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Abstract

The estimation of structural damping from systems with unknown input can be particularly challenging
but is vital to furthering the understanding of energy dissipation in structural motions. The random
decrement technique and spectral analysis are commonly invoked system identification schemes for this
problem. Although there is well-established theory regarding the bias and variance errors of power spectra
and random decrement signatures, the theoretical error formulae give only approximate indications of
errors inherent to the estimated dynamic properties. This study addresses this through a bootstrap
approach to assess the quality of system identification by providing surrogate estimates of damping and
natural frequency to generate useful statistics and confidence intervals. © 2002 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

With the advancement of modern structures to new heights, the issues of serviceability and
occupant comfort have come to the forefront in design, making damping, now more than ever, a
critical design parameter. Despite its significant role, damping continues to be an enigma in
design [1,2]. As damping does not relate to physical properties of the structure in a direct way like
mass and stiffness, it cannot be estimated with much certainty in design. While the examination of
existing structures has resulted in international databases of actual damping values, there is con-
siderable scatter in the data, partly attributed to the amplitude dependence of damping, but more
so due to errors in the identification of this parameter. This is complicated by the fact that much
of the full-scale data results from ambient excitations, providing the analyst with no measured
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input for system identification (SI). As a result, system identification must be conducted using
“unknown input” system identification schemes or those that only make some general assump-
tions about the nature of the input. This restriction is often problematic and leads to a host of
possible errors.

In light of the variability of the identified parameters and without the advantage of repeated
measurements, the typical dynamic analyst is forced to make the best of only limited observa-
tions, with no indication of the accuracy of the resulting parameters. Although no method can
identify precisely how much an estimate deviates from the true system characteristics, statistical
information on the obtained dynamic properties provides a valuable reliability measure. As many
commonly used techniques lack such information, the following study seeks to address the issue
by developing tools to supplement traditional SI schemes. The proposed bootstrap approach re-
samples the limited data, treating those observed samples as representative of the entire popula-
tion. While this assumption may be problematic if the data is a poor indicator of the true system,
as shown in subsequent examples, the bootstrapping scheme provides the potential to extract in-
formation on the reliability of identified system properties through a computationally simple
scheme.

1.1. Traditional approaches to system identification

In unknown input SI, the general assumption is that the driving random process meets certain
restrictions of stationarity and Gaussianity, as well as being zero-mean, white noise. The satis-
faction of these conditions then permits the use of two approaches: spectral analysis (SA) and the
random decrement technique (RDT). Though there are some other system identification techni-
ques in use, these two approaches are among the most widely used, with the spectral approach
being the more traditional of the two.

1.1.1. Spectral analysis and inherent errors

The estimation of dynamic properties has commonly been accomplished through the use of the
Power Spectral Density (PSD) of an assumed stationary, Gaussian process. As discussed, for ex-
ample, in Bendat and Piersol [3], the PSD estimate can be simply generated by segmenting the
measured response time history into blocks of sufficient length T to provide adequate spectral
resolution Af, defined as the difference between adjacent discrete frequencies, given by:
k k
fk_T_NAtk_O’l’”"N 1 (1)
where N is the actual number of data values in the block of length T, sampled at the time step A¢.
Commonly, N is selected to the nearest power of 2 to permit use of the Fast Fourier Transform
(FFT), as was done in this study. The FFT is applied to each block of data to produce a raw
spectrum. The squared magnitudes of these Ns raw spectra are then averaged, under standard
ergodic assumptions, to obtain the PSD estimate. Note that additional windowing measures can
be taken to suppress side lobe leakage [3]; however, since such windowing can increase the effec-
tive bandwidth of the spectra and the level of variance, this added step was not considered in this
study.
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The normalized bias error of the resulting power spectrum in the vicinity of the resonance fre-
quency f, reflects the importance of the frequency resolution achieved in this process [3]:

[ Sli] ~ 3 (%f )2 @)

where Sxx( f) is the estimated PSD and B, is the half power bandwidth, approximated by [3]:
B, = 2&f, 3)

where £ is the critical damping ratio and f,, is the natural frequency of the system. Note the
introduction of the half power bandwidth (HPBW) in Eq. (3) is an approximation valid only for
lightly damped systems, i.e. £ <0.1, for which the resonant frequency may be taken as the natural
frequency of the system [3]. Conveniently, this relationship permits a very simple and direct
means of system identification from the response PSD, given that the input spectrum is constant.
This assumption is typically acceptable when the ambient excitations of the system can be
approximated as white noise, at least in the vicinity of the spectral peak. Fig. 1 illustrates that the
half power bandwidth may be determined by identifying, via interpolation between the discrete
frequencies in Eq. (1), the two frequencies f> and f; that correspond to half the maximum ampli-
tude of the PSD. Assuming symmetry of the spectral peak, the HPBW is then defined as the dif-
ference between these two frequencies: B,.=f,—f;, with the frequency corresponding to the
spectral peak taken as the natural frequency of the system. This permits the system damping to be
identified readily from Eq. (3).
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Fig. 1. Schematic of half power bandwidth method of spectral system identification.



264 T. Kijewski, A. Kareem | Structural Safety 24 (2002) 261-280

The quality of system identification using the PSD is not only dependent upon the minimization
of normalized bias errors in Eq. (2), but also depends heavily upon limiting the normalized var-
iance of the spectrum, as given by [3]:

var[$u(0] ~ - @

Note that this expression assumes that the raw spectra were determined from independent,
disjoint blocks of data of length T without the inclusion of windowing.

Egs. (2) and (4) are used commonly as guidelines in the system identification process to deter-
mine the amount of data necessary to simultaneously minimize bias and variance errors and have
become the benchmark by which the reliability of system identification using the PSD is assessed.
Unfortunately, while estimates of the bias and variance of the PSD are attractive, they do not
directly provide an indication of the bias and variance of the damping estimate obtained by the
aforementioned procedure, in part motivating this investigation.

1.1.2. Random decrement technique and inherent errors

The random decrement technique is a time-domain approach that has recently become popular
for system identification of wind-excited responses. Assuming that the process is zero-mean,
Gaussian and stationary, time history segments of a prescribed length are captured, upon the
satisfaction of a threshold condition [4,5]. The triggering condition, in its strictest sense, will
specify both amplitude x, and slope X, criteria, though applications of the RDT in the literature
have adopted varying trigger conditions. Note that the duration of segments captured is sub-
jective, but typically is on the order of a few cycles of oscillation.

The captured segments are averaged to remove the random component of the response,
assumed to be zero mean, as shown schematically in Fig. 2. This conceptualization reflects a
common perception of the RDT, in which the total response is represented by the superposition
of the forced vibration response with the homogeneous component or free vibration decay from
given initial conditions. As the random component averages to zero, a Random Decrement Sig-
nature (RDS) D, (7) is obtained. This signature, proportional to Rx(r), the autocorrelation
function of the system, was shown by Vandiver et al. [5] to reduce to

D, (1) = E[x(t)|x(11) = x, and (1) = %,] = x,R(7)/R(0) (5)

where T = t, — t;. Though the RDT essentially provides an estimate of the autocorrelation func-
tion, it is able to produce this estimate without the same strict requirements for lengthy stationary
data and permits the identification of amplitude-dependent damping, as discussed by Jeary [6].
In the case of single degree of freedom (SDOF) linear oscillators excited by Gaussian, zero-mean,
white noise, the autocorrelation function normalized by a constant C takes the following form:

R.(7) = Ce™**"cos(wp1), (6)

analogous to the free vibration response of an oscillator with critical damping ratio of & and fre-
quency of w = 2xf,, substituting the natural frequency w for the damped natural frequency wp
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for this lightly damped system. As long as the white noise assumption remains valid (implications
of this are discussed in [1,7]), the analogs between Eqgs. (5) and (6) may be exploited for system
identification, via least squares minimization to obtain best-fit estimates of damping & and natural
frequency f,, letting C=x,/R(0). Though this approach was used in this study, logarithmic
decrement or other identification techniques may also be used to determine the damping of the
system. Though this simplified approach is designated only for SDOF systems, the RDT can be
used to analyze multi-degree of freedom (MDOF) systems by the approach described herein with
the incorporation of bandpass filtering [8,9] or by introducing the recently developed vector ran-
dom decrement technique [10]. However, as this study is concerned with establishing the relia-
bility of RDT estimates of system parameters, it is sufficient for demonstrative purposes to
consider only the SDOF formulation.
The resulting RDS will be unbiased with variance that can be expressed by [5]:

var[D,,(7)] = E[ D2 ()] - E[D. ()= R(O)/N,[1 = R2()/RX0)] (7)

where N, =the number of segments averaged in the estimate. The presence of noise was ignored in
this idealized derivation, as was the potential correlation between the captured segments. To
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Fig. 2. Conceptualization of the random decrement technique.
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satisfy these theoretical constraints, captured segments were not allowed to overlap in this study,
though the ramifications of this condition are explored in Kijewski and Kareem [11].

As illustrated by Eq. (7), the variance in the RDS increases with each cycle of oscillation. Thus
to achieve reliable results, the system identification advocated in this study considers only the first
two cycles of the RDS. Note also that although the amplitude level selected for the triggering
condition has no direct effect on the variance, it will dictate the number of segments averaged.
Clearly, this number of segments should be increased as much as possible to minimize variance.
Relaxation of the triggering condition to merely specify an amplitude level and sign to the slope
will generate more segments for averaging; however, this does not provide precise initial condi-
tions for the captured segments. This theoretical requirement may only be achieved by defining a
specific value for both the amplitude and slope of the trigger, e.g. by capturing only peaks of
specified amplitude. This strategy was proposed by Tamura and Suganuma [8] to permit more
precise amplitude-dependent damping estimation and shall be used in this study as a strict trig-
gering condition. Unfortunately, this condition will require more measured data, thus any peak
within a certain percentage (e.g. 3%) of the mean peak value is chosen as the amplitude trigger x,
in order to generate more eligible samples for this linear system.

1.2. Variability of estimated dynamic properties

From Eqgs. (4) and (7), it is evident that the approximate variance of both the PSD and RDS
can be determined theoretically; however, the potential errors of the power spectrum and decrement
signature are not truly the reliability measure being sought, as estimates of dynamic parameters
are the end result of this process. Seybert [12] recognized this concern and derived approximate
expressions for the bias and random errors in the damping estimation using the Half Power
Bandwidth of power spectra. Even though these depend on the very quantity being estimated, they
have proven insightful and indicate that the normalized bias in the damping estimate is approxi-
mately 1.5 times the normalized bias of the power spectrum. This derivation was made realizing
that the bias of the PSD itself in the vicinity of the HPBW points will directly affect the estimates
of damping. Seybert [12] also derived an approximate expression for the normalized variance of
the damping estimate, again confirming that the damping variance is proportional to the number
of raw spectra considered. However, the expression has limited utility in this case, as the measure
of the coherence function between the input and output processes at the HPBW points is required.
Another option is empirical expressions for the coefficient of variation, such as those determined
by Montpellier [13]. Though useful, these expressions are again approximate and idealized.

Typically, without the advantage of repeated experiments or measured input, the dynamic
analyst is forced to make the best of only limited observations to make a reliability estimate.
However, non-parametric resampling schemes can be useful in such cases. These approaches
amount to treating the observed samples as if they are representative of the larger population,
then resampling this limited data to approximate variance [14]. Using this computationally simple
scheme, the analyst can effectively “extend” the data used to obtain a single estimate of damping
in order to approximate the variance of that estimate. Such approaches further allow the assign-
ment of confidence intervals without necessitating knowledge of the parameter distribution. This
practical tool is introduced here to quantify random errors of frequency and damping estimates
garnered from these two common system identification approaches.
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It should be noted that other system identification techniques have also considered the issue of
statistical reliability of the identification process. For example, Autoregressive Moving Average
(ARMA) schemes (e.g. [15,16]) or simplified Autoregressive (AR) models utilizing the Maximum
Entropy Method (e.g. [17]) implicitly provide performance measures in terms of prediction errors,
which indirectly reflect the quality of the AR or ARMA identification. More recently, a Bayesian
spectral density approach was introduced by Katafygiotis and Yuen [18] to update the PDF of
modal parameters for ambiently-excited data. The resulting PDF obtained in the minimization
scheme was found to be well approximated by a Gaussian distribution, whose mean is indicative
of the optimal parameter estimates and covariance yields a direct measure of uncertainty.
Approaches like these provide a variance estimate of the damping parameter as a by-product of
the minimization operation or ‘““goodness of fit”” to an assumed model. The associated errors then
indicate how well the estimated damping parameter value fits the available data, providing one
form of reliability measure.

On the other hand, the intent of this work is not to propose an altogether new SI technique with
error estimates to quantify a ““goodness of fit.”” Rather, this study provides a practical computa-
tional tool to generate the statistical reliability measures for frequency and damping parameters
estimated using traditional approaches like SA and RDT, for which no statistical confidence
measures are implicitly provided. It is the inherent randomness in the data that influences the
quality of the PSD and RDS and thereby the damping estimates garnered from them. As these
schemes must average out the effects of randomness, their performance becomes dependent upon
sufficient amounts of available data. The intent of this work is to mimic this random character-
istic to provide a supplementary tool to gauge the potential variance in the resulting damping
estimate from a given spectral or random decrement analysis.

1.3. Errors in system identification.: an exercise

System identification by any approach represents the process through which optimal values of
system parameters are obtained, though this is complicated without the benefit of measured in-
put. In particular, when using SA or RDT, while some understanding of uncertainty is available,
specific measures of variance in frequency or damping estimates are in general not known. To
illustrate this, frequency and damping are estimated from the response of ambiently-excited
SDOF oscillators sampled at 10 Hz. In accordance with common practice, the minimum spectral
resolution is determined by limiting the normalized spectral bias error in Eq. (2) to less than —2%
and determining the required number of FFT points (N) conservatively to the nearest power of
two. To minimize normalized variance errors to 10%, enough data is generated to yield 100 suf-
ficiently resolved raw spectra. These time histories are generated by passing stationary, Gaussian,
zero mean white noise through the SDOF system. This random input was simulated from a target
band-limited spectrum, with unit magnitude from 0 Hz to the cutoff frequency f, [19]. The
resulting simulation parameters are documented in Table 1 for three cases.

Though often not obtainable in practice, significant amounts of stationary data are considered
for illustrative purposes. The first case represents a lightly damped 1 Hz oscillator. The latter two
cases involve more narrowband systems, requiring significantly more data to achieve the same
spectral bias and variance errors. In Case 3, though the same amount of data is generated, the
length of segments captured in the RDT is shortened from 60 to 30 s in order to increase the



268 T. Kijewski, A. Kareem | Structural Safety 24 (2002) 261-280

Table 1

Properties of simulated cases

Case f. (Hz) f» (Hz) & N Ns Nr® Length of data (Hr)
1 5 1.0 0.01 4096 100 ~600-700 11.4

2 1 0.2 0.01 16384 100 ~700-800 45.5

3 1 0.2 0.01 16384 100 ~1100-1200 45.5

a Actual Nr will vary in each run dependent upon the number of peaks forming non-overlapping segments.

number of segments being averaged, a critical factor in RDT performance. Individual time his-
tories generated by this approach were retained for the subsequent resampling analysis presented
in this paper.

Armed with this data, the normalized bias is assumed to be less than —2% and the normalized
variance to be 10%, but the exact error in the frequency and damping identified from the PSD is
still not known. To illustrate the variability possible, the systems in Table 1 are each simulated 50
times. In each case, the same amount of data is used so that the normalized bias and random
errors on paper are the same, and the system is then identified by both the spectral analysis and
random decrement technique discussed respectively in Sections 1.1.1 and 1.1.2.

Even in the presence of a favorable amount of data, the variability inherent in this random
process can cause considerable scatter in the identified parameters, as shown by Table 2 sum-
marizing the statistics of the simulations, including the mean u, standard deviation o and coefli-
cient of variation (CoV) defined as o/u. From Table 2 and Fig. 3, which graphically displays the
data for Case 2, it is not surprising to confirm that the frequency is relatively simple to identify
with accuracy. The damping, on the other hand, is much more difficult. As expected, SA produces
a biased overestimation of the damping present, as the smoothing of the spectrum results in an
underestimation of the spectral peak and thus an overestimation of the damping. The fact that
the SA bias is consistent should not be surprising since the goal was to maintain the same level of
bias. Though the normalized bias in the power spectrum is less than —2%, the normalized bias in
the damping estimated from it is several times that amount. Recall that Seybert’s [5] expression

Table 2
Statistics of Monte Carlo simulations

ulfa] Hz) ol fi] Bias [f,] (Hz)  CoV [fu] (%)  nlé] ol€] Bias[¢] CoVI[E] (%)
Case 1
SA 1.0023 0.0012 0.0023 0.12 0.01041  0.00029 0.00041 2.76
RDT  1.0003 0.0014 0.0003 0.14 0.00921  0.00124  —0.00079 13.50
Case 2
SA 0.2007 0.00026 0.0007 0.13 0.01056  0.00033 0.00056 3.12
RDT  0.2001 0.000256 0.0001 0.13 0.00995  0.00126  —0.00005 12.67
Case 3
SA 0.2006 0.00027 0.00060 0.13 0.01052  0.00032 0.00052 3.01

RDT  0.2000 0.00025 —0.00002 0.12 0.01011  0.00109 0.00011  10.79
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underestimated this over prediction as only 1.5 times the normalized PSD bias. As expected, the
bias does become a bigger problem in the narrowband system. For Case 3, this narrowband sys-
tem was resimulated, with the same amount of data as in Case 2. As a result, the marginal
changes in the statistics associated with the SA are only the result of the new random excitation
generated to simulate the system. The variance is largely unchanged with standard error changing
only by 4% between the two cases. The Col for the SA in all cases is between 2.75 and 3.15%. It
should be relatively constant for all cases as the length of data was selected to maintain the same
bias and random errors in the PSD. Note that the variance estimates in Table 2 are still about one
half the estimate provided in [13].

Though both approaches have near identical performance with respect to frequency identifica-
tion, there is, unfortunately, a considerable amount of scatter in the RDT damping result, leading
to a Col that is an order of magnitude greater than SA result. This CoV is nearly half that ob-
served by Montpellier [13], as expected due to the large amount of data considered. The level of
bias in the RDT result is more significant in the broader band system, perhaps due to the limited
number of segments being averaged. However, when large amounts of segments are available, the
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Fig. 3. Identified dynamic properties of simulated data: identification of Case 2 by (a) spectral analysis and (b) random
decrement technique.
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estimate of damping is nearly unbiased, as expected. This is advantageous, since narrowbanded
systems are increasingly difficult to identify by spectral analysis. The larger number of RDS
averaged in Case 3 helps to further reduce the deviation of damping estimates by RDT. In-
creasing Nr by a few hundred samples has led to a nearly a 15% decrease in the standard devia-
tion. This tends to be the limiting factor in the RDT, as the number of segments being averaged
has direct bearing on the RDS variance.

It is important to note that due to the random nature of the process identical amounts of data
subjected to the same SA can produce an estimate of damping which has no error or as much as
10% error. Though 10% error may be reasonable, this situation also illustrates a very favorable
and perhaps unrealistic amount of data. Under these ideal conditions, the damping estimated by
independent simulations has inherent variability, which is no doubt enhanced under less ideal
conditions. On the other hand, the RDT identification of the system from any one of these
simulations can produce estimates of damping that are near exact or in error by up to 20-30%.
Though Table 2 illustrates that if one has the luxury of repeating an experiment 50 times under
identical conditions, acceptable results are obtainable in the average, it is beneficial to be able to
assess the accuracy of identified parameters from a given time history. The accuracy of any
identification by one of these two approaches is contingent upon the level of randomness in the
measured data and the degree to which it has been eliminated in the averaging process.

2. Bootstrapping schemes in system identification

If the distribution of a random variable were known, then theory or simulation may be invoked
to calculate various statistics. However, in most practical applications, this is not possible, but the
bootstrap may be used to make the best of what information is available. The bootstrap
approach is a computer-based method for assigning accuracy to statistical estimates based on
independent data points or samples, which, in its simplest form, is non-parametric, requiring no
assumptions about the distribution of the parameters [14]. The approach is widely documented in
the literature and has a variety of practical applications elaborated in textbooks [20,21]. Even in
cases where the statistic is too complicated for theoretical estimates of random errors, the boot-
strap can be invoked to make some inference.

When the sample population is large enough, the Central Limit Theorem (CLT) can usually be
invoked to assert that the estimator is approximately distributed as a Gaussian random variable.
Luckily, the underlying assumptions of bootstrap analysis are valid in cases where there are only
limited samples available, say 10 or 15 samples, though both will approach one another in situa-
tions where the population is large. The bootstrap is also capable of capturing non-Gaussian
statistics such as skewness that could not be captured relying on CLT [20].

This process of statistical inference involves estimating some statistic 6 = s(x) of an unknown
Probability Density Function (PDF) F of a population based on an observed random sample x =
[x1, x2, ... x,] drawn from it. Let the sampled data compose a population with empirical dis-
tribution function F. By randomly sampling with replacement from the observed values, a new
sample or bootstrap sample x* = [x}, x5, ...x}] can be generated, which is not the actual data
but a randomized or resampled version of it. The resampled data can then be used to estimate the
statistic of interest 8* = s(x*) to produce a bootstrap replication. The rationale for this metho-
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Fig. 4. Schematic diagram of generalized bootstrap concept (adapted from [20]).

dology is based on simple analogies depicted in Fig. 4. F gives x by random sampling, so F gives

x* by random sampling; 6 is obtained from x via the function s(x), SO 6* is obtained from x* in
the same way [20]. As the resamples are generated as a function of the sample distribution, which
is itself a randomized sample of the actual population, the distribution of the resamples varies
randomly in the same way that the sample population does, paralleling Monte Carlo simulation,
as discussed in [20]. Note that the function s(x) can be virtually any statistic or parameter of the
system. This resampling process is repeated B times to form B replications. Based on these B
replications, the variance or standard error of the population can be determined. The resampling
scheme proposed here merely mimics the randomness of the process itself, more closely approx-
imating the process as more and more data is considered, i.e. as F — F.

For the present application, the measured response of an oscillator can be assumed to be one
such random sample, as the driving process is randomly varying. By the nature of the random
process driving the system, the estimated damping and frequency are not deterministic, but are
also random due to the inherent variability in the PSD and RDS from which they are drawn.
Therefore, the lengthy amounts of data analyzed can be segmented into assumed independent
random samples—the segmenting discussed previously to produce RDT segments satisfying a
trigger or the segmenting in the generation of the PSD. Each segment, itself a random sample,
can be subjected to the same bootstrapping methodology, as it is assumed to be randomly drawn.
It takes a number of hours of measured response data to obtain a single, reasonable estimate of
the system’s damping by RDT or SA, yielding a large amount of data for which the empirical
distribution of the sampled population is indeed approaching the true PDF.

As the generalities of bootstrapping have been discussed, the actual bootstrapping scheme for
this application is now proposed in Fig. 5. As first implemented in Vandermeulen et al. [22] and
Kijewski and Kareem [11], the Ny raw spectra and the N, time-history segments that satisfy the
RDT trigger condition form the sample population. From this population, Ns or Nr samples are
drawn with replacement to form one bootstrap sample. Each bootstrap sample is then averaged
to form a smooth PSD estimate or stable RDS and form a bootstrap replicate. This is repeated B
times to form B replicates. These bootstrap replicates can be plotted atop one another to create
variance envelopes, shown by the thick outline in Fig. 6, enveloping the plug-in estimates of the
random decrement signature and power spectral density, i.e. those that would be obtained from
the procedures in Sections 1.1.1 and 1.1.2 without resampling. Significant deviations from the
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estimated PSD and RDS (shown in black) highlight the areas of highest variance.' Each of these
B replicates is then used to determine the system’s dynamic properties and make statistical infer-
ences on the reliability of the estimate via calculations of the standard errors of these values. The
ideal estimate of the standard error of these replicate estimates is obtained by [20].

B . R ) 1/2
o= {2[9*(19)—9*(-)} /(B - 1)} ®)
b=1
where
~ B ~
0* () =Y 6" (b)/B. ©)
b=1

Eq. (9) can be viewed as the bootstrap mean, with the accuracy of Eq. (8) enhanced as
B — oo. Discussions on the practical values of B are provided in [20].

Understandably, for this approach to work, it must be assumed that the sample population,
represented by the measured time history, is representative of the actual process. If the data is
drawn from periods of extremes, it may not be indicative of typical behavior. So it is vital that the
samples drawn are sufficient to make inferences about the total process behavior. This is a critical
consideration. In cases were data are of poor quality, accurate estimates and information cannot
be provided by any approach, even the bootstrap. The bootstrap cannot repair sampled data, but
can merely make inferences about its various statistics. Even with this in mind, it is hoped that the
introduction of such a scheme will provide practitioners with a simple means by which to estimate
the variance of the frequency and damping estimated from power spectra and random decrement
signatures, which currently lack such reliability measures. Before doing so, it should be noted that

Sample Bootstrap

Population Samples of
Size Ni, Ny |

Bootstrap Replicates

i
JNSNEBIS

sIsA[euy [Bo1St

Fig. 5. Proposed bootstrapping scheme for system identification.

I It was shown in Kijewski & Kareem [11] that the Bootstrap Approach provides an estimate of the standard error
consistent with theoretical predictions.
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this concept has also been applied for identification of confidence intervals for instantaneous
frequency estimates, which also previously lacked the interval estimates [23].

3. Statistical analysis via bootstrapping scheme

For each case in Table 1, the bootstrapping scheme outlined in Fig. 5 is applied to selected time
histories simulated by Monte Carlo in Section 1.3. To illustrate the information that can be
gained, particularly when limited data is available, increments of the total time history are ana-
lysed so that the influence of the number of raw spectra (N,) and the number of segments in RDT
(N,) can be determined. As the frequency is estimated with near certainty every time, it shall not
be discussed here for brevity. The tables that follow contain the bootstrap estimate of the damp-
ing, £yo01, defined as the mean of the damping identified from B=1000 bootstrap replicates [see
Eq. (9)]. The traditional estimate of damping, without any resampling, is commonly termed the
plug-in estimate, &,j,pin. The standard deviation of the bootstrap replicates o, as defined by Eq.
(8), and the CoV, defined as the ratio of the standard error to the bootstrap mean in Eq. (9), are
also provided. The bootstrap bias in the estimate is then defined as the difference, &poot — Eplugin-
This measure is important, as a small bootstrap bias, relative to the standard error, confirms that
the bootstrap is a good estimate of the parameter, e.g. bias/o <0.25. As this measure becomes
larger, the bootstrap estimates may no longer be accurate and require bias correction, which is
discussed further in Efron and Tibshirani [20]. Additionally, by virtue of the boot-strapping
scheme, histograms depicting the distribution of the damping estimate from a given time history
can be obtained. These are useful tools for identifying the underlying distribution of damping
estimates and its associated characteristics. An example of such a histogram for the damping
estimates from a single time history (Case 2) is given in Fig. 7. While viewing these results, please
be reminded that the simulated system had a critical damping ratio of 0.01.

Additionally, confidence intervals are defined for the damping estimate. By traditional analysis,
only a single estimate of damping is available from each simulated time history. However,
through the bootstrapping scheme, this estimate is enhanced by a family of associated estimates,
which can give valuable insight into the reliability of a given damping estimate. In the most ele-
mentary formulation, a level of confidence can be selected, and then the replicates that correspond
to this level can be identified from the resampled distribution [20]. By virtue of the non-para-
metric nature of this approach, there is no need to make any assumptions about the normality of
the damping estimates. This is especially useful in cases where the PSD or RDS is generated from
a limited number of samples. Assuming the Col of the bootstrapped replicates is small, e.g. less
than 20% and the bootstrap biases are negligible, a Gaussian PSD may be assumed to describe
the distribution of the bootstrapped damping parameter. The 95% confidence bands are then
approximated to lie within 2 standard deviations of the bootstrap mean [20]. These bands are
provided in the last column of the following tables for comparison.

3.1. Discussion of resampled results for spectral analysis

As shown in Table 3, the bootstrap investigations conducted on a single record from the Monte
Carlo simulations in Section 1.3 predict significantly smaller values of standard errors than
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anticipated. However, the relative changes are consistent with Monte Carlo predictions, when
examining the full data set (Ny,=100). Case 1 has smallest variance, thus one would expect the
Case 1 bootstraps to reflect that smaller variance in comparison to Cases 2 and 3. Likewise, Case
3 produced a slightly smaller value of standard error than Case 2, a trend reflected in the boot-
strap errors. From the sample histogram in Fig. 7, it is evident that in cases of limited data there
are shifts in the damping estimate distribution about various mean values. It is only for N¢> 50
that the behavior stabilizes and the damping estimates distribute about a relatively constant
mean, indicating that the variance is sufficiently minimal.

It is interesting to note that, even with modest amounts of data (e.g. Ny=10), a relatively good
estimate of the damping is obtainable, while the addition of further recorded data may lead to

Table 3

Statistics of bootstrap replications of critical damping ratio: estimates by SA

Ns Epoot &plugin Bias[€] ol&] CoV (%) 95% Boot 95% Normal
Case 1

10 0.010299  0.01030 —0.000011 0.000084  0.82 (0.01016, 0.01044)  (0.01013, 0.01047)
20 0.010478  0.010481 —0.000029  0.000082  0.78 (0.01034, 0.01060)  (0.01031, 0.01064)
30 0.010571  0.010564 0.000064  0.000081 0.77 (0.01044, 0.01071)  (0.01041, 0.01073)
40 0.010167  0.010165 0.000016  0.000079  0.78 (0.01004, 0.01030)  (0.01001, 0.01032)
50 0.010099  0.010096 0.000032  0.000078  0.77 (0.00997, 0.01023)  (0.00994, 0.01025)
60 0.009940  0.009940 0.000041  0.000080  0.80 (0.00981, 0.01007)  (0.00978, 0.01010)
70 0.010127  0.010131 —0.000037  0.000082  0.81 (0.00999, 0.01025)  (0.00996, 0.01029)
80 0.010075  0.010079  —0.000044  0.000079  0.78 (0.00995, 0.01020)  (0.00993, 0.01023)
90 0.010043  0.010041 0.000019  0.000076  0.76 (0.00991, 0.01017)  (0.00989, 0.01019)
100 0.010029  0.010027 0.000013  0.000083  0.83 (0.00989, 0.01016)  (0.00986, 0.01019)
Case 2

10 0.01044 0.01044 —0.000001 0.000049  0.47 (0.01036, 0.01052)  (0.01034, 0.01054)
20 0.01077 0.01080 —0.000031  0.000143 1.33 (0.01053, 0.01101)  (0.01049, 0.01106)
30 0.01110 0.01110 —0.000005  0.000130 1.17 (0.01088, 0.01130)  (0.01084, 0.01136)
40 0.01058 0.01061 —0.000033  0.000105  0.99 (0.01041, 0.01077)  (0.01037, 0.01079)
50 0.01043 0.01044 —0.000015  0.000095  0.91 (0.01027, 0.01059)  (0.01024, 0.01062)
60 0.01012 0.01012 0.000002  0.000104 1.03 (0.00996, 0.01029)  (0.00991, 0.01033)
70 0.01067 0.01075 —0.000081 0.000121 1.13 (0.01048, 0.01088)  (0.01043, 0.01091)
80 0.01064 0.01065 —0.000009  0.000134 1.26 (0.01043, 0.01086)  (0.01038, 0.01091)
90 0.01067 0.01069 —0.000024  0.000130 1.22 (0.01043, 0.01089)  (0.01041, 0.01093)
100 0.01061 0.01065 —0.000045  0.000132  1.24 (0.01039, 0.01083)  (0.01035, 0.01087)
Case 3

10 0.010637  0.010637  —0.000001 0.000065  0.61 (0.01053, 0.01075)  (0.01051, 0.01077)
20 0.010104  0.010104 0.000000  0.000117 1.16 (0.00992, 0.01030)  (0.00987, 0.01034)
30 0.010187  0.010193  —0.000007  0.000113 1.11 (0.01001, 0.01038)  (0.00996, 0.01041)
40 0.010453  0.010464  —0.000010  0.000107  1.02 (0.01026, 0.01062)  (0.01024, 0.01067)
50 0.010516  0.010522  —0.000006  0.000103  0.98 (0.01032, 0.01068)  (0.01031, 0.01072)
60 0.010346  0.010348  —0.000002  0.000122 1.18 (0.01015, 0.01052)  (0.01010, 0.01059)
70 0.010089  0.010094  —0.000005  0.000109 1.08 (0.00991, 0.01026)  (0.00987, 0.01031)
80 0.009837  0.009840  —0.000003  0.000123 1.25 (0.00963, 0.01005)  (0.00959, 0.01008)
90 0.009922  0.009917 0.000005  0.000121 1.22 (0.00973, 0.01012)  (0.00968, 0.01016)
100 0.009993  0.009991 0.000002  0.000116  1.16 (0.00980, 0.01020)  (0.00976, 0.01022)
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poorer estimates. This may seem counterintuitive, as the variance of the PSD has been shown to
reduce with the number of raw spectra being averaged. However, the inherent randomness of the
process must be considered. The first few hours of data may not have significant variance in
comparison to later components of the overall time history, luckily leading to a reasonable
estimate of damping. Likewise the variance is also dependent on the magnitude of the PSD itself,
which also fluctuates in each case considered. These random fluctuations can and should be
expected when limited data is used, as the variance is high [22]. It is only in the limit that a more
stable and reliable PSD results—one without marked fluctuations as more data is considered in
the average. As evidenced by Fig. 7 and Table 3, it would indicate that this is achieved for N,> 60
for the narrowband system, but achieved much sooner, N> 40 for Case 1.

As evident from Fig. 3, there is a discernable amount of bias in the spectral estimate of the
narrowband system, shifting the mean critical damping ratios to approximately 0.0105. The
inherent bias in the estimate cannot be overcome by the bootstrapping approach, as also noted in
Vandermeulen et al. [22]. Spectra with an outright bias cannot be enhanced by this approach, as
they are not truly representative of the system to be identified, but rather a biased representation
of that system. As the bootstrap cannot repair sampled data, but can merely make inferences
about its various statistics, the confidence intervals and all relevant statistical distributions will be
clustered about this biased mean, as illustrated by the histograms shown in Fig. 7. In this case,
even placing 95% confidence intervals on the estimate will not capture the true damping value.
Note that Seybert’s [12] derivation can provide a normalized bias estimate for & Knowing that
the SA consistently overestimates damping, the rough normalize bias formula may be offered as a
correction to the estimates and used to refine the confidence bands.

3.2. Discussion of resampled results for random decrement technique

As shown in Fig. 7, the distribution of RDT damping estimates on the same data manifest
considerably more scatter than SA estimates, consistent with the findings of the Monte Carlo
simulation. Once again, the distributions shift as more samples are considered. As shown by
Table 4, as N, increases, their behavior tends to stabilize about a consistent mean value, similar to
what was found in SA approach. Even in this stable range, there is still some fluctuation in the
estimate, consistent with the findings of Kijewski and Kareem [11].

However, unlike SA results, the behavior of RDT estimate clearly indicates that limited
amounts of data offer little hope of an accurate result. Rather, the results steadily improve with
the number of samples being considered: for N,> 500, the damping estimates are consistently
within 10% of the actual value. The level of variance in the RDT estimate, as shown by Monte
Carlo simulation, is markedly greater than the SA. This large standard deviation is accurately
represented by the bootstrap analysis, in part due to the fact that the RDT is an unbiased esti-
mator. This was not possible in the biased SA where the predicted variance was much less than
the observed Monte Carlo result. As the RDT tends to stabilize after a significant number of
averages, the changes in standard deviation are quite small when additional samples are added.
Between Cases 1 and 2, the Monte Carlo standard deviation changes only marginally, by about
2%, explaining why the bootstrapped estimates for these two cases show only slight difference. In
the same way, the standard deviation takes on consistently smaller values in Case 3 than in Case
2, reflecting the reduction in variance due to the inclusion of additional segments in the average.
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Statistics of bootstrap replications of critical damping ratio: estimates by RDT

N, Eboot &plugin Bias[£] ol&] CoV (%) 95% Boot 95% Normal
Case 1

100 0.010636 0.010586 0.000051 0.001105 10.39 (0.00876, 0.01244) (0.00843, 0.01285)
200 0.012293 0.012320 —0.000023 0.001144 9.31 (0.01041, 0.01417) (0.01001, 0.01458)
300 0.012927 0.012932 —0.000006 0.001207 9.34 (0.01088, 0.01495) (0.01051, 0.01534)
400 0.011308 0.011340 —0.000032 0.001225 10.83 (0.00934, 0.01339) (0.00886, 0.01376)
500 0.011149 0.011163 —0.000013 0.001264 11.34 (0.00901, 0.01323) (0.00862, 0.01368)
600 0.010915 0.010971 —0.000056 0.001237 11.33 (0.00881, 0.01295) (0.00844, 0.01339)
Case 2

100 0.01533 0.01532 0.000004 0.001239 8.08 (0.01334, 0.01747) (0.01285, 0.01781)
200 0.01386 0.01381 0.000054 0.001223 8.82 (0.01181, 0.01591) (0.01142, 0.01631)
300 0.01296 0.01296 0.000002 0.001259 9.72 (0.01089, 0.01500) (0.01044, 0.01548)
400 0.01203 0.01188 0.000159 0.001174 9.76 (0.01010, 0.01397) (0.00969, 0.01438)
500 0.01132 0.01126 0.000056 0.001231 10.88 (0.00921, 0.01333) (0.00886, 0.01378)
600 0.00974 0.00976 —0.000013 0.001243 12.76 (0.00772, 0.01093) (0.00726, 0.01223)
700 0.00917 0.00917 0.000005 0.001220 13.30 (0.00717, 0.01203) (0.00673, 0.01161)
800 0.01005 0.01000 0.000048 0.001218 12.13 (0.00808, 0.01201) (0.00761, 0.01248)
Case 3

100 0.004597 0.004578 0.000019 0.001132 24.61 (0.00281, 0.00644) (0.00233, 0.00686)
200 0.006960 0.007009 —0.000049 0.001151 16.53 (0.00510, 0.00889) (0.00466, 0.00926)
300 0.008277 0.008304 —0.000027 0.001175 14.20 (0.00635, 0.01014) (0.00593, 0.01063)
400 0.008907 0.008922 —0.000015 0.001118 12.55 (0.00709, 0.01070) (0.00667, 0.01114)
500 0.008850 0.008850 0.000000 0.001128 12.74 (0.00701, 0.01067) (0.00659, 0.01110)
600 0.009955 0.009860 0.000095 0.001152 11.57 (0.00812, 0.01196) (0.00765, 0.01226)
700 0.010079 0.010108 —0.000029 0.001189 11.80 (0.00810, 0.01204) (0.00770, 0.01246)
800 0.009909 0.009971 —0.000062 0.001204 12.15 (0.00808, 0.01198) (0.00750, 0.01232)
900 0.010256 0.010229 0.000027 0.001162 11.33 (0.00834, 0.01219) (0.00793, 0.01258)
1000 0.010301 0.010358 —0.000057 0.001186 11.52 (0.00835, 0.01236) (0.00793, 0.01267)

Unlike the biased SA approach, the broad confidence intervals predicted by bootstrapping RDT
results will encase the predicted result at minimum for N, >400. It is important to emphasize that
traditional RDT damping estimates lack any type of interval estimate. Thus such tools can offer
insight where previously there was none.

In defense of RDT, its performance under idealized conditions, in comparison to SA, is
apparently lacking. Recall that the trigger condition used in this study seeks only peaks. This is a
strict criterion that limits the amount of segments captured for averaging. As Case 3 illustrates,
by shortening the length of segments captured, more unique non-overlapping segments were
identified, reducing the random errors, as shown in Table 2. A similar relaxation of the trigger
condition would also enhance performance, increasing N,, the critical factor in limiting the var-
iance of the RDS. Further, the merits of RDT have been documented in full-scale applications
where the response is no longer strictly stationary [6]. In addition, to the credit of RDT, it is also
capable of detecting amplitude-dependent damping [6,8]. The same cannot be said for the PSD.

Interestingly, a cursory examination of the ratio of bias to standard deviation for both RDT
and SA data confirms that SA generally produces relatively large biases in the bootstrap data,
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whose ratios to the standard error exceed 0.25. On the other hand, RDT produces very small
biases in the bootstrap analysis. Large biases often indicate that the bootstrap analysis of the
data may not be accurate, as it was shown that the bootstrap approach could not capture
the variance predicted by Monte Carlo for SA. Bias corrected data may be resampled, but is
should be noted that this is risky practice and is thus not advocated in this study as it often
leads to an increase in standard error. More details may be found in Efron and Tibshirani
[20].

4. Conclusions

Two common approaches for the estimation of structural damping from systems without
measured input were evaluated in this study: the random decrement technique and traditional
spectral analysis. The product of this evaluation is a practical computational tool to generate the
statistical reliability measures for damping parameters estimated using these two traditional
approaches, for which no statistical confidence measures are implicitly provided. This study uti-
lized bootstrapped replicates of the random decrement segments and raw power spectra to assess
the quality of the resulting system identification by providing surrogate estimates of damping and
natural frequency to generate useful statistics. Statistical information such as the standard
deviation and confidence intervals were previously unavailable for a single estimate of frequency
and damping by these techniques; however, they can be estimated using the bootstrap approach.
Understandably, randomness inherent to the process leads to randomness in identified para-
meters, even when identical amounts of data are analyzed by the same procedure. With sufficient
amounts of data, the power spectrum will produce a biased damping estimate with much smaller
variance than the unbiased Random Decrement estimate; however, the amount of data required
to obtain stable behavior may be prohibitive. Statistical errors in the damping estimates were
provided using a bootstrapping scheme, which approximated the standard deviation of the RDT
estimate consistent with Monte Carlo simulations, using a single time history. The bootstrapped
standard deviation of the damping estimate derived from spectral analysis was considerably less
than its Monte Carlo counterpart, attributed to the fact that it was tainted by the bias inherent in
the sample population. This bias makes it impossible for the confidence intervals to be used to
capture the true estimate, though its damping estimate is not as variable. To enhance the viability
of bootstrapping schemes in such situations, bias correction may be considered. On the other
hand, the broad confidence bands of the RDT can be used to capture the true damping estimate
when sufficient samples are available. In total, the proposed technique and particularly its var-
iance estimate can provide insight previously lacking in spectral analysis and the random decrement
technique.
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