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Abstract. Among a host of techniques developed for the analysis and prediction of nonlinear structural response,
simulation methods are gaining popularity as computational efficiency increases. Implementation of time domain
methods require simulated load time histories with case-specific statistical and spectral characteristics. When
the assumption of Gaussian wind loading is inappropriate, techniques for simulating non-Gaussian loading must
be sought. Over a larger expanse of building surface, simulation of correlated loads at several spatially separated
locations is required. This work introduces a multi-variate non-Gaussian simulation method capable of producing
realizations with a wide range of spectral and probabilistic characteristics. The correlation between multiple
locations is accurately simulated simultaneously, while retaining the appropriate spectral and probabilistic content
at each location.

Sommario. Tra la varie tecniche per l’analisi e la previsione della risposta structurale non lineare, stanno
acquistando grande popolarità i metodi di simulazione poiché incrementano l’efficienza computazionale.
L’implementazione dei metodi nel domino del tempo richiede la simulazione di storie temporali di carico con
specifiche caratteristiche statistiche e spettrali. Quando l’ipotesi di gaussianità dell’azione del vento non risulta
adeguata pùo essere necessario ricorrere a techniche di simulazione di carichi non gaussiani. Per superfici di edifici
più estesèe richiesta la simulazione di carichi correlati in diverse posizioni separate spazialmente. La presente
memoria introduce un metodo di simulazione multivariata non-gaussiana capace di riprodurre realizzazioni
con un ampio campo di caratteristiche spettrali e probabilistiche. La correlazione tra le molteplici posizioni
viene simulata simultaneamente in modo accurato mantenendo in ciascuna posizione caratteristiche spettrali e
probabilistiche appropriate.
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1. Introduction

The assurance of the safety of structural envelopes subjected to wind loads requires the consid-
eration of non-Gaussian pressure fluctuations. Many of the studies encompassing analysis and
modeling of wind effects on structures have tacitly assumed that the involved random processes
are Gaussian. This assumption has been invoked primarily for the convenience in analysis, since
information concerning statistics of Gaussian processes is abundant. This assumption is valid
for integral load effects of the random pressure field.

Regions of structures under separated flows experience strong non-Gaussian effects in the
pressure distribution characterized by high skewness and kurtosis. These non-Gaussian loads
may be highly correlated over the characteristic dimensions of the entire separation region,
eliminating the applicability of the central limit theorem. The non-Gaussian effects in pressure
result in non-Gaussian local loads, and give way to increased expected damage in glass panels and
higher fatigue effects on other components of cladding. The thrust of the work reported here is the
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development of new methods of simulating correlated random processes at spatially separated
locations, focusing on the simulation of typical non-Gaussian wind pressure fluctuations under
separated flow regions. The technique is introduced first with respect to a single location, then
extended to multiple locations. Several examples demonstrate the applicability of the method.

The simulation of Gaussian processes has been explored for several decades, while non-
Gaussian simulation has not been as widely addressed. Recent efforts have concentrated on a
variety of iterative and non-iterative adaptive correlation-based spectral and ARMA methods [1,
7, 14]. This idea has also been extended to non-Gaussian conditional simulation techniques [2].
A sample of several available time series methods can be found in [5], including filtered Poisson
processes [9], ARMA models driven by non-Gaussian noise [8], and alpha stable processes.
This work focuses on a robust new method that is appropriate for a wide number of applications,
including classes not included in the above samplings.

2. Modified Hermite Polynomial Static Transformation

An earlier study [7] presents the development of the so-called forward and backward Modified
Hermite Transformations. Forward transformation produces a non-Gaussian process,x, through
static transformation of a Gaussian process,u, through [12]

x = u + h3(u
2 − 1) + h4(u

3 − 3u). (1)

The forward Modified Hermite Transform identifies the optimum values for the polynomial
coefficientsh3 andh4 such thatx precisely matches the desired values of skewness and kurtosis.
The backward Modified Hermite Transform identifies the appropriate coefficients in the inverse
of equation (1) to produce a Gaussian process,u, from a non-Gaussian process,x. A standard
optimization routine is used to identify the most appropriate coefficients constrained by the
desired higher order statistics.

The forward and backward Modified Hermite Transformations are applied in a robust non-
Gaussian simulation algorithm in the next section.

3. Spectral Correction: A Non-Gaussian Simulation Technique

Spectral correction is a robust new non-Gaussian simulation method which utilizes user specified
non-Gaussian characteristics and frequency content in the form of target moments through
fourth order and a target power spectrum. Alternatively, the user may define non-Gaussian
characteristics through a numerical PDF model.

A schematic of the method is shown in Figure 1, and consists of a moment correction and
spectral correction transformations in series. An iterative application of both corrections provides
convergence to the desired spectral and probabilistic characteristics.

Following from the top left in the schematic, the target spectrumGT is applied to produce a
Gaussian processu using a standard Gaussian simulation routine [e.g. 4, 11].u is sent through a
moment correction transformation, consisting of a forward Modified Hermite transformation to
yield a processx which matches the desired skewness and kurtosis(u → x). This non-Gaussian
processx has a power spectrumGx which no longer matches the target spectrumGT due to
distortions in the transformation. The processx is sent through a spectral correction to produce
xc which fits the target spectrumGT , and maintains the phase inx(x → xc). The spectral
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Figure 1. Schematic of the spectral correction non-Gaussian simulation method.

correction transformation fromx to xc distorts the skewness and kurtosis corrected inx. The
skewness and kurtosis ofxc are compared with the target values using

err =
∣∣∣∣ γ T

3 − γ3

γ T
3

∣∣∣∣+
∣∣∣∣ γ T

4 − γ4

γ T
4

∣∣∣∣ , (2)

whereγ T
3 , γ T

4 are the target skewness and kurtosis, andγ3, γ4 are the measured skewness and
kurtosis fromxc.

If the error, err, is unacceptably large, the second iteration begins by sending the process with
the correct spectrum and distorted skewness and kurtosis,xc, back to the top of the loop to the
moment correction. Here the skewness and kurtosis are again corrected using the backward and
then forward Modified Hermite Transform to produce the second iteration ofx(xc → x2).

The iterations continue, checking the error, err, after each spectral correction transform, until
the distorted moments ofxc converge to the target moments within a set tolerance. The spectrum
of the resulting simulated process matches the target, and the skewness and kurtosis will be within
user specified tolerance. Typically two or three iterations are required for convergence [6].

The Modified Hermite Transform in the moment correction section of the iteration may be
replaced with a CDF-type mapping transformation when the PDF model associated with the
modified Hermite transform is inappropriate [3]. This gives the user the option of describing
the non-Gaussian characteristics of the desired process with either the first four moments, or a
PDF model.

Example: Simulated Non-Gaussian Suction Pressure on a Rooftop
This example uses full scale pressure data measured simultaneously at several locations on the
roof of an instrumented building at Texas Tech University. The Spectral Correction algorithm
is used to simulate measured samples of pressure data in a separated flow region.

The left side of Figure 2 shows a comparison of the measured data sample and a single
simulation realization. The realization is generated using a target spectrum estimated from the
data and the first four measured moments as input. Note the similar characteristics including
strong negative skewness, dominant low frequency content, and frequent clustered extreme
peaks. These similarities are better seen through comparisons of the power spectral density and
probability density function estimated from the measured data and simulated data in the right
side of Figure 2. The Spectral Correction simulation method closely emulates these important
characteristics in the measured non-Gaussian data. In fact these comparisons can be improved
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further by simply reducing the allowable error tolerance in the spectral correction algorithm, at
the cost of an additional iteration or two.

4. Multi-Variate Spectral Correction

Spectral correction is extended to include multi-variate simulation, where more than one non-
Gaussian correlated time history are generated simultaneously. Multi-variate simulation be-
comes necessary for cases where non-Gaussian processes at spatially distributed locations are
desired. For example, simulation of pressure distributed along the roof of a building, where large
scale turbulent flow is correlated across the entire structure.

The univariate algorithm in the previous section begins with a single Gaussian simulation,
and iteratively corrects the power spectrum and PDF of the simulated realization. The multi-
variate spectral correction simulation algorithm starts with a multi-variate Gaussian simulation,
applies iterative corrections to the power spectrum and PDF of each process, and additionally
to the cross-spectrum used to simulate the initial Gaussian processes. The iterative corrections
to the cross-spectrum result in a convergence to the desired correlation between the resulting
simulated non-Gaussian processes.

In order to facilitate this correlation correction, the updating scheme operates on the time
domain equivalent of the cross-spectrum, the cross correlation function, given in terms of the
cross-spectrum by

RT
ij (τ ) =

∫ ∞

−∞
ST

ij (f ) e
√−1(2πf )τ df, (3)

whereST
ij (f ) is the two sided target cross-spectral density function between theith and jth

processes. A pair of simulated processes with the same cross-correlation function as the target,
R

xNG
ij (τ ) = RT

ij (τ ),will properly reflect the desired correlation between theith andj th processes.
A schematic representation of the multi-variate simulation algorithm is given in Figure 3.

Beginning at the top right, the target auto-spectrum,GT
ij , and target skewness and kurtosis,

γ T
3 , γ T

4 , of each process is input to the algorithm, along with the target cross correlation function
between each pair of processes,RT

ij . A standard multi-variate Gaussian simulation method [e.g.
10, 13] produces a set of Gaussian processes with the design cross-correlation function,RD

ij ,

and target auto-spectrum,GT
ii . This design cross-correlation is initially set to the target cross-

correlation function for the first iteration(RD
ij (it = 1) = RT

ij ). Each of the Gaussian processes
is then transformed to non-Gaussian with its assigned power spectrum and PDF using univariate
spectral correction(xi

G → xi
NG). The cross-correlation between these non-Gaussian processes

are measured,RxNG
ij , and compared with the target values,RT

ij . If the error is too large, a second
iteration is begun, otherwise the set of processesxi

NG are accepted as the output.
Before the algorithm begins a new iteration, the design cross-correlation used to generate

the Gaussian processes is updated using

RD
ij (it + 1) =

(
ρD

ij (it) + |ρD
ij (it)|[ρT

ij − ρ
xNG
ij (it)]

max(|ρD
ij (it)|)

)
(max(|RT

ij |)) (4)
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Figure 3. Schematic of the Multivariate Spectral Correction Simulation method.

Figure 4. Location of pressure taps on Texas Tech building.

where

ρD
ij (τ ) = (RD

ij (τ ))

(max(|RT
ij (τ )|)) , ρT

ij (τ ) = (RD
ij (τ ))

(max(|RT
ij (τ )|)) ,

ρ
xNG
ij (τ ) = (R

xNG
ij (τ ))

(max(|RT
ij (τ )|)) . (5)

Typically two or three iterations provides convergence to the target cross-correlation function
between the processes.

Example: Rooftop Pressure at Three Locations
This example again uses the full scale pressure data, measured simultaneously at several locations
on the roof of an instrumented building at Texas Tech University. We consider three locations
on the roof in a separation zone where the pressure is highly non-Gaussian. The goal of this
example is to generate realizations of three pressure records which maintain the cross-spectral
density between the measured records, while properly reflecting the higher order statistics and
spectral contents at each of the three locations.
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Figure 5. Comparisons of measured and simulated correlation statistics. Top left: Absolute value of the
cross-spectrum between locations 1 and 2, Top right: phase of the cross-spectrum between locations 1 and
2 Bottom: cross-correlation function.

Figure 4 is a diagram of the approximate locations of the pressure taps, slightly offset from
each other both parallel and perpendicular to the incoming wind. This offset leads to a non-
zero phase relationship between locations, as the turbulent wind field arrives at each location at
slightly different times.

Figure 5 compares the target and simulated cross-spectral density function and cross-
correlation between locations 1 and 2. The match between target and simulated cross-spectra
are excellent. Note that the apparently large discrepancy in phase at∼ 0.18 Hz is due only to
the phase wrap-around effect from−π to π.

Figure 6 shows the three measured pressure records, and their simulations using non-Gaussian
multi-variate spectral correction. The statistical comparisons shown in Figure 5 are between mea-
sured locations 1 and 2 (target), and simulated locations 1 and 2. The low frequency correlation
between all three records can be seen in both figures, along with the distinct non-Gaussian
characteristics of the measured and simulated records.

Comparisons of the target and resultant power spectrum and probability density function
of each individual location are omitted for brevity, but compare as favorably as shown in the
univariate example seen in Figure 2. Indeed the comments regarding the potential for improved
accuracy in the last paragraph of the example in Section 3 are appropriate here as well. Further
iteration leads to closer matching between target and realization, making accuracy only a function
of allowable iteration time.
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5. Conclusions

The non-Gaussian uni- and multi-variate spectral correction simulation algorithms are shown
to be effective for generating realizations of time histories, at one or more spatial locations,
which match target characteristics given in the form of an auto-spectrum, a probability density
function, and cross-correlation functions between multiple processes. These algorithms provide
additional tools for generating input to Monte Carlo-based simulation methods of structural
reliability analysis, particularly for cases where environmental loading differs significantly from
Gaussian.
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