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Abstract

This study identifies the control parameters which critically influence the development of inter-

modal coupling and the generation of aerodynamic damping, based on closed-form solutions of

bimodal coupled analysis of bridge aerolastic system. This information helps in developing a

guideline for the selection of most critical structural modes in a coupled flutter analysis and in better

interpretation and understanding of the multimode coupled bridge flutter response. Also discussed is

the role of each flutter derivative and the potential influence of the self-excited drag force on bridge

flutter in light of the flutter features characterized by the rate of change in modal damping with

increase in wind velocity, which is also referred to as soft- or hard-type flutter.
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1. Introduction

In recent years, the necessity of considering aerodynamic coupling among multiple
modes of bridge deck motion rather than only the fundamental vertical bending and
torsional modes in the prediction of coupled bridge flutter has widely been recognized (e.g.,
Jones et al., 1998; Chen et al., 2000). The multimode coupled analysis framework offers a
more accurate prediction of bridge flutter as compared to the traditional bimodal coupled
see front matter r 2008 Elsevier Ltd. All rights reserved.
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framework. Many analysis examples have demonstrated that bridge flutter is dominated by
a few important structural modes of deck vibration. From the point of view of flutter
prediction with the multimode framework, the clarification of the most important modes
for coupled flutter may not be an important issue, because the analysis even involving a
larger number of modes, e.g., 50 modes, neither requires large computational resources nor
is it cumbersome. However, improved understanding of the most important modes helps in
better capturing the underlying physics of coupled flutter. It also offers equally valuable
guidance for design and interpretation of wind tunnel studies using full aeroelastic bridge
models which may only be able to replicate a limited number of selective modes of the
prototype bridge due to difficulties in model fabrication and cost involved. These most
important modes may be identified in a trial and error manner through the comparison of
flutter analyses involving different mode combinations, or by their amplitudes in the flutter
motion, or through their contributions to system damping (Chen et al., 2000). However, a
simple and physically insightful guideline for the selection of bridge modes in a coupled
flutter analysis has not been reported in the literature.

Another important issue in a flutter analysis concerns the modeling of self-excited forces.
It has generally been understood that the self-excited lift and pitching moment acting on a
bridge deck caused by vertical and torsional motions in terms of eight flutter derivatives,
H�i and A�i ði ¼ 124Þ, play a most important role in the generation of coupled flutter. A
variety of identification methods have been developed to experimentally quantify these
flutter derivatives through either free or forced vibration test in a wind tunnel (e.g., Sarkar
et al., 1994; Matsumoto et al., 1995; Chen and Kareem, 2004). However, experience of
Akashi Kaikyo Bridge has revealed that the drag force induced by the torsional
displacement resulted in a considerable level of negative damping at higher wind velocities,
which markedly contributed to the generation of coupled flutter (Miyata et al., 1994). This
interesting finding has raised awareness to the modeling and quantification of the self-
excited drag force and its potential importance to bridge flutter (e.g., Jones et al., 1998,
2002; Katsuchi et al., 1998; Chen et al., 2002). As a result, the traditional modeling of self-
excited forces involving eight flutter derivatives have been extended to include total 18
flutter derivatives, i.e., H�i , P�i and A�i ði ¼ 126Þ. While this increasingly prevalent
modeling is expected to result in better flutter prediction, it considerably complicates and
undermines the efforts of better capturing the fundamental flutter characteristics of bridge
deck sections with a minimum number of flutter derivatives (Matsumoto, 1999; Chen and
Kareem, 2006; Chen, 2007). The importance of these additional flutter derivatives has been
reported in a very limited number of bridge examples. However, many examples, on the
other hand, have demonstrated that traditional modeling with eight flutter derivatives
serves an adequate description of the self-excited forces and leads to an accurate prediction
of flutter. Clearly, whether or not these additional flutter derivatives play an important role
in the flutter prediction depends on the bridge structural dynamics and its aerodynamic
characteristics. Accordingly, it becomes an important issue to clarify why and under what
conditions these additional flutter derivatives can be excluded in a flutter analysis.
Furthermore, even in case involving the traditional modeling with eight flutter derivatives,
it has been well recognized that all these flutter derivatives do not play an equally
important role in flutter prediction.

In this paper, the aerodynamic coupling of two modes are discussed using closed-form
formulations, which reveals control parameters that most influence the inter-modal
coupling and aerodynamic damping. This discussion leads to improved understanding of
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the most important modes in a multimode coupled flutter. Based on the closed-form
solution of bimodal coupled flutter, the role of each flutter derivative on coupled bridge
flutter is identified, which clarifies why and under what conditions the modeling of self-
excited forces can be simplified with a small number of most important flutter derivatives.

2. Equations of bridge motion

The bridge deck dynamic displacements in the vertical, lateral and torsional directions,
i.e., hðx; tÞ; pðx; tÞ and aðx; tÞ, respectively, about its statically displaced position, are
expressed as

hðx; tÞ ¼
X

j

hjðxÞqjðtÞ; pðx; tÞ ¼
X

j

pjðxÞqjðtÞ; aðx; tÞ ¼
X

j

ajðxÞqjðtÞ, (1)

where hjðxÞ; pjðxÞ and ajðxÞ are the jth mode shapes in each respective direction; qjðtÞ is the
jth modal coordinate; and x is the spanwise position.
The self-excited forces per unit length linearized around the statically displaced position,

i.e., lift (downward), drag (downwind) and pitching moment (nose-up), are given in terms
of the 18 flutter derivatives as (e.g., Scanlan, 1993)
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where r is the air density; U is the mean wind velocity; B ¼ 2b is the bridge deck width;
k ¼ ob=U is the reduced frequency; o is the frequency of motion; and H�j , P�j and A�j ðj ¼

126Þ are the flutter derivatives that are functions of reduced frequency.
The governing matrix equation of bridge motions in terms of modal coordinates

excluding the buffeting forces is given by

M€qþ C_qþ Kq ¼
1

2
rU2 Asqþ

b

U
Ad _q

� �
, (5)

where M ¼ diag½mj�, C ¼ diag½2mjxsjosj� and K ¼ diag½mjo2
sj � are the generalized mass,

damping and stiffness matrices, respectively; mj ; xsj and osj are the jth modal mass,
damping ratio and frequency; As and Ad are the aerodynamic stiffness and damping
matrices, respectively, and their elements pertaining to the i and jth modes are given by

Asij ¼ ð2k2
ÞðH�4Ghihj

þH�6Ghipj
þ bH�3Ghiaj

þ P�6Gpihj
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Þ (7)
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and

Grisj
¼

Z
span

riðxÞsjðxÞdx

(where r; s ¼ h; p; aÞ are the modal shape integrals.
The modal frequencies and damping ratios as well as inter-modal coupling of the bridge

at a given wind velocity, with the contributions of aerodynamic stiffness and damping
terms, can be analyzed through the solution of the following complex eigenvalue problem
by setting qðtÞ ¼ q0e

lt:

ðl2Mþ lCþ KÞq0e
lt ¼ 1

2
rU2ðAs þ l̄AdÞq0e

lt, (8)

where l ¼ �xoþ io
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
; x and o are the damping ratio and frequency of the complex

modal branch of interest; l̄ ¼ lb=U ¼ ð�xþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Þk; and i ¼

ffiffiffiffiffiffiffi
�1
p

. The flutter
condition is determined by seeking the critical flutter velocity that corresponds to zero
damping.

3. Important structural modes for coupled bridge flutter

In order to reveal the control parameters which critically influence the development of inter-
modal coupling and the generation of aerodynamic damping, the bimodal coupled bridge
system is considered here. The aerodynamic stiffness and damping matrices are expressed as

As ¼ ð2k2
Þ

Bs11 Bs12

Bs21 Bs22

" #
; Ad ¼ ð2kÞ

Bd11 Bd12

Bd21 Bd22

" #
, (9)

where Bsij ¼ Asij=ð2k2
Þ and Bdij ¼ Adij=ð2kÞ ði; j ¼ 1; 2Þ.

Assuming the system damping ratio x is low, the solutions of equation (8) can be given in
terms of closed-form expressions (Chen and Kareem, 2006; Chen, 2007). The modal
frequency and damping ratio and the coupled motion of these two modes in the modal
branch with a higher frequency are determined as

o2 ¼ os2ð1þ m2Bs22 þ m1m2F
0
2 cosf

0
2Þ
�1=2, (10)
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0
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0
2, (11)

q10=q20 ¼ F2e
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where
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f02 ¼ tan�1ðBd21=Bs21Þ þ f2, (14)
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f2 ¼ tan�1ðBd12=Bs12Þ � tan�1f½2x̄1ðo2=ō1Þ�=½1� ðo2=ō1Þ
2
�g, (17)

ō1 ¼ os1½1� m1ðo=os1Þ
2Bs11�

1=2, (18)

x̄1 ¼ xs1ðos1=ō1Þ � 0:5m1ðo=ō1ÞBd11 � xðo=ō1Þ (19)

and m1 ¼ rb2=m1 and m2 ¼ rb2=m2 are mass parameters and other quantities have been
defined earlier.
Similarly, the closed-form solutions for the modal frequency and damping ratio of the

other modal branch can be expressed as

o1 ¼ os1ð1þ m1Bs11 þ m1m2F
0
1 cosf

0
1Þ
�1=2, (20)
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0
1 sinf

0
1, (21)

where
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q
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f01 ¼ tan�1ðBd12=Bs12Þ þ f1, (23)

Rd1 ¼ ðo1=ō2Þ
2
f½1� ðo1=ō2Þ

2
�2 þ ½2x̄2ðo1=ō2Þ�

2g�1=2, (24)

f1 ¼ tan�1ðBd21=Bs21Þ � tan�1f½2x̄2ðo1=ō2Þ�=½1� ðo1=ō2Þ
2
�g, (25)

ō2 ¼ os2½1� m2ðo=os2Þ
2Bs22�

1=2, (26)

x̄2 ¼ xs2ðos2=ō2Þ � 0:5m2ðo=ō2ÞBd22 � xðo=ō2Þ. (27)

It is noted based on numerical studies that the influence of coupled aerodynamic terms
on the modal frequencies of the coupled system are generally negligibly small. Therefore,
the modal frequencies of the coupled system can be approximated by the frequencies of the
corresponding uncoupled system as

o1 � ō1 � o10 ¼ os1ð1þ m1Bs11Þ
�1=2, (28)

o2 � ō2 � o20 ¼ os2ð1þ m2Bs22Þ
�1=2. (29)

From the preceding closed-form expressions, it is evident that the control parameters
influencing the inter-modal coupling of two modes, especially, the modal damping, are the
frequency ratio, damping ratios, mass parameters, coupled aerodynamic stiffness and
damping terms between these two modes. Obviously, understanding these control
parameters would help to develop a simple guideline for the selection of structural modes
needed in a flutter analysis. As the coupled bridge flutter corresponds to a coupled motion
of the fundamental torsional mode with other modes of the bridge deck motion, especially
the vertical bending modes, the ensuing discussion focuses on the inter-modal coupling
of the fundamental torsional mode with one vertical mode of the bridge deck motion.
The mode shapes of the vertical bending and torsional modes are given as h1ðxÞa0,
p1ðxÞ ¼ 0, a1ðxÞ ¼ 0; h2ðxÞ ¼ 0, p2ðxÞa0, a2ðxÞa0. When only the lift and pitching
moment caused by the vertical and torsional motions are considered, the aerodynamic
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matrices are expressed as

As ¼ ð2k2
Þ

H�4Gh1h1 bH�3Gh1a2

bA�4Gh1a2 b2A�3Ga2a2

" #
; Ad ¼ ð2kÞ

H�1Gh1h1 bH�2Gh1a2

bA�1Gh1a2 b2A�2Ga2a2

" #
. (30)

Clearly, a mode comprising large values of coupled aerodynamic stiffness and damping
terms with the fundamental torsional mode is most likely to be important for coupled
flutter. Furthermore, this coupling will be enhanced when its damping is low and its
frequency is close to the torsional modal frequency. For example, the fundamental vertical
bending mode often has higher similarity in mode shape with the fundamental torsional
mode, which leads to larger coupled aerodynamic terms between these two modes.
Therefore, the fundamental vertical bending mode is more likely to be coupled with the
torsional mode than other higher vertical bending modes. The higher vertical bending
modes have less similarity in their mode shapes with the fundamental torsional mode,
although their frequencies may be closer to the torsional modal frequency. In this context,
when the fundamental torsional mode is anti-symmetric, the corresponding fundamental
bending mode is referred to as the fundamental anti-symmetric mode. Otherwise, both are
referred to as fundamental symmetric modes. Some modes may become locally important
in a certain wind velocity region where their frequencies are close to the frequency of flutter
mode branch. Therefore, the modes that are most likely to be coupled with the
fundamental torsional mode should be considered in the flutter analysis.

Figs. 1 and 2 show the predicted modal frequencies and damping ratios of a suspension
bridge with a center span of nearly 2000m. The flutter derivatives were determined using
Theodorsen function. The structural damping ratio in each mode was assumed to be
0.0032. Analyses involving different combinations of structural modes were conducted
where modes 2, 8 and 11 are the first, second and third symmetric vertical bending modes,
mode 9 the second symmetric lateral bending mode, and mode 10 the first symmetric
torsional mode. Fig. 3 shows the shapes of these modes in terms of the bridge deck
deformations in three directions. For this suspension bridge, the fundamental vertical and
torsional modes are symmetric rather than anti-symmetric. For the common three-span
bridge with a symmetric layout, whether the fundamental mode will be symmetric or anti-
symmetric depends on the general layout of the cable system, e.g., type, side-to-main span
ratio, and supporting conditions (Gimsing, 1998). The bimodal flutter analysis that
involves modes 2 and 8 results in a critical flutter velocity of 67.9m/s, which is very close to
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69.3m/s predicted when involving first 15 modes. Considering the curve veering of the
frequency and damping loci of modal branches 9 and 10, the results involving multiple
modes are consistent with that of the bimodal coupled system (Chen and Kareem, 2003a).
Fig. 4 shows the flutter motion in terms of the participation of structural modes with

different amplitudes and phase angles. Fig. 5 shows the aerodynamic damping associated
with the inter-modal coupling at the critical flutter velocity of 68.9m/s when modes 2, 8, 9,
10 and 11 were considered in analysis. For instance, the term ð2; 2Þ represents the damping
when the bridge is vibrating in the single mode 2. The term ð2; 10Þ indicates the damping
attributed to the coupled terms of As and Ad relevant to modes 2 and 10. The summation
of all these terms plus structural damping equal to zero at critical flutter velocity.
Obviously, the two fundamental modes, modes 2 and 10, are most important modes in
coupled flutter in light of their dominant contributions to system damping. The
contributions of modes 9 and 10 to aerodynamic damping are relatively small and less
important to flutter. Their large amplitudes are due to their resonance to coupled motion
comprising modes 2 and 10 as their frequencies are close to the frequency of flutter motion.
It is emphasized that the clarification of the modal contributions to the aerodynamic
damping of the flutter mode branch instead of the flutter motion offers more accurate
information regarding the role played by each structural mode in the generation of coupled
flutter. It is also noted that the bimodal coupled flutter analysis that involves only the two
fundamental modes remains a useful tool for quickly evaluating bridge flutter performance
at preliminary design stage, specially for seeking best bridge deck sections with superior
aerodynamic characteristics. The results of this bridge example concerning the important
modes in coupled flutter can be readily interpreted by using the closed-form formulations.
4. Important flutter derivatives for coupled bridge flutter

For a bimodal coupled bridge system involving only the fundamental vertical and
torsional modes, when only the self-excited lift and pitching moment are considered, the
modal frequency and damping ratio of the torsional mode branch can be expressed as
follows (Chen and Kareem, 2006; Chen, 2007):

o2 ¼ os2ð1þ uA�3 þ muD2C0 cosc0Þ�1=2, (31)
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x2 ¼ xs2ðos2=o2Þ � 0:5uA�2 � 0:5muD2C0 sinc0, (32)

where

C0 ¼ Rd2f½ðH
�
3Þ

2
þ ðH�2Þ

2
�½ðA�4Þ

2
þ ðA�1Þ

2
�g1=2, (33)
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c0 ¼ tan�1ðA�1=A�4Þ þ tan�1ðH�2=H�3Þ � tan�1f½2x̄1ðo2=ō1Þ�=½1� ðo2=ō1Þ
2
�g, (34)

m ¼ rb2=m, u ¼ rb4=I , m ¼ m1=Gh1h1 and I ¼ m2=Ga2a2 ¼ mr2 are the effective mass and
polar moment of inertia per unit span, respectively; r is the radius of gyration of the cross-
section; D ¼ Gh1a2=ðGh1h1Ga2a2 Þ

1=2 is the similarity factor between the vertical and torsional
mode shapes.

In the case of well separated modal frequencies, the damping ratio of the torsional
modal branch can be further simplified as

x2 ¼ xs2ðos2=o20Þ � 0:5uA�2 þ 0:5muD2ðH�3A�1 þH�2A�4Þ=½1� ðo10=o20Þ
2
�, (35)

where o10 and o20 are the modal frequencies of the corresponding uncoupled system:

o10 ¼ os1ð1þ mH�4Þ
�1=2; o20 ¼ os2ð1þ uA�3Þ

�1=2. (36)

These closed-form expressions explicitly unveil the role of different force components on
the modal damping. Fig. 6 shows the role of aerodynamic forces on the damping ratios of
vertical and torsional modal branches of the aforementioned suspension bridge. The
uncoupled aerodynamic forces, i.e., the lift caused by vertical motion and the pitching
moment caused by torsion in terms of H�1, H�4, A�2 and A�3, result in positive damping to
both the vertical and torsional modal branches. The effects of the coupled forces, i.e., the
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lift caused by torsion and the pitching moment caused by vertical motion in terms of H�2,
H�3, A�1 and A�4, produce positive damping to the vertical modal branch but negative
damping to the torsional modal branch. In the case in which the negative aerodynamic
damping exceeds the positive aerodynamic and structural damping, the bridge becomes
negatively damped which leads to the occurrence of flutter instability. For general slender
bridge sections, H�3A�1 þH�2A�4 is dominated by the value of H�3A�1, and the flutter
derivatives H�3, A�1, A�2 and A�3 are most influential to coupled flutter.
Similar discussion on the role played by each flutter derivative can also be made when

the self-excited forces are modeled in terms of 18 flutter derivatives. For the
aforementioned bimodal coupled system involving the fundamental vertical and torsional
modes, the aerodynamic stiffness and damping terms become

As11 ¼ ð2k2
ÞH�4Gh1h1 ; Ad11 ¼ ð2kÞH�1Gh1h1 ,

As12 ¼ ð2k2
ÞðH�6Gh1p2 þ bH�3Gh1a2Þ; Ad12 ¼ ð2kÞðH�5Gh1p2 þ bH�2Gh1a2Þ,

As21 ¼ ð2k2
ÞðP�6Gh1p2 þ bA�4Gh1a2 Þ; Ad21 ¼ ð2kÞðP�5Gh1p2 þ bA�1Gh1a2Þ,

As22 ¼ ð2k2
ÞðP�4Gp2p2 þ bP�3Gp2a2 þ bA�6Gp2a2 þ b2A�3Ga2a2 Þ,

Ad22 ¼ ð2kÞðP�1Gp2p2 þ bP�2Gp2a2 þ bA�5Gp2a2 þ b2A�2Ga2a2 Þ. (37)

Obviously, the importance of additional flutter derivatives on bridge flutter depends on
their values and associated mode shape integrals. For instance, the contribution of P�1, P�2
and A�5 to Ad22 can be regarded as an equivalent change in A�2 given by P�1Gp2p2=
ðb2Ga2a2Þ þ P�2Gp2a2=ðbGa2a2Þ þ A�5Gp2a2=ðbGa2a2 Þ. While this change is generally small in
magnitude, it may have a markable effect on the critical flutter velocity when the value of
A�2 itself is low. Similar statements apply to other flutter derivatives.
To demonstrate the potential influence of drag force component on a coupled flutter, the

following parametric study on the aforementioned suspension bridge is carried out. The
modal integrals of the fundamental symmetric vertical and torsional modes are Gh1h1 ¼

1:1240eþ 03, Gh1p2 ¼ �0:3537eþ 03, bGh1a2 ¼ 1:1240eþ 03, Gp2p2 ¼ 0:1409eþ 03,
bGp2a2 ¼ �0:3220eþ 03 and b2Ga2a2 ¼ 0:9819eþ 03. It is assumed that the lift and
pitching moment caused by lateral motion are negligible, i.e., H�5 ¼ H�6 ¼ A�5 ¼ A�6 ¼ 0.
The self-excited drag force is estimated by invoking the quasi-steady theory with the flutter
derivatives given by (e.g., Chen and Kareem, 2002):

P�1 ¼ �2CD=k; P�2 ¼ 0:5ðC0D � CLÞ=k; P�3 ¼ C0D=k2; P�5 ¼ ðC
0
D � CLÞ=k (38)

and P�4 ¼ P�6 ¼ 0 with CD ¼ 0:3862, C0D ¼ 0:1200 and CL ¼ 0. In this parametric study,
three cases with different values of H�i and A�i ði ¼ 124Þ are considered. Case A: H�i and
A�i ði ¼ 124Þ are determined through Theoderson function; Case B: H�i ði ¼ 124Þ are the
values of Case A divided by 5, and A�2 and A�3 are the values of Case A divided by 10; and
Case C: H�i ði ¼ 124Þ, A�2 and A�3 are taken the values of Case A divided by 10.
Fig. 7 shows the equivalent changes in A�2 and A�3 as the results of considering P�i in the

modeling of the self-excited forces. Fig. 8 portrays the influence of P�i on the modal
frequencies and damping ratios at varying wind velocities. The effects of P�i ði ¼ 126Þ on
the critical flutter velocities are summarized in Table 1. The results of Cases B and C
demonstrate that the influence of P�i on the critical flutter velocity may become noticeable
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when their values are relatively large as compared to the traditional eight flutter
derivatives. The effect of P�1 is most significant which increases the modal damping and the
critical flutter velocity. On the other hand, the results of Case A illustrate that for bridges
with deck sections featured by large values of H�i , A�i ði ¼ 124Þ, the effects of P�i are
negligibly small.

The potential influence of the self-excited drag force on bridge flutter can be discussed in
light of the flutter characteristics featured by the rate of change in the modal damping of
the flutter modal branch with increasing wind velocity. In the case of a soft-type coupled
flutter where the level of damping is low and it changes slowly with increasing wind
velocity around the critical flutter velocity, even a little influence of additional self-excited
drag force on the modal damping may result in a markable change in the predicted critical
flutter velocity as indicated by Cases B and C. Consequently, careful modeling of the self-
excited forces with the consideration of drag force may become critical for an accurate
prediction of critical flutter velocity. The structural damping also becomes considerably
beneficial to this type of flutter. However, majority of bridges are considered to exhibit a
hard-type flutter characterized by modal damping that changes rapidly with increasing
wind velocity around the flutter onset as indicated by Case A. This type of flutter typically
associated with large values of self-excited lift and pitching moment caused by the vertical
and torsional motion of bridge deck. For this type of flutter, the structural damping and



ARTICLE IN PRESS

0 20 40 60 80 100 120
0.04

0.06

0.08

0.1

0.12

0.14

0.16

 Wind velocity (m/s)

 F
re

qu
en

cy
 (H

z)

w/o Pi
*

*w/ Pi

B (Case A) 

T (Case A) 

T (Cases B and C) 

B (Cases B and C) 

0 20 40 60 80 100 120
−0.01

0

0.01

0.02

0.03

0.04

0.05

 Wind velocity (m/s)

 D
am

pi
ng

 ra
tio

w/o Pi
*

w/ Pi
*

T (Case A) 

T (Case C) 

T (Case B) 

B (Case A) 

B (Case B) 

B (Case C) 

Fig. 8. Influence of P�i on the predicted modal frequencies and damping ratios: (a) modal frequencies; (b) modal

damping ratios.

Table 1

Effect of P�i on critical flutter velocity

w/o all P�i w/all P�i P�1 P�2 ;P
�
3 ;P
�
5 P�1;P

�
2 P�1, P�3 P�1, P�5

Structural modal damping ratios xs1 ¼ xs2 ¼ 0

Case A 66.9 67.4 67.7 67.6 67.4 67.4 67.4

Case B 61.4 70.6 73.3 57.9 71.5 72.9 72.7

Case C 90.3 99.6 103.2 86.1 101.2 102.3 102.5

Structural modal damping ratios xs1 ¼ xs2 ¼ 0:0032
Case A 67.9 67.9 68.6 67.3 68.5 68.3 68.3

Case B 75.4 80.6 82.8 73.1 81.5 82.3 82.2

Case C 102.1 108.2 111.6 98.8 110.0 111.4 111.8
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the additional damping caused by the self-excited drag force or auxiliary damping through
a tuned mass damper generally have a little effect on the critical flutter velocity (e.g., Chen
and Kareem, 2003b).
To better understand the interesting result of Akashi Kaikyo Bridge concerning the

effect of self-excited drag force on flutter, it is important to discuss the special feature of its
truss deck section. This section is featured by a large value of static drag coefficient, CD,
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and small values of the derivatives of static lift and pitching moment coefficients with
respect to angle of attack, C0L and C0M, as compared to a typical streamlined box section. In
responding to the small values of C0L and C0M, the values of H�i and A�i ði ¼ 124Þ are also
small. Under the action of strong winds, this bridge shows a larger lateral deck
deformation accompanied by a negative (nose-down) torsion. Around this statically
deformed position with a negative angle of attack, the self-excited drag force particularly
the component caused by torsional displacement in terms of P�3 becomes noticeable, which
is consistent with the large value of the derivative of drag coefficient with respect to angle
of attack, C0D. The effect of P�3 results in an additional decrease in the modal frequency and
the generation of negative aerodynamic damping which contribute to the occurrence of
coupled flutter.

5. Concluding remarks

A simple guideline for selecting the most important structural modes in a coupled flutter
analysis was presented in light of the control parameters which most influence the inter-
modal coupling and more importantly the aerodynamic damping. The fundamental
vertical bending and torsional modes are two dominant modes in a coupled flutter. The
participation of other modes depends on their modal frequencies and the similarity in their
mode shapes with the fundamental torsional mode.

The flutter derivatives H�3, A�1, A�2 and A�3 are the most important flutter derivatives that
characterize the flutter performance of the section. The potential influence of the drag force
on bridge flutter depends on the rate of change in modal damping with increasing wind
velocity. For a soft-type flutter, additional aerodynamic damping of the drag force may
have a markable influence on the critical flutter velocity. Consequently, careful modeling
of the self-excited forces with the consideration of drag force may become critical for an
accurate prediction of critical flutter velocity. However, a majority of bridges are
characterized by a hard-type flutter, for which the effect of drag force is negligibly small.
Therefore, inclusion of 18 flutter derivatives may not be necessarily important in these
cases in light of the minimal improvement in the flutter prediction.
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