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Abstract: Significant interest has been shown in identifying the nonlinear mechanisms that induce a ringing type response in offshore
structural systems. This high frequency transient type response has been observed in offshore systems, particularly in tension leg platforr
(TLP9). Given the implications of this behavior on the fatigue life of TLP tendons, it is essential that ringing be considered in the overall
response evaluation. This study presents two non-Gaussian probabilistic models of nonlinear viscous hydrodynamic wave forces the
induce ringing. The response of a single-degree-of-freedom system exposed to these non-Gaussian wave force models is then evalua
using analytical and numerical studies based on thelifferentiation rule and the Monte Carlo simulation procedure, respectively. The
results demonstrate that the proposed models induce ringing type response in a simplified structure. This study provides a probabilisti
framework for modeling ringing type phenomenon which will serve as a building block for more refined hydrodynamic load models.
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Introduction cylinder piercing the water surface. The system parameters and
The response of offshore platforms to wave forces occasionaIIyW"’“/e qondlt!ons that are conducive to ringing were identified. The
numerical simulations of wave forces employed by Gurley and

exhibit sudden infrequent large magnitude bursts of short dura- : o .
tion. This ringing behavior is distinctly different from the more Kareem(1998 are u;eq to calibrate the probabilistic models n
the current study. It is important to note that the nonlinear drag

commonly observed steady state springing response in the verti-, . . . : . X
cal and bending modes of tension leg platfor@isPs) and grav- induced loading, obtalneq by mtegratlng thg sectional Morison
ity based structure&GBS) due to second-order wave effects at the f_orce up to second order In wave elevathn, s generally not be-
sum frequencies. Ringing is the strong transient response ob-l'eved to qdequa_ttely exp"?"“ _the actual ringing phenomenon as
served in these modes triggered under severe loading condition®PServed in various applications, e.g., in large volume TLPs,
which decays to steady state at a rate that depends on the systetWhere ringing is most clearly pronounced. For large volume struc-
damping. Both of these response types are delineated in Fig. 1 tures a realistic modeling of the wave forces would include the
The ringing response mechanism is not fully understood, mak- additional contribution of nons_lender-b(_)dy t_err(r&haplin et a}l.
ing the incorporation of the ringing phenomenon in the reliability 1997; Krokstad et al. 1998In this study, inertial force correction
analysis of offshore platforms difficult. In recent years significant €ms have not been included, and a small cylinder diameter/
interest has been shown in identifying the wave mechanisms thatwavelength ratio is utilized with dominant viscous effects. Thus it
induce ringing in complex offshore structural systefDavies must be stated that this study necessarily does not seek to emulate
etal. 1994; Jeffreys and Rainey 1994; Natvig 1994; Faltinsen true TLP ringing response. The simplicity of the SDOF linear
et al. 1995; Newman 1995; Chaplin et al. 1997; Gurley and Ka- model and convenience of the nonlinear viscous loading to the
reem 1998: Krokstad et al. 1998 free surface are applied to generate long time histories with char-
Gurley and Kareem(1998 conducted a numerical study in acteristics that mimic observed ringing. The purpose of the study
which it was shown that viscous type loading can induce ringing IS the development of a probabilistic framework to represent such

in an oscillating linear elastic single-degree-of-freed(®DOR behavior, but not to identify the underlying causal mechanisms. A
more complete study which seeks to accurately reflect the causes

of ringing in a TLP would need to include a multi-degree-of-
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Florida, Gainesville, FL 32611. scription of known hydrodynamic loading mechanisms that
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Univ., Ithaca, NY 14853. structural response on the loading. The fundamental probabilistic
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' to represent the highly nonlinear and random transient features
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0? tion (QTF) in the Volterra series framework. The QTF is analyti-

Springing 1 ’ Ringing cally derived based on Stokes second-order random \{idas-

x 1
selmann 1962; Hudspeth and Chen 1979; Kareem et al.)1994
~ NWW/VWM”“ Simulation details can be found in Gurley et @996. The simu-
k lated realization of the surface elevation of gravity waves exhibit

(=]

non-Gaussian features with characteristic high peaks and shallow

-5 troughs.
] 50 100 150 . . . ..
Application of the conventional description of the Morison
Fig. 1. Ringing and springing events equation to calculate the force at the mean water level ignores the

nonlinear effects of the fluctuating free surface, which is thought
to be a dominant ringing mechanism. In this study the wave ki-
first is a superposition of a translation procéstmtic transforma- nematics up to the instantaneous water surface are used to gener-
tion of a Gaussian procgsand a Poisson white noise process ate moment input from both linear and second-order waves by
which captures the infrequent bursts of energy in ringing inducing integrating the force to the instantaneous free surface and multi-
wave records. The second model is the sum of a filtered Poissomplying by an equivalent moment arm. The water particle velocity
process and two Poisson white noise processes. Details concernat the mean water level is related to the velocity profile on the
ing the calibration of these non-Gaussian models are describedwetted cylinder using a modified Airy stretching thegho and
herein. The response of a simplified linear elastic SDOF offshore Moan 1985.

structure to the proposed wave loading models is conducted. In The drag force per unit length of the cylinder in Fig. 2 is
particular, when the second model is used, exact moments of any 1

order of the response of linear elastic multi-degree-of-freedom Fi(t)=3pCaDu(t)|u(t)] 1)
structures can be found analytically based on thedlifferentia- where p=fluid density, C4=coefficient of drag, andu(t)

tion rule. Furthermore, the second model can also be used to_jnstantaneous water particle velocity. The part of the cylinder
analytically obtain approximate moments of any order of the re- pejow the mean water level is discretized in smaller segments.
sponse of nonlinear systems by means of thedifferentiation  The portion below the mean water level and above the center of
rule and a perturbation metho@vaisman 1998; Waisman and  rqtation is divided intana parts, and the portion below the center
Grigoriu 1998. of rotation is divided intonb parts. The momen (t) produced

by the drag forces on the cylinder is a combination of four com-

ponents depending on the instantaneous wave elevatigrwith
General of Wave Forces respect to the center of rotation and the mean water I&etley

. S o . L and Kareem 1998
Consider an oscillating cylindrical column of diameEpiercing

the water surface as shown in Fig. 2. The SDOF linear elastic n()>0, n(t)>c,, M(t)=My(t)+My(t)+Ms(t)

column oscillates to the passing waves about a fixed center of B

rotationc, , which describes the location of the center of rotation (<0, n()>Cr, M(1)=M5(1)+Ms(t) @

with respect to the mean water levelenoted as in Fig. 2. The n(1)<0, n(t)<c,, M(t)=M,(t)

draft,d, , is the column length below the mean water level, and is )

always positive. The wave elevatiaf(t) is positive above and ~ Where the componentd;(t), i=1,...,4 are

negative below the mean water level. The degpik set at 1,000 1 n(t)

m. ] ) ] ) Ml(t):EpCan(t)<T_Cr>umwl(t)|umwl(t)| 3)
The JONSWAP wave elevation spectrum is applied with a

peak frequency of 0.1 Hz throughout this study. The literature na o

survey indi_cates that the onset of ringing is _triggered by a sudden Mz(t)zz 7p(_jd|;)ui(t)|ui(t)|d|

large amplitude wave preceeded by a period of moderate wave =1

activity. Large waves often exhibit an asymmetric wave profile

which may lead to more favorable conditions for the onset of —(n _

I d=(n—c;)/na, n

ringing. Asymmetry about the mean water level can be modeled

by a second-order wave theory. In this study, Stokes second-order

random waves are simulated utilizing a quadratic transfer func-

. di
(na—i)d,+ 7) 4)

0, n(H)>0
n(t), m(t)<0
nb
1 _ d,
Ma(t)=—2 EpCdDui(t)|ui(t)|d|((| ~1)d,+ 5) )

=1

d,=(d,+c,)/nb

nb 1 - dl
Ma(t) =2, gpcdDumt)lui(tndl((u ~1)d+ 5*1(0)

di=(d; +m(t))/nb (6)

in which u,,(t) =water particle velocity at the mean water level,
u;(t) =local water velocity at théth discrete portion of the cyl-
P IT XX xR R A X inder, andd,=length of the discretized section.

900020 %%0%% %% %% )
BRI Records of the wave force momekt(t) can be obtained by
numerically simulating the wave elevatiafn(t) and computing

M(t) from Egs.(2)—(6). A set of 11 wave force moment records

Fig. 2. SDOF model of cylinder in wave train
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x10° understanding of the mechanisms involved and its possible pre-
diction have been the motivation for much work in recent litera-
ture. This study on the ringing phenomenon seeks to model the

2t . response using two different probabilistic approaches.
o7 1 Probabilistic Models of Wave Forces
M(t)
N-m Let M(t)={M;,i=1,2,..n} be a time series of the input wave

momentM (t) at equal time intervaldt>0. Fig. 3 shows a real-
ization of this time series with=51, 200 andA\t=1s. The time

0.5; . series is characterized by large-amplitude infrequent short dura-
tion impulses. The time seridd(t) is decomposed into two time
series,M°(t) andM'(t), such that

(=]

M(t)=MS(t)+M(t) ()

05 . . , , , , , _ , , whereM¢(t) represents the continuous component, EHt) the

o 05 1 15 2 25 3 35 4 45 5 impulse component oM. The seriesM®(t) is obtained from

time (sec) X 104 . . N

M(t) by removing the impulses present in the wave force record

Fig. 3. Realization ofM (t) through a simple thresholding procedure. The sekég) con-
tains the impulses removed from the continuous wave force

record.

have been obtained from Gurley and Karegarsonal commu- Two different wave force models are developed to represent

nications, 199Y in this study. One of these records is shown in the continuous and impulse components\ft). The first ap-
Fig. 3. proach, referred to as the “translation wave force model,” repre-

sents the continuous component by a non-Gaussian translation
Example of Nonlinear Wave Induced Ringing E:ggzzz and the impulse component by a Poisson white noise
An illustration of the onset of ringing in the numerical model used e i
in this study is presented in Fig. @urley and Kareem 1998 Xr()=X5(1) +X(1) (8)
Figs. 4a and b show a Gaussian wave elevation train and the where X represents a model dfl, the subscripfl =translation
resulting cylinder response. No ringing event is observed. A sec- model, the superscrigt=continuous component, and the super-
ond order contribution is then added to the same wave elevationscripti =impulse component.
train in Fig. 4c). The resulting response in Fig(d} shows that The second approach, referred to as the “filtered Poisson wave
the nonlinear wave input triggers ringing while the linear wave force model,” represents the continuous component as the sum of
input does not. The response to nonlinear waves is positively a filtered Poisson and Poisson white noise processes, and the im-
skewed due to the skewness in water particle velocity and has apulse component is the same Poisson white noise process used in
high kurtosis around the transient ringing events due to the addi- Eq. (8)
tion of extreme peak values in the response. Both the skewness ue i
and kurtosis lead to problems associated with extreme response Xe(t)=Xe(t) +XI(1) ©)
and fatigue of ocean systems. It is noteworthy that not all large where the subscrigf =sum of the filtered Poisson and Poisson
waves in the non-Gaussian wave train lead to ringing. A clearer white noise processes.
Eleven independent realizationsMf(t) of equal duration and
time step as the record of Fig. 3 are used to estimate the param-

5 , Linear Input Weve Elevation , eters of the translation and filtered Poisson wave force models.
0 OWW\NM/MW\/W\/W ] The next three sections describe the modeling of the Poisson
" s , , . ‘ , white noise impulse component and the translation and filtered
0 %0 100 180 200 250 300 Poisson continuous components.
Response to Linear Input
0.01[b) ! ! ' ‘ ' ] i
o O SO ] Impulse Model X (t)
_001 C L L ] L 1 7 . . . .
0 50 100 150 200 250 300 It is assumed that the impulses of the wave force process arrive in
Nosliness Tnput Wave Elevation time according to a Poisson process. The validity of this assump-
o 5@ } : : ; . tion is verified by considering the time series realizations of
o ] Mi(t), defined as
0 50 100 150 200 250 300 i 0, M(t)<2,000 N—m
Response to Nonlinear Input M (t)_ M(t), M(I)BZ,OOO N—m (10)
y 0.01fHd) ' i ' ! ' ] ) )
0 A %W\MMW JVWWWMWW 1 where the 2,000N—m threshold has been selected by visual in-
00t : i spection of the eleven independent realization/g¢t) (Fig. 3.

0 50 160 150 260 250 300 ] ] o . O A
time foe) Fig. 5(a) shows with a solid line the empirical distributidn.

of the interarrival timesr;,i=1,...,90, between consecutive im-

Fig. 4. Linear and nonlinear wave effects on system response pulses. The broken line in Fig(® is the distribution of an ex-
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Fig. 5. Impulse model foM

ponentially distributed random variable with parameter of F,, with parametersa,=0.0031,a,=0.02, a;=0.0046, b,
=1/E[7], whereE[ ] is the expectation operator. The resulting =100, andb;=80 is shown with a broken line in Fig. 6. These
average interarrival time between consecutive impulses)| is parameters were obtained using a Marquard—Levenberg least-
5,688 s, so that the estimate of the mean impulse arrival rate issquares optimization proceduifdatlab 1998. The agreement be-

A\ =0.000176 arrivals/s. The agreement between the empiricaltween the empirical distribution and the model of Eg2) is

data and the Poisson assumption model is satisfactory. fiy. 5 Ssatisfactory. _ o

shows with a solid line the empirical distributidfy of the im- Fig. 7 shows with a solid line the ensemble averaged power

pulses estimated from the set of eleven independent realizationsSPectral den§|t)g_ of the continuous component of_the 11 inde-
of M(t). This distribution was obtained using 91 impulses, and Pendent realizations d¥l considered in the analysis. For every
can be modeled by a Weibull distribution real!zatlon ofM, |'ts power spectrgl densny is obtained Ipy tgklng
the inverse Fourier transform of its covariance functi@migoriu
x—2,000° 1995. The average of these 11 power spectral densiti€siis
« Fig. 7. The figure shows that a significant fraction of the wave
force energy is concentrated in the frequency range 0.06-0.14
Hz. Because the impulses bf occur very infrequently, the dif-
ferences between the power spectral density of Fig. 7 and the one
corresponding to the entire recol including the impulses are
negligible.
Let Y(t) be a stationary Gaussian process with mggrde-
Translational Model of Continuous Component X % fined by

, Xx=2,000 N—m (11)

I~:i(x)=1—ex;{ -

wherea=3883.79 anct=1, and is shown as the broken line in
Fig. 5(b). The distributions have the same first and fourth central
moment. The agreement between the empirical distribution and
the model in Eq(11) is satisfactory.

The first model of the continuous component consists of a trans-
lation of a Gaussian process into a non-Gaussian process. The
spectrum of the underlying Gaussian process is selected such that 1— . ; . . . . , . —
the resultant non-Gaussian process has both the appropriate mar- __ Empisica! distcibution £,
ginal probability distribution and power spectral density cali- %9 - - Translational model - " ]
brated to match the empirical models’ marginal probability distri- 4l "
bution and power spectral density estimated from the continuous
component of the wave forced®. The next three sections de-  o.7f
scribe the estimation of the translation model parameters.

Let F,,, be the empirical distribution of the continuous compo-
nentM¢ of the wave force process. Fig. 6 shows with a solid line o}
this empirical distribution estimated from the set of 11 indepen-

0.6

dent realizations oM. This empirical distribution is practically 04y ]
unchanged if the impulses d¥l are not eliminated from the o3l )
record prior to estimation because they are very infrequent.
The model 0.2} |
0.25-0.251—-exd a;(x+bq)]}, X<-—b, 0.1} 1
- 0.46-0.241—expax)],  —b;=<x<0 R
E = z Z _ Z Z
m(X) 0.5+ 0.25[1_ EX[X _ azx)], O=x< b3 1000 -800 -800 -400 -200 g(Nnn?)OO 400 600 800 1000

0.7+ 0.3[1—exf —as(x—ba) ]}, x=bs (12) Fig. 6. Marginal distribution ofM°(t)
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Fig. 7. Spectral densities d¥l (t) (solid lined), Y(t) (dotted lineg),
andX$(t) (broken Iine@xg)

Y(t)=p,+2Z(t), t=0 (13)

where{Z(t),t=0} is a stationary Gaussian process with mean
zero and spectral densifg(f ),f €(0,0.5) HZ given by

B )= 9o(f/fo)?
9= [T=(77F0) 217+ (2L Fito)?

(14)

noise component. The objective is to match the marginal distri-
bution, correlation structure, and first four stationary moments of
the continuous componeM ¢ of the wave force process.

Let XE(t) =Xg o(t) +XF 1(t) be the continuous component of
the wave force process, whek¥g ((t) =filtered Poisson process
andXg ;(t)=Poisson white noise process independern{pf(t).

The componenXg(t) is referred to as “Poisson model” and is an
alternative model oK$(t). Both Xg(t) andX$(t) are probabilis-
tic models of the continuous componelt®(t) of M(t). The
addition of the Poisson white noise procegs,(t) is to match
some moments ol €.

The filtered Poisson proce3§ ((t) is defined by

No(t)
XEd1)= 2 Yioh(t=Ti (17)
whereNy(t),t=0=homogeneous Poisson counting process of in-
tensity A\ o>0, {Y\ of =independent random variables with distri-
bution Fq arriving at random timegI', o} of Ny(t),t=0, and
h(t)=impulse response function. For this application, the im-
pulse response function is defined by

0,
eXF( - foCOt)Sin(fdt),

where f, (rad/9 and cy=filter natural frequency and damping
ratio, andfd=f0\/l—co2 (rad/s). The power spectral density of

t<0

h(t)= t=0

(18)

The continuous component of the wave force process can bexg ot) is

represented by the translation process
Y(t)— Puy) _
Oy

X§(t)=F Lod alY(t)] (15)

whereo = standard deviation of (t) (Grigoriu 1995. The mar-

ginal distribution ofX$ is F.,. The mean and correlation func-
tions of this process are

E[X3(D]=E{g[Y()]}

E[X$(t)X$(s)1=E{g[Y(t)Ig[ ()]}

The parameterg,=388.8, f;=0.098 Hz, and{,=0.565 in
Eq. (14) are selected through an iterative process such that the
power spectral densitﬁx$ of the translation proces¥$ in Eq.

(15) matches the average power spectral dergitfFig. 7 shows
with a broken line the power spectral dens’g’;yg of X$ for Fr
obtained numerically via a Monte Carlo simulation procedure and
0 given by Egs.(12) and(14), respectively. The graph @ de-
scribed in Eq(14) is drawn as a dotted line in Fig. 7. The cova-
riance function ofY is equal toE[ Z(t+7)Z(t)] so that the power
spectral density o¥(t) —w, isG(f) [Eq. (14)].

The resulting modeX$ matches the marginal distribution and
the correlation structure of the continuous compondfitof the
wave force process. Therefol® can be approximated b5 .

The definition of the continuous componexit of the wave force
process can be modified by replacing the modiejsandg with
the estimate§ andg, respectively. However, the use of the mod-

elsF,, andg is more convenient for numerical calculations and
they are used in this study.

(16)

c

Filtered Poisson Model of Continuous Component X ¢

The second model of the continuous componiitconsists of
the sum of a filtered Poisson component and a Poisson white
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~ . Y0
9= T2 1227 (2eofol )2 (19)
with go=NoE[ Y ol/2m.
The Poisson white noise process is defined by
Ny(t)
XEa(O= 2 Yiead(t=Ty) (20)

where N4(t), t=0=homogeneous Poisson counting process of
intensity \; >0, and{Y, ;}=independent random variables with
distribution F, arriving at random timegI' ;} of N,(t), t=0.
The process power spectral density is

ME[YE]

2 (21)

G1(f)=01=

Fig. 8 shows with a solid line the average power spectral den-
sity § of the continuous component of the 11 independent real-
izations ofM considered in the analysis. In the same figure with a
broken line is shown the power spectral density of the continuous
component Xg(t), G(f)=To(f)+T.(f) with parametersgg
=3.6e—6, f;=0.1 Hz, {,=0.09, andg,;=0.15.

Table 1 shows estimates of the first four stationary moments of
the continuous componeM of the 11 independent realizations
of M.

The first four stationary central moments of the continuous
componentXg(t) are calculated analytically from E¢17) and
the stationary moments off ((t) and Xg 4(t) as follows:

E[XE(D]=E[XE oI+ E[XE (D] =potpi=p  (22)
E(IXE(D) — ]2 =E([XE o) — pol?)
+E([XE () —11]?) (23)
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Fig. 8. Spectral densities oM(t) (solid line) and Xg(t) (broken
line)

E(IXE() = 13 =E([XE o) — pol®)

+E(XE (D= ra]®) (24)
E(IXE(D) —r]H) =E([XE o()—rol*)
+E(XE (D= Rral?) (25)

The moments of the filtered Poisson procﬁ§§(t) and the Pois-
son white noise procesXf ,(t) are computed using cumulants
(Grigoriu 1995; Waisman 1998; Waisman and Grigoriu 1998
The objective is to match the first four stationary central mo-
ments ofM€ with those ofXg . The parametersy, A\, E[Yﬁyo],
E[Yﬁvl], and the distribution$, and F,; need to be defined for
this purpose. Eq23) is already solved from the calculation of the

v—4'

Ya0=3+ v=4

Consider the transformatiolYg,=vYy,, Where y=constant.
The variance offy 4 is yZE[YiO] and the kurtosis is shown in Eq.
(27). Thus the scaling of the first four moments{f o} reduces
to the selection of the parameteysaandv.

Based on a trial and error scheme, the remaining parameters
were selected ashg=10, \,=4, y=1.4784—4, and v
=4.009193, resulting in the following first moments of the con-
tinuous componenkg(t):

E[XS(t)]=p=—5.5—3

E[XE(t)—pn]?=1.0382—2
[Xp(t) —p] 28)
Yaxe=0

Y 4vx<|2: =5.1206

The skewness coefficient is zero because the distribuEgristu-
dent’st) andF (standard Gaussiaare symmetric and produce a
poor match with the skewness b°. The resulting variance of
XE(t) is slightly smaller than the variance bf¢, as can be seen
in Fig. 8 and Table 1.

The resulting modeXg matches the correlation structure and
three of the first four stationary moments of the continuous com-
ponentM® of the wave force process. Therefd#® can be ap-
proximated byXg .

Summary of Probabilistic Models of M (t)

The two probabilistic models df1(t) are now summarized as

power spectral densities in Fig. 8. It is assumed that the pulses

{Y\ 1} are Gaussian distributed with mean ;=—5.%e—3 and
varianceo§ ;= 2.9%— 4. It is also assumed that the pulde o}
are distributed according to a studerit’distribution with prob-
ability density function(Johnson and Kotz 1970

(142
) v

2\ —(U2)(v+1)
Y ) (26)

1

11
JvB 515V
whereB=Dbeta function and =degree of freedom of the distri-
bution. This distribution is symmetric with respect to zero and as

v—oo the distribution tends to the standard normal distribution.
The first four moments oY, o are

fkao(Y) =

E[Yiol=0
2 v
E[Yikol= 5 v=2
! (27)
¥3,0=0
Table 1. Stationary Moments o€
Statistics M¢
E[-] —5.5x1073
Var-] 1.1667x 1072
V3 —0.7146
Ya 5.1206

X(t)=XE(t)+XI(t) (29)
Xe(t)=XE(t)+Xi(t) (30)
where
xg(t)=|~:mlo¢>(—Y(t)_”y),
Ty

No(t) N (t)
XE(t) = go Yioh(t—Ty o)+ go Yid(t-Typ)  (31)

N(t)
><i<t)=k§l Y d(t—my)

with h(t) defined in Eq(18). The processeX(t) andXg(t) are
referred herein as the “translation wave force model” and “fil-
tered Poisson wave force model,” respectively. It should be noted
that Egs.(29) and (30) are the same as Eq&) and (9). The
impulse componenk'(t) depends on a homogeneous Poisson
counting processi(t) with mean arrival raté\, the independent
random variablegY,} following the distributionF;, the delta
Dirac functiond, and the random timels,} corresponding to the
jumps ofN. The impulses of the modebk$;(t) and Xg(t) of the
wave force processes are assumed to have no duration. The model
of Egs.(29) and(30) can be generalized to generate impulses of
any specified shape. This extension can be achieved by replacing
the Poisson white nois&}"Y,3(t—,) in the definition of
X+(t) and Xg(t) by a filtered Poisson process. Results in this
study are for the wave force models of E¢®9)—(31).
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The response of an offshore structure modeled as a linearferentiable. For example, by selecting an appropriate functional

single-degree-of-freedom system to the translation and filtered
Poisson wave force models is conducted. The analysis is based o
analytical and numerical procedures using thedifferentiation

rule and the Monte Carlo simulation method, respectively.

Stochastic Differential Equations and the Ito "~ Rule

The ltodifferentiation rule provides a useful mathematical frame-
work to obtain differential equations for functions of the solution
of a stochastic differential equation. In this work the differen-
tiation rule is used to obtain moment equations of any order for

the response of the linear offshore system subjected to the filtered
Poisson processes. That is, the system response to the filtered

Poisson wave force model will be determined via application of
the ltodifferential rule. The moment equations are exact and form

a closed set of linear differential equations that can be solved by

any conventional numerical method. Moreover, stationary mo-
ments can be obtained by solving linear algebraic equations.

Let {X(t) e R",t=0} be the solution of the linear stochastic
differential equation

dX(t)=m[X(t),t]dt+f dX(1),t,p]M(dt,dp), t=0
Rn
(32)

where m(x,t) and c(x,t,p)=n-dimensional and (n,m-
dimensional smooth functions, amd(dt,dp)=Poisson random
measure(Gihman and Skorohod 1972; Snyder 1975; Ikeda and
Watanabe 1981; Snyder and Miller 1991; Samorodnitsky and
Tagqu 1994 The meaning of Eq(32) is given by the integral
form

X(t)=X(0)+ jtm[X(s),s]ds
0

=

=

0

+ftf c X(s),s,pIM(ds,dp), t (33)
0JR"

The first integral can be defined in the Riemann sense for

form, differential equations for the moments, characteristic func-
tion, Fokker—Planck equation, and Lyapunov exponentX (dj

can be obtained using the same mathematical tool: thdiffier-
entiation rule.

Let g[X(t),t] be a differentiable function anX(t) be the
solution of Eqgs.(32) and (33). The procesg[ X(t),t] is the so-
lution of the stochastic integral equati¢@ihman and Skorohod
1972; Snyder 1975; Ikeda and Watanabe 1981; Snyder and Miller
1991; Samorodnitsky and Tagqu 1994

|

)

ag[X(s),s]
dXk(s)

99[X(s),] —
DS mix(s)s)

k=1

gl X(1),t]=g[X(0),0] +

t
ds+ fo Jﬁn{g[x(s)Jrc[X(s),s,p],s]

—g[X(s),s]}M(ds,dp)

with differential form

(34)

P

+ an{g[X(t) +c[X(1),t,p],t]—g[X(1),t]}

agLX(1),t]

agIX(D),t] <
dg[xm,t]{%n; mIX(O.0 g

X M(dt,dp) (35)

Any vectorX(t) satisfying a stochastic differential equation of
the type of Egs(32) and(33) and the lfodifferentiation rules of
Egs.(34) and (35 can be used to develop differential equations
for differentiable functions of this vector. This observation and
the differentiable function in Eq36), depending on the compo-
nents ofX(t) and positive integer$g;}, can be used to develop
differential equations for the moments ¥ft).

g[xm]{[l Xi(t)% (36)

every sample oK(t) because the process has continuous samples

with probability one and the functiom(x,t) is a smooth func-
tion. The second integral is a stochastic integral defined in the Ito
sensg(Gihman and Skorohod 1972; Snyder 1975; Ikeda and Wa-
tanabe 1981; Snyder and Miller 1991; Samorodnitsky and Taqqu
1994).

Existence and uniqueness of solution of E(#2) and (33)

plays an important role in determining the probabilistic character-
istics of the solutionX(t). For Poisson driven Markov processes
three conditions need to be satisfigghyder and Miller(1991),
Theorem 5.3.3, p. 296(i) c(x,t,p) is a continuous function of
and p and left continuous with respect tp (i) the functions
m(x,t) andc(x,t,p) are Lipschitz continuous; andi) the func-
tion c(x,t,p) is bounded in the time-space rectangle[6fwx)
X R" for everyx. The conditions(i) and (ii) guarantee the exis-
tence with probability one of the integral
S rc[X(s),s,pIM(ds,dp). The last condition assures the
uniqueness of the solutiak(t).

Ito Differentiation Rule

The Ito differentiation rule is used to obtain differential equations
for any function of the stochastic vector proceqs) in Egs.(32)
and (33), provided that the function is continuous and twice dif-
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Response Analysis

The response of an offshore structure modeled as a linear system
to the two probabilistic models of the wave force proceségs)
[Eq. (29)] andXg(t) [Eq. (30)] is performed. Numerical and ana-
lytical studies are carried out based on the Monte Carlo simula-
tion method and the Ttdifferentiation rule, respectively. Valida-
tion of the probabilistic models is conducted through comparison
of system response to the original wave forces and the response to
the translation and filtered Poisson wave force models, respec-
tively.

Consider an offshore structure modeled as a single-degree-of-
freedom linear system with moment of inertia dampingc, and
stiffnessk defined by

mO () +cO(t) +kO(t)=M(t) (37)

where 0 (t) =rotation about the horizontal axis perpendicular to
incoming waves, an®/l (t) =wave force process representing the
instantaneous moment acting on a cylindrical column piercing the
water surface. Fig. 9 shows the system respddép subjected

to the wave force record shown in Fig. 3, for=2,876.88,c
=181.73, andk=18173.23. These structural parameters were
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Fig. 9. System respons®(t) to the realization oM(t) in Fig. 3

Fig. 11. Power spectral densities @ (t) (solid line) and ®+(t)
(broken ling

chosen to impart a convenient natural period for the oscillator to

induce ringing-like behavior, and do not reflect the values for a ) ] )
particular physical structure. the input X%(t) defined by Eq.(31). Third, the total response

©(t) as shown in Fig. 1®) is defined by the superposition

Response Analysis to Translation Wave Force Model O()=03(1)+06". _
X7(1) Fig. 11 shows the power spectral densitie®dgt) and®(t).

~ . The solid line is the power spectral density of the respdnég
Let ©+(t) be the solution of of the system in Eq(37) to the 11 independent realizations of

m@+c(§T(t)+k@)T(t)=XT(t) (38) !\!I(t). The broken line in Fig. 11 is the power §pectral density of
. 0+(t) of the response of Ed398) to the translation wave model

where X(t) is given by Egs.(29) and (31). Let OF and ©' obtained via Monte Carlo simulation in conjunction with spec-
= stationary responses of the linear system of @) to X7 and trum estimation. The power spectral densities have two distinct

X, respectively. Then, the response to the wave force modelpeaks, located at 0.1 and 0.4 Hz, corresponding to the wave force
X+(1) is O(t)=0%(t)+O'(t). Fig. 10a) shows the system re-  energy content and the oscillator natural frequencies, respectively.
sponseB(t) of Eq. (38) to a sample of the wave force process The agreement between the response of the system i(8Bcfo
Xr(t) =XS(t) + X/(t). Fig. 1Qb) shows in more detail the ringing ~ the émpirical data and the proposed model is satisfactory.
phenomena in the respon®g around timet=5,400 s where the t'.:'g' 1f2tr?howls ;’.V'tr%at sol:chllnez;;)e %r]nplrlcal_ malrglnal q'StI”'
transient response associated with a ringing event can be observeBu ion of the solutionB(t) of Eq. - '€ empirical margina
clearly and resembles Fig. 1. The subsequent decay rate depends
on the system damping.

The response analysis of E@8) is performed in three steps. 1 T

First, the theory of filtered Poisson processes is used to find ana- |
lytically the response componei®@'(t) to the input impulses
X'(t) defined by Eq(31). Second, the Monte Carlo simulation is 08r
used to calculate realizations of the response compcﬁém to o7k
06
2 04 Fowy 05} E
(a)
041 g
1 0.2
0.3F
e,Tag) 0 e;g) 0.2F
-4 02 0.1
—%.2 —0.I15 -0.1 —0.65 0 O,IOS 0f1 0.‘15 0.2
) 2 4 oo 5800 5900 6000 8(t) (rad)
time (sec) x10° time (sec)
5 Fig. 12. Marginal distribution of®(t) (solid line) and ®+(t) (bro-
Fig. 10. System respons®+(t) to a sample oX;(t) ken line

JOURNAL OF ENGINEERING MECHANICS / JULY 2002 / 737



Table 2. Stationary Response Moments for the Translational Model
X1(t)

Statistics O(t) 0+(t)
E[-] —8.34x10°* 8.24x10°*
Var| -] 0.0020 0.0019
V3 0.6772 0.7142
Va 88.9081 99.8921

distribution of the respons@®+(t) of the linear system to the
proposed model is shown with a broken line in Fig. 12. A good
agreement is noted.

Table 2 shows that the stationary first four moments of the
system response®(t) and ®(t) are in very good agreement,
indicating a good match in Fig. 12.

Response Analysis to Poisson Wave Force Model
Xe(1)

Let ®¢ be the solution of

MO (1) +cO (1) + kB (1) = X () (39)

where Xg(t) is given by Egs.(30) and (31) and consists of a
superposition of two Poisson white noises procef¥gs(t) and
X'(t)] and a filtered Poisson processy (t)]. Based on this, the
linear system in Eq(39) can be written as

O(t)+c/mOe(t) +k/mB (1) =[XE o(t) + XE () + XI(t)]/m
(40)

No(t)

X%,o<t>+2cofo>'<&,o<t>—fSXE,0<t>=1/mk§O Yio (41)

where the right-hand side of E¢41) is the Poisson white noise
driving X¢ ¢ in Eq. (17).
The augmented vector

state O(t)

={O()¢,6 )e(t), X§ 0(t),)'(ﬁ,o(t)}’ is the solution of the stochas-
tic differential equatlor[Eqs.(40) and (41)]

Or(t) 6
g O(t) —c/mOg(t)—kIMOg(t) + XE o(t)/m "
Xeo®) | XIC:,O(t)
XE o(t) —2¢ofoXE o) — 2XE 1)
r 0 0
V0 Ni(t) 0 N(t)
+Hom > Yi1t| V1o DR?
k=0 —_— k=0
0 m
L 0 0
[0
0 No(t)
+ A X Yo (42)
0 | k=0
L 1/m

wheregi:XE[Yﬁ]/Zrn is the power spectral density of the Pois-
son white noise procesé representing the impulsive component
M' of M.

Because the augmented state ve@gt) of Eq. (42) satisfies
a stochastic differential equation of the type of E®2) and(33),
the 1to differentiation rules of Eqs(34) and (35) and the differ-
entiable function in Eqs(36) are used to develop differential
equations for the moments @(t). The moments.(p,q,r,s;t)
=E[@)F(t)"@F(t)qx‘;vo(t)r)'(ﬁlo(t)s] are obtained by applying
Egs.(35) and (36), ensemble averaging, and dividing b De-
tails of this procedure can be found in Waismd®98. These
equations are

w(p,a,r,s;t) = — (k/ma+2¢ofos)(p,q,r, ;) + pr(p— 1,9+ 11,50 —k/mau(p+1g—1r,5;0) +qu(p,g— 11+ 1s;1)

+ru(p,q,r—

7\02 q!

J'(q

The set of equations generated by E4p) is closed, and thus
it can be solved exactly based on three observatidnshe mo-
mentsw(0,0,0s;t) of any orders can be calculated exactly be-
cause they correspond to the filtered Poisson procass)
(Grigoriu 1995; (2) the momentsw(p,q,r,s;t) vanish if one or
more arguments are strictly smaller than zero; é)dthe set of
moment equations of ordgs+q+r+s generated by Eq43)

1s+1;t)—f2 osw(p,q,r+1s—1;t)+

,])| P«(p q J!rvs t)E[Yk0]+

~ q |

A q!
m; mu(p a—J.r,SOEYL]

H]E:l k'(S*J)l p“(p q,r,s— J t)E[Yk]_] (43)

are time invariant an@®(t) becomes stationary @s-o, the mo-
mentsu(p,q,r,s;t)=w(p,q,r,s) do not depend on time so that
n(p,q,r,s;t)=0 in Eq. (43). In this case, the moments @¥(t)
are the solution of algebraic equations.

Fig. 13 shows the evolution in time of the mean, variance,

skewness, and kurtosis coefficients@(t) corresponding to the
initial conditions®(t) =0.

involve the moments of ordgr+q+r+s or lower. There is no The agreement between the stationary values of the mean,
need to use closure techniques for solution. Initial conditions are variance, and coefficient of kurtosis with the corresponding mea-
needed for solving Eq43) and these conditions need to be speci- sures from the 11 independent wave force recordMgf) is

fied. If the coefficients of the differential equation defini@gt) satisfactory. There is a mismatch, however, with the coefficient of
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Fig. 13. Exact moments of the respon@i(t): (a) mean;(b) variance;(c) coefficient of skewness; and) coefficient of kurtosis

skewness. This behavior was expected due to the fact that theytically the response componer@ ,(t) and®'(t) to the inputs
marginal distributions selected for the filtered Poisson wave force XS ,(t) and Xi(t) defined by Eq.(él), and the input process

model where symmetricalyg=0).

Let Of ((t)+ OF ,(t) and®'(t) be the stationary responses of
the linear system of Eq:39) to X§ (t) +X§ 4(t) and X'(t), re-
spectively. Then, the response to the wave force mxdét) is
Or(t)=0F (1) +OF (1) +B(t). Fig. 14a) shows the system
respons@F(t) of Eqg. (39) to a sample of the wave force process
Xe(t) =X o(t) + XE 4(t) + X'(t). Fig. 14b) shows in more detail
the ringing phenomena on the respor@e of Eq. (39). This
figure details the response of Fig.(a4around timet=5,800 s.

Xg o(t) using Eqs(17) and(18). Second, the Monte Carlo simu-
lation is used to calculate realizations of the response component

@E,O(t) to the inputXg ((t) computed in the previous step. Third,
the total respons®:(t) as shown in Fig. 14) is defined by the
superpositiom £(t) = B§ (1) + B¢ 4(t) + O'(t).

Fig. 15 shows the power spectral densitie®gt) and®(t).

The solid line is the average power spectral density of the re-
sponse® (t) of the system in Eq(37) to the 11 independent

The transient response associated with a ringing event can bd€alizations ofM(t). The broken line in Fig. 15 is the power
observed clearly and resembles Fig. 1. The decay rate depends oapectral density o®(t) of the response of Eq39). The power

the system damping.
The response analysis of E®@9) is performed in three steps.

spectral densities have two distinct peaks, located at 0.1 and 0.4
Hz, corresponding to the wave force energy content and the os-

First, the theory of filtered Poisson processes is used to find ana<illator natural frequencies, respectively. There is a good agree-
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Fig. 14. System respons® to a sample oiXg(t)
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ment between the response of the system in(B@. to the em-
pirical data and the proposed model.

Estimates of the first four moments are obtained via the Monte
Carlo simulation on a single sample 500,000 time steps long
(dt=1s). Table 3 summarizes results obtained for the stationary
first four moments of the system respor@é) and®(t) using
the 1to differentiation rule and the Monte Carlo simulation
method.

The agreement between the first four moments of the re-
sponsesO (t) of Eq. (37) and ®(t) of Eq. (39 is good. In
particular, very good agreement is found for the mean, variance,
and coefficient of kurtosis. The difference in the coefficient of
skewness can be improved by changing to nonsymmetric distri-
butions the impulsegY, o} and{Y\ ,}.

Conclusions

The response of offshore platforms experience sudden infrequent

large-magnitude bursts of short duration referred to as ringing. It
is very important that this feature of platform response be consid-

ered in the overall design and subsequent performance evaluation

of offshore platforms. In this study, two probabilistic models have

been used to qualitatively and quantitatively capture the ringing
phenomenon. Ringing was simulated using a single-degree-of-
freedom oscillating column piercing the water surface. Due to

variations in the wetted surface of the column, the moment result-
ing from the integration of the non-Gaussian wave force is non-
Gaussian with infrequent impulses. Two probabilistic models

have been developed to describe this non-Gaussian behayr:

Table 3. Stationary Response Moments for the Poisson M@ét)

Ok (t)
Statistics () Ito Formula  Monte Carlo Simulation
E[-] —8.34x10°% —0.8x10°3 -3.1x10°8
Var -] 0.0020 0.0020 0.0018
Y3 0.6772 0.20 0.26
Ya 88.9081 98 92
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translation process superimposed with a Poisson white noise pro-
cess, andii) a filtered Poisson process superimposed with two
Poisson white noise processes. Model parameters were estimated
from the simulated wave force records. Statistics of the response
of an idealized offshore platform represented as a single-degree-
of-freedom oscillator to these models and the corresponding
records were obtained using thé Wifferentiation rule and the
Monte Carlo simulation procedure. Good agreement between the
results obtained using the two probabilistic wave force models
and the records has been found. The use of the second probabi-
listic wave model with the ftalifferentiation rule provides a tool

to compute exact moments of any order of the response of single-
and multi-degree-of-freedom linear structures to this wave force
model. The probabilistic framework presented here would serve
as a building block for examining the ringing observed in large
volume offshore platforms utilizing more refined hydrodynamic
and/or structural models.
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Notation

The following symbols are used in this paper

a; ,b; = translational model marginal distribution pa-
rameters;
B(x) = beta function;
C4 = drag coefficient;
¢ = offshore structure damping;
c,(t) = distance of the center of rotation to the
mean water leve{m);
D = diameter of a cylindrical columfm);
d = water depth(m);
d, = length of the discretized sectidm);
d, = draft (m);
Fi(x) = empirical marginal distribution of impulse
component;
|~:i(x) = Weibull cumulative density function;
F,(t) = cylinder drag force per unit lengttiN/m);
F(X) = empirical marginal distribution of the con-
tinuous component;
Fm(x) = translational model marginal distribution;
F.(x) = empirical marginal distribution of impulses
interarrival times;
Fo(x) = student'st cumulative distribution function;
F,(x) = standard Gaussian cumulative distribution
function;
fo,Co, fg = impulse response function parameters;
8§ = power spectral density of the continuous
component;
0 = power spectral density of a stationary
Gaussian process;
ﬁxg = power spectral density of the translation
model;
Jo, fo, o = stationary Gaussian process power spectral
density parameters;
h(t) = impulse response function;



ME(t)

M(t)

na, nb
u(t)
u;(t)

umwl(t)

Xe(t)
F()

XE o)
XE 4(t)
X+(t)
X3(t)

X(1)

Y(t)
Z(t)
a,C
Y3

Ya

At
3(t)
n(t)

o(t)
Or(t)
OF(1)
0'(t)
(E)T(t)
03(t)

< E > >

©

P(x)

offshore structure stiffness;

moment produced by the drag forces on the
cylinder N—m);

continuous component of input moment
M(t)

(N—m);

impulse component of input momeht(t)
(N—m);

offshore structure moment of inertia;
homogeneous Poisson counting process;
cylinder segment numbers;

water particle velocitym/s);

local water velocity at théth discrete por-
tion of the cylinder(m/s);

water particle velocity at the mean water
level (m/s);

Poisson wave force modeN(—m);
continuous component of the Poisson wave
force model N—m);

filtered Poisson procesiNEm);

Poisson white noise process { m);
translation wave force modeN(-m);
continuous component of the translation
wave force model—m);

impulse component of the wave force model
(N—m);

stationary Gaussian process;

zero mean stationary Gaussian process;
Weibull distribution parameters;

skewness coefficient of a random variable
or process;

kurtosis coefficient of a random variable or
process;

time interval(s);

delta Dirac function;

wave elevation with respect to the mean
water level(m);

system response td(t) (rad);

system response ¥g(t) (rad);

system response ¢ (t) (rad);
system response %'(t) (rad);

system response (t) (rad);

system response %6%(t) (rad);

impulses arrival timgs);

impulses mean arrival rat@rrivals/s;
mean of a random variable or process;
degree of freedom of the studendistribu-
tion;

fluid density (N/nf);

standard deviation of a random variable or
process;

impulses interarrival timess); and
Gaussian cumulative density function.
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