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Abstract

Historically, the quadratic drag term containing the square of the fluctuating velocity
component has been often ignored in analyses of wind-excited structures. This paper addresses
a technique to model the contribution of this term to the system response extremes. Among the
topics covered are the development of a non-Gaussian gust loading factor via moment-based
Hermite transformation. A frequency domain analysis approach involving Volterra theory and
higher-order response cumulant calculations from direct integrations or Kac-Siegert technique
is employed to obtain information needed for this transformation. ( 1998 Published by
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Several authors [1—8] have addressed the contribution of the quadratic drag force
term to the mean-square response. These studies have acknowledged that for moder-
ate levels of wind turbulence intensity this contribution is negligible. On the other
hand, the importance of the quadratic term to response extremes has been shown to
be much greater [9—13]. This paper presents a unified approach to assessing the
importance of the quadratic drag term in terms of both mean-square system response
(Eqs. (4) and (5)) and response extremes. The format of the discussion is the same as
that found in building codes and standards in both the US and abroad.
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The treatment of dynamic wind load effects in wind engineering is often facilitated
by the introduction of a gust loading factor. Commonly used gust loading factors are
based on linearization, i.e., they ignore the quadratic term in the expression of drag
force. This paper will show a procedure in which the non-Gaussian character of the
process is taken into account through moment-based Hermite transformation
[12,14,15]. This transformation has been shown to represent more accurately the tail
region of the PDF of a non-Gaussian process than the more commonly Edgeworth-
series-based models. The present formulation reduces to standard Gaussian-based
formulation for the case in which the quadratic term is neglected.

A Volterra system formulation is used to estimate the higher-order response
cumulants of a nonlinear system exposed to wind loads. This frequency-domain
framework includes the contribution of the quadratic term as well as the relative
fluid-structure velocity which contributes aerodynamic damping to the system. The
response skewness and kurtosis determined either via direct integration [12] or
Kac—Siegert approach [16] become input to the moment-based Hermite transforma-
tion model for the gust factor. While analysis shows that the contribution of the
quadratic term is not significant in terms of second-order statistics as alluded to
earlier, its importance magnifies in the extreme response estimates. This trend is more
noteworthy for relatively stiff structures. Notably, structures which are relatively more
sensitive to background turbulence effects than the resonant portion of excitation are
most affected by the inclusion of the quadratic term. In this regard, the inclusion of the
squared term has definite design implication as most low- to mid-rise buildings are
sensitive to only the background turbulence effects.

2. Modeling and analysis

2.1. Aerodynamic loading

The total wind force on a structure in the alongwind direction of the wind is given
by

F(t)"1
2
oAC

D
(º#u!xR )2, (1)

where o is the air density, A the projected area, C
D

the alongwind force coefficient,
º the mean wind speed and xR the structural speed. Different levels of approximation
are made in using Eq. (1) for the analysis of wind-loaded structures. Typically, the
quadratic terms introduced by u and xR are ignored. In this study, we wish to examine
systematically the influence of various nonlinear terms on the wind loads and the
associated structural response. First, analysis based on single point statistics is
considered by ignoring the contribution of the feedback velocity term only:
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The spectral description of the fluctuating portion of the wind force is given by

S
F{
( f )"4c2º2S

u
( f )#2c2

=

P
0

S
u
( f )S

u
( f!f @) df @, (3)

where prime denotes the fluctuating part and c is equal to 1
2
oAC

D
. By definition, the

mean-square value of F@(t) is given by

F@2"4c2º2u2(t)#2c2[u2(t)]2"F@2
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Normalizing Eq. (4) by F@2
1

and rearranging

(F@2/F@2
1
)1@2"(1#I2/2)1@2 (5)

in which I"JuN 2/º is the turbulence intensity. The ratio between the RMS value of

the quadratic term wind force to the linear term is given by p*2+/p*1+"I/J2. For
a turbulence intensity of 15%, the quadratic term contribution is generally 10% of the
linear force [5]. An example of a tension leg platform with an exposed area of 3376m2,
drag coefficient of 1.2 and air density of 1 kg/m3 is given in Table 1 for three different
spectra of wind fluctuations. The results show that the contribution of the quadratic
term is indeed a function of the spectral description.

2.2. RMS response

The mean-square value of response is given by
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in which DH(i2pf )D2 and s2( f ) are the mechanical and aerodynamic transfer functions,
respectively. The aerodynamic transfer function accounts for distortion of approach
flow due to the presence of a structure and lack of correlation in the flow field.
A simplified expression which has been found to be in satisfactory agreement with
experimental observation is given by Ref. [17].

The preceding expression can be recast in the following form:
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Table 1
Mean, linear and quadratic wind force components on a TLP in surge

Spectrum Mean wind p of Mean wind p*1+ p*2+

velocity fluctuation force linear force quadratic
(m/s) (m/s) (kN) (kN) force (kN)

Harris 29.6 3.39 1798.0 406.51 32.92
Davenport 29.6 3.22 1795.8 386.1 29.70
Kareem 29.6 3.81 1804.2 456.9 41.58

manipulation was carried out to recast this formulation in the format used by
standards and specifications. B represents the background response contribution,
S denotes the size reduction factor, E represents the gust energy factor and f

n
and

m
n
are the natural frequency and damping, respectively, in the nth mode.

2.3. Peak response

The expected maximum value of random response X is given by

XM
.!9

"XM #gp
x
, g"J2 ln l¹#0.5772/J2ln l¹, (10)

where g is the peak factor for a Gaussian process [18] and l is the cyclic rate equal to
p
xR
/(2pp

x
). In case the process under examination is non-Gaussian alternative means

should be used to assess the peak factor. Refs. [9,12,13] have extended Davenport’s
Gaussian model to include non-Gaussian features. In these studies, it is noted that
relatively stiff structures with higher damping values under high levels of turbulence
exhibit maximum departure from Gaussianity. Kareem and associates evaluated the
peak factor for the non-Gaussian case by employing the moment-based Hermite
transformation which has been shown to be more accurate and robust in representing
the tail regions of the PDF in a non-Gaussian process than the Edgeworth series
employed in Ref. [9]. For the sake of brevity, only the final expression for the peak
factor is reported here; details are given in Ref. [13],
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where c"0.5772 (Euler’s constant), b"J2ln l
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which reduces Eqs. (11) and (12) to the standard Gaussian forms given by Refs.
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[14,18]. It should be noted that the expressions given for hK
3

and hK
4

above are
approximations. In this study, an iterative approach is used to modify these coeffi-
cients so that the transformation better reflects the statistics of the process being
analyzed.

Now the expected maximum value of response is given by
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Eq. (13) describes a non-Gaussian gust factor that includes contribution of the
u2 term. This expression reduces to classical expression if the u2 term is dropped.

2.4. Computation of cumulants

In this section, a Volterra series and Kac—Seigert based approaches are used to
compute higher-order cumulants necessary for the moment-based Hermite trans-
formation. Only a brief description of each is given, details can be found in Ref. [12].

2.5. Volterra series approach

Mathematically, the velocity squared term in Eq. (1) can be expanded and approx-
imately truncated as the following:
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where b"E[u#º!xR
1
]"º, and xR

1
and xR

2
represent linear and nonlinear compo-

nents of response. While this general expansion includes the effects of fluid-structure
interaction by including the structural velocity in the drag force expression, it may
also be used when this effect is neglected. Note that the first term in Eq. (14) represents
the square of a Gaussian process, while the second term represents the additional
damping of the second-order dynamic system. Now, the equation of structural motion
can be expressed as a system
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where a
1
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D
Aº and a

2
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D
A [12]. Both systems have the transfer function,
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The input of the second-order system can be viewed as the output of u(t) through
a linear filter, with the transfer function, Hl(u)"1!a

1
iuH(u). Then, the second-

order transfer function, related to u(t), is given by
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The expressions for the cumulants and power spectrum for the foregoing systems
are given in the following. For the sake of brevity, let H(1), H(1#2), and D(1)
represent H(u

1
), H(u
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1
, respectively,
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The evaluation of the fourth-order cumulant was considered computationally
prohibitive previously, not only because of the nature of the integrand, but also
because of the extensive computational effort needed to determine the multi-fold
integrals [19]. In Ref. [12], the preceding integrals have been rearranged to facilitate
computational efficiency. Details are omitted here for the sake of brevity.

2.6. Kac—Siegert approach

There is an alternative approach to obtain the higher-order cumulants by
Kac—Siegert technique [16]. Each component of the response is cast as an eigenfunc-
tion expansion. When the second-order response kernel, Q

2
(x,y), is Hermitian, the

orthogonal eigenfunctions, /
i
(.), are determined as the characteristic functions of the

following Fredholm homogeneous integral equation of second kind:

b

P
a

Q
2
(x, y)/(y) dy"j/(x). (19)

The nontrivial characteristic values of Eq. (19) are real, and the corresponding
characteristic functions are orthogonal to each other. Due to the orthogonality,
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simplification yields
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Presently, the kernel is given as
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where G(x)"[D(x)]1@2, and Q
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frequency. The foregoing equations can be solved numerically to obtain the eigen-
values and corresponding eigenvectors. Accordingly, the cumulant expressions for the
system (Eq. (15)) are given as
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where a
i
are coefficients of the eigenfunction expansion of the first-order response and

M is the number of terms retained. The third- and fourth-order cumulants are
significant and have physical meanings related to skewness and kurtosis. In particular,
for the moment-based Hermite transformation, c

3
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3
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3. Examples

Table 2 illustrates a comparison of the peak factor of the response of the SDOF
water tower given in Ref. [11]. The peak factors computed via the present moment-
based Hermite transformation method compare well with the results of that study and
reaffirm the shortcomings of an earlier non-Gaussian estimation method as well as the
Gaussian approximation (quadratic term in drag force neglected) to the peak factor.

Table 2
Comparison of peak factors

Case Ref. wind Power RMS m g g
/'

(m/s) law (m/s) (%) (Gaussian)
Soize Grigoriu Presentexponent
[9] [11] study

h"20 m, M"2161kg, K"85 300N/m
1 28 0.15 4.6 5 4.04 4.64 5.18 5.09
2 13 0.35 5.8 3 4.10 4.91 6.43 6.50
3 13 0.35 5.8 5 4.04 4.86 6.42 6.44
h"80 m, M"13 500 kg, K"85 300N/m
4 28 0.15 4.6 3 3.87 4.29 4.59 4.49
5 28 0.15 4.6 5 3.85 4.31 4.63 4.56
6 13 0.35 5.8 3 3.87 4.43 5.13 5.01
7 13 0.35 5.8 5 3.85 4.45 5.12 5.14

A. Kareem et al./J. Wind Eng. Ind. Aerodyn. 74–76 (1998) 1101–1110 1107



Fig. 1. Solid Gaussian; dashed, non-Gaussian, (a) ], m"0.01, I"0.15; o, m"0.05, I"0.15; (b)
], u"0.5, I"0.15; o, u"14, I"0.15; (c) ], u"0.5, m"0.01; o, u"14, m"0.03; (d)
u"14, m"0.03], Harris spectrum; o, Blunt spectrum [11].

The sensitivity of the peak factor to structural frequency, turbulence intensity,
damping ratio, and input spectrum is illustrated through an example single degree of
freedom floating offshore structure subjected to wind drag loads. The random wind
field is modeled in these examples by the Harris wind spectrum and the mean wind
velocity is 20 m/s. The results are for drag solely as a function of wind velocity, the
influence of the structural velocity in this particular example is negligible. In Fig. 1a,
the variation in the peak factor over a wide range of structural natural frequencies, u,
is shown for both Gaussian and non-Gaussian peak factors assuming low and high
damping. The peak factor almost doubles over the range of natural frequency
(structural stiffness). Fig. 1b indicates that changes in damping values, m, have a much
less significant effect on the peak factor. Fig. 1c shows that the effect of turbulence
intensity, I, is most pronounced for stiffer structures with higher damping. Fig. 1d
illustrates that similar trends are exhibited by the peak factor over a range of
turbulence intensities when the wind field is modeled by the Harris spectrum or the
blunt spectrum given in Ref. [11]. All of these figures indicate that the Gaussian
approximation leads to non-conservative estimates of the peak factor.

Underestimation of the gust factor by ignoring the u2 term in the drag force is
shown in Fig. 2. This figure shows that the Gaussian approximation leads to non-
conservative estimates of the gust factor, G, as well. Fig. 2a and 2b illustrate that the
gust factor decreases as the structural stiffness and damping ratio increase. Further,
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Fig. 2. Solid Gaussian; dashed, non-Gaussian, (a) ], m"0.01, I"0.15; o, m"0.05, I"0.15; (b)
], u"0.5, I"0.15; o, u"14, I"0.15; (c) ], u"0.5, m"0.01; o, u"14, m"0.03; (d)
u"14, m"0.03], Harris spectrum; o, Blunt spectrum [11].

these figures indicate that the increase in the gust factor introduced by non-Gaussian-
ity is most pronounced for stiffer structures. Fig. 2c shows that the gust factor
increases with increasing turbulence intensity, again, with a greater impact of non-
Gaussianity on the stiffer structure. Finally, Fig. 2d shows that for the two wind field
spectral models chosen for comparison, the behavior of the gust factors for increasing
turbulence intensity and due to non-Gaussianity is very similar.

4. Concluding remarks

A unified treatment of the effect of the quadratic velocity term in the wind force on
structures has been presented. The discussion has covered not only the mean-square
response, but also the extremes of the response and has been cast in a framework
common to building codes and standards. The quantification of the expected extreme
response has been further facilitated by the introduction of a non-Gaussian peak
factor which employs the system response cumulants in a moment-based Hermite
transformation PDF model. In general, the inclusion of the quadratic velocity term
increases both the mean-square and the expected extreme response of a system, having
a more significant impact upon the latter. Furthermore, a parameter study indicates
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that the increase in the expected extreme response is more pronounced for structures
which are stiffer and hence more susceptible to background turbulence.
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