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Abstract

This paper presents a time domain analysis framework for predicting nonlinear response of
long-span bridges under turbulent winds. The nonlinear unsteady aerodynamic forces are

modeled based on static force coefficients, flutter derivatives, admittance functions, and their
spanwise correlations at varying angles of incidence. This analysis framework incorporates
frequency dependent parameters of unsteady aerodynamic forces by utilizing a rational
function approximation technique. A comparison with conventional linear approach is made

through response analysis of a long-span suspension bridge. The effects of turbulence on the
flutter instability are also addressed. r 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Analytical prediction of wind induced buffeting response and flutter instability
have predominantly been conducted in the frequency domain in which the
aerodynamic forces are linearized at the mean displaced position (e.g. Refs. [1,2]).
The frequency domain approach is in general limited to linear structures excited by
stationary wind loads. A time domain framework was proposed by Chen et al. [3],
incorporating the frequency dependent characteristics of aerodynamic forces that are
often neglected in current time domain analyses due to modeling difficulty (e.g.,
Ref. [4]). Central to this approach is the rational function approximation of
the frequency dependent characteristics of self-excited and buffeting forces. A
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state-space model approach has also been presented by Chen and Kareem [5], in
which the response of bridges under turbulent winds has been taken as the output of
an integrated system driven by a vector-valued white noise. With this state-space
model approach, the buffeting response can be directly calculated by using
Lyapunov equation instead of using conventional spectral analysis for computa-
tional efficiency, and aerodynamic force information can be readily considered in a
structural control design as a feed-forward link with the potential to enhance the
control effectiveness.
Experimental wind tunnel studies have indicated that turbulence can both stabilize

and destabilize the flutter instability depending on the geometric configuration of
bridge sections and the characteristics of wind fluctuations (e.g., Refs. [6,7]). A
number of analytical studies using stochastic approaches by randomizing the
dynamic pressure have been conducted to predict some general changes in flutter
instability due to turbulence (e.g., Ref. [8]). Scanlan ½9� addressed the potential
mechanism of turbulence on the single torsional flutter due to the spanwise
correlation loss of the self-excited forces. Experimental measurements using a
rectangular section have indicated that while turbulence results in a slight loss of the
spanwise correlation of the self-excited forces, the correlation remains quite close to
unity [10]. Further experimental investigation of this issue needs to be conducted
including pressure measurements with large spanwise separation. Diana et al. [11]
have analytically investigated the effects of turbulence on flutter using a nonlinear
aerodynamic force model which is based on the so-called ‘‘quasi-static corrected
theory’’. This nonlinear force model incorporated frequency dependent character-
istics by decomposing the total response into components with different frequencies.
Aerodynamic force parameters of bridge decks are generally highly sensitive to

the angle of incidence (e.g., Ref. [12]). Even for small level of turbulence, the effective
angle of incidence due to structural motions and wind fluctuations may vary
to a level such that the nonlinearity of aerodynamic force may not be neglected.
This paper emphasizes the dependence of aerodynamic force parameters on the
angle of incidence and its influences on the buffeting and flutter responses of
bridges. A novel time domain framework for predicting the buffeting and flutter
responses is presented incorporating the aerodynamic nonlinearities and frequency
dependency due to the aerodynamic memory effects. A comparison with the
conventional linear approach is made through response analysis of a long-span
suspension bridge.

2. Linear aerodynamic forces

Traditional linear aerodynamic force model assumes that the variation of effective
angle of incidence is small enough that aerodynamic forces can be linearized at the
statically deformed position and that the variation of aerodynamic parameters is
negligible. The linear aerodynamic forces, i.e., lift (downward), drag (downwind) and
pitching moment (nose-up) are commonly separated into mean averaged, self-excited
and buffeting force components. The mean averaged (static) wind forces acting on an
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element of length l are expressed as

Ls ¼ �
1

2
rU2lBCLðasÞ; Ds ¼

1

2
rU2lBCDðasÞ; Ms ¼

1

2
rU2lB2CMðasÞ; ð1Þ

where r is the air density; U is the mean wind velocity; B ¼ 2b is the bridge deck
width; CL;CD and CM are the mean lift, drag and pitching moment coefficients,
respectively; and as is the time-averaged (static) angle of the bridge section.
The time-varying self-excited forces resulting from the structural motions can be

expressed as the sum of components associated with each structural motion
component in vertical, lateral and torsional directions. These are functions of its
frequency of oscillation due to the unsteady aerodynamic memory effects, and can be
represented in terms of convolution integrals involving impulse response functions
(e.g., Refs. [3,13]). Assuming the self-excited forces are spatially fully correlated, for
example, the pitching moment component is given by

MseðtÞ ¼
1

2
rU2l

Z t

�N

ðIMhðas; t � tÞhðtÞ þ IMpðas; t � tÞpðtÞ

þ IMaðas; t � tÞaðtÞÞ dt; ð2Þ

where h; p and a are the vertical, lateral and torsional displacement, respectively;
IMh; IMp and IMa are the aerodynamic impulse response functions representing the
influence of motions at a certain moment in time on the generation of self-excited
forces for a period of time. Analogous formulations hold for the lift and drag
components.
Similarly, the buffeting forces can be expressed as the sum of components

associated with horizontal and vertical wind fluctuations (u and w) in terms of
impulse response functions [3,13,14]. Taking into account the spanwise correlation
of the buffeting forces, for example, the moment component is given by

MbðtÞ ¼
1

2
rU2l

Z t

�N

Z t2

�N

JMuðas; t � t2ÞIMuðas; t2 � t1Þ
uðt1Þ
U

�

þ JMwðas; t � t2ÞIMwðas; t2 � t1Þ
wðt1Þ

U

�
dt1 dt2; ð3Þ

where IMu and IMw are the aerodynamic impulse response functions of buffeting
forces representing the aerodynamic memory effects of buffeting forces per unit
length; and JMu and JMw indicate the impulse response functions representing the
spatial correlation characteristics. Analogous formulations hold for the lift and drag
components.
Direct determination of these impulse response functions for bluff bridge sections

is not without difficulty, and the associated technique based on wind tunnel tests
have not been well established. Instead, the techniques for identifying the frequency
domain aerodynamic force parameters such as flutter derivatives, admittance
functions and spanwise coherence have been extensively developed, and rich data for
various geometric configurations of bridge sections has been accumulated. There-
fore, these impulse response functions defined in time domain can be quantified
through their relationship to the unsteady force parameters defined in frequency
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domain. For example, the torsional motion induced pitching momentMseaðtÞ is given
in terms of the flutter derivatives An

2 and An
3 in the frequency domain as

MseaðtÞ ¼
1

2
rU2lð2b2Þ kAn

2ðkÞ
b’a
U

þ k2An
3ðkÞa

� �
; ð4Þ

where k ¼ ob=U is the reduced frequency.
The relationship between %IMaðkÞ; An

2ðkÞ and An
3ðkÞ is

%IMaðkÞ ¼ 4b2C0
MCMa ¼ 2k2b2½An

3ðkÞ þ iA
n
2ðkÞ�; ð5Þ

where C0
M ¼ dCM=da; and the over bar indicates the Fourier transform.

Similarly, the buffeting force component MbwðtÞ is expressed in terms of
admittance function wMwðkÞ and joint acceptance %JMwðkÞ as

MbwðtÞ ¼
1

2
rU2lB2C0

MwMwðkÞ %JMwðkÞ
wðtÞ
U

; ð6Þ

where the joint acceptance function is given in terms of the coherence function
cohMw as

%J
2
MwðkÞ ¼

1

l2

Z l

0

Z l

0

cohMwðx1;x2; f Þ dx1 dx2; ð7Þ

where x1 and x2 are the spatial coordinates.
The relationship between %IMwðkÞ and wbwðkÞ is

%IMwðkÞ ¼ 4b2C0
MwMwðkÞ ð8Þ

and the impulse response functions representing the spanwise correlation of buffeting
forces are given by the inverse Fourier transform of the joint acceptance functions.

3. Rational function approximation

Since the frequency domain force parameters are normally known only at limited
number of discrete values of the reduced frequency k; it is difficult to directly use the
aforementioned relationships (Eqs. (5) and (8)) through an inverse Fourier trans-
form to quantify the impulse response functions. Therefore, approximate continuous
functions of the reduced frequency are required for describing frequency dependent
aerodynamic force parameters for future analysis. The rational function approxima-
tion technique can be utilized for this content (e.g., Refs. [2,3,8,15]). For the self-
excited forces, the aerodynamic transfer functions between forces and structural
motions, for example ofMsea; can be approximated in terms of the following rational
function:

2k2b2ðAn
3 þ iA

n
2Þ ¼ AMa;1 þ ðikÞAMa; 2 þ ðikÞ2AMa; 3 þ

XmMa

j¼1

ðikÞAMa; jþ3

ik þ dMa; j
; ð9Þ

where AMa; 1; AMa; 2; AMa; 3; AMa; jþ3 and dMa; j (dMa; jX0; j ¼ 1;y;mMaÞ
are frequency independent coefficients that can be determined by fitting the
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experimentally obtained flutter derivatives at different reduced frequencies in a least
square sense.
Accordingly, the unsteady self-excited force Msea is given in the time domain as

MseaðtÞ ¼
1

2
rU2l AMa;1aðtÞ þ AMa;2

b

U
’aðtÞ þ AMa;3

b2

U2
.aðtÞ þ

XmMa

j¼1

fMa; jðtÞ

" #
; ð10Þ

’fMa; jðtÞ ¼ �
dMa; jU

b
fMa; jðtÞ þ AMa; jþ3 ’aðtÞ; ð11Þ

where fMa; jðtÞ ð j ¼ 1BmMaÞ are the augmented aerodynamic states.
Similar formulations can be obtained for buffeting forces [3]. Generally, the

aerodynamic transfer functions in terms of flutter derivatives, admittance and joint
acceptance functions can be expressed as the following rational function with
negative poles, indicating that the forces lag the body motions or incoming wind
fluctuations:

HðkÞ ¼
NðikÞ
DðikÞ

¼
b0ðikÞ

n þ b1ðikÞ
n�1 þ?þ bn

ðikÞn þ a1ðikÞ
n�1 þ?þ an

: ð12Þ

The coefficients a1;y; an and b1;y; bn can be evaluated by minimizing the error

Xm
j¼1

HðkjÞ �
NðikjÞ
DðikjÞ

� �2
; ð13Þ

where HðkjÞ ð j ¼ 1;y;mÞ are measured aerodynamic transfer function data.
Once these aerodynamic transfer functions have been expressed in terms of

rational function format, the frequency dependent aerodynamic forces can be
calculated through a set of linear differential equations or through a state-space
model [5]. It is noted that if the frequency-dependent aerodynamic force parameters
can be represented exactly or with an acceptable error by the rational functions of
reduced frequency, formulations in the time domain would lead to a rigorous
interpretation of these parameters defined in the frequency domain. Most time
domain analysis approaches utilize quasi-steady aerodynamic force model due to the
difficulty in modeling frequency dependent force parameters in time domain. This
quasi-steady force model can take into account the nonlinear dependence of forces
on the effective angle of incidence, while the definition of the effective angle of
incidence is questionable. The disadvantage of quasi-steady force model is that the
unsteady fluid memory effect that results in the aerodynamic forces to be frequency
dependent cannot be described, and therefore it is only applicable at very high
reduced velocity. Using the frequency domain force parameters and the rational
function approximation technique leads to an accurate estimate of unsteady forces
and attendant response of bridges in the time domain over those based on frequency
independent quasi-steady assumption. Similar applications of the rational function
approximation technique can be found in the engineering problems such as soil-
structure and wave-structure interactions.
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4. Nonlinear aerodynamic forces

For bridge sections with aerodynamic forces that are highly sensitive to the angle
of incidence, nonlinearities in aerodynamic forces may not be neglected. These
nonlinearities arise from the dependence of aerodynamic forces on the instantaneous
effective angle of incidence, which consists of the contribution of wind fluctuations
and the static and dynamic structural motions.
Following the formulation used for static and quasi-static forces, the nonlinear

aerodynamic forces can be generally expressed as functions of the effective
angle of incidence ae with properly defined force coefficients. The effective angle
of incidence can be further separated into low-frequency (large scale) and
high-frequency (small scale) components corresponding to the frequencies lower
than and higher than a critical frequency, e.g., the lowest natural frequency of the
bridge, i.e.

aeðtÞ ¼ al
eðtÞ þ ah

eðtÞ; ð14Þ

where superscripts l and h indicate the low- (including static component) and high-
frequency components.
Accordingly, the nonlinear aerodynamic forces are separated into corresponding

low- and high-frequency components. The low-frequency component is modeled as a
nonlinear function of the effective angle al

eðtÞ; and the high-frequency component is
linearized at al

eðtÞ and further separated into self-excited and buffeting force
components as follows:

F ¼ FðaeÞ ¼ Fðal
eÞ þ

dF

da
ah
e ¼ Fl þ Fh

se þ Fh
b: ð15Þ

The low-frequency components of aerodynamic forces can be expressed using the
quasi-steady theory due to high value of the reduced velocity as the following
nonlinear form (including static components):

Ll ¼ Fl
L cos f

l � Fl
D sin f

l; Dl ¼ Fl
L sin f

l þ Fl
D cos f

l; Ml ¼ Fl
M ; ð16Þ

Fl
L ¼ �

1

2
rV2r BlCLðal

eÞ; Fl
D ¼

1

2
rV2r BlCDðal

eÞ; Fl
M ¼

1

2
rV2r B2lCMðal

eÞ; ð17Þ

V2r ¼ ðU þ ul � ’plÞ2 þ ðwl þ ’h
l
þ b1 ’alÞ2; ð18Þ

al
e ¼ as þ fl; fl ¼ arctan

wl þ ’h
l
þ b1 ’al

U þ ul � ’pl

 !
; ð19Þ

where b1 is assumed as b=2:
When the low-frequency dynamic response is comparatively small and negligible

as is the case for most long-span bridges, al
e is simplified as

al
e ¼ as þ arctan

wl

U þ ul

� �
: ð20Þ
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The linearized high-frequency components of aerodynamic forces, for example,
the moment components of self-excited and buffeting forces are given by

Mh
seaðtÞ ¼

1

2
rU2l

Z t

�N

IMaðal
e; t � tÞahðtÞ dt; ð21Þ

Mh
bwðtÞ ¼

1

2
rU2l

Z t

�N

Z t2

�N

JMwðal
e; t � t2ÞIMwðal

e; t2 � t1Þ
whðt1Þ

U
dt1 dt2: ð22Þ

By using the rational function approximation technique to express the frequency
domain force parameters as a functions of reduced velocity at varying angles of
incidence, the aerodynamic impulse response functions and hence the time histories
of nonlinear unsteady aerodynamic forces can be calculated in time domain. It is
noted that the difference between linear and nonlinear analysis is that in nonlinear
analysis the aerodynamic force parameters are modulated by the instantaneous
low-frequency effective angle of incidence al

eðtÞ; while in the traditional linear
analysis the force parameters take the values at the statically deformed position of
bridge sections.
Diana et al. [11] also proposed a nonlinear aerodynamic force model based on the

so-called ‘‘quasi-steady corrected theory’’. This model decomposed the total
response into components with different frequencies, and the frequency dependent
force characteristics at the corresponding frequencies were utilized to capture the
unsteady feature of the aerodynamic forces. In this study as mentioned above, the
nonlinear force mode is based on the static force coefficients, flutter derivatives and
admittance functions along with spanwise coherence at varying angles of incidence,
and has a clear linkage with the conventional linear force model (e.g., Ref. [13]). In
addition, the unsteady feature of the aerodynamic forces is modeled by using the
rational function approximation technique with inherent advanced computational
efficiency.

5. Solution of equations of motion

A time domain response analysis requires input spatio-temporal random time
histories of wind fluctuations. The simulation of stationary Gaussian wind
fluctuations can be accomplished using spectral, time series and other techniques
(e.g., Ref. [16]). In this study, a multi-variate auto-regressive (AR) scheme is utilized
for simulating the time histories of wind fluctuations at the center of each bridge
element with prescribed auto-spectral and cross-spectral characteristics [3]. The
power spectral density (PSD) components of the u and w vectors used herein are
given by the von K!arm!an spectra. Using the simulated wind fluctuations at the
center of each element, the low- and high-frequency components of wind fluctuations
can be extracted using fast Fourier transform (FFT) and inverse fast Fourier
transform (IFFT) calculations.
The dynamic response is calculated by using the Newmark Beta step-by-step

integration scheme. An iterative calculation procedure is necessary for treating both
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the low- and high-frequency components of response. At each time step and for each
element the effective angle of incidence al

eðtÞ is calculated and the associated
aerodynamic parameters are then determined for the calculation of the linear high-
frequency force component. For most long span bridges, the low-frequency dynamic
response is negligible, thus al

eðtÞ can be simply evaluated from the low-frequency
wind fluctuations and static responses (Eq. (20)). In this case, the calculation of low-
frequency response can be replaced by a static analysis at a given mean wind
velocity. It is noted that nonlinearities in structural characteristics can also be readily
incorporated into the analysis. For linear structures, modal analysis approach can be
utilized to benefit from the reduction in computational effort afforded by limiting the
number of modes.

6. Example

An example long-span suspension bridge with a main span of approximately
2000 m is used to investigate the effects of aerodynamic nonlinearities on flutter and
buffeting responses. The equations in generalized modal coordinates consisting of the
first 15 modes are used for describing the bridge motion. The logarithmic decrement
for each mode is assumed to be 0.02. Only the wind forces acting on the bridge deck
are considered here for simplicity and without loss of generality. The bridge deck has
been discretized into 70 beam elements in the spanwise direction. The static force
coefficients at varying angle of incidence are shown in Fig. 1. The flutter derivatives
Hn
1BHn

4 and An
1BAn

4 are used for a twin-box section determined through wind tunnel
testing at varying angle of incidence from �61 to 61 [12]. Pn

1 is given based on the
quasi-steady theory and others are neglected. For the sake of illustration, only the
variation of An

2 with angle of incidence is considered in the nonlinear analysis.
Experimental data indicates that An

2 is highly sensitive to the angle of incidence for

Fig. 1. Static force coefficients.
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this section (Fig. 2). Since the experimental data is only available for several limited
angles of incidence ranging from �61 to 61; the values for other angles of incidence
have been interpolated, and the values for the angles larger than 61 or less than �61
are assumed to remain constant at the values of 61 or �61:
The nonlinearity of buffeting forces is introduced by the static force coefficients

that are functions of angle of incidence as shown in Fig. 1. The admittance and the
joint acceptance functions are considered not varying with the angle of incidence.
The admittance functions used are given by Davenport’s expression for drag, and
Sears function for lift and pitching moment components. The spanwise correlation
of buffeting forces is assumed to be the same as the corresponding wind fluctuations.
The integral length scales and intensities used are 80 and 40 m; and 10% and 10%,
for u- and w-components, respectively.
Fig. 3 shows the static torsional rotation of bridge deck along the bridge axis at

varying mean wind velocities. It is noted that at high wind velocities the along-wind

Fig. 2. Flutter derivative An
2 at varying angles of incidence.

Fig. 3. Static deformation vs. mean wind velocity.
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deformation is remarkable and the bridge deck show significant negative angle (nose-
down) in torsion at the main span center.
The analysis of multimode coupled flutter in frequency domain is conducted by a

complex eigenvalue analysis. Different natural mode combinations are considered
which involve the first 15 natural modes, and a combination involving the first and
second vertical bending and the first torsional mode (modes 2, 8, 10). Analysis in the
time domain is also carried out by the simulation of the free vibration motion of the
bridge [3].
Table 1 gives a comparison of the predicted critical flutter velocities. Results

demonstrated the accuracy of the time domain scheme in predicting the flutter
response. Figs. 4 and 5 show the variation of modal damping in mode 10 branch
with wind velocity and the critical flutter velocity at varying mean wind angles of
incidence. These are calculated using modes 2 , 8 and 10, and assuming that the angle
of incidence is uniform in the spanwise direction. In Fig. 4, results of flutter analysis
using self-excited forces linearized at the statically deformed position is also
presented. Results indicate that the flutter response of this example bridge is very

Table 1

Critical flutter velocity (m/s)

Mode No. al
e ¼ 0 al

e ¼ as

(a) Frequency domain

modes 2, 8, 10 72.1 74.1

modes 1–15 74.8 76.3

(b) Time domain

modes 1–15 74.9 76.5

Fig. 4. Damping ratio vs. wind velocity.
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sensitive to the angle of incidence of the mean wind velocity, particularly, for positive
angles of incidence. Since the variation of flutter derivative An

2 is insensitive to the
negative angle of incidence, consideration of the static rotation of the bridge deck
only slightly affects the flutter response for this example bridge. The wind
fluctuations at the center of each element along bridge axis at a given wind velocity
are simulated. A multi-variate correlated auto-regressive model is used to generate

Fig. 5. Critical flutter velocity vs. angle of incidence.

Fig. 6. A realization of wind fluctuation and associated effective angle of incidence (U ¼ 60 m=s):
(a) vertical wind fluctuation, and (b) effective angle of incidence.
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2400 s of time histories at increments of 0:1 s: An example realization of the vertical
wind fluctuations at the center of the main span and associated effective angle of
incidence calculated by its low-frequency component are shown in Fig. 6 at 60 m=s:
Fig. 7 shows a comparison of the target power spectral density and those calculated
based on simulated vertical wind fluctuations. Excellent agreement illustrated the
accuracy of the simulation of wind fluctuations.
For comparison, both linear and nonlinear analysis are conducted at different

mean wind velocity. In this example long-span bridge, the low-frequency component
of the response is negligible, the effective angle of incidence at each element is

Fig. 7. Comparison of the power spectral density of vertical wind fluctuation (U ¼ 60 m=s): (a) original,
and (b) low-frequency component.
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calculated from the low-frequency wind fluctuations and the static rotation. Fig. 8
shows time history of the torsional rotation at the center of main span calculated by
the nonlinear analyses at 60 m=s: Fig. 9 compares the root mean square (RMS) and
maximum (MAX) torsional response of bridge deck along bridge axis at 60 m=s
calculated by linear and nonlinear analysis. Fig. 10 is the time history of torsional
rotation at the center of main span at 80 m=s at which the flutter initiates for both
linear and nonlinear analysis with large amplitude of more than 101:
It is noted that for this specific example the analysis based on nonlinear

aerodynamic forces gives a slight higher response over the conventional linear
approach. It is also noted that the aerodynamic stability of the bridge was reduced
by the presence of the low-frequency turbulence as shown in Fig. 10. Similar result
was also observed in Ref. [11]. The experimental observation of the changes in the
critical flutter velocity due to turbulence also include the effects of changes in the
flutter derivatives due to turbulence. This effect has not been included in this
analysis, however, the procedure allows immediate application when the aero-
dynamic force parameters in turbulent flows become available.
For comparison, the analysis with mean wind angle of incidence of 31 and

neglecting the contribution of static rotation to the effective angle of incidence is also
conducted. Comparing with the former analysis in which the low-frequency effective

Fig. 9. Comparison of RMS and MAX torsional response (U ¼ 60 m=s).

Fig. 8. Torsional rotation (nonlinear analysis, U ¼ 60 m=s).
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angle of incidence has a mean value of static rotation of the bridge sections, in this
case the low-frequency effective angle of incidence has a mean value of 31: From
Figs. 4 and 5, it is noted that the modal damping of torsional motion dominated
mode and flutter response are relatively sensitive to the changes in the angle of
incidence within positive range. Fig. 11 shows the comparison of RMS and MAX
torsional rotation obtained by linear and nonlinear analysis. The nonlinear analysis
results in a higher response over the linear analysis. Compared with Fig. 9, it is seen
that the buffeting response is very sensitive to the changes in the mean angle of
incidence.

Fig. 10. Torsional rotation (U ¼ 80 m=s): (a) linear analysis, and (b) nonlinear analysis.

Fig. 11. Comparison of RMS and MAX torsional response (U ¼ 60 m=s).
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In this specific example, the result of nonlinear analysis does not show significant
difference from the conventional linear analysis. This may be due to the fact that the
modulation of force parameters with the instantaneous effective angle of incidence
did not result in an apparent build up or decay of response. In addition, the
modulation of the forces acting on different spanwise locations of the bridge deck
cancelled one another such that the effect due to the changes in total forces on the
bridge becomes less significant.
It is worth mentioning that the effects of the aerodynamic nonlinearity depend on

the level of the effective angle of incidence and the sensitivity of the wind force
parameters with respect to the effective angle of incidence. The results of this
example bridge regarding the effects of nonlinear aerodynamics cannot simply be
extended to other specific cases which require examination based on their
aerodynamic and structural characteristics.

7. Concluding remarks

A time domain approach for predicting the buffeting and flutter responses with
aerodynamic nonlinearities was presented. The nonlinear aerodynamic forces were
modeled based on static force coefficients, flutter derivatives, admittance functions
and their spanwise correlations at varying angles of incidence. A rational function
approximation technique was utilized to involve the frequency dependent force
parameters in time domain simulation.
Results of an example study indicated that the analysis involving the aerodynamic

nonlinearity resulted in a slight higher response than the conventional linear
analysis, and the low-frequency turbulence component has a destabilizing effect on
the flutter instability. The effects of aerodynamic nonlinearity depend on the level of
the effective angle of incidence and the sensitivity of the aerodynamic force
characteristics with respect to the effective angle of incidence. Additional studies are
needed to further advance our understanding of the effects of aerodynamic
nonlinearities.
A coordinated experimental investigation is in progress for further validation of

the proposed approach. This effort seeks an understanding of turbulence induced
modifications in the magnitude and spanwise coherence of both the buffeting and the
self-excited forces. Incorporating measurements of the effective angle and amplitude
dependence of aerodynamic forces in the analysis framework will lead to a
computational procedure for nonlinear analysis of long-span bridges. Furthermore,
full aeroelastic bridge model tests will provide useful information for validating the
proposed approach.
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