dnift forces in the splash zone of
the structure The transfer function of n(€,¢) with
respect to 7(f), 1s

Hye)y(f) = exp(—7kE) (47)

Similarly, the diffraction force vector F,(t) acting
on a ngid body of large size in terms of wave-
length is simulated by the discrete convolution
models The convolution filter coefficients are
obtamned by the inverse Fourner transform of the
transfer function vector Hr — 7(f) The diffraction
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Fig. 16. Diffraction transfer function (surge).
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Fig. 17. Diffraction phase (surge)

transfer function vector Hy _,(f) may be obtained by
the boundary element method, which accounts for the
diffraction force on a rigid body by a deterministic wave
of frequence f and unit elevation Figures 16-21
illustrate comparison of the amplitudes and phases of
the target transfer functions with those estimated from
the discrete models for a typical TLP. An excellent
agreement 1s noted 1n these figures These digital filters
provide a very useful input to a time domain analysis of
a TLP exposed to random waves.

The preceding approach for simulating time series
of wave kinematics and diffraction forces utihzing
convolution techniques 1s different from the methods
reported 1n the literature For example, Samn and
Vandiver!! simulated the wave particle velocities at any
location by three convolutions representing the vertical
attenuation, horizontal wave propagation and Hilbert
transform (90° phase change) Each discrete convolution
has a specified form A succession of convolutions may
result in accumulation of error. However, by utihzing
the method developed in this study, 1t 1s possible to
obtam the discrete convolution model according to
any transfer function The wave kinematics at any
location can be simulated by one discrete convolution
model Thus, both the accumulated error and the
total number of arithmetic operations may be reduced
Furthermore, it becomes possible to simulate the
time series of the wave diffraction forces by the
transfer functions obtained from the boundary element
method.
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Fig. 18. Diffraction transfer function (heave)
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5.4 Special form of discrete convolution model

The coefficients of a convolution model in some cases
may have an analytical form whose charactenstics can
be utilized to form a nonrecursive model with a low
order and high accuracy. The case in pownt 1s for
example a quadrature filter Its transfer function 1s all-
pass with a 90° phase shift (e.g. from vertical to
horizontal wave particle velocity)

H(f) = —ysen(f) (48)
The response of a quadrature filter to a process with real
values only 1s called the Hilbert transform (see Ref 26).
The Hilbert transform has been utilized for the
simulation of the vertical wave particle velocity u,(¢,r)
from the horizontal wave particle velocity ug(z,r) at the
location r.'! The analytical form of the convolution 1s

given by
1 1 J o0 ue(7)

u (1) = —ug(t) pori B 7_d‘r (49)
The elevation of the preceding expression 1s not
numerically efficient A discrete form of the Hilbert
transform was developed 1n this study. By imposing that
the cut-off frequency be equal to the Nyquist frequency,
the convolution kernel of the Hilbert transform 1s

expressed by the following:

7
h, = { J Jexp(y2mfrAt)df
0

(257
-, jCXp(—]Zﬂ'f?‘At)df}At (50)
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Fig. 20. Diffraction transfer function (pitch).
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which, after integration reduces to

h, =£ for r=41,43,45,
mr

and
h,=0 for r=0,£2,44, . (51)

Another example 1s the transfer function between two
time processes Y(¢) and 7(¢) given by

Hy_,(f) = 2nf. (52)
The discrete convolution coefficients of this function are

h,=xn/(2Af) for r=0

h, = =2/(zxr*Af) for r=+1,43,45,

)

and
h,=0 for r=+2 14, 16, (53)

The above two examples have the following
characteristic features

(1) Symmetry of the model coefficients, 1.e h, = h_,,
reduces the total multiplications to a half.

(2) The model coefficients A, are equal to 0 if r 1s an
even number except for r=0 This feature
reduces multiplication by another half

(3) Convergence 1n the discrete convolution
coefficients 1s rapid, especially in the second
example

(4) The convergence of coefficients with r — oo 1s
independent of the time increment At

The corresponding convolution model can be simply
recast in the following form-

Q
y(nAt) = hgn(nAt) + Zh,{n[(n -2r+1)At
r=1

+ (n+2r — DA} (54)

in which ‘—’ represents the first case and ‘+’ the second
case. By utilizing these features, the order of a model
may be reduced. An application of this approach will be
shown in the description of the hybrid model in a later
section
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6 DISCRETE RETARDATION MODEL

The stmulation of fully coherent random processes with
respect to a reference process utilizing discrete con-
volution models was highlighted in the preceding
sections Typically, the wave particle kinematics are
simulated from the fluctuations in the wave surface
elevation at a reference location. The simulated process
at any time is viewed as a linear combination of the past,
the present and the future time histories of the reference
process However, 1n some cases the future time history
of the reference process 1s unknown, for example, the
structural response X(f) which 1s taken as the reference
process for simulating radiation force It may be
possible to express the time process to be simulated as
a linear combination of the past and present time history
of the reference process only in terms of a one-sided
discrete convolution model

Q
y(nat) =" hyx[(n— r)Ad] (55)
r=0
where
N
h, = lm H(s6f) exp (}27r—)6fAt (56)

o $=0

However, the convergence requirement of the con-
volution kernels for N; — oo 1n one-sided discrete
convolution are only satisfied in some special cases

In order to circumvent this difficulty, each particular
application needs to be examined individually A typical
example 1s the radiation force, fz(f), which describes the
loads induced by a large rigitd body oscillating with
displacement amplitude given by vector x(¢f) in an
otherwise still water The radiation force is generally
expressed in the frequency domain. Its Fourier com-
ponents Fg(f), are related to the Fourier components of
the displacement, X(f), by the added mass 4(f) and
radiation damping C(f)

Fr(f) = —A(N)X(f) - C(N)X(S)

The time history of the radiation force 1s expressed in
terms of the added mass and radiation damping by the
following equation27

x

fr(f) = Ax(t) + J c(r)x(t — T)dr (57)

0

where the retardation function matrix c(t) 1s given by
()—4j C(f)cos2nftdf (58)
and the constant added mass matrix is
1 e o)
~A —_— 1
A= A(fy) +2wa L c(t) sin 27 fyedt (59)

with f, = system natural frequency

Accordingly, the radiation force 1n the discrete form
can be simulated by a discrete retardation model as
defined below

f,(nAt) = — Ax(nAt) — Cox(nAt)

9]
-3 CEl(n—r)Ad (60)

r=1

where the retardation coefficients are obtained by the
discrete cosine transform,

- —Z C(sAf) cos (2;”> (61)
s*l

in which Q is the model order and the retardation added
mass 1s given by

A= A(fy) +m§:c sin(2mfyrA) (62)

The quality of the retardation model may be assessed
by comparing the added mass and radiation damping
esttimated from the retardation model with the exact
ones expressed on the left-hand side of eqn (57) The
esumated added mass matnx 1s obtained by taking the
Fourier transform of both sides of eqn (60)

Af)=4- Ew_fz C,sin(2mfrAr) (63)

and the estimated radiation damping coefficient 1s given
by
x
C(f) = C,cos(2mfrAt) (64)
r=0
Examples concerming a typical TLP are given 1n
Figs 22-25 The model coefficients are obtained
from the convolution kernel of finite duration waveform
described earhier 1n this paper These figures demon-
strate that the estimated and exact radiation dampings
are in good agreement, whereas there are some
discrepancies between the estimated and exact added

mass due to 1mposing frequency ndependence
Se+7
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Fig. 22. Added mass using retardation model (surge and
heave)
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Fig. 23. Added mass using retardation model (pitch).

to the constant added mass. However, a correct
representation of radiation damping (Fig. 25) may be
more important. The error in the simulation of the
platform response caused by the approximation of the
added mass (Fig. 22) may not be very significant.

7 DISCRETE INTERPOLATION MODEL

It has been stated earlier that the time histories of the
wave height fluctuation may not be simulated at the time
mcrement equal to that required by the numerical
scheme involving time integration of the equations of
motion The reason for this different time increment is
primarily due to the following: (1) The time increment in
a numerical integration scheme for the solution of the
dynamic equations of motion needs to be smaller
than any natural period of the dynamic system to
ensure numerical stability and accuracy. Also the time
increment must be smaller than the lowest period at
which the input loading contains significant energy. (2)
Different load processes, for example, wind, and
earthquake processes, have different time increments
after they are simulated by their own respective
parametric models. Therefore, a Discrete Interpolation
Mode! 1s needed to interpolate a time series with time
mcrement Az into a time series with desired time
mcrement 4¢.

A discrete interpolation model must satisfy the
following conditions (1n this manner a discrete process
y(nAt) in which n is an integer, becomes the discrete
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Fig. 24. Added mass using retardation model (surge-pitch)
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process Y[(n + a)A(] in which « is a fraction number)

(1) Local Interpolation: y|(n+ a)At] is interpolated
according to Y[(n+r)Afl with r=—-0Q7, ., =2,
—-1,0,1,2,.. ,Q% in which 9~ and Q" are small
mtegers. The conventional global interpolation
involving all the mput data 1s not suitable for the
present application

(2) Accuracy' The nterpolation changes the Nyquist
frequency from 1/(2A¢) to 1/(26t) The spectral
density function is expected to remain the same
for the frequencies lower than 1/(2At) and zero
with the frequency range 1/(2Ar) to 1/(26¢). The
ideal transfer function of an interpolation model
1s unit for f<1/(2A¢) and 0 for 1/(26¢) >
f>1/(2An

The trigonometric interpolation has been frequently
used 1n interpolation of random processes. Li
and Kareem? further expressed it into a discrete
convolution form with double subscripted coeflicients

Ql
yISn+ B8 = Y hgyl(n+r)Ad (65)

r=—0'+1

n which 207 1s the interpolation order, S = At/ét is an
mteger, and #=0,1,2,...,5S—1 In reality, this is a
convolution of two finite duration waveforms. The
double subscripted coefficients are derived from the
Fourier transform of transfer function H(mAf),

50!

hﬂr = Z H(mAf)

m=—-SQ'+1

X exp (jw;n—Qr,,) /(20" with ¥ =rs+ B (66)

1n which

HmAf)=1 for —-Q'<m< Q!
H(mAf) =% for m==+(Q'+1)
H(mAf)=0
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for ' +1<m<S8SQ" and -Q'—1>m>-SQ"+1
and Af=1/2QAt

With the increasing value of order 20/, the accuracy is
increased. It 1s recommended to use Q' =8~ 10
Figure 26 provides an example, in which the solid line 1s
the known continuous random process, the empty
squares are discrete time series of time increment At
picked from the continuous time process, and then black
squares are the discrete time series of small time
increment &¢ obtained by interpolating the time series
represented by empty squares. A good agreement
between the known time process and the discrete time
series obtained by interpolation is observed. The main
advantage of the trigonometric interpolation 1s that
its transfer function is close to being 1deal. However, 1ts
disadvantage 1s that 1t requires too many multiplications
at each time step ¢, 1e. 20" + 1.

An alternative approach 1s the polynomial inter-
polation, which ensures continuity up to 7"’ order
derivatives at time nAt. The polynomial interpolation
has a stability problem The interpolation 1s said to be
stable 1If a bounded discrete process after the inter-
polation remains bounded as time increases to infinity.
The interpolation stability 1s also the stability of the
estimated derivatives up to the ' order If a process
Y(nAr) to be interpolated consists of all zero values and
non-zero initial derivatives, then one can have

y()(nAt) = Dy(")[(n — 1A] (67)

where y(*)(nAt) denotes the vector of derivatives up to
th
~ " order

y(nAt)
y(nAt)

y(*)nAd) = (68)

__vm (nAf) |

and D is an v,y matrix Therefore, the interpolator 1s
stable 1f all the absolute values of the eigenvalues of the
matrix D are less than 1

The interpolation between y(nAt) and y[(n+ 1)Af]

according to y(nAt), p(nAt), y[(n+1)Af] and
y[(n + 2)A1] has the form given below
y[(n+ a)At] = 30 + 0% + cya+¢g  for
n=20,1,.., and 0<a<l (69)

where the coefficients ¢,(:=0,1,2,3) are obtamed
by a matching method A mathematical manipulation
leads to another double subscripted parametric
model:

Mn+a)ad = 3 Layl(n+ 1Al
r=0

+ I, y(nAt)
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where the model coefficients are given by

7 _ 1 3 3 2
a—<§a Ea +a)At

3 7
IOa =Za3 —2(124-1

I, = —a’ +2a°

and

1
Iza=%a3—za2 (71)

and the derivative 1s given by a recursive model,

1

A +d'y[(n— DAL= > dyl(n+r)dl  (72)

r=-—1

where the coefficients are given by d'=1/2,
d_, = -5/(4Ar), dy=1/At and d) =1/(4At). The
mitial derivative of y(0) can be obtamned by a cubic
interpolation of the points y(0), y(At), y(2At) and
y(3Ar). Concerning the stability, D = —0-5 of eqn (67)
satisfies the necessary stability condition.

This method offers simplicity as 1t 1s based on smooth
fitting without taking into consideration the frequency
contents of the time series. A problem of spectral
contamination after the interpolation may be intro-
duced. In order to reduce the error induced by
mnterpolation, 1t is recommended that the time series to
be interpolated must have insignificant level of energy in
the high frequency range, e.g. 1n the frequencies higher
than 0-4 of the Nyquist frequency.

8 DISCRETE DIFFERENTIATION MODELS

The numerical differentiation by the central difference
method or other related methods may be viewed as
another form of parametric model in which a parent
process is transformed to 1ts derivatives, e.g. from wave
particle velocities to wave particle accelerations. A two-
sided discrete differentianion model may be defined
utilizing the central difference method-

Q
y(nét) =y D, {yl(n +r)&1] — y(n — )61} (73)
r=1

where
]
Dl_EE lf Q—l,
or
b2
1= 5,
”{ f Q=2 (74)
b2 =~12s

The choice of order Q directly affects the accuracy and
the error 1s given by e = O(A2 ")

Simularly, the one-sided discrete differentiation model 1s
defined by a backward or a forward difference scheme,

Y]
$(nbty = D,y|(n—r)é] (75)
r=0
where
1
Do = —E
and if @g=1, (76)
1
or
3
0= ——
2L i g=2 (77)
b 2
1™ 6t
1

The error in a one-sided differentiation model 1s
expressed by e = O(Ar2).

The discrete differentiation models expressed by
eqns (73) and (75) appear to have the same form as the
discrete convolution model given by eqn (24). However,
there are some essential differences between these two
models; namely,

(1) The inverse Fourier transform of the coefficients
in a discrete differentiation model approximates
the target transfer function in the low frequency
range (1. near to the zero frequency), whereas a
discrete convolution model has a valid frequency
range that spans the entire frequency up to the
Nyquist frequency except at very low frequencies.

(2) The valid maximum frequency of the discrete
differentiation model 1s a fraction of the Nyquist
frequency. Hence, it 1s recommended to use very
small time increments to increase the Nyqust
frequency and consequently to increase valid
minimum frequency. Recall that the discrete
convolution model requires a large time incre-
ment for a correct representation of the transfer
function at low frequencies. The salient features
of these models are listed in Table 1.
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Fig. 27. Second-order feedback transfer function by discrete
differentiation model.
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Table 1. Discrete convolution and discrete differentiation models

Model Application Time Valid max Valid freq Model
name merement frequency range order
Dascrete Wide Large Same as All, except High
convolution Nyquust freq. very low freq

Dascrete Limited Small Less than Low freq Low

differentiation Nyqust freq

An example of the application of the discrete
differentiation model 1s the second-order feedback
transfer function hE]( f) (described 1n the following
section), which 1s given 1n terms of a fourth-order
derivative It 1s noted in Fig. 27 and in Fig 28, which
1s a closer look at the low frequency part of Fig 27, that
the estimated transfer function by the discrete dif-
ferentiation model 1s close to the target transfer function
only in the frequency range smaller than 0-25 Hz for the
model time increment &'t equal to 04 seconds At each
ume 1nterval only three multiplications and additions
are required for the simulation.

9 HYBRID MODELS

A hybrid model 1s proposed in which a combination of
the discrete convolution and differentiation models 1s
utilized to benefit from the individual features of these
models The formulation of a hybrid model 1s 1llustrated
by the following example

The preceding wave-related time processes were
generated 1n this study by linear transformation of the
wave surface fluctuation at a reference location These
processes are referred to as a space-fixed location. But in
the case where a body expernences large excursions, 1t 1s
important to evaluate the wave-related processes at the
displaced position of the body, € g. a TLP Typically, the
wave drag force and the diffraction force must be
evaluated at the instantaneous displaced position of the
platform.

Let y(¢) be a wave-related process, which may
represent a tume process for wave surface elevation,
wave particle velocity, wave particle acceleration or
diffraction force, at a space-fixed location coincident
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Fig. 2B. Second-order feedback transfer function by discrete
differentiation model

with the mnitial location of the center of a structural
component And let y(¢,£) be the same wave-related
process evaluated at £ which 1s the instantaneous
displacement of the structural component from its
mitial location along the wave propagation direction.
y(2) 1s linearly related to the wave surface fluctuation at
a reference location, 7(t), expressed as

y(6) = L(n(1)) (78)
Then y(t,£) must be
y(,€) = L(n(1,8)) (79)

where 7(¢, £) 1s the wave surface elevation at a location £
apart from the reference location along the direcuon of
wave propagation

A mathematical mampulation leads to

#(1,€) = y(1) + 0(2)€(t) + 8P () EX(1) + (80)

» as a function of structural displacement 1n terms of y
evaluated at the mitial structural plus feedback terms.”
The feedback coefficients, however, are ime-dependent,
and are linear transforms of the process at the structural
mtial location. The time processes representing the
feedback coefficients can be simulated by discrete
convolution models In the deepwater case, these
coefficients can be written as

o(1) :J:he(r) [%(t—T)Jr%(HT) dr (81
with

h(t) = zLﬂc 2 feos(2nfi)df (82)
and

o2 (7) = —;lza;y,y) (83)

The time series of the second-order feedback coefficients
can be realized by a discrete differentiation model.

The first-order feedback coeflicient may be regarded
as the convolution (the corresponding transfer function
1s 27f) of the time derivative of the mput load. The
discrete convolution with the transfer function as 2mnAf
has been shown in eqn (53). Hence, a combination of
eqn (53) for the discrete convolution and eqn (73) for the
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Fig. 29. First-order feedback transfer function by hybnd
model

discrete differentiation provides

/2
8(ns't) = hoy(n8't) + 3 I, {y(n + 20)8]

r=1
+ y[(n —2r)8 1} (84)
where order Q 1s an even number, and the model
coefficients are given by

™

hy = ———
07 4gé'P (82)
1 1 1
hyy = = and 86
AT [(2r+ 12 (2r- 1)2] ! (86)
b ) S (87)
¢ mge(Q - 1)

Both the valid maximum and minimum frequencies
( fmax @nd fin) should be taken into consideration when
making a choice concerning the time increment and the
order of a hybrid model A recommended value of the
time increment is given here:

1
10/max

The order Q of the hybrid model largely depends on
the minimum frequency fi,,- An empirical relationship
describing the order @ 1n terms of &t and
fmm established during the course of this study 1s

&t =

(88)
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Fig. 30. First-order feedback transfer function by hybnd
model

given below-

1
B 86’tfm1n
For example, if the time increment of a hybrid model 1s

0-4 seconds and the model order 1s 10, the vahd
frequency range 1s 0-03 Hz to 0-25Hz (Figs 29 and 30).

Q (39)

10 EXAMPLE

The dynamic response of a tension leg platform
under a random wave field in the time domain 1s an
example used herein to illustrate the application of the
parametric models to offshore engineering. The example
of a TLP has been selected as all the models discussed 1n
this paper are needed for the simulation of a TLP
response In the time domain The simulation of wind
and wave-drift forces, which are important to the TLP
motions, 1s beyond the scope of this presentation A
typical TLP configuration and the front view of the
four-column TLP are shown in Figs 31a and 31b The
TLP 1s modelled as a six-degree-of-freedom rigid body.
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puct
Roll Surge
X
« 6622m N
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B
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—
v

541 8 m

L

Fig. 31. a2 Schematic diagram and degrees of freedom of a
TLP b Example of a TLP elevation
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The basic equations of motion are expressed 1n the
following matrix form

Mx(1) + Coex(1) = fa(x, ) + K(x)x(0)
= £i(t,%) + fult, %, %) (90)

In the left-hand side of the preceding equation, x(¢) 1s
the ngid body displacement, M, C,, and K(x) are the
mass, structural damping and nonhnear stiffness
matnices (all 6 x 6), and fr(x, x) 1s the radiation force
due the platform oscillation. In the right-hand side,
f(t,x) and fy(z, x, x) are the wave diffraction and drag
forces computed at the displaced position of the
platform, x. The global diffraction force can be directly
formulated from global diffraction transfer functions
The drag force 1s computed by discretizing the entire
platform m a number of elements. The global drag

Elevation (rm)

Yousun Li, A. Kareem

force 1s the summation of the drag forces on each
element

The process of simulating these forces and associated
responses 1s 1llustrated by Fig 32, m which the
vertical direction represents the flow of the com-
putational procedure, and the horizontal direction
indicates the time shift among varnious parametric
models The explanation of each block of this figure 1s
given below:

(a) ‘Univariate ARMA’ The time series of the wave
surface fluctuation at a reference location 1s
generated by an ARMA model designed to
represent a prescribed design wave spectrum
The horizontal reference location is generally the
centre of the TLP The time step 1s Af, which 1s
determined by the maximum frequency of interest
as 1/3 of 1/(2Ar) A segment of wave surface
fluctuation based on JONSWAP wave spectrum 1s
plotted 1n Fig. 33.

‘Discrete  Convolution Model’ The discrete
convolution model, 1s used to simulate the time
series of the global diffraction force f,(¢) and the
wave particle velocity at the :th element center
u,(t) and wave surface elevation at the 1th column
n,(t) based on the wave surface fluctuation at the
reference location. A segment of diffraction force
time history 1s shown in Fig. 34 The time
mcrement remains Az These processes are
related to the imtial location of the structure
Altogether, many time series should be simulated
using individual discrete convolution models
Each model has 1ts own best orders Q1 and Q~
In the computer code, 1t 1s recommended to use
flexible length vectors to store these model
coefficients for saving CPU time and storage
The maximum time window in the discrete
convolution models 1s (Qf,, + Qmn ) A7
‘Interpolation Model’ The time increment of the
above time processes 1s changed to a small value
6t, which must satisfy the requirement in the
solution of dynamic eqn (90)

‘Hybrid  Model’ This model faclitates
computation of the time-dependent feedback

(b)
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Fig. 33. Time history of wave surface elevation
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Fig. 34. Time history of surge diffraction force.

coefficients, 6,,(z) and 6,(t), as linear transforms
of the wave particle velocities or wave forces The
hybrid models involve fewer multiplications. The
small time increment required by the hybrid
model 1s satisfied since it is introduced after
mterpolation.

‘Feedback’: From the wave processes related to
the structural initial position, the displacements of
the platform at the previous time step or previous
iteration and the feedback coefficients, we can
obtain the corresponding processes f;(¢,x) and
u,(¢, x) at the displaced position of the platform
‘Hydrodynamic Load Transformation’ The drag
force is quadratic in terms of the relative fluid-
structure velocity

fd(tvxax) = Z TzCD,[ut(tvx) - Tth(t)]

x Ju(t, x) = T x(0)| o1

in which 7, and T denote the local to global and
global to local coordinate transformation
matrices, respectively, Cp 1s the component drag
coefficient.

‘Dynamic System’ In the discrete form, by
mtroducing the retardation model, the dynamic
equations of motion can be recast into

(M + A)x(mbt) + (Cy, + Co)x(mbt) + K(x)x(mébt)

o
= f,(mét, x) + f4(mbt, x, %) —Z C,x[(n—r)é{]

r=1

(92)

in which the symbols for the retardation have
been defined previously. Considering the stiffness
K{(x), as well as the wave diffraction and drag
force being displacement-dependent, an iterative
scheme is needed for response evaluation. L1 and
Kareem?® suggested a special Newmark 3 form, in
which the response 1n the present time becomes a
linear combination of the response and the loads
in the past time history. Since the past loads only
depend on the past response, no iteration is

(b)

needed. This approach is based on the central
difference method, which was cast as a two-sided
difference model 1n eqn (74) A time shift leads to
the following

x(mér) — x[(m — 2)é1]

Hm = Do = 26t
and
#{(m— 16 =280 =2x(m — )1} +x{(m—2)81]

512
(93)

Let the left-hand side of eqn (92) be f(mér, x). We
can recast the dynamic equation 1nto

M+A Cu+C
62 26t

)x(m&t)

= fl(m — 1)ét,x] + %x[(m —1)81]

M+ A
+( 682

Cstr + CO
26t

)x[(m —2)é1 (94)

Hence, the solution of the final equations of
motion 1s a combination of the discrete
retardation and differentiation models
‘One-sided Differentiation” The displacement
response has to be further transformed to
velocity response for formulation of the drag
force 1n the next time step Since the displacement
in the future 1s unknown, one-side differentiation
1s used. Hence, 1n the same algorithm, we have
two kinds of parametric models used to describe
the response velocities from the displacements:
two-sided differentiation model 1n ‘Dynamic
System’ and one-sided differential model for
drag force simulation. The preceding discussion
llustrates how the various parametric models
serve as means of simulating time series
representing wave height, wave kinematics and
wave loads and how these models can be
integrated 1n the overall computation of the
platform response.
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11 CONCLUDING REMARKS

Various parametric models are presented that offer
computationally efficient means of generating time
histories of wave surface profile and related wave
kinematics and load effects The models are placed in
three categories, namely ARMA, convolution and
interpolation schemes. In the following a summary of
these models is presented that highlights the key features
of the models, their order and associated errors

(1) Recursive Simulation of Uni-variate Time Series.
Uni-vannant ARMA models are utihized for simulating
the wave surface elevation consistent with a prescribed
spectral description It 1s desirable to design AR and
MA models with the lowest orders and minimum model
error This requirement may be satisfied if the maximum
entropy method is utilized. However, the algorithm for
the general MEM method 1nvolves a significant level of
computational effort In this study a two-stage model
fitting approach 1s used 1n which the maximum entropy
1s satisfied with some imposed restrictions Thus, the
decision concerning the ARMA order becomes a
selection by the user from a host of multiple options
This is accomplished through a direct comparison of the
target and estimated spectra, or other criteria, e g
goodness of fit may be utilized.

(2) Non-recursive Simulation by Linear Transforma-
tions: The second application involves simulation of
linearly related processes The common form of a linear
transformation may be the convolution, based on which
the discrete convolution model has been defined. This
non-recursive model has two forms, namely the model
representing a convolution of an infinite and finite
duration waveform and the model representmg a
convolution of two infinite duration waveforms The
application of the former seems to be limited since the
estimated transfer function slowly converges or even
estimates fail to converge to the target transfer function
The latter 1s widely used in this study, maly for
simulating wave kinematics and diffraction forces based
on the wave surface elevation at a reference location.
Since this non-recursive model is only a discrete and
truncated version of the convolution integral over an
infinite time period, the model order may be determined
by the decay of the convolution kernel This model may
be viewed as a filtered output of the past, the present
and the future time histories of a parent process.

In the case of radiation force simulation, the future
time history of the response of the parent process 1s
unknown. Thus the retardation model is introduced 1n a
manner such that the radiation force 1s a linear
combination of the past and the present time histories
of the response. The associated filter is developed by
sacrificing shghtly the accuracy of the frequency-
dependent added mass However, the accuracy of the
added mass may not be very important. A better
description of the radiation damping as a function of

frequency 1s more mportant because ul the low
natural frequency of a complant structure 1t 1s nearly
zero and at wave frequencies it could lead to higher
values

Discrete differentiation 1s another non-recursive
model used here in the context of lmear transforma-
tion It has the same form as the discrete convolution
model, however, its transfer function 1s only valid 1n the
low frequency range. This model 1s used 1 this study for
several cases, e.g. to simulate the velocity response from
the displacement response. The time integration scheme
for the solution of the dynamic equations of motion can
be based on this model

A hybnid model 1s 1ntroduced which combines the
attractive features of the discrete convolution and
differentiation models The ume vanant first-order
feedback coefficients, neceded to describe the wave
loading at the instantaneous displaced position of the
platform, are efficiently evaluated by means of a hybrid
model

(3) Parametric Interpolation Model: Interpolation of
the time histories 1s carried out by parametric models
The transfer function of an interpolation model 1s the
same as that of a lowpass filter Both trignometric and
polynomial interpolation techniques are utilized in this
study

The parametric models presented in this paper offer a
very efficient computational tool for the time domain
analysis of wave load effects on offshore platforms.
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