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Abstract

The simulation of random velocity and pressure signals at un-instrumented locations of
a structure conditioned on measured records is often needed in wind engineering. Malfunction-
ing equipment may leave a hole in a wind data set or information may be lacking due to
a limited number of instruments or difficulty in monitoring at certain locations. This paper
presents a non-Gaussian conditional simulation technique in the context of non-Gaussian
pressure fluctuations in separated flow regions, or velocity fluctuations in atmospheric flows.
First, a uni-variate non-Gaussian simulation technique is developed. This is extended to
multi-variate, and subsequently utilized as a mapping technique in a conditional simulation
algorithm. This technique is applied to both the extension of existing records beyond recorded
lengths, and the simulation of missing or damaged records based on measured data at other
locations. ( 1998 Published by Elsevier Science Ltd. All rights reserved.

1. Introduction

Simulation methods are becoming very attractive for the analysis and prediction of
nonlinear system response as computational expense decreases with increasing com-
puter hardware speed. Implementation of time domain methods require simulated
load time histories with specific statistical and spectral characteristics. Many of the
studies encompassing analysis and modeling of wind effects on structures have tacitly
assumed that the involved random processes are Gaussian. This assumption is valid
for integrated load effects of the random pressure field over large areas. However,
regions under separated flows experience strong non-Gaussian effects in the
pressure distribution characterized by high skewness and kurtosis, and may be highly
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correlated over the entire separation region. The non-Gaussian pressure effects lead to
non-Gaussian local loads, and result in increased expected damage in glass panels and
higher fatigue effects on other components of cladding. When the assumption of
Gaussian wind loading is inappropriate, techniques for simulating non-Gaussian
loading must be sought. This work introduces multi-variate non-Gaussian condi-
tional simulation methods capable of producing realizations with a wide range of
spectral and probabilistic characteristics conditional on measured records at some
locations. The correlation between multiple locations is accurately simulated, while
maintaining the appropriate spectral and probabilistic content of the processes at
each location.

2. Background: modified Hermite transformation

An earlier study [1] presents the development of the so-called forward and
backward modified Hermite transformations. Forward transformation produces
a non-Gaussian process, x, through static transformation of a Gaussian process, u,
using [2]

x"u#d
3
(u2!1)#d

4
(u3!3u). (1)

The forward modified Hermite transform identifies the optimum values for the
polynomial coefficients d

3
and d

4
such that x matches the desired values of skewness

and kurtosis. The backward modified Hermite transform identifies the appropriate
coefficients in the inverse of Eq. (1) necessary to produce a Gaussian process, u, from
a non-Gaussian process, x. The forward and backward modified Hermite transforma-
tions are applied in a non-Gaussian simulation algorithm in the next section.

3. Spectral correction: A non-Gaussian simulation technique

Spectral correction is a robust new non-Gaussian simulation method which utilizes
user specified non-Gaussian characteristics and frequency content in the form of
target moments through fourth order and a target power spectrum. Alternatively, the
user may define non-Gaussian characteristics through a marginal PDF model.
A schematic of the method is shown in Fig. 1. An iterative application of corrective
transformations provides convergence to the desired spectral and probabilistic
characteristics.

Following from the top left in the schematic, the target spectrum GT is applied to
produce a Gaussian process u using a standard Gaussian simulation routine [3,4]. u is
sent through a moment correction transformation, consisting of a forward modified
Hermite transformation to yield a process x which matches the desired skewness and
kurtosis (uPx). This non-Gaussian process x has a power spectrum Gx which no
longer matches the target spectrum GT due to distortions in the transformation. The
process x is sent through a spectral correction to produce x

#
which fits the target

spectrum GT, and maintains the phase in x (xPx
#
). The distorted skewness and
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Fig. 1. Schematic of the spectral correction non-Gaussian simulation method.

kurtosis of x
#

are compared with the target values using

err"D(cT
3
!c

3
)/cT

3
D#D(cT

4
!c

4
)/cT

4
D, (2)

where cT
3
, cT

4
are the target, and c

3
, c

4
are the measured skewness and kurtosis from x

#
.

If the error, err, is unacceptably large, the second iteration begins by sending the
process with the correct spectrum and distorted skewness and kurtosis, x

#
, back to the

top of the loop to the moment correction. Here the skewness and kurtosis are again
corrected using the backward and then forward modified Hermite transform to
produce the second iteration of x (x

#
Px

2
). The iterations continue, checking the

error, err, after each spectral correction transformation, until the distorted moments
of x

#
converge to the target moments within a set tolerance. The spectrum of the

resulting simulated process matches the target, and the skewness and kurtosis will be
within user-specified tolerance. Typically, two or three iterations are required for
convergence [5].

The modified Hermite transform may be replaced with a CDF-type mapping when
the marginal PDF model associated with the modified Hermite transform is inappro-
priate [6]. This provides the option of describing the non-Gaussian characteristics of
the desired process with either the first four moments, or a marginal PDF model.

3.1. Example: simulated non-Gaussian suction pressure on a rooftop

This example uses full-scale pressure data measured on the roof of an instrumented
building at Texas Tech University. The spectral correction algorithm is used to
simulate measured samples of pressure data in a separated flow region. The left side of
Fig. 2 shows a comparison of the measured data sample and a single simulation
realization. The realization is generated using a target spectrum estimated from the
data and the first four measured moments. Note the similarities between measured
and simulated samples including strong negative skewness, dominant low-frequency
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Fig. 2. Left: measured and simulated pressure data. Right: power spectral density and probability density
function of measured and simulated pressure data.

content, frequently clustered extreme peaks, and a zero rate of crossing into positive
pressure. Similarities are also observed through comparisons of the power spectral
density and probability density function estimated from the measured data and
simulated data in the right side of Fig. 2. The spectral correction simulation method
closely emulates these important characteristics in the measured non-Gaussian data.

4. Multivariate spectral correction

Spectral correction is extended to simulate multiple correlated non-Gaussian time
histories. Multivariate simulation becomes necessary for cases where non-Gaussian
processes at spatially distributed locations are desired. For example, simulation of
pressure along the roof edge or along the corner region of a building, where pressure
under separated flow can be well correlated across the entire length.

The univariate algorithm in the previous section begins with a single Gaussian
simulation, and iteratively corrects the power spectrum and PDF of the simulated
realization. The multivariate spectral correction simulation algorithm starts with
a multivariate Gaussian simulation, applies iterative corrections to the power spec-
trum and PDF of each process, and additionally updates the cross-spectrum used to
simulate the initial Gaussian processes. The iterative corrections to the cross-spec-
trum result in a convergence to the desired correlation between the resulting
simulated non-Gaussian processes.

The correlation updating scheme operates on the inverse Fourier transform of the
cross-spectrum, the cross-correlation function, RD

ij
(q). Pairs of simulated processes

whose cross-correlation matches the target, RxNG
ij

(q)"RT
ij

(q), will reflect the desired
linear correlation between the ith and jth processes.
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Fig. 3. Schematic of the multivariate spectral correction simulation method.

A schematic representation of the multivariate simulation algorithm is given in
Fig. 3. Beginning at the top left, the target autospectrum, GT

ii
, and target skewness and

kurtosis, cT
3
, cT

4
, of each process is input to the algorithm, along with the target

cross-correlation function between each pair of processes, RT
ij
. A standard multi-

variate Gaussian simulation algorithm [7,8] produces a set of Gaussian processes
with the design cross-correlation function, RD

ij
, and target auto-spectrum, GT

ii
. This

design cross-correlation is initially set to the target cross-correlation function for the
first iteration (RD

ij
"RT

ij
). Each Gaussian process is then transformed to non-Gaussian

using spectral correction (xi
G
Pxi

NG
). The cross-correlation between these non-Gaus-

sian processes are measured, RxNG
ij

, and compared with the target values, RT
ij
. If the

error is too large, a second iteration is begun, otherwise the set of processes xi
NG

are
accepted as the output. Two or three iterations provides convergence to the target
cross-correlation function.

At the end of an iteration, the design cross-correlation function is updated for the
next iteration using

RD
ij

(it#1)"AoD
ij

(it)#
DoD

ij
(it)D[oT

ij
!oxNG

ij
(it)]

max(DoD
ij

(it)D) B (max(DRT
ij
D)) over all q, (3)

using the following, with the function of iteration notation (it) replaced by the function
of time lag (q) notation:

oD
ij

(q)"(RD
ij

(q))/(max(DRT
ij

(q)D)), oT
ij

(q)"(RT
ij

(q))/(max(DRT
ij

(q)D)),

oxNG
ij

(q)"(RxNG
ij

(q))/(max(DRT
ij

(q)D)). (4)
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Fig. 4. Left: location of pressure taps. Right: comparisons of measured and simulated correlation statistics.
Top left: absolute value of the cross-spectrum between locations 1 and 2; top right: phase of the
cross-spectrum between locations 1 and 2; bottom: cross-correlation function.

Fig. 5. Left: measured rooftop pressure at the three locations in Fig. 4. Right: simulated rooftop pressure at
the three locations in Fig. 4.

4.1. Example: rooftop pressure at three locations

This example again uses the full-scale pressure data, measured simultaneously at
several locations on the roof of an instrumented building. We consider three locations
on the roof in a separation zone where the pressure is highly non-Gaussian. The goal
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is to generate realizations of three pressure records which maintain the measured
cross-spectral density, and properly reflect the higher-order statistics and spectral
contents at each location. Fig. 4 is a diagram of the approximate locations of the
pressure taps. The offset leads to a non-zero phase relationship between locations.
Fig. 4 also compares the target and simulated cross-spectral density function and
cross-correlation between locations 1 and 2. The match between target and simulated
cross-spectra is excellent. Fig. 5 shows the three measured pressure records, and their
simulations using non-Gaussian multi-variate spectral correction. The low frequency
correlation can be seen in both figures, along with the distinct non-Gaussian charac-
teristics of the measured and simulated records.

5. Non-Gaussian conditional simulation

The formulation for Gaussian conditional simulation is first presented. Extensions
are then made to non-Gaussian conditional simulation using the spectral correction
algorithm.

5.1. Gaussian conditional simulation

Consider a pair of correlated Gaussian random vectors V
,

and V
6
. Let the two

variate normal distribution of these variables be denoted

p(V )"pC
V
,

V
6
D"NAC

k
,

k
6
D , C

C
,,

C
,6

C
6,

C
66
DB , (5)

where k
i
is the mean value of the variable i, and C

ij
is the cross-covariance between the

variables i and j. If a sample of V
,

is measured and denoted as �
,
, then it is the

conditional simulation of V
6

based on the measured record �
,

that is desired. This
problem has been addressed in several forms [9—12], each of which leads to an
equivalent final form for the conditional PDF of V

6
given the information on V

,
:

p(V
6
DV

,
"�

,
)"N(k

6
#CT

,6
C~1

,,
(�

,
!k

,
), C

66
!CT

,6
C~1

,,
C

,6
). (6)

A conditional simulation is then provided by [9,10,12]

(V
6
DV

,
"�

,
)"CT

,6
C~1

,,
(�

,
!V

,
)#V

6
, (7)

where V
,
, V

6
are unconditionally simulated variates, and �

,
is the known measured

variate. Derivations of the covariance matrices C
,,

and C
,6

provide the information
needed for Gaussian conditional simulation.

5.2. Frequency domain Gaussian conditional simulation

Frequency domain conditional simulation is applicable for generating realizations
of time series at unmeasured locations n, 2, N based on measured records at other
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spatial locations 1, 2, n!1. It is assumed that the spectral density matrix between
the n!1 known and the N!n#1 unknown locations is available.

The covariance matrices C
,,

and C
,6

are represented in the frequency domain as

C
,,
"C

G
11

G
12 2 G

1,n~1
G

21
G

22 2 G
2,n~1

: : : :

G
n~1,1

G
n~1,2 2 G

n~1,n~1
D ,

C
,6
"C

G
1,n

G
1,n`1 2 G

1,N
G

2,n
G

2,n`1 2 G
2,N

: : : :

G
n~1,n

G
n~1,n`1 2 G

n~1,N
D . (8)

The sub-matrices in Eq. (8) are composed of elements of the cross-spectral matrix
between locations i and j.

5.3. Time domain Gaussian conditional simulation

The conditional simulation in the time domain is applied to extend the length of
a measured process. The measured realization v

,
(t) consists of discrete time compo-

nents t"1,2,n!1, and the unknown realization v
6
(t) is a continuation of the

known realization over time t"n,2,N. The simulated realizations »
,
, »

6
in Eq. (7)

now consist of a simulation v(12N) based on the measured realization
v
,
(1,2, n!1) that extends to time t"N. This single simulated realization is par-

titioned into the known and unknown portions:

v(1,2,N)"[v
,
(1,2,n!1) (»

6
(n,2,N)D»

,
"v

,
)]. (9)

The covariance matrix in Eq. (7) consists of elements from the covariance vector

C
,,
"C

c
0

c
1

c
2 2 c

n~1
c
1

c
0

c
1 2 c

n~2
: : : : :

c
n~1

c
n~2

c
n~3 2 c

0
D ,

C
,6
"C

c
n

c
n`1

c
n`2 2 c

N
c
n~1

c
n

c
n`1 2 c

N~1
: : : : :

c
1

c
2

c
3 2 c

N~n`1
D , (10)

where c
i
are elements of the cross-covariance vector from either the Fourier transform

of the measured power spectrum or a temporal calculation.

46 K.R. Gurley, A Kareem/J. Wind Eng. Ind. Aerodyn. 77&78 (1998) 39–51



Fig. 6. Schematic of the conditional simulation algorithm using spectral correction.

5.4. Extension to non-Gaussian conditional simulation

The conditional simulation using Eq. (7) requires that the variates V
,
, V

6
, �

,
be

Gaussian. The conditionally simulated variate V
6
will then also be Gaussian. In order

to conditionally simulate non-Gaussian records, Eq. (7) is applied to an initial set of
Gaussian processes, and the result is mapped into the desired non-Gaussian domain,
using spectral correction. The correlation between the simulation at the unknown
location and the measured records at other locations is used to iteratively update the
cross-correlation matrix used to generate the initial set of Gaussian processes. A pre-
vious non-Gaussian conditional simulation algorithm [13] uses correlation distortion
based transformations for the mapping, and is thus limited to simulation of wide-
banded processes. The use of spectral correction here is appropriate for wide-banded
processes, and additionally permits the conditional simulation of more narrow-
banded processes.

Fig. 6 is a schematic of the non-Gaussian frequency domain conditional simulation
algorithm. The algorithm begins with the known non-Gaussian processes �

,
, the

measured covariance matrix C
,,

, the target spectra of the unknown processes GT
66

, the
target skewness and kurtosis cT

3
, cT

4
, and the target cross-covariance matrix between

the known and unknown processes CT
,6

. The design cross-covariance is set to the
target cross-covariance CD

,6
"CT

,6
for the first iteration. Gaussian simulations of

V
,
, V

6
denoted VG

,
, VG

6
are generated using the input C

,,
, CD

,6
, GT

66
, and a standard

multivariate Gaussian simulation algorithm. A modified Hermite transform is applied
to �

,
to produce a Gaussian variate �G

,
. Eq. (7) is then applied to produce a Gaussian

conditional simulation at the unknown locations, denoted �G
6
. The Gaussian

process, �G
6
, is sent through the Spectral Correction transformation to produce the
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Fig. 8. Left: measured rooftop pressure data and a non-Gaussian conditional simulation. Right: PDF and
PSD of measured and full extended pressure record.

non-Gaussian simulation v
6

with target skewness and kurtosis, and autospectra GT
66

.
The cross-covariance, C

,6
, between v

,
and v

6
are measured and compared with the

target cross-covariance CT
,6

. If the error between the measured and target covariance
is not acceptable, the design cross-covariance, CD

,6
, used to generate VG

,
, VG

6
is updated

for use in the next iteration.

5.5. Example: simulation of pressure on building rooftop at a fourth locations using three
measured locations

The statistics of measured non-Gaussian roof suction pressure records are used
in conjunction with a standard wind velocity coherence model to generate four
spatially separated non-Gaussian pressure records. The locations are assumed
to be 4 m apart perpendicular to the wind direction, and no separation parallel to the
wind direction. The skewness and kurtosis of each process is !1.05, 5.5, respectively.
The fourth location is assumed to be damaged, and the conditional simulation
algorithm presented above is used to replace it based on knowledge of the other three
records.

The left side of Fig. 7 is a view of the three known records and the simulated fourth
record. Note the strong low-frequency correlation among all four records. The right
side of Fig. 7 shows the target and measured coherence between locations 1 and 4,
2 and 4, and 3 and 4. The match demonstrates that the simulation is a suitable
replacement for the missing record. The far right top plot in Fig. 7 is a comparison of
the PDF of the missing recorded and its replacement. The use of spectral correction in
the conditional simulation algorithm ensures excellent agreement between target and
simulated marginal distribution and autospectrum.
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5.6. Example: extension of a single non-Gaussian pressure record

An example of the time domain non-Gaussian conditional simulation method is
shown in Fig. 8, where the measured rooftop suction pressure is conditionally
simulated. The measured data consists of q"512 points, and the total desired length
is ¹"1024 points. A close up of the joining region is shown to demonstrate smooth
transition from measured to simulated data. The upper right plot shows good
comparison between the measured and extended marginal PDF, and the lower right
plot compares the PSD of the measured and extended records. This example demon-
strates the applicability of the time domain non-Gaussian conditional simulation
algorithm to extend existing records while maintaining spectral and probabilistic
characteristics.

6. Conclusions

The non-Gaussian multivariate and conditional spectral correction simulation
algorithms are shown to be effective for generating realizations of time histories, at
one or more spatial locations, which match target characteristics given in the form of
an autospectrum, a marginal probability density function, and cross-correlation
functions between multiple processes. Spectral correction is extended to the condi-
tional simulation of non-Gaussian processes to replace missing or damaged records.
These algorithms provide additional tools for generating input to Monte Carlo-based
simulation methods of structural reliability analysis, particularly for cases where
environmental loading differs significantly from Gaussian.
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