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AEROELASTIC ANALYSIS OF BRIDGES UNDER MULTICORRELATED WINDS:
INTEGRATED STATE-SPACE APPROACH

By Xinzhong Chen1 and Ahsan Kareem2

ABSTRACT: In this paper, an integrated state-space model of a system with a vector-valued white noise input
is presented to describe the dynamic response of bridges under the action of multicorrelated winds. Such a
unified model has not been developed before due to a number of innate modeling difficulties. The integrated
state-space model is realized based on the state-space models of multicorrelated wind fluctuations, unsteady
buffeting and self-excited aerodynamic forces, and the bridge dynamics. Both the equations of motion at the
full order in the physical coordinates and at the reduced-order in the generalized modal coordinates are presented.
This state-space model allows direct evaluation of the covariance matrix of the response using the Lyapunov
equation, which presents higher computational efficiency than the conventional spectral analysis approach. This
state-space model also adds time domain simulation of multicorrelated wind fluctuations, the associated unsteady
frequency dependent aerodynamic forces, and the attendant motions of the structure. The structural and aero-
dynamic coupling effects among structural modes can be easily included in the analysis. The model also facil-
itates consideration of various nonlinearities of both structural and aerodynamic origins in the response analysis.
An application of this approach to a long-span cable-stayed bridge illustrates the effectiveness of this scheme
for a linear problem. An extension of the proposed analysis framework to include structural and aerodynamic
nonlinearities is immediate once the nonlinear structural and aerodynamic characteristics of the bridge are es-
tablished.
INTRODUCTION

Aerodynamic forces on bridges have conventionally been
modeled as the sum of motion-induced self-excited and wind-
induced buffeting force components. These are in general
functions of the geometric configurations of bridge sections,
the incoming wind fluctuations, and the reduced frequency. In
the wind velocity range of interest in structural design, the
flow around bluff bridge sections is quite unsteady and not
amenable to quasi-steady analysis techniques, which are only
valid at very high wind velocities. The frequency dependent
characteristics of aerodynamic forces are generally described
in terms of experimentally quantified flutter derivatives for the
self-excited forces and in terms of admittance and spanwise
coherence functions for the buffeting forces. Incorporating
these unsteady aerodynamic characteristics is essential for an
accurate evaluation of the forces and the attendant response of
the structures. These characteristics can be easily incorporated
in the frequency domain analysis framework with and without
the consideration of intermode coupling effects (Davenport
1962; Scanlan 1978a,b; Jain et al. 1996; Katsuchi et al. 1999;
Chen et al. 2000a).

To account for the structural and aerodynamic nonlinearities
in the analysis, the equations of motion must be cast in the
time domain and solved using a time domain scheme. Most
previous time domain studies concerning bridge buffeting re-
sponse have used quasi-steady assumption when modeling the
aerodynamic forces. These assumptions manifest themselves
by neglecting the frequency dependent flutter derivatives, ad-
mittance functions, and effects of spanwise correlation. This
inconsistency with the frequency domain approach has been
addressed by Chen et al. (2000b), in which the frequency de-
pendent unsteady aerodynamic forces are accurately modeled
in the time domain analysis framework. This time domain
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approach is regarded as a rigorous representation of the
frequency domain analysis of linear problems as long as the
aerodynamic forces are represented by rational function ap-
proximations (RFAs) exactly or with an acceptable level of
error. Recent developments presented in this paper may be
viewed as an extension of this time domain approach by util-
izing a state-space modeling technique that is rooted in linear
system theory.

Much research has been performed in the area of linear
state-space modeling of unsteady self-excited aerodynamic
forces in the aeronautical field by using RFA technique (e.g.,
Roger 1977; Karpel 1982). Among these schemes, Roger’s
RFA is the most widely utilized because of the accuracy, sim-
plicity, and robustness of the method, although different forms
of the approximation, such as the minimum state (MS)
method, are available with a focus on reducing the dimensions
of the augmented aerodynamic states (Karpel 1982). The ap-
plication of RFAs to bluff body bridge aerodynamics can be
found in the representation of the self-excited forces (Scanlan
et al. 1974; Lin and Yang 1983; Xie et al. 1985; Bucher and
Lin 1988; Matsumoto et al. 1994; Wilde et al. 1996; Boony-
apinyo et al. 1999; Chen et al. 2000a,b). The modeling of
frequency dependent buffeting forces is given in Matsumoto
and Chen (1996), Matsumoto et al. (1996), and Chen et al.
(2000b).

The modeling of multicorrelated wind fluctuations in a
state-space framework has also been addressed in Goßmann
and Walter (1982), Suhardjo et al. (1992), Matsumoto et al.
(1996), and Kareem (1997). This is based on factorization of
the cross-power spectral density (XPSD) matrix of the wind
fluctuations. The spectral matrix is first expressed in terms of
RFAs and is then decomposed into a transfer function, which
is then utilized to obtain the state-space matrices based on the
realization of the transfer function. The modeling of a matrix
transfer function and subsequent operations are nontrivial for
a large size wind field simulation. In some cases, the mathe-
matical difficulty and numerical error introduced by the cal-
culation procedure precluded the use of this technique to re-
alistic problems (Matsumoto et al. 1996). Kareem (1997) has
suggested some simplifications, but the approach remains te-
dious as attested by a lack of realistic feed-forward modeling
of wind in the literature. In Kareem and Mei (1999) and Ben-
fratello and Muscolino (1999), the stochastic decomposition
technique is utilized to decompose a multicorrelated random



process into a set of independent random subprocesses. For
each subprocess the state-space model is derived, and then
through a transformation the state-space model of the original
multicorrelated process is composed. For simplification of the
state-space modeling in the original coordinate space, an ei-
genvector matrix value at a fixed frequency is chosen based
on the observation that the eigenvectors of the XPSD matrix
change very slowly with respect to the frequency. This tech-
nique requires the eigenvalue analysis of the XPSD matrix at
each discrete frequency, which may result in large computa-
tional efforts for a large size wind-field simulation. In addition,
the assumption of constant eigenvectors may introduce errors
in some cases depending on the spectral matrix of wind fluc-
tuations. Chen and Kareem (2000) pointed out that, with the
truncation of higher modes of wind fluctuations, this stochastic
decomposition technique provides an efficient tool for state-
space modeling of well-correlated random processes. Its ef-
fectiveness in modeling poorly correlated random processes is
rather limited, particularly, for representing high-frequency
wind fluctuations.

In this paper, an integrated state-space model of a multiinput
and multioutput system with a vector-valued white noise input
is presented to model the dynamic response of bridges under
the multicorrelated winds. Such a unified model has not been
developed before due to a number of innate modeling diffi-
culties. This integrated state-space model is realized based on
the state-space models of the multicorrelated wind fluctuations,
the unsteady aerodynamic forces, and the structure. Both the
equations of motion at the full order in the physical coordi-
nates and at reduced order in the generalized modal coordi-
nates are presented. The full-order form is more appropriate
for nonlinear problems by using time-variant system models,
whereas the reduced form is computationally more efficient
for the linear problems. An application of this approach to a
long span cable-stayed bridge demonstrates its effectiveness.

STATE-SPACE REPRESENTATION OF RESPONSE
UNDER WINDS

The mathematical model for describing the response of
wind-excited structure based on linear system theory is sche-
matically shown in Fig. 1. The wind-induced motions of the
structure can be represented as the outputs of an integrated
multiinput and multioutput system excited by a vector-valued
white noise process. The multicorrelated wind fluctuations are
considered as the output of a system with a vector-valued
white noise excitation, whose transfer functions can be derived
by factorizing their power spectral density matrix. Similarly,
the buffeting forces are derived as the output of a system with
wind fluctuations as input. Their transfer functions are de-
scribed in terms of the admittance function and spanwise co-
herence of unsteady buffeting forces. Similarly, the self-ex-
cited forces are modeled as the output of a system with the
structural response as input. Their transfer functions are de-
fined in terms of the flutter derivatives. By augmenting the
state-space equations of structural motion with the correspond-
ing state-space representation of the loading components and
wind fluctuations, as stated above, an integrated state-space
model is established that synthesizes the unsteady character-
istics of multicorrelated wind field, frequency dependent un-
steady aerodynamic forces, and the dynamics of the bridge.

The integrated state-space model for describing the response
of a structure under winds has several significant mathematical
advantages. The recasting of the overall system equations in
the state-space format allows the use of tools based on linear
system theory for response analysis, optimization, and design
of active control devices to suppress flutter and buffeting. By
using this model, the wind load information can be incorpo-
rated in a structural control design as a feed-forward link with
the potential to enhance the control effectiveness (Suhardjo et
al. 1992). In addition, the structural and aerodynamic coupling
effects can be automatically included in the computation. For
linear problems, conventional spectral analysis approach re-
quires intensive computational efforts in the estimation of the
transfer function and response spectral density matrix at each
discrete frequency with an interval that must be very small for
bridges with closely spaced natural frequencies. Subsequent
integration of the spectral matrix needed to determine the re-
sponse covariance requires additional computational effort. An
integrated linear time-invariant state-space model of the re-
sponse with a vector-valued white noise input facilitates direct
estimation of the covariance matrix of the response through
the Lyapunov equation and allows higher computational effi-
ciency.

MODELING OF MULTICORRELATED WINDS

Consider a structure represented by a finite-element dis-
cretization. The longitudinal and vertical components of wind
fluctuations at the centers of elements, W(t), are represented
by a multicorrelated random process. These can be represented
as the output of a linear system with input of a vector-valued
Gaussian white noise process N(t) with a zero mean and iden-
tity covariance matrix. In this study, an autoregressive (AR)
model is used to describe this linear system for accurate mod-
eling and simplicity. The AR model is considered as a special
FIG. 1. Integrated Modeling of Dynamic Response of Wind-Excited Structure
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case of a general autoregressive moving-average (ARMA)
model (e.g., Samaras et al. 1985; Mignolet and Spanos 1987;
Li and Kareem 1990a,b).

The AR model is expressed as

p

W(t) = P W(t 2 kDt) 1 LN(t) (1)kO
k =1

where Dt = time interval; p = model order; and Pk (k = 1,
2, . . . , p) = coefficient matrices satisfying the following Yule-
Walker equations:

p

TR ( jDt) = R (( j 2 k)Dt)P ( j = 1, 2, . . . , p) (2)W W kO
k =1

where RW( jDt) ( j = 1, 2, . . . , p) = correlation matrix of the
wind fluctuation vector W(t). In this study, instead of directly
using (2), an iterative procedure is utilized to determine the
coefficient matrices for enhancing the computational efficiency
(Ianuzzi and Spinelli 1987).

The correlation matrix RW( jDt) can be evaluated from the
spectral density matrix SW ( f ) using the Wiener-Khintchine re-
lationship:

`

R ( jDt) = 2 S ( f )cos( j2p fDt) df (3)W WE
0

and the matrix L is given by the Cholesky factorization:

TL L = R (4)0

p

R = R (0) 2 P R (kDt) (5)0 W k WO
k =1

Once the AR model is developed, there are several ways to
express it in terms of a discrete-time state-space format; for
example, the controllable canonical form, observable canonical
form, diagonal canonical form, and Jordan canonical form
(Ogata 1994). In this study, the following controllable canon-
ical form is used:

X (t) = A X (t 2 Dt) 1 B N(t) (6)w dw w dw

W(t) = C X (t) 1 D N(t) (7)dw w dw

where

X (t) 0 I 0 ??? 0w1

X (t) 0 0 I ??? 0w2

? ? ? ? ?X (t) = ? ; A = ? ? ? ??? ? (8a,b)w dw? ? ? ? ?

X (t) 0 0 0 ??? Iw( p21)

X (t) P P P ??? Pwp p p 21 p 22 1

0
0
?B = ? ; C = [P L P L ??? P L] (8c,d )dw dw p p 21 1?F G0
I

D = L (8e)dw

The equivalent continuous state-space representation can be
given as

Ẋ = A X 1 B N (9)w w w w

W = C X 1 D N (10)w w w

with the relationship
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A Dt A Dt 21w wA = e ; B = (e 2 I)A B (11a,b)dw dw w w

C = C ; D = D (11c,d )dw w dw w

Similarly, the state-space modeling of a multicorrelated
wind field based on a multivariate ARMA model can also be
presented, but is omitted here for the sake of brevity. Using
such a parametric approach for describing random processes
not only facilitates efficient simulation, but it also provides an
efficient and robust tool for the state-space modeling of ran-
dom processes compared with alternative approaches alluded
to earlier.

MODELING OF UNSTEADY BUFFETING FORCES

The buffeting force components per unit length, i.e., lift
(downward), drag (downwind), and pitching moment (nose-
up), induced by a sinusoidal wind fluctuation with circular
frequency v, are commonly expressed (e.g., Scanlan 1978a,b;
Chen et al. 2000a,b) as

1 u(t) w(t)2L (t) = 2 rU B 2C x (ik) 1 (C9 1 C )x (ik)b L L L D LS Dbu bw2 U U
(12)

1 u(t) w(t)2D (t) = rU B 2C x (ik) 1 (C9 2 C )x (ik)b D D D L DS Dbu bw2 U U
(13)

1 u(t) w(t)2 2M (t) = rU B 2C x (ik) 1 C9 x (ik) (14)b M M M MS Dbu bw2 U U

where r = air density; U = mean wind velocity; B = 2b is the
bridge deck width; CD , CL, CM = static force coefficients; C9L
= dCL /da and = dCM /da; u and w = longitudinal and ver-C9M
tical wind fluctuations, respectively; xr(ik) (r = Lbu, Lbw, Dbu,
Dbw, Mbu, Mbw) denote the aerodynamic transfer functions be-
tween wind fluctuations and buffeting forces per unit span, and
their absolute magnitudes are referred to as the aerodynamic
admittance functions; k = vb/U is the reduced frequency; and
i = pure imaginary unit 21.Ï

Accordingly, the buffeting forces acting on a beam element
of length l can be given by

e 2 e eF (t) = (rU Bl)A (ik)W (15)b b

where

C x (ik)J (ik) C x (ik)J (ik)L1 L L L2 L Lbu bu bw bw

eA = C x (ik)J (ik) C x (ik)J (ik) (16a)b D1 D D D2 D Dbu bu bw bwF G
BC x (ik)J (ik) BC x (ik)J (ik)M1 M M M2 M Mbu bu bw bw

e e e e T e e e TF = [L D M ] ; W = [u /U w /U ] (16b,c)b b b b

1
C = 2C ; C = 2 (C9 1 C ); C = C (16d–f )L1 L L2 L D D1 D2

1 1
C = (C9 2 C ); C = C ; C = C9 (16g–i)D2 D L M1 M M2 M2 2

ue and we = wind fluctuations at the center of the element;
superscript e indicates the component on the element; super-
script T indicates matrix transpose; and Jr(ik) (r = Lbu, Lbw, Dbu,
Dbw, Mbu, Mbw) denotes the joint acceptance functions that de-
scribe the reduction effect of the buffeting forces due to the
loss of spanwise correlation within the element, as compared
with the fully correlated case, and expressed as

l l
12uJ u = coh (x , x ; f ) dx dx (17)r r 1 2 1 2E E2l 0 0

where cohr(x1, x2; f ) = coherence fluctuation of buffeting
forces; and x1 and x2 = coordinates of points 1 and 2 in the



across-wind direction. For tower and cable elements of cable-
supported bridges, only the drag component is generally con-
sidered in the analysis of overall bridge response.

The state-space modeling of will be accomplished in twoeFb

steps. The first step is to model the admittance function xr(ik),
and the second step is to model the joint acceptance function
Jr(ik). These are expressed as the following rational function
approximations (Chen et al. 2000b), although other forms can
also be utilized:

xmr x(ik)Ar, j 11xx (ik) = A 1 (18)r r,1 O xik 1 d r, jj = 1

Jmr J(ik)Ar, j 11JJ (ik) = A 1 (19)r r,1 O Jik 1 d r, jj = 1

Accordingly, the state-space equations for are then writteneFb

(Appendix I) as

e e e e eẊ = A X 1 B W (20)b b b b

e e e e eF = C X 1 D W (21)b b b b

Based on the finite-element procedure, for an assumed shape
function of displacement within an element, the nodal forces
in the local coordinate system can be expressed using the state-
space model. Subsequently, the total nodal buffeting forces for
the entire structure can be obtained by transforming the nodal
forces in the local coordinates to the global coordinate system
and assembling the element forces. The total nodal force Fb(t)
can be finally expressed in terms of state-space equations with
the input of wind fluctuations, W(t), as

Ẋ = A X 1 B W (22)b b b b

F = C X 1 D W (23)b b b b

When the buffeting forces are simply expressed using the
quasi-steady theory, i.e., xr = Jr = 1, the state-space model of
buffeting forces then becomes

e e eF = D W (24)b bqs

where

C CL1 L2

e 2D = (rU Bl ) C C (25)bqs D1 D2F G
BC BCM1 M2

Accordingly, Fb is expressed as

F = D W (26)b bqs

Clearly, the quasi-steady description of buffeting forces
eliminates the augmented states representing the unsteady
properties of the buffeting forces. Therefore, the current state-
space model more accurately represents the frequency depen-
dent unsteady characteristics of the aerodynamic forces, which
are essential for the response analysis in both time and fre-
quency domains.

An alternative approach for the state-space modeling of buf-
feting forces is directly based on their XPSD matrix and sub-
sequently expressed in terms of an AR model, similar to the
case of multicorrelated wind fluctuations. However, the ap-
proach presented here is more consistent when considering
aerodynamic nonlinearities, such as the dependency of aero-
dynamic parameters on the effective angle of wind incidence.
In this case, wind fluctuations must be simulated to accom-
modate the consideration of the nonlinear effects.

It is worth noting that the spanwise correlation of the buf-
feting forces is generally higher than that of the incoming wind
fluctuations (e.g., Kareem 1990; Larose and Mann 1998). To
accurately describe the spanwise correlation of buffeting
forces, the spatial properties of buffeting forces—and not
those of the incident wind—may be used in the evaluation of
the spectral matrix of the wind fluctuations modeled in the
above section. This correction to the model of wind fluctua-
tions generates what is referred to as the ‘‘effective’’ wind
fluctuations rather than a realization of the original wind field.
In this study, this correction of spatial correlation of wind fluc-
tuations is used to model the more complex generation mech-
anism of buffeting forces, which is currently mathematically
intractable.

The cospectrum between the wind fluctuations on the cen-
ters of ith and jth elements are given as

S ( f ) = coh ( f ) S ( f )S ( f ) (r = u, w) (27)Ïr ij r rij i j

l li j
1

ecoh ( f ) = coh (x , x ; f ) dx dx /(uJ iJ u) (28)ij r 1 2 1 2 r rE E i jl li j 0 0

where li and lj = lengths of ith and jth elements, respectively;
and and = joint acceptance functions of the ith and jthJ Jr ri j

elements [(17)].

MODELING OF SELF-EXCITED FORCES

The self-excited force components per unit length induced
by a sinusoidal motion with circular frequency v are expressed
in terms of flutter derivatives and (i = 1, 2, . . . ,* * *H , P , Ai i i

6) (e.g., Scanlan 1978a,b; Jain et al. 1996; Katsuchi et al.
1999; Chen et al. 2000a,b) as

˙1 h bȧ2 2* * *L (t) = rU (2b) kH 1 kH 1 k H ase S 1 2 32 U U

h ṗ p2 2* * *1 k H 1 kH 1 k H4 5 6 Db U b (29)

1 ṗ bȧ2 2* * *D (t) = rU (2b) kP 1 kP 1 k P ase S 1 2 32 U U

˙p h h2 2* * *1 k P 1 kP 1 k P4 5 6 Db U b (30)

˙1 h bȧ2 2 2* * *M (t) = rU (2b ) kA 1 kA 1 k A ase S 1 2 32 U U

h ṗ p2 2* * *1 k A 1 kA 1 k A4 5 6 Db U b (31)

The self-excited forces are commonly assumed to be fully
correlated in spanwise direction. Although a loss of spanwise
correlation of the self-excited forces can affect the aerody-
namic damping and the flutter stability (Scanlan 1997), a re-
cent experiment study has reported only slight turbulence ef-
fects on self-excited force correlation (Haan et al. 1999; Haan
2000). In this study, full correlation of the self-excited forces
is assumed. Further experimental investigation of this issue
needs to be undertaken. Once a working model for the span-
wise correlation of the self-excited forces becomes available,
the analysis framework presented here can incorporate it con-
veniently without further modification.

The self-excited forces acting on a beam element of length
l can be given as

1 be 2 e e e e˙F (t) = rU A (ik)Y (t) 1 A (ik)Y (t) (32)se s dS D2 U

where
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2 2 2* * *2k lH 2k lH 2k lbH4 6 3

e 2 2 2* * *A (ik) = 2k lP 2k lP 2k lbP (33a)s 6 4 3F G
2 2 2 2* * *2k blA 2k blA 2k b lA4 6 3

* * *2klH 2klH 2klbH1 5 2

e * * *A (ik) = 2klP 2klP 2klbP (33b)d 5 1 2F G
2* * *2kblA 2kblA 2kb lA51 2

e e e e TF (t) = [L (t) D (t) M (t)] (33c)se se se se

e e e e TY = [h (t) p (t) a (t)] (33d )

and he, pe, and ae = vertical, lateral, and torsional displacement
at the center of the element, respectively; and the over-dot
denotes the differentiation with respect to time.

The transfer matrix between the self-excited forces and the
structural motion can be represented by the following RFA in
terms of the reduced frequency k. This is accomplished by
fitting the tabular data defined at a set of discrete re-eH (ik )se j

duced frequencies kj ( j = 1, 2, . . .) for which these transfer
function matrices are available (Roger 1977; Chen et al.
2000a,b):

em e(ik)Aj 13e e e e e 2 eH (ik) = A 1 (ik)A = A 1 (ik)A 1 (ik) A 1se s d 1 2 3 O eik 1 d jj = 1

(34)

where and $ 0; j = 1, 2, . . . , me) =e e e e e eA , A , A , A , d (d1 2 3 j 13 j j

frequency independent matrices and parameters; and me is the
order of RFA.

Replacing the Fourier transform by a Laplace transform
through analytic continuation with s̄ [where s̄ = (2j 1 i)k,
and j = damping ratio of the motion) substituted for ik, and
by taking an inverse Laplace transform, the self-excited forces
induced by an arbitrary motion can be expressed in terms of
the following state-space equations:

ed Uje e e e e˙ ˙X (t) = 2 X (t) 1 A Y (t) ( j = 1, 2, . . . , m ) (35)sej sej j13
b

21 b be 2 e e e e e e˙ ¨F (t) = rU A Y (t) 1 A Y (t) 1 A Y (t)se 1 2 3S 22 U U
em

e1 X (t)sejO D
j = 1 (36)

where ( j = 1, 2, . . . , me) = augmented new variableseXsej

representing the aerodynamic states.
Based on the finite-element procedure, the total self-excited

forces can be finally expressed in terms of the nodal motion
Y as

d Uj˙ ˙X (t) = 2 X (t) 1 A Y(t) ( j = 1, 2, . . . , m) (37)sej sej j13
b

m21 b b2 ˙ ¨F (t) = rU A Y(t) 1 A Y(t) 1 A Y(t) 1 X (t)se 1 2 3 sejS O D22 U U j = 1

(38)

where A1, A2, A3, and dj (dj $ 0; j = 1, 2, . . . , m) =A ,j 13

frequency independent matrices and parameters; m is the order
of RFA; and Xsej(t) ( j = 1, 2, . . . , m) = augmented aerody-
namic states.

It is worth mentioning that, when the self-excited forces are
modeled using the quasi-steady theory, only matrices A1 and
A2 are included in the model, thus eliminating the augmented
aerodynamic states Xsej ( j = 1, 2, . . . , m).
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FULL-ORDER INTEGRATED STATE-SPACE MODEL

The governing equations of motion with respect to the static
equilibrium position of a bridge are given in matrix form by

¨ ˙MY 1 CY 1 KY = F 1 F (39)se b

where M, C, and K = mass, damping, and stiffness matrices,
respectively.

Substituting (9), (10), (22), (23), (37), and (38) into the
above equation, the following state-space equations are ob-
tained:

Ẋ = AX 1 BN (40)

Y = GX (41)

where

X A B C B D Csse sse sse b sse b w

X = X ; A = 0 A B C (42a,b)b b b wF G F G
X 0 0 Aw w

T

B D D Csse b w sse

B = B D ; G = 0 (42c,d )b wF F GG
B 0w

Y

Ẏ
X = (42e)sse

Xse1

???

Xsem

0 I 0 ??? 0

1 121 21 2 21 2 21¯ ¯ ¯ ¯ ¯ ¯2M K 2M C rU M ??? rU M
2 2

UA =sse 0 A 2 d I ??? 04 1
b

? ? ? ?? ? ? ?? ? ? ?

U
0 A 0 ??? 2 d I31m m

b

(42 f )

21 T¯B = [0 M 0 . . . 0] (42g)sse

TC = [I 0 0 . . . 0] (42h)sse

1 12¯ ¯M = M 2 rb A ; C = C 2 rUbA (42i, j )3 22 2

1 2K̄ = K 2 rU A (42k)32

The solution of above equation can be obtained (Soong and
Grigoriu 1993) by

t

A(t2t A(t2t))0X(t) = e X(t ) 1 e BN(t) dt (43)0 E
t0

The previous equation in a discrete form is given by

ADt ADt 21X(t) = e X(t 2 Dt) 1 (e 2 I)A BN(t) (44)

where Dt = time interval.



The covariance matrix RX can be directly calculated by solv-
ing the following Lyapunov equation:

T TṘ = AR 1 R A 1 BB (45)X X X

For the time-invariant case, it reduces to

T TAR 1 R A 1 BB = 0 (46)X X

REDUCED-ORDER STATE-SPACE MODEL

For linear structures, reduced-order equations of motion in
terms of the generalized modal coordinates q can be utilized
for computational convenience:

M q̈ 1 C q̇ 1 K q = Q 1 Q (47)0 0 0 se b

where M0 = CTMC, C0 = CTCC, and K 0 = CTKC = gen-
eralized mass, damping, and stiffness matrices, respectively;
Qse = CTFse and Qb = CTFb are the generalized self-excited
and buffeting force vectors, respectively; and C = mode shape
matrix.

The state-space equations of Qb can be given as follows
based on the state-space model of Fb [(22) and (23)]:

Ẋ = A X 1 B W (48)b b b b

Q = C X 1 D W (49)b b0 b b0

where Cb0 = CTCb, Db0 = CT Db.
The state-space equations of Qse can be given as follows

based on the state-space model of Fse [(37) and (38)]:

d Ujq̇ (t) = 2 q (t) 1 Q q̇(t) ( j = 1, 2, . . . , m) (50)sej sej j13
b

m21 b b2Q (t) = rU Q q(t) 1 Q q̇(t) 1 Q q̈(t) 1 q (t)se 1 2 3 sejS O D22 U U j = 1

(51)

where Q 1 = CTA1C; Q 2 = CTA2C; Q 3 = CTA3C; =Q j13

and q sej(t) = CT Xsej(t) ( j = 1, 2, . . . , m).TC A C;j13

An alternative approach for modeling the generalized self-
excited forces is to directly fit the generalized modal aerody-
namic matrices calculated at discrete reduced frequencies. If a
smaller number of lag terms can thus be obtained, it will lead
to reduced aerodynamic states.

Accordingly, the integrated state-space model of the system
is given by

Ẋ = A X 1 B N (52)0 0 0 0

TY = C G X (53)0 0

where

X A B C B D Csse0 sse0 sse0 b0 sse0 b0 w

X = X ; A = 0 A B C (54a,b)0 b 0 b b wF G F G
X 0 0 Aw w

T

B D D Csse0 b0 w sse0

B = B D ; G = 0 (54c,d )0 b w 0F G F G
B 0w

q

q̇
X = (54e)sse0

q se1

???

q sem
0 I 0 ??? 0

1 121 21 2 21 2 21¯ ¯ ¯ ¯ ¯ ¯2M K 2M C rU M ??? rU M0 0 0 0 0 02 2

UA =sse0 0 Q 2 d I ??? 04 1
b

? ? ? ?? ? ? ?? ? ? ?

U
0 Q 0 ??? 2 d I31m m

b

(54 f )

21 T¯B = [0 M 0 . . . 0] (54g)sse0 0

TC = [I 0 0 . . . 0] (54h)sse0

1 12¯ ¯M = M 2 rb Q ; C = C 2 rUbQ (54i, j )0 0 3 0 0 22 2

1 2K̄ = K 2 rU Q (54k)0 0 32

When considering a linear aerodynamic problem, the state-
space modeling of Q b can be further simplified using a mul-
tivariate AR model with a vector-valued white noise input N1,
which can be derived based on the XPSD matrix of Q b. Ac-
cordingly, it can be expressed as

Ẋ = A X 1 B N (55)b1 b1 b1 b1 1

Q = C X 1 D N (56)b b1 b1 b1 1

and the integrated state-space equations of the system are

Ẋ = A X 1 B N (57)1 1 1 1 1

Y = CG X (58)1 1

where

X A B Csse0 sse0 sse0 b1
X = ; A = (59a,b)1 1F G F GX 0 Ab1 b1

T

B D Csse0 b1 sse0
B = ; G = (59c,d )1 1F G F GB 0b1

EXAMPLE

In this section an example is presented to illustrate the in-
tegrated state-space analysis framework developed in this
study. The example bridge is a cable-stayed bridge with a main
span of approximately 1,000 m. For simplicity and without
loss of generality, only the aerodynamic forces acting on the
bridge deck were considered. The von Karman spectra were
used for describing the power spectra of the u and w compo-
nents of wind fluctuations. For u and w components, turbu-
lence intensities and integral length scales equal to 10 and
7.5%, and 80 and 40 m, respectively, were considered. Higher
length scales were used in the evaluation of the coherence
function of wind fluctuations in order to account for the
stronger spanwise correlation in the buffeting forces than those
of the wind fluctuations. Length scales were chosen as 160
and 80 m for the buffeting force component associated to the
u and w components, respectively, although these can be de-
termined based on wind tunnel tests (e.g., Larose and Mann
1998).

The bridge deck was discretized into 43 elements along the
span. In this study, the u and w components were assumed to
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FIG. 2. Comparison of Simulated and Target Auto- and Cross-Power Spectra of Wind Fluctuations (U = 60 m/s): (a) Deck Element 21, u Component;
(b) Deck Elements 21 and 22, u Component; (c) Deck Element 21, w Component; (d) Deck Elements 21 and 22, w Component
be independent; therefore, these can be expressed using two
separate state-space models. The modeling is straightforward
for the cases considering the correlation between u and w com-
ponents of wind fluctuations. Separating wind fluctuations and
corresponding buffeting forces and responses into two groups
associated to the u and w components will lead to computa-
tional efficiency over a combined representation, because com-
putational efforts related to the treatment of cross terms be-
tween the u and w components are eliminated. In this example,
two state-space models with 258 states each were used for the
u and w components of wind fluctuations.

Fig. 2 shows the comparison of the power spectra and cross-
spectra of wind fluctuations at elements 21 and 22. The solid
and dashed lines are the target and the calculated values from
the state-space model, respectively. The results show an ex-
cellent agreement, which demonstrates the accuracy of the
state-space model.

For each element, different admittance functions for u and
w components were used, which were all expressed using
RFAs with two rational terms. Davenport’s formula with a
decay factor of 8 was used for drag, and the Sears function
was used for lift and pitching moment. Two different joint
acceptance functions were used for buffeting force compo-
nents associated with u and w components. These were also
expressed using RFAs with two rational terms. The dimensions
of the state-vector for the buffeting forces acting on each el-
ement and the overall structure were 6 and 258, respectively,
and were the same for both components corresponding to u
and w components of wind fluctuations.

Fig. 3 shows the comparison of the power spectra of the
buffeting forces acting on element 21. The dashed and solideFb

lines represent the results from the state-space model and the
spectral analysis, which is given as follows, based on (15):

2 2 e eT
e eS (ik) = (rU Bl ) A (ik)S A (2ik) (60)F b W bb

The drag component of the self-excited forces due to lateral
motion was evaluated based on the quasi-steady theory, and
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the components relevant to the vertical and torsional motions
were neglected. The lift and pitching moment components of
the self-excited forces were calculated based on the Theodor-
sen function. The generalized self-excited forces on the first
12 bridge deck dominated natural modes were expressed using
RFA with two rational terms. A reduced-order structural model
was used. The natural frequencies range from 0.07 to 0.06 Hz.
The logarithmic decrement for each mode was assumed to be
0.02. The total dimension of the state-vectors of the integrated
system corresponding to u and w components were both equal
to 564. For each of these two integrated systems, the covari-
ance matrix was calculated using the Lyapunov equation to
obtain the covariance of the total response.

Fig. 4 shows the comparison of the root mean square (RMS)
buffeting response along the span in the vertical, lateral, and
torsional directions at mean wind velocities of 40, 60, and 80
m/s. The dashed lines and the dots are the results from the
spectral analysis and the present approach, respectively. Re-
sults indicate that the state-space model approach gives results
that are very close to those from conventional approach, while
the state-space model is computationally more efficient. For
the example presented here, computational effort using the
proposed scheme is less than half of that needed for conven-
tional spectral approach.

Based on the integrated state-space model, the wind fluc-
tuations, the associated aerodynamic forces, and the buffeting
response can be simulated in the time domain by using Monte
Carlo simulation. Sample realizations of this simulation are
shown in Fig. 5, which represent the u and w components of
wind fluctuations at the midpoint of the main span, the drag,
lift, and moment components of the buffeting and self-excited
forces acting on the beam element at the center of the main
span, and the buffeting response in the lateral, vertical, and
torsional directions at the midpoint of the main span. It is
noted that the buffeting drag force is mainly contributed by
the u component of wind fluctuations, while the buffeting lift
and pitching moment are mainly contributed by the w com-



FIG. 3. Comparison of Power Spectra of Buffeting Forces Acting on
Deck Element 21 (U = 60 m/s): (a) Drag Component; (b) Lift Component;
(c) Moment Component

ponent of wind fluctuations. It is also noted that the vertical
and torsional response exhibit coupling. The critical flutter ve-
locity was found to be 113.8 m/s utilizing a stability analysis
of this integrated system through the solution of the complex
eigenvalue problem.

CONCLUDING REMARKS

An integrated state-space model of a multiinput and mul-
tioutput system with a vector-valued white noise input was
presented to describe the dynamic response of bridges under
multicorrelated winds (Fig. 1). The state-space modeling of
multicorrelated winds used an AR model, and the modeling of
unsteady buffeting and self-excited forces was developed us-
ing rational function approximations of their frequency depen-
dent characteristics. The proposed approach helps to glean a
clear insight into the modeling of wind-induced vibration
problems. It begins with a vector of white noise, which is
successively transformed to correlated wind fluctuations, aero-
dynamic forces, and the associated structural motions.

This approach facilitates the use of tools based on linear
system theory for the response analysis and structural control
design. This procedure allows the time domain simulation of
the response to incorporate the frequency dependent unsteady
FIG. 4. Comparison of Buffeting Responses: (a) Lateral Displacement;
(b) Vertical Displacement; (c) Torsional Displacement

aerodynamic forces instead of invoking the generally assumed
quasi-steady forces. This novel feature enhances the accuracy
of the predicted responses. This framework can be utilized in
a structural control design by incorporating the wind loading
information as a feed-forward link, which has the promise to
improve the effectiveness of control. Direct calculations of the
covariance matrix of response using the Lyapunov equation
offers higher computational efficiency in comparison with con-
ventional spectral analysis approach.

The richness of this analysis framework leads immediately
to the next level of analysis, i.e., it can be simply extended to
the analysis of bridges/structures with structural and aerody-
namic nonlinearities by using a time-variant system model
once the nonlinear structural and aerodynamic characteristics
of a bridge are established. Both the nonlinear effects and un-
steady frequency dependent characteristics of aerodynamic
forces can be accurately captured using this scheme. Details
will be presented in a future presentation.

Although emphasis in this study was placed on the response
of bridges under multicorrelated wind excitation, the proposed
approach offers immediate applications to other wind-excited
structures as well as systems with frequency dependent param-
eters, such as those involved in soil-structure and fluid-struc-
ture interactions.
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FIG. 5. Simulation of Wind Fluctuations, Buffeting and Self-Excited Forces and Bridge Response (U = 60 m/s, at Midpoint of Main Span): (a) Wind
Fluctuations; (b) Buffeting Forces; (c) Self-Excited Forces; (d) Bridge Response
APPENDIX I. STATE-SPACE REPRESENTATION OF
BUFFETING FORCES eFb

The state-space equations for the buffeting forces areeFb

given as

e e e e eẊ = A X 1 B W (61)b b b b

e e e e eF = C X 1 D W (62)b b b b

General Case

Assuming the admittance function xr and the joint accep-
tance Jr (r = Lbu, Lbw, Dbu, Dbw, Mbu, Mbw) are unique for each
buffeting force components. For each element, totally six ad-
mittance functions and six joint acceptance functions need to
be expressed in terms of rational functions. Then, the matrices
of the state-space model are

eA = diag[A A A A A A ] (63)b L D M L D Mbu bu bu bw bw bw

T
T T TB B B 0 0 0L D Mbu bu bueB = (64)b F GT T T0 0 0 B B BL D Mbw bw bw

e 2C = (rU Bl )b

C C 0 0 C C 0 0L1 L L2 Lbu bw

? 0 C C 0 0 C C 0D1 D D2 Dbu bwF G
0 0 2bC C 0 0 2bC CM1 M M2 Mbu bw

(65)
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C D C DL1 L L2 Lbu bw

e 2D = (rU Bl ) C D C D (66)b D1 D D2 Dbu bwF G
2bC D 2bC DM1 M M2 Mbu bw

x xA 0 Br r
A = ; B = (67a,b)r rF G F GJ x J J xB C A B Dr r r r r

J x J J xC = [D C C ]; D = D D (67c,d )r r r r r r r

x x x
xA = diag[2d U/b . . . 2d U/b] (68a)r r,1 r,mr

x x x T
xB = [A . . . A ] (68b)r r,2 r,m 11r

x x x
xC = [2d U/b . . . 2d U/b] (69a)r r,1 r,mr

xmr

x x xD = A 1 A (69b)r r,1 r, j 11O
j = 1

J J J
JA = diag[2d U/b . . . 2d U/b] (70a)r r,1 r,mr

J J T
JB = [A . . . A ] (70b)r r,2 r,m 11r

J J J
JC = [2d U/b . . . 2d U/b] (71a)r r,1 r,mr

Jmr

J J JD = A 1 A (71b)r r,1 r, j 11O
j = 1

Special Case

Consider a special case



x = x = x = x = x ; x = x = x (72a,b)L L M M LM D D Dbu bw bu bw bu bw

J = J = J = J ; J = J = J = J (73a,b)L D M u L D M wbu bu bu bw bw bw

In this case, only two admittance functions and two joint ac-
ceptance functions need to be expressed in terms of rational
functions. The rational function approximations of xLM , xD , Ju,
and Jw are given by

xmr x(ik)Ar, j11xx (ik) = A 1 (r = LM, D) (74)r r,1 O xik 1 d r, jj = 1

Jmr J(ik)Ar, j11JJ (ik) = A 1 (r = u, w) (75)r r,1 O Jik 1 d r, jj = 1

and the matrices of the state-space model are given by

x x JA 0 B CLM LM u

x x J0 A B C 0D D u

J0 0 AueA = (76a)b x x JA 0 B CLM LM w

x x J0 0 A B CD D w

J0 0 Aw

x JB DLM u

x JB D 0D u

JBueB = (76b)
x JB DLM w

x J0 B DD w

JBw

x xC C 0 0 C C 0 0L1 LM L2 LM

e 2 x xC = (rU Bl ) 0 C C 0 0 C C 0D1 D D2 DF G
x xBC C 0 0 BC C 0 0M1 LM M2 LM

(77)

x xC D C DL1 LM L2 LM

e 2 x xD = (rU Bl ) C D C D (78)b D1 D D2 DF G
x xBC D BC DM1 LM M2 LM

x x x
xA = diag[2d U/b . . . 2d U/b] (79a)r r,1 r,mr

x x x T
xB = [A . . . A ] (79b)r r,2 r,m 11r

x x x
xC = [2d U/b . . . 2d U/b] (80a)r r,1 r,mr

xmr

x x xD = A 1 A r = LM, D) (80b)r r,1 r, j11O
j = 1

J J J
JA = diag[2d U/b . . . 2d U/b] (81a)r r,1 r,mr

J J T
JB = [A . . . A ] (81b)r r,2 r,m 11r

J J J
JC = [2d U/b . . . 2d U/b] (82a)r r,1 r,mr

Jmr

J J JD = A 1 A (r = u, w) (82b)r r,1 r, j11O
j = 1
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