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Abstract: Multicorrelated stationary random processes/fields can be decomposed into a set of subprocesses by diagona
covariance or cross power spectral density~XPSD! matrices through the eigenvector/modal decomposition. This proper ortho
decomposition~POD! technique offers physically meaningful insight into the process as each eigenmode may be characteriz
basis of its spatial distribution. It also facilitates characterization and compression of a large number of multicorrelated random
by ignoring some of the higher eigenmodes associated with smaller eigenvalues. In this paper, the theoretical background o
technique based on the decomposition of the covariance and XPSD matrices is presented. A physically meaningful linkage b
wind loads and the attendant background and resonant response of structures in the POD framework is established. This he
understanding how structures respond to the spatiotemporally varying dynamic loads. Utilizing the POD-based modal repr
schemes for simulation and state-space modeling of random fields are presented. Finally, the accuracy and effectiveness of
order modeling in representing local and global wind loads and their effects on a wind-excited building are investigated.

DOI: 10.1061/~ASCE!0733-9399~2005!131:4~325!

CE Database subject headings: Simulation; Wind loads; Buildings; Random processes; Vibration; Structural dynamics.
wind
rans-
vari-
h

ffers
ector
dis-
en-
s are
s as

-size
tool
ng of
theo-
also

been
pro-

umley
ess

was
ations
lems
984;
t al.
cs,
n uti-
om

e
ic

dely
om

PSD
hich
esses
po-
dom
at any
tatisti-
rom
ion of
erent
active
rela-
of

1
onse

enter

nd
556.

until
ividua
t must
aper
004;
Introduction

Multicorrelated stationary random processes/fields, such as
velocity and pressure fluctuations, on structures can be t
formed into a set of subprocesses by diagonalizing their co
ance or cross power spectral density~XPSD! matrices throug
either the Cholesky~lower or upper triangular! or Schur~eigen-
vector! decomposition. The eigenvector decomposition o
physically meaningful insight into the process as each eigenv
~eigenmode! may be characterized on the basis of its spatial
tribution. It is also recognized that only a small number of eig
modes corresponding to eigenvalues with larger magnitude
dominant, such that one may ignore some of the eigenmode
sociated with small eigenvalues in the description of a large
random field. Accordingly, this technique provides a unique
for data compression and facilitates a reduced-order modeli
large-size random fields. The eigenvector decomposition is
retically based on the Karhunen–Loeve expansion, which is
known as the proper orthogonal decomposition~POD! ~e.g.,
Loeve 1963!.
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The POD technique based on the covariance matrix has
widely used in many fields, such as fluid mechanics, image
cessing, signal analysis, data compression, and others. L
~1970! and Armitt ~1968! introduced this technique to addr
turbulence and wind-related problems, respectively, and it
later used by many researchers in describing pressure fluctu
on buildings and structures and a host of wind-related prob
~e.g., Lee 1975; Kareem 1978; Kareem and Cermak 1
Holmes 1992; Davenport 1995; Kareem 1999; Tamura e
1999; Carassale et al. 2000!. In stochastic structural mechani
the POD technique based on the covariance matrix has bee
lized for the simulation of spatially varying correlated rand
variables~e.g., Yamazaki and Shinozuka 1990!, stochastic finit
element analysis~e.g., Ghanem and Spanos 1991!, and stochast
dynamics~Vasta and Schueller 2000!.

The Cholesky decomposition of XPSD matrix has been wi
utilized in digital simulation of a vector-valued stationary rand
process~Shinozuka and Jan 1972!. Li and Kareem~1989, 1993!
introduced the concept of stochastic decomposition of the X
matrix for the simulation of stationary random processes, w
was further extended to the simulation of nonstationary proc
~Li and Kareem 1991, 1997!. Central to the stochastic decom
sition is the decomposition of a correlated vector-valued ran
process into a set of vector-valued subprocesses, such th
two component processes from the same subprocess are s
cally fully coherent, while any two component processes f
different subprocesses are noncoherent. Therefore, simulat
the parent process is simplified by the simulation of noncoh
subprocesses. The Schur decomposition is often more attr
than the Cholesky decomposition as the former permits a
tively small number of modes to be utilized in the simulation
random fields~Shinozuku et al. 1990; Di Paola and Gullo 200!.
Examples of stochastic decomposition in the dynamic resp

,

l

analysis of structures under wind, waves, and seismic excitations
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can be found, for example, Li and Kareem~1993, 1995!, Lin et al.
~1994!, Xu et al. ~1999!, and Carassale et al.~2001!.

Response analysis and design of structural control involv
feed-forward link with the modern system theory requires a s
space model of the loading, which is augmented to the struc
state-space model for integrated state-space modeling of the
all system. The state-space modeling of multicorrelated
fluctuations was addressed in Goßmann and Walter~1983!, Su-
hardjo et al.~1992!, Matsumoto et al.~1996!, and Kareem~1997!.
These applications were based on the factorization of the X
matrix and subsequent realization of the transfer function m
These operations were noted to be nontrivial for a large-size
dom field which rendered the state-space modeling a challe
task. To address these issues, in Kareem~1999!, Benfratello and
Muscolino ~1999!, and Kareem and Mei~2000!, frameworks
using the XPSD matrix-based POD were presented with a
proximation of the frequency dependent eigenvectors repres
by constant values at a fixed frequency. Chen and Kareem~2001!
presented a framework based on a multivariate autoregre
~AR! model.

The numerical advantage of the POD technique, akin to
modal analysis in structural dynamics, relies on the reduced-
representation through truncation of the higher eigenmodes
ciated with small eigenvalues. This reduced-order represent
of course, must warrant that the important characteristics o
random field and related quantities remain unchanged, o
modification resulting from the approximate representation is
ceptable. Several studies on the covariance matrix-based
technique have demonstrated that truncating higher wind loa
modes helps to expedite computations of global wind loads
their effects~e.g., Bienkiewicz et al. 1995; Holmes et al. 19
Tamura et al. 1999; Chen and Kareem 2000!. However, truncatio
of higher modes may not work effectively in the case of lo
response, which may lead to an underestimation of the local
loads and their effects~Rocha et al. 2000!. Similar observatio
has been made regarding the XPSD matrix-based POD tech
~Chen and Kareem 2000!.

In this paper, the theoretical framework of the reduced-o
modeling of random vector-valued processes, using the
technique based on both the covariance and XPSD matric
presented. A physically meaningful linkage between wind lo
and the attendant background and resonant response of stru
in the POD framework is established. Utilizing the POD mo
representation, schemes for simulation and state-space mo
of random fields are presented. Finally, the accuracy and e
tiveness of the reduced-order modeling in representing loca
global wind loads and their effects on a wind-excited building
investigated.

Covariance Matrix-Based Proper Orthogonal
Decomposition

Let Pstd=hP1std ,P2std , . . . ,PNstdjT be a discrete zero-me
vector-valued stationary random process, which can be expa
in terms of a set of normalized orthogonal mode functionsF as

Pstd = Fastd = o
n=1

N

Fnanstd = o
n=1

N

P̄nstd s1d

where F=fF1,F2, . . . ,FNg; FTF= I ; astd=FTPstd=expansion

series;P̄nstd=Fnanstd=nth subprocess;I=unity matrix; and supe

script T denotes the matrix transpose operator.
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It can be demonstrated that the mode functions,Fn sn
=1,2, . . . ,Nd, which optimize the projections ofPstd, EfuPTFnu2g,
subject to the constraintFn

TFn=1, are defined as the solution
the following eigenvalue problem:

RPFn = VnFn s2d

where RP=EfPPTg=covariance matrix of Pstd; and
Ef g=mathematical expectation. Since the covariance matr
positive definite, the eigenvalues are all real and positive, an
eigenvectors are all real.

The covariance matrix ofastd and that betweenP̄nstd andP̄mstd
sn,m=1,2, . . . ,Nd are given by

Ra = FTRPF = V = diagfV1,V2, . . . ,VNg s3d

RP̄nP̄m
= VnFnFm

Tdnm s4d

where dmn=Kronecker delta. Thus, the POD representation
composes the correlated vector-valued process into a set o
processes which are uncorrelated at zero-time lag. Using th
tribute, the covariance matrixRP is consequently expressed
terms of mode functions as

RP = FVFT = o
n=1

N

VnFnFn
T s5d

which obviously captures the contribution of each mode to
covariance. Furthermore, the following relationship

EfPTPg = EfaTag = o
n=1

N

Vn s6d

indicates that the sum of the mean square values of the or
process remains unchanged in the POD representation, an
equal to the sum of the eigenvalues of the covariance matri

It is also worth pointing at that the POD representation is
most efficient representation of the random process in term
truncated expansion series. By ordering the eigenvalues in
creasing order, the reduced-order representation in terms o
NR sNR,Nd orthogonal mode functions given by

P̂std = o
n=1

NR

Fnanstd = o
n=1

NR

P̄nstd s7d

=optimal representation ofPstd when compared to representati
based on other orthogonal mode functions, which leads to a
mum error in the sum of the mean square values of the pr
~Therrien 1992!:

e = EfsP − P̂dTsP − P̂dg = o
n=NR+1

N

Vn s8d

In most situations, only a small number of eigenmodes a
ciated with large eigenvalues are dominant. This attribute he
realize a reduced-order modeling of a process through the
representation in which higher eigenmodes associated with
eigenvalues may be truncated.

Cross Power Spectral Density Matrix-Based Proper
Orthogonal Decomposition

Like the POD based on the covariance matrix, a vector-va

random process can also be decomposed based on its XPSD
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matrix. The Fourier transform of the processPstd, Psvd, can be
decomposed in terms of orthogonal mode functionCsvd as

Psvd = Csvdbsvd = o
n=1

N

Csvdbnsvd = o
n=1

N

Pnsvd s9d

where Csvd=fC1svd ,C2svd , . . . ,CNsvdg; C*svdCsvd= I ;
bsvd=C*svdPsvd=Fourier transform of the expansion ser
bstd; Pnsvd=Cnsvdbnsvd=Fourier transform of thenth subpro
cessPnstd; and the asterisk denotes the complex conjugate
transpose operator.

The mode functions,Cnsvd sn=1,2, . . . ,Nd, that optimize the
projections ofPsvd, EfuP*svdCnsvdu2g, subject to the constrai
Cn

*svdCnsvd=1, are defined as the solution to the following
genvalue problem

SPsvdCnsvd = LnsvdCnsvd s10d

whereSPsvd=double-sided XPSD matrix ofPstd. Since the XPSD
matrix is a Hermitian matrix, the eigenvalues are all real
positive, but the eigenvectors are generally complex.

The XPSD matrices of expansion seriesbstd and the subpro
cessesPnstd andPmstd are given by

Sbsvd = C*svdSPsvdCsvd = Lsvd

= diagfL1svd L2svd . . . LNsvdg s11d

SPnPm
svd = LnsvdCnsvdCm

* svddnm s12d

Eq. ~12! indicates that any two element processes from
same subprocessPnstd, i.e., Pjnstd and Pknstd s j Þkd, are statisti
cally fully coherent, while any two element processes from
ferent subprocessesPmstd and Pnstd smÞnd, i.e., Pjmstd and
Pknstd, are noncoherent~Li and Kareem 1995!.

Accordingly, the XPSD matrix ofPstd is expressed in terms
mode functions as

SPsvd = CsvdLsvdC*svd = o
n=1

N

LnsvdCnsvdCn
*svd s13d

that obviously captures the contribution of each mode to
XPSD matrix.

Similar to the covariance matrix-based POD, the redu
order representation of the process in terms of the firstNs sNs

,Nd modes of the XPSD matrix associated with large eigen
ues given by

P̂std = o
n=1

NS

Pnstd s14d

=optimal representation ofPstd when compared to representatio
based on other orthogonal functions, which results in a minim
error in the sum of the XPSD at given frequencies,
EfP*svdPsvdg.

It is noted that a fully coherent vector-valued process, suc
ocean wave-particle kinematics with a given wave-surface pr
only has one eigenvalue and eigenmode. When the eigenm
frequency independent, the fully coherent vector-valued pro
can be described by a scalar process. On the other han
reduced-order modeling of a noncoherent process may n
readily realized.

It should be noted that the XPSD matrix-based POD resu
subprocesses that are noncoherent and thus uncorrelated
time lag, i.e., RPnPm

std=0 snÞmd. However, the covarianc

matrix-based POD results in subprocesses that are only uncorre-

JOU
y

lated at zero-time lag. The two POD techniques can be relat
using the relationship between the covariance and XPSD ma
as

FVFT = 2E
0

`

CsvdLsvdC*svddv s15d

It is noted that while the double-sided XPSD defined in
circular frequencyv domain,SPsvd, is employed in this pape
when the one-sided XPSD defined in the natural frequenf
=v / s2pd domain,SP8sfd=4pSPsvd, is utilized, the correspondin
eigenvalues and eigenvectors are given byL8sfd=4pLsvd and
F8sfd=Fsvd.

Proper Orthogonal Decomposition-Based Dynamic
Response Analyses

Consider anN degree-of-freedom~DOF! structure described
terms of its firstq modal coordinateXstd under external loadin
Pstd. Based on random vibration theory, the XPSD matrice
Xstd and relevant responseYstd=GXstd are given by

SXsvd = HsvdQTSPsvdQH*svd s16d

SYsvd = GSXsvdGT s17d

whereHsvd=q3q transfer matrix in terms of the modal coor
nates; Q=N3q structural mode shape matrix; G
=AM Q diagfv j

2g=M 3N participation coefficient matrix o
structural modes to the responseYstd; A =theM 3N influence
matrix; M =theN3N mass matrix in physical coordinates;v j

=2pf j = j th structural modal frequency.
In conventional dynamic response analysis, Eqs.~16! and~17!

are directly utilized which involves a complete quadratic com
nation of the multimodal coupled responses. The computat
effort significantly escalates with increasing modes and the
ber of correlated response components of interest. The com
tional effort could be drastically reduced by invoking the P
representation of the loading process.

ApproximatingSPsvd in its first Ns sNs,Nd eigenmodes, Eq
~16! and ~17! become

SXsvd < o
n=1

Ns

EnsvdEn
*svd s18d

SYsvd < o
n=1

Ns

FnsvdFn
*svd s19d

Ensvd = HsvdQTCnsvdÎLnsvd s20d

Fnsvd = GEnsvd s21d

Eqs. ~18!–~21! facilitate the response analysis which can
summarized in the following procedures. First, represent th
ternal loading in terms of the POD based on the XPSD m
with higher loading modes truncated,Pnsvd=CnsvdÎLnsvd sn
=1,2, . . . ,Nsd. Second, for each loading mode, calculate the
responding responsesEnsvd and Fnsvd under the excitatio
Pnsvd. Finally, calculate the total response by integrating
components associated with each loading mode. In this p
dure, although the POD requires additional computation, the

cation of higher loading modes and the absence of coherence
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among the response components associated with each lo
mode drastically reduce the computational effort needed to
lyze a large number of correlated structural response compo

For the seismic response of structures excited by one
small number of ground motion components, the external loa
can be expressed asPstd=RP0std, whereR=N3N0 participation
matrix; P0std=N031 external loading input; andN0=number o
input sN0!Nd. The decomposition of loadingP0std significantly
reduces the computational effort even without the truncatio
higher loading modes.

When equations of structural motions in terms of modal c
dinates are uncoupled, and the correlation among the mod
sponse components is negligible, one has

Hsvd = diagfHjsvdg s22d

SXsvd = diagfSXj
svdg s23d

Hjsvd = mjfsv j
2 − v2d + 2ij jvv jg−1 s24d

SXj
svd = uHjsvdu2Q j

TSPsvdQ j < o
n=1

NS

uHjsvdu2x jn
2 svdLnsvd

s25d

where mj and j j = j th generalized mass and damping ratio;
x jnsvd=Q j

TCnsvd=projection of thej th structural modeQ j on the
j th loading modeCnsvd, which offers a measure of the relat
significance of thenth loading mode to thej th structural moda
response;i =Î−1.

In cases of lightly damped structures where the forcing f
tion can be approximated by a white noise with a constant s
tral density at the structural natural frequency, the mean sq
modal response can be expressed as~e.g., Kareem 1999; Cara
sale et al. 2001!

sXj

2 = 2E
0

`

SXj
svddv = o

n=1

Ns px jn
2 sv jdLnsv jd
2v j

3j jmj
2 s26d

In the case where the correlation between modal resp
components is negligible, the square root of the sum of sq
combination approach can be employed for calculating the ov
response. Accordingly, the procedure involving the POD of
loading process does not necessarily provide a measurab
merical advantage. However, it may offer a clearer picture of
structures respond to spatiotemporally varying external ex
tions.

The wind-excited structural response is conventionally s
rated into a background~quasi-static! and a resonant compone
for computational efficiency and physical significance base
the spectral feature of wind loads and associated structur
sponse. The background component of responseYstd, Ybstd, can
be quantified through quasi-static analysis as

Ybstd = APstd s27d

and its covariance matrix,RYb
, is given as follows using the tru

cated POD ofRP

RYb
= ARPAT < o

n=1

NR

Vncncn
T s28d

whereA =fAijg, Aij = ith component ofY, Yj, under unitj th com-
T
ponent of loadP, Pj =1; cn=AFn=fc1nc2n. . .cMng ; cjn=projection
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of the influence function forj th response component on thenth
wind loading mode.

Eq. ~28! indicates that the mean square value of the b
ground response can be expressed in terms of the sum of c
nents associated with each wind loading mode, which ca
calculated individually. Clearly, the framework involving the
variance matrix-based POD provides a useful linkage betwee
wind loading mode and the background response.

The resonant component of the response is generally c
lated using a modal analysis technique. Using the aforement
procedure, the combination of the modal analysis and the
representation of the loading offers a physically meanin
and/or computationally efficient framework.

Simulation and State-Space Modeling of Random
Processes

According to the XPSD matrix-based POD technique, a mult
related random vector-valued processPstd can be simulated b
generating reduced order vector-valued subprocessesPnstd sn
=1,2, . . . ,Nsd. Each subprocess can be simulated individu
using spectral representation, or parametric time series mo
other techniques~e.g., Li and Kareem 1993; Shinozuka and D
datis 1996; Spanos and Zeldin 1998; Mann 1998!.

It is important to note that the covariance matrix-based P
technique does not lend itself as an efficient simulation tool a
decomposed subprocesses are only uncorrelated at zero tim
thus eliminating the advantage of simulating each process
pendently as in the case of XPSD-based POD technique. N
theless, this technique can be effectively utilized for the sim
tion of spatially varying random variables~e.g., Yamazaki an
Shinozuka 1990; Ghanem and Spanos 1991!, and compressio
and reconstruction of existing experimental data such as
pressures on building surfaces~e.g., Tamura et al. 1999!.

Spectral Representation Approach

The vector-valued subprocessPnstd with the XPSD matrix give
by

SPnPn
svd = LnsvdCnsvdCn

*svd s29d

can be described as

Pnstd =E
−`

`

CnsvdÎLnsvdeivtdBnsvd s30d

where Bnsvd5zero-mean Gaussian complex process with
thogonal increments, i.e.,

EfdBnsvdg = 0; dBnsvd = dBn
*s− vd;

EfdBnsvrddBm
* svsdg = dvrvs

dnmdvr s31d

Eq. ~30! can be recast in the following discrete form for

element process as
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Pjnstd = o
n1=−N1

N1−1

C jnsvn1
dÎLnsvn1

deivn1
tDBn1

= o
n1=0

N1−1

Î2uC jnsvn1
duÎLnsvn1

dDvAn1n

3cossvn1
t + u jnsvn1

d + qn1nd s32d

where Pjnstd s j =1,2, . . . ,Nd=j th component ofPnstd; C jnsvn1
d

= uC jnsvn1
duexpfiu jnsvn1

dg=j th element of Cnsvn1
d; DBn1

=1/Î2ÎDvAn1ne
iqn1n; An1n and qn1n=independent random va

ables following a Rayleigh distribution with meanÎp /2 and vari-
ance s2−p /2d, and uniform distribution overf0,2pg, respec
tively; Dv=frequency increment with a Nyquist~cutoff!
frequencyN1Dv; vn1

=n1Dv; 2N1=total discrete number of fre
quencies in the intervalf−N1Dv ,N1Dvg.

An alternative formulation for simulation ofPjnstd can be ex
pressed

Pjnstd = o
n1=0

N1−1

2uC jnsvn1
duÎLnsvn1

dDv cossvn1
t + u jnsvn1

d + qn1nd

s33d

In the case whereCnsvd can be approximated as frequen
independent real-valued vector, the simulation ofPnstd can be
reduced to simulation of a scalar process with a power spec
of Lnsvd.

A similar formulation employing the Cholesky decomposit
can be obtained by replacingCsvdÎLsvd with L Ssvd, where
L Ssvd=lower/upper triangular matrix given by SPsvd
=L SsvdL S

*svd, which has been widely utilized in Monte Ca
simulation~e.g., Shinozuka and Jan 1972!.

For an example, a two-dimensional univariate zero-mean
mogeneous continuous random fieldfsx,td in space −̀ ,x,`
and time −̀ , t,` is considered. The autocorrelation funct
Rxtsj ,td=Effsx,tdfsx+j ,t+tdg and power spectral density~PSD!
function Sxtsk ,vd are related by

Sxtsk,vd =
1

s2pd2E
−`

`

Rxtsj,tde−iskj+vtddjdt s34d

Rxtsj,td =E
−`

`

Sxtsk,vdeiskj+vtddkdv s35d

and the XPSD betweenfsx,td and fsx+j ,td is given by

Stsj,vd =E
−`

`

Sxtsk,vdeikjdk s36d

In many practical situations, stationary random fields h
PSD functions that are band limited. In these cases, it is ass
that Sxtsk ,vd is zero outside of the region −kuøkøku and −vu

øvøvu @whereku and vu=Nyquist ~cutoff! wave number an
frequency, respectively#, and it is discrete within this region wi
2N2 and 2N1 uniform incrementsDk=ku/N2 and Dv=vu/N1

along k and v axes, respectively. The corresponding correla
and XPSD functions become

Rxtsj,td = o
n =−N

N2−1

o
n =−N

N1−1

Sxtskn2
,vn1

deiskn2
j+vn1

tdDkDv s37d

2 2 1 1

JOU
Stsj,vd = o
n2=−N2

N2−1

Sxtskn2
,vdeikn2

jDk s38d

wherekn2
=n2Dk; vn1

=n1Dv.
It is obvious thatRxtsj ,td andStsj ,vd given by Eqs.~37! and

~38! will be sufficiently accurate representations of these f
tions given by Eqs.~35! and ~36!, at the region −L /2øjøL /2
and −T/2øjøT/2 ~whereL=2p /Dk, T=2p /Dv!, and the re
gion −L /2øjøL /2 and −vuøvøvu, respectively. Howeve
these functions become periodic functions along thex and t axes
with periodsL and T for Rxtsj ,td, and along thex axis with a
period L for Stsj ,vd. Accordingly, the random fieldfsx,td also
becomes a periodic random field along thex and t axes with
periods L and T, respectively, asEfsfsx,td− fsx+L ,t+Tdd2g
=f2Rxts0,0d−2RxtsL ,Tdg=0.

Consider the POD formulation of the periodic random fi
fsx,td expressed by

E
0

L

Stsx2 − x1,vdFnsx2,vddx= LnsvdCnsx1,vd s39d

and utilizing the periodicity ofSxsj ,vd, it can be readily illus
trated that the POD basis functionFnsx,vd sn=0, ±1, ±2, . . .d is
identical to the following Fourier basis function

Cnsx,vd =
1
ÎL

eiknx s40d

and the associated eigenvalue becomes the PSD as

Lnsvd =E
−L/2

L/2

Stsj,vdeiknjdj = 2pSxts− kn,vd = 2pSxtskn,vd

s41d

A similar discussion concerning the POD of correlation func
of a scalar discrete random process was presented in Th
~1992!.

Accordingly, fsx,td can be represented as follows similar
Eq. ~34!

fsx,td = o
n2=0

N2−1

o
n1=0

N1−1

2ÎSxtskn2
,vn1

dDkDvhcossvn1
t + kn2

x + qn1n2

s1d d

+ cossvn1
t − kn2

x + qn1n2

s2d dj s42d

whereqn1n2

s1d andqn1n2

s2d =two different sets of random phase ang
with uniform distributions overf0,2pg. It should be noted th
the above formulation has been derived in Shinozuka and D
tis ~1996! utilizing an alternative approach.

It should be emphasized that the preceding representat
fsx,td is realized by discrete representation of band lim
Sxtsk ,vd in the region −kuøkøku and −vuøvøvu, which cor-
responds to the representation ofRxtsj ,td in the region −L /2
øjøL /2 and −T/2øtøT/2. In cases where the correlat
function decays with increase in separation and approache
when the separation becomes sufficiently large, the random
given by Eq.~42! will serve as a sufficiently accurate represe
tion of the original random field whenDk andDv are sufficiently
small, i.e.,L andT are sufficiently large.

The results for the periodic random field has further imp
tions for general random field that are not periodic or alm
periodic. Consider the POD formulation of the general ran

field fsx,td defined by
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L0

Stsx2 − x1,vdFnsx2,vddx= LnsvdCnsx1,vd s43d

As discussed in Therrien~1992! in the cases of scalar rando
processes, whenL0 is sufficiently large that the correlation fun
tion becomes approximately zero at the ends of the interva
solution of the above POD problem will be very close to the P
for the periodic random field with a period of 2L0 along thex
axis. Accordingly, the Fourier basis functions become a good
proximation to the optimal basis functions of the POD descr
by Eq. ~43!. Therefore, for homogeneous random fields the P
does not necessarily offer advantages over the classical F
function decomposition. However, the POD provide an opt
representation of general inhomogeneous random fields.

For the case of continuous homogeneous wind velocity
defined in the interval 0øxøL and −̀ ø tø` with double-sided
XPSD function as

Ssx2 − x1,vd = S0svdexpS−
cvux1 − x2u

2pU
D s44d

wherec=decay factor; andU=mean wind speed, the POD fo
mulation is defined in the following forCnsx,vd and Lnsvd sn
=1,2, . . .d

E
0

L

Ssx2 − x1,vdFnsx2,vddx2 = LnsvdCnsx1,vd s45d

which can be expressed in terms of following explicit formu
tions ~van Trees 1968; Carassale and Solari 2002!:

Cnsxd =
a

Îmn
2 + a2 + 2a

Î2

L
FsinSmnx

L
D +

mn

a
cosSmnx

L
DG

s46d

Lnsvd =
4aLS0svd
mn

2 + a2 s47d

wherea=cvL / s2pUd=cfL/U; andmn5nth root of the transcen
dent equation:

Ftansmn/2d +
mn

a
GFtansmn/2d −

a

mn
G = 0 s48d

It is obvious that the eigenmodes represent sinusoidal v
tions. As indicated in Fig. 1~a!, mn approachesnp with an
increase in frequency in which coherence decays faster wi
increase in separation. As indicated by the value ofmn, the
eigenmodes show frequency dependent features, particu
in the low-frequency range. As indicated in Fig. 1~b!, the first
eigenvalue is dominant at the lower-frequency range, where
eigenvalues are nearly of the same level in the higher-frequ
range, indicating that all the wind modes carry the same
energy. Clearly, the computational efficiency of Monte C
simulation based on the POD technique can be enhanced by
ping some of the components over desired ranges of frequ
without loss of accuracy.

An algorithm for generation of homogeneous wind fluc
tions at uniformly distributed points along an axis in space
application to the long span bridges was proposed in Cao
~2000!. An explicit formulation based on lower triangular mat
of the Cholesky decomposition of the XPSD matrix with gi
exponential coherence function was employed. In this conte

is important to point out that the POD technique offers a physi-
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cally more meaningful and computationally more effic
scheme for simulation. It is also worth mentioning that the s
lation of a homogeneous field can be directly carried out u
Eq. ~42!, which is not constrained by the limitation that w
fluctuations must be simulated at uniformly distributed
points, a condition necessary for the scheme introduced in C
al. ~2000!.

Parametric Time Series Modeling

Regardless of the straightforward nature of the spectral repr
tation technique, concerns remain regarding the limita
imposed on the large number of spatially distributed simula
and the length of each time series dictated by the com
memory. Although alternative procedures to overcome
limitation are possible, these tend to compromise the attrac
ness of the procedure, i.e., its inherent straightforward natur~Li
and Kareem 1993; Spanos and Zeldin 1998!. Utilization of para
metric time series models, such as an AR model or AR mo
average~ARMA ! model ~e.g., Li and Kareem 1990! offer other
attractive venues for simulation. Herein, a framework base
the AR model is utilized for the sake of illustration. The subp
cesses,Pnstd sn=1,2, . . . ,Nsd, are modeled as the multiple outp
of
a system with a zero-mean unit variance Gaussian white-
processwnstd as an input. For each element ofPnstd, Pjnstd
s j =1,2, . . . ,Nd, the following AR model is establishe
individually based on its double-sided power spect
SPjn

svd= uC jnsvdu2Lnsvd as

Pjnskd = o
l=1

m

alj
sndPjnsk − ld + s j

sndwnskd s49d

where Pjnskd=PjnskDtd; Dt=time interval; m=order of the AR
model; andalj

snd ands j
snd=coefficients of the AR model.

The parametric time series model approach also facilitate

Fig. 1. Eigenvalues of a homogeneous random field
state-space modeling of the vector-valued random process. The
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following controllable canonical format of a discrete-time st
space model can be obtained for representing the AR m
~Ogata 1994!

X j
sndsk + 1d = A j

sndX j
sndskd + B j

sndwnskd s50d

Pjnskd = C j
sndX j

sndskd + Dj
sndwnskd s51d

where

Fig. 2. Structural mode shapes

Fig. 3. Eigenvalues of wind loading process:~a! Based on the cov
~at different frequencies!; ~c! based on the XPSD matrix~at the firs
structural frequency!
JOU
A j
snd =3

0 1 0 . . . 0

0 0 1 . . . 0

] ] ] . . . ]

0 0 0 . . . 1

amj
snd asm−1d j

snd asm−2d j
snd . . . a1j

snd
4 ; B j

snd =3
0

0

]

0

1
4;

C j
snd = famj

snds j
snd asm−1d j

snd s j
snd . . . a1j

snds j
snd g; Dj

snd = s j
snd s52d

Accordingly, the state-space model ofPnstd can be obtained b
stacking these state-space models as

X sndsk + 1d = A sndX sndskd + Bsndwnskd s53d

Pnskd = CsndX sndskd + Dsndwnskd s54d

where

A snd = diagfA j
sndg; Bsnd = fsB1

snddT, . . . ,sBN
snddTgT;

Csnd = diagfC j
sndg; Dsnd = fD1

snd, . . . ,DN
sndgT s55d

and the overall state-space model ofPstd is subsequently ex
pressed as

Xsk + 1d = AX skd + BWskd s56d

Pskd = CXskd + DWskd s57d

where

A = diagfA sndg; B = diagfBsndg; C = fCs1d, . . . ,CsNsdg;

e matrix;~b! based on the cross power spectral density~XPSD! matrix
ctural frequency!; and ~d! based on the XPSD matrix~at the secon
arianc
t stru
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D = fDs1d, . . . ,DsNsdg; W = fw1, . . . ,wNs
gT s58d

In the case of wind velocity field, the XPSD matrix is of
taken as real valued by neglecting the phase lag, which resu
real-valued wind field eigenmodes. Furthermore, in certain c
the eigenmodes change very slowly with respect to the frequ
and thus may be approximated as frequency independent b
ing constant values at a fixed frequency, i.e.,Cnsvd=Cnsv0d
~Benfratello and Muscolino 1999; Kareem and Mei 2000!. Con-
sequently, the state-space model forPnstd can then be simplifie
by first establishing the state-space model for a scalar pr
lnstd with double-sided power spectrumLnsvd as

X0
sndsk + 1d = A0

sndX0
sndskd + B0

sndwnskd s59d

lnskd = C0
sndX0

sndskd + D0
sndwnskd s60d

and the state-space model forPnstd can be then derived wi
coefficient matrices as

A snd = A0
snd; Bsnd = B0

snd; Csnd = Csv0dC0
snd; Dsnd = Csv0dD0

snd

Fig. 4. Wind loading mode shapes:~a! Based on the covariance m
loading mode at different frequencies!; ~c! based on the XPSD matr
second structural frequency!
s61d
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Example

The alongwind loading and associated response of a 76
306 m tall building with 76 DOFs is used for demonstrating
application of POD-based analysis schemes~Chen and Karee
2000!. The first and second natural frequencies of the building
0.160 and 0.765 Hz, respectively. The modal damping ratio
each mode is assumed to be 0.01. The first two structural
shapes are shown in Fig. 2. The mean wind velocity at the c
of the ith story with heightzi above the ground is given by t
power-lawUi =U10szi /10d0.33, whereU10 is the mean wind veloc
ity at 10 m above the ground and for example is taken as 15
The one-sided cross-spectrum of the alongwind fluctuatioui

anduj si , j =1,2, . . . ,76d is given by

Suiuj
sfd =

4k0U10
2

f

X2

s1 + X2d4/3 expS−
kzf uzi − zju

U10
D s62d

whereX=1,200f /U10, k0=0.03 andkz=7.7.
The external loading vector isPstd=hP1std ,P2std , . . . ,P76stdjT,

where Pistd is the alongwind fluctuating force at theith story,

! based on the cross power spectral density~XPSD! matrix ~the first
e first structural frequency!; and~d! based on the XPSD matrix~at the
atrix;~b
ix~at th
which based on the quasi-steady and strip theories is modeled by
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Pistd = rAiCDUiuistd s63d

wherer=air density;CD=drag coefficient assumed to be 1.2;
Ai=tributary area for theith story.

Proper Orthogonal Decomposition Representation
of Wind Loads

Fig. 3~a! shows the eigenvalues of the covariance matrix of
loading vector Pstd. The covariance matrix was calcula
through the integration of the XPSD matrix over a freque
range from 0.002 Hz to 1 Hz with a frequency incremen
0.002 Hz. The first wind loading mode with dominant eigenv
carries about 39%~i.e., V1/on=1

76 Vn! total energy of the loadin
process~i.e.,EfPTPg=on=1

76 Vn!. A plot of the first three wind load
ing mode shapes is shown in Fig. 4~a! in terms of the distributio
of load/unit area, i.e.,pistd=Pistd /Ai, which indicates almost sin
soidal variations. Figs. 3~b–d! show the eigenvalues of the XPS
matrix at varying frequencies, and at the first and second s
tural mode frequencies, respectively. It is noted that at the lo
frequency range the first eigenvalue is dominant, whereas
higher-frequency range all the eigenvalues are of the same
indicating that all the loading modes carry the same level o
ergy. The first wind loading mode carries about 11% t
energy of the process at the first structural mode frequency
about 3% at the second structural mode frequency. The first
loading mode shapes at different frequencies, and the first
wind loading mode shape at first and second structural m
frequencies, are plotted in Figs. 4~b–d!, which clearly reveal the
frequency dependence.

Table 1. Influence of Truncation of Higher Loading Modes on the Me
Decomposition!

Mode number
included

Ratio o

P1 P50

1-1 0.0835 0.5143

1-2 0.1753 0.5164

1-5 0.4797 0.7398

1-10 0.8529 0.8367

1-20 0.9778 0.9083

1-40 0.9964 0.9625

1-76 1.0000 1.0000

Total 5.0826e+03 3.7635e+03 1.

Table 2. Influence of Truncation of Higher Loading Modes on the Me
Proper Orthogonal Decomposition!

Mode number
included

Ratio o

P1 P50

1-1 0.1031 0.5026

1-2 0.2087 0.5593

1-5 0.4719 0.7457

1-10 0.7630 0.8409

1-20 0.9855 0.9131

1-40 0.9976 0.9656

1-76 1.0000 1.0000

Total 5.0826e+03 3.7635e+03 1.
JOU
,

In order to investigate the influence of higher-mode trunca
on the global and local loads, the global wind loads, i.e.,
generalized load in the first structural mode,F, base bending mo

ment, M̂, and base shear,Q̂, and the local wind loads, i.e., t
loads acting on the first, 50th and 76th stories,P1, P50, andP76,
are considered. The global wind loads are described by the
gral of the wind load distribution weighted by the mode shap
global influence function. However, the local loads depend o
local wind load distribution at specific locations. Their m
square values~convariances! and PSDs are calculated based
the truncated process, which are then compared to those fro
untruncated cases. The POD representations are based on b
covariance and XPSD matrices. The number of loading m
included are 1, 2, 5, 10, 20, 40, and 76.

Tables 1 and 2 present the mean square values of the loc
global loads in terms of the ratios of these values to the ori
untruncated values. The first wind loading mode based o
covariance matrix carries about 8%, 51%, and 28% of the
energy of the local loading,P1, P50, andP76, respectively. On th
other hand, it carries about 95%, 99%, and 96% of the tota

ergy of the global loads,F, M̂, and Q̂, respectively. A simila
contribution of wind load modes based on the XPSD matr
summarized in Table 2. The mean square pressure distrib
along the building height corresponding to different load
modes included are plotted in Figs. 5~a and b!. The exact pressu
distribution contributed by all loading modes for this spec
example is given by srCDU10d2szi /10d0.66sui

2 , where sui

2

=e0
`Suiui

sfddf. Figs. 6 and 7 show the influence of the trunca
higher loading modes on the PSDs ofP76 and F, and on the

uare Loads and Their Effects~the Covariance Matrix-Based Proper Orthogo

uncated value to the total value

F M̂ Q̂

61 0.9449 0.9872 0.9640

96 0.9976 0.9984 0.9863

70 0.9997 0.9997 0.9996

53 0.9999 0.9999 0.9998

22 0.9999 1.0000 0.9999

26 0.9999 1.0000 1.0000

00 1.0000 1.0000 1.0000

03 8.3046e+04 2.2006e+11 6.3354e+06

uare Loads and Their Effects~the Cross Power Spectral Density Matrix-Ba

uncated value to the total value

F M̂ Q̂

40 0.9499 0.9761 0.9309

03 0.9906 0.9883 0.9628

80 0.9990 0.9985 0.9934

59 0.9997 0.9996 0.9980

16 0.9999 0.9999 0.9994

86 0.9999 0.9999 0.9999

00 1.0000 1.0000 1.0000

03 8.3046e+04 2.2006e+11 6.3354e+06
an Sq

f the tr

P76

0.27

0.41

0.60

0.71

0.79

0.82

1.00

6400e+
an Sq

f the tr

P76

0.28

0.43

0.61

0.72

0.80

0.83

1.00

6400e+
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XPSDs betweenP1 andP76 and betweenP50 andP76. A sample o
simulated time histories ofP76 andF, consisting of contribution
of all loading modes and only each of the lower five load
modes, is shown in Fig. 8. The spectral representation app
was employed for this simulation. Results clearly demons
that the truncation of higher modes results in a significant re
tion in the local wind loads, particularly, at the higher-freque
range, whereas only a small number of loading modes ca
proximate the global wind loads with reasonable accuracy.

Fig. 5. Influence of truncating higher wind loading modes on th
the cross power spectral density matrix

Fig. 6. Influence of truncating higher wind loading modes on the
matrix ~local loadP76!; ~b! based on the covariance matrix~global lo
load P76!; and ~d! based on the XPSD matrix~XPSD betweenP50 a
334 / JOURNAL OF ENGINEERING MECHANICS © ASCE / APRIL 2005
contribution of higher loading modes to the global wind load
is insignificant due to their spatial variations with higher w
numbers.

Based on the frequency dependent eigenvalues of X
matrix, it is noted that in the low-frequency range, inclusion
only a small number of predominant lower modes can ach
accurate description of the original process; however, at a
frequency range, higher modes are required to accurately de
the process. This tends to defeat the purpose of the reduced

n square pressures:~a! Based on the covariance matrix; and~b! based o

r spectral densities of local and global loads:~a! Based on the covarian
~c! based on the cross power spectral density~XPSD! matrix ~local

!

e mea
powe
adF!;

ndP76



Fig. 7. Influence of truncating higher wind loading modes on the cross power spectral density~XPSDs! betweenP1 andP76 and betweenP50 and
P76: ~a! Based on the covariance matrix~XPSD betweenP1 andP76!; ~b! based on the covariance matrix~XPSD betweenP50 andP76!; ~c! based
on the XPSD matrix~XPSD betweenP1 andP76!; and ~d! based on the XPSD matrix~XPSD betweenP50 andP76!
:
Fig. 8. Time history simulations of the local and global loads in terms of components associated with each of lower five loading modes~a! Local
load, P76; and ~b! generalized modal force in first mode,F
JOURNAL OF ENGINEERING MECHANICS © ASCE / APRIL 2005 / 335
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representation using the POD technique. The fluctuating
velocities and wind loads become statistically less coherent
higher-frequency range. In general, a random field with w
coherence requires a relatively large number of modes in th
construction of original field. Therefore, the POD representa
is numerically advantageous particularly for well-correlated
dom fields, such as the pressure fields on low-rise buildings
roofs and side faces of tall buildings. Its effectiveness in mode
poorly correlated random field is rather limited, particularly,
representing high-frequency fluctuations that correspond to
small size of turbulence.

Contribution of Wind Loading Modes to Response

Table 3 presents the contributions of wind loading modes b
on the covariance matrix to the background response compo
i.e., the displacement at the building top,Yb, base bending mo
ment response,Mb, and base shear response,Qb. The first wind
loading mode containing only 39% total energy of the load
process contributed about 93, 99, and 96%~i.e., c1

2V1/Sn=1
76 cn

2Vn!
to the mean square displacement, base moment, and base
respectively. The large contribution of the first wind loading m
is not only attributed to its large eigenvalue, but also due t
larger contribution coefficientc1, which is the projection of th
wind loading mode shape on the influence function. A lower v
of this coefficient implies approximate orthogonality betw
these spatial functions. From the wind loading mode shape
the influence functions of responses, it can be readily ascert

Table 3. Mean Square Background Response in Terms of the Con

Mode
number Vn s3104d

sYb

2 s3
sm

1 9.2835 9.

2 3.4946 0.

3 1.9977 0.

4 1.3240 0.

5 0.9546 0.

Sn=1
76 23.8299 10

Table 4. Mean Square Resonant Modal Response in Terms of the

Mode
number Lnsf jd s3104d x jn

2 sf jd

First structural modal response

1 2.0777 0.8380

2 1.7423 0.0323

3 1.5021 0.0816

4 1.2865 0.0001

5 1.1086 0.0167

Sn=1
76 19.2264

Second structural modal response

1 0.0457 0.2691

2 0.0415 0.0851

3 0.0395 0.0025

4 0.0378 0.0009

5 0.0364 0.0068

Sn=1
76 1.4230
336 / JOURNAL OF ENGINEERING MECHANICS © ASCE / APRIL 2005
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r,

that the higher modes with higher wave numbers in space
tribute less to the global response. The structure in the loa
response chain participates as a low-pass filter such that th
bal response results only from the external load with lower w
numbers in space. For local response components, the re
contribution of the first loading mode decreases, and consequ
additional loading modes are required for accurate response
mation.

Table 4 shows the contribution of wind loading modes b
on the XPSD matrix to the resonant response in the first
second structural modes, i.e., displacement at the top,Yjr , base
bending moment,Mjr , and base shear,Qjr s j =1,2d. As mentioned
previously, the contribution of each wind loading mode dep
on the eigenvalue and the projection of wind loading mode s
on the structural mode shape. The loading modes which de
on the spatial variation of the fluctuating wind pressure field
not necessarily ensure orthogonality to the structural modes
acterized by the mass and stiffness distributions of the stru
In this specific example, the mean square resonant respo
dominated by the response in the first structural mode~more than
97%!, which is contributed mainly by the first loading mo
~about 91%!. However, not only the first wind loading mode,
the second and tenth wind loading modes also have no
contributions of about 11% to the response in the second m
The ratios between the mean square background and re
response components, i.e., tip displacement, base momen
base shear, are 0.33, 0.36, and 0.47, respectively.

n of Each Wind Loading Mode

sMb

2 s31011d
fsN md2g

sQb

2 s3106d
sN2d

2.1724 6.1072

0.0248 0.1414

0.0015 0.0663

0.0013 0.0120

0.0000 0.0059

2.2006 6.3354

ibution of each Wind Loading Mode

sYjr

2 s310−4d
sm2d

sMjr

2 s31011d
fsN md2g

sQjr

2 s3106d
sN2d

44.2790 8.6465 19.0130

1.3994 0.2733 0.6009

3.0009 0.5860 1.2886

0.0030 0.0006 0.0013

0.4451 0.0869 0.1911

49.3416 9.6351 21.1869

0.0028 0.0109 0.2158

0.0008 0.0031 0.0614

0.0000 0.0001 0.0017

0.0000 0.0000 0.0006

0.0001 0.0002 0.0042

0.0071 0.0278 0.5506
tributio

10−4d
2d

8340

6764

0141

0162

0010

.5457
Contr
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For the sake of comparison, the response analysis based
Cholesky decomposition of the loading process is also carrie
by usingRP=L RL R

T andSPsvd=L SsvdL S
*svd, whereL R andL Ssvd

are the lower/upper triangular matrices. Similar formulations l
ing the background response andL R, and the resonant respon
and L Ssvd, can be obtained by replacingFÎV with L R, and
replacingCsvdÎLsvd with L Ssvd.

Table 5. Coefficients of Autoregressive Models forP50 andP76

sl j
snd

First loading modesn=1d

P50 s j =50d P76 s j =

1 6.8508 1.34

2 −22.4968 −0.42

3 46.9683 0.21

4 −69.3838 −0.18

5 76.0056 0.08

6 −62.6049 −0.06

7 38.2751 0.04

8 −16.5912 −0.03

9 4.5880 −0.02

10 −0.6113 −0.01

s j
snd 0.0256 3.19

Fig. 9. Contribution of each wind loading mode to the m
square displacement at the building top~based on the Choles
decomposition!: ~a! Background component; and~b! resonan
component
JOU
e

Figs. 9~a and b! describe the contribution of each wind load
mode, based on the Cholesky decomposition, to the backg
and resonant~first structural modal response! components of th
displacement at the top of the building. Obviously, the Chol
decomposition requires many more loading modes for an acc
representation of the covariance and spectral matrices, an
attendant background and resonant responses. The POD, w
based on Schur decomposition, permits truncation of h
modes and it is the optimal orthogonal basis function for redu
order modeling of large-size random fields.

Second loading modesn=2d

P50 s j =50d P76 s j =76d

5.2783 1.8137

−14.1361 −1.2941

25.3332 0.7546

−33.7738 −0.4187

35.0880 0.2017

−28.8214 −0.1089

18.4921 0.0585

−8.8708 −0.0397

2.8709 0.0247

−0.4780 −0.0174

0.2456 2.0703

Fig. 10. Comparison of PSDs forP50 and P76 based on th
autoregressive models:~a! First loading mode; and~b! second
loading mode
76d
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State-Space Modeling of Wind Loads

Utilizing the XPSD matrix-based POD technique, the state-s
modeling of the multicorrelated loading process can be rea
by the state-space modeling of each subprocess associate
each loading mode independently. Table 5 summarizes the
ficients of the AR models with an order of 10 for wind loadsP50

andP76 associated with first and second loading modes. The
interval was chosen as 0.5 s. Figs. 10~a and b! compare the PSD
based on the AR models with the target functions. A samp
simulated time histories based on the first and second lo
modes, respectively, are plotted in Fig. 11~a!. The PSDs calcu
lated from the time histories are compared to the target func
in Fig. 11~b!. Results shown Figs. 10 and 11 demonstrate
effectiveness and accuracy of the AR model and simulatio
describing the loading process.

It is noted that the size of state-space representation o
process depends on the order of the AR model. This order m
reduced if the ARMA model is employed, as a process ma
described by an ARMA model with a lower order than the
model, however, evaluation of the ARMA model requires a m
sophisticated algorithm. It is also worth mentioning that di
application of a multivariate the AR or ARMA model scheme
further aid in reducing the size of the state-space represen
~Chen and Kareem 2001!. However, the POD technique-bas
framework provides not only a physically more meaningful
resentation, but it is also computationally more straightforwa

Concluding Remarks

The transformation of correlated vector-valued loading proce
uncorrelated or noncoherent subprocesses through the POD
nique, based on both the covariance or XPSD matrices, facil
data compression and reduced-order modeling of a large-siz

Fig. 11. Sample of simulated time histories ofP50 and P76: ~a! Sim
comparison of power spectral densities
dom loading field. This is achieved by truncating higher modes of

338 / JOURNAL OF ENGINEERING MECHANICS © ASCE / APRIL 2005
-

the random field without any significant loss of accuracy, whic
akin to the modal analysis in structural dynamics. In additio
the physical insight gained from the loading modes based on
spatial variations, the uncorrelated or noncoherent feature o
reduced-order loading representation aids in expediting th
sponse analysis. This is particularly significant for the predic
of correlated structural response components of large numb
DOF structures. Furthermore, the POD of the loading pro
renders a physically meaningful linkage between the wind l
ing and the attendant background and resonant responses o
tures.

An example of a tall building aided in demonstrating that
truncation of higher wind loading modes results in a notable
of information, particularly, at the higher-frequency range w
wind loads have a weak correlation. Since the local loads
their effects are very sensitive to the higher wind loading mo
a truncation of higher loading modes can notably affect the a
rate representation of these loads and their effects. In contra
higher wind loading modes have an insignificant contributio
the global loads and their effects due to lower values of eige
ues~low energy! associated with these and, more importantly,
to the nature of their spatial variation. In general, consideratio
only a small number of modes can adequately represent a
correlated random loading field, conversely, a weakly corre
loading field requires inclusion of a large number of mo
which may compromise the attractiveness of the computat
features of the POD technique.

The POD technique based on the XPSD matrix facilitate
simulation and state-space modeling of a correlated vector-v
random process. The state-space modeling of a large-size
field based on the factorization of the XPSD matrix and su
quent realization of the transfer function matrix has been not
be a challenging task. The POD-based technique presents
ficient tool for the state-space modeling of such processes/fi

d time histories ofP50; ~b! simulated time histories ofP76; and ~c!
ulate
A numerical example using the spatiotemporarily varying dy-
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