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Abstract: Two independently emerging time-frequency transformations in Civil Engineering, namely, the wavelet transform and em-
pirical mode decomposition with Hilbert transform (EMD+HT), are discussed in this study. Their application to a variety of nonstationary
and nonlinear signals has achieved mixed results, with some comparative studies casting significant doubt on the wavelet’s suitability for
such analyses. Therefore, this study shall revisit a number of applications of EMD+HT in the published literature, offering a different
perspective to these commentaries and highlighting situations where the two approaches perform comparably and others where one offers
an advantage. As this study demonstrates, much of the differing performance previously observed is attributable to EMD+HT represent-
ing nonlinear characteristics solely through the instantaneous frequency, with the wavelet relying on both this measure and the instanta-

neous bandwidth. Further, the resolutions utilized by the two approaches present a secondary factor influencing performance.
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Introduction

The Fourier transform has revolutionized signal processing and
its applications to various disciplines, perhaps like no other de-
velopment, permitting its users to transcend the burdens of time
series analysis and view energy content in terms of harmonics.
Such merits of Fourier-based analysis have led to its widespread
acceptance; however, its inability to handle nonstationary phe-
nomenon has proven problematic. As the Fourier transform de-
composes a signal by a linear combination of projections onto an
infinite-duration trigonometric basis, it is unable to capture local
features, challenging analysts to explore the use of time-
frequency transformations, e.g., Gurley and Kareem (1999).
While a host of such techniques have surfaced, two approaches
have received increased attention: The wavelet transform, e.g.,
Kareem and Kijewski (2002), and empirical mode decomposition
with Hilbert transform (EMD+HT), e.g., Huang et al. (1998).
In a number of studies, EMD+HT has been advocated by illus-
trating its superior performance in comparison to the wavelet
transform for a number of examples. However, these results
depend greatly on the mode of presentation and the resolutions
chosen for the analysis. Therefore, this study will present a
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comparison of these two approaches from a different perspec-
tive that reconciles each transform’s unique characterization of
nonlinear and nonstationary information, illustrating cases where
the two approaches perform comparably, and highlighting situa-
tions where one offers some advantage.

Analytic Signal Theory for Time-Frequency Analysis

The tracking of time-varying frequency content is typically ac-
complished by monitoring the instantaneous frequency (IF) of the
signal, commonly traced back to the notion of a complex analytic
signal (Gabor 1946), taking the form of an exponential function
given by

(1) =A(n)e'? (1)

with time-varying amplitude A(¢) and phase &(r) that is usually
generated by

z2(t) =x(¢) + iH[x(1)] (2)

where x(f)=real-valued signal being transformed; and the opera-
tor H[-] represents the HT given by

“ x(s)

-5

H[x(t)] = in ds (3)

—oo

where s=variable of integration; and P denotes the Cauchy prin-
ciple value. There are indefinitely many amplitude/phase pairs
that can represent an arbitrary real-valued signal; however, the
analytic signal as defined in Eq. (1) provides a unique pair given
that is generated by a linear operation that suppresses all negative
frequencies, e.g., by the HT in Eq. (2). The uniqueness of this
representation is guaranteed for asymptotic signals or, in other
words, signals whose phases vary more rapidly than their ampli-
tudes. This issue will be explored further in Example 5.

From the definition in Eq. (1), Ville (1948) proposed the
concept of IF as the time-varying derivative of the phase
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While the notion of frequency at an instant may seem paradoxi-
cal, it may be simply conceptualized as the frequency of a sine
wave that locally fits the oscillatory characteristic of the signal
under consideration.

Analytic Signals for Multicomponent Signals

While the convolution with 1/7 in Eq. (3) produces a transform
with localized temporal resolution, its Fourier transform yields a
sum of Heaviside functions, which lack finite bandwidth—an ex-
pected result based on Heisenberg’s uncertainty principle. As a
result of this ill-defined frequency resolution, the HT cannot dis-
tinguish the various frequency contributions of multicomponent
signals, requiring such signals to be preprocessed into their mono-
component elements, e.g., by bandpass filtering (Lee and Park
1994), before implementation of the transform. Huang et al.
(1998) introduced the concept of EMD as an alternative means to
separate multicomponent signals into their monocomponent con-
stituents through a progressive sifting process to yield empirical
bases termed intrinsic mode functions (IMFs). These IMFs are
defined so as to ensure that they have well-behaved HTs and
conform to a narrowband condition. Full details of EMD can be
found in Huang et al. (1998). As the stopping conditions on the
sifting process are somewhat arbitrary, “infinitely many IMF sets
can be generated” (Huang et al. 2003), prompting the develop-
ment of statistical measures for more definitive stopping criteria.
Olhede and Walden (2004) conducted analyses of EMD using
various stopping criteria, yet still found oscillatory IF estimates
and ill-defined time-frequency spectra with evidence of mode
mixing (both of which will also be demonstrated later in this
study).

In response to these findings, Olhede and Walden (2004)
introduce a discrete wavelet transform/wavelet packet-based de-
composition as a replacement for EMD in the preprocessing
of multicomponent signals. The authors highlight superior per-
formance of this approach and, by virtue of its nonempirical
character, show it to be conducive to statistical analysis for noise
reduction. However, unlike Olhede and Walden (2004), in this
study, the properties of asymptotic signals, analytic parent wave-
lets, and the continuous wavelet transform will be utilized as a
vehicle to provide a direct approximation to the analytic signal for
multicomponent time series, thus eliminating the need for HTs all
together.

The continuous wavelet transform is a linear transform that
decomposes an arbitrary signal x(¢) via basis functions with
compact support that are simply dilations and translations of the
parent wavelet g(r)

W(a,t):%J x(T)g*(t_—T>dT (5)
vaJ o a

where * denotes the complex conjugate (Mallat 1998). Dilation
by the scale, a, inversely proportional to frequency, allows the
various harmonic components of the signal to be captured. The
wavelet coefficients, W(a,7), provide a measure of the similitude
between the dilated/shifted parent wavelet and the signal at time ¢
and scale a. The squared magnitude of the coefficients in Eq. (5)
can be presented via the scalogram as energy content in frequency
and time, as shown in Fig. 1 through a three-dimensional and
two-dimensional perspective for a quadratic chirp. It should be

noted that there are countless parent wavelets used in practice,
with properties that offer distinct benefits depending on the signal
characteristics being sought. However, the heavy dependence of
results upon the parent wavelet chosen may have motivated the
development of EMD to yield a basis derived from the data itself,
ensuring that the decomposition would retain some physical re-
semblance to the original time series. As observed by Olhede and
Walden (2004), EMD’s independence potentially offers both “a
strength (adaptivity) and a weakness (resistance to statistical
analysis).”

For analyses seeking to underscore the harmonic character of
nonstationary and nonlinear signals, the Morlet wavelet is often
adopted (Grossman and Morlet 1985)

g(1) = e Pe2ot = P (cos(2mf,0) + i sin(2mf,r)  (6)

which possesses a unique relationship between the scale a and the
Fourier frequency f at which the wavelet is focused: a=f,/f,
where f,=central frequency.

Wavelets, such as those in Eq. (6), have a tendency to concen-
trate their largest coefficients at the dominant frequency compo-
nents of the signal and are analytic in form, suppressing negative
frequencies much like the HT. Thus, a slice of the wavelet scalo-
gram at a given time produces an instantaneous spectrum (Fig. 1),
which peaks at the IF of the signal with measurable spread asso-
ciated with the instantaneous bandwidth of the signal (Kijewski-
Correa 2003). This concentration of energy forms definitive
ridges or stationary points, as shown schematically in Fig. 1, from
which the wavelet IF can be directly identified (Mallat 1998)

Q0 _ S0
(1) filt)
It has been shown in Carmona et al. (1998) that, as a signal more
strictly meets the asymptotic signal assumption, i.e., as the oscil-
lations of the phase term increase relative to the amplitude term,
the better the wavelet coefficients in the vicinity of the stationary
points approximate the analytic signal: W[a,(r),t]oz(¢). This
finding then allows the wavelet coefficients at these stationary
points, termed the wavelet skeleton, to be directly used to estimate
the analytic signal in Eq. (1), instead of the HT in Eq. (2). An
example of the resulting real and quadrature-shifted imaginary
component of the signal is presented in Fig. 1. Thus, the IF can be
identified from the scales in Eq. (7) to form a wavelet IF spectrum
(WIFS) (Kijewski-Correa 2003). As shown in Fig. 1, this yields a
crisp point estimate comparable to that produced by EMD+HT.
Further, the wavelet’s phase can also be used in Eq. (4) to more
precisely determine the IF. However, Feldman and Braun (1995)
noted that the estimate of the IF from phase information may be
high in variance, and concluded that a lower variance estimate
may be obtained directly from the maxima of time-frequency dis-
tributions, as shown in Eq. (7); a fact previously confirmed by
Boashash (1992a). This dual characteristic of the wavelet trans-
form, allowing identification of IF by Eq. (7) or Eq. (4), provides
alternatives that can be exploited depending upon the situation,
whereas the HT relies entirely on phase information for its IF
estimates.

Finally, as the wavelet is a transform in both frequency
and time, it can implicitly handle multicomponent signals, iden-
tifying each component by a distinct ridge in the time-frequency
plane. These ridges can be extracted by a variety of techniques
(Carmona et al. 1998), though, for the purposes of this study, the
basic detection technique associated with the local maxima of the
scalogram is invoked.

()
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Fig. 1. (Color) Schematic of various wavelet representations for quadratic chirp

Examples

The following sections shall revisit a number of examples pre-
sented originally in Huang et al. (1998), examining the authors’
EMD+HT results against revised Morlet wavelet results. These
revised findings are generated through a framework discussed
in Kijewski and Kareem (2003), which addresses issues such
as the discretization of the time-frequency plane and corrections
for end effects. During this process, it is also necessary to tailor
the resolutions of the wavelet transform to extract relevant time
or frequency details through the adjustment of the central fre-
quency in Eq. (6) (Kijewski and Kareem 2003). The time and
frequency resolutions associated with the frequency f; for a given
central frequency are, respectively, described by A#;=f,/(f;\2)
and Af;=f/(27f,(2). As such, the dilated Morlet wavelet—
centered at time ¢; and frequency f—symmetrically windows a
portion of the signal 2A¢ wide in the time domain, and conse-
quently analyzes a 2Af window in the frequency domain to form
a Heisenberg box.

Since EMD+HT actually displays IF as a function of time,
it is not appropriate to make comparisons solely to wavelet scalo-
grams, which merely depict the time-frequency energy distribu-
tion (Fig. 1). Thus wavelet estimates of IF, displayed in the WIFS
(Fig. 1), will provide the elementary basis for comparison with
EMD+HT results. Any additional HT analyses, beyond those
provided in Huang et al. (1998), are generated using the HT as
defined in MATLAB, while the differentiation in Eq. (4) was
accomplished by determining the slope of a least-squares fit to

the phase data. For reference, the original wavelet analyses con-
ducted by Huang et al. (1998) are also provided, though specific
details on the central frequency employed were not reported by
the authors.

Example 1: Localized Sine Wave

The first example presented is a single cycle of a 1 Hz sine
wave. Figs. 2(a and b) display the signal and the scalogram gen-
erated using the Morlet wavelet with localized temporal resolu-
tion (f,=1 Hz). The dark patch in the center of the wavelet map
indicates the time-frequency energy concentration of the signal,
though in a contoured representation. However, the WIFS in
Fig. 2(c) more precisely identifies the IF of the signal as 0.98 Hz
from 4.1-4.2 and 4.8—4.9 s, and as 1.0 Hz between 4.3 and 4.7 s,
in comparison to Huang et al.’s (1998) wavelet result [Fig. 2(d)].
Though it was previously argued that wavelets require spurious
harmonics to represent the transient (Huang et al. 1998), viewing
the WIFS affirms that the resolution capabilities of the wavelet
analysis are comparable to the EMD+HT analysis [Fig. 2(e)], and
may even surpass its performance at the initiation and termination
of this single oscillation.

Example 2: Sine Wave with Frequency Discontinuity

Another example of a sudden change in frequency content is pro-
vided by a 0.03 Hz sine wave that suddenly shifts to a 0.015 Hz
frequency of oscillation at the 500th s, as shown in Fig. 3(a).
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Fig. 2. Example 1: (a) Isolated cycle of 1 Hz sine wave; (b)
scalogram; (c) WIFS; (d) original Morlet wavelet result [adapted
from Huang et al. (1998)]; (¢) EMD+HT result [adapted from Huang
et al. (1998)]

The initial wavelet analysis by Huang et al. (1998) indicates a
smearing of energy in both frequency and time, and pales in com-
parison to the pinpoint precision of the EMD+HT result, as
shown in Fig. 3(d). Revisiting this example, but refining the fre-
quency resolution properties of the Morlet wavelet (f,=5 Hz),
two distinct frequency bands are identified in Fig. 3(b), although
the point of transition is obscured in the scalogram representation.
However, upon examining the WIFS in Fig. 3(c), the precision of
the wavelet IF estimation is evident.

Example 3: Quadratic Chirp

While the ability of both approaches to detect sudden changes in
frequency has thus far been demonstrated, their ability to capture
a continuous change in frequency is now demonstrated via HTs
and continuous wavelet (f,=3 Hz) transforms of the quadratic
chirp shown in Fig. 4(a). Note that the analysis of this chirp signal
does not require preprocessing by EMD, as it possesses a unique
frequency component at each instant in time. The Hilbert and
wavelet IF estimates are shown in Fig. 4(b). The HT result mani-
fests an unexpected oscillation, in addition to the global quadratic
decay. The wavelet transform does not depict this oscillatory be-
havior, but instead results in a piece-wise fit to the changes in
frequency that nearly identically overlaps the actual IF law. This
piece-wise fit arises from the fact that the wavelet fits small waves
or “wavelets” to the signal at each point in time—as expected, a
locally linear approximation to the quadratic.

Example 4: Linear Sum of Two
Closely-Spaced Cosines

The following example will demonstrate a situation in which the
frequency resolution capabilities of EMD can be problematic.
Consider a pair of closely spaced cosine waves given by

x(t)
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Fig. 3. Example 2: (a) Cosine wave with frequency halved midway
through signal; (b) scalogram; (c) WIFS; (d) original Morlet wavelet
result with HT+EMD result superimposed [adapted from Huang
et al. (1998)]

x(t) = cos( im) + cos( 21‘”) (8)

30 34
The frequencies of these two harmonics are approximately 0.0294
and 0.0333 Hz. Fig. 5(a) shows the signal with characteristic beat
phenomena. In order to separate the two components, a given
analysis technique must have a refined frequency resolution, con-
sistent with the findings of Delprat et al. (1992). In Huang et al.
(1998), it was shown that neither a continuous wavelet analysis
nor EMD+HT could identify two distinct harmonic components.
Revisiting this problem using a wavelet with f,=5 Hz, two IF
components can be identified at 0.0303 Hz and 0.0340 Hz, within
3% of the actual signal frequencies, as shown by the WIES in
Fig. 5(b). Fig. 5(c) displays the wavelet scalogram obtained by
Huang et al. (1998) with the EMD+HT result superimposed as
contours. Though the signal is the linear combination of two dis-
tinct harmonics, neither result in Fig. 5(c) accurately reflects this.
However, the continuous wavelet’s inability to separate the har-
monics in Huang et al. (1998) should not be interpreted as a
failure of the continuous wavelet in theory, but rather a byproduct
of the selection of an insufficient central frequency f, in the
analysis.

Note that the EMD+HT result in Fig. 5(c) localizes in the
same vicinity, but also shows some spurious oscillatory behavior
in the IF between 0.025 Hz and 0.035 Hz, treating the pair of
harmonics as a frequency-modulation (FM) wave. The presence
of multiple components in an IMF will result in nonlinear phase
terms once the HT is applied. In such cases, the HT treats the
closely spaced harmonics as an FM wave. The misrepresentation
in this example may be a direct consequence of EMD’s inad-
equate frequency resolution. In this case of two closely spaced
modes, the EMD required a very stringent condition of 3,000
siftings to obtain only eight IMFs, which still could not represent
the true signal (Huang et al. 1998). The inability to distinguish
between two distinct components may be traced to the narrow-
band conditions invoked in the extraction of IMFs. The use of a
more relaxed narrowband condition, placing restrictions on the
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Fig. 4. Example 3: (a) Quadratic chirp; (b) identified IF by wavelet transform and HT with actual IF law

number of zero crossings and maxima, may yield IMFs that are
narrowband in character but not strictly monocomponent, poten-
tially encapsulating in that narrow band both closely spaced har-
monics. This was demonstrated by Wu and Huang (2004), where
the authors effectively establish EMD as a dyadic filter, and IMFs
are shown to concentrate their Fourier spectrum at distinct fre-
quencies but with considerable overlap in bandwidth. Thus, the
EMD is ill-equipped to capture the dual harmonic character of
signals with closely spaced frequency components, instead treat-
ing it as some non-physical FM wave. In an extensive evaluation
of EMD+HT performance, restrictions, and limitations in charac-
terizing irregular water waves, Ditig and Schlurmann (2004)
categorically stated EMD’s inability to separate harmonic compo-
nents that have frequency proportions near unity. The authors
consider this to be one of the primary limitations of EMD, which
surfaced in their parametric study of waves, when some higher-
order nonlinear components close in frequency were not distinctly
identified. Rather, these are added on to the fundamental riding
wave. Similar findings were also noted by Olhede and Walden
(2004), where EMD’s poor frequency resolution allowed mode
mixing in combinations of sine waves, yielding leakage in the
EMD projection. However, it should be noted that Huang et al.
(2003) recently attempted to address the issues of mode mixing in
IMFs through a confidence limit-based approach. Despite this, the
empirical nature of EMD still presents some difficulty in quanti-
fying and refining frequency resolutions.

t(s]

Fig. 5. Example 4: (a) Cosine pair; (b) WIFS; (c) original wavelet
and superimposed EMD+HT results [adapted from Huang et al.
(1998)]

Example 5: Amplitude Modulated Cosine
with Constant Frequency

In the following example, the issue of physical significance
versus mathematical anomaly is again explored. Consider an
amplitude-modulated wave generated by

x =exp(—0.01t)cos(2mf,1) 9)

where f,=0.0313 Hz. This parallels the impulse response func-
tion of a single-degree-of-freedom mechanical oscillator with
damping of approximately 5% critical, shown in Fig. 6(a). Al-
though the signal is completely amplitude modulated in theory,
there is a minor frequency modulation revealed upon applying the

x(t)

f [Hz)

fMHz)

fHz)

B [Hz]

f(Hz)

Fig. 6. Example 5: (a) Amplitude-modulated cosine; (b) scalogram;
(c) WIFS; (d) IF by wavelet phase; (e) wavelet instantaneous
bandwidth; (f) EMD+HT result [adapted from Huang et al. (1998)]
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Fig. 7. Results matrix: Simulated signal (row 1), amplitude PSD (row 2), phase PSD (row 3), and f;(¢) by HT (row 4)

HT, as shown in Fig. 6(f). Huang et al. (1998) argued that this
result should be expected as amplitude variations influence the
bandwidth of a process, viewed in terms of traditional power
spectra as a spread of frequencies about the mean frequency.
Based on that argument, the authors contend that this spread of
frequency may be manifested in time as a slight deviation of the
IF from the mean frequency of the process, in this case yielding
oscillations about a frequency of 0.0313 Hz. This spread of fre-
quencies about the IF, at each instant in time, is one means to
account for the many neighboring frequencies produced by am-
plitude modulation, however, the IF should theoretically surface
as the average of the frequencies at each point in time, as dis-
cussed in Priestley (1988), and would not be expected to oscillate
for this linear system. As the signal has no true FM, how should
the oscillatory component detected by the HT be interpreted?

On the other hand, the analysis by the continuous wavelet
transform (f,=1 Hz), shown in Fig. 6(b), captures the transient
nature of the signal with the energy content concentrated near
0.03 Hz. The WIFS [Fig. 6(c)] identifies a constant frequency
value of 0.0315 Hz. As the wavelet phase often can be a more
precise means of identifying the IF, it is a useful exercise to see if
the wavelet can detect any physical influence of amplitude modu-
lation through this measure. As shown in Fig. 6(d), the wavelet
phase takes on a constant value of 0.0313 Hz and—when zoomed
in to a scale of +1% of the oscillator frequency—there is no
evidence of oscillation. There is a slight deviation early in the
signal, corresponding to a residual byproduct of end effects. At
the end of the signal, the estimation quality rapidly degrades due
to the difficulty of phase identification once the signal energy is
nearly completely damped out.

However, the spectral characteristics of a system are not
merely defined by the IF, which will always surface as the aver-
age of the frequencies at each point in time (Priestley 1988). The
spread of frequencies contributing to this average measure is also
of interest, as described by the bandwidth () of the instantaneous
wavelet spectra (Kijewski and Kareem 2002). For single-degree-
of-freedom oscillators like the one considered here, the bandwidth
has a unique relationship with the oscillator frequency and its
damping. The bandwidth of each instantaneous spectrum pro-
duced from the wavelet analysis is provided in Fig. 6(e), which
demonstrates that this value holds relatively constant throughout
the decay in the signal; as expected, since the expression in
Eq. (9) represents an oscillator with a constant frequency and
damping. Note that at the beginning of the signal, the bandwidth
suffers from a more visible inaccuracy, attributed to the fact that
the bandwidth measure is far more sensitive than the IF to end
effects, as discussed in Kijewski and Kareem (2002, 2003). Even
with the addition of padding, bandwidth measures within 3A¢ of
the beginning and end of the signal can have some residual inac-
curacy, clearly marked by the rounded characteristic in Fig. 6(e).
Neglecting these two regions, the bandwidth holds constant, as
expected.

Contrary to the EMD+HT result, oscillatory FMs are not re-
flected in the wavelet bandwidth measure or in the IF identified
using either the ridge scales or phase of the wavelet analytic
signal representation. In fact, the presence of amplitude modula-
tions in this signal is ultimately observed in the amplitude of
the wavelet skeleton, which reflects the decay of energy in the
signal. This information has been used in system identification
applications, where nonlinearities in damping and stiffness are,
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Fig. 8. Example 6: (a) Second-order approximation to the Stokes wave; (b) scalogram (f,=5 Hz); (c) WIFS (f,=5 Hz); (d) original Morlet
wavelet result [adapted from Huang et al. (1998)]; (¢) EMD+HT result [adapted from Huang et al. (1998)]; (f) scalogram (f,=0.5 Hz); (g) WIFS

(f,=0.5 Hz); (h) wavelet instantaneous bandwidth (f,=0.5 Hz)

respectively, detected via changes in the wavelet amplitude and
phase (Feldman 1994; Staszewski 1998; Kijewski and Kareem
2003). Thus, while the notion of intrawave FM may be physically
meaningful in some cases, in this example, the presence of this
phenomenon is not, indicating a slight nonlinearity in a linear
system.

While the analytic signal generated using the HT will always
provide a unique complex representation, as Boashash (1992b)
stated, “whether or not it corresponds to any physical reality is
another question.” This indeed depends on the extent to which
asymptotic signal assumptions are met. In this example, the pres-
ence of FM in a constant frequency oscillator can be deceiving,
and may actually be the consequence of a violation of asymptotic
signal assumptions. The definition of the IF in Eq. (4) is only
valid when the Fourier transform of A(7), in the complex analytic
signal in Eq. (1), is well separated from and less than the Fourier
transform of exp[id(¢)]. This is because the HT inherently selects
the highest-frequency component of the signal as the complex
phase term. If the Fourier spectrum of the phase component of
the signal is not located at a frequency higher than—and well
separated from—the amplitude spectrum, then the HT operation
will be a result of overlapping and phase-distorted functions. This
will give rise to a waveform that can no longer be described by a
purely amplitude-modulated law, even though it was generated
by an amplitude-modulated process (Rihaczek 1966). In such
cases, “the Hilbert transform and the analytic signal are not al-
ways interpretable in a way which is physically meaningful and
representative of physical phenomena” (Boashash 1992b). Such
manifestations were noted by Olhede and Walden (2004) to be the
result of “leakage-generated oscillations” in the EMD+HT result.

To explore the importance of separation between amplitude
and phase components, three real components of an analytic
signal, having the form of Eq. (9), are generated: The original
example of f,=1/32 Hz (Example 5), f,=1/64 Hz (Case 1), and
fn=4 Hz (Case 2). For each of these cases, the power spectral
density (PSD) of the amplitude term and of the phase term are
presented in the results matrix in Fig. 7. From this figure, one can
see that Case 1 provides the most significant overlap of spectral

energy between amplitude and phase; Case 2 provides the least.
The IFs identified by the HT are provided in the fourth row of the
results matrix (Fig. 7). The y axes on these figures are scaled to
+10% of f, for each case, to provide an equivalent basis for
comparison. In the case where the overlap is most significant
(Case 1), the level of “intrawave modulation” is most marked. As
the overlap is lessened, the intrawave modulation is still present
but reduced (Example 7). In both of these cases, the periodicity
of the oscillations is consistent with f, used in the simulation.
For Case 2, evidence of oscillations is hardly visible. For quanti-
tative purposes, let the IF oscillation factor be defined as the
standard deviation of f;(f) normalized by f,. The following results
are then obtained based on Fig. 7: The oscillation factor for Case
1 is 1.45%, 0.43% for Example 5, and 4.7 X 10™% for Case 2.
These findings clearly indicate that the magnitude of these modu-
lations significantly depends on the separation between the ampli-
tude and phase in the Fourier domain. It can be inferred that the
intrawave modulation, at least in this example, actually results
from the HT not being able to clearly identify the phase and
misinterpreting contributions from the envelope as a result of
their overlap in the Fourier domain, violating asymptotic signal
assumptions.

In the case of this exponentially decaying envelope, by in-
creasing the frequency of the oscillatory term in Eq. (9), the
degree of overlap is minimized, and the bandwidth of the system
is increased. It has been shown that the IF is difficult to accurately
identify for signals with a short duration and small bandwidth
(Boashash 1992b). Thus, the demonstrations in Fig. 7 further il-
lustrate that oscillations in IF diminish as the signal bandwidth
increases. Both the spectral overlap between the phase and am-
plitude and bandwidth implications serve as viable explanations
for the apparent “intrawave” modulation in Fig. 7, and demon-
strate that this characteristic is not a physical, but a numerical,
byproduct of the HT.

Example 6: Stokes Wave

The implications of central frequency tailoring of wavelet-based
analyses are further explored in the example of the idealized
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Stokes wave in deep water. The use of a perturbation analysis to
solve this system illustrates the common practice of representing
nonlinear phenomena as a summation of harmonic components,
with the second-order approximation to the Stokes wave profile
given by

1 1
x(1) = Eazk + o cos(w,f) + Eazk cos(2w,t) (10)

where a=amplitude; and k=wave number. Fig. 8(a) is generated
by choosing a=1, k=0.2, and w,=2m/32, as discussed in Huang
et al. (1998). Fig. 8(b) displays the resulting Morlet wavelet
(f,=5 Hz) scalogram, whose color scales do not clearly reflect
the second mode, similar to the finding by Huang et al. (1998) in
Fig. 8(d). Note, however, that the WIFS in Fig. 8(c) does detect
the two harmonics. This Morlet wavelet analysis—though having
a refined frequency resolution—has poor temporal resolution, and
thus approaches the infinite basis of the Fourier transform and the
representation in Eq. (10): approximating the nonlinear Stokes
wave as a sum of two harmonics. It has no ability to capture the
local nonlinearities of the wave profile.

In contrast, Fig. 8(e) displays the EMD+HT result, which os-
cillates about 0.0313 Hz and shows no evidence of the second
mode. This representation, as discussed in Huang et al. (1998), is
consistent with the modeling of the Stokes wave as a FM signal

x(t) = cos[w,t + & sin(w,7) ] (11)

A visual inspection of the simulated Stokes wave in Fig. 8(a)
demonstrates that there is a subtle departure from the simple sinu-
soidal shape, indicative of FM, represented by the second term in
Eq. (11). This can be viewed as a system with subcyclic frequency
modulation, i.e., changes in frequency that occur within one cycle
of oscillation, or in the terminology of Huang et al. (1998), intra-
wave FM. This is held in contrast to the concept of supercyclic
oscillations that occur over the course of one or more cycles or
due to rapid changes in amplitude.

Interestingly, the wavelet transform can also be tailored to
achieve this result. A second wavelet analysis (f,=0.5 Hz) of the
Stokian wave simulated by Eq. (10) is also provided in Fig. 8.
The scalogram [Fig. 8(f)] still concentrates near 0.03 Hz; how-
ever now without evidence of a higher harmonic. Instead there is
an oscillatory variation toward the high-frequency range, shown
by the lighter hues extending toward 0.1 Hz. An inspection of the
WIFS [Fig. 8(g)] still does not confirm this, as it manifests a
single constant frequency component at 0.0303 Hz. It was dis-
cussed in Example 5 that the instantaneous bandwidth can be
used to monitor deviations from the IF or mean frequency, result-
ing from nonlinearity or physically meaningful intrawave FMs.
The instantaneous bandwidth of the wavelet spectra is provided in
Fig. 8(h), and demonstrates that this value oscillates with a period
of approximately 32 s in the same manner as the EMD +HT result
in Fig. 8(e).

The application of a similar wavelet analysis on measured
surface elevation data from a wave tank verifies these character-
istics of Stokian waves. Fig. 9(a) displays wave data mechanically
generated by a 1 Hz sinusoidal excitation with +9 mm amplitude.
Note that the time series manifests narrowed peaks and widened
troughs, highlighting the nonlinear signature. The wavelet analy-
sis (f,=0.5 Hz) produces a scalogram in Fig. 9(b), concentrating
near 1 Hz, but with energy fluctuating in the higher frequencies—
again indicating the presence of time-varying frequency content.
The WIFS in Fig. 9(c), as observed in the previous example of
Stokian waves, remains constant at 0.94 Hz, giving an averaged

-

Fig. 9. (a) 30 s of wave tank surface elevation; (b) scalogram;
(c) WIFS; (d) IF from wavelet phase; (e) wavelet instantaneous
bandwidth; and (f) IF from HT phase

interpretation of the IF. Zooming in on the more precise phase-
based IF estimate, in Fig. 9(d), minor modulations reveal time
variance in the local mean frequency. Further fluctuations about
this mean frequency are then identified in the instantaneous band-
width in Fig. 9(e), which provides a rich display of nonlinear
characteristics beyond that of the numerically simulated Stokes
waves in Fig. 8. The bandwidth in this case oscillates—again
about the frequency identified in the WIFS; however, the
modulations of the bandwidth indicate the periodicity of frequen-
cies concomitant at each instant in the signal. An EMD+HT
analysis by Huang et al. (1998) of measured wave data affirmed
similar phenomena, albeit displayed solely in the IF. The direct
application of the HT in Fig. 9(f) can also affirm the variations of
the frequencies present in the system, though this perspective is
potentially noisier without the benefit of filtering afforded by
EMD.

This example illustrates two important facts. First, a wavelet
analysis with poor temporal resolution inherently treats the signal
in the same manner as Fourier analysis, while a wavelet analysis
with refined temporal resolution is capable of detecting nonlinear
wave characteristics. Thus, it is the resolution—tied to a specific
analysis—that ultimately dictates whether the nonlinear system
will be represented by a series of harmonics as in Eq. (10) or by
intrawave modulated waves as in Eq. (11). Second, but perhaps a
more important distinction, the wavelet does not necessarily
manifest these indicators in the IF, but instead in tandem with the
instantaneous bandwidth. Recall again that the wavelet fits small
waves, or “wavelets,” to the signal at each point in time. In the
case of the Morlet wavelet, these localized waves are sinusoidal
in nature. The IF is then the frequency of the best-fit widowed
sinusoid. However, as the Stokian wave profile subtlety deviates
from the simple sinusoid, it is not unreasonable to expect that
additional neighboring frequencies are required to capture these
deviations through a “localized harmonic series” quantified by the
instantaneous bandwidth measure. Thus, the wavelet IF is the
mean frequency, and the bandwidth reflects the deviation of these
frequencies from this mean as they evolve in time (Priestly 1988).
Apparently, these nuances have been overlooked by other recent
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Fig. 10. (Color) Example 7: (a) Measured random wave data; (b) scalogram; (c) WIFS with three primary components (dark — light indicates
highest- to lowest-energy contributions at each time step) with constitutive ridge elements from unimodal; bimodal, and multimodal response and

example of each instantaneous spectral class

studies. For example, Schlurmann (2002) investigated a “mono-
chromatic wave” by EMD+HT and Morlet wavelet transform,
though using a fixed central frequency. By solely investigating the
wavelet scalogram, without the benefit of an IF or bandwidth
estimate, the author found what appears to be a single constant
harmonic representing the nonlinear wave, and concluded that
this misrepresentation is “due to the uncertainty principle of
this [wavelet] technique” (Schlurmann 2002). This demonstrates
a common misunderstanding of how wavelet transforms char-
acterize subcyclic nonlinearities, leading in turn to erroneous

conclusions, particularly since no transformation can completely
escape the constraints of the uncertainty principle, both
EMD+HT, and the wavelet transform alike.

Example 7: Measured Wave Data

To further explore wavelet capabilities for the analysis of waves,
the example of experimentally observed random sea waves is
presented herein. The waves were generated by a JOint North Sea
WAve Project (JONSWAP) spectrum with amplitude of 64 cm.
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Fig. 11. (Color) (a) Measured transient wave; (b) Fourier power spectrum; (c) wavelet scalogram; (d) superposition of wavelet instantaneous

power spectra; (¢) WIFS; and (f) EMD+HT result

The signal contains energy over a range of frequencies up to
2 Hz, with a dominant wave frequency of approximately 0.4 Hz.
A 200 s sample of the resulting waves at one measuring station
is provided in Fig. 10(a). A continuous wavelet analysis with
f,=1 Hz yields the scalogram shown in Fig. 10(b). The scalogram
reflects several pockets of intense energy bursts, associated with
high amplitude events in the data and concentrates around 0.5 Hz.
The presence of lighter hues fading into the high-frequency range
again suggests a distribution of energy beyond the dominant wave
frequency. Ridge extraction from the wavelet modulus revealed
up to three local maxima at any given instant, generally concen-
trating the most energy in the vicinity of 0.5 Hz, as shown by
the WIFS in Fig. 10(c). This is accompanied by intermittent lower
amplitude components at adjacent frequencies. By breaking the
WIES into its constitutive elements, three modes of response are
observed: Unimodal at 0.5 Hz, alternating bimodal at 0.4 and
0.6 Hz, and multimodal. The multimode case can be viewed
as a special case of the bimodal response with an intermittent
third peak of relatively low energy. It is important to reiterate
that wavelet instantaneous spectra, when viewed in tandem with
the WIFS, serve as a microscope for studying the evolution of

multiple harmonic components within the response. In particular,
the alternating characteristic of the bimodal response represents a
temporal variation of the fundamental wave frequency that would
be obscured in traditional Fourier analysis. This observation,
coupled with the intermittent characteristics, further highlights the
richness of the energy distribution in the wave profile.

To further the discussion on the classification of waves
by time-frequency analysis techniques, consider the case of a
transient “freak wave” measured off the coast of Yura in the
Sea of Japan (Schlurmann 2002). The freak wave results from the
coalescing of several wave components as a result of a shift
in phase. This wave, shown in Fig. 11(a), was analyzed by
Schlurmann (2002) using continuous Morlet wavelets and
EMD+HT. As shown by the Fourier power spectrum in
Fig. 11(b), the wave is dominated by a carrier wave near 0.1 Hz,
though with a larger bandwidth that suggests modulation by
neighboring frequencies; yet the intermittency of these wave
components cannot be portrayed. To faithfully characterize the
transient event, a time-frequency approach is required. The
continuous wavelet scalogram (f,=1 Hz) is provided in
Fig. 11(c), which verifies the concentration of energy near 100 s
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Fig. 12. (a) IMFs of measured transient wave (IMFs 1-8 from top to bottom) and (b) discrete wavelet decomposition of measured transient wave
(details 1-8 from top to bottom). Box indicates range of components contributing to sudden amplitude increase

with a dramatic spread in energy, characteristic of sudden discon-
tinuities. This is accompanied by a superposition of the wavelet
instantaneous power spectra at each moment in time [Fig. 11(d)],
demonstrating the resolution capabilities of wavelets, identifying
the dominant carrier wave, as well as a secondary wave compo-
nent. A clearer perspective of the wavelet representation is
provided by the WIFS in Fig. 11(e), which characterizes the
transient wave as the combination of two dominant wave
components—coalescing near 100 s—to yield a dramatic increase
in amplitude. This is in sharp contrast to the EMD+HT spectral
representation in Fig. 11(f), which yields a rich display of energy
over a wide range of frequencies, including a more abrupt fre-
quency variation near 100 s. Note that the IMFs contributing to
this spectrum were obtained by EMD with the following condi-
tions: The maximum iteration number for each sifting was chosen
as 1,000. The number of successive sifting steps—that produce

the same number of extrema and zero crossings—was limited
to 5. Other sifting criteria may yield some variations in the IMFs
obtained.

It is of particular interest to identify the physical mechanisms
that enable the formation of the transient wave in Fig. 11(a).
Through an inspection of the IMFs in Fig. 12(a), it is evident
that the large amplitude component is comprised of energy at a
number of scales. Schlurmann (2000) identifies this as a super-
position of “selected ‘characteristic embedded modes,” which co-
incide in phase at the concentration point...” The details of a
discrete wavelet transform using the Daubechies (db5) wavelet
(Daubechies 1988) are provided in Fig. 12(b), again demonstrat-
ing the contributions to this transient arising from waves of
different scales in phase with one another, though the dominant
contribution is carried in the third IMF or fourth wavelet detail.
Inspection of the instantaneous power spectra at specific time
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Fig. 13. Measured transient wave and wavelet instantaneous power spectra at times demarcated by asterisks. Time (s) associated with each

spectra provided as inset
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intervals in the continuous wavelet transform can provide an
alternate perspective on such intermittent phenomena (Kijewski
et al. 2003). As shown in Fig. 13, these spectra demonstrate that
the high amplitude transient wave is the result of the single carrier
wave coalescing with higher-frequency waves, leading to a broad-
ened back side spectrum and the presence of a secondary mode at
the highest amplitudes of the transient. As the neighboring high-
frequency waves move out of phase with the carrier, the spectrum
returns to a more symmetric narrowband form, with the ampli-
tudes of the wave diminishing.

Which technique then provides a more faithful representation
of the physical phenomenon? Both the discrete wavelet transform
and EMD present a fairly consistent decomposition of phase-
aligned multiscale contributions to the transient wave; however,
the Hilbert transform IF estimate from those IMFs produces a
wide spectrum of energetic components, despite the regularity of
the waveform. It is unclear whether any physical justification can
be inferred for the wide array of components in Fig. 11(f), or if
they are attributed to the high variability of IF estimated from the
phase (Feldman and Braun 1995). On the other hand, the wavelet
representation shows a gradual modulation of frequency—with an
intensification of amplitude—at the time of the transient, and the
presence of coalescing of waves at multiple scales. The wavelet
concept of fitting local harmonics provides an explanation for this
smoothened representation.

Conclusions

This study revisited many of the continuous wavelet examples
used to establish the efficacy of the EMD+HT, not to advocate
for the use of one over the other, but rather to dispel some of the
misconceptions surrounding these results. While the examples
provided herein have reassessed the performance of the wavelet
transform and EMD+HT for a number of nonlinear and nonsta-
tionary systems, these results are not achieved without a proper
understanding of each approach. Huang et al. (1998) and Ditig
and Schlurmann (2004) go to great lengths to explain nuances
of the sifting and spline fitting of EMD, as well as extensions of
IMFs by characteristic waves to minimize end effects. By the
same token, the users of continuous wavelet transforms must be
cognizant that the result of their analysis relies heavily on the
parent wavelet employed, the discretization of scales, and treat-
ment of end effects (Kijewski-Correa 2003). Specifically, when
using the Morlet wavelet, users should make careful selections
of the central frequency (Kijewski and Kareem 2003) to com-
pletely exploit the resolution capabilities. Improper temporal
resolution of the wavelet is shown (see Stokes wave example) to
produce results that approach a traditional Fourier analysis, while
refined temporal resolutions are capable of identifying nonlinear
and nonstationary signal characteristics. Such a lack of under-
standing of either transform or misrepresentative comparisons of
EMD+HT results to scalograms, as opposed to the WIFS, will
yield the misleading results often reported in the literature.
While the physical meaning of the EMD+HT result was
questioned in two examples involving closely spaced cosine
waves and an amplitude-modulated constant frequency oscillator,
the two approaches provided comparable evidence of nonstation-
ary and nonlinear behavior for a number of other examples.
However, this evidence was presented in distinctly different
manners: The IF of the HT detects both subcyclic and super-
cyclic frequency modulations: The wavelet IF, on the other hand,
generally detects supercyclic frequency characteristics and relies

on the instantaneous bandwidth to provide additional subcyclic
information. This finding is expected, as the continuous Morlet
wavelet fits small waves over a local window in time. As such,
the IF corresponds to the sine producing the best local fit to the
data. However, this analysis is a local summation of dilated wave-
lets and, therefore, additional neighboring scales may be required
to faithfully represent the data. Meaningful information on the
spread of frequencies about this mean or best-fit IF is carried in
the instantaneous bandwidth measure, serving as the key to un-
covering subcyclic or intrawave phenomena. Given that both
transforms can represent nonlinear characteristics, albeit differ-
ently, the selection of one approach over the other is entirely
dependent on the perspective desired.
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