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Decomposition in Extracting Signals Embedded in Noise
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Abstract: Time-frequency transformations have gained increasing attention for the characterization of nonstationary signals in a broad
spectrum of science and engineering applications. This study evaluates the performance of two popular transformations, the continuous
wavelet transform and empirical mode decomposition with Hilbert transform (EMD+HT), in estimating instantaneous frequency (IF) in
the presence of noise. The findings demonstrate that under these conditions wavelets seeking harmonic similitude at various scales

produce lower variance IF estimates than EMD+HT. The shortcomings of the latter approach are attributed to its empirical, envelope-
dependent nature, leading to bases that are themselves derived from noise.
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Introduction

A number of time-frequency transformations capable of charac-
terizing signals with time-varying characteristics have surfaced in
the literature, though two have gained popularity in the analysis
of civil and mechanical systems: the continuous wavelet trans-
form (CWT) (e.g., Kijewski and Kareem 2003) and empirical
mode decomposition with Hilbert transform (EMD+HT) (Huang
et al. 1998). As the performance of the former technique was
called into question by Huang et al. (1998), it is important to
affirm the appropriateness of CWTs for the analysis of nonstation-
ary and nonlinear signals. Such an evaluation has already taken
place in part in Kijewski-Correa and Kareem (2006, 2007) and is
expanded here by evaluating the ability of EMD+HT and CWT
to capture the instantaneous frequency (IF) of signals of constant
and time-varying frequency in the presence of noise.

It should be immediately stated that this study evaluates the
performance of the two techniques in direct application of their
respective theories without the benefit of additional refinements;
therefore, sophisticated CWT ridge extraction techniques
(Carmona et al. 1998) and statistical confidence assessments to
distinguish noise from meaningful EMD+HT data (Wu and
Huang 2004) are not employed. As such, this study underscores
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the inherent, fundamental limitations of the methods in the pres-
ence of noise.

Examples

The discussion herein will call upon concepts associated with the
analytic signal z(7) and the IF: the derivative of the analytic sig-
nal’s phase (Carmona et al. 1998). The instantaneous frequency
has traditionally been identified from the analytic signal generated
by the Hilbert transform (HT), though this method is not capable
of handling multicomponent analyses. EMD+HT and CWT have
this capability, though they decompose multicomponent signals
and generate the analytic signal in fundamentally different ways.
In the case of EMD+HT, EMD is used to decompose the signal
into its intrinsic mode functions (IMFs) and then the HT is sub-
sequently applied to generate the analytic signal. For the CWT, an
analytic parent wavelet is used (e.g., Morlet wavelet), yielding
wavelet coefficients that are directly proportional to the analytic
signal at the stationary points or ridges of the time-frequency
map.

Before presenting the results, it should be emphasized that
they are not achieved without a proper understanding of each
approach and its implementation. For instance, it is important to
note that the resolution characteristics of the Morlet wavelet
analysis are dictated by the central frequency parameter f,, ac-
cording to relationships discussed in Kijewski and Kareem
(2003), and greatly impact the wavelet’s ability to detect nonlin-
ear characteristics (Kijewski-Correa and Kareem 2007) and to
isolate closely spaced time or frequency components (Kijewski-
Correa and Kareem 2006). In this study, to preserve the capability
to track time varying features, a Morlet wavelet with central
frequency fy=1 Hz is used. Larger central frequency values
(fo=5 Hz) essentially approach a Fourier-like representation
(Kijewski-Correa and Kareem 2006). It should also be empha-
sized that EMD +HT results are presented in the form of a Hilbert
spectrum, which plots the amplitude of the Hilbert-transformed
IMFs as a function of time and IF. These results are compared to
the wavelet instantaneous frequency spectrum (WIFS) (Kijewski-
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Fig. 1. Noise-embedded sinusoid: (a) instantaneous frequency estimate associated with each IMF; (b) skeleton plot of WIFS with most energetic
component shown as darker line. Additive white noise: (c) instantaneous frequency estimate associated with each IMF; (d) skeleton plot of WIFS.
Noise-embedded chirp: (e) instantaneous frequency estimate associated with each IMF; (f) skeleton plot of WIFS with most energetic component

shown as darker line.

Correa and Kareem 2006), which presents a comparable represen-
tation, in contrast to the scalogram comparisons presented in
Huang et al. (1998). Finally, EMD was applied under the follow-
ing conditions: The maximum iteration number for each sifting
was chosen as 1,000 and the number of successive sifting steps
that produce the same number of extrema and zero crossings was
limited to 5. Note that other sifting criteria may yield some varia-
tions in the IMFs obtained.

In the examples which follow, the signal-to-noise ratio (SNR)
is defined as

SNR = 2= (1)
Oy

where o,=standard deviation of the signal and oy=standard de-
viation of the additive white noise drawn from a standard normal
distribution. A noise embedded case (SNR < 1) will be considered
as the “worst case” scenario, comparable to the noise levels in-
vestigated in other IF studies (Boashash 1992). Low-noise ex-
amples (SNR=10) are also provided so that the performance of
the methods can be enveloped between two noise extremes.

Constant Frequency Sinusoid Embedded in Noise

The first noise-embedded signal is a unit amplitude, 1 Hz sinu-
soid (SNR=0.707). Interestingly, analysis of this signal by EMD
yields 6 IMFs, while an EMD analysis of the additive noise signal
by itself yielded 7 IMFs. The IMFs are omitted for brevity but can
be found in Kijewski-Correa and Kareem (2005). The instanta-
neous frequency components associated with each IMF for the
noise-embedded signal are shown in Fig. 1(a). Notice the mixing
of frequency content between the first and second IMF due to
EMD being “. . . as a filter bank of overlapping band-pass filters”
(Flandrin et al. 2004). Other studies (Olhede and Walden 2004;
Kijewski-Correa and Kareem 2005, 2006) noted the implication
of such mode-mixing and its influence on the quality of estimated
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IFs. For comparison, the EMD+HT analysis of the additive noise
signal by itself is presented in Fig. 1(c). Notice the similarities to
Fig. 1(a), with again the presence of mode mixing and a distribu-
tion of energy content over the entire time-frequency map. Thus,
the 1 Hz sinusoid cannot be extracted from the large amplitude
additive noise. As the sifting operation of EMD+HT is based on
spline fits to envelope functions, the fact that the signal is so
grossly overcome by noise implies that any decomposition based
on envelope functions will likely capture only the signal compo-
nents contributing to that envelope—in this case dominated by
noise.

The same signal is now analyzed by CWT in Fig. 1(b). Like its
Hilbert counterpart, there is a rich distribution of energy over the
map, but with coefficients dominant near 1 Hz forming a continu-
ous wavelet ridge. For comparative purposes, the same wavelet
analysis is conducted on the additive noise signal by itself and the
results are shown in Fig. 1(d). Note the lack of continuous ridge
in the vicinity of 1 Hz and instead the sole presence of the inter-
mittent noise distributed over the time-frequency plane. The real
and imaginary components of the analytic signal extracted from
this wavelet ridge are shown in Fig. 2(a). Note that the amplitude
of the analytic signal is somewhat distorted due to the noise;
however, the quadrature shift and thus phase is preserved. The IF
estimated from the wavelet analytic signal is shown in Fig. 2(b)
and its statistics are presented in Table 1.

Since no IMF captured the embedded sinusoid, an EMD
+HT IF estimate for the sinusoid cannot be provided for compari-
son. However, the IF derived from a direct application of the HT
to the noise-laden signal is provided in Fig. 2(c) for reference, and
it statistics are similarly summarized in Table 1. Note the high
degree of variability in the estimated IF law. Also provided for
comparison is an analysis on the same sinusoid, but now under
low noise (see SNR=10 in Table 1). For this low-noise case,
EMD produced 5 IMFs, with the first solely carrying the extracted
sinusoid, whose IF is estimated and reported in Table 1. Interest-
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Fig. 2. Noise-embedded sinusoid: (a) CWT analytic signal components; (b) IF by CWT; and (c) IF by HT

ingly, the IF estimated from a direct application of HT to this
sinusoid with SNR=10 (also provided in Table 1) performs
slightly better than the EMD+HT result. This underscores the
inaccuracies in the resulting IMFs, even in the presence of very
low noise levels. Finally, note that the wavelet produces lesser
coefficients of variation (COVs) and its mean IF shows no sensi-
tivity to noise level.

Quadratic Chirp Embedded in Noise

To further this discussion, a quadratic chirp is now simulated with
an instantaneous frequency law described by the following
relationship:

Fenip(D) =0.0172 + 1 (2)

This signal is embedded in the same simulated random noise
discussed in the previous example (SNR=0.711). The application
of EMD to this noise-embedded signal produces 6 IMFs, again
omitted for brevity but available in Kijewski-Correa and Kareem
(2005). As in the earlier example, no singular IMF embodies the
quadratic chirp, though most of the energy associated with it ap-
pears to reside in the first three IMFs. The skeleton plot of the IF
associated with each IMF is shown in Fig. 1(e) and again mani-
fests a general distribution of energy similar to the result in Fig.
1(a), with no definitive concentration of high amplitude coeffi-
cients in the vicinity of 1 to 2 Hz, where the quadratic chirp
resides. The CWT analysis [Fig. 1(f)] yields high energy concen-
trations in the vicinity of 1 to 2 Hz, though the identified ridge
does not show the same continuity as the result in Fig. 1(b) due to
interferences by noise. The estimated IF law extracted from this
ridge is provided in Fig. 3(a) with f;, provided for reference.
Though the general quadratic trend is identified, some deviations
occur at times where high concentrations of noise are concomitant
with the chirp, particularly between 6 and 8 s. Again since no
definitive IMF isolated the chirp, HT had to be directly applied to
the signal without EMD to produce an IF law estimate. As shown
in Fig. 3(b), variance of the estimated IF is larger in comparison
with the wavelet result. The same simulation is repeated with

Table 1. Mean and Coefficient of Variation of Instantaneous Frequencies
of Sinusoid with Additive Noise by CWT and EMD+HT

SNR=0.707 SNR=10
Mean IF (Hz) CoV (%) MeanIF (Hz) CoV (%)
CWT 0.99 3.34 0.99 1.08
HT 0.90 35.8 1.00 1.48
EMD+HT N/A N/A 1.00 1.57

reduced amplitude noise (SNR=10). In this case, the chirp was
successfully isolated by the first IMF and the extracted IF, along
with its wavelet counterpart, are shown in Figs. 3(d and c), re-
spectively. The findings are consistent with the results presented
in Table 1: both methods capture the IF law in a mean sense,
though variance is slightly greater for the EMD+HT result.

Discussion

The performance of EMD in the presence of noise can be ex-
plained by the fact that its sifting procedure is based upon signal
envelopes that are highly distorted by noise and thus negatively
impact EMD’s ability to capture the embedded signal’s scales.
Thus, the resulting bases or IMFs are themselves derived from
noise, impacting the ability to accurately isolate a frequency-
modulated (FM) wave and estimate its IF with low variance. The
examples herein demonstrate that analytic parent wavelets such as
the Morlet wavelet are better suited to achieving high similitude
with FM waves, despite the presence of large amplitude noise.
The scales of signals are not impacted by noise to the same extent
as signal envelopes. Thus, transforms that seek similitude in scale
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Fig. 3. Instantaneous frequency from wavelet analytic signal phase
for (a) noise-embedded chirp (SNR=0.7110) and (c) noisy chirp
(SNR=10); instantaneous frequency from Hilbert transform applied
to (b) noise-embedded chirp (SNR=0.7110); and (d) IF extracted
from first IMF of noisy chirp (SNR=10). Simulated IF law shown as
dashed line in all plots.
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and do not derive their bases from signal envelopes perform bet-
ter, explaining the superior results obtained by CWT.

Conclusions

This study provided an evaluation of CWT and EMD+HT in
extracting signals embedded in both high and low noise levels.
Whereas both approaches can capture the instantaneous frequency
in a mean sense, irregardless of the noise level, Hilbert transform-
based approaches demonstrate a higher coefficient of variation
that increases with the noise level, particularly in the case of a
quadratic chirp. This performance is attributed to the fact that
their bases are derived from the noise-contaminated data. It was
also noted that in high noise situations, there is considerable mix-
ing of the embedded signal over the IMFs. As such, when noise is
very high, a signal may not be isolated by EMD and its IF law
cannot be estimated. Even in low noise simulations, IMFs were
somewhat distorted and actually yielded IF estimates of higher
variance than a direct application of the Hilbert transform. Thus
signal extraction and reconstruction from the empirical bases of
EMD+HT can be problematic as noise levels increase; thus
wavelet transforms may provide a more reliable alternative for
such analyses.
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