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The wave drift forces on tension leg platforms (TLP) are contributed by second- 
order potential and viscous wave load effects, the fluctuations in wave surface 
elevation and the influence of platform displaced position on the wave excitation. 
These forces are expressed in terms of in phase and out of phase drift forces. In 
this study, computationally efficient time domain and frequency domain based 
schemes are developed to evaluate the TLP response to drift forces. These 
schemes retain the statistical relationship that exists among these drift forces and 
the first-order wave forces which is important for the combined response analysis. 
A parameter study is conducted to delineate the relative significance of different 
drift forces for several representative sea-states. 

1 INTRODUCTION 

In addition to the wave forces at the typical wave 
frequencies in a sea-state, a tension leg platform, due to 
its compliant behavior in the horizontal plane, experi- 
ences slowly varying wave drift forces. These forces 
originate from various mechanisms involving the 
nonlinearities of the viscous drag and potential forces, 
variations in free water surface elevation near TLP 
columns and the nonlinear feedback of the structural 
response to the wave loads. The tension leg platform has 
low natural frequencies in the compliant modes, i.e. 
motion in the horizontal plane. The wave drift forces at 
the difference frequencies contribute significantly to the 
TLP motions in the horizontal plane. In view of the 
significance of environmental loadings an enhanced 
response prediction capacity is needed to ensure a 
useful input to the reliable design of  TLPs in deep water. 
This paper focuses on the computation of wave-induced 
drift forces and associated platform response utilizing 
computationally efficient schemes. 

Many researchers (e.g. de Boom et aL l ) have 
described the drift forces on a TLP as a result of  the 
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second-order terms in the wave diffraction force. This 
force is often called potential drift force. Others 
(Finnigan et al., 2 Botelho et al., 3 Salvensen et al. 4) 
have focused on the fact that the drag force on the TLP 
components can cause viscous drift force resulting from 
the nonlinearity in Morison's drag force formulation. 

The treatment of viscous forces has either been limited 
to time domain analyses (Denise & Heaf 5) which is 
straightforward, but computationally inefficient, or in 
the frequency domain based on the equivalent lineariz- 
ation concept (e.g. Li et al., 6 Natvig & PenderedT). 
However, the equivalent linearization only provides 
accurate estimates of the mean square force, but fails to 
account for the slowly varying viscous forces. This 
shortcoming can be removed by an equivalent stochastic 
quadratization scheme. In this approach, the nonlinear 
viscous force is expressed in terms of  a quadratic 
nonlinearity, e.g. a polynomial up to the quadratic 
term. This approach retains the important features of 
the nonlinear interactions and introduces spectral 
contents at the sum and difference frequencies (e.g. 
Donley & Spanos, s Kareem & Li, 9'1° Olagnon et al. II 
and Zhao & Kareem12). Some of these studies utilize the 
Volterra series or Hermite polynomial expansion to 
express quadratic nonlinearity. In some of the studies, 
the structural response is assumed Gaussian or the 
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response is decomposed into various components to 
benefit from the Gaussian assumption, while others treat 
response as a non-Gaussian process by approximating 
the distribution by a Gram-Charlier type expansion. 

Mclver 13 and Rainey 14 reported that the wave effects 
on TLPs should be evaluated at their displaced position. 
By neglecting this effect, one may underestimate 
response results in drift force (Kareem & Li, 9 Li & 
Kareem 15 and Spanos & Agarwa116), which herein is 
called displacement feedback drift force. 

In this study, numerical schemes are developed, in 
both time and frequency domains, to describe the TLP 
response induced by different drift forces which is not a 
simple summation of the individual drift forces 
discussed above. The statistical relationship among 
these drift forces and with the first-order wave forces 
needs to be included in a combination rule. 

DRIFT FORCE DESCRIPTION 

Potential drift 

The potential drift force on a TLP can be described in a 
manner similar to that for a moored ship (e.g. 
PinksterlT). The nonlinearities that appear in the 
description of diffraction force on a TLP result from 
the second-order term in the Bernoulli's equation and 
the wave surface effects. The potential drift can be 
expressed as 

g=e [ 1/21Ve~(t,r)12T(r)dA Fpot(t) 
J Ao 

- fwL 1/2pgrlZ(t' r)T(r) dL (1) 

in which A 0 is the TLP area under mean water level, WL 
represent the circumference of the submerged com- 
ponent, and T(r) denotes the transformation from local 
to platform-fixed coordinates. The wave potential can 
be expressed as a transformation of the reference wave 
elevation 

Us 
qS(t,r) = E H~(f.,r)rt(fn) exp j (2rrf.t + e.) 

n = l  

H (f, r) = H 1(f., r ) + H s(f., r ) +j2 rf.HT ( f . , r )  

x {-(2rrfn)Z[M + A(fn) ] + K }-lHs(fn ) 

(2) 

where H®, (f , ,  r) and H~s (f , ,  r) are transfer functions 
relating r / ( f )  to the incident wave potential and 
scattered wave potential. H~ , ( f , , r )  is a transfer 
function vector (6,1) of radiation potential caused by 
the platform's six-degree-of-freedom oscillations in the 
six degrees of freedom with unit amplitude. M, A(f , )  
and K are offshore structural systems mass, added mass 

and stiffness matrices (dimensions: 6,6). Hs(fn) is the 
diffraction force vector (6,1) due to a Unit amplitude of 
regular wave of frequence fn. 

Accordingly, the wave surface elevation near the body 
becomes a transformation of the reference wave surface 
elevation, 

,v: 
r/(t, r ) - -  - E  H '~( fn ' r ) r / ( fn) - -  expj(27rf~t+%) (3) 

n = l  g 

It is noted that second-order wave potential forces are 
quadratic transforms of the wave surface elevations 
(eqns (1), (2) and (3)). By neglecting the high frequency 
part, the potential drift forces have the following form: 

Us Us 

FP °t(t) = E E P(fn'fm)rl(fn)rl(fm) 
n = l m = l  

x cos (27rfn_ mt + en - era) 

Us Us 

+ E E Q(fn'fm)rl(fn)"(fm) 
n = l m = l  

x sin (27rfn_mt + e n - f-m) 

Us Us 

= E E Hp°t(fn'fm)rl(fn)rl(fm) 
n = l m = l  

x exp ~ ( 2 7 r f n  _ m  t + en - -  £m)] (4)  

in which Hpot(fn  , fro) is the quadratic transfer function, 
and P(f , , fm)  and Q(f , , fm) are in-phase and out-of- 
phase transfer functions, respectively. 

Hpot(fn, fro) -- P(fn,fm)JQ(fn,fm) (5) 

Hpot(fn,fm) describes the steady drifting forces on a 
body in an incident monochromatic wave at frequency 
fn with a unit amplitude. Hpot(fn,fm) with n ¢ m ,  
represents the second-order potential forces on the 
structure at difference frequency (f,_m) when exposed 
to bi-chromatic waves at frequencies f ,  and fro with unit 
amplitudes. The real part P(fn, fro) of Hpot (fn , fro) is the 
potential drift force with the same phase as the envelope 
of the wave surface elevation and the imaginary part 
Q(f , , fm)  is the drifting force at 7r/2 phase difference 
with respect to the wave surface elevation envelope. 

Details concerning the computation of Hpot(f,,fm) 
used in this study are given in the Appendix. It is 
important that the diffraction code utilized in the 
evaluation of Hpot(f,, fro) must include the interactions 
of different TLP components, e.g. TLP legs. In Fig. 1, a 
comparison of first-order and second order wave 
diffraction forces for a typical TLP is given (Kareem 
& Li9). It is noted that the peaks in the drift force 
description are close to the valleys of the diffraction 
force and the valleys of the drift force are close to the 
peak diffraction force. Numerical experiments also 
suggest that, though not important in the typical 
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Fig.  1. Diffraction and drift forces. 

wave-frequency band, the oscillations of a TLP 
contribute to the drifting forces at frequencies larger 
than 0.13 Hz. In the ship motion studies, the out-of- 
phase force is ignored and the in-phase drift force is 
approximated by 

P(fn, fro) ~ P(fn, fn) (6) 

In Fig. 2a the in-phase drift forces are shown which are 
close to the steady drift force when A f  is quite small. 
Most of the TLP has natural frequencies in its 
horizontal motion around 0"01Hz. However, the 
approximation in eqn (6) given by Newman Is may not 
be very accurate for TLP analysis since the out-of-phase 
drift force is more important than the in-phase drift 
force for small kD where k and D are wave number and 
column diameter, respectively (Fig. 2b). 

The drift force in the time domain is given by 

fpot( t) = I I?oo hpot(Tl , "r2)rl( t - 7-1)rl( t - "r2) d'rl d'r2 

(7) 

in which hpot(Tl,'r2) is a double Fourier transform of 
Hpot(f~, fro). In order to reduce computational effort in 
the evaluation of the preceding equation we introduce 
the following approximation. The drift force is ex- 
pressed as a linear transform of the square of the wave 
surface envelope: r/2(t)+~)2(t), in which ~(t) is the 
Hilbert transform of r/(t). This approach can be further 
simplified by 

fpot (t) ,.~ J?oo hpot (7")r/2 (t - 7-) dT (8) 

in which the convolution kernel vector h~ot(t) is the 
Fourier transform of the simplified potential drift force 
transfer function vector H pot( f ). The absolute value of 
the transfer function vector is given by 

I o  IHp°t(g + f'g)12G'7(f + g)Gn(g) dg 
IH~ot(f)l 2 

I ?  G,7( f + g)Gn(g ) dg 

(9) 
for f <  0.03Hz and smoothly reduces to zero after 
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Fig. 2. (a) In-phase surge drift transfer function. (b) Out-of- 
phase surge drift transfer function. 

f > 0"03 Hz, and its phase is given by 

Arg[n ~ot(f)] 

Hpot (g + f,g)G,(g + f )Go(g )dg / 
:A~g (10) 

Jo- GnOC + g)Gn(g) dg 

where Gn(f)  is the two-sided wave height fluctuation 
spectrum. A continuous function Hpo t ( f )  can be 
obtained by interpolation of computed values of a few 
discrete frequencies. The simplified transfer function is 
wave spectrum dependent. Figure 3 shows a simplified 
transfer function derived from the transfer function 
shown in Figs 2a and 2b. Accordingly, the derived 
potential drift force retains correct energy, phase 
relationship with other drift forces, and the quadratic 
relationship with wave surface fluctuation. However, 
based on this approximation, the drift force becomes 
fully-coherent with the square of the wave surface 
envelope. Strictly speaking, this may not always be true. 
Nevertheless, for a narrow banded wave spectrum, the 
error is not significant. Numerical tests show that 
normally this coherence function is greater than 0"95 
when frequencies are smaller than 0"03 Hz. 

The method suggested here, in the time domain, 
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Fig. 3. Simplified transfer function for potential drift forces. 

significantly reduces computation effort without com- 
promising accuracy. The spectral density functions 
estimated from simulated time series of the drifting 
forces obtained by the proposed method were compared 
with those derived from the frequency domain based on 
quadratic transfer function. No discernible differences 
between the two approaches were found. 

Viscous drift 

The viscous drift force originates from the nonlinear 
part of the drag force described by the Morison 
equation. A statistical quadritization approach is 
utilized to analyze the effect of nonlinear viscous drag 
force on platforms (e.g. Kareem & Li, 9 Li & Kareem 15 
and Spanos & Donleyl9). This approach improves upon 
using conventionally utilized statistical linearization 
approach which fails to bring out energy in the sum 
and difference frequencies. In this approach, the 
nonlinearity, e.g. drag force, is expressed by an 
equivalent polynomial in which up to quadratic terms 
are included. 

In this study, the viscous hydrodynamic loads on 
TLPs involving nonlinear drag are expressed in terms of 
multivariate Hermite polynomials correct up to the 
quadratic term. In this manner the drag force is 
decomposed in terms of mean, viscous exciting and 
viscous damping terms (linear) and slowly varying drift 
force vector is given by 

r~(t) _ 

fdrag(X) : J-L lpTI(x)CdD[n(t'x) - T(x))[(/)] 

× lu( t ,x )  - T ( x ) X l  d/  ( l l )  

where x is the location vector of a point on the column, 
X is the global displacement of the platform, T(x) is the 
global to local coordinate transformation matrix, and 
u(t,x) is the water particle velocity vector. The part 
within the bracket in the right-hand side of the 
preceding equation represents the relative velocities 
with respect to the body-fixed coordinate system. The 
total drag force can be separated into two parts, i.e. 

below and above the mean water level. There are a 
number of approaches for evaluating the water particle 
velocities in the wave crest region. For example, if we 
use the modified stretch theory, (Mo & Moan2°), the 
water particle velocities in the wave crest are assumed to 
be uniform with a magnitude equal to that of the mean 
water level calculated by the linear wave theory. 
Accordingly, the integral from 0 to r/(t) is proportional 
to r/(t)v(t)Iv(t)[. This expression always contains second- 
order polynomial terms regardless of the existence of 
currents. A tri-variate Hermite polynomial expansion is 
utilized to carry out an equivalent quadratization in this 
case (Li & Kareem21). 

Typically for the evaluation of the viscous wave loads 
on TLPs, the platform structure is discretized into a 
number of small segments. The local viscous drag force 
is computed for each element. The local drag forces are 
expressed in terms of global wave induced viscous 
forces. The mean and linear components of drag are not 
addressed here. The second-order viscous forces (slowly 
varying viscous drift forces) consist of a second-order 
force acting on the portion of the structure under the 
mean water level and the force on the splash zone. 

i21 F vis(t ) = F F [~(/) (12) 

[2] F vis(t) -- ~ T.C ~](C~n)wt21(t ) 
n = l  

N, 
+ ~--~ T,C ~ (C~n)W~2] (t) (13) 

n = l  

in which the quadratic (second-order) matrix at the nth 
element, C[n 2] and cL al, can be found in Li & Kareem 22 

2 ',n 
and w[ ](t) and w~ 2](t) are the quadratic components of 
the relative fluid-structure velocity (Li & Kareem21). 

3 DRIFT FORCES INTRODUCED BY DISPLACED 
POSITION 

The wave forces computed at the displaced position of 
offshore structures may introduce additional drift 
forces. This contribution is particularly significant for 
compliant offshore structures that are configured by 
design to experience large excursions under the environ- 
mental load effects, e.g. tension leg platforms. In 
random seas, this feature can be included in the time 
domain analysis by synthesizing drag and diffraction 
forces through a summation of a large number of 
harmonics with an appropriate phase relationship that 
reflects the platform displaced position. This approach is 
not only limited to the time domain analysis, but the 
superposition of a large number of trigonometric terms 
in such an analysis demands a significant computational 
effort. 

Typically, the wave kinematics and diffraction forces 
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Fig. 4. Schematic description of TLP displacement. 

are described in terms of a linear transform of the 
reference wave-surface elevation. For example, 

Fs(t) = J~o¢ H s ( f ) r / ( f )  exp (j27rft) df (14) 

in which H s ( f )  is the transfer function vector that 
relates the wave-surface elevation and the diffraction 
forces, and 7/(f) is the Fourier transform of the wave 
surface elevation r/(t) at the origin of the space-fixed 
reference frame. The diffraction force acting on a 
platform undergoing a displacemnt X(t) is given by 

l sIt, ¢(x)) = r asIf) (f, ¢(x)) exp (j27rft) df  
j-oo 

J ~ ( ~  transformation 

Fig. 5. Displacement induced feedback force. 

in which o[i](t) denotes the time-variant feedback 
coefficient vector which is a linear transform of f Ill(t), 
and ~(t) is the platform displacement along the wave 
propagation (Li & KareemlS). The feedback coefficients 
are given as 

O[1](t)=I:o~-2(I: (27rf)2sin(2rcfr)df) g 

X f [11 (t -- r) dr  

and 

812](t) = I ~  ( J :  (27r:)------~4 cos (27rfr) d f )  

x f [1] (t - r) dr  (19) 

r/(f, ~(X )) = r / ( f)  exp [-jk~(X )1 (15) 

where k is the wave number and ~(X) is the 
instantaneous location of the platform center in the 
direction of wave propagation (Fig. 4). The preceding 
equation in the frequency domain is given by 

Fs(f, ~(X )) = Fs(f, 0) exp (-jk~(X)) (16) 

in which Fs(f ,  0) are the diffraction forces computed at 
the undisplaced position. 

For the computation of the viscous drag force on a 
platform the relative fluid-structure velocity is needed at 
the instantaneous displaced position 

u(f ,  ~(x)) = u ( f )  exp [-jk~(x)] (17) 

where x denotes local displacement of a given position 
on the platform. 

The computation of diffraction viscous forces can be 
facilitated by a feedback scheme. First, the forces at the 
displaced position are expanded in a Taylor's series 
about the undisplaced position. This is subsequently 
expressed in terms of the following format 

oo 
f(/,X) = f [l](t) "+- EO[i](t)~i(t) (18) 

i=1 

The main contribution of the feedback is an extra drift 
force due to both potential (diffraction related) and 
viscous (drag related) effects. In Fig. 5, a schematic 
representation of a nonlinear displacement feedback 
system for diffraction force is shown. Details concerning 
computational procedures for the implementation of the 
feedback concept are available in Li & Kareem. 15 

Before moving to the section on computation 
methods, we summarize all the drift forces discussed 
here in Table 1. 

Table 1. Anatomy of drift forces 

Hydrodynamic Low frequency drift 
origin 

Second Fluctuation in Feedback due 
order wave to displaced 
terms surface position of 

elevation platform 

Potential- 
Bemoulli's 
equation x/ x/ ~/ 
Viscous-- 
Morison's 
drag term x/ x/ x/ 
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COMPUTATIONAL METHODS 

Time domain simulation 

The time histories of a random wave field are often 
simulated as a summation of a number of trigonometric 
functions (Li & Kareem, 22 Shinozuka23). By utilizing 
this approach, the energy of the wave field is only 
contained at a number of discrete frequencies. The 
second-order processes, e.g. drift, may not be accurately 
modeled by this approach unless it is based on a very 
large number of summation terms. The parametric 
models offer an ideal scheme for simulating time series 
with continuous energy over the entire spectrum of 
frequencies of interest. In this approach, the time series 
of wave surface elevation are first generated by filtering 
a white noise through a prescribed filter (e.g. Spanos & 
Mignolet 24 and Li & KareemE5). This is followed by 
linear or nonlinear transformations, which provide 
simulated wave loads and drift loads (Li & Kareem2S). 

The potential drift force can be simulated by either 
utilizing eqn (7) or (8). The latter involves a single 
convolution; thus it is computationally more efficient 
than the former. Details concerning the computation of 
the preceding convolutions can be found in Li & 
Kareem. 25 The computation of viscous drift force 
follows from eqn (13). The displacement feedback drift 
forces are based on the procedure that first simulates 
first-order loads without including the displaced posi- 
tion of the platform. The feedback terms of both 
potential and viscous origins are then included to 
compute forces at the displaced position. The digital 
filters designed to model discrete differentiation and 
convolution and their hybrid combination are used to 
evaluate the displacement feedback time-variant coef- 
ficients (eqs (18) and (19)). Details are given in Li & 
KareemY 

Frequency domain analysis 

The frequency domain analysis is primarily used for a 
linear or quasi-linear system. However, the application 
of frequency domain schemes can be extended to 
quadratic or even high-order systems (Kareem & Lil°). 
In the following, a procedure that facilitates computa- 
tion of the drift forces in the frequency domain is 
outlined. 

(1) Viscous drift force 
The nonlinear drag force can be expanded into a 
polynomial by statistical error minimization (e.g. 
Borgman 26 and Li & Kareem21). The drag force on the 
immersed part of the column can be expressed as 

v(t)lv(/)[ = Co + ClV(t) + C2v2(t) + . . .  (20) 

In which Co, C1, C2, etc., are the coefficient matrices 
that depend on the covariance of v(t), the relative 

fluid-structure velocity, and v2(t) is a vector contain- 
ing product of the relative velocity components 
in the local coordinate system, i.e. v2(t) = 
[v2(t), v22(t), Vl(t)VE(t)] T. The drag force due to the wave 
profile above the mean water level is given by 

v(t)lv(t)lrl(t) = Do + Dlv(t) + O2v(t)rl(t) + . . .  (21) 

in which Do, D1, D2, etc., are coefficient matrices that 
are functions of the covariance of v(t) and r/(t). All of 
these quadratic terms are viscous drift forces, their 
spectral density function can be computed by a spectral 
convolution approach (Brigham27). 

(2) Potential drift force 
The potential drift force spectrum can be evaluated from 
the quadratic transfer function by the following 

Gpot(f) = 8 I o  IHpot(J] +f~ fl)[ 2 

x Gn(f l )Gn(f+f l  ) dfl (23) 

in which Gn() represents single sided wave height 
spectrum. 

(3) Feedback drift force 
Let the reference origin be at the center of the platform 
at its mean offset position. The feedback terms given by 
a summation in the right-hand side of eqn (18) may be 
truncated and the first term is given by 

ffdbk (t) = 0 [l] (t)~(t) (23) 

in which ffdbk(t) is the feedback drift force vector. Its 
spectral density function can be computed by a spectral 
convolution approach involving the spectra of the first- 
order wave loads and the response (Li & KareemE2). 

The computation of the viscous and feedback drift 
forces in the frequency domain involves the contribution 
of platform response. This poses additional computa- 
tional difficulty, which can be overcome by using an 
iteration technique, a perturbation technique, or a 
combination of these, Kareem & Li. 9 Typically, the 
viscous force is evaluated by a summation of the viscous 
drift force on discretized components of the TLP. The 
spectral density function of a process resulting from the 
summation of a number of processes involves the 
spectra and cross-spectra of these respective processes. 
For unidirectional linear waves, the computation of the 
cross-spectral density functions can be eliminated by 
introducing a complex Fourier amplitude concept. 

Let us define the complex Fourier amplitude of the 
water surface elevation as 

fn) = ~/Gn(fn)Af (24) ,)( 

in which f ,  = n A f  and G~(f~) is the single-sided 
spectrum of the wave surface elevation. Then all first- 
order wave processes can be expressed in terms of the 
complex Fourier amplitude. Its amplitude is related to 
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the spectrum and its argument is the phase with respect 
to the wave surface elevation at the reference location. 
The linear transformation becomes a simple operation, 
for example, the wave velocity vector at a location x is 
given by 

fi(f. ,x) = H . ( f . ,  x)~(f~) (25) 

in which H,,(f~,x) is the transfer function. The first- 
order wave load can be computed in terms of the 
complex Fourier amplitude, f [q(f~). Accordingly, the 
first-order response vector becomes 

Y~[1](fn) = Hsys(fn ) t [ll(fn) (26) 

The spectral density matrix of the response in terms of 
the six degrees of freedom is given by 

nm~ 
y ] X  [U(f.)X tq.(f . )  

G tx, l( f.) = .=0 
A f  (27) 

As for the drift forces, which are the quadratic 
transformations of the first order wave field, the 
complex Fourier amplitudes are expressed as functions 
of two frequencies. The potential drift force based on 
eqns (7) and (8) is given by 

fP°t(fn' fn+P) = Hpot(fn, fn+p)~(fn)~*(fn+p)  (28) 

or 

fpot(fn,fn+p) ' ^ ^* H pot (fp)~7( fn)r] (fn +p) (29) 

The viscous drift force is expressed as 

N 
fvis(fn, fn+p) = E T T ( x r ) c 2  

r=l 

2Re [vl(fn, Xr)~)~ (fn+p, xr)] } 

2 Re [02 (f . ,  Xr)~)~ ( f .+ : ,  x.)] 

(L+p, x.) + v2(f., x.) T (f.+p, x.) 

(30)  

and the feedback drift force is expressed as 

ffdbk(fn,fn+~) = 0(fn)~*(fn+p) + ~(fn)O*(fn+p) 
(31) 

The complex Fourier amplitude vector of the total drift 
force is now a simple summation of those for all the drift 
forces: 

~-[21(f~, fn+p) = i'pot(fn, f~+p) + i'vis(fn, f~+p) 

+ t'fdbk ( fn, fn +p) (32) 

The drift-induced response vector is given by 

R [2](fn,fn+p ) = Hsys(fp)f [2](fn,fn+p ) (33) 

Table 2. Basic characteristics of example 

Column diameter 
Column draft 
Column span 
Pontoon diameter 
Tether stiffness 
Tether pretension 
Mass center of the platform 
Mass 
Inertial moment 

18-06m 
13.9m 
66.22 m 
9.03 m 

18925 kN/m x 4 each column 
10200 kN x 4 each column 
6.02 m above mean water level 
2'8 x 10 7 kg 
3 x 101°kgm 2 (w.r.t. MWL) 

Finally, the spectral matrix of the response is given by 

E IK [21 (f~, f.+p)y~ [2].(f., f .+r )  
G = . = 0  

2AT (34) 

5 EXAMPLE 

The relative significance of different types of drift forces 
on the TLP response was assessed in this study. A 
generic, symmetrical TLP configuration was utilized for 
this study. Important geometric and structural features 
of the TLP are given in Table 2. 

In view of the quadratic relation between the drift- 
induced response and the wave surface elevation, the 
following drift response ratios are introduced: 

X " __~X (fo) D( f o ) - ~  

& 
= ( 3 5 )  

where xb(fo) and xD(fo) denote the response ratios as 
functions offo, X1 denotes the mean offset induced by 
the drift force, and axl(fo) and %(fo) are the standard 
deviations of the response and the wave surface 
elevation of the peak frequency fo. The concept 
developed herein is useful in comparing the contribu- 
tions of the various drift force to the response and also a 
convenient way to make preliminary estimation of the 
response induced by several components of the drift 
forces. 
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Fig. 6. Potential drift force in surge. 
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Fig. 7. Surge response to potential drift force. 

Potential drift 

0.13 

Figures 6-8 highlight the potential drift force, the 
corresponding platform response and the ratio of the 
response to the variance of  the wave surface elevation, 
respectively. It is noted in Fig. 8 that the ratio of the 
response to wave height rapidly increases with an 
increase in the wave peak frequency. 

Salvensen et al. 4 utilized a deterministic wave of 
period of  9.5 seconds to demonstrate that in an extreme 
sea state the steady surge due to wave drift (mainly 
potential drift) is more important than any of the other 
forces, e.g. winds, currents and wave diffraction forces. 
The significance of the potential drift force for random 
waves is demonstrated here. Let us consider the 
JONSWAP spectrum with the wave peak frequency 
f o = 0 - 1 1 H z ,  7 = 6 . 8 9  and ~=0 .0485  (Spidsoe & 
Sigbjornsson28). The platform response spectral density 
functions are plotted in Fig. 9. The mean and standard 
deviation of the response are listed in Table 3. The 
platform mean offset due to the potential drift force is 
equivalent to that induced by 0.8 m/s currents (Kareem 
& Li9). The response at wave-frequency is negligible in 
comparison with the response due to drift, and the 
standard deviation of the response due to the wave drift 
alone is equivalent to that due to 20 m/s winds (Kareem 
& Li9). 

In Figs 6, 7 and 9 and Table 3 it is demonstrated that 
the results obtained by the time and frequency domains 
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8 
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Fig. 8. Surge response ratio due to potential drift. 
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Fig. 9. Spectral density function of surge drift response. 

are very close, and the approximate method tends to 
overestimate everything except for the mean component 
since some of the nonlinear interactions are neglected in 
this approach. 

Viscous drift 

As stated earlier the viscous drift force consists of two 
sources: the second-order term of Morison drag force 
acting on the structure below the mean water level and 
the drag force acting on the splash zone due to the 
variations in the wave surface elevation above the mean 
water level. The viscous drift force below the mean 
water level is only possible in the presence of currents. 

The wave-induced viscous forces on the splash zone 
with and without currents corresponding to different 
waves are presented in Fig. 10. It is noted in this figure 
that the force (only in the order of 10 4 newtons) is much 
smaller than the force on the splash zone when the 
platform is assumed to be fixed. The viscous force on the 
splash zone largely depends on the correlation between 
the wave surface elevation and the relative fluid- 
structure velocities. In these examples, the water 
particle velocities and the platform velocity response 
have nearly the same phases and amplitudes, which 
result in the normalized correlation between the relative 
velocity and wave surface elevation on the order of 5%. 
Hence, both the steady and fluctuating components of 
this viscous force appear to be of little significance. 
These examples are based on the JONSWAP spectrum 
with an average peak ratio (i.e. 7 = 3.3). However, in 
some extreme cases, this force can be more significant, 
an example of which will be given later. It is also noted 
in this figure that the force on the splash zone is 
enhanced by the presence of currents. 

The TLP response at low frequencies is only caused 

Table 3. Response computed by different methods (conditions: 
Fig. 9, av= 2.926m) 

Item Time Frequency Approximate 
domain domain 

Mean offset 3.00m 3.07m 3.08m 
St. dev. (<0.02Hz) 3.18m 3.54m 6"16m 
St. dev. (>0.02Hz) 0'605m 0.534m 0.70m 
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by the viscous drift force acting on the splash zone in the 
absence of the currents (Fig. 11). It is noted that the 
standard deviations computed in the frequency and time 
domains are not very close. Since the value of the drift 
force is small, various numerical errors may become 
significant enough to cause some discrepancies in the 
forces and response obtained in the time and frequency 
domains (Figs 10 and 11). 

In Fig. 12, the contribution of currents is included. 
The mean offset of the platform in this case is caused by 
a combined effect of the currents and waves. Both the 
mean and the standard deviation of the response show 
good agreement between the results in the time and 
frequency domains. 

The results in Figs 10-12 suggest that the viscous drift 
force and the corresponding displacement response 
decrease with an increase in the wave peak frequency. 
This is attributed to the lack of kinetic energy associated 
with the waves at high wave peak frequencies described 
by the JONSWAP wave spectrum. 

The results in Fig. 13 provide the response ratios in 
the presence and absence of currents. It is noted in this 
figure that the response ratio to the wave surface 
elevation rapidly increases with an increase in the wave 
peak frequency until fo = 0.1Hz and subsequently 
approaches a plateau. A similar trend has been 
reported by Finnigan et al. 2 

Let us examine an extreme sea state with large waves, 
assuming that the wave peak frequency is equal to 
0.09Hz and the wave parameters are 7 =  6 and 
a =0.0202 (Spidsoe & Sigbjornsson). 28 This input 
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Fig. 11. Surge drift due to wave viscous forces. 
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Fig. 12. Surge drift due to viscous forces. 

information provides the standard deviation of the 
wave surface elevation equal to 2-765m. The spectral 
density functions of the response in the absence and 
presence of currents shown in Figs 14(a) and 14(b) 
iUustratc that the low frequency motion induced by the 
viscous drift force is larger than the wave-frequency 
response. The oscillatory response in the absence of 
currents (due to the viscous force on the splash zone) 
could still be quite large in this case (Fig. 14(a)). The 
spectral density functions obtained by the frequency 
and time domains provide a good agreement. The 
unsmoothed estimates of the spectral density function 
derived from the time history of the response are 
inherently oscillatory (Bendat & Pierso129). Therefore, 
to provide a better comparison, the standard deviation 
of the response based on the three methods (time 
domain, frequency domain, and approximate method 
based on response ratio) is compared in Table 4. The 
results also include motions in other compliant modes, 
i.e. sway and yaw. It is noted that the results from the 
time and frequency domains are in perfect agreement 
and that the concept of the normalized wave-frequency 
response and the drift ratio offer an approximate 
prediction of the response with an error of less than 
10%, except for the mean offset of the platform in the 
absence of currents which has a very small value. It is 
also noted in Table 4 that the interactions introduced by 
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Table 4. Response computed by different methods (conditions: Fig. 14(a) and (b), as= 2.76 m) 

Item Time Frequency Approximate 
domain domain 

Surge (m) Mean 8.900 8.66 8.5 
St. dev. (< 0.023 Hz) 2.931 3.027 3-13 

St. dev. ( > 0.023 Hz) 1.072 1.030 0.97 
Sway (m) Mean 6.066 5-97 - -  

St. dev. (< 0.023 Hz) 0.586 0'527 - -  
Yaw (rad) Mean 0.000726 0"000801 - -  

St. dev. (<0.023 Hz) 0.00101 0'00108 - -  

Surge (m) Mean 0'9383 0.964 0.53 
St. dev. (< 0.023 Hz) 1.399 1.470 1.35 
St. dev. (> 0.023 Hz) 0.988 1-020 0.97 

U = 1"4 m/s at 45 ° angle of 
approach 

U = O  
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~' 250 r... [J JONSWAP spectrum: 
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Fig. 14. (a) Spectral density function of surge response. (b) 
Spectral density function of surge response w/current. 
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Fig. 16. Surge drift due to displacement feedback. 

the nonlinearity in the drag force terms of  the water 
particle velocity vector result in sway and yaw mot ions  
for  wave propaga t ion  at zero angle o f  incidence when 
currents approach  at 45 ° angle o f  attack. 

Displacement-induced feedback drift 

For  the example under  consideration, the mean and 
s tandard  deviation o f  the force and corresponding 
response due to the displacement feedback are pre- 
sented in Figs 15 and 16. In the time domain  it is not  
convenient  to delineate the feedback force f rom the 
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Fig. 15. Mean displacement feedback forces in surge. Fig. 17. Response ratio due to displacement feedback. 
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Fig. 18. Spectral density function of surge response due to 
feedback. 

others, therefore, in Fig. 15 only the frequency domain 
values are plotted. The ratio of the response to the 
variance of the wave surface elevation is shown in Fig. 
17. These figures demonstrate that the oscillatory 
component due to the displacement feedback is more 
significant in comparison with the mean offset. The 
results given in Fig. 16 suggest that the response due to 
the feedback is significant only for the sea state 
described by the low wave peak frequencies. 

The response spectrum in an extreme sea state is 
presented in Fig. 18 and Table 5. The spectral 
description demonstrates that the response due to 
displacement feedback is only slightly smaller than the 
wave-frequency response. As noted in the previous 
examples, the frequency domain response provides good 
agreement with the time domain results. The approxi- 
mate procedure provides higher values. 

Summary of the wave-induced drift effects 

In this section, the relative contribution of TLP response 
due to different drift forces is delineated. In Figs 19a and 
19b the mean offset of the platform under different drift 
forces with or without currents is presented. These 
figures suggest that in general all three mechanisms 
contribute to the platform mean offset in the absence of 
currents. In contrast, the currents and the viscous drift 
effects have a major contribution in the presence of 
currents. Figure 20 presents the standard deviation of 
the slowly varying surge motion under different wave 
drift forces. The contribution of the viscous drift force is 
relatively insignificant in the absence of currents, but the 
addition of currents in combination with the waves of 

Table 5. Response computed by different methods (conditions: 
Fig. 18, o,1= 3"7 m) 

Item Time Frequency Approximate 
domain domain 

Mean offset 0.560 m 0.637 m 0.640 m 
St. dev. (<0.02Hz) 1.54m 1-57m 2.10m 
St. dev. (>0.02Hz) 2-32m 2.30m 2.22m 
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Fig. 19. (a) Platform mean surge offset due to drift forces. (b) 
Platform mean offset in surge due to drift forces. 

low peak frequencies (less than 0.1 Hz) significantly 
enhances the contribution of the viscous effects. The 
potential drift force becomes relatively important only 
when the wave peak frequency is larger than 0"09 Hz. As 
noted earlier, the feedback force contributes more in the 
waves of  low peak frequencies. 

In Fig. 21, the mean offset and the standard deviation 
due to all the drift forces (in the presence and absence of 
currents) are presented. An approximate estimation of 
the mean offset of  the platform can be made by a simple 
summation of the mean offsets induced by these 
individual drift forces (compare Figs 19a and 19b with 
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Fig. 20. Comparison of drift force contributions in surge. 
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Fig. 21. Platform surge displacement due to drift forces. 

Fig. 21). However, it is not possible to add the standard 
deviation of response contributions from different 
sources in Fig. 20 because of the correlations that exist 
among those that range from -1 to +1 as well as the 
nonlinear interactions• (Compare the sum of each 
contribution in Fig. 20 with Fig. 21.) The combined 
analysis presented here takes into account the correct 
correlation that exists among various components• A 
simple superposition fails to provide accurate results. It 
is noted in Fig. 21 that the introduction of currents may 
have positive and negative effects on the response since 
the currents can induce both the slowly varying drift 
forces and the viscous damping to excite and suppress 
the platform oscillations at the same time. The ratio of 
the response to the variance of the wave surface 
elevation is given in Fig. 22 for approximate estimation. 

A final example concerning the extreme sea state is 
presented in which fo = 0.09 Hz, 7 = 6 and a = 0.0202 
in the presence of 1 m/s currents. It is noted in Fig. 20 
that both the potential and the viscous drifts for 
fo --0.09 Hz are important. The spectral density func- 
tions are plotted in Fig. 23 and the corresponding data 
are listed in Table 6. It is noted in the figure and the 
table that the low frequency response is much greater 
than the wave-frequency response in this extreme sea 
state. The results obtained from both the time and 
frequency domains and from the approximate method 
are in good agreement. 
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Fig. 23. Spectral density function of surge response. 

6 CONCLUSIONS 

The drift forces acting on a TLP are categorized here as 
the potential, viscous and displacement feedback drift 
forces. These forces originate from various mechanisms 
involving the nonlinearity in the viscous drag term, 
nonlinearity in the potential forces, wave free surface 
variation and the platform displacement. All the drift 
forces contribute significantly to the TLP motion in the 
horizontal plane. The parameter study conducted for the 
example TLP suggests that each of the three drift force 
mechanisms contribute to the platform mean offset in 
the absence of currents. TLP response due to viscous 
drift forces is relatively small in the absence of currents, 
but the addition of currents in combination with the 
wave field characterized by peak frequency less than 
0"1 Hz enhances the response. The potential drift 
becomes relatively more predominant for waves with 
peak frequencies greater than 0"09 Hz. The displacement 
feedback drift forces contribute more in the waves of 
low peak frequencies. The total mean offset is a simple 
summation of the individual components• The same is 
not valid for the fluctuating drift as the correlation 
between different sources of drift become important, 
and a simple superposition yields inaccurate results. In 
this paper, analysis based on computationally effecient 
schemes in both the time and frequency domains that 
take into account the correlation structure among these 
drift forces in computing the platform response are 
shown to have a good agreement. It is important to note 
that additional drift forces that may result from second- 
order diffraction of waves by the TLP have not been 
addressed here. 

Table 6. Response competed by diferent methods (conditions: 
Fig. 23, gn= 2•76m) 

Item Time Frequency Rough 
domain domain estimation 

Mean 9.59 m 9-06 m 10-35 m 
St. dev. (<0.03Hz) 4.26m 4.65m 4.97m 
St. dev. (>0-03 Hz) 1-07m 1.02m 0-97m 
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Appendix A: Formulation of the Quadratic Transfer 
Function by the Boundary Element Method 

Here we introduce a comparatively simple algorithm for 
the computation of  the potential drift forces on a TLP 
type structure. The computation is based on the 
boundary element method. A minor modification of  



14 A. Kareem, Y. Li 

an existing computer program for the first-order wave 
diffraction and radiation loads leads to the program for 
the drift force computation. Considering that the drift 
force is concentrated near the water surface level, the 
contribution of the pontoons to the drift force is 
neglected. This leads to a simplified configuration of 
the TLP with vertical cylindrical columns. 

Let a cylindrical coordinate system OrO( be established 
with respect to a cylinder (see Fig. A-l). The water 
particle velocity vector u(t,r) (i.e. V~b(t,r)) can be 
expressed for r located on the curved surface of the 
cylinder, 

u(t, r) = uo(t, r)e0 + u¢(t, r)e¢ 

and if point r is on the cylinder bottom, 

u(t,r) = uo(t,r)eo + u,(t,r)er (A1) 

where er, e0 and e¢ denote unit vectors. For symbolic 
simplicity, u,¢(t,r) is introduced, which represents 
u~(t,r) if the point r is on the lateral surface and 
ur(t,r) if r is at the cylinder bottom. Then, eqn (1) is 
given by 

= Lo ½p[~(t, r) + UZr¢(t, r)]T(r) dA Fpot(t) 

-- IWL l pgr/2(t' r)T(r) dr/ (A2) 

The water particle velocities and disturbed wave surface 
for bi-chromatic wave of unit amplitude at frequencies 
f~ and fm are given by 

uo(t,r ) R=e 

ur((t, r) Re 

R c  r/(t, r) = 

u0(fn,r) exp [j(2rcfnt + en)] 

+ uo(fm,r) exp [j(2rcfmt + em)] 

Ur¢(fn, r) exp [j(27rfnt + en)] 

+ Urc(fm,r) exp [j(27rfmt + em)] 

r/(fn, r) exp [j(27rfnt + e,)] 

+ 77(fro, r) exp [j(2rcfmt + era)] (A3) 

where u0(fn,r), u~¢(fn,r) and r/(fn,r ) denote the 
complex amplitudes of the water particle velocities and 
disturbed wave surface elevation coresponding to the 
incident wave at frequency f~. Substituting eqns (A3) 
and eqn (A2) and following eqn (4), the quadratic 
transfer function is reduced to 

= [ lp[uo(fn,r)u~(fm,r) Hpot( fn, fm) d Ao 

+ Ur¢ ( f~, r)u*¢( fro, r)]T(r) dA 

- IwL ¼ Pg[r/( f ' '  r)r/*(fm, r)]T(r) dL 

(A4) 

The remaining task is to express the complex 
functions uo(fn,r), Ur¢(f,~,r) and r/(f~,r) in terms of 
the incident wave surface elevation r/(f~) with unit 

. .-g.. 
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,~. ----- O~ci r =12 

-....._ *" ~. (~13+I) 
((x-l,~) ~ ._ -. -~" ".~L -- (o~+1,13) ~°ng=5 .=. 
((x'13-1) " ~ ~ ~ ~  (a'13) 13~ =3 

O 
Fig. A1. Discretization of a cylinder surface for potential drift 

force computation. 

amplitude. Let the lateral surface of each cylinder by 
discretized into acir x fllong elements, the bottom being 
discretized into (a¢ir x ~/rad+ 1) elements and each 
element be identified by a/~ (see Fig. A1). The complex 
velocity potential ~(fn, r~ )  at the center of element a/~ 
corresponding to the unit amplitude wave surface 
elevation can be com[3uted by the boundary element 
method (Kareem & Li'). 

The facets located on the same circle form a closed 
loop. It is expected that uo(f~, r) is continuous along the 
circumference. This requirement can be satisfied by the 
central difference method, which allows uo(f~, r) at the 
center of the element number a~/be given by 

uo(fn, r~ )  - cb[fn' r(,~+ 1)~] - c~[fn, r(~_ l)~] (A5) 
27r 

2 r - -  
O~cir 

The longitudinal or radial velocities, Ur¢(f~, r), at the 
last facet near the end cannot be computed by the 
central difference method. Hence, a polynomial inter- 
polation is introduced: 

¢i,[f~, (O~,~,ff)] = Z ~ ~(fn,r~/~) 
3 = 1 5 = 1  

(A6) 

This allows the potential at zero depth (i.e. at the mean 
water level) to be interpolated for the computation of 
the disturbed water surface elevation r/(f~,r). The 
differentiation of eqn (A1) leads to the water particle 
velocity Ur¢(f~, r). 

Finally, substituting u0(f~,r), uo(fm,r), ur¢(f,n,r), 
Ur¢(f,r), r/(fn,r ) and r/(fm,r ) in eqn (A4) yields the 
required vector of quadratic transfer functions 
Hpot ( fn ,  frn).  


