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Abstract: Significant interest has been shown in identifying the nonlinear mechanisms that induce a ringing type response in
structural systems. This high frequency transient type response has been observed in offshore systems, particularly in tension le
~TLPs!. Given the implications of this behavior on the fatigue life of TLP tendons, it is essential that ringing be considered in the
response evaluation. This study presents two non-Gaussian probabilistic models of nonlinear viscous hydrodynamic wave f
induce ringing. The response of a single-degree-of-freedom system exposed to these non-Gaussian wave force models is the
using analytical and numerical studies based on the Itoˆ differentiation rule and the Monte Carlo simulation procedure, respectively.
results demonstrate that the proposed models induce ringing type response in a simplified structure. This study provides a pr
framework for modeling ringing type phenomenon which will serve as a building block for more refined hydrodynamic load mo
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Introduction

The response of offshore platforms to wave forces occasion
exhibit sudden infrequent large magnitude bursts of short d
tion. This ringing behavior is distinctly different from the mo
commonly observed steady state springing response in the v
cal and bending modes of tension leg platforms~TLPs! and grav-
ity based structures~GBS! due to second-order wave effects at t
sum frequencies. Ringing is the strong transient response
served in these modes triggered under severe loading condi
which decays to steady state at a rate that depends on the sy
damping. Both of these response types are delineated in Fig

The ringing response mechanism is not fully understood, m
ing the incorporation of the ringing phenomenon in the reliabil
analysis of offshore platforms difficult. In recent years significa
interest has been shown in identifying the wave mechanisms
induce ringing in complex offshore structural systems~Davies
et al. 1994; Jeffreys and Rainey 1994; Natvig 1994; Faltin
et al. 1995; Newman 1995; Chaplin et al. 1997; Gurley and K
reem 1998; Krokstad et al. 1998!.

Gurley and Kareem~1998! conducted a numerical study i
which it was shown that viscous type loading can induce ring
in an oscillating linear elastic single-degree-of-freedom~SDOF!
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cylinder piercing the water surface. The system parameters
wave conditions that are conducive to ringing were identified. T
numerical simulations of wave forces employed by Gurley a
Kareem~1998! are used to calibrate the probabilistic models
the current study. It is important to note that the nonlinear d
induced loading, obtained by integrating the sectional Moris
force up to second order in wave elevation, is generally not
lieved to adequately explain the actual ringing phenomenon
observed in various applications, e.g., in large volume TL
where ringing is most clearly pronounced. For large volume str
tures a realistic modeling of the wave forces would include
additional contribution of nonslender-body terms~Chaplin et al.
1997; Krokstad et al. 1998!. In this study, inertial force correction
terms have not been included, and a small cylinder diame
wavelength ratio is utilized with dominant viscous effects. Thu
must be stated that this study necessarily does not seek to em
true TLP ringing response. The simplicity of the SDOF line
model and convenience of the nonlinear viscous loading to
free surface are applied to generate long time histories with c
acteristics that mimic observed ringing. The purpose of the st
is the development of a probabilistic framework to represent s
behavior, but not to identify the underlying causal mechanisms
more complete study which seeks to accurately reflect the ca
of ringing in a TLP would need to include a multi-degree-o
freedom~MDOF! system with both structural and geometric no
linearities, explicit modeling of tendon dynamics, and a full d
scription of known hydrodynamic loading mechanisms th
incorporate both viscous and inertial loads as well as the effec
structural response on the loading. The fundamental probabil
framework developed in this work could be extended to a mu
variate version to model the behavior.

The objective of this study is to develop probabilistic mode
to represent the highly nonlinear and random transient feat
that closely resemble the ringing phenomenon. Based on
probabilistic format, more refined models of a realistic TLP s
tem and hydrodynamic loading can be utilized to further adva
the proposed methodology for large volume offshore platform
Two models of the non-Gaussian wave state are developed

l
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first is a superposition of a translation process~static transforma-
tion of a Gaussian process! and a Poisson white noise proce
which captures the infrequent bursts of energy in ringing induc
wave records. The second model is the sum of a filtered Poi
process and two Poisson white noise processes. Details con
ing the calibration of these non-Gaussian models are descr
herein. The response of a simplified linear elastic SDOF offsh
structure to the proposed wave loading models is conducted
particular, when the second model is used, exact moments of
order of the response of linear elastic multi-degree-of-freed
structures can be found analytically based on the Itoˆ differentia-
tion rule. Furthermore, the second model can also be use
analytically obtain approximate moments of any order of the
sponse of nonlinear systems by means of the Itoˆ differentiation
rule and a perturbation method~Waisman 1998; Waisman an
Grigoriu 1998!.

General of Wave Forces

Consider an oscillating cylindrical column of diameterD piercing
the water surface as shown in Fig. 2. The SDOF linear ela
column oscillates to the passing waves about a fixed cente
rotationcr , which describes the location of the center of rotati
with respect to the mean water level~denoted aŝ in Fig. 2!. The
draft,dr , is the column length below the mean water level, and
always positive. The wave elevationh(t) is positive above and
negative below the mean water level. The depthd is set at 1,000
m.

The JONSWAP wave elevation spectrum is applied with
peak frequency of 0.1 Hz throughout this study. The literat
survey indicates that the onset of ringing is triggered by a sud
large amplitude wave preceeded by a period of moderate w
activity. Large waves often exhibit an asymmetric wave pro
which may lead to more favorable conditions for the onset
ringing. Asymmetry about the mean water level can be mode
by a second-order wave theory. In this study, Stokes second-o
random waves are simulated utilizing a quadratic transfer fu

Fig. 1. Ringing and springing events

Fig. 2. SDOF model of cylinder in wave train
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tion ~QTF! in the Volterra series framework. The QTF is analy
cally derived based on Stokes second-order random wave~Has-
selmann 1962; Hudspeth and Chen 1979; Kareem et al. 19!.
Simulation details can be found in Gurley et al.~1996!. The simu-
lated realization of the surface elevation of gravity waves exh
non-Gaussian features with characteristic high peaks and sha
troughs.

Application of the conventional description of the Moriso
equation to calculate the force at the mean water level ignores
nonlinear effects of the fluctuating free surface, which is thou
to be a dominant ringing mechanism. In this study the wave
nematics up to the instantaneous water surface are used to g
ate moment input from both linear and second-order waves
integrating the force to the instantaneous free surface and m
plying by an equivalent moment arm. The water particle veloc
at the mean water level is related to the velocity profile on
wetted cylinder using a modified Airy stretching theory~Mo and
Moan 1985!.

The drag force per unit length of the cylinder in Fig. 2 is

Fl~ t !5 1
2rCdDu~ t !uu~ t !u (1)

where r5fluid density, Cd5coefficient of drag, andu(t)
5 instantaneous water particle velocity. The part of the cylin
below the mean water level is discretized in smaller segme
The portion below the mean water level and above the cente
rotation is divided intona parts, and the portion below the cent
of rotation is divided intonb parts. The momentM (t) produced
by the drag forces on the cylinder is a combination of four co
ponents depending on the instantaneous wave elevationh(t) with
respect to the center of rotation and the mean water level~Gurley
and Kareem 1998!

h~ t !.0, h~ t !.cr , M ~ t !5M1~ t !1M2~ t !1M3~ t !

h~ t !,0, h~ t !.cr , M ~ t !5M2~ t !1M3~ t ! (2)

h~ t !,0, h~ t !,cr , M ~ t !5M4~ t !

where the componentsMi(t), i 51,...,4 are

M1~ t !5
1

2
rCdDh~ t !S h~ t !

2
2cr Dumwl~ t !uumwl~ t !u (3)

M2~ t !5(
i 51

na
1

2
rCdDui~ t !uui~ t !udl S ~na2 i !dl1

dl

2 D (4)

dl5~nl2cr !/na, nl5H 0, h~ t !.0

h~ t !, h~ t !<0

M3~ t !52(
i 51

nb
1

2
rCdDui~ t !uui~ t !udl S ~ i 21!dl1

dl

2 D (5)

dl5~dr1cr !/nb

M4~ t !5(
i 51

nb
1

2
rCdDui~ t !uui~ t !udl S ~ i 21!dl1

dl

2
2h~ t ! D

dl5~dr1h~ t !!/nb (6)

in which umwl(t)5water particle velocity at the mean water leve
ui(t)5 local water velocity at thei th discrete portion of the cyl-
inder, anddl5 length of the discretized section.

Records of the wave force momentM (t) can be obtained by
numerically simulating the wave elevationh(t) and computing
M (t) from Eqs.~2!–~6!. A set of 11 wave force moment record
JOURNAL OF ENGINEERING MECHANICS / JULY 2002 / 731
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have been obtained from Gurley and Kareem~personal commu-
nications, 1997! in this study. One of these records is shown
Fig. 3.

Example of Nonlinear Wave Induced Ringing

An illustration of the onset of ringing in the numerical model us
in this study is presented in Fig. 4~Gurley and Kareem 1998!.
Figs. 4~a and b! show a Gaussian wave elevation train and
resulting cylinder response. No ringing event is observed. A s
ond order contribution is then added to the same wave eleva
train in Fig. 4~c!. The resulting response in Fig. 4~d! shows that
the nonlinear wave input triggers ringing while the linear wa
input does not. The response to nonlinear waves is positi
skewed due to the skewness in water particle velocity and h
high kurtosis around the transient ringing events due to the a
tion of extreme peak values in the response. Both the skew
and kurtosis lead to problems associated with extreme resp
and fatigue of ocean systems. It is noteworthy that not all la
waves in the non-Gaussian wave train lead to ringing. A clea

Fig. 3. Realization ofM (t)

Fig. 4. Linear and nonlinear wave effects on system respons
732 / JOURNAL OF ENGINEERING MECHANICS / JULY 2002
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understanding of the mechanisms involved and its possible
diction have been the motivation for much work in recent lite
ture. This study on the ringing phenomenon seeks to model
response using two different probabilistic approaches.

Probabilistic Models of Wave Forces

Let M (t)5$Mi ,i 51,2,...,n% be a time series of the input wav
momentM (t) at equal time intervalsDt.0. Fig. 3 shows a real-
ization of this time series withn551, 200 andDt51 s. The time
series is characterized by large-amplitude infrequent short d
tion impulses. The time seriesM (t) is decomposed into two time
series,Mc(t) andMi(t), such that

M ~ t !5Mc~ t !1Mi~ t ! (7)

whereMc(t) represents the continuous component, andMi(t) the
impulse component ofM. The seriesMc(t) is obtained from
M (t) by removing the impulses present in the wave force rec
through a simple thresholding procedure. The seriesMi(t) con-
tains the impulses removed from the continuous wave fo
record.

Two different wave force models are developed to repres
the continuous and impulse components ofM (t). The first ap-
proach, referred to as the ‘‘translation wave force model,’’ rep
sents the continuous component by a non-Gaussian transl
process and the impulse component by a Poisson white n
process

XT~ t !5XT
c~ t !1Xi~ t ! (8)

where X represents a model ofM, the subscriptT5translation
model, the superscriptc5continuous component, and the supe
script i 5 impulse component.

The second approach, referred to as the ‘‘filtered Poisson w
force model,’’ represents the continuous component as the su
a filtered Poisson and Poisson white noise processes, and th
pulse component is the same Poisson white noise process us
Eq. ~8!

XF~ t !5XF
c ~ t !1Xi~ t ! (9)

where the subscriptF5sum of the filtered Poisson and Poisso
white noise processes.

Eleven independent realizations ofM (t) of equal duration and
time step as the record of Fig. 3 are used to estimate the pa
eters of the translation and filtered Poisson wave force mod
The next three sections describe the modeling of the Pois
white noise impulse component and the translation and filte
Poisson continuous components.

Impulse Model X i
„t …

It is assumed that the impulses of the wave force process arriv
time according to a Poisson process. The validity of this assu
tion is verified by considering the time series realizations
Mi(t), defined as

Mi~ t !5H 0, M ~ t !,2,000 N2m

M ~ t !, M ~ t !>2,000 N2m
(10)

where the 2,000N2m threshold has been selected by visual
spection of the eleven independent realizations ofM (t) ~Fig. 3!.

Fig. 5~a! shows with a solid line the empirical distributionF̂t

of the interarrival timest i ,i 51,...,90, between consecutive im
pulses. The broken line in Fig. 5~a! is the distribution of an ex-



Fig. 5. Impulse model forM
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one
ponentially distributed random variable with parameterl̂
51/E@t#, whereE@ # is the expectation operator. The resultin
average interarrival time between consecutive impulsesE@t# is
5,688 s, so that the estimate of the mean impulse arrival ra
l̂50.000176 arrivals/s. The agreement between the empi
data and the Poisson assumption model is satisfactory. Fig.~b!

shows with a solid line the empirical distributionF̂ i of the im-
pulses estimated from the set of eleven independent realiza
of M (t). This distribution was obtained using 91 impulses, a
can be modeled by a Weibull distribution

F̃ i~x!512expS 2Fx22,000

a GcD , x>2,000 N2m (11)

wherea53883.79 andc51, and is shown as the broken line
Fig. 5~b!. The distributions have the same first and fourth cen
moment. The agreement between the empirical distribution
the model in Eq.~11! is satisfactory.

Translational Model of Continuous Component X T
c

The first model of the continuous component consists of a tra
lation of a Gaussian process into a non-Gaussian process.
spectrum of the underlying Gaussian process is selected such
the resultant non-Gaussian process has both the appropriate
ginal probability distribution and power spectral density ca
brated to match the empirical models’ marginal probability dis
bution and power spectral density estimated from the continu
component of the wave forcesMc. The next three sections de
scribe the estimation of the translation model parameters.

Let F̂m be the empirical distribution of the continuous comp
nentMc of the wave force process. Fig. 6 shows with a solid li
this empirical distribution estimated from the set of 11 indep
dent realizations ofM. This empirical distribution is practically
unchanged if the impulses ofM are not eliminated from the
record prior to estimation because they are very infrequent.

The model

F̃m~x!55
0.2520.25$12exp@a1~x1b1!#%, x<2b1

0.4620.24@12exp~a2x!#, 2b1<x<0

0.510.25@12exp~2a2x!#, 0<x<b3

0.710.3$12exp@2a3~x2b3!#%, x>b3
(12)
s
l

s

-
e
at
r-

of F̂m with parametersa150.0031, a250.02, a350.0046, b1

5100, andb3580 is shown with a broken line in Fig. 6. Thes
parameters were obtained using a Marquard–Levenberg le
squares optimization procedure~Matlab 1998!. The agreement be
tween the empirical distribution and the model of Eq.~12! is
satisfactory.

Fig. 7 shows with a solid line the ensemble averaged po
spectral densityĝ of the continuous component of the 11 ind
pendent realizations ofM considered in the analysis. For eve
realization ofM, its power spectral density is obtained by takin
the inverse Fourier transform of its covariance function~Grigoriu
1995!. The average of these 11 power spectral densities isĝ in
Fig. 7. The figure shows that a significant fraction of the wa
force energy is concentrated in the frequency range 0.06–
Hz. Because the impulses ofM occur very infrequently, the dif-
ferences between the power spectral density of Fig. 7 and the
corresponding to the entire recordM including the impulses are
negligible.

Let Y(t) be a stationary Gaussian process with meanmy de-
fined by

Fig. 6. Marginal distribution ofMc(t)
JOURNAL OF ENGINEERING MECHANICS / JULY 2002 / 733
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Y~ t !5my1Z~ t !, t>0 (13)

where $Z(t),t>0% is a stationary Gaussian process with me
zero and spectral density$g̃( f ), f P(0,0.5) Hz% given by

g̃~ f !5
g0~ f / f 0!2

@12~ f / f 0!2#21~2z0f / f 0!2 (14)

The continuous component of the wave force process ca
represented by the translation process

XT
c~ t !5F̃m

21+FS Y~ t !2my

sy
D5g@Y~ t !# (15)

wheresy5standard deviation ofY(t) ~Grigoriu 1995!. The mar-
ginal distribution ofXT

c is F̃m . The mean and correlation func
tions of this process are

E@XT
c~ t !#5E$g@Y~ t !#%

(16)
E@XT

c~ t !XT
c~s!#5E$g@Y~ t !#g@Y~s!#%

The parametersg05388.8, f 050.098 Hz, andz050.565 in
Eq. ~14! are selected through an iterative process such that
power spectral densityg̃XT

c of the translation processXT
c in Eq.

~15! matches the average power spectral densityĝ. Fig. 7 shows
with a broken line the power spectral densityg̃XT

c of XT
c for F̃m

obtained numerically via a Monte Carlo simulation procedure a
g̃ given by Eqs.~12! and ~14!, respectively. The graph ofg̃ de-
scribed in Eq.~14! is drawn as a dotted line in Fig. 7. The cov
riance function ofY is equal toE@Z(t1t)Z(t)# so that the power
spectral density ofY(t)2my is g̃( f ) @Eq. ~14!#.

The resulting modelXT
c matches the marginal distribution an

the correlation structure of the continuous componentMc of the
wave force process. ThereforeMc can be approximated byXT

c .
The definition of the continuous componentXT

c of the wave force
process can be modified by replacing the modelsF̃m and g̃ with
the estimatesF̂ andĝ, respectively. However, the use of the mo
els F̃m and g̃ is more convenient for numerical calculations a
they are used in this study.

Filtered Poisson Model of Continuous Component X F
c

The second model of the continuous componentMc consists of
the sum of a filtered Poisson component and a Poisson w

Fig. 7. Spectral densities ofM (t) ~solid line ĝ!, Y(t) ~dotted lineg̃!,
andXT

c(t) ~broken lineg̃X
T
c!
734 / JOURNAL OF ENGINEERING MECHANICS / JULY 2002
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noise component. The objective is to match the marginal dis
bution, correlation structure, and first four stationary moments
the continuous componentMc of the wave force process.

Let XF
c (t)5XF,0

c (t)1XF,1
c (t) be the continuous component o

the wave force process, whereXF,0
c (t)5filtered Poisson proces

andXF,1
c (t)5Poisson white noise process independent ofXF,0

c (t).
The componentXF

c (t) is referred to as ‘‘Poisson model’’ and is a
alternative model ofXT

c(t). Both XF
c (t) andXT

c(t) are probabilis-
tic models of the continuous componentMc(t) of M (t). The
addition of the Poisson white noise processXF,1

c (t) is to match
some moments ofMc.

The filtered Poisson processXF,0
c (t) is defined by

XF,0
c ~ t !5 (

k50

N0~ t !

Yk,0h~ t2Gk,0! (17)

whereN0(t),t>05homogeneous Poisson counting process of
tensityl0.0, $Yk,0%5 independent random variables with distr
bution F0 arriving at random times$Gk,0% of N0(t),t>0, and
h(t)5 impulse response function. For this application, the i
pulse response function is defined by

h~ t !5H 0, t,0

exp~2 f 0c0t !sin~ f dt !, t>0
(18)

where f 0 ~rad/s! and c05filter natural frequency and dampin
ratio, and f d5 f 0A12c0

2 (rad/s). The power spectral density o
XF,0

c (t) is

g̃0~ f !5
g0

~ f 22 f 0
2!21~2c0f 0f !2 . (19)

with g05l0E@Yk,0
2 #/2p.

The Poisson white noise process is defined by

XF,1
c ~ t !5 (

k50

N1~ t !

Yk,1d~ t2Gk,1! (20)

where N1(t), t>05homogeneous Poisson counting process
intensity l1.0, and$Yk,1%5 independent random variables wit
distribution F1 arriving at random times$Gk,1% of N1(t), t>0.
The process power spectral density is

g̃1~ f !5g15
l1E@Yk,1

2 #

2p
(21)

Fig. 8 shows with a solid line the average power spectral d
sity ĝ of the continuous component of the 11 independent re
izations ofM considered in the analysis. In the same figure wit
broken line is shown the power spectral density of the continu
component XF

c (t), g̃( f )5g̃0( f )1g̃1( f ) with parametersg0

53.6e26, f 050.1 Hz, z050.09, andg150.15.
Table 1 shows estimates of the first four stationary moment

the continuous componentMc of the 11 independent realization
of M.

The first four stationary central moments of the continuo
componentXF

c (t) are calculated analytically from Eq.~17! and
the stationary moments ofXF,0

c (t) andXF,1
c (t) as follows:

E@XF
c ~ t !#5E@XF,0

c ~ t !#1E@XF,1
c ~ t !#5m01m15m (22)

E~@XF
c ~ t !2m#2!5E~@XF,0

c ~ t !2m0#2!

1E~@XF,1
c ~ t !2m1#2! (23)
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E~@XF
c ~ t !2m#3!5E~@XF,0

c ~ t !2m0#3!

1E~@XF,1
c ~ t !2m1#3! (24)

E~@XF
c ~ t !2m#4!5E~@XF,0

c ~ t !2m0#4!

1E~@XF,1
c ~ t !2m1#4! (25)

The moments of the filtered Poisson processXF,0
c (t) and the Pois-

son white noise processXF,1
c (t) are computed using cumulan

~Grigoriu 1995; Waisman 1998; Waisman and Grigoriu 1998!.
The objective is to match the first four stationary central m

ments ofMc with those ofXF
c . The parametersl0 , l1 , E@Yk,0

2 #,
E@Yk,1

2 #, and the distributionsF0 and F1 need to be defined fo
this purpose. Eq.~23! is already solved from the calculation of th
power spectral densities in Fig. 8. It is assumed that the pu
$Yk,1% are Gaussian distributed with meanmk,1525.5e23 and
variancesk,1

2 52.95e24. It is also assumed that the pulses$Yk,0%
are distributed according to a student’st distribution with prob-
ability density function~Johnson and Kotz 1970!

f Yk,0
~y!5

1

AnBS 1

2
,
1

2
n D S 11

y2

n D 2~1/2!~n11!

(26)

whereB5beta function andn5degree of freedom of the distri
bution. This distribution is symmetric with respect to zero and
n→` the distribution tends to the standard normal distributi
The first four moments ofYk,0 are

E@Yk,0#50

E@Yk,0
2 #5

n

n22
, n>2

(27)
g3,050

Fig. 8. Spectral densities ofM (t) ~solid line! and XF
c (t) ~broken

line!

Table 1. Stationary Moments ofMc

Statistics Mc

E@•# 25.531023

Var@•# 1.166731022

g3 20.7146
g4 5.1206
s

g4,0531
6

n24
, n>4

Consider the transformationYk,0* 5gYk,0 , where g5constant.
The variance ofYk,0* is g2E@Yk,0

2 # and the kurtosis is shown in Eq
~27!. Thus the scaling of the first four moments of$Yk,0% reduces
to the selection of the parametersg andn.

Based on a trial and error scheme, the remaining parame
were selected asl0510, l154, g51.4784e24, and n
54.009193, resulting in the following first moments of the co
tinuous componentXF

c (t):

E@XF
c ~ t !#5m525.5e23

E@XF
c ~ t !2m#251.0387e22

(28)
g3,X

F
c 50

g4,X
F
c 55.1206

The skewness coefficient is zero because the distributionsF0 ~stu-
dent’st! andF1 ~standard Gaussian! are symmetric and produce
poor match with the skewness ofMc. The resulting variance o
XF

c (t) is slightly smaller than the variance ofMc, as can be seen
in Fig. 8 and Table 1.

The resulting modelXF
c matches the correlation structure an

three of the first four stationary moments of the continuous co
ponentMc of the wave force process. ThereforeMc can be ap-
proximated byXF

c .

Summary of Probabilistic Models of M „t …

The two probabilistic models ofM (t) are now summarized as

XT~ t !5XT
c~ t !1Xi~ t ! (29)

and

XF~ t !5XF
c ~ t !1Xi~ t ! (30)

where

XT
c~ t !5F̃m

21+FS Y~ t !2my

sy
D ,

XF
c ~ t !5 (

k50

N0~ t !

Yk,0h~ t2Gk,0!1 (
k50

N1~ t !

Yk,1d~ t2Gk,1! (31)

Xi~ t !5(
k51

N~ t !

Ykd~ t2tk!

with h(t) defined in Eq.~18!. The processesXT(t) andXF(t) are
referred herein as the ‘‘translation wave force model’’ and ‘‘fi
tered Poisson wave force model,’’ respectively. It should be no
that Eqs.~29! and ~30! are the same as Eqs.~8! and ~9!. The
impulse componentXi(t) depends on a homogeneous Poiss
counting processN(t) with mean arrival ratel̂, the independent
random variables$Yk% following the distributionF̃ i , the delta
Dirac functiond, and the random times$tk% corresponding to the
jumps ofN. The impulses of the modelsXT(t) andXF(t) of the
wave force processes are assumed to have no duration. The m
of Eqs.~29! and ~30! can be generalized to generate impulses
any specified shape. This extension can be achieved by repla
the Poisson white noiseSk51

N(t)Ykd(t2tk) in the definition of
XT(t) and XF(t) by a filtered Poisson process. Results in th
study are for the wave force models of Eqs.~29!–~31!.
JOURNAL OF ENGINEERING MECHANICS / JULY 2002 / 735
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The response of an offshore structure modeled as a lin
single-degree-of-freedom system to the translation and filte
Poisson wave force models is conducted. The analysis is base
analytical and numerical procedures using the Itoˆ differentiation
rule and the Monte Carlo simulation method, respectively.

Stochastic Differential Equations and the Ito ˆ Rule

The Itôdifferentiation rule provides a useful mathematical fram
work to obtain differential equations for functions of the soluti
of a stochastic differential equation. In this work the Itoˆ differen-
tiation rule is used to obtain moment equations of any order
the response of the linear offshore system subjected to the filt
Poisson processes. That is, the system response to the fil
Poisson wave force model will be determined via application
the Itôdifferential rule. The moment equations are exact and fo
a closed set of linear differential equations that can be solved
any conventional numerical method. Moreover, stationary m
ments can be obtained by solving linear algebraic equations.

Let $X(t)PRn,t>0% be the solution of the linear stochast
differential equation

dX~ t !5m@X~ t !,t#dt1E
Rn

c@X~ t !,t,p#M ~dt,dp!, t>0

(32)

where m(x,t) and c(x,t,p)5n-dimensional and ~n,m!-
dimensional smooth functions, andM (dt,dp)5Poisson random
measure~Gihman and Skorohod 1972; Snyder 1975; Ikeda a
Watanabe 1981; Snyder and Miller 1991; Samorodnitsky
Taqqu 1994!. The meaning of Eq.~32! is given by the integral
form

X~ t !5X~0!1E
0

t

m@X~s!,s#ds

1E
0

tE
Rn

c@X~s!,s,p#M ~ds,dp!, t>0 (33)

The first integral can be defined in the Riemann sense
every sample ofX(t) because the process has continuous sam
with probability one and the functionm(x,t) is a smooth func-
tion. The second integral is a stochastic integral defined in theˆ
sense~Gihman and Skorohod 1972; Snyder 1975; Ikeda and W
tanabe 1981; Snyder and Miller 1991; Samorodnitsky and Ta
1994!.

Existence and uniqueness of solution of Eqs.~32! and ~33!
plays an important role in determining the probabilistic charac
istics of the solutionX(t). For Poisson driven Markov process
three conditions need to be satisfied@Snyder and Miller~1991!,
Theorem 5.3.3, p. 256#: ~i! c(x,t,p) is a continuous function ofx
and p and left continuous with respect tot; ~ii ! the functions
m(x,t) andc(x,t,p) are Lipschitz continuous; and~iii ! the func-
tion c(x,t,p) is bounded in the time-space rectangle of@0,̀ )
3Rn for every x. The conditions~i! and ~ii ! guarantee the exis
tence with probability one of the integra
*0

t *Rnc@X(s),s,p#M (ds,dp). The last condition assures th
uniqueness of the solutionX(t).

Itô Differentiation Rule

The Itôdifferentiation rule is used to obtain differential equatio
for any function of the stochastic vector processX(t) in Eqs.~32!
and ~33!, provided that the function is continuous and twice d
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ferentiable. For example, by selecting an appropriate functio
form, differential equations for the moments, characteristic fu
tion, Fokker–Planck equation, and Lyapunov exponents ofX(t)
can be obtained using the same mathematical tool: the Itoˆ differ-
entiation rule.

Let g@X(t),t# be a differentiable function andX(t) be the
solution of Eqs.~32! and ~33!. The processg@X(t),t# is the so-
lution of the stochastic integral equation~Gihman and Skorohod
1972; Snyder 1975; Ikeda and Watanabe 1981; Snyder and M
1991; Samorodnitsky and Taqqu 1994!

g@X~ t !,t#5g@X~0!,0#1E
0

tH ]g@X~s!,s#

]s
1(

k51

n

mk@X~s!,s#

3
]g@X~s!,s#

]Xk~s! J ds1E
0

tE
Rn

$g@X~s!1c@X~s!,s,p#,s#

2g@X~s!,s#%M ~ds,dp! (34)

with differential form

dg@X~ t !,t#5H ]g@X~ t !,t#

]t
1(

k51

n

mk@X~ t !,t#
]g@X~ t !,t#

]Xk~ t ! J dt

1E
Rn

$g@X~ t !1c@X~ t !,t,p#,t#2g@X~ t !,t#%

3M ~dt,dp! (35)

Any vectorX(t) satisfying a stochastic differential equation
the type of Eqs.~32! and ~33! and the Itoˆ differentiation rules of
Eqs. ~34! and ~35! can be used to develop differential equatio
for differentiable functions of this vector. This observation a
the differentiable function in Eq.~36!, depending on the compo
nents ofX(t) and positive integers$qi%, can be used to develo
differential equations for the moments ofX(t).

g@X~ t !#5)
i 51

n

Xi~ t !qi (36)

Response Analysis

The response of an offshore structure modeled as a linear sy
to the two probabilistic models of the wave force processesXT(t)
@Eq. ~29!# andXF(t) @Eq. ~30!# is performed. Numerical and ana
lytical studies are carried out based on the Monte Carlo sim
tion method and the Itoˆ differentiation rule, respectively. Valida
tion of the probabilistic models is conducted through comparis
of system response to the original wave forces and the respon
the translation and filtered Poisson wave force models, res
tively.

Consider an offshore structure modeled as a single-degree
freedom linear system with moment of inertiam, dampingc, and
stiffnessk defined by

mQ̈~ t !1cQ̇~ t !1kQ~ t !5M ~ t ! (37)

whereQ(t)5rotation about the horizontal axis perpendicular
incoming waves, andM (t)5wave force process representing th
instantaneous moment acting on a cylindrical column piercing
water surface. Fig. 9 shows the system responseQ(t) subjected
to the wave force record shown in Fig. 3, form52,876.88,c
5181.73, andk518173.23. These structural parameters w
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chosen to impart a convenient natural period for the oscillato
induce ringing-like behavior, and do not reflect the values fo
particular physical structure.

Response Analysis to Translation Wave Force Model
XT„t …

Let Q̃T(t) be the solution of

mQ̈̃1cQ8 T~ t !1kQ̃T~ t !5XT~ t ! (38)

where XT(t) is given by Eqs.~29! and ~31!. Let QT
c and Q i

5stationary responses of the linear system of Eq.~38! to XT
c and

Xi , respectively. Then, the response to the wave force mo
XT(t) is Q̃T(t)5Q̃T

c(t)1Q̃ i(t). Fig. 10~a! shows the system re
sponseQ̃T(t) of Eq. ~38! to a sample of the wave force proce
XT(t)5XT

c(t)1Xi(t). Fig. 10~b! shows in more detail the ringing
phenomena in the responseQ̃T around timet55,400 s where the
transient response associated with a ringing event can be obs
clearly and resembles Fig. 1. The subsequent decay rate dep
on the system damping.

The response analysis of Eq.~38! is performed in three steps
First, the theory of filtered Poisson processes is used to find
lytically the response componentQ̃ i(t) to the input impulses
Xi(t) defined by Eq.~31!. Second, the Monte Carlo simulation
used to calculate realizations of the response componentQ̃T

c(t) to

Fig. 9. System responseQ(t) to the realization ofM (t) in Fig. 3

Fig. 10. System responseQ̃T(t) to a sample ofXT(t)
l

d
ds

-

the input XT
c(t) defined by Eq.~31!. Third, the total response

Q̃T(t) as shown in Fig. 10~b! is defined by the superpositio
Q̃T(t)5Q̃T

c(t)1Q̃ i .
Fig. 11 shows the power spectral densities ofQ(t) andQ̃T(t).

The solid line is the power spectral density of the responseQ(t)
of the system in Eq.~37! to the 11 independent realizations o
M (t). The broken line in Fig. 11 is the power spectral density
Q̃T(t) of the response of Eq.~38! to the translation wave mode
obtained via Monte Carlo simulation in conjunction with spe
trum estimation. The power spectral densities have two dist
peaks, located at 0.1 and 0.4 Hz, corresponding to the wave f
energy content and the oscillator natural frequencies, respecti
The agreement between the response of the system in Eq.~37! to
the empirical data and the proposed model is satisfactory.

Fig. 12 shows with a solid line the empirical marginal dist
bution of the solutionQ(t) of Eq. ~37!. The empirical marginal

Fig. 11. Power spectral densities ofQ(t) ~solid line! and Q̃T(t)
~broken line!

Fig. 12. Marginal distribution ofQ(t) ~solid line! and Q̃T(t) ~bro-
ken line!
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distribution of the responseQ̃T(t) of the linear system to the
proposed model is shown with a broken line in Fig. 12. A go
agreement is noted.

Table 2 shows that the stationary first four moments of
system responsesQ(t) and Q̃T(t) are in very good agreemen
indicating a good match in Fig. 12.

Response Analysis to Poisson Wave Force Model
XF„t …

Let Q̃F be the solution of

mQ̈̃F~ t !1cQ8 F~ t !1kQ̃F~ t !5XF~ t ! (39)

where XF(t) is given by Eqs.~30! and ~31! and consists of a
superposition of two Poisson white noises processes@XF,1

c (t) and
Xi(t)# and a filtered Poisson process@XF,0

c (t)#. Based on this, the
linear system in Eq.~39! can be written as

Q̈̃F~ t !1c/mQ8 F~ t !1k/mQ̃~ t !F5@XF,0
c ~ t !1XF,1

c ~ t !1Xi~ t !#/m
(40)

ẌF,0
c ~ t !12c0f 0ẊF,0

c ~ t !2 f 0
2XF,0

c ~ t !51/m(
k50

N0~ t !

Yk,0 (41)

where the right-hand side of Eq.~41! is the Poisson white noise
driving XF,0

c in Eq. ~17!.
The augmented state vector Q(t)

Table 2. Stationary Response Moments for the Translational Mo
XT(t)

Statistics Q(t) Q̃T(t)

E@•# 28.3431024 8.2431024

Var@•# 0.0020 0.0019
g3 0.6772 0.7142
g4 88.9081 99.8921
-

are
ci-
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5$Q̃(t)F ,Q8 F(t),XF,0
c (t),ẊF,0

c (t)%8 is the solution of the stochas
tic differential equation@Eqs.~40! and ~41!#

dF Q̃F~ t !

Q8 F~ t !
XF,0

c ~ t !

ẊF,0
c ~ t !

G5F Q8 F~ t !

2c/mQ8 F~ t !2k/mQ̃F~ t !1XF,0
c ~ t !/m

ẊF,0
c ~ t !

22c0f 0ẊF,0
c ~ t !2 f 0

2XF,0
c ~ t !

Gdt

1F 0

Apg1

m

0

0

G (
k50

N1~ t !

Yk,11F 0

0

Apgi

m

0

G(
k50

N~ t !

Yk

1F 0
0

0̂
1/m

G (
k50

N0~ t !

Yk,0 (42)

wheregi5l̂E@Yk
2#/2p is the power spectral density of the Poi

son white noise processXi representing the impulsive compone
Mi of M.

Because the augmented state vectorQ(t) of Eq. ~42! satisfies
a stochastic differential equation of the type of Eqs.~32! and~33!,
the Itô differentiation rules of Eqs.~34! and ~35! and the differ-
entiable function in Eqs.~36! are used to develop differentia
equations for the moments ofQ(t). The momentsm(p,q,r ,s;t)
5E@Q̃F(t)pQ8 F(t)qXF,0

c (t) r ẊF,0
c (t)s# are obtained by applying

Eqs.~35! and ~36!, ensemble averaging, and dividing bydt. De-
tails of this procedure can be found in Waisman~1998!. These
equations are
ṁ~p,q,r ,s;t !52~k/mq12c0f 0s!m~p,q,r ,s;t !1pm~p21,q11,r ,s;t !2k/mqm~p11,q21,r ,s;t !1qm~p,q21,r 11,s;t !

1rm~p,q,r 21,s11;t !2 f 0
2sm~p,q,r 11,s21;t !1

l̂

m (
j 51

q
q!

j ! ~q2 j !!
m~p,q2 j ,r ,s;t !E@Yk

j #

1
l0

m (
j 51

q
q!

j ! ~q2 j !!
m~p,q2 j ,r ,s;t !E@Yk,0

j #1
l1

m (
j 51

s
s!

k! ~s2 j !!
m~p,q,r ,s2 j ;t !E@Yk,1

j # (43)
t

ce,

ean,
ea-

t of
The set of equations generated by Eq.~43! is closed, and thus
it can be solved exactly based on three observations:~1! the mo-
mentsm(0,0,0,s;t) of any orders can be calculated exactly be
cause they correspond to the filtered Poisson processXF(t)
~Grigoriu 1995!; ~2! the momentsm(p,q,r ,s;t) vanish if one or
more arguments are strictly smaller than zero; and~3! the set of
moment equations of orderp1q1r 1s generated by Eq.~43!
involve the moments of orderp1q1r 1s or lower. There is no
need to use closure techniques for solution. Initial conditions
needed for solving Eq.~43! and these conditions need to be spe
fied. If the coefficients of the differential equation definingQ(t)
are time invariant andQ(t) becomes stationary ast→`, the mo-
mentsm(p,q,r ,s;t)5m(p,q,r ,s) do not depend on time so tha
ṁ(p,q,r ,s;t)50 in Eq. ~43!. In this case, the moments ofQ(t)
are the solution of algebraic equations.

Fig. 13 shows the evolution in time of the mean, varian

skewness, and kurtosis coefficients ofQ̃F(t) corresponding to the
initial conditionsQ(t)50.

The agreement between the stationary values of the m
variance, and coefficient of kurtosis with the corresponding m
sures from the 11 independent wave force records ofM (t) is
satisfactory. There is a mismatch, however, with the coefficien



Fig. 13. Exact moments of the responseQ̃F(t): ~a! mean;~b! variance;~c! coefficient of skewness; and~d! coefficient of kurtosis
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skewness. This behavior was expected due to the fact tha
marginal distributions selected for the filtered Poisson wave fo
model where symmetrical (g350).

Let QF,0
c (t)1QF,1

c (t) andQ i(t) be the stationary responses
the linear system of Eq.~39! to XF,0

c (t)1XF,1
c (t) and Xi(t), re-

spectively. Then, the response to the wave force modelXF(t) is
Q̃F(t)5Q̃F,0

c (t)1Q̃F,1
c (t)1Q̃ i(t). Fig. 14~a! shows the system

responseQ̃F(t) of Eq. ~39! to a sample of the wave force proce
XF(t)5XF,0

c (t)1XF,1
c (t)1Xi(t). Fig. 14~b! shows in more detail

the ringing phenomena on the responseQ̃F of Eq. ~39!. This
figure details the response of Fig. 14~a! around timet55,800 s.
The transient response associated with a ringing event ca
observed clearly and resembles Fig. 1. The decay rate depen
the system damping.

The response analysis of Eq.~39! is performed in three steps
First, the theory of filtered Poisson processes is used to find
e

e
n

-

lytically the response componentsQF,1
c (t) andQ̃ i(t) to the inputs

XF,1
c (t) and Xi(t) defined by Eq.~31!, and the input process

XF,0
c (t) using Eqs.~17! and~18!. Second, the Monte Carlo simu

lation is used to calculate realizations of the response compo

Q̃F,0
c (t) to the inputXF,0

c (t) computed in the previous step. Third

the total responseQ̃F(t) as shown in Fig. 14~a! is defined by the

superpositionQ̃F(t)5Q̃F,0
c (t)1Q̃F,1

c (t)1Q̃ i(t).

Fig. 15 shows the power spectral densities ofQ(t) andQ̃F(t).
The solid line is the average power spectral density of the
sponseQ(t) of the system in Eq.~37! to the 11 independen
realizations ofM (t). The broken line in Fig. 15 is the powe

spectral density ofQ̃F(t) of the response of Eq.~39!. The power
spectral densities have two distinct peaks, located at 0.1 and
Hz, corresponding to the wave force energy content and the
cillator natural frequencies, respectively. There is a good ag
Fig. 14. System responseQ̃F to a sample ofXF(t)
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ment between the response of the system in Eq.~37! to the em-

pirical data and the proposed model.
Estimates of the first four moments are obtained via the Mo

Carlo simulation on a single sample 500,000 time steps l
(dt51 s). Table 3 summarizes results obtained for the station
first four moments of the system responseQ(t) andQ̃F(t) using
the Itô differentiation rule and the Monte Carlo simulatio
method.

The agreement between the first four moments of the
sponsesQ(t) of Eq. ~37! and Q̃F(t) of Eq. ~39! is good. In
particular, very good agreement is found for the mean, varia
and coefficient of kurtosis. The difference in the coefficient
skewness can be improved by changing to nonsymmetric di
butions the impulses$Yk,0% and$Yk,1%.

Conclusions

The response of offshore platforms experience sudden infreq
large-magnitude bursts of short duration referred to as ringing
is very important that this feature of platform response be con
ered in the overall design and subsequent performance evalu
of offshore platforms. In this study, two probabilistic models ha
been used to qualitatively and quantitatively capture the ring
phenomenon. Ringing was simulated using a single-degree
freedom oscillating column piercing the water surface. Due
variations in the wetted surface of the column, the moment res
ing from the integration of the non-Gaussian wave force is n
Gaussian with infrequent impulses. Two probabilistic mod
have been developed to describe this non-Gaussian behavior~i! a

Fig. 15. Power spectral densities ofQ(t) ~solid line! and Q̃F(t)
~broken line!

Table 3. Stationary Response Moments for the Poisson ModelXF(t)

Statistics Q(t)

Q̃F(t)

Itô Formula Monte Carlo Simulation

E@•# 28.3431024 20.831023 23.131023

Var@•# 0.0020 0.0020 0.0018
g3 0.6772 0.20 0.26
g4 88.9081 98 92
740 / JOURNAL OF ENGINEERING MECHANICS / JULY 2002
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translation process superimposed with a Poisson white noise
cess, and~ii ! a filtered Poisson process superimposed with t
Poisson white noise processes. Model parameters were estim
from the simulated wave force records. Statistics of the respo
of an idealized offshore platform represented as a single-deg
of-freedom oscillator to these models and the correspond
records were obtained using the Itoˆ differentiation rule and the
Monte Carlo simulation procedure. Good agreement between
results obtained using the two probabilistic wave force mod
and the records has been found. The use of the second pro
listic wave model with the Itoˆ differentiation rule provides a too
to compute exact moments of any order of the response of sin
and multi-degree-of-freedom linear structures to this wave fo
model. The probabilistic framework presented here would se
as a building block for examining the ringing observed in lar
volume offshore platforms utilizing more refined hydrodynam
and/or structural models.
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Notation

The following symbols are used in this paper:
ai ,bi 5 translational model marginal distribution pa-

rameters;
B(x) 5 beta function;

Cd 5 drag coefficient;
c 5 offshore structure damping;

cr(t) 5 distance of the center of rotation to the
mean water level~m!;

D 5 diameter of a cylindrical column~m!;
d 5 water depth~m!;

dl 5 length of the discretized section~m!;
dr 5 draft ~m!;

F̂ i(x) 5 empirical marginal distribution of impulse
component;

F̃ i(x) 5 Weibull cumulative density function;
Fl(t) 5 cylinder drag force per unit length~N/m!;

F̂m(x) 5 empirical marginal distribution of the con-
tinuous component;

F̃m(x) 5 translational model marginal distribution;
F̂t(x) 5 empirical marginal distribution of impulses

interarrival times;
F0(x) 5 student’st cumulative distribution function;
F1(x) 5 standard Gaussian cumulative distribution

function;
f 0 ,c0 , f d 5 impulse response function parameters;

ĝ 5 power spectral density of the continuous
component;

g̃ 5 power spectral density of a stationary
Gaussian process;

g̃XT
c 5 power spectral density of the translation

model;
g0 , f 0 , z0 5 stationary Gaussian process power spectral

density parameters;
h(t) 5 impulse response function;
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v.,
k 5 offshore structure stiffness;
M 5 moment produced by the drag forces on the

cylinder (N2m);
Mc(t) 5 continuous component of input moment

M (t)
(N2m);

Mi(t) 5 impulse component of input momentM (t)
(N2m);

m 5 offshore structure moment of inertia;
N 5 homogeneous Poisson counting process;

na, nb 5 cylinder segment numbers;
u(t) 5 water particle velocity~m/s!;
ui(t) 5 local water velocity at thei th discrete por-

tion of the cylinder~m/s!;
umwl(t) 5 water particle velocity at the mean water

level ~m/s!;
XF(t) 5 Poisson wave force model (N2m);
XF

c (t) 5 continuous component of the Poisson wave
force model (N2m);

XF,0
c (t) 5 filtered Poisson process (N2m);

XF,1
c (t) 5 Poisson white noise process (N2m);
XT(t) 5 translation wave force model (N2m);
XT

c(t) 5 continuous component of the translation
wave force model (N2m);

Xi(t) 5 impulse component of the wave force model
(N2m);

Y(t) 5 stationary Gaussian process;
Z(t) 5 zero mean stationary Gaussian process;
a,c 5 Weibull distribution parameters;
g3 5 skewness coefficient of a random variable

or process;
g4 5 kurtosis coefficient of a random variable or

process;
Dt 5 time interval~s!;

d(t) 5 delta Dirac function;
h(t) 5 wave elevation with respect to the mean

water level~m!;
Q(t) 5 system response toM (t) ~rad!;

Q̃F(t) 5 system response toXF(t) ~rad!;
Q̃F

c (t) 5 system response toXF
c (t) ~rad!;

Q i(t) 5 system response toXi(t) ~rad!;
Q̃T(t) 5 system response toXT(t) ~rad!;
Q̃T

c(t) 5 system response toXT
c(t) ~rad!;

L 5 impulses arrival time~s!;
l 5 impulses mean arrival rate~arrivals/s!;
m 5 mean of a random variable or process;
n 5 degree of freedom of the studentt distribu-

tion;
r 5 fluid density (N/m2);
s 5 standard deviation of a random variable or

process;
t 5 impulses interarrival times~s!; and

F(x) 5 Gaussian cumulative density function.
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