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Abstract—A solution, exact to second-order, is presented for the nonlinear diffraction of
random waves by a fixed, surface-piercing vertical circular cylinder in deep water. The incident
wave field is considered as a stationary random process, and the nonlinear diffraction problem
is analyzed utilizing the Stokes perturbation expansion procedure combined with a
Fourier—Stieltjes spectral representation of the stationary random wave kinematics. The second-
order velocity potential is explicitly obtained by applying a modified form of Weber’s Integral
Theorem to invert the inhomogeneous second-order free-surface condition. Particular attention
is directed towards the second-order diffraction forces on the cylinder. The spectral description
of the second-order diffraction forces involves a complicated integral expression with highly
oscillatory wave—wave interaction kernels and multiple convolutions of the linear wave spectrum.
The present approach provides a complete spectral description of the second-order diffraction
forces, and yields the spectral densities of the diffraction forces at the sum and difference
frequencies. Numerical results are presented which illustrate the spectral content of the
diffraction force due to an incident wave field represented by a superposition of waves described
by band-limited white noise processes centered at different frequencies.

INTRODUCTION

THE ESTIMATION of wave diffraction loading on fixed, vertical surface-piercing cylinders
has been a subject under investigation for decades ever since the analysis of the
diffraction of linear waves in infinite water depth was reported by Havelock (1940).
MacCamy and Fuchs (1954) subsequently extended this theory for the case of finite
water depth. However, the results of the linear diffraction theory are based on linearized
conditions on the free-surface, and therefore its application is restricted to waves of
small amplitude. For waves of finite amplitude, a diffraction theory which is able to
account for free-surface nonlinearities in a consistent manner is necessary.

Nonlinear diffraction analyses that involve the extension of the linear theory of
Havelock or MacCamy and Fuchs to include finite wave amplitude effects resulting
from the diffraction of second-order Stokes waves have been reported by several
investigators. The main difficulty in formulating a consistent second-order diffraction
theory has been in the correct treatment of the inhomogeneous free-surface boundary
condition which appears at second-order and, consequently, several incomplete sol-
utions exist in the literature [see, for example, Williams (1989) for a review].

In view of the difficulties associated with specifying a complete form for the second-
order potential, in recent years much attention has been focused on an indirect
approach, originally due to Molin (1979) and Lighthill (1979), in which the second-
order hydrodynamic loads may be calculated without the explicit calculation of the
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second-order potential. Examples of the use of this technique may be found in the
works of Eatock Taylor and Hung (1987), Abul-Azm and Williams (1988, 1989a, b)
and Ghalayini and Williams (1989, 1991). Also, most recently, numerical schemes
based on the source-sink technique (integral equation approach) utilizing appropriate
Green’s functions have been utilized to obtain second-order diffraction loads and local
quantities such as the second-order wave elevation and pressure distribution. Examples
of these methods, for both monochromatic and bichromatic incident waves. may be
found in the papers of Kim and Yue (1989, 1990, 1991). Kim (1991) and Eatock
Taylor and Chau (1992).

In the present paper the nonlinear diffraction of deepwater random waves by a
vertical circular cylinder to second-order is investigated. This is in contrast to the above
works which treated monochromatic or bichromatic wave diffraction only. In general,
physical quantities of a random wave field can be represented by Fourier-Stieltjes
spectral integrals (Doob, 1953; Yaglom, 1962) provided that the random wave field is
statistically stationary in time and homogeneous in space. The method employed herein
is a direct solution for the second-order velocity potential, formulated in terms of
Fourier—Bessel integrals (Hunt and Baddour, 1981; Hunt and Williams, 1982) and
inverted by means of a modified form of Weber’s Integral Theorem (Griffith. (956,
1957). Subsequently, explicit expressions for the nonlinear diffraction loading (up to
second-order) on the cylinder in the direction of wave propagation are developed. In
particular, the mean and power spectral density of the nonlinear diffraction loads are
evaluated. The numerical results illustrate that the spectral density of the second-order
diffraction forces may be significant at both low and high frequencies.

FORMULATION
A fixed, surface-piercing, vertical circular cylinder of radius a is subjected to unidirec-
tional random waves in deep water. The flow is assumed irrotational and the fluid
incompressible. Hence, the fluid motion may be characterized by a velocity potential
® and the fluid velocity vector is given by g = V®. The velocity potential ® satisfies
Laplace’s equation,

V2d(r,0,2.1) = 0. (1)

where ¢ denotes time. A cylindrical coordinate system (r,0,z) is employed with the z-
axis directed upwards from an origin at the mean water level which coincides with the
axis of the cylinder (see Fig. 1). The fluid is also subjected to the following boundary
conditions:

b, -0 as z—> —x, (2)

o, =0 atr=a —-% <z < m, (3)

n,+d),n,+;5¢>9ne—<blz() atz = . and (4)
1., (1 1\ ’ _

¢‘+i dZ + }(D“ + @2 +gn=0 atz =m, (5)

where 7(r,0,t) denotes the free-surface elevation, g is the acceleration due to gravity
and subscripts indicate partial differentiation.
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Fic. 1. Definition sketch for a vertical circular cylinder subjected to unidirectional random waves in deep
water.

The velocity potential ¢ and the free surface elevation m are expressed in Stokes
perturbation expansions as

® = edD + 20 + (6)
Mn=en® + 2@ + | )

where &V and 1), j = 1, 2 .. do not functionally depend on the perturbation parameter
g, which physically represents an averaged wave steepness, and € is assumed sufficiently
small such that the convergence of the power series solutions is ensured.

Expanding the nonlinear free-surface boundary conditions, Equations (4) and (5),
in Taylor series about z = 0, substituting the Stokes perturbation series in Equations
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(6) and (7) for ® and v, and equating terms in like powers of ¢, leads to boundary
conditions at various orders in £ at z = (), valid for all ». 8 and ¢. Therefore. for the

first-order, the boundary conditions at z = 0 arc
! = b =, (%)
gn + ol =, ()

and, at second-order.

|
N = @O = B =l - L, (10)

} (11)

For convenience, n'"’ and m'* are usually eliminated to give boundary conditions on
&M and ¢ alone, namely

D+ gdh =0, (12)
|

o 1 L
gn@ + @Y =Bl — D]+ {rfbé”

P d

D2+ gd = (l?)

[‘D(“‘}' (I)(l)].., {[(I)(l)] +[(I)(l)]

(I)(ll

Also, Equations (1)-(3) may be rewritten in terms of the first-order and second-order
velocity potentials as

V2 = (), VP2 = (), (14)
¢ —0, O —0 as z—> —x, {15)

P =), L = atr =a. (16)

There remain two further conditions to be satisfied by ®‘V and ®*, namely radiation
conditions as r tends to infinity. These prove not to be the same. The condition on
@ will be addressed in the first-order solution and the condition on ®?2’ cannot be
assigned before the first-order solution is developed.

FIRST-ORDER SOLUTION

The first-order diffraction theory for random waves in the presence of a vertical
circular cylinder in deep water may be obtained in a way similar to that applied by
MacCamy and Fuchs (1954). The first-order velocity potential is considered to be
composed of incident and scattered components, namely

P =Py + ph, (17)

where the incident velocity potential, ®{", represents a random wave field in which
waves propagate unidirectionally (in the x-direction). According to the spectral rep-
resentation theorem for stationary random processes (Doob, 1953; Yaglom, 1962), the
incident wave field can be expressed as

- _ g eu,Zz/g eit |wiwx/g—wt) dg(w), (18)
[

@gl)(x,z,t) = f

—
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where £(w) is a random process with uncorrelated increments, d§(w), satisfying the
following

E[d&(w)] =0 (19a)

in which S, () denotes the incident wave spectrum (two-sided), o is the circular
frequency in rad/sec, the symbol * denotes the complex conjugate. It is noted that
dE*(w) = d§(—w) is required to make @V real valued. Moreover, since d&(w) rep-
resents a random wave amplitude of linear waves, it is assumed to be Gaussian. In
cylindrical coordinates the incident velocity potential can be written as
(1) — - lg S n 2 in® | awlz/g a—iwr
D, (r,0,z,1) —J - w[ z i"J (w%r/g)e }e e~ df(w)

0

n=—x

[ S o etrigy e | e e age), (20)
)

where J,(.) denotes the Bessel function of the first kind of order » and use has been
made of the identity,

eibx — eib(rcose) — 2 l'an(br) eine_ (21)

PR
The corresponding scattered velocity potential is given by

oc

DL(r.0,2,) = J e dg (0;r.9,2) (22)

—oc

where {,(Q;r.0,z) denotes a random process with uncorrelated increments,
dg, (€;r,8,z). Since the scattered velocity potential is required to satisfy Equations (14)
and (15), by a separation of variables, d{,(Q;r,0,z) can be written as

d,(Q;r,0,2) = T(r,0,k)el= dg(Q), (23)

where k is the separation constant, & (£2) denotes a random process with uncorrelated
increments, d&,(€2), and I'(r,0,k) is a deterministic function satisfying the Helmholtz
equation, namely

1 1
Lot Tt 5T + kI’ =0, (24)

to which the general solution is given by

0

T(r0,k)= Y [AHY (k|r) + BH (|k|r)] e, (25)

n=—o

where H(D(-) and H)(-) are Hankel functions of the first and second kinds of order
n, and A,, and B,, are constants to be determined.
Therefore, the scattered velocity potential can be written as follows:
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(=]

DV (r,0,2,1) = ] > [AHD (JkIr) + B,HP (klr)] e elklz e dE () .

ol TR

(26)

Substitution of this form for the scattered potential into the free-surface boundary
condition, Equation (12), yields

f (-4 gh) S [AHD (kir) + BHD (ki)

n=-—00

. gin® e|k|zeiﬂt dgs(ﬂ) = () (27)
which implies that
02+ glk| =0, (28)

which is the well-known linear dispersion relation in deep waters. Consequently, ¢!
can be expressed as

o oo

DO(r.0,2.1) = f S [AHP(Q2rlg) + BHP(WPrig)]

TX p=—

eine eﬂzz/g ei()t dgs(ﬂ) . (29)

As @V has to satisfy the radiation condition as r — ®, terms such as H{V(?r/g) e*¥
for & > 0 and H{PD(Q%/g)e™™ for ) < 0, which represent waves propagating from
infinity toward the cylinder, are unacceptable on physical grounds. Thus, the scattered
velocity potential can be expressed by

BEO(1,8,2,1) = f {Z BHP((Prig) e | e¥'+/s e dg, ()
(V]

n=-—x

0 x
+ j > AHD(Orig) ein® e¥7B i dg (Q) . (30)

n=-—mx

The final condition which ®{! is required to satisfy is the no-flow condition on the
cylinder surface, namely

(1) (1)
obD e . (31)

From Equations (20) and (30), one may obtain on r = a

odV)

o0 2 x
= j 9_ 2 B,H®' (Qza/g) ein® eﬂzz/g e ¥ dE ()
0

g

n=-o0

2 20
¥ r QE S AHD (QRalg) e V<8 e g (Q) (32)

n=-—oc

and
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FLo PR 2
T f io 2 I(w%alg) e e e e dE(w)

n=—ox

—| e Y (—iyUi(e?alg) e e B e d(o), (33)

— n=—o

where the primes indicate differentiations taken with respect to the arguments. It
follows from Equation (31) and temporal equivalence in Equations (32) and (33), that

Q=—w, (34a)
and, so

d&,(Q) = d§(~ o). (34b)
Also, the coefficients A, and B,, are given by
g, (w?alg)
oHY' (w?alg) -

A, = (35)

Consequently, ®( can be expressed as

P = f g[ 2 sgn(w)[isgn(w)]* M, (w?a/g)C,(w?r/g) e’serte@lan(w) . e"”e}

— n=—w

ewZZ/g e—~imt dg((:.)), (36)
where sgn(-) denotes the sign function,
M, (walg) = [Ji(w?alg)® + Y, (o’alg)*] 12,

Y (w?a/g)
Ti(talg)| 9

C.(0’r/g) = Y, (w?alg) (w?rig) — ]\ (0?alg)Y, (w?rig) forn=0. (37)

a,(w) = tan™! [

For n < 0, the following relationships may be used:
M, ()= (1)"M_.(-), an(-) =a_,(-) and C,(-) =C_,("). (38)

From Equation (9), the free-surface elevation on the cylinder surface may be expressed
by

n(l)(a,e,t)=[ i{ > sgn(w)[isgn(w) "M, (w?a/g) C,(w?alg) e"'[sg"(‘”)"‘n(“’)]-e""e}

— n=—oc

w28 gt dE(w). (39)

This expression will subsequently be required in the development of the second-order
diffraction force.
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SECOND-ORDER SOLUTION

Before determining &, it is desirable to simplify Equation (13) by utilizing the
expression for ®*). For deep water. the first term on the right-hand side of Equation
(13) is identical to zero as Equation (12) is satisfied for all values of z, not only for
z = 0. Substituting &) as given in Equation (36) into Equation (13) leads to

o eger=| [

2 f;l_,n((’-)ad)\r) @int g —ilw1 o) d{:,((x)) dg(d))

’ rr

{40)
in which
fn,m((’)76~)vr) —= l.n+‘((1)+(;)) ® (I) Sgn(w)”” 1 sgn((b)" eyt
' Mm(u)za/g) Mn*m(d)za/g) eilsg“(“’)“m‘“’) tosgn(o)a,, ., (@) ]
- {c;n(klr) Cinlhor) = ") € r) € har) + Gk Gyl (1)
1 /2

The second-order velocity potential, ®*’, may be considered to consist of a homo-
geneous solution, which satisfies the homogeneous form of Equation (40), and a
particular solution. In view of the boundary condition Equation (15), the deepwater
homogeneous solution admits no radial evanescent modes, and so can be represented
by outwardly propagating waves only. This fact suggests that in the present case the
homogeneous and particular solutions may be treated together. Therefore. the total
second-order velocity potential is expressed as the following Fourier—Bessel integral:

P(r.6,2,1) = J | f | DD A, (LK) C(kr) ez eind ei di dE,(Q),
"= - e (42)

in which Q is the circular frequency. £,({}) is a random process with uncorrelated
increments, dé,(Q), A, ,.(2,k) denote unknown coefficients and C,(kr) is a cylinder
function, given by

C(kr) = Yi(ka)J,(kr) — Ji(ka)Y (k). (43)
Alternatively, ®®) can be rewritten as

<I>(2)(r,0,z,t) = f f ‘ 2 2 Gn,m(ka) Cn(kr)
- J( S

)

L R

. ekz ein(—) ei.(lt dk d§2(Q), (44)
in which the G, ,,(Q,k) [which may be related to the A, ,,(£,k)]. are coefficients to
be determined and use has been made of the identity, C,(—kr) = — C,(kr) for k >

0. It can be shown (see Appendix) that & in this form satisfies Equations (14)-(16).
Substituting ®? from Equation (44) into the left-hand side of Equation (13) leads
to
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=2

o g |

—x

J: z Z (——QZ * gk) Gn,m(Quk)C,,(kr)

-en9 e dk dE,(Q) . (45)
Comparing Equation (45) to Equation (40), it follows from temporal equivalence that
Q=—(o+ &), (46)

and, therefore, one obtains
d&;(Q) = dé(w) dé(o) (47)

and

fom{ow,0,r) = fx[gk - 0?1G,, (k) C,(kr) dk

= f: [gk — (0+0)*] G,y (0, @™, k) C,(kr) dk . (48)

In a manner similar to Hunt and Baddour (1981) and Hunt and Williams (1982), the
coefficients G,, ,,(w, @, k) in Equation (48) may be determined using a modified form
of Weber’s Integral Theorem, according to which any function f(r), satisfying certain
conditions (Griffith, 1956, 1957), can be expressed as

= C,(kr)
f(r)—];) [] (ka)2+ Y(k )2] J' C (ku)uf(u)du (49)

The solution to Equation (48) is therefore formally

k[ Clkr)rf, . (w,®,r)dr
G068 = 1ok (0 + &) ika)” + Yi(kaY] (30)
Utilizing Equations (46) and (47), ®* in Equation (44) can thus be rewritten as

P = J’x J E Z Jy n.m ((1), (1)7 k) Cn(kr)

- H=—20 m=—2%

- ez dk ei® e =0+ 2 dE(w) dE(®) . (51)

The integral in Equation (50) may be explicitly determined using Equation (41).
Integrating by parts and employing Bessel’s equation, leads to

f Culkr) 1 (0, @, 7) dr = P m(®, @, a)_Z[IEkIé: ka)* — k3]

. fc C.(kr) C,(kr) C,yo(kor) rdr, (52)
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where B, ,.(w, ®, a) denotes the r-independent component of f, ,.(w, @, r). If interest
is focused on the diffraction forces in the x-direction (along 6 = 0), then it is necessary
to compute G, ,(w, &, k) for n = -1 and 1 only (Hunt and Baddour, 1981; Hunt
and Williams, 1982).

NONLINEAR DIFFRACTION LOADING

The total diffraction load on the cylinder results from the net effect of the fluid
pressure over the entire wetted surface of the cylinder. The pressure at any point in
a fluid of density p is given, to the second-order, as

1
p=—ep®" — e% {‘sz’ + 3 [VOOP} — pgz. (53)

and the diffraction force on the cylinder in the x-direction is

F.(t)=a J'Zﬂ fﬂ [p)r=acos(w — 08)dzde . (54)

The diffraction force can be formally expressed as a sum of the first-order and second-
order parts, namely
F.(t) = eFV(t) + 2F3)(1), (55)

where

w [0
FO(r) = -—apf f [®{"], .. cos (m — 8) dz d6 (56)
0 —rc

and
[ D
FO(t) = —ap f U (0 + g2] dz
1] 0

0
+ f [®P + %(@;l))z + 2-11»2 (D)2 dz} cos(m—08)do. (57)
Substituting for @, 71 and $® from Equations (37), (39) and (51) into Equations
(56) and (57), and carrying out the z-integrations and 6-integrations analytically, leads
to

F(t) = Zapwgzj 0 2M(w?a/g) C,(w?a/g) e serlwla(@) g~ivr dE(@), (58)
o0 "o 1 o0 - .o
apmg _ (875 m(n — m)g*
(2) = I8 A e
Fx (t) 2 J;x J‘x n;—l 2 {Xn.m(w7w’a)l:1 + ((1)2 + (;)2) a2()["l(w2 + (I)Z)
(nse0) T

_ L j ‘E(ia_;kzél G ml(0,3,K) dk} e~ 7o) dg(w) dE(@). (59)
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where use has been made of the identity, C,(ka) = 2/wka, and

4g2

mrwd(w+o) Br.m

(0,0,a). (60)

Xn,m(wa(;) ,a) =

For convenience, the second-order diffraction loading in Equation (59) is rewritten as

FO() = 7E f w f S K060 - Lwoa)]

— J—oo g=

re OO dg(w) dE(a), (61)

where

; . - 2 Y oy q9(q + g
=2i[~ e + +
Kq(w,w,a) 21[ sgn(m)sgn(w)] (a1rwd>> l: (wz + 6)2) a2md‘)(w2 + (;)2)
- {sgn(w) M (w?a/g) M, ,(&%a/g) e~ilsen(@) ay() + sgn(@) oy, 1(a))
+ sgn(@) M, 1(w?a/g)M (6%a/g) e ~ilsen(@) ag1(w) + sgn(a) q(@)]} (62a)

[ 8i(w + &)
o) = || (o+oP T i(ka)” + Yi(ka)?]

Uw Ci(kr)[ f1 - 4(0,07,7) + fig+1(0,0,7)] rdr} dk . (62b)

It is noted that the wave—wave interaction kernels K, (...) and L,(...) depend on the
wave frequencies, but not on the wave amplitudes. The term L(...) essentially results
from the second-order velocity potential, and

K, (®,0,a) = K, (0,0,a), L(®,w,a)= L (w,0,a),
K, (-w,0,0) = K (0,~0,a) and Ly(o,~w,a) = L(~w,0,a)=0. (63)
As the nonlinear diffraction force from Equations (55), (58) and (61) is a random
quantity, it is appropriate to study its statistical and spectral content. The mean of the
nonlinear diffraction force may be expressed as
E[F(D)] = E[F{(1) + FO(1)]

= 2ap1-rg2f 0 2M(w?a/g) Cy(w2alg) e ~isen(way(w) e “E[di(v)]

—o0

+

apﬂg foo oo el

5 [Ko(©,6,0) = Ly(,6,0)] e+ E[dE(w) d(@)] . (64)

—o J—o g=
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Invoking the probabilistic characteristics of &(w) described in the first-order solution
and the identities in Equation (63), then Equation (64) becomes

E[F(n)] = E[F®(n)]

= ap"rrgJ' 2 K/(w,~0.a) Syn(w) do

0 g=0

o qlgrg*] Lo
Sog° [* & !1‘“ S |MaYie mdanYal

= anm [ Z ) Sml(.w) do . (65)
0 g=0 (1)4[.]:/2 + YJJZ][JII% 1 Y‘IIZ' ‘]

where the arguments of the Bessel functions are w3al/g, and §,,(w) denotes the incident
wave spectrum (two-sided). It is noted that the mean of the nonlinear diffraction
loading represents the drift force, and it is independent of the second-order velocity
potential. The covariance of F.(1) is defined as

CoV[Fo(£), Fu(t+7)] = E{FW(1) + FO[FD (1) + FR (4]} - EXF(D)]
= E{FO(OFO(t+1)} + E{FM(1) FO@+1) + F2(0) FO(r+7)}
+ E{F&(1) F® (147)} — EXFP(0) ) (66)
The first expectation term in Equation (66) is given by

'

Re(Wp(1) = (Zagzp'rr)zf J (0@) > M,(w?a/g) M\(5%alg) Ci(w’alg) C\(o°a/g)
. e*i[sgn(m)al(m) tosgn(@)a(@) 4wl ot W] E[dg(w) dg((;))]

© M(w?alg) C\(walg)
= (2ag’pm)’ j hletele) i eral) e Sqn( @) do

w

-

=3

= 16p%g° J 0 S[J i (0%alg) + Yi(w?alg)] ' e Spn(w) do (67)

in which Rg(hp0(T) = E{FM(r) FO(t+7)} and represents autocorrelation of F{'(t)
force. The second expectation term in Equation (66) is identically zero since the
product of the first-order and second-order forces includes a third-order joint moment
of Gaussian random variables, that is, d§(w,) dé(w,) dé(w;). A combination of the
third and fourth terms in Equation (66) gives the covariance of the second-order
diffraction forces, namely

coV[ FE)(1), F@(1+7)] = Rpt2ip(1) = E[F2(0)]. (68)

Since an expression for E[F{?(¢)] has been given in Equation (65), and
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w

> (e
Rp@p@(1) = (ag%> f Z Z [Kin(w1, 02, @) Ky (w3,04,0)
oo m=0) n

- 1=0

— K, (01,02,a)L (0, 03,a) = L, (0,,0,,a) K,(03,04,0)

+ Lin(wl ’wz’a) L,,((J), ,(l)g,a)] e*i[(m] +m2+w3+w4)t + (u)3 t w4)Tl

- E[dg(w,) d&(,) dE(ws) dé(ws)], (69)

it follows, after substituting for E[dé(w;) d&(w,) dé(w;) dé(w,)] in terms of lower-
order joint moments, that

cov[F2 (1), FP (t+7)] = ((Lgpﬁf j% f" i i [K,.(w —w,a) K, (—0,0-\,4a)

2 O B

+ K, (0 A~0,a) K ,(0—\,~w,a) = K, (0, A—w,a) L,(—o,w—\a)

- K (wA~w,a) L, (0—\,~w,a) — L,(0,A\~w,a) K,(~0,0—\,a)

- L (0x~w,a) K (o—\~w,a)+ L (o A\—w,a)L,(—o,0—\a)

+ L(oA~w,a) L,(0—\,~w,a)le™S, (0) S, (A o)dod\. (70)
From Equations (66) and (68), the covariance of the nonlinear diffraction force F,(¢)
can be expressed symbolically as

coV[F (1), F(t+7)] = cov[F(¢), FO(+7)] + cov[ FD(1), FP(1+7)].
(71)

The corresponding power spectral density, which can be derived through the
Wiener—Khinchine relation, is given by

Sr.r(N) = Sppm(X) + SFE(N), (72)

where

_ 16 ng()snn()‘)
SruEn(N) = N[Ji(Nalg) + Yi(Nalg)?) "

and

3 fx =
SF(YZ)Fﬁz)()\):(@E>J’ z z [Km(w,)\~w,a)Kn(—m,w—)\,a)

2 ) e mZono

+ K, (o A~w,a) K,(0—\,~w,a) - K,,(0,A-w,a) L,(—w,0—\,a)

- K (wA—w,a) L (o-\~w,a)— L, (0 A~w,a)K,(—0,0—\,a)

- L (o x—w,a)K,(0-N~w,a) + L, (0 A—w,a) L,(—w,0—\.a)

¥ L0 =0:0) L(0-A,~0,0)] Syn(©) So( A=) do (74)

Subsequently, the standard deviation of F,(t) can be readily obtained from the following
expression:
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nt
i
! [}

Skr, (N)dN

%

:J SELED(N) d)\+f SEOE@(N) dN. (75)

COMPUTATIONAL CONSIDERATIONS

In the above, the first-order solution presents no computational difficulty whereas
the second-order solutions require significant computational effort. As shown in Equ-
ation (74), the power spectral density of the second-order diffraction loading involves
a complicated multiple convolution integral of the incident wave spectrum and highly
oscillatory wave—wave interaction kernels. Numerical methods are utilized to evaluate
this integral. One approach is to approximate the incident wave spectrum by band-
limited white noise with appropriately determined amplitude at various discrete fre-
quencies that may practically represent the dominant wave components of a random
wave field. As such, the continuous incident wave spectrum may then be visualized as
composed of a finite number of monochromatic wave trains of different frequencies.
Then

N

2
Spn(@) =, % {(8(w—w;) + dw+w,)}, (76)

where &(-) denotes Dirac delta function, »; and H, represent, respectively, the wave
frequency and the wave height of the ith wave train, and are given by

= [Aw (77a)
H;=4{$, . (»;) Ao, (77b)

in which Aw is a suitable frequency band width, §,,(w;) the ordinate of the original
incident wave spectrum at frequency w;, and A® a small frequency band width (which
may or may not be made equal to Aw). Equation (77b) is based on the premise that
the energy of random waves within a very small frequency band centered at w; is
equivalent to that of a monochromatic wave train of that frequency. Substituting the
discretized form of the wave spectrum given in Equation (76) for the wave spectra in
Equation (74) results in

2 (> N H
spg2>F9>(x)=(f’£§f) J > 2 e

wi=1j

2: Z{) \Pm‘n (wﬁk-—.w7a) {3(w~wi)8()\—-w—u)j)

+3(0—w)dA—w+w;,) + d(w+w)dA—w—0;) + d(w+w,)d(A-w+w;) }de

N H2H x
=2 LS S (W (A= 0n@)B(A == ,) + ¥ (oA~ 0,2)
=1 j=1 16 m=0 n=0
(A~ + wy) + ¥, (—w, Mt w,a)d(A o~ ;)
+ ¥, (—w,A+0;,8)d(A o+ w;) (78)

where ¥,, ,(...) denotes the square-bracketed term in Equation (74), consisting of the
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interaction kernels, K(...), K,(...), L(...) and L,(...). By substituting pAw, where
p is an integer, for A in Equation (78), the power spectral density can be expressed

as

2 N N HZH
Srp(phAw) = (“—g@> {Z | Z 2 v, (ihw, jAw.a)

2 =1 j= 162 m=0 n=0
with ¥7/=P
N N 2p2 = x=
+ > 5{65 >, . (Aw, —jAw.a)
i=1 j= m=0 n=0
with {7/TP
N N H2H2 x =
+ 2 2 {6’ E 2 VY, (—iAw.jAw,.a)
i=1 j= m=0 n=0
with /717P
N N
+> > 162 Z E ¥, —ibw,—jAw,a)} . (79)
:):tlh i+j}'i1«p m=0 n=0

It is noted that the power spectral density represented by Equation (79) takes nonzero
values at discrete frequencies only. Utilizing Equation (63), it can be shown that

V¥, ({Aw, —jAw,a) =V, (—idw, jAw, a), (80)

and, therefore, the power spectral deunsity in Equation (79) may be rewritten as

. oo’ o HIH} S
Sp2 e pAw) = E > T > > W, (b, jAe.q)

i=1 ] < 1 m=0 n=0
with {H/=p
N N 2H2
£33 TS S w0 js0a)
i=1 j=1 6 m=0 n=0
with 7J7P
Y H,_le, 33w, (~ide, —jAw‘a)}. (81)
j:'] j=1 16 m=0 n=0

It is noted from Equation (81) that the first term (for p > 0) or the third term (for
p < 0) provides the spectral value at the sum frequency of the interacting wave
components, and the second term the spectral value at the difference frequency of the
interacting wave components. It is apparent that the evaluation of ¥, ,(...) in Equation
(81) represents the major computational task in obtaining the power spectral density
of the second-order diffraction forces. Based on the discretization scheme of the wave
spectrum described above, computations are carried out for some numerical examples
to demonstrate the spectral content of the first-order and second-order diffraction
forces. It is worth pointing out at this point that although Equation (81) provides
spectral values of the second-order diffraction forces only at various discrete frequencies
(as a result of the discretization of the incident wave spectrum), many features of the
power spectral density of the second-order diffraction forces can still be observed. By
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Fic. 2. Power spectral density of an incident wave field consisting of waves at 1.2, 0.3, 0.4 and 0.5 Hz.

increasing the number of discrete wave components, a finer resolution of the power
spectral density of the second-order diffraction forces may be obtained.

As the r-integral included in the double integral L (., .. .) defined in Equation (62b)
has a highly oscillatory integrand, special consideration has to be given to the numerical
integration of this term. Herein, the numerical evaluation of r-integral is carried out
in a way similar to that applied by Hunt and Baddour (1981) and Hunt and Williams
(1982). Thus, three terms of the asymptotic behavior of C,(kr)C,(k\r)C,. (kor) are
subtracted from the integrand, integrated by parts, and evaluated explicitly in terms
of Fresnel integrals. The remaining integral, which tends to zero monotonically as r
approaches infinity, is then evaluated by a series of Gaussian quadratures over an
interval [a,R] where R/a is large but finite, and R depends on the values of k, &, k,,
and q. For k; # k., the r-integration results in two weak singularities in the k-integrand.
One weak singularity, which behaves as [k — (k; + kp)|72 near k = k; + ks, is
removed by the factor [k? — (k; + k2)?] in the k-integrand; the other, which behaves
as [k — |k, — kol 7V2 near k = |k; ~ k|, is integrable by a change of variables in the
integrand. For k; = k,, the two weak singularities are reduced to one, which behaves
as |k — 2k,|~V? near k = 2k,, which was removable as reported previously by Hunt
and Baddour (1981) and Hunt and Williams (1982). For the k-integral, a singularity
also occurs at k =k, = (@, + w,)%/g. Near k =kg, the integrand behaves as
|k — kg/™' and results in a Cauchy principal value.
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Fic. 3. Power spectral density of the first-order diffraction forces due to an incident wave field consisting
of waves at 0.2, 0.3, 0.4 and 0.5 Hz.

NUMERICAL RESULTS AND DISCUSSIONS

An example vertical circular cylinder having a diameter of 30 ft is selected for the
numerical computations, and the incident wave spectrum is represented by a super-
position of band-limited white noise processes, as given in Equation (76), centered at
frequencies greater than or equal to 0.2 Hz, for which wave diffraction becomes
increasingly significant. The value of Aw in Equation (77a) is chosen equal to 0.1 Hz.
The incident wave spectral amplitude is determined from Equation (77b) based on the
condition that each wave train has a wave steepness of 0.1 and A® = 0.0628 rad/sec
(= 2m x 0.01 Hz); therefore

H?
Sem(27) = 16700628
(0.1L,)%

= 16 x 0.0628 (82)

where H; and L, denote, respectively, the wave height and wave length of a monochro-
matic wave train of wave frequency f;, and L, can be obtained from the linear deepwater
dispersion relation. For convenience, in the following the spectral figures are one-sided
and the wave frequency in the figures is given in hertz.

Figure 2 presents the spectral representation of an incident wave field consisting of
four dominant wave components of 0.2, 0.3, 0.4 and 0.5 Hz, based on Equation (82).
Figure 3 illustrates the spectral description of the first-order diffraction forces in such
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a random wave field. Several results for the power spectral density of the second-order
diffraction loading may be obtained by taking combinations (two. three or four,
respectively) of the incident wave spectral amplitudes shown in Fig. 2.

In obtaining the spectral content of the second-order diffraction forces, the infinite
summation in Equation (81) was truncated after a finite number of terms. This number
was determined by numerical testing so. as to ensure that the computed resuits were
accurate to two significant digits. Generally, more terms are required for the spectral
contribution introduced by self-interaction of the individual wave components than that
for the spectral components contributed by interactions between wave components at
different frequencies. In addition, among the spectral contributions due to interactions
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between wave components at different frequencies, the number of terms required to
compute interactions between two waves at relatively close frequencies is larger than
that required for two wave components with a large difference in their frequencies.
A progressively finer mesh of Gaussian points with increasing ¢ in the r-integration
is applied to ensure monotonic decrease in the k-integrand as the value of k increases
(Hunt and Williams, 1982). Typical k-integrands for the first two orders (0 and 1)
corresponding to different wave frequency conditions are illustrated in Figs 4(a)-6(b).
Figure 4(a) and (b) presents profiles of the k-integrand at a double frequency corre-
sponding to an individual wave at 0.2 Hz. It is noted that there is a singularity at
k = 0.19651, which results in a Cauchy principal value, and the k-integrand decreases
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rapidly for larger values of k. Figure 5(a) and (b) presents the k-integrand at a sum
frequency corresponding to a wave pair at 0.2 and 0.4 Hz. It can be seen from the
figures that a weak singularity occurs at k = 0.14734, and a further singularity is present
at k = 0.44203. Figure 6(a) and (b) presents the k-integrand at a difference frequency
corresponding to a wave pair at 0.2 and 0.4 Hz. A singularity is present at k = 0.04911
and a weak singularity exists at k = 0.14734. The numerical integration for the k-
integral in the present work was carried out by use of Gaussian quadrature. From the
figures, it can be seen that the value of the k-integrand is negligible at large values of
k. Extensive numerical testing has showed that when k, = k, (the case of double
frequency), the major contribution results from values of k < kg; when k, # k-, the



Diffraction of nonlinear random waves 149

10
A
¢ 10° A
: 4 po4
<%
-]
2
= 2
£E 10%F
2%
-
¥= [
i
Q
- 1
g 10 f
<
LY
& {
-
=3
2 ool
@ 10°
10-1 1 1
01 00 01 02 03 04 05 06 07

Freq (Hz)

Fic. 7. Power spectral density of the second-order diffraction forces due to an incident wave field consisting
of waves at 0.2 and 0.3 Hz.

major contribution results from values of k < 1.5kg for the case of ks > |k, — k)
(the case of sum frequency), and from values of k < 2k; — k,| for the case of
ks < |k, — k| (the case of difference frequency). These values may be used as guidelines
to specify a finite k-interval in any future work.

Figure 7 presents the spectral representation of the second-order diffraction forces
resulting from an incident wave field at two wave frequencies, (0.2 and 0.3 Hz. It is
noted from the figure that spectral contributions occur, as a result of self-interaction
of individual random waves, at zero and double frequencies (i.e. at 0.0, 0.4 and
0.6 Hz), and as a result of interaction between random waves of different frequencies,
at 0.1 Hz (difference frequency) and 0.5 Hz (sum frequency). The spectral value at
0.1 Hz is about 83% of that at 0.0 Hz and the spectral amplitude at 0.5 Hz is about
80% of that at 0.6 Hz, indicating that the spectral contribution from the interaction
of waves of different frequencies can be significant. Figure 8 shows spectral amplitudes
of the second-order diffraction forces in a wave field consisting of three random waves
of 0.2, 0.3 and 0.4 Hz. In comparison with the previous case (Fig. 8), it is noticed
that as a consequence of interaction between random waves of 0.3 and 0.4 Hz, the
spectral amplitude at 0.1 Hz (difference frequency) has an increase of approximately
4% and a new spectral contribution appears at 0.7 Hz (sum frequency). In addition,
due to the interaction between random waves of 0.2 and 0.4 Hz, the spectral ordinate
at 0.6 Hz (sum frequency) is increased again by approximately 4% and a new spectral
contribution occurs at 0.2 Hz (difference frequency). It is also observed that at either
sum or difference frequency, the interaction between random waves of 0.3 and 0.4 Hz
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Fic. 8. Power spectral density of the second-order diffraction forces due to an incident wave field consisting
of waves at 0.2, 0.3 and 0.4 Hz.

gives rise to a smaller spectral impulse than does that of 0.2 and 0.3 Hz, which can
be attributed to the fact that the incident wave spectral amplitude at 0.4 Hz is only
6% of that of 0.2 Hz. Moreover, it is found that spectral amplitude at sum and
difference frequencies arising from wave frequencies of 0.2 and 0.3 Hz are, respectively,
21.7 and 12.5 times greater than those at the sum and difference frequencies arising
from waves at 0.2 and 0.4 Hz although the incident wave spectral amplitude at 0.3 Hz
is no more than 3.2 times greater than that at 0.4 Hz. This suggests that the greater
the frequency difference between the two wave components, the less intense is the
interaction between them.

The above-stated trend can be confirmed by considering the case of an incident wave
field consisting of four wave components, as shown in Fig. 2. Figure 9 presents the
spectral description of the second-order diffraction loading in such an incident wave
field. It is noted that interactions between the wave pair at 0.2 and 0.5 Hz result in a
spectral contribution at 0.3 Hz (difference frequency) and a 14.5% increase in the
spectral value at 0.7 Hz (sum frequency). Also, it is found that the spectral contributions
at the sum and difference frequencies by the wave pair at 0.2 and 0.4 Hz are, respect-
ively, 5.7 and 125.3 times greater than those induced at the sum and difference
frequencies by the wave pair at 0.2 and 0.5 Hz although the incident wave spectral
impulse at 0.4 Hz is only 2.4 times greater than that at 0.5 Hz. Aside from the
interaction of waves at different frequencies, the results from Figs 3 and 9 suggest that
the intensity of the self-interaction of the individual wave components increases with
increasing wave frequency, as evidenced by the ratio of the spectral amplitude of the
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second-order diffraction forces at the double frequency to that of the first-order diffrac-
tion forces at the incident wave frequency. This ratio rises from 1.8 to 18.4 to 71.4%
and finally to 153.3% as the incident wave frequency varies from 0.2 to 0.5 Hz in
0.1 Hz increments. It is also noted from Figs 3 and 9 that the spectral amplitudes of
the second-order diffraction forces at 0.4 and 0.5 Hz are about 9 times greater and 23
times greater, respectively, than that of the first-order diffraction forces at the corre-
sponding frequencies, and the spectral impulses of the second-order diffraction force
at frequencies higher than 0.5 Hz are greater or comparable to that of the first-order
force at 0.5 Hz, emphasizing the significance of second-order effects in shaping the
spectral content of the nonlinear diffraction force in the high frequency range.

CONCLUDING REMARKS

A theory of nonlinear diffraction of random waves by a vertical uniform circular
cylinder in deep water has been presented, with emphasis on the spectral description
of the second-order diffraction forces. From the numerical results shown herein, it is
clear that the spectral density of the second-order diffraction forces in a random
incident wave field is influenced not only by the self-interactions of the individual wave
components, but also by the interactions between the different wave components. The
present approach provides a complete spectral description of the second-order diffrac-
tion forces, and illustrates the significance of wave—wave interactions in yielding spectral
densities at the sum and difference frequencies.
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APPENDIX

In this appendix the total second-order velocity potential will be shown to satisfy Laplace’s equation and
two boundary conditions prescribed in Equations (14)-(16). Formally, the total second-order velocity
potential can be expressed as

J >3 A Q) Clkr) eFie e dk dEXQ). (Al)

n e

b2(r.0,2.1) =j

From the following identities

J(—x)=(-1yJ (x) and Y (-x)=(—1)[Y,(x)}+i2/.(x)]. (A2)
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valid for x > 0, it follows that for k > 0,
C.(—kr)y= — C,(kr). (A3)
Therefore, the k-integral in Equation (A1) can be expressed as

3

£ 0
f A, (Q,K)C, (kr) erzdk = J A, QLK) C,(kr) e*=dk + [ A, (Q.k)C,(kr)ye *dk

0

i

J’ A, (SK)C, (kr)e* dk + f A, (8. —k) C (—kr)e*: dk
C 0

)

=J G, (82,k) C, (kr)e*= dk, (A4)
0
where
G .K) = A, (k) = A, (2.~ k). (AS)
Subsequently, @ can be written as
D(r,0,z.) :J j XY Gl QK)C,(kr) ke eift dk dEy(12). (A6)
~% JO

n=- % m=—x

It can be proven that this form for ® satisfies Laplace’s equation. Let 4, ,,(r,0,z.k) be defined as follows:
h,.,.(r.0.z,k) = C,(kr)ek=en®. (A7)

Substitution of 4, ,,(r,0,z,k) into the Laplacian operator in cylindrical coordinate system leads to
k 2
VZh, ,.(r.8,2,k) = {kz(,‘,’,’(kr) + P C,(kr) — 17 C.(kr) + kZC,,(kr)} ekz e, (A8)
r2
Since the Bessel functions satisfy the following recurrence relations [see, for example, Watson (1952)],

D, (2)+ Do) = D(2),

D, (2)+ D,.\(2) =2D(z) and

D, (2} =2D.(2) + D,.5(2) = 4D(z2), (A9)

where D (z) denotes the cylinder function, it follows that

K2Co(kr) = k> {Y,’,(ka)[%]n, J(kr) — %Jn(kr) + %J,Hz(kr)}
1 1 1
— J(ka) [ZY,,,Z(kr) - ZY,,(kr) + Zsz(kr)”. (Al0a)

LGk = jos { Yika)lJ,o(kr) + (k) = ko)l Y, alkr) + Yn<kr)1}

2

k
T agn v 1) kY ukr) + Yo (kn)] = Yokl (ke) + 0, (RN (AL0b)

2

n? nk
I Gk =g

kz
+ 47;':?1) {I(ka)[ Y, o kr) + Y, (kr)] = Yi(ka)[J, . o(ke) + 1 (kr)]}  (Al0c)

(a(ka)[Y,, o(kr) + Y, (kr)] = Y (ka)[J,_o(kr) + ] (kr)]}

and

k2C, (kr) = kK[ Y (ka)], (kr) — ] (ka)Y  (kr)]. (A10d)
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Summing Equations (Al0a)-{A10d) leads to

' Ckr) R, (k) =

k .
K2Cokr) + Clkr) = ’k k nk

!
, 44 A1
k- k- k- nk- nk*

. 4 — 1o - 3 - B I R - . PR o
(Yika), s(kr) = (ka)Y, (k) | T TRV

k- k- nk”

Y (ke s [ K §
{Yi(ka), (kr) ~ Ji(ka)Y, (kr) 14 AR

AYi(ka),, olkr) = S (ka)Y,  okr) ). (AT

It is noted that each of the coefficients (in square brackets) in Equation {All) is identically zero. Therefore,
it can be concluded from Equations (A6) to (A8) and (A1l) that

V2p(r8.z,0)=0. {A12)

Furthermore, since

aC, (k ;
%’ N k(vatkayithn) - Tika)Yickn)y oo
it follows that
I 2y 1
A AL B (A13)
ar [

Finally, from Equation (A6), since ®® contains the depth-decay factor ¢**,

IDD(r,0,2.1)
az

- asz— -« (AT



