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SUMMARY

This study investigates the control of jacket-type o�shore platforms. The deck displacement of jacket-
type o�shore platforms can be controlled using both passive and active control mechanisms. Among
the passive control mechanisms, a tuned mass damper concept is studied in this paper. Active control
mechanisms considered here include the active mass damper, the active tendon mechanism and the
propeller thruster. An optimal frequency domain approach to active control of wave-excited platforms
is used in which the H2 norm of the transfer function from the external disturbance to the regulated
output is minimized. In this study, the hydrodynamic drag force is evaluated using the JONSWAP
wave spectrum. Unlike conventional linearization approaches, the in
uence of non-linearity in the drag
force is retained in this scheme by expressing the non-linear force components in terms of higher-order
convolutions of the water-particle velocities. To demonstrate the e�ectiveness of this scheme, the platform
performance with and without control devices under di�erent sea states is evaluated. It is demonstrated
that the control devices are useful in reducing the displacement response of jacket-type o�shore platforms,
especially when the wave forces are concentrated at frequencies close to the natural frequencies of the
platform. This becomes especially signi�cant in deep waters because the natural frequencies of jacket-
type platforms fall closer to the dominant wave frequencies in deep waters. Adding control devices to
deep water platforms will ensure a reduction both in the global response of the platform and in localized
e�ects, such as the fatigue of welded joints. Copyright ? 2001 John Wiley & Sons, Ltd.
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INTRODUCTION

As the amount of oil near the shores decreases, the need to tap oil resources located in
deep waters or hostile environments increases. Therefore, improvements in the design and
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construction practices of o�shore drilling and production platforms are necessary [1]. It is
essential that these platforms be able to withstand the action of wind, waves and earthquakes
under both operating and extreme conditions.
In deep water, the natural frequencies of conventional gravity type platforms are within

the range of everyday wave heights. This results in excessive fatigue-related damage to the
platform. In the case of extreme waves in deep water o�shore platforms can experience large
motions. Excessive motions of the platforms can threaten their safety and operation [2]. To
prevent fatigue damage and protect the operations and crew of the platform, a number of
design modi�cations have been introduced to limit such impacts. These modi�cations include
utilizing compliant platforms (e.g. guyed towers and tension leg platforms). Other possibilities
involving implementation of control devices exist to reduce both fatigue e�ects and survival
during extreme events. Despite the rich tradition of active control systems in the dynamic
positioning of drilling ships, control devices have not been actively pursued by the o�shore
industry. This may be attributed to deck space being at a premium, needs for temperature
control of energy-dissipating 
uids and power and maintenance requirements of an active
system. In civil engineering literature, few studies have been conducted using active control
devices in o�shore structures [2–9]. However, with recent success and burgeoning growth in
the application of active systems in land-based structures such as tall buildings, TV towers
and other structures, interest in these devices for possible application to o�shore structures is
receiving more attention [10–13].
There are two types of devices that can be used to control structural response, i.e. passive and

active. Passive control devices utilize the dynamics of the structure itself to dissipate energy.
One passive control device that can be used to control the structural response of o�shore
platforms is the tuned mass damper (TMD). The TMD is commonly used for the control of
tall buildings under wind excitation [11; 12; 14]. The secondary mass of inertial type damping
devices such as a TMD can be replaced by a water tank in which the sloshing of liquid
mimics the actions of a TMD consisting of a mass damper and spring system. However, the
ability of a passive device to control the response of a structure is limited, and the device can
generally be tuned to only one of the structure’s natural frequencies.
The limitations that are inherent in passive devices can be overcome by using an active

control device. Active control devices utilize an external power source to generate forces
which control the structure. These generated forces are called control forces. Active control
mechanisms that can be used in o�shore structures include the active mass damper (AMD),
the active tendon system and the propeller thruster. One type of active control device that has
received some recent attention for o�shore platforms is the thruster-assisted mooring system
[8; 9]. Mooring systems help to maintain the general position of the platform. However, even
with a mooring system, a platform may be susceptible to slow drift oscillations caused by
currents and wind. To counteract such motion, thrusters can be added to the mooring system.
Therefore, attention has been given to designing a thruster-assisted mooring system which can
limit the motions caused by currents and wind. Another active control device that has been
studied is active pneumatic control [2]. This device limits the de
ections of a platform by
individually controlling the air pressure inside air tanks located at the bottom of the platform.
In this paper, a jacket-type platform under random seas is used to demonstrate the e�ec-

tiveness of various control devices. The analysis in this study is based on a frequency domain
approach that minimizes the H2 norm of the transfer function from the external disturbance
to the regulated output [6; 15–17]. The displacement of the platform deck is controlled using
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CONTROL OF OFFSHORE PLATFORMS UNDER RANDOM WAVES 215

both passive and active control mechanisms. The approach presented in this paper includes a
feedforward–feedback linkage which enhances performance of the controller.

THEORETICAL BACKGROUND

A state-space representation of wave load e�ects is presented in this section. This is followed
by brief theoretical background concerning frequency-domain-based H2 control, and its solu-
tion procedure. An example is then presented to illustrate the procedure and to evaluate the
performance of di�erent systems.

STATE–SPACE MODELLING OF WAVE LOAD EFFECTS—FEEDFORWARD LINK

In control theory, the equations of motion of a system are frequently represented using a state-
space description. This general representation is readily applicable in numerical algorithms for
analysis and synthesis. In structural control, the state vector is typically a 2n-dimensional vector
of displacements and velocities for an n-degree-of-freedom structure. Similarly, the external
loading needs to be expressed in the state-space framework, which is then combined with the
structural model for the control system design and analysis.
In many cases, the spectral properties of the environmental loadings on a structure are

known and can be modelled. By including such models in the control design, better control
of the structure can be obtained using little additional e�ort. The feedforward links can be
formulated using two types of input. First, the feedforward link can be based on established
spectral characteristics of an excitation such as earthquakes, winds or waves [16; 18; 19]. Sec-
ond, the feedforward loops can be con�gured based on actual real-time measurements by �tting
models such as the auto-regressive (AR) model to data [20; 21]. A feedback–feedforward con-
trol scheme includes a stochastic model of the external disturbance in the control design (e.g.
References [16; 19]). In these studies, the external disturbance was an earthquake ground accel-
eration and wind velocity 
uctuations, respectively. The equations of motion of the structural
system were augmented with appropriate earthquake and wind excitation models obtained by
�ltering a Gaussian white noise process. The augmented equations of motion were then used
to determine a control which utilized both feedback and feedforward compensation. The feed-
back loop incorporated measurements of the response of the structure into the control law.
The information from both the structure and the excitation was utilized in the feedforward
control law with an observer designed to estimate the states of the external excitation model
based upon the base acceleration or mean wind speed information. Yamada and Kobori [20]
and Mei et al. [21] utilized real-time measurements of earthquakes and �tted these in terms of
AR models. These models were augmented with structural models for real-time control force
calculation. The latter approach o�ers a more robust feedforward input as it is not based on a
pre-de�ned spectral description. Rather, it adjusts to re
ect the nature of actual measured input.
In the following discussion, a state-space representation for wave load e�ects is presented.

Power spectral density functions of wave forces

The wave-induced loads on structures are given by the Morison equation [22]. This equation
has an inertial force term and a drag term. The latter contains a non-linear term involving the
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water-particle velocity. Historically, analyses of non-linear systems in the frequency domain
have been based on the statistical linearization approach (e.g. References [23; 24]). However,
the commonly used method of equivalent linearization fails to capture the higher-order statistics
of the response, i.e. its non-Gaussian characteristics. In addition, response energy in frequency
ranges outside that of the input spectrum is not observed using this technique.
In this study, an enhanced linearization approach is utilized which permits the loading spec-

tral description to reveal spectral peaks outside the range of input frequencies that are unde-
tectable using conventional linearization techniques. The enhanced approach involves casting
spectral descriptions of the drag force by a series of convolutions involving water-particle
velocity spectra [25–27].
Investigations of the dynamics of jacket-type platforms indicate that the quadratic depen-

dence of the drag force on the water-particle velocity leads to signi�cant excitation near one of
the platform resonant frequencies, and thus results in an appreciable increase in the platform
response — a phenomenon that is captured in this study.
Following the enhanced linearization scheme discussed above, the hydrodynamic wave loads

acting on a typical o�shore platform can be expressed as

Fwave(t)=Finertia(t) + Flineardrag (t) + Fcurrent(t) + Fnon-lineardrag (t) (1)

where Finertia is the inertia force, Flineardrag is the linear part of the wave drag force, Fcurrent is
the force created by the current and Fnon-lineardrag is the non-linear part of the wave drag force.
Each component of the force is expressed in terms of the wave height 
uctuation. Accordingly,
their corresponding spectral density functions can be related.
One of the most commonly used spectral density functions of wave surface elevations is the

JONSWAP spectrum [22]. By introducing !̂=(!=!0) where !0 is the peak spectral frequency
of the wave surface elevations, the JONSWAP spectrum can be written in a dimensionless
form:

Ŝ��(!̂)=
S��(!)
S��(!0)

= exp(1:25)!̂−5 exp(−1:25!̂−4)
�−1 (2)

where !0 is a function of wind velocity and fetch length, 
 is the sharpness magni�cation
factor, �= exp[−(1=2�2) (1− !̂)2] with �=0:07 for !̂61 and �=0:09 for !̂¿1. If 
 is set
equal to unity, the JONSWAP spectrum reduces to the other commonly used spectrum, the
Pierson–Moskovitz spectrum. In Reference [28], the non-dimensional form of the JONSWAP
spectrum was modelled by employing a cascade of two linear second-order �lters as

Ŝ��(!̂) ≈ ŜA= G!̂4

[(!̂2 − k1)2 + (c1!̂)2][(!̂2 − k2)2 + (c2!̂)2] (3)

where the parameters G; k1; k2; c1 and c2 are determined by a least-squares algorithm [28].
Note that Equation (3) represents a single-input, single-output (SISO) system. This form of
the JONSWAP spectrum is utilized in this study because it can be conveniently expressed by
a state-space model.
The spectral density function of the horizontal water-particle velocities at any water level z

is related to the spectral density function of wave surface elevations via [22; 29; 30]

Svv(!; z)= |Hv�( j!; z)|2S��(!): (4)
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Following the linear wave theory, the magnitude of the transfer function from wave surface
elevation to horizontal water-particle velocities is

|Hv�( j!; z)|2 = !2�(!; z)(1 + cos�b(z))S��(!)

�(!; z) =
cosh2(�z)
sinh2(�d)

(5)

where j=
√−1; �=!2=g is the wave number, g is the acceleration due to gravity, b(z) is the

horizontal distance between the two legs of the platform in the direction of wave propagation
at level z and d is the water depth.
The relationship between the spectral density function of the wave forces per unit depth of

the platform and the spectral density function of the horizontal water-particle velocities can
be obtained from the linear wave theory [22; 30]. The cross-spectral density function of the
wave forces per unit depth of the platform between water levels zm and zn is

Sqm; qn(!; zm; zn)= Si(!; zm; zn) + SI(!; zm; zn) + SII(!; zm; zn) + SIII(!; zm; zn) (6)

where the spectral density function of the inertia force is

Si(!; zm; zn)= kI(zm)kI(zn)Saman(!); (7)

the spectral density function of the linear part of the wave drag force is

SI(!; zm; zn)= kD(zm)kD(zn)B(
c(zm))B(
c(zn))�vm�vnSvmvn(!) (8)

the spectral density function of the non-linear wave force can be expressed in terms of a
quadratic and cubic representation, SII(!) and SIII(!), given below

SII(!; zm; zn) = 2kD(zm)kD(zn)�(
c(zm))�(
c(zn))S∗2vmvn(!) (9)

SIII(!; zm; zn) =
8
3
kD(zm)kD(zn)
�vm�vn

�(
c(zm))�(
c(zn))S∗3vmvn(!) (10)

kI(z) =
�
4
�CMD2(z)

kD(z) = 1
2�CDD(z)

B(
c(z)) = 2
c(z)�(
c(z)) + 4�(
c(z))


c(z) =
Uc
�u(z)

�(
c(z)) = 2
∫ 
c(z)

0
�(t) dt

�(
c(z)) =
1√
2�
exp−


2
c(z)
2

and the spectrum of wave particle acceleration is

Saman(!)=!
2Svmvn(!) (11)
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where � is the density of the water, CD is the drag coe�cient, CM is the inertia coe�cient,
D(z) is the characteristic diameter of the platform leg at water level z; Uc is the uniform water
current, �u(z) is the standard deviation of the wave particle velocity at water level z; �vm is
the standard deviation of the horizontal wave velocities at water level zm and the convolution
S∗n is de�ned as

S∗n(!),
∫ ∞

−∞
S(g)∗(n−1)S(!− g) dg (12)

It is the contributions of SII(!) and SIII(!) which result in energy at frequencies both inside
and outside the range of frequencies associated with the base process. The square and cube
in the time domain are associated with the respective convolution in the frequency domain by
the Fourier transform relationship between the two operations. The second-order convolution
places energy at sums and di�erences frequencies representatives of the base process. The
third-order convolution spreads energy about the central frequency of the base process at its
third harmonic.
The spectral distortion e�ect of non-linearities is important because, via this mechanism,

energy can creep into frequency ranges which are critical to a structural system being acted
upon. If this e�ect is ignored, signi�cant structural response energy may also go by the wayside,
leading to non-conservative response estimates.
Notice that for a multi-input, multi-output (MIMO) wave force model, �vm�vn is an element

of the covariance matrix of the horizontal water-particle velocities. In the presence of currents,
the loading non-linearity is statistically asymmetric and the problem can essentially be treated
with a quadratic representation. In the absence of current, i.e. a statistically symmetric non-
linear case, the quadratic term drops out and the cubic term SIII() becomes more signi�cant.
In other cases, both terms contribute depending on the current amplitude [31].

Filter for SI. In modelling the wave forces, the spectral density matrix factorization approach
will be used [32]. In this approach, a random process with a spectral density matrix S(!) is
modelled as the output of a �lter with a unit intensity white noise process as an input. In
the Laplace domain (by substituting s for j! or −s2 for !2), this spectral density matrix is
factorized as

S(s)=H (−s)H∗(s) (13)

where H∗ is the transpose of the complex conjugate of H . Using the de�nition of the spectral
density function, it can be shown that if the input of H (s) is a unit intensity white noise,
then the output of H (s) will have a spectral density of S(s). H (s) is then expressed in the
state-space format for the control design.
In the jacket-type o�shore platform model used in this study, the wave forces will be acting

at �ve levels. Therefore, a wave force model must be constructed that has one input, i.e. a
unit intensity white noise, and �ve outputs, i.e. the wave forces on the platform at di�erent
depths. To simplify the procedure, this modelling will be done in three steps. The �rst step
is to model the wave surface elevations. This is accomplished using a SISO model obtained
from Equation (13) with a unit intensity white-noise process as an input and wave surface
elevations as output. The second step is to model the transfer function from the wave surface
elevation to the horizontal wave velocity. Five SISO models with wave elevations as input and
horizontal water-particle velocities at �ve levels of the platform legs as output are obtained
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Figure 1. A full model of wave forces on o�shore platforms.

separately. The third step is to use the results of the �rst two steps to obtain the �nal model.
Note that the second step can be done in the same manner as the �rst step because

|Hv�(jw)|2 =Hv�(−jw)H∗
v�(jw) (14)

which is the same form as Equation (13). The third step, which transfers the �ve horizon-
tal water-particle velocities into �ve wave forces on the legs of the platform, involves only
constants.
The modelling of H�w, the transfer function between the input white noise and the wave

height 
uctuation, in the �rst step and of Hv� in the second step is equivalent to the modelling
of the �lter for Svv. By Equation (13),

Svv(s)=Hvw(−s)H∗
vw(s) (15)

By substituting Hvw(s) = Hv�(s)H�w(s) into Equation (15), the following is obtained:

Svv(s) = Hv�(−s)H�w(−s)H∗
v�(s)H

∗
�w(s) (16)

The resulting full model that transfers a unit intensity white-noise process into wave forces
on the platform is shown in Figure 1. In this �gure, w is the unit intensity white-noise process,
� is the wave surface elevations, v is the horizontal water-particle velocities and q is the wave
forces per unit depth of the platform.

Filters for Si; SII; and SIII. The �lters for Si; SII and SIII can be obtained in a similar manner
as the �lter for SI. For the Si �lter, the power spectral density function of the water-particle
acceleration Saman is needed. This function can be obtained from Svmvn by Equation (11), which
is the following in the Laplace domain:

Saman(s) = −s2Svmvn(s) (17)

The �lter for Saman can then be obtained using the same procedure as the �rst step in obtaining
the �lter for Svmvn . From that, the �lter for Si can be obtained following the second and third
steps in obtaining SI. For the �lters of SII and SIII, the power spectral density functions S∗2vmvn
and S∗3vmvn are needed. These functions can be numerically obtained from the convolution of
Svmvn as described in Equation (12). The results are pairs of numbers describing S

∗2
vmvn and S

∗3
vmvn .

Copyright ? 2001 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2001; 30:213–235



220 J. SUHARDJO AND A. KAREEM

Figure 2. Basic structural control system.

By some curve-�t processes, these numerical results are then presented as ratios of polynomials
which can be factorized as in Equation (13). From these ratios of polynomials, the �lters for
S∗2vmvn and S∗3vmvn are obtained. Once these �lters are obtained, the procedures for obtaining the
SII and SIII �lters are straightforward.

Frequency domain control

Using a block diagram description, the structural control problem can be depicted as in Figure
2, where y is the measured output vector, z is the regulated output vector, u is the control
input vector and d is the exogenous input vector. The regulated output vector z may consist
of any combination of states of the system and components of the control input vector u. By
appropriately choosing elements of z, di�erent control design objectives can be included in
the problem formulation. Weighting functions can be added to elements of z to determine the
frequency range where each element of z is to be minimized. The ‘system’ in Figure 2 can
then contain the structure and the �lters and weighting functions in the frequency domain.
The task here is to design a stabilizing controller in such a way that the norm or ‘size’ of

the transfer function from disturbance d to regulated output z is minimized [15]. The control
design method which minimizes this H2 norm is termed the H2 control. The freedom of the
control designer to choose elements of z and frequency dependent weighting functions makes
this approach very 
exible.
Let the ‘system’ in Figure 2 be denoted by P and the ‘controller’ by K . Partitioning P into

its components,

P =
[
Pzd Pzu
Pyd Pyu

]
(18)

It is shown that

y = Pydd+ Pyuu = Pydd+ PyuKy (19)

and

z = Pzdd+ Pzuu (20)

Note that in Equation (18), a matrix with square brackets is used instead of a matrix with
parentheses. This notation is used to emphasize that the elements of the matrix are not constant
matrices, but transfer functions.
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Figure 3. A control problem for o�shore platform under wave loading.

By rearranging Equation (19) and substituting it into Equation (20), the following is ob-
tained:

z = [Pzd + PzuK(I−PyuK)−1Pyd]d
or

z = Hzdd (21)

where

Hzd = Pzd + PzuK(I−PyuK)−1Pyd (22)

Hzd is the transfer function from d to z that needs to be minimized. One possible block
diagram set-up for P is depicted in Figure 3.
In this �gure, A; B and C are matrices that form the state-space representation of the Equa-

tions of motion of the platform. The block F represents the wave force model. Cz and Cy are
matrices needed to extract parts of the system output to form regulated and measured output
vectors. The input of F is a vector of unit-intensity white-noise processes, w. The output of F
is a vector of wave forces, w′. The control force u and the wave forces w′ generally enter the
system di�erently. For example, the control force comes into the system via the active control
device as indicated by the matrix B, while wave forces produce loadings on every lumped
mass of the platform. The external excitation d consists of two elements: w and v, or

d=
(
w
v

)
(23)

where w is a white-noise input vector to the wave force model �lter and v is the measurement
noise. The regulated output z consists of z1 and z2, i.e.

z=
(
z1
z2

)
(24)

where z1 is the weighted structural response and z2 is the weighted control force.
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The objective of the control design is to determine a controller K such that a weighted norm
of the transfer function from d to z is minimized. With this set-up, the matrix P expressed in
the form of Equation (18) is given by

P=


 Pz1w Pz1v Pz1u
Pz2w Pz2v Pz2u
Pyw Pyv Pyu


 =


 �1W1CzG′k 0 �1W1CzG

0 0 �2W2

CyG′k + F I CyG


 (25)

In Figure 3 and Equation (25), W1 and W2 are frequency-dependent weighting functions, �1
and �2 are scalar multipliers for W1 and W2, respectively and k is a scalar which expresses
a preference in minimizing the transfer function from d to z versus minimizing the transfer
function from v to z. If k is taken as a large value, then the e�ect of measurement noise is
neglected in the control design. The transfer functions G and G′ are de�ned as

G,C(sI − A)−1B (26)

and

G′,C(sI − A)−1F (27)

From Equation (25), the transfer function to be minimized, Hzd, can be computed by Equa-
tion (22). The result is

Hzd=
[
Hz1w Hz1v
Hz2w Hz2v

]
(28)

where

Hzd(11) = �1W1(CzG′k + CzGK(I−CyGK)−1CyG′k)
Hzd(12) = �1W1CzGK(I−CyGK)−1
Hzd(21) = �2W2K(I−CyGK)−1(CyG′k + F)
Hzd(22) = �2W2K(I−CyGK)−1

Increasing �1W1 in the frequency range while choosing a large value of k causes the transfer
function from the white-noise excitation vector w to the weighted structural response z1 to be
minimized more. This will help improve the performance of the system at those frequencies.
Increasing �2 in the frequency range while choosing a large value of k also causes the transfer
function from the white-noise excitation w to the weighted control force z2 to be minimized
more. This will help limit the control forces. Increasing one of the weightings in a frequency
range decreases the importance of the other weighting in that frequency range. Therefore, one
is faced with a tradeo� between di�erent design objectives. The H2 control strategy searches
for a stabilizing controller while minimizing the H2 norm of Hzd; ‖Hzd‖2. The H2 solution
procedure is given in Appendix A.

EXAMPLE

Modelling of the wave force spectrum

In the �rst part of this example, the wave force spectrum is modelled. The sea state is de-
�ned by the JONSWAP wave spectrum. The peak spectral frequency is !0 = 0:35 rad=s, which
corresponds to a period of 18 s. The sharpness magni�cation factor is 
=3:78.
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The modelling of the Si; SI; SII, and SIII �lters will be described separately. These �lters will
then be added together to obtain the total wave force �lter.

Filter of SI

The following parameters are used in Equation (3): G=0:47; k1 = 1; k2 = 4; c1 = 0:15 and
c2 =3:5 [28]. A signi�cant wave height of 15m was obtained by setting G=0:47. The numer-
ator and denominator of the spectral density function can be treated separately because this
process involves a SISO system. In the Laplace domain, the numerator of ŜA in Equation (3)
is

G
!40
s4 = 3331:9s4 (29)

Let the model �lter for ŜA be denoted as H�w. The numerator of the �lter H�w is then simply
√
G
!20
s2 = 57:723s2 (30)

The denominator of ŜA is

[(−1
!20
s2 − k1

)2
+
(−jc1
!0

s
)2][(−1

!20
s2 − k2

)2
+
(−jc2
!0

s
)2]

=4440:7(s2 − 1:2250s+ 0:4900)(s2 + 1:2250s+ 0:4900)
(s2−0:0525s+ 0:1225) (s2 + 0:0525s+ 0:1225) (31)

The denominator of the �lter H�w is obtained by choosing the stable parts from the pairs in
Equation (31), i.e. the denominator of the �lter H�w is

66:639(s2 + 1:2250s+ 0:4900) (s2 + 0:0525s+ 0:1225) (32)

Hence

H�w(s)=
57:723s2

66:639(s2 + 1:2250s+ 0:4900)(s2 + 0:0525s+ 0:1225)
(33)

It can be readily shown that

H�w(−s)H∗
�w(s)=H�w(−s)H�w(s)= ŜA(s) (34)

Recall from Equation (5) that the magnitude of the transfer function from wave surface
elevations to horizontal water-particle velocities is

|Hv�( j!; z)|2 =!2�(!; z)(1 + cos�b(z)) (35)

with

�(!; z)=
cosh2(�z)
sinh2(�d)

=
1 + 1

2(�z)
2 + 1

24 (�z)
4 + 1

720 (�z)
6 + · · ·

1 + 1
6(�d)

3 + 1
120 (�d)

5 + 1
5040 (�d)

7 + · · · (36)
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Also

(1 + cos�b)=2− 1
2 (�b)

2 + 1
24 (�b)

4− 1
720 (�b)

6 + · · · (37)

Let the numerator of |Hv�|2 be denoted by NH and its denominator by DH . Substituting
�=!2=g; !2 =−s2, and truncating up to the sixth power of s, we obtain

NH (s; z)=
2z2−b2
2g2

s6 + 2s2 (38)

and

DH (s)=
d3

6g3
s6−1 (39)

Now, using the same procedure as in the �rst step, NH (s; z) and DH (s) can be easily fac-
torized to obtain the numerator and denominator of the model �lter Hv�(s; z).
The third step is to ‘factorize’ a constant matrix S with individual element (8=�)kD(zm)kD(zn)

�vm�vn and to connect the result to Hv� and H�w. Note that �vm�vn is an element of the covariance
matrix of the horizontal water-particle velocities. The ‘factorization’ here is to �nd a matrix
Hqv such that

S=HqvHT
qv (40)

which simpli�es into

Hqv= S1=2 (41)

where Hqv is a constant matrix of real numbers due to the fact that S is symmetric. This
operation can be done using various available matrix decomposition algorithms.

Filter of Si

The �lter of the wave particle acceleration spectrum is

Ha(s)= s
NH�w(s)
DH�w(s)

NHv�(s)
DHv�(s)

(42)

This wave particle acceleration �lter will then be used to calculate Si in Equation (7) following
the three steps described above.

Filter of SII

The second-order convolution of the wave-particle velocity spectrum is calculated from the
�rst-order convolution wave particle velocity spectrum [Equation (9)]. This spectrum is curve-
�tted by the following function:

S∗2u (s)=
NS∗2u (s)
DS∗2u (s)

(43)
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Figure 4. Second-order convolution wave particle velocity spectra.

where NS∗2u (s)=3:9700E−05 and

DS∗2u (s) = s
24−(2:1185E + 00)s22 − (9:1675E + 00)s20 + (3:2935E−01)s18 + (3:3090E + 01)s16
+ (5:8484E + 01)s14 + (5:2266E + 01)s12 + (2:7996E + 01)s10 + (9:1206E + 00)s8

+ (1:6584E + 00)s6 + (1:1996E−01)s4 − (2:9456E−03)s2 + (1:5707E − 05) (44)

Both the exact and curve-�tted spectra are plotted in Figure 4, which exhibits a good match
of the overall frequency distribution of the spectral amplitude.
Based on the spectrum in Equation (43), the second-order convolution wave particle velocity

�lter is obtained as

FuII(s)=
NFuII (s)
DFuII (s)

(45)

where NFuII (s)=6:3008E−03 and

DFuII (s) = s
12 + (5:0108E + 00)s11 + (1:1495E + 01)s10 + (1:8849E + 01)s9 + (2:3803E + 01)s8

+ (2:2850E + 01)s7 + (1:8701E + 01)s6 + (1:1404E + 01)s5 + (6:1276E + 00)s4

+ (2:2013E + 00)s3 + (6:8929E−01)s2 + (9:1702E−02)s+ (3:9633E−03) (46)

This second-order convolution wave particle velocity �lter will then be used to calculate SII
by Equation (9).
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Figure 5. Third-order convolution wave particle velocity spectra.

Filter of SIII

The third-order convolution of wave particle velocity spectrum is calculated by Equation (10)
from the �rst- and second-order convolution wave particle velocity spectra. This spectrum is
curve-�tted by functions that can be factorized according to Equation (13). For example, the
third-order convolution of wave particle velocity spectrum for the wave with a period of 18 s
that enters the platform at its �fth lumped mass is curve-�tted by a function

S∗3u (s)=
NS∗3u (s)
DS∗3u (s)

(47)

with NS∗3u (s)=0:01 and

DS∗3u (s) = s
24 + 1:0476× 101s22 + 4:9357× 101s20 + 1:3717× 102s18 + 2:4798× 102s16
+ 3:0324× 102s14 + 2:5286× 102s12 + 1:4173× 102s10 + 5:1760× 101s8
+ 1:1923× 101s6 + 1:7372s4 + 1:4821× 10−1s2 + 6:1326× 10−3 (48)

Both the exact and the curve-�tted spectra are plotted in Figure 5.
Based on the spectrum in Equation (47), the third-order convolution wave particle velocity

�lter is obtained as

FuIII(s)=
NFuIII (s)
DFuIII (s)

(49)
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Figure 6. Elevation of jacket-type o�shore platform A used in numerical example.

where NFuIII (s)=2:1794× 10−2 and

DFuIII (s) = s
12 + 1:9656s11 + 7:1982s10 + 9:7126s9 + 1:8081× 101s8
+ 1:7157× 101s7 + 2:0043× 101s6 + 1:3004× 101s5 + 9:7087s4
+ 3:9011s3 + 1:6588s2 + 3:2358× 10−1s+ 7:0769× 10−2 (50)

This third-order convolution wave particle velocity �lter will then be used to calculate SIII
in Equation (10).

NUMERICAL ANALYSIS OF OFFSHORE PLATFORM CONTROL

Platform characteristics

In the second part of this example, the motion of two jacket-type o�shore platforms is con-
trolled utilizing both passive and active control strategies. The passive control device studied is
the tuned mass damper. The active devices analysed here include the active mass damper, the
active tendon mechanism and the propeller thruster. Each platform is individually modelled as
six lumped masses, as shown in Figure 6. For each platform, �ve of these masses are located
below the mean sea level.

Platform A. For the �rst platform, the depth of the sea is set at 700 ft. The lumped masses are
2× 105; 1:8× 105; 1:6× 105; 1:4× 105; 1:2× 105 and 1:0× 106 slugs, located at z=150; 280; 410;
540; 670 and 800 ft above the sea bed, respectively. The distances between the legs of the plat-
forms below the mean sea level at the locations of the lumped masses are b(z)=165; 148:75;
132:5; 116:25 and 100 ft, respectively. The corresponding equivalent characteristic diameters
of the legs are D(z)=45; 40; 35; 30 and 25 ft, respectively. The equivalent characteristic di-
ameter represents the total projected diameter of the platform legs at given elevations. The
wave phase e�ect that results from the spatial separation between legs is accounted in the
formulation [Equation (5)].
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The �rst six natural frequencies of this platform are 0.2, 0.98171, 1.9527, 2.7209, 3.2802
and 3.8471 cycles=sec (Hz), respectively. The corresponding modal damping ratios are 0.02,
0.049704, 0.0866, 0.11579, 0.13705 and 0.15859, respectively.

Platform B. For the second platform, the depth of the sea is set at 1150 ft. The lumped masses
are the same as those used for Platform A (i.e. 2× 105; 1:8× 105; 1:6× 105; 1:4× 105; 1:2× 105
and 1:0× 106 slugs). However, these masses are now located at z=200; 400; 600; 800; 1000 and
1250 ft above the sea bed, respectively. The distances between the legs of the platforms below
the mean sea level at the locations of the lumped masses are b(z)=226; 202; 178; 154 and
130 ft, respectively.
The �rst six natural frequencies of Platform B are 0.16692, 0.81933, 1.6297, 2.2709, 2.7376

and 32.108, respectively. The corresponding modal damping ratios are 0.02, 0.049704, 0.0866,
0.11579, 0.13705 and 0.15859, respectively.

Sea states

Di�erent sea states are applied for this study. The sea states are de�ned by the JONSWAP
wave spectrum, using a sharpness magni�cation factor 
=3:78 and periods of 18; 14; 10 and
6 sec, respectively. It is noteworthy that the 18 sec dominant wave spectrum has considerable
energy at or around the �rst natural periods of the two platforms studied here. This may result
in large deck displacements even though the platform natural periods are removed from the
dominant wave period in a sea state. Furthermore, higher-order loading component may add
to the response at the platform natural period.

NUMERICAL RESULTS

The block diagram description for this control problem is given in Figure 3. In this �gure, the
matrix Cz is such that the regulated output z1 is the weighted displacement of the platform
deck and Cy is such that the measured output y is the accelerations of all the lumped masses
of the platform. The numerical results obtained using various control set-ups on platform A
are given in Tables I–IV. The numerical results obtained using various control set-ups on
platform B are given in Tables V–VIII. In these tables, �d6 is the standard deviation of the
displacement of the top mass in cm, and �dMD is the standard deviation of the displacement of
the mass damper. The last entry in these tables, �u, represents the standard deviations of the
control force generated by the active control device. Various cases examined in these tables
are listed below.
Case I represents the platform with no external control device. Case II represents the platform

with a TMD installed on the platform deck. The design of the optimum TMD is based on
the design formulae in Reference [33]. The properties of the TMD are: mass = 172 t (1 per
cent of the generalized mass associated with the �rst mode of the platform), sti�ness = 268
kN=m and damping coe�cient= 20 t=s. The eigenfrequency of the damper is 0.199Hz, which
is 99.3 per cent of the �rst natural frequency of the platform.
Case III represents the platform with an AMD installed (1 per cent of the generalized mass

associated with the �rst mode of the platform). The goal of structural control is to reduce the
structural response in the frequency range where the structure is sensitive to disturbance, i.e., at
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Table I. Standard deviations of displacements and control forces:
platform A, wave period=18 s.

Case �d6 (cm) % reduction �dMD (cm) �u (kN)
(deck) (damper) (control force)

I 1.9236E1 — — —
II 1.7151E1 10.8 7.3883E1 —
III 1.4345E1 25.4 2.3101E2 3.2291E2
IV 1.3507E1 29.8 — 3.9293E3
V 1.4000E1 27.2 — 7.6260E2
VI 1.3685E1 28.9 6.0375E1 3.8310E1
VII 1.3637E1 29.1 5.9009E1 9.2715E2

Table II. Standard deviations of displacements and control forces:
platform A, wave period=14 s.

Case �d6 (cm) % reduction �dMD (cm) �u (kN)
(deck) (damper) (control force)

I 1.3643E1 — — —
II 1.0133E1 25.7 5.9812E1 —
III 7.1899E0 47.3 1.4431E2 1.8482E2
IV 7.1896E0 47.3 — 1.7870E3
V 7.3082E0 46.4 — 3.5478E2
VI 7.2164E0 47.1 4.5818E1 1.6174E3
VII 7.1780E0 47.4 4.4596E1 3.7588E2

Table III. Standard deviations of displacements and control forces:
platform A, wave period=10 s.

Case �d6 (cm) % reduction �dMD (cm) �u (kN)
(deck) (damper) (control force)

I 7.6417E0 — — —
II 5.6128E0 26.6 3.5066E1 —
III 3.8773E0 49.3 8.4810E1 1.0482E2
IV 3.9415E0 48.4 — 6.8261E2
V 3.9889E0 47.8 — 1.3913E2
VI 3.9123E0 48.8 3.0947E1 6.5825E2
VII 3.8965E0 49.0 2.8710E1 1.3641E2

low frequencies. At high frequencies where the structure is often not sensitive to disturbance,
the control should “roll o�” or lower because it is not e�ective. Therefore, to minimize the
structural response, a weighting function which has a large magnitude at low frequencies and
rolls o� at high frequencies is needed. One class of functions that satis�es these requirements
is in the form of (a=(s + a))n; n=1; 2; 3; : : : : Here, a is termed the “corner frequency”, i.e.
the frequency where the function “starts” to roll-o�. The slope of the roll-o� depends on n: a
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Table IV. Standard deviations of displacements and control forces:
platform A, wave period=6 s.

Case �d6 (cm) % reduction �dMD (cm) �u (kN)
(deck) (damper) (control force)

I 6.4129E0 — — —
II 4.7863E0 25.4 3.1443E1 —
III 2.0849E0 67.5 9.1357E1 9.3222E1
IV 2.0653E0 67.8 — 8.1844E2
V 2.1355E0 66.7 — 1.7679E2
VI 2.0532E0 68.0 1.7294E1 7.6264E2
VII 1.9528E0 69.5 1.6447E1 1.8552E2

Table V. Standard deviations of displacements and control forces:
platform B, wave period=18 s.

Case �d6 (cm) % reduction �dMD (cm) �u (kN)
(deck) (damper) (control force)

I 5.9848E1 — — —
II 4.1441E1 30.8 2.4776E2 —
III 2.7636E1 53.8 8.1167E2 1.0496E3
IV 2.7332E1 54.3 — 6.8849E3
V 2.6653E1 55.5 — 1.8602E3
VI 2.7070E1 54.8 1.7053E2 6.6043E3
VII 2.6541E1 55.7 1.0340E2 1.3607E3

Table VI. Standard deviations of displacements and control forces:
platform B, wave period=14 s.

Case �d6 (cm) % reduction �dMD (cm) �u (kN)
(deck) (damper) (control force)

I 3.0299E1 — — —
II 2.2761E1 24.9 1.3083E2 —
III 1.5079E1 50.2 5.1214E2 6.4906E2
IV 1.4540E1 52.0 — 2.9217E3
V 1.4294E1 52.8 — 6.9490E2
VI 1.4695E1 51.5 8.8036E1 2.6991E3
VII 1.4791E1 51.2 8.6345E1 6.7750E2

larger n yields a steeper slope. For this example, the weighting function is

W1 =
a

s+ a
(51)

The corner frequency a=4 rad=s is used throughout these numerical studies. To minimize
control forces, a weighting function which has a small magnitude at low frequencies and
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Table VII. Standard deviations of displacements and control forces:
platform B, wave period=10 s.

Case �d6 (cm) % reduction �dMD (cm) �u (kN)
(deck) (damper) (control force)

I 2.1724E1 — — —
II 1.5923E1 26.7 9.7026E1 —
III 8.4441E0 61.1 3.8494E2 4.3085E2
IV 8.4310E0 61.2 — 2.3465E3
V 8.4631E0 61.0 — 5.5603E2
VI 8.4538E0 61.1 5.9518E1 1.9069E3
VII 8.4989E0 60.9 5.8387E1 4.5776E2

Table VIII. Standard deviations of displacements and control forces:
platform B, wave period=6 s.

Case �d6 (cm) % reduction �dMD (cm) �u (kN)
(deck) (damper) (control force)

I 2.9250E1 — — —
II 1.8144E1 38.0 1.3711E2 —
III 3.2687E0 88.8 2.8549E2 1.6477E2
IV 3.2483E0 88.9 — 2.5242E3
V 3.2407E0 88.9 — 5.8984E2
VI 3.2432E0 88.9 5.1808E1 2.4627E3
VII 3.2204E0 89.0 5.1746E1 5.4947E2

increases at high frequencies is needed. For this example, the following is used:

W2 =
s+ 0:1

1× 10−6s+ 0:1 (52)

These weighting functions are plotted in Figure 7.
Case IV represents the platform with a tendon mechanism located between its �fth and

sixth lumped masses. The active tendon system consists of a diagonal set of tendons=pulley
with an actuator which transmits its force by altering tension in tendons, thus the system
characteristics.
Case V represents the platform with a propeller thruster located on its �fth lumped mass.

Case VI represents the platform with a combination of a TMD and a tendon mechanism
located between its �fth and sixth lumped masses. Case VII represents the platform with a
combination of a TMD and a propeller thruster located on its �fth lumped mass.
The above tables show that the response of the platform is reduced by the application of

the TMD, and that adding an AMD reduces it further. However, for some cases which include
an AMD, the displacements of the mass damper are too large to be practical for the control
of jacket-type o�shore platforms. These displacements can be reduced using a larger mass for
the mass damper. However, this solution might not be practical. When only a tendon is used
below the deck of the platform, similar reductions in the platform displacements are achieved
with a signi�cantly larger control force. When only a propeller thruster is used just below
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Figure 7. Weighting functions �1W1 and �2W2 for case III.

the sea water level, the same reductions in the platform displacements are achieved using
a signi�cantly smaller control force. The control force produced by the propeller thruster is
generally smaller than the control force generated by the tendon control. When a TMD and a
tendon below the deck of the platform are used, the control force is smaller than when only
a tendon is used, and the displacement of the damper mass is smaller than the displacement
of the AMD. Hence it can be seen here that the tendon mechanism helps to reduce the travel
distance of the TMD. Therefore, a combination of a TMD and tendon mechanism may allow
a smaller mass ratio for the TMD. When a TMD and a propeller thruster just below the sea
water level are used, the control force is even smaller than in the previous case. Therefore, this
combination is probably the best for controlling the jacket-type o�shore platforms considered
here.
The dominant periods of ocean waves considered here signify typical waves experienced

during the everyday life of the platform and during extreme storm conditions, e.g. the longer
the period it represents stormy conditions. It is noted that when the fundamental platform
period is separated from the wave dominant period, the waves have considerable background
energy around the platform natural periods, thus resulting in large deck displacements. In the
case of 18 sec waves, the non-linear drag component also introduces loading at or near third
harmonic which falls close or at the natural periods of the platforms under study here. In the
cases where the two periods are close, the platform response is dominated by the resonant
component. However, in this case the sea state is characterized by lower wave heights, which
results in not very large deck displacements. It is in these latter cases that the e�ectiveness of
the control devices is enhanced, which results in more signi�cant reductions in response.

CONCLUSIONS

This paper examines the control of jacket-type o�shore platforms using passive=active auxil-
iary devices. An optimal frequency domain control method based on the minimization of the
H2 norm of the system transfer function is used. The JONSWAP wave spectra has been em-
ployed to model the wave surface elevation, from which the wave force spectra was obtained,
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including contributions of the nonlinear e�ects. This wave force spectra was then factorized
to give a linear �lter for expressing wave load e�ects in a state-space format which is essen-
tial for the control procedure utilized here. A numerical study was conducted in which the
displacements of the decks of platforms were controlled by passive and active control mech-
anisms. The passive control mechanism consisted of a TMD, and the active control devices
included an AMD, active tendon mechanism, propeller thrusters, and a combination of these.
The size of the control forces and the reduction in the platform response during di�erent

sea states were the primary factors taken into consideration in this study. This study suggests
that the combined TMD and propeller thruster mechanism was the most e�ective means for
controlling the jacket-type o�shore platforms studied here. For the sea states in which the
wave forces were concentrated at frequencies near the dominant frequencies of the platform,
the response of the platform was signi�cantly reduced. This study suggests that by including
a single or a combination of auxiliary active=passive damping devices, the platform response
can be reduced signi�cantly, thus improving both serviceability performance and fatigue life
of o�shore platforms. The methodology presented here can readily compensate for system time
delays and actuator–structure interactions.
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APPENDIX A: H2 CONTROL SOLUTION PROCEDURE

As suggested by the name, H2 control design is a control design which searches for a stabilizing
controller while minimizing the H2 norm of Hzd, ‖Hzd‖2. The H2 solution procedure is based
on the state-space realization of the system P in Figure 2 in the form

ẋ= Ax + B1d+ B2u (A1)

z=C1x +D12u (A2)

y=C2x +D21d+D22u (A3)

According to Chiang and Safonov [34], the H2 norm optimal control problem is equivalent
to a conventional LQG optimal control problem of the system

ẋ(t) = Ax(t) + B2u(t) + w(t) (A4)

y(t) =C2x(t) + v(t) (A5)
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with a performance index

J = E

[∫ ∞

0
(x(t) u(t))

(
Q X

X T R

)(
x(t)
u(t)

)
dt

]
(A6)

= E

[∫ ∞

0
(xT uT)

(
CT1
DT12

)
(C1 D12 )

(
x
u

)
dt

]
(A7)

and the correlated white plant noise w and white measurement noise v have the joint correlation
function

E
[(
w(t)
v(�)

)
(w(t) v(�))T

]
=

(
Sw Xf

X Tf Sv

)
�(t − �)=

(
B1BT1 B1DT21
D21BT1 I

)
�(t − �) (A8)

The �nal H2 optimal controller is the transfer function

ẋcp=Acpxcp + Bcpy, u=Ccp xcp +Dcpy (A9)

where

Acp = A− KfC2 − B2Kc + KfD22Kc (A10)
Bcp =Kf (A11)
Ccp =Kc (A12)

and

Dcp=0 (A13)

where Kc is the control gain matrix and Kf is the Kalman–Bucy �lter gain matrix. Both are
obtained by solving respective Riccati equations [6].

REFERENCES

1. Kareem A, Kijewski T, Smith CE. Analysis and performance of o�shore platforms in hurricanes. Wind &
Structures 1999; 2(1): 1–24.

2. Hirayama T, Ma N. Dynamic response of a very large 
oating structure with active pneumatic control.
Proceedings of the Seventh (1997) International O�shore and Polar Engineering Conference, Honolulu, vol.
I, 1997; 269–276.

3. Sirlin S, Paliou C, Longman RW, Shinozuka M, Samaras E. Active control of 
oating structures. Journal of
Engineering Mechanics, ASCE 1986; 112(9): 947–965.

4. Reinhorn AM, Manolis GD, Wen CY. Active control of inelastic structures. Journal of Engineering Mechanics,
ASCE 1987; 113(3): 315–333.

5. Yoshida K, Suzuki H, Nam D, Hineno M, Ishida S. Active control of coupled dynamic response of TLP hull
and tendon. Proceedings of the 4th International O�shore and Polar Engineering Conference, Osaka, Japan,
10–15 April 1994.

6. Suhardjo J, Kareem A. Feasibility of active control of o�shore platforms. Technical Report NDCE 91-004,
Dept. of Civil Engrg & Geological Sciences, University of Notre Dame, Notre Dame, Indiana, 1991.

7. Abdel-Rohman M. Structural control of a steel jacket platform. Structural Engineering & Mechanics 1996; 4(2):
125–138.

Copyright ? 2001 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2001; 30:213–235



CONTROL OF OFFSHORE PLATFORMS UNDER RANDOM WAVES 235

8. Nakamura M, Kajiwara H, Koterayama W, Hyakudome T. Control system design and model experiments
on thruster assisted mooring system. Proceedings of the Seventh (1997) International O�shore and Polar
Engineering Conference, Honolulu, May 25–30, 1997; 641–648.

9. Yamamoto I, Matsuura M, Yamaguchi Y, Shimazaki K, Tanabe A. Dynamic positioning system based on
nonlinear programming for o�shore platforms. Proceedings of the Seventh (1997) International O�shore and
Polar Engineering Conference, Honolulu, May 25–30, 1997; 632–640.

10. Soong TT. State-of-the-art review: active control in civil engineering. Engineering Structures 1988; 10: 74–84.
11. Housner G, Bergman LA, Caughey TK, Chassiakos AG, Claus RO, Masri SF, Skeleton RE, Soong TT, Spencer

BF, Yao JTP. Structural control: past, present, and future. ASCE, Journal of Engineering Mechanics 1997;
123(9): 897–971.

12. Kijewski T, Kareem A, Tamura Y. Overview of methods to mitigate the response of wind-sensitive structures.
Proceedings of Structural Engineering World Congress, July 19–23, San Francisco, Elsevier: Amsterdam, 1998
(Hard copy abstract volume and full-length paper on CD-ROM).

13. Kareem A, Kijewski T, Tamura Y. Mitigation of motions of tall buildings with speci�c examples of recent
applications. Wind & Structures 1999; 2(3): 201–251.

14. Petersen NR. Design of large scale tuned mass dampers. In Structural Control, Liepholz HH (ed.). North-
Holland: Amsterdam, 1980; 581–598.

15. Suhardjo J. Frequency domain techniques for control of civil engineering structures with some robustness
considerations. Ph.D. Dissertation, University of Notre Dame, Notre Dame, Indiana, 1990.

16. Suhardjo J, Spencer BF, Kareem A. Frequency domain optimal control of wind excited buildings. Journal of
Engineering Mechanics, ASCE 1992; 118(12): 2463–2481.

17. Spencer Jr BF, Suhardjo J, Sain MK. Frequency domain optimal control strategies for aseismic protection.
Journal of Engineering Mechanics 1994; 120(1): 135–158.

18. Suhardjo J, Kareem A. Structural control of o�shore platforms. Proceedings of the Seventh International O�shore
and Polar Engineering Conference, ISOPE-97, Honolulu, May 25–30, 1997.

19. Suhardjo J, Spencer BF, Sain MK. Feedback–feedforward control of structures under seismic excitation.
Structural Safety 1990; 8: 69–89.

20. Yamada K, Kobori T. Linear quadratic regulator for structure under on-line predicted future seismic excitation.
Earthquake Engineering and Structural Dynamics, 1996; 25: 631–644.

21. Mei G, Kareem A, Kantor JC. Real-time model predictive control of structures under earthquakes. Proceedings
of the Second World Conference on Structural Control, Kyoto, Japan, June 28–July 2, vol. 2, 1998.

22. Chakrabarti SK. Hydrodynamics of O�shore Structures. Springer: New York, 1987.
23. Roberts JB, Spanos PD. Random Vibration and Statistical Linearization. Wiley: New York, 1990.
24. Soong TT, Grigoriu M. Random Vibration of Mechanical and Structural Systems. Prentice-Hall, Inc: New

Jersey, 1993.
25. Borgman LE. Random hydrodynamic forces on objects. Annals of Mathematical Statistics 1967; 38: 37–51.
26. Li Y, Kareem A. Stochastic response of a tension leg platform to wind and wave �elds. Journal of Wind

Engineering and Industrial Aerodynamics 1990; 36: 915–920.
27. Kareem A, Hsieh CC, Tognarelli MA. Frequency domain analysis of o�shore platforms in non-Gaussian seas.

Journal of Engineering Mechanics, ASCE 1998; 124(6): 668–683.
28. Spanos P-TD. Filter approaches to wave kinematics approximation. Applied Ocean Research 1986; 8(1): 2–7.
29. Li Y, Kareem A. Parametric modeling of stochastic wave e�ects of o�shore platforms. Applied Ocean Research

1993; 15: 63–83.
30. Li Y, Kareem A. Multivariate Hermite expansion of hydrodynamic drag loads on tension leg platforms. Journal

of Engineering Mechanics, ASCE 1993; 119(1): 91–112.
31. Tognarelli MA, Zhao J, Rao KB, Kareem A. Equivalent statistical quadratization and cubicization for nonlinear

systems. Journal of Engineering Mechanics, ASCE 1997; 122(5): 512–523.
32. Davis MC. Factoring the spectral matrix. IEEE Transactions on Automatic Control 1963; 8(4): 296–305.
33. Kareem A. Mitigation of wind induced motion of tall buildings. Journal of Wind Engineering and Industrial

Aerodynamics 1983; 11: 273–284.
34. Chiang RY, Safonov MG. Robust-Control Toolbox. The Math Works: South Natick, Massachusetts, 1988.

Copyright ? 2001 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2001; 30:213–235


