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Abstract: Multicorrelated stationary random processes/fields can be decomposed into a set of subprocesses by diagonalizing the
covariance or cross power spectral dengiPSD) matrices through the eigenvector/modal decomposition. This proper orthogonal
decompositionPOD) technique offers physically meaningful insight into the process as each eigenmode may be characterized on the
basis of its spatial distribution. It also facilitates characterization and compression of a large number of multicorrelated random processe
by ignoring some of the higher eigenmodes associated with smaller eigenvalues. In this paper, the theoretical background of the POl
technique based on the decomposition of the covariance and XPSD matrices is presented. A physically meaningful linkage between tt
wind loads and the attendant background and resonant response of structures in the POD framework is established. This helps in bet
understanding how structures respond to the spatiotemporally varying dynamic loads. Utilizing the POD-based modal representatior
schemes for simulation and state-space modeling of random fields are presented. Finally, the accuracy and effectiveness of the reduce
order modeling in representing local and global wind loads and their effects on a wind-excited building are investigated.
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Introduction The POD technique based on the covariance matrix has been
widely used in many fields, such as fluid mechanics, image pro-

Multicorrelated stationary random processes/fields, such as windc€Ssing, signal analysis, data compression, and others. Lumley
velocity and pressure fluctuations, on structures can be trans-(1970 and Armitt (1968 introduced this technique to address
formed into a set of subprocesses by diagonalizing their covari- tUrbulence and wind-related problems, respectively, and it was
ance or cross power spectral densi¥PSD) matrices through later u_se_d by many researchers in descnbmg pressure fluctuations
either the Choleskylower or upper triangularor Schur(eigen- on buildings and structures and a host of wind-related problems

vecto) decomposition. The eigenvector decomposition offers (e.9. Lee 1975, Kareem 1978; Kareem and Cermak 1984;

- - S - Holmes 1992; Davenport 1995; Kareem 1999; Tamura et al.
physically meaningful insight into the process as each eigenvector . ' ’ . ’ -
(eigenmode may be characterized on the basis of its spatial dis- 1999; Carassale et al. 2000n stochastic structural mechanics,

o ; - . the POD technique based on the covariance matrix has been uti-
tribution. It is also recognized that only a small number of eigen- . - . ) .
. . lized for the simulation of spatially varying correlated random
dominant h that . f the ei q e\/ariables(e.g., Yamazaki and Shinozuka 1998tochastic finite
ominant, such that one may 1gnore some ot the €igenmodes asg,qmant analysige.g., Ghanem and Spanos 19%nd stochastic
sociated with small eigenvalues in the description of a large-size dynamics(Vasta and Schueller 2000

random field. Accqrdingly, this__technique provides a unique_ tool The Cholesky decomposition of XPSD matrix has been widely
for data compression and facilitates a reduced-order modeling ofjjized in digital simulation of a vector-valued stationary random
large-size random fields. The eigenvector decomposition is theo'process(Shinozuka and Jan 19¥72i and Kareem(1989, 1993
retically based on the Karhunen—Loeve expansion, which is alsojntroduced the concept of stochastic decomposition of the XPSD
known as the proper orthogonal decompositi®#OD) (e.g., matrix for the simulation of stationary random processes, which
Loeve 1963. was further extended to the simulation of nonstationary processes
(Li and Kareem 1991, 1997Central to the stochastic decompo-
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can be found, for example, Li and Kare¢t993, 1995, Lin et al. It can be demonstrated that the mode functiods, (n

(1994, Xu et al. (1999, and Carassale et 2001). =1,2,... N), which optimize the projections &(t), E[|P'®,|?],
Response analysis and design of structural control involving a subject to the constrainb[®,=1, are defined as the solution to

feed-forward link with the modern system theory requires a state- the following eigenvalue problem:

space model of the loading, which is augmented to the structural

state-space model for integrated state-space modeling of the over- Rp®, = 0, P, 2

all system. The state-space modeling of multicorrelated wind where Rp=E[PP'|=covariance matrix of P(t); and

fluctuations was addressed in Gofimann and Wal883, Su- E[ ]=mathematical expectation. Since the covariance matrix is

hardjo et al(1992, Matsumoto et al(1996, and Kareen{1997). positive definite, the eigenvalues are all real and positive, and the
These applications were based on the factorization of the XPSDejgenvectors are all real.

matrix and subsequent realization of the transfer function matrix.
These operations were noted to be nontrivial for a large-size ran-
dom field which rendered the state-space modeling a challenging

The covariance matrix ai(t) and that betweeﬁn(t) andEm(t)
,m=1,2,... N) are given by

task. To address these issues, in Karé&f99, Benfratello and R,=®Rp® = Q =diad 01,0, ... Q] 3
Muscolino (1999, and Kareem and Mei{2000, frameworks

using the XPSD matrix-based POD were presented with an ap- Rpp =Q®.® 5, (4
proximation of the frequency dependent eigenvectors represented mm

by constant values at a fixed frequency. Chen and Kar@eai) where §,,=Kronecker delta. Thus, the POD representation de-
presented a framework based on a multivariate autoregressivecomposes the correlated vector-valued process into a set of sub-
(AR) model. processes which are uncorrelated at zero-time lag. Using this at-

The numerical advantage of the POD technique, akin to the tribute, the covariance matriRp is consequently expressed in
modal analysis in structural dynamics, relies on the reduced-orderterms of mode functions as
representation through truncation of the higher eigenmodes asso- N
ciated with small eigenvalues. This reduced-order representation, Rp=®Qd® = O.®®] (5)
of course, must warrant that the important characteristics of the
random field and related quantities remain unchanged, or the ) o
modification resulting from the approximate representation is ac- Which obviously captures the contribution of each mode to the
ceptable. Several studies on the covariance matrix-based porFovariance. Furthermore, the following relationship

n=1

technique have demonstrated that truncating higher wind loading N
modes helps to expedite computations of global wind loads and E[P"P]=E[a’a]= >, Q, (6)
their effects(e.g., Bienkiewicz et al. 1995; Holmes et al. 1997; n=1

Tamura et al. 1999; Chen and Kareem 2068wever, truncation

of higher modes may not work effectively in the case of local
response, which may lead to an underestimation of the local wind : . .
loads and their effectéRocha et al. 2000 Similar observation equal to the sum of the eigenvalues of the covariance matrix.

has been made regarding the XPSD matrix-based POD techniquem olétlsef?ilsi?s r\:zorghrgglen:tg%o? tohfattht:eraFr)ﬁ(I)Drr:eprl;:)GCSeeSnSta}?]Otne rlrsntsh?)f
(Chen and Kareem 2000 P P

In this paper, the theoretical framework of the reduced-order truncated expansion series. By ordering the eigenvalues in a de-

modeling of random vector-valued processes, using the pop Creasing order, the reduced-order representation in terms of first

technique based on both the covariance and XPSD matrices, is’\lR (Nr<N) orthogonal mode functions given by

indicates that the sum of the mean square values of the original
process remains unchanged in the POD representation, and it is

presented. A physically meaningful linkage between wind loads A Ng N
and the attendant background and resonant response of structures P(t) = E D a,(t) = E P,(t) )
in the POD framework is established. Utilizing the POD modal n=1 n=1

representation, schemes for simulation and state-space modeling:optimm representation &¥(t) when compared to representations

Qf random fields are presented. Finglly,_the accuracy and eﬁec'based on other orthogonal mode functions, which leads to a mini-
tiveness of the reduced-order modeling in representing local and,, ;\m error in the sum of the mean square values of the process
global wind loads and their effects on a wind-excited building are (Therrien 1992

investigated.
N
e=E[P-P)'(P-P]= X Q, ®)
Covariance Matrix-Based Proper Orthogonal M=Ne L
Decomposition In most situations, only a small number of eigenmodes asso-

. ) ciated with large eigenvalues are dominant. This attribute helps to
Let P()={P.(t),Py(t), ... ,Py()}' be a discrete zero-mean realize a reduced-order modeling of a process through the POD
vector-valued stationary random process, which can be expandedepresentation in which higher eigenmodes associated with small

in terms of a set of normalized orthogonal mode functidnss eigenvalues may be truncated.
N N o
P(t) =da(t) = 2, ®,a,(t) = 2, P,(t 1 . .
® ® Zl (V) n% ) @ Cross Power Spectral Density Matrix-Based Proper

) Orthogonal Decomposition
where ®=[®;,®,, ... ®y]; ®'®=I; a(t)=P'P(t)=expansion

seriesP,(t) =®,a,(t) =nth subprocesd;=unity matrix; and super- Like the POD based on the covariance matrix, a vector-valued
script T denotes the matrix transpose operator. random process can also be decomposed based on its XPSD
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matrix. The Fourier transform of the proceBg&), P(w), can be lated at zero-time lag. The two POD techniques can be related by

decomposed in terms of orthogonal mode functibtw) as using the relationship between the covariance and XPSD matrices

P(0) = W(0)b(w) = 2 W(0)by(w) = X Pyw) (9 * )

n=1 n=1 PQPT= ZJ V(w)A(w)¥ (0)dw (15

where  W(0)=[W1(0), Wyw), ... W) ¥ (0)¥(w)=; °
b(w)=¥"(w)P(w)=Fourier transform of the expansion series It is noted that while the double-sided XPSD defined in the
b(t); Pp(w)="(w)b,(w)=Fourier transform of theith subpro- circular frequencyw domain, Sp(w), is employed in this paper,
cessP,(t); and the asterisk denotes the complex conjugate andwhen the one-sided XPSD defined in the natural frequeincy
transpose operator. =w/(2w) domain,S(f) =4wSp(w), is utilized, the corresponding

The mode functions¥,(w) (n=1,2,... N), that optimize the eigenvalues and eigenvectors are givenAyf)=4wA(w) and
projections ofP(w), E[|P"(w)¥,(»)|?], subject to the constraint @' (f)=®(w).
‘I’;(w)‘I'n(w)Zl, are defined as the solution to the following ei-
genvalue problem

Sp(@)Wh(w) = Ap(w)Wh(w) (10

whereSy(w)=double-sided XPSD matrix d#(t). Since the XPSD
matrix is a Hermitian matrix, the eigenvalues are all real and Consider anN degree-of-freedon{DOF) structure described in

Proper Orthogonal Decomposition-Based Dynamic
Response Analyses

positive, but the eigenvectors are generally complex. terms of its firstq modal coordinateX(t) under external loading
The XPSD matrices of expansion serl&$) and the subpro- P(t). Based on random vibration theory, the XPSD matrices of
cessed,(t) andP,(t) are given by X(t) and relevant responsé(t) =GX(t) are given by
Sp(@) = W' () Sp(w) W(w) = A(w) Sx(®) = H(w)O"Sp(w)OH (w) (16)
=diad A1(w) Ay(w) ... Ay(w)] (11
o) A § Sy(w) = GSy(w)GT (17)
Spnpm(w) = A(0) W (0) W, (0)3nm (12 whereH(w)=qX q transfer matrix in terms of the modal coordi-

nates; ®=NXq structural mode shape matrix;G
:AMG)diag[ij]:MxN participation coefficient matrix of
structural modes to the respon¥dt); A=theM X N influence
matrix; M =theNXN mass matrix in physical coordinates;
=2wf;=]th structural modal frequency.

In conventional dynamic response analysis, Ef6) and(17)
are directly utilized which involves a complete quadratic combi-
nation of the multimodal coupled responses. The computational

Eqg. (12) indicates that any two element processes from the
same subprocedd,(t), i.e., Pjy(t) and Py(t) (j #k), are statisti-
cally fully coherent, while any two element processes from dif-
ferent subprocesseB(t) and P,(t) (m#n), i.e., Pjy(t) and
Pn(t), are noncoherer(Li and Kareem 1996

Accordingly, the XPSD matrix oP(t) is expressed in terms of
mode functions as

N effort significantly escalates with increasing modes and the num-
Sp(@) = W(w)A (@)W (0) = D) Ay(@) W (0)Wh(w) (13) ber of correlated response components of interest. The computa-
n=1 tional effort could be drastically reduced by invoking the POD
that obviously captures the contribution of each mode to the "€Presentation of the Io_ad_lng_process. .
XPSD r\rl1latlrlixy Pt out ApproximatingSp(w) in its first Ng (Ng<<N) eigenmodes, Egs.
Similar to the covariance matrix-based POD, the reduced- (16) and(17) become
order representation of the process in terms of the KiStNg Ng
<N) modes of the XPSD matrix associated with large eigenval- Sy(w) = X, Ep(w)Eq(w) (18
ues given by n=1
Ng
PO =3 Py(t) (14 S
il Sy(0) = 2 Fy(0)F () (19
n=1
=optimal representation & (t) when compared to representations
based on other orthogonal functions, which results in a minimum E () = H(0)O™W () VA (w) (20)
error in the sum of the XPSD at given frequencies, i.e.,
ELP (@)P(w)] Fa(@) = GEq(®) (21

It is noted that a fully coherent vector-valued process, such as
ocean wave-particle kinematics with a given wave-surface profile, ~ Egs. (18—21) facilitate the response analysis which can be
only has one eigenvalue and eigenmode. When the eigenmode isummarized in the following procedures. First, represent the ex-
frequency independent, the fully coherent vector-valued processternal loading in terms of the POD based on the XPSD matrix
can be described by a scalar process. On the other hand, thevith higher loading modes truncateB, ()= () \yA,(®w) (n
reduced-order modeling of a noncoherent process may not be=1,2,... Ng. Second, for each loading mode, calculate the cor-
readily realized. responding responseg,(w) and F,(w) under the excitation

It should be noted that the XPSD matrix-based POD results in P,(w). Finally, calculate the total response by integrating the
subprocesses that are noncoherent and thus uncorrelated at amyomponents associated with each loading mode. In this proce-
time lag, i.e.,anpm(t):O (n#m). However, the covariance dure, although the POD requires additional computation, the trun-
matrix-based POD results in subprocesses that are only uncorreeation of higher loading modes and the absence of coherence
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among the response components associated with each loadingf the influence function fojth response component on thth
mode drastically reduce the computational effort needed to ana-wind loading mode.
lyze a large number of correlated structural response components. Eg. (28) indicates that the mean square value of the back-
For the seismic response of structures excited by one or aground response can be expressed in terms of the sum of compo-
small number of ground motion components, the external loading nents associated with each wind loading mode, which can be
can be expressed &§t) =RPy(t), whereR=N X N, participation calculated individually. Clearly, the framework involving the co-
matrix; Po(t)=Ng X 1 external loading input; antl,=number of variance matrix-based POD provides a useful linkage between the
input (Ny<<N). The decomposition of loadinB(t) significantly wind loading mode and the background response.
reduces the computational effort even without the truncation of ~ The resonant component of the response is generally calcu-
higher loading modes. lated using a modal analysis technique. Using the aforementioned
When equations of structural motions in terms of modal coor- procedure, the combination of the modal analysis and the POD
dinates are uncoupled, and the correlation among the modal retepresentation of the loading offers a physically meaningful

sponse components is negligible, one has and/or computationally efficient framework.
H(w) = diagH;(w)] (22
. Simulation and State-Space Modeling of Random
Sx(w) = diad S (w)] 23 Pprocesses P ’
Hj(0) = m[(0f - 0 + 2igwo]™" (24 According to the XPSD matrix-based POD technique, a multicor-
related random vector-valued proce®d) can be simulated by
Ns generating reduced order vector-valued subproceBsés (n
S(j(m):|Hj(w)|2®jTSp(m)®jzEl|Hj(m)|2Xj2n(m)An(w) =1,2,...Ny). Each subprocess can be simulated individually
n=

using spectral representation, or parametric time series model or
(25) other techniquege.g., Li and Kareem 1993; Shinozuka and Deo-
. . . . datis 1996; Spanos and Zeldin 1998; Mann 1998
where m, ;and €=ith generalized mass and damping ratio; and |t js important to note that the covariance matrix-based POD
Xin(©) =@ W (w)=projection of thejth structural mod®; on the technique does not lend itself as an efficient simulation tool as the
jth loading modeW (), which offers a measure of the relative  gecomposed subprocesses are only uncorrelated at zero time lag
S|gn|f|can_ce flthmth loading mode to thgth structural modal 5 eliminating the advantage of simulating each process inde-
responsei=y-1. pendently as in the case of XPSD-based POD technique. None-
In cases of lightly damped structures where the forcing func- theless, this technique can be effectively utilized for the simula-
tion can be approximated by a white noise with a constant spec-tion of spatially varying random variable®.g., Yamazaki and
tral density at the structural natural frequency, the mean squareshinozuka 1990; Ghanem and Spanos 199hd compression
modal response can be expressedeag., Kareem 1999; Caras-  and reconstruction of existing experimental data such as wind

sale et al. 2001 pressures on building surfacésg., Tamura et al. 1999
0 Ng 2
N = TXjn(@)Ay(0) )
U>2<j =2 f ij(‘ﬂ)d‘” = E ; 3J _ nz : (26) Spectral Representation Approach
0 n=1 wjEm;

In the case where the correlation between modal respons The vector-valued subproceBy(t) with the XPSD matrix given

components is negligible, the square root of the sum of squares
combination approach can be employed for calculating the overall
response. Accordingly, the procedur.e mvolymg the POD of the Sp p () = A(@) W ()W (0) (29)
loading process does not necessarily provide a measurable nu- nn
merical advantage. However, it may offer a clearer picture of how
structures respond to spatiotemporally varying external excita- can be described as
tions.
The wind-excited structural response is conventionally sepa-
rated into a backgroungfjuasi-statit and a resonant component * —_—
for computational efficiency and physical significance based on Pa(t) = f W (0)VAy(0)€°'dBy(w) (30)
the spectral feature of wind loads and associated structural re- -
sponse. The background component of respofigg Y(t), can

be quantified through quasi-static analysis as where B,(w)=zero-mean Gaussian complex process with or-
thogonal increments, i.e.,
Y(t) =AP(D) 27) g
and its covariance matriJRYb, is given as follows using the trun- .
cated POD oRp E[dB,(w)]=0; dBy(»)=dB,(-w);
Nr
Ry, =ARpAT= > Q.c.c 28 R
o 21 e 29 E[dB () dBy(09)]= 8, ,, Sy (3D
whereA=[A;], A;=ith component ofY, Y;, under unitjth com- Eqg. (30) can be recast in the following discrete form for an
ponent of loadP, Pj=1; ¢,=A®,=[C;Cp. . Cunl®; Cj,=projection element process as
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Ny-1
Pjn(t): E \I,jn(wnl)\An(mnl)eimnltABnl

n=-Np

Ny-1

Y FNPREYVUR
= 2 V2 Wjn(wn) [ An(wn)AwAy ,

n,=0

Xcoi‘”nlt + ejn("‘)nl) + ﬁnln) (32

where Pj,(t) (j=1,2,... N)=jth component ofP,(t); \Ifjn(wnl)
=[Wjp(wp)|exdifj (o, )]=jth  element  of W.(w,); AB,,
:1/\52\5AmAn1ne‘ﬁn1n; Ann and ¥, ,=independent random vari-
ables following a Rayleigh distribution with meanr/2 and vari-
ance (2-mw/2), and uniform distribution ovef0,2w], respec-
tively; Aw=frequency increment with a Nyquistcutoff)
frequencyN;Aw; 0, =nAw; 2N; =total discrete number of fre-
guencies in the intervd-N;Aw,N;Aw].

An alternative formulation for simulation d?j,(t) can be ex-
pressed

Np-1
Pjn(t) = 2 2|\Ifjn(wn1)| \/An(mnl)Aw COS{wnlt + ejn(mnl) + ﬁnln)
n;=0

(33

In the case wheralr(») can be approximated as frequency
independent real-valued vector, the simulationRyft) can be

reduced to simulation of a scalar process with a power spectrum

of Ap(w).

A similar formulation employing the Cholesky decomposition
can be obtained by replacin®(w)\A(w) with Lgw), where
L {(w)=lower/upper triangular matrix given by Sp(w)
=Ls(m)L*S(m), which has been widely utilized in Monte Carlo
simulation(e.g., Shinozuka and Jan 1972

For an example, a two-dimensional univariate zero-mean ho-
mogeneous continuous random fidlgk,t) in space s <x<o
and time < <t< is considered. The autocorrelation function
R«(&,7)=E[f(x,t)f(x+&,t+7)] and power spectral densitiPSD
function S(x,w) are related by

1 (" _
Sulk,0) = (2 f B Rq(€,71)e "¢ didr (34)
th(g,'r):f Sk, )€* I dkdw (35
and the XPSD betweef(x,t) and f(x+§,t) is given by
S(g,(l)) = f S(t(K!w)eiKgdK (36)

In many practical situations, stationary random fields have

Np-1

S(Ew)= X Selin, ) fAk

ny,=-Ny

(39)

wherek,, =nAk; w, =NjAw.

It is obvious thatR(&,7) andS(¢,») given by Eqs(37) and
(38) will be sufficiently accurate representations of these func-
tions given by Eqs(35) and(36), at the region £/2<§¢<L/2
and -T/2<&<T/2 (whereL=2n/Ak, T=2n/Aw), and the re-
gion -L/2<¢<L/2 and w,<w<w,, respectively. However,
these functions become periodic functions alongxtamdt axes
with periodsL and T for Ry(&,7), and along thex axis with a
period L for S(§,w). Accordingly, the random field(x,t) also
becomes a periodic random field along tkeand t axes with
periods L and T, respectively, asE[(f(x,t)—f(x+L,t+T))?]
:[Zth(0,0)—2th(L,T)]:0.

Consider the POD formulation of the periodic random field
f(x,t) expressed by

L
f S(Xz = Xq,0) Pp(Xp, 0)dX= A (@) Wy(Xg, ) (39
0

and utilizing the periodicity ofS(§,w), it can be readily illus-
trated that the POD basis functidr,(x,w) (n=0,%1,+2,..)is
identical to the following Fourier basis function

1.
W (X,0) = =€ (40
vL
and the associated eigenvalue becomes the PSD as
L/2 )
An(w) = S(€,w)€"rtdE = 2mSy(- Kkp,®) = 2T Sk, )
-L/2
(41)

A similar discussion concerning the POD of correlation function
of a scalar discrete random process was presented in Therrien
(1992.

Accordingly, f(x,t) can be represented as follows similar to
Eq. (34

No-1 N;-1
_ e A A
f) = 2 2 2ySlKn,0n ) AkAw{Codwn t+Kkn X+ )
ny=0 ny=0
+ cogon,t = kp X+ I )} (42

whered;)) andd,”, =two different sets of random phase angles
with uniform distrllbutions ovef0,2w]. It should be noted that
the above formulation has been derived in Shinozuka and Deoda-
tis (1996 utilizing an alternative approach.

It should be emphasized that the preceding representation of
f(x,t) is realized by discrete representation of band limited

Si(k,w) in the region v, <k <k, and -w, <o < w,, which cor-

PSD functions that are band limited. In these cases, it is assumedesponds to the representation Rf(&,t) in the region +/2

that S(k,w) is zero outside of the regionkg<k <k, and -w,
<w=uo, [wherek, and w,=Nyquist (cutoff) wave number and
frequency, respectivelyand it is discrete within this region with
2N, and 2N; uniform incrementsAk=«,/N, and Aw=w,/N;
alongk andw axes, respectively. The corresponding correlation
and XPSD functions become

Np-1  Np-1

R(Em= 2 2 Salknywn )@ n?Akdw  (37)

ny=—Ny ny=-Np

<¢(<L/2 and T/2<71<T/2. In cases where the correlation
function decays with increase in separation and approaches zero
when the separation becomes sufficiently large, the random field
given by Eq.(42) will serve as a sufficiently accurate representa-
tion of the original random field wheAk andAw are sufficiently
small, i.e.,.L andT are sufficiently large.

The results for the periodic random field has further implica-
tions for general random field that are not periodic or almost
periodic. Consider the POD formulation of the general random
field f(x,t) defined by
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Lo 4
f SH(Xz = Xq,0) P (Xp, 0)dX= Ay(@) W(Xg, ) (43 ///’;;T’#
0 3
As discussed in Therriefl992 in the cases of scalar random £ n=3
. N ) 32/ ...... i
processes, wheh, is sufficiently large that the correlation func- = I
tion becomes approximately zero at the ends of the interval, the / n=2
solution of the above POD problem will be very close to the POD 1 /ﬁ"d“——_
for the periodic random field with a period olLg along thex / : o
axis. Accordingly, the Fourier basis functions become a good ap- % 10 20 30
proximation to the optimal basis functions of the POD described a=co L/(2z U)
by Eq. (43). Therefore, for homogeneous random fields the POD (@ Hn(w) vs. o
does not necessarily offer advantages over the classical Fourier 9
function decomposition. However, the POD provide an optimal |
representation of general inhomogeneous random fields. .08
For the case of continuous homogeneous wind velocity field %06
defined in the interval & x<L and - <t=<o with double-sided 2 '
XPSD function as 304
<: n=1, 2,53, 4
St = Swend - )y > . -
U 0 ¥ ;
) 0 10 20 30
where c=decay factor; andJ=mean wind speed, the POD for- o=co L(2n U)
mulation is defined in the following fo¥ ,(x,w) and A () (n (o) An(w) vs. o

=1,2,..)
Fig. 1. Eigenvalues of a homogeneous random field

L
f S(XZ - lew)<pn(x2:w)dx2 = An(w)q,n(xlyw) (45)
0 cally more meaningful and computationally more efficient
which can be expressed in terms of following explicit formula- scheme for simulation. It is also worth mentioning that the simu-

tions (van Trees 1968; Carassale and Solari 2002 lation of a homogeneous field can be directly carried out using

Eqg. (42), which is not constrained by the limitation that wind

W (x) = £l sinl BoX) 4 B ood PoX uctuations must be simulated at uniformly distributed gri

_ a 2 X X fl i be simulated iformly distributed grid
" \;’M§+ o?+20 VL L a L points, a condition necessary for the scheme introduced in Cao et

(46) al. (2000.
4ol Syw) Parametric Time Series Modeling
A = 47

() p2+ o @) Regardless of the straightforward nature of the spectral represen-

tation technique, concerns remain regarding the limitations
imposed on the large number of spatially distributed simulations
and the length of each time series dictated by the computer
P a memory. Although alternative procedures to overcome this
tan(u,/2) + o tan(py/2) - — | =0 (48) limitation are possible, these tend to compromise the attractive-
Hn ness of the procedure, i.e., its inherent straightforward ndttre
It is obvious that the eigenmodes represent sinusoidal varia-and Kareem 1993; Spanos and Zeldin 1998&ilization of para-

wherea=colL/(2wU)=cfL/U; andw,=nth root of the transcen-
dent equation:

tions. As indicated in Fig. &, w, approachesnm with an metric time series models, such as an AR model or AR moving
increase in frequency in which coherence decays faster with anaverage(ARMA) model (e.g., Li and Kareem 199ffer other
increase in separation. As indicated by the valuepgf the attractive venues for simulation. Herein, a framework based on

eigenmodes show frequency dependent features, particularlythe AR model is utilized for the sake of illustration. The subpro-
in the low-frequency range. As indicated in Figb), the first cessesP,(t) (n=1,2,... Ny, are modeled as the multiple output
eigenvalue is dominant at the lower-frequency range, whereas allof

eigenvalues are nearly of the same level in the higher-frequencya system with a zero-mean unit variance Gaussian white-noise
range, indicating that all the wind modes carry the same level processw,(t) as an input. For each element B(t), Pj,(t)
energy. Clearly, the computational efficiency of Monte Carlo (j=1,2,...N), the following AR model is established
simulation based on the POD technique can be enhanced by dropindividually based on its double-sided power spectrum
ping some of the components over desired ranges of frequencyS, (w)=|¥,(w)[*An(w) as

without loss of accuracy. " "

An algorithm for generation of homogeneous wind fluctua- _ n n
tions at uniformly distributed points along an axis in space for Pin(k) _gl afj )Pi"(k_ D +(’J( iy (K)
application to the long span bridges was proposed in Cao et al.

(2000. An explicit formulation based on lower triangular matrix ~ where Pj,(k)=Pj,(kAt); At=time interval; m=order of the AR

of the Cholesky decomposition of the XPSD matrix with given model, anda}j”) anda}"):coefficients of the AR model.

exponential coherence function was employed. In this context, it ~ The parametric time series model approach also facilitates the
is important to point out that the POD technique offers a physi- state-space modeling of the vector-valued random process. The

(49
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100 Accordingly, the state-space model Bf(t) can be obtained by
1 stacking these state-space models as
50 A
. | [Z - mode? XMW (k+ 1) = APXD (k) + BMw,(k) (53)
-0.5 0 0.5

Pa(k) = CWX M (K) + DMw, (K 54
Fig. 2. Structural mode shapes oK) ) K 64

where

A® =diadA"]; B =[BT, ... BT

following controllable canonical format of a discrete-time state- c = diaqc}”’]; D™ =[D{, ..., DT (55)
space model can be obtained for representing the AR model .
(Ogata 199% and the overall state-space model ft) is subsequently ex-
pressed as
() — Ay () ) X(k+1)=AX (k) +BW(K) (56)
XV (k+1) = A"XV (k) + B wy(K) (50)
P(k) = CX(k) + DW (k) (57
Pin(K) = C{"X{"(K) + D{"wy(K) (51  where
where A=diadA™]; B=diadB™]; Cc=[CY,...,cN];
x10°
10
8
6
d:
4
2
0
0 20 40 60 80
() Wind loading mode number

0 20 40 60 80 0 20 40 60 80
© Wind loading mode number (d) Wind loading mode number

Fig. 3. Eigenvalues of wind loading proce<s) Based on the covariance matrik) based on the cross power spectral density SD) matrix

(at different frequencigs (c) based on the XPSD matritat the first structural frequengyand (d) based on the XPSD matritat the second
structural frequengy
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D=[D",... DN W =[wy, ... w]" (59 Example

In the case of wind velocity field, the XPSD matrix is ofttn The alongwind loading and associated response of a 76-story
taken as real valued by neglecting the phase lag, which results in3pe m tall building with 76 DOFs is used for demonstrating the
real-valued wind field eigenmodes. Furthermore, in certain cases gpplication of POD-based analysis schem@ken and Kareem
the eigenmodes change very slowly with respect to the frequency,2000. The first and second natural frequencies of the building are
and thus may be approximated as frequency independent by takg 160 and 0.765 Hz, respectively. The modal damping ratio for
ing constant values at a fixed frequency, iW,(w)=W(wo) each mode is assumed to be 0.01. The first two structural mode
(Benfratello and Muscolino 1999; Kareem and Mei 20000n-  shapes are shown in Fig. 2. The mean wind velocity at the center
sequently, the state-space model Ry(t) can then be simplified  of the ith story with heightz, above the ground is given by the
by first establishing the state-space model for a scalar processyower-lawU,=U,4(z/10)%33 whereU,, is the mean wind veloc-
Aq(t) with double-sided power spectruiy,(w) as ity at 10 m above the ground and for example is taken as 15 m/s.

The one-sided cross-spectrum of the alongwind fluctuatigns

Xg(k+ 1) = AGYXGV(K) + BE W (K) (59 andy; (i,j=1,2,...,76 is given by
An(K) = CIX D (K) + DOw, (k) (60) Su(h= 4kyU2, )(22 _ exp(‘ kflz - ZJ-> 62)
and the state-space model fBy(t) can be then derived with - fo@+Xx9 Uso

coefficient matrices as whereX=1,2001/ U, o, ky=0.03 anck,=7.7.

The external loading vector B(t)={P,(t),P,(1), ... Pt}
(=M. (n) = g(M. n) = (). (n — ()

A=Ag" B =B CM=W(wy)Co’; D"=W(wo)Dy where P;(t) is the alongwind fluctuating force at théh story,

(62) which based on the quasi-steady and strip theories is modeled by
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Table 1. Influence of Truncation of Higher Loading Modes on the Mean Square Loads and Their Bffiec®ovariance Matrix-Based Proper Orthogonal
Decomposition

Ratio of the truncated value to the total value

Mode number

included P, Pso Ps F M Q

1-1 0.0835 0.5143 0.2761 0.9449 0.9872 0.9640
1-2 0.1753 0.5164 0.4196 0.9976 0.9984 0.9863
1-5 0.4797 0.7398 0.6070 0.9997 0.9997 0.9996
1-10 0.8529 0.8367 0.7153 0.9999 0.9999 0.9998
1-20 0.9778 0.9083 0.7922 0.9999 1.0000 0.9999
1-40 0.9964 0.9625 0.8226 0.9999 1.0000 1.0000
1-76 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Total 5.082&+03 3.7638+03 1.640@+03 8.304@+04 2.200€e+11 6.3354+06

Pi(t) = pACU; (1) (63 In order to investigate the influence of higher-mode truncation

on the global and local loads, the global wind loads, i.e., the
generallzed load in the first structural moée base bending mo-

ment, M and base sheaQ and the local wind loads, i.e., the

loads acting on the first, 50th and 76th storieg, Ps,, and Py,
Proper Orthogonal Decomposition Representation are considered. The global wind loads are described by the inte-
of Wind Loads gral of the wind load distribution weighted by the mode shape or

Fig. 3@ shows the eigenvalues of the covariance matrix of the global influence function. However, the local loads depend on the
loading vector P(t). The covariance matrix was calculated local wind load distribution at specific locations. Their mean
through the integration of the XPSD matrix over a frequency square valuegconvariancesand PSDs are calculated based on
range from 0.002 Hz to 1 Hz with a frequency increment of the truncated process, which are then compared to those from the
0.002 Hz. The first wind loading mode with dominant eigenvalue Untruncated cases. The POD representations are based on both the
carries about 39%.e., Q,/37¢,Q),) total energy of the loading povariance and XPSD matrices. The number of loading modes
processi.e., E[PTP]=375,0,). A plot of the first three wind load- ~ ncluded are 1, 2, 5, 10, 20, 40, and 76.

ing mode shapes is shown in Figagtin terms of the distribution Tables 1 apd 2 present the mean square values of the Ioc;a] and
of load/unit area, i.ep,(t)=P;(t)/ A, which indicates almost sinu- global loads in terms of th(_e ratios of the_se values to the original
soidal variations. Figs.(8—d) show the eigenvalues of the XPSD untruncated values. The first wind loading mode based on the
matrix at varying frequencies, and at the first and second struc-Covariance matrix carries about 8%, 51%, and 28% of the total

tural mode frequencies, respectively. It is noted that at the lower- €N€rgy of the local loading?,, Psq, andPy, respectively. On the
frequency range the first eigenvalue is dominant, whereas at the®tner hand, it carries about 95%, 99%, and 96% of the total en-
higher-frequency range all the eigenvalues are of the same orderergy of the global loadsF, M, and Q, respectively. A similar
indicating that all the loading modes carry the same level of en- contribution of wind load modes based on the XPSD matrix is
ergy. The first wind loading mode carries about 11% total summarized in Table 2. The mean square pressure distributions
energy of the process at the first structural mode frequency, andalong the building height corresponding to different loading
about 3% at the second structural mode frequency. The first windmodes included are plotted in Figgasnd b. The exact pressure
loading mode shapes at different frequencies, and the first threedistribution contributed by all loading modes for this specific
wind loading mode shape at first and second structural modalexample is given by (pCpU;19)%(z/10)%%% ﬁl, where 02
frequencies, are plotted in Figs(b4-d), which clearly reveal their fOSJ (f)df Figs. 6 and 7 show the influence of the truncatlng
frequency dependence. higher Ioadlng modes on the PSDs Bfg and F, and on the

wherep=air density;Cp=drag coefficient assumed to be 1.2; and
A;=tributary area for théth story.

Table 2. Influence of Truncation of Higher Loading Modes on the Mean Square Loads and Their Bffiec@oss Power Spectral Density Matrix-Based
Proper Orthogonal Decompositipn

Ratio of the truncated value to the total value

Mode number

included Py Pso P F M Q

1-1 0.1031 0.5026 0.2840 0.9499 0.9761 0.9309
1-2 0.2087 0.5593 0.4303 0.9906 0.9883 0.9628
1-5 0.4719 0.7457 0.6180 0.9990 0.9985 0.9934
1-10 0.7630 0.8409 0.7259 0.9997 0.9996 0.9980
1-20 0.9855 0.9131 0.8016 0.9999 0.9999 0.9994
1-40 0.9976 0.9656 0.8386 0.9999 0.9999 0.9999
1-76 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Total 5.082@+03 3.7638+03 1.640@+03 8.304@+04 2.200e+11 6.3354+06
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Fig. 5. Influence of truncating higher wind loading modes on the mean square pregsiu@ased on the covariance matrix; atil based on
the cross power spectral density matrix

XPSDs betwee; andP,¢ and betweerPs, and P, A sample of contribution of higher loading modes to the global wind loading
simulated time histories d?;¢ andF, consisting of contributions  is insignificant due to their spatial variations with higher wave
of all loading modes and only each of the lower five loading numbers.

modes, is shown in Fig. 8. The spectral representation approach Based on the frequency dependent eigenvalues of XPSD
was employed for this simulation. Results clearly demonstrate matrix, it is noted that in the low-frequency range, inclusion of
that the truncation of higher modes results in a significant reduc- only a small number of predominant lower modes can achieve
tion in the local wind loads, particularly, at the higher-frequency accurate description of the original process; however, at a high-
range, whereas only a small number of loading modes can ap-frequency range, higher modes are required to accurately describe
proximate the global wind loads with reasonable accuracy. The the process. This tends to defeat the purpose of the reduced-order
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Table 3. Mean Square Background Response in Terms of the Contribution of Each Wind Loading Mode

Mode of (x107% o2, (X101 g, (X10P)
number Q, (X109 (m?) [(N m)?] (N?)

1 9.2835 9.8340 2.1724 6.1072
2 3.4946 0.6764 0.0248 0.1414
3 1.9977 0.0141 0.0015 0.0663
4 1.3240 0.0162 0.0013 0.0120
5 0.9546 0.0010 0.0000 0.0059
376, 23.8299 10.5457 2.2006 6.3354

representation using the POD technique. The fluctuating wind that the higher modes with higher wave numbers in space con-
velocities and wind loads become statistically less coherent at thetribute less to the global response. The structure in the loading
higher-frequency range. In general, a random field with weak response chain participates as a low-pass filter such that the glo-
coherence requires a relatively large number of modes in the re-pal response results only from the external load with lower wave

construction of original field. Therefore, the POD representation numbers in space. For local response components, the relative
is numerically advantageous particularly for well-correlated ran- contribution of the first loading mode decreases, and consequently
dom fields, such as the pressure fields on low-rise buildings andaqgitional loading modes are required for accurate response esti-
roofs and side faces of tall buildings. Its effectiveness in modeling mation.

poorly correlated random field is rather limited, particularly, for Table 4 shows the contribution of wind loading modes based
represgnting high-frequency fluctuations that correspond to the . ihe XPSD matrix to the resonant response in the first and
small size of turbulence. second structural modes, i.e., displacement at the tppbase
bending momenti;., and base shea®;, (j=1,2). As mentioned
Contribution of Wind Loading Modes to Response previously, the contribution of each wind loading mode depends
gon the eigenvalue and the projection of wind loading mode shape

Table 3 presents the contributions of wind loading modes base h | mode sh The loadi d hich d d
on the covariance matrix to the background response components(,)n the structural mode shape. The loading modes which depen

i.e., the displacement at the building tof, base bending mo- " the spatia_l variation of the fluc_tuating wind pressure field do
ment responseM,, and base shear respongk, The first wind not n_ecessarlly ensure orthog_onallty tc_) the st_ructural modes char-
loading mode containing only 39% total energy of the loading acterllzed by. t'he mass and stiffness distributions of the structure.
process contributed about 93, 99, and 96%., c2Q,/37%,¢20,) In thls specific example, th_e mean square resonant response is
to the mean square displacement, base moment, and base she&ominated by the response in the first structural mdere than
respectively. The large contribution of the first wind loading mode 97%9), which is contributed mainly by the first loading mode

is not only attributed to its large eigenvalue, but also due to its (@bout 91%. However, not only the first wind loading mode, but
larger contribution coefficient;, which is the projection of the  the second and tenth wind loading modes also have notable
wind loading mode shape on the influence function. A lower value contributions of about 11% to the response in the second mode.
of this coefficient implies approximate orthogonality between The ratios between the mean square background and resonant
these spatial functions. From the wind loading mode shapes andresponse components, i.e., tip displacement, base moment, and
the influence functions of responses, it can be readily ascertainedbase shear, are 0.33, 0.36, and 0.47, respectively.

Table 4. Mean Square Resonant Modal Response in Terms of the Contribution of each Wind Loading Mode

Mode oy (X109 oy, (X101 g, (X10°)
number Aq(f) (X109 X5(f) " (m?) [(Nm)?] "(N?)

First structural modal response

1 2.0777 0.8380 44.2790 8.6465 19.0130
2 1.7423 0.0323 1.3994 0.2733 0.6009
3 1.5021 0.0816 3.0009 0.5860 1.2886
4 1.2865 0.0001 0.0030 0.0006 0.0013
5 1.1086 0.0167 0.4451 0.0869 0.1911
378 19.2264 49.3416 9.6351 21.1869

Second structural modal response

1 0.0457 0.2691 0.0028 0.0109 0.2158
2 0.0415 0.0851 0.0008 0.0031 0.0614
3 0.0395 0.0025 0.0000 0.0001 0.0017
4 0.0378 0.0009 0.0000 0.0000 0.0006
5 0.0364 0.0068 0.0001 0.0002 0.0042
AN 1.4230 0.0071 0.0278 0.5506
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component Figs. 9a and b describe the contribution of each wind loading
mode, based on the Cholesky decomposition, to the background
and resonanffirst structural modal responseomponents of the

For the sake of comparison, the response analysis based on thgjsplacement at the top of the building. Obviously, the Cholesky
Cholesky decomposition of the loading process is also carried outdgecomposition requires many more loading modes for an accurate
by usingRp=L gL ; andSp(w) =L s(w)L {(w), wherel g andL g(w) representation of the covariance and spectral matrices, and the
are the lower/upper triangular matrices. Similar formulations link- attendant background and resonant responses. The POD, which is
ing the background response ahd, and the resonant response hased on Schur decomposition, permits truncation of higher

and Lgw), can be obtained by replacingyQ with Lg, and modes and it is the optimal orthogonal basis function for reduced-
replacingW (o)A (o) with L (). order modeling of large-size random fields.

Table 5. Coefficients of Autoregressive Models 8, and P¢

First loading moddgn=1) Second loading moden=2)

of Pso (j=50 Prs (j=76) Pso (j=50 Pss (j=76)

1 6.8508 1.3401 5.2783 1.8137
2 -22.4968 -0.4259 -14.1361 -1.2941
3 46.9683 0.2166 25.3332 0.7546
4 -69.3838 -0.1838 -33.7738 -0.4187
5 76.0056 0.0886 35.0880 0.2017
6 -62.6049 -0.0692 -28.8214 -0.1089
7 38.2751 0.0433 18.4921 0.0585
8 -16.5912 -0.0346 -8.8708 -0.0397
9 4.5880 -0.0232 2.8709 0.0247
10 -0.6113 -0.0195 -0.4780 -0.0174
Py 0.0256 3.1963 0.2456 2.0703
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State-Space Modeling of Wind Loads the random field without any significant loss of accuracy, which is
P, - . . akin to the modal analysis in structural dynamics. In addition to
Utilizing the XPSD matrix-based POD technique, the state SpaCethe physical insight gained from the loading modes based on their

modeling of the multicorrelated loading process can be realized - -
by the state-space modeling of each subprocess associated witgPatial variations, the uncorrelated or noncoherent feature of the
reduced-order loading representation aids in expediting the re-

each loading mode independently. Table 5 summarizes the coef- . I ; L o
ficients of the AR models with an order of 10 for wind loas, sponse analysis. This is particularly significant for the prediction
and P, associated with first and second loading modes. The time of correlated structural response components of Iargg number of
interval was chosen as 0.5 s. Figs(d@nd b compare the PSDs DOF structures_. Furthermpre, th_e POD of the Ioadmg_ process
based on the AR models with the target functions. A sample of rénders a physically meaningful linkage between the wind load-

simulated time histories based on the first and second loading'9 and the attendant background and resonant responses of struc-
modes, respectively, are plotted in Fig.(d1 The PSDs calcu-  Ures. S _
lated from the time histories are compared to the target functions AN €xample of a tall building aided in demonstrating that the
in Fig. 11(b). Results shown Figs. 10 and 11 demonstrate the fruncation of higher wind loading modes results in a notable loss
effectiveness and accuracy of the AR model and simulation in ©f information, particularly, at the higher-frequency range where
describing the loading process. wind loads have a weak correlation. Since the local loads and
It is noted that the size of state-space representation of thetheir effects are very sensitive to the higher wind loading modes,
process depends on the order of the AR model. This order may be truncation of higher loading modes can notably affect the accu-
reduced if the ARMA model is employed, as a process may be rate representation of these loads and their effects. In contrast, the
described by an ARMA model with a lower order than the AR higher wind loading modes have an insignificant contribution to
model, however, evaluation of the ARMA model requires a more the global loads and their effects due to lower values of eigenval-
sophisticated algorithm. It is also worth mentioning that direct ues(low energy associated with these and, more importantly, due
application of a multivariate the AR or ARMA model scheme can to the nature of their spatial variation. In general, consideration of
further aid in reducing the size of the state-space representatioronly a small number of modes can adequately represent a well-
(Chen and Kareem 20p1However, the POD technique-based correlated random loading field, conversely, a weakly correlated
framework provides not only a physically more meaningful rep- loading field requires inclusion of a large number of modes,
resentation, but it is also computationally more straightforward. which may compromise the attractiveness of the computational
features of the POD technique.
The POD technique based on the XPSD matrix facilitates the
Concluding Remarks simulation and state-space modeling of a correlated vector-valued
random process. The state-space modeling of a large-size wind
The transformation of correlated vector-valued loading process tofield based on the factorization of the XPSD matrix and subse-
uncorrelated or noncoherent subprocesses through the POD techguent realization of the transfer function matrix has been noted to
nique, based on both the covariance or XPSD matrices, facilitatesbe a challenging task. The POD-based technique presents an ef-
data compression and reduced-order modeling of a large-size ranficient tool for the state-space modeling of such processes/fields.
dom loading field. This is achieved by truncating higher modes of A numerical example using the spatiotemporarily varying dy-
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namic wind loading field on the example building demonstrated
the effectiveness and accuracy of the POD-based framework.
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