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NON-GAUSSIAN PROCESSES

Abstract

by

Kurtis Robert Gurley

The assurance of the safety and reliability of structures subjected to environmental

loads requires the consideration of structural response due to severe loads, where the sta-

tistical description of input differs from Gaussian, and may lead to increased expected

damage. In the context of reliability analysis and fatigue, an accurate representation of

input forces in the extreme region is essential for meaningful results.

Among a host of techniques developed for the analysis of nonlinear structural

response, simulation methods are gaining popularity as computational efficiency

increases. Implementation of these methods require simulated load time histories with

specific statistical and spectral characteristics. When the system loads deviate signifi-

cantly from Gaussian, techniques for their accurate simulation must be available. This is

particularly significant when considering the extreme response of these systems, which

are sensitive to the tail region of the probabilistic description of input. 

This research concerns the development of new methods for the simulation of non-

Gaussian processes, geared toward the accurate representation of a wide range of extreme
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environmental conditions. Several techniques developed during the early stages of the

work are first considered, followed by the four main components of the dissertation. 

Methods are developed to model the tail region of the probability distribution of mea-

sured non-Gaussian data. These models are used to describe the desired non-Gaussian

characteristics for simulation of the measured data.

A simulation method is developed, referred to as spectral correction, which accurately

represents both the non-Gaussian characteristics, and the distribution of energy with

respect to frequency. This method is demonstrated to perform as well, and, in some cases,

better than existing methods of non-Gaussian simulation. Additionally, spectral correction

is shown to perform well in cases where the existing methods always fail.

Spectral correction is extended to simulate several correlated non-Gaussian processes

simultaneously (multi-variate simulation), and to simulate non-Gaussian realizations at

one location based on measurements at other locations (conditional simulation).

These tools will aid in the analysis of nonlinear structural systems and their compo-

nents by more accurately representing the fluctuating non-Gaussian loads to which they

are exposed.
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CHAPTER 1

INTRODUCTION, MOTIVATION, ORGANIZATION

1.1 Introduction

The assurance of the safety and reliability of structures subjected to environmental

loads requires the consideration of their extreme response. Of particular interest is the pre-

diction of structural response due to severe loads, where the statistical description of input

differs significantly from Gaussian, and may lead to increased expected damage and

higher fatigue effects. Additionally, nonlinear systems under either Gaussian or non-Gaus-

sian input will result in a non-Gaussian response. Thus, in the context of reliability analy-

sis for serviceability and / or survivability, an accurate probabilistic representation of input

forces and structural response in the extreme region is essential for arriving at meaningful

results. 

1.2 Motivation

Significant effort has been put forth in recent decades toward the solution of the

response of mechanical systems with uncertainty in the input, system parameters, or both.
1



A host of numerical techniques and analytical approximations have been developed to

address these problems (e.g. statistical linearization, quadratization, and cubicization, sto-

chastic averaging, perturbation, closure techniques), however, a large class of problems

are still only tractable through Monte Carlo Simulation-based methods [12]. These include

highly nonlinear and / or complex structures, and some forms of failure analysis. Monte

Carlo simulation remains the preferred tool for the validations of the various solution tech-

niques.

For probabilistic analysis of complex nonlinear systems, Monte Carlo simulation is

not a viable solution method unless the system input can be properly represented. In some

cases, non-Gaussian environmental input may appropriately be reduced to Gaussian loads

through the central limit theorem. An example is the integral effect of wind loads on over-

all building response. However, for cladding loads the Gaussian assumption is not valid

and loads remain strongly non-Gaussian, especially in the regions of separated flow.

In situations where the system response is a function of loads that deviate significantly

from Gaussian, techniques for the accurate simulation of these loads must be available in

order to apply Monte Carlo simulation. Examples include offshore structural system

response to severe non-Gaussian wave loading, cladding components of buildings sub-

jected to wind pressure in the separation zone, and structural response to hurricane winds.

This is particularly significant when considering the extreme response of these systems,

which are sensitive to the tail region of the probabilistic description of input. Small devia-

tions from the Gaussian distribution can result in significantly different failure characteris-

tics in the system. This research concerns the development of new robust methods for

simulation of non-Gaussian input.
2



Often times the non-Gaussian excitations acting on a structure cannot adequately be

modeled as a point process at a single location. Large structural systems may be subjected

to a number of spatially separated random loads not acting in perfect unison. In order to

simulate the response of complex nonlinear multiple input systems under extreme condi-

tions, the non-Gaussian loads must be simulated with the appropriate correlation among

components. The robust simulation techniques in this work are extended to include the

simulation of multiple correlated non-Gaussian realizations.

Simulated random signals at un-instrumented locations of a structure are often needed

in wind, wave and earthquake engineering. For example, malfunctioning equipment may

leave a hole in a data set or information may be lacking due to a limited number of instru-

ments. Dynamic analysis schemes which utilize integration techniques may require load-

ing time histories at a number of unmeasured locations. Conditional simulation methods

simulate realizations at desired locations conditioned on the measured data at other loca-

tions. New non-Gaussian conditional simulation methods are developed as an extension to

the uni- and multi-variate non-Gaussian simulation techniques.

1.3 Organization

Chapter 2 provides background material on existing simulation methods. These

include methods for uni- and multi-variate simulation of Gaussian and non-Gaussian pro-

cesses. Chapter 3 addresses new simulation methods that were developed for the special

case in which measured realizations of the input and / output are available. This work is

separated into two cases: Static methods for cases where only system input is measured,

and memory-based nonlinear system identification methods where system input and out-
3



put are available. The restrictive nature of these methods are the motivation for developing

new more robust simulation techniques.

Chapter 4 reviews two methods for modelling the probabilistic characteristics of non-

Gaussian data, and presents modifications which improve the match between the PDF

measured from data, and the PDF models. The results are applied as input to a new non-

Gaussian simulation technique introduced in chapter 5, and referred to as the Spectral Cor-

rection method. This technique is capable of reproducing a range of target probabilistic

and spectral characteristics equal to that of existing methods, and is also applicable in spe-

cial situation where existing methods fail. Chapter 6 extends spectral correction to the

simulation of multiple correlated realizations, and is shown to retain both the phase and

amplitude information between realizations. Chapter 7 further expands multi-variate spec-

tral correction to encompass conditional simulation, where missing non-Gaussian records

can be simulated based on the measured records at other locations.
4



CHAPTER 2

SIMULATION METHODS

2.1 Introduction

The Monte Carlo method of system response simulation is widely applied for complex

systems when alternative analytical methods are not applicable. This chapter presents

existing techniques for the simulation of random processes necessary for Monte Carlo

simulation methods. Gaussian, non-Gaussian, Uni-variate, multi-variate, stationary, and

nonstationary processes are considered. The simulation of processes conditioned on exist-

ing measured records is also presented. This background material will lead to the introduc-

tion of new simulation methods presented in later chapters.

2.2 Uni-variate Gaussian Simulation

2.2.1 Spectral Representation

The well known spectral representation is based on a discretized model of the target

power spectral density function for the desired process. The simulation consists of the

superposition of harmonics at discrete frequencies that possess either deterministic ampli-
5



tude and random phase (DARP), or random amplitude and random phase (RARP) [22, 67,

79, 81]. A zero mean stationary Gaussian realization  is simulated by RARP

, (2.1)

or DARP by [80, 86, 103]

. (2.2)

In Eq. 2.1,  and  are independent Gaussian random variables with values at equally

spaced discrete frequencies  separated by  with covariance

,     . (2.3)

 is the discrete approximation to the one sided power spectral density centered at

discrete frequency , and representing the desired process energy in the frequency range

.

In Eq. 2.2,  is the discrete amplitude given by 

, (2.4)

and  is the th realization of a uniformly distributed random variable from  to . The

superposition of harmonics with random phase produce a Gaussian process through the

central limit theorem.

Eq. 2.2 may also be an alternative expression of Eq. 2.1 through the transformation of

 and  to polar coordinates 

y t( )

y t( ) Ai ωitcos Bi ωitsin+( )
i 1=

n
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y t( ) Ci ωit φi+( )cos

i 1=

n
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Ai Bi

ωi ω∆

E Ai
2[ ] E Bi

2[ ] G ωi( ) ω∆= = E AiBi[ ] 0=

G ω i( )

ωi

ωi ω 2⁄∆– ω i ω 2⁄∆+,( )

Ci

Ci 2G ωi( ) ω∆=

φi i 0 2π

Ai Bi
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, and . (2.5)

 Grigoriu [22] has shown that RARP is Gaussian for any value of , while DARP

approaches Gaussian as  approaches infinity. Further, DARP is strongly ergodic, while

RARP is ergodic in the weak sense. Studies concerning the performance characteristics of

RARP simulation vs. DARP simulation have shown that both models are adequate for the

simulation of random ergodic processes under the condition that the number of frequen-

cies used is large, and that  is small enough to adequately model the desired power

spectral density.

2.2.2 Time Series Models

Among several time series methods, auto-regressive moving average (ARMA) is a

widely applied model which offers numerical efficiency and minimal computer storage.

An ARMA system models the value of a time series at an instant in time in terms of previ-

ous time steps and a white noise

, (2.6)

where  is a white noise vector, and  and  are constant coefficients. The problem to

be solved is both the appropriate values of the coefficients, and the level of dependence of

 on previous  and noise , known as optimal model order . 

There are several parameter estimation procedures developed in the literature [e.g. 15,

59, 63, 66, 70, 76], usually based on least squares or maximum likelihood approaches and

their variations. The objective function to minimize is an error measure between the

desired target power spectrum and the power spectrum resulting from the selected coeffi-

Ci Ai
2 Bi

2+= φi Bi Ai⁄( )atan–=

n

n

ω∆

y t( ) aky t k–( )
k 1=

p

∑– blu t l–( )
l 0=

q

∑+=

u t( ) ak bl

y t( ) y t k–( ) u t l–( ) p q,( )
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cients. One such function suggested by Mignolet and Spanos [70] is

, (2.7)

where 

, (2.8)

(2.9)

are used to represent  as the output of a discrete dynamic system with a transfer func-

tion

, (2.10)

and  is a decomposition of the target power spectrum

. (2.11)

The choice of optimal order is based on the desired level of accuracy in the spectral

representation. A commonly used procedure is found in Kozin [59], known as the infor-

mation criterion.

Variations of adaptations of ARMA models have been developed to address for spe-

cific issues in Monte Carlo simulation. For example, Li and Kareem [63] combine ARMA

methods and digital interpolation filters to adapt ARMA for multivariate wind load simu-

lation at very small time steps required by the time integration scheme used to estimate

system response to wind loads. Wave related processes are simulated using a host of para-

err
1

2ωc
--------- D eiωt( )Q ω( ) N eiωt( )–

2
ωd

ωc–

ωc

∫=

D z( ) akz
k–

k 0=

p

∑=

N z( ) bkz
l–

l 0=

q

∑=

y t( )

H z( ) D 1– ω( )N z( )=

Q ω( )

Gyy ω( ) Q* ω( )QT ω( )=
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metric models to efficiently represent input and intermediate processes in the simulation

of response [66].

Yamazaki and Shinozuka [102] have observed that although ARMA methods require

smaller storage space due to their recursive nature, longer samples are necessary to

achieve the same level of statistical accuracy as that of spectral methods. 

2.3 Multi-Variate Gaussian Simulation

A large class of problems in stochastic analysis require the generation of multiple ran-

dom processes which may correlated. The simulation of multivariate correlated processes

has been accomplished in the literature either through decomposition of the statistical

description of the correlation, the cross-correlation matrix in the time domain, or its fou-

rier transform, the cross-spectral matrix. The methods addressed are the spectral represen-

tation method, the covariance decomposition method, and ARMA methods.

2.3.1 Spectral Decomposition

The simulation of  correlated variates requires knowledge of the auto-spectrum of

each process, and the cross spectrum between each of the  variates. Each variate will

simulated as a time series realization through the assumption of ergodicity. A Cholesky

decomposition is used to represent the cross spectral matrix as [85, 100]

, (2.12)

M

M

G ω( )

G11 ω( ) G12 ω( ) ... G1M ω( )
G21 ω( ) G22 ω( ) ... G2M ω( )

: : : :

GM1 ω( ) GM2 ω( ) ... GMM ω( )

H ω( )H* ω( )= = =
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, (2.13)

where  is the auto-spectral density functions of the th variate, and 

(2.14)

is the cross spectral density between the th and th variates. Here  is the coherence

function describing the linear correlation between the th and th variates, and is gener-

ally complex valued to account for varying phase lag at different frequencies.

Analogous to the uni-variate RARP simulation of Eq. 2.1, two independent Gaussian

white noise vectors  are generated with mean and variance

, (2.15)

. (2.16)

The components of the Fourier series of the  processes are then constructed from

,   , (2.17)

or in matrix form

. (2.18)

An inverse FFT now gives the  components  [84].

An alternative is to express the decomposed spectral matrix in polar form 

H11 ω( ) 0 ... 0

H21 ω( ) H22 ω( ) ... 0
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, (2.19)

where

. (2.20)

The simulation through summation of cosines in the time domain is then

, (2.21)

where  are random uniformly distributed phase angles between  and . The FFT

may be applied to Eq. 2.21 for efficiency [12].

Deodatis [12] has recently introduced a variation of the above multivariate simulation

technique which improves upon the ergodic properties by providing samples that precisely

matches the temporal cross-correlation matrix. Li and Kareem [67] propose a digital filter-

ing scheme to synthesize segments of time series simulated with a multivariate FFT

method.

2.3.2 Covariance Matrix Decomposition

This method [e.g. 17, 50, 69, 102] transforms a set of independent Gaussian random

variables into a set of  correlated random variables  with a prescribed covariance

matrix

 . (2.22)
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The eigenvalues  and eigenvectors  of  are found by solving

. (2.23)

A set of uncorrelated processes are introduced by

, (2.24)

with an covariance matrix of

. (2.25)

A simulation of , denoted  is then achieved by simulating first a set on independent

processes  and inverting Eq. 2.24

. (2.26)

2.3.3 Time Series Models

The extension of ARMA models for multivariate simulation is accomplished directly

by rewriting Eq. 2.6 using vectors  to replace the scalar components of the simu-

lated and white noise processes, and replacing the two sets of parameter vectors 

with  matrices

, (2.27)

where  is the total number of variates. The minimization of the error between the cross

spectral matrix and the target cross spectral matrix is again the criterion to determine the

order  and the value of the parameter matrices [20, 59, 63, 66, 70].

Λ Φ C

CΦ ΦΛ=

Z ΦTY=

CZ E Z E Z[ ]–( ) Z E Z[ ]–( )[ ] Λ= =

Y Ys

Zs

Ys ΦT( )
1–
Zs=

y t( ) u t( ),

ak bk,

MxM

y t( ) aky t k–( )
k 1=

p

∑– blu t l–( )
l 0=

q

∑+=
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2.4 Non-Stationary Gaussian Simulation

Time dependent amplitude and frequency characteristics are sometimes observed in

measured environmental loads. A typical example of which is seismic excitation. A num-

ber of approaches are available to include evolutionary properties in simulation.

2.4.1 Spectral Representation

Evolutionary power spectra are included in the multi-variate simulation by modulating

the target power spectral matrix with a time frequency function , where the sub-

script  indicates the th variate [75]. The spectral components in a multi-variate simula-

tion are represented by

, (2.28)

. (2.29)

The components of the decomposed spectral matrix are now a function of time, ,

and Eq. 2.21 is now written [13]

. (2.30)

The efficient FFT technique cannot be applied to non-stationary simulation in Eq. 2.30

due to the time/frequency dependence of . However, a special case of non-

stationary process which is uniformly modulated over all frequencies reduces  to

. In this case the non-stationary process can be represented by a stationary processes

multiplied with a uniform modulator
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i i
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Gik ω t,( ) Ai ω t,( )Ak ω t,( ) Gii ω( )Gkk ω( )γik ω( )=
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l 1=

N

∑
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M

∑=

Hik l ω t,( )∆( )

Ai ω t,( )

Ai t( )
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, (2.31)

where  is a stationary simulation generated using a standard spectral method and

employing FFT. 

Li and Kareem [65] also used the modulated stationary time series concept, where a

nonstationary process is expressed as a sum of correlated stationary processes modulated

by a deterministic time function. A later study presented a highly efficient multivariate

nonstationary simulation method combining spectral representation and digital filtering

techniques [68].

2.4.2 Time Series and Wavelet Methods

ARMA methods have also been applied to the simulation of non-stationary processes

[15, 19, 59, 92]. In this case the parameters are time dependent and must be solved for at

each time step using the same methods as with the stationary technique (see section 2.2.2).

This can become time consuming for multivariate processes, where the two  matri-

ces of parameters  must be found for every time step. This is not necessarily rea-

son to abandon ARMA for non-stationary simulation, as this class of random process is

typically of short duration.

Signal decomposition using a class of localized basis functions, or wavelets, has

become a popular new method of nonstationary signal analysis. Gurley and Kareem [26]

have applied wavelet decomposition to the simulation of nonstationary signals through a

stochastic manipulation of the decomposition coefficients.

yi t( ) Ai t( )yi
s t( )=

yi
s

t( )

MxM

a t( ) b t( ),
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2.5 Gaussian Conditional Simulation Methods

The problem of conditional simulation is how to simulate one or more sample records

at unmeasured spatial locations conditioned by recorded data at a set of measured loca-

tions, given a known covariance between measured and desired processes. Conditional

simulation generates time histories at new locations when one or more time series are

known, and extends existing records beyond the total sampling time for cases where con-

ditioning time series are a sub-interval of the desired full length. 

Fundamentally, two approaches have been introduced in which the simulation is either

based on a linear estimation or kriging [60], or on a conditional probability density func-

tion (CPDF) [48]. Shinozuka and Zhang [87], show that these methods are equivalent in

their final form, although the methodology is different in their development. 

This section summarizes the kriging and CPDF methods, and also shows that the krig-

ing method has been developed using probability theory [8]. This development further

demonstrates the equivalence of kriging and CPDF.

2.5.1 Kriging Method (Best Linear Unbiased Estimator)

Kriging is a method developed first by Krige [60] to linearly interpolate a sample field

based on observed data. Consider an  component random vector  with mean  and

covariance matrix . We have realizations of the first  variates, while realizations of

the th variate are to be conditionally simulated The best linear unbiased estimate of an

unknown stochastic variate based on the known variates is expressed as

, (2.32)

n V µ

C n 1–

n

Vn
e λinVi

i 1=

n 1–

∑=
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where  are the kriging weights which provide an unbiased estimate if 

, (2.33)

and a best linear estimate if

(2.34)

is a minimum, where  is the correlation between known variates,  is the correlation

between known the unknown variates, and  is the correlation of the unknown variate.

Equations 2.33 and 2.34 are used to solve for the kriging weights in Eq. 2.32.

The Lagrange multiplier method is used to create a Hamiltonian based on Eq. 2.34

under the constraint of Eq. 2.33. This provides the kriging weights by solving

. (2.35)

The best linear unbiased estimator  is applied to simulation by using it in conjunc-

tion with its associated error between the exact and interpolated variate

. (2.36)

where  is the error 

. (2.37)

In terms of a single realization,  is not available, since  is the unknown

process to be simulated. An independent set of realizations for both the known and

unknown processes, i.e. , may be simulated using unconditional Gaussian

multivariate simulation techniques and the covariance matrix . The error  is available
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through knowledge of  and the calculation of , and may be used to replace the

unknown error in a realization of Eq. 2.36. This requires the statistical independence of the

estimator and the error, which holds for Gaussian processes since the best linear estimator

and its error are orthogonal [47]. The method is thus restricted to the conditional simula-

tion of Gaussian processes to validate the replacement of the error with the simulation .

A conditional simulation is then represented by

, (2.38)

where

 , (2.39)

, (2.40)

and  are solved for from

. (2.41)

Hoshiya [37-40] proposed that without loss of generality, the simulation if  and eval-

uation of  may be avoided by directly simulating  in Eq. 2.38. By virtue of the krig-

ing estimate being unbiased, 

. (2.42)

If the total number of variates is , where  are measured records, and

 are the unknown variates, the error variance between any two unknown loca-

tions  is [38]
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. (2.43)

A simulation of the error using these statistics replaces the simulation of  used

for  in Eq. 2.38. This is referred to as the modified kriging method.

For numerical efficiency, Hoshiya further suggests a step by step method of simulating

one unknown process at a time, adding it to the known field for simulation of the next

unknown process, rather than directly simulating all unknown processes at once. In this

manner, the Cholesky or modal decomposition necessary for simulation of a multivariate

error field can be avoided. The overall improvement in efficiency is only relevant when

there are a large number of unknown locations to simulate.

Vanmarcke and Fenton [97] developed a non-stationary Gaussian conditional simula-

tion technique by synthesizing segments of conditionally simulated realizations. Each seg-

ment is assumed stationary, with varying spectral contents between segments. The

segments are then pieced together, the end of one with the start of the next, using a linear

combination of the two segments near the transition. The complete synthesized realization

is then conditioned on know records, with spectral contents which evolve from the first to

final segments.

2.5.2 Conditional Probability Density Function Method (CPDF)

2.5.2.1 Development

This method was presented in its current form by Kameda and Morikawa [48]. As in

the kriging method above, it will be presented in terms of a vector stochastic process

, where the th component is to be simulated, and realizations

of the  components are available through measurements. The  component joint
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probability density for  with mean  and covariance matrix  is

. (2.44)

The  joint density function may be obtained as a marginal density function by inte-

grating Eq. 2.44

, (2.45)

where  are elements of the matrix . Now with  and ,

the conditional probability of  is

, (2.46)

where 
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. (2.49)

Application of Eq. 2.46 then provides the conditional simulation using a Gaussian distri-

bution whose mean and variance have been modified to account for the values of the

known realizations.

When the total number of variates is , where  are measured records, and

 are the unknown variates, knowledge of the variance matrix  allows the

conditional simulation of the unknown variates using modal or cholesky decomposition

methods. Alternatively, as in the kriging method,  may first be simulated based on

. The dimensions of  are then expanded by augmenting with , and then sim-

ulation of  is performed using the  known realizations. This continues until the

final desired record  is simulation based on the  known records.

Kameda and Morikawa [48] present this method in the frequency domain by deriving

expressions for the conditional probability of the Fourier coefficients based on the Fourier

coefficients of the known records. The derivation is based on the joint Gaussian distribu-

tion of Fourier coefficients, and is thus restricted to the conditional simulation of Gaussian

processes.

2.5.2.2 Equivalence with Kriging

Referring to Eqs. 2.47-2.48, the CPDF technique is viewed as the simulation of a

multi-normal probability density function

. (2.50)

The mean and variance are seen to be dependent on the parameter , which is equivalent
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to the kriging weights (from comparison of Eqs. 2.49 and 2.41).

The form of the kriging simulation in Eq. 2.38 may be written using Eqs. 2.39, 2.40 as

. (2.51)

Taking expectations and using Eq. 2.43, the kriging method may be represented as

, (2.52)

which is the same expression in Eq. 2.50 for CPDF conditional simulation [87].

It has been suggested that although the methods are equivalent, the CPDF method is

preferable due its basis in probability theory. The next section will show that kriging has

been previously derived in an equivalent form to Eqs. 2.38-2.41 using probability theory

in place of the concept of the best linear unbiased estimator in Eqs. 2.32-2.36.

2.5.3 A Probability Based Derivation of Kriging

Hoshiya’s work on the modified conditional simulation method [38] is based on the

early kriging work [e.g. 60]. Borgman [7] also provides a conditional simulation tech-

nique, following a conditional probability derivation in Anderson [3]. Borgman makes no

reference to kriging, but the approach is equivalent, and its probabilistic approach nicely

bridges the kriging and CPDF methods.

Consider again an  component random vector  with mean  and covariance matrix

.  is a multivariate Gaussian random vector if its probability density follows

. (2.53)

The shorthand notation of which is
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. (2.54)

Suppose that the multinormal variate  is partitioned into a pair of random vectors 

and . Let the multi-variate normal distribution of these variables be denoted 

, (2.55)

where

, (2.56)

, (2.57)

, (2.58)

, (2.59)

. (2.60)

If a sample of  is measured and denoted as , then it is the conditional simulation

of  based on the measured record  that is desired. The conditional probability law for

 given  is multivariate normal of the form

, (2.61)

which is equivalent to the CPDF method in Eqs. 2.47, 2.48, and the kriging method in Eqs.

2.38-2.41, 2.43.

• Proof for Eq. 2.61 [3]
We wish to transform  into two sub-vectors  which are independent in order to

easily find their joint density . Let  be a function of the two correlated

sub-vectors  from Eq. 2.55
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, (2.62)

. (2.63)

 is chosen such that  and  are uncorrelated by satisfying

. (2.64)

, (2.65)

, (2.66)

. (2.67)

Thus, 

. (2.68)

Substitution of Eq. 2.68 into Eq. 2.63 and taking expectations gives the mean and

covariance matrices for 

, (2.69)

. (2.70)

The joint probability density function of  and  is

, expanded as

. (2.71)

The joint distribution of  can now be transformed from  by substituting

 and  and using the jacobian (the identity matrix). The condi-

tional density in Eq. 2.61 is then the quotient of  and  [3].
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• end proof
 Using Eq. 2.61, a conditional simulation is provided by 

, (2.72)

where  are unconditionally simulated known and unknown variates, respectively,

and  is the known measured variate [8]. Taking the appropriate expected values of Eq.

2.72 lead to the mean and covariance in Eq. 2.61.

2.5.3.1 Equivalence with Kriging

Equations 2.63 and 2.68 can be seen as parallel to Eqs. 2.32, 2.35, and 2.36, where 

is analogous to the kriging weights . In this case,  in Eq. 2.63 represents the error 

in Eq. 2.36, and has an equivalent covariance in Eq. 2.61 to that of the error in Eq. 2.43.

Equation 2.72 can be seen then to be exactly Eq. 2.38 when using the original kriging sim-

ulation, i.e. equivalent to

, (2.73)

where

 , and , and . (2.74)

CPDF is often preferred for its basis on probability theory rather than a best linear

unbiased estimate, but it is shown above that kriging can alternatively be derived based on

probability theory.
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2.5.4 Frequency Domain Gaussian Conditional Simulation

Conditional simulation can be applied in either the time or frequency domain. The sec-

tion addresses frequency domain simulation, which is applicable for generating realiza-

tions of time series at unmeasured locations  based measured records at other spatial

locations . It is assumed that the spectral density matrix between the  known

and the  unknown locations is available. 

Referring to the simulation Eq. 2.72, it is convenient now to change the notation to

explicitly denote the known and unknown components. Equation 2.72 is replaced with

, (2.75)

where now the previous subscript 1 used to denote the known variates is replaced with ,

and the subscript 2 used to denote unknown variates is replaced with . 

The covariance matrices  and  are represented in the frequency domain as

, (2.76)

and

. (2.77)

Where the notation  is maintained to correspond with Eq. 2.72. The submatrices in Eqs.

2.76 and 2.77 are composed of
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, (2.78)

and

. (2.79)

The frequency domain components of the know and unknown variates are represented by

,   ,   ,   . (2.80)

Equation 2.75 is now applied to conditionally simulate the Fourier components of the

unknown processes

. (2.81)

2.5.5 Time Domain Gaussian Conditional Simulation

The time domain application of conditional simulation is applied here to extend the

length of a measured process. The measured realization  consists of discrete time

components , and the unknown realization  is a continuation of the

known realization over time . The simulated realizations  in Eq. 2.75 now

consist of a simulation  based on the measured realization  that

extends to time . This single simulated realization is partitioned into the know and

unknown portions

 . (2.82)

The covariance matrix now consists of elements from the covariance vector
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, (2.83)

. (2.84)

where the elements  are from either the Fourier transform of the power spectrum mea-

sured from the known realization , or a temporal calculation of the covariance

. (2.85)

The time domain simulation of an extension to the known record  is given by

. (2.86)

2.6 Non-Gaussian Simulation Methods: Introduction

Non-Gaussian environmental input often may appropriately be reduced to Gaussian

loads through the central limit theorem, e.g. integral loads on a building under wind loads.

However, for cladding loads the Gaussian assumption is not valid and loads remain

strongly non-Gaussian, especially in the regions of separated flow.

In situations where the system response is a function of loads that deviate significantly

from Gaussian, techniques for the accurate simulation of these loads must be available in

order to apply Monte Carlo simulation. Examples include offshore structural system
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response to severe non-Gaussian wave loading, cladding components of buildings sub-

jected to wind pressure in the separation zone, and structural response to hurricane winds.

This is particularly significant when considering the extreme response of these systems,

which are sensitive to the tail region of the probabilistic description of input. Small devia-

tions from the Gaussian distribution can result in significantly different failure characteris-

tics in the system. 

The simulation of Gaussian processes has been widely explored for several decades,

while non-Gaussian simulation has not been as widely addressed. This section presents

several existing methods for simulating non-Gaussian uni-variate and multi-variate pro-

cesses. 

2.7 Tailored Phase Concepts

Specific characteristics in a random signal may be generated through the manipulation

of the random phase, called phase tailoring [34]. This method has been used, for example,

in the generation of large steep waves in an otherwise calm sea state [27]. 

Methods specifically developed for the simulation of non-Gaussian wind pressure

with large excursion events can be found in Seong and Peterka [78]. Central to this tech-

nique is the use of the Fourier representation of the desired signal to separate the effects of

the Fourier coefficient magnitudes from those of the phase. Exponential random numbers

are used to generate a signal with the desired non-Gaussian characteristics. The phase

from this signal is then applied to the Fourier magnitudes described by the desired power

spectrum.

The phase is extracted from a skeleton signal generated through an exponential distri-
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bution  combined with an autoregressive term weighted by a parameter 

. (2.87)

The phase from  is extracted through Fourier transform, and combined with the Fou-

rier coefficient magnitude defined by the target power spectrum to simulate the final pro-

cess . The parameter  is chosen by iteratively simulating , and

minimizing the mean square error between the skewness and kurtosis of  and the tar-

get values. A uniform phase shift  is added to the retrieved phase before imple-

mentation with the desired spectral magnitude.

The range of skewness and kurtosis values that can be matched simultaneously is lim-

ited, which restricts the method to a small class of processes representative of pressure in

certain regions of flow separation.

2.8 Adaptive Correlation Methods

Typically, the goal of non-Gaussian simulation is to generate realizations with speci-

fied spectral and probabilistic characteristics. Various methods have been developed

which are design to produce realizations which match a target power spectrum and a target

PDF.

A common form of non-Gaussian simulation applies a nonlinear static transformation

to a Gaussian signal generated using standard techniques including spectral methods,

ARMA models, and filtered white noise. The nonlinear transformation is selected to

match a target PDF, and distorts the auto-correlation and the associated power spectrum

used to define the Gaussian process. In order to match a target PSD, the methods presented
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below account for the transformation distortion using both numerical and analytical

means. 

Additional methods are available [34], and are presented with several new simulation

techniques in chapter 3.

2.8.1 Numerical Adjustment of Gaussian Auto-correlation

Yamazaki and Shinozuka [101] developed an iterative method which operates on a

Gaussian simulation with a nonlinear static transformation. After each iteration, the distor-

tion of the power spectrum is numerically compensated by updating the spectrum used to

create the Gaussian process, referred to as the design spectrum. Sufficient iteration pro-

duces a non-Gaussian signal , which matches both the target spectrum  and the target

PDF. A more detailed account of the method follows.

A Gaussian signal  is generated based on an initial design spectrum . This sig-

nal is then transformed to a signal  with the desired PDF using

, (2.88)

where  is the Gaussian cumulative distribution function, and  is the target non-

Gaussian cumulative distribution function. The resulting transformed process  no longer

matches the design spectrum . The iteration numerically updates the design spectrum

used to generate , reusing the same random phase, such that the final design spectrum

produces a signal  that transforms to a realization of  which matches the target power

spectrum . At each iteration, , an updated design spectrum  is determined

based on the target spectrum , the previous iteration’s design spectrum, , and the

resulting spectrum  of the transformed process  by
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. (2.89)

A schematic of this algorithm is shown in Fig. 2.1. It can be seen in the diagram that

the iterations continue until the error between the target and output spectra is acceptable. 

This technique works well under circumstances where there exists a design spectrum

capable of producing the target spectrum after transformation through Eq. 2.88. However,

cases exist where the required transformation cannot produce the target spectrum, regard-

less of the design spectrum. 
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?
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FIGURE 2.1 Schematic of the Yamazaki and Shinozuka method for iterative generation 
of non-Gaussian fields [101].
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Consider the normalized auto-correlation function for the Gaussian process  and

non-Gaussian process , defined by

, , (2.90)

,  . (2.91)

The Gaussian correlation coefficient ranges from -1 to 1, while the correlation coefficient

for the transformed process may not cover that range. If the target spectrum has a corre-

sponding auto-correlation function  that spans a restricted range for , then no

suitable design spectrum exists [23]. 

Figure 2.2 below demonstrates the relationship between  and  for several

examples of non-Gaussian static transformation. The examples include an exponential, a

third order polynomial, a hermite polynomial, and a cubic transformation. Note that only

symmetric transforms have a corresponding auto-correlation function  which spans

the entire possible range from -1 to 1.    

2.8.1.1 Example Simulation: Wave Elevation

The Yamazaki and Shinozuka technique is illustrated in Fig. 2.3. It is desired to gener-

ate a non-Gaussian ocean wave process with a target spectrum  described by a Jonswap

spectrum shown in Fig. 2.4 along with its corresponding normalized auto-correlation

function. The first two plots in Fig. 2.3 are views of the target spectrum in black laid over

the measured target spectrum in gray. The view on a linear scale shows an acceptable fit in

the peak frequency range. The semi-log scale demonstrates that the method is unable to

match the low frequency range of the target spectrum, instead producing a power spec-
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trum with more energy in the low frequency range. The third plot in Fig. 2.3 is the target

pdf and histogram of the simulation.

The normalized correlation function  corresponding to  contains values close

to -1, as seen in Fig. 2.4. This is characteristic of a process with low damping, since the

exponential decay of  is very gradual. The nonlinear transformation cannot produce a

process with this level of damping, leading to the inflated low frequency region of the

power spectrum, in a sense increasing the bandwidth of the power spectrum.       

2.8.1.2 Restrictions

Yamazaki and Shinozuka’s method [101] is intended for use with a user supplied, ana-

lytical, and invertible target non-Gaussian PDF. The paper includes an example with a tar-
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get auto-correlation  described by an exponential function. The range of values for the

exponential function avoids problems associated with possibly unobtainable values of

 through transformation. The example in their paper illustrates that the method works

well under these conditions. As shown in section 2.8.1.1, this may be interpreted as stating

that the Yamazaki and Shinozuka method is appropriate for broad banded target spectra

representing well damped processes.

In cases where the desired non-Gaussian simulation is based on observations of mea-
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sured data, or cases where the known analytical PDF is not invertible, numerical mapping

can be employed as in the previous example. However, this may lead to inaccurate repre-

sentation of the extremes. Thus, there is considerable advantage to developing an approxi-

mate analytical PDF model based on a polynomial transformation, which is easily applied

to the Gaussian simulation.

Polynomial transformations also provide an analytical expression for  in terms of

 [2, 23, 32, 92, 98]. This can be determined through the properties of the expected

values of Gaussian processes and the characteristic function, and may be used to deter-

mine analytically an appropriate initial design spectrum  to simulate the Gaussian pro-

cess before transformation. This approach is used in the next section.
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2.8.2 Analytical Adaptation of Gaussian Auto-correlation Function

Ammon [2] also applies a nonlinear static transformation to a simulated Gaussian real-

ization to achieve a non-Gaussian realization. In this work the Gaussian process is simu-

lated based on an appropriate design spectrum using an ARMA representation, and a

polynomial transformation is then applied. The appropriate design spectrum is analytically

derived in terms of the target spectrum for the output process. The method is divided into

three sections.

First the coefficients of the polynomial transformation are determined such that the

resulting non-Gaussian PDF has the desired characteristics. The coefficients  are sought

from the representation of the non-Gaussian variate  in terms of the Gaussian process 

by

, (2.92)

where  is the desired order of the polynomial. An objective function expressed in terms

of  and the desired non-Gaussian characteristics is minimized to solve for the coeffi-

cients.

These coefficients  of the polynomial transformation define the relationship between

the non-Gaussian auto-correlation function  and the Gaussian auto-correlation func-

tion  through Eq. 2.91. The Fourier transform of this relation provides an expression

for the non-Gaussian PSD  in terms of the Gaussian design spectrum . This

relation is inverted to express the design spectrum in terms of the non-Gaussian spectrum.

Setting the non-Gaussian PSD  to the target spectrum  then provides the

design spectrum  that is used to generate a realization of the Gaussian process ,
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such that transformation of  using Eq. 2.92 produces a realization of  whose PSD

matches the target spectrum .

The third and final stage of the algorithm is to select the appropriate ARMA model

order and coefficients to produce a Gaussian realization  with the design PSD deter-

mined in the previous step. The ARMA model may easily be replaced with other Gaussian

simulation methods, as long as the design spectrum is matched in the simulation.

This method is designed such that the target spectrum is matched through an ensemble

of realizations of , rather than matching individual realizations as is the case for

Yamazaki and Shinozuka. The limitations of its application are the same as that of

Yamazaki and Shinozuka’s method. The design spectrum is derived analytically rather

than numerically, but is still restrained by the range of auto-correlation values permissible

by the static transformation. Certain combinations of target non-Gaussian PDFs and target

spectra cannot be realized [23].

2.9 Summary of Other Methods

A variety of other methods exist for the simulation of non-Gaussian realizations.

These include filtered poisson processes, ARMA models with non-white noise input, and

alpha-stable processes. Each of these are briefly addressed for completeness. Chapter 3

will present several new methods developed during this study.

2.9.1 Filtered Poisson Processes

A filtered poisson process can be viewed as the response of a linear filter subjected to

a train of random pulses arriving at random times [23]. Poirion [74] presents a model

y x

GT ω( )
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which achieves the desired power spectrum through the shape function describing the lin-

ear filter and the intensity of the poisson arrival times. Non-Gaussian characteristics are

controlled by replacing the Gaussian pulse magnitude suggested by Grigoriu [23] with a

non-Gaussian magnitude. The generation of realizations of the non-Gaussian magnitude

variate can be complex. Thus, filtered poisson process simulation can be a great deal more

cumbersome and less intuitive than spectral based methods.

2.9.2 Time Series Methods

Auto regressive moving average models have also been adapted to the simulation of

non-Gaussian processes. A straightforward application was demonstrated in section 2.8.2,

where the ARMA model is employed to generate a Gaussian realization matching a design

power spectrum. In this case the ARMA model is not directly involved in the generation

of the non-Gaussian signal, which depends entirely on the nonlinear static transformation

applied to the Gaussian realization. 

ARMA models which produce a non-Gaussian signal directly without transformation

of the output have also been addressed by replacing the driver Gaussian white noise with

non-Gaussian noise [e.g. 23, 62]. The ARMA model is rewritten now as

, (2.93)

where  represents the non-Gaussian driver noise, and  and  are the AR and MA

coefficients, respectively.

The non-Gaussian PDF and associated higher order statistics of the simulation will be

a function of the distribution of the non-Gaussian driver noise, the AR coefficients, and
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the MA coefficients. For low order ARMA models, recursion formulas may be used to

derive relatively simple expressions relating the higher order output statistics with the

model parameters and statistics of the driver noise. However, the problem of finding the

probabilistic characteristics of the input driver noise corresponding to the target higher

moments of the output is not guaranteed to have a solution, or be unique if a solution

exists [23]. Additionally, the output PSD will also be a function of the driver noise distri-

bution, complicating the solution procedure for identifying the AR and MA parameters. 

The selection of model order, determination of the an appropriate non-Gaussian driver

noise, and the solution for the ARMA coefficients to satisfy a target PSD can be rather

complex. Although non-Gaussian ARMA models have been developed for specific prob-

lems of interest, its applicability as a general simulation method for non-Gaussian time

series has yet to be demonstrated.

2.9.3 Alpha Stable Processes

Alpha stable processes are defined by a family of distributions described by the char-

acteristic function

, (2.94)

, (2.95)

where  are the stability index, scale, skewness, and shift parameters that describe

the distribution type, range of likely values, departure from a symmetric distribution, and

shift from zero, respectively. These constants are real, and restricted by, , ,

. Closed form probability density functions are only available for a few special
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cases, for example,  gives the Gaussian distribution.

The distinct characteristic of alpha stable processes is that, except when ,

moments of order two and higher are infinite. Moments can be defined in terms of deriva-

tives of the characteristic function by

. (2.96)

It can be shown that the derivatives of order 2 and higher of the characteristic function in

Eq. 2.94 are infinite at , leading directly to the infinite moments of order 2 and

higher. This is the result of the restriction on alpha .

Figure 2.5 below shows several examples of the PDFs of alpha stable processes cre-

ated using the Fourier transform relationship between the PDF and characteristic function.

Each plot represents a collection PDFs with  values from 0.2 to 2 and fixed skewness

parameter . This parameter is varied with each graph clockwise, from a symmetric PDF

 in the top left, to the limiting skewness value  in the lower left. Each figure

contains a Gaussian distribution in black for comparison with the alpha stable PDFs in

gray. The tails of this family of distributions are higher than Gaussian, increase as 

decreases, and approach zero asymptotically. Significant weight remains in the tails even

at a range far removed from the mean. Numerical integration of higher moments in the

examples provided in Fig. 2.5 do not converge as the range of integration is extended.   

It is relatively simple to generate sample realizations of an alpha stable process using a

transformation of variables of both uniform and exponential distributions [see 23]. A time

series realization can then be simulated as a filter response to these independent alpha sta-

ble realizations. The higher order moments are of course measurable from a finite time
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series realizations. However, as the length of the realization increases, estimated moments

higher than order one continually increase, and do not converge with realization length.

Alpha stable processes have found application in the simulation of short duration pro-

cesses with very heavy tails, typical of processes with small random deviations from the

mean and rare very large excursions. While alpha stable processes are suitable for a class
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FIGURE 2.5 Examples of alpha stable distributions with varying alpha within each figure, and 
varying skewness between figures.
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of non-Gaussian processes, they are not generally applicable to a wide range of non-Gaus-

sian processes characterized by well defined higher moments over long time durations.

2.10 Non-Gaussian Conditional Simulation

Conditional simulation methods for multivariate Gaussian processes were presented in

section 2.5. A natural extension of conditional simulation is to include non-Gaussian

applications, which to date has received little attention. 

Yamazaki and Shinozuka’s method [101] was extended to the simulation of condi-

tional non-Gaussian processes by Elishakoff et al. [18]. This iterative technique combines

the unconditional multivariate non-Gaussian simulation technique in series with the Gaus-

sian kriging conditional simulation method (section 2.5.1). 

A schematic of this procedure is shown in Fig. 2.6. The method begins with the trans-

formation of the known non-Gaussian field to a Gaussian field using CDF transformation

(an inverse application of Eq. 2.88). The unmeasured locations are simulated conditioned

on these known Gaussian realizations based on a design correlation function which is ini-

tially set to the final target correlation .

After Gaussian conditional simulation, the simulated locations are transformed back to

the non-Gaussian domain, again using CDF transformation (Eq. 2.88). The error between

the target correlation and the measured correlation distorted by the transformation is used

to alter the design correlation for the Gaussian conditional simulation on the next iteration

by

, (2.97)

where  indicates the current iteration, and  is the next iteration. This continues until

R
D

R
xT=

RD i 1+( ) RD i( ) RD i( )+ RxT Rx–( )=

i i 1+
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the error between desired and resulting non-Gaussian correlation is acceptable. 

As is the case in the Yamazaki and Shinozuka paper [101], the authors demonstrate the

applicability of the method through an example process characterized by an exponential

auto-correlation, which avoids the difficulties associated with lightly damped (narrow

banded) processes. The shortcomings of this method are identical to those of the Yamazaki

and Shinozuka method, outlined in section 2.8.1. 
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FIGURE 2.6 Schematic of Elishakoff’s conditional simulation of non-Gaussian processes [18].
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2.11 Concluding Remarks

This chapter presents the necessary background on the simulation of Gaussian and

non-Gaussian processes, and includes extensions to multi-variate simulation and condi-

tional simulation. Many of the non-Gaussian simulation methods are restricted for use in

special applications, and the more general methods have their own set of limitations.

The original contributions presented in later chapters are concerned with new, more

robust techniques for simulating non-Gaussian multivariate processes, and the extension

of these techniques to non-Gaussian conditional simulation. These new methods are

intended for a wide variety of applications, and are designed to overcome the limitations

of the existing general methods. 

The development of these new methods occurred in several stages. The next chapter is

concerned with some of the earlier work that complements work presented in later chap-

ters.
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CHAPTER 3

SIMULATION OF A CLASS OF NON-GAUSSIAN

PROCESSES

3.1 Introduction

This chapter presents several non-Gaussian simulation techniques developed during

the course of this research. The majority of the work herein represents the groundwork for

the simulation methods presented in later chapters. 

These simulation methods are based on measured samples and known characteristics

of the system input and output [32]. First, static transformation techniques are developed

to simulate non-Gaussian realizations by transforming the underlying Gaussian time or

auto-correlation sample. An optimization procedure is introduced to overcome errors

associated with a Hermite polynomial based transformation. This method is able to pro-

duce simulations which closely match the sample process PDF, and PSD. The restrictions

of the methods are discussed in terms of motivation for improved techniques to be

addressed in later chapters.

Memory-based simulation methods are also developed in order to better retain the
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higher-order spectral information not addressed by the static transformations. A second-

order Volterra series is employed for simulation of non-Gaussian sea states, and a tech-

nique is introduced to allow Volterra-based simulation of very long realizations. Some

simplifications to the Volterra model are discussed which increase the applicability of Vol-

terra-based system identification under certain conditions. A neural network system iden-

tification model is employed for simulation of output when measured system input is

available, and demonstrates the ability of memory-based simulation models to match

higher order spectral characteristics.

3.2 Static Transformation Methods

3.2.1 Probability Transformation

An iterative non-Gaussian simulation method which utilizes the probability transfor-

mation  was discussed in the previous chapter in section 2.8.1. In this

method, the spectrum used to produce a Gaussian simulation is iteratively corrected until

the PSD of  matches the target spectrum after application of the probability transforma-

tion from  to .

3.2.2 Correlation Distortion

The necessity for an iterative procedure may be eliminated if one begins with the tar-

get spectrum or auto-correlation of the non-Gaussian process and transforms it to the

underlying correlation of the Gaussian process. This approach is referred to as the correla-

tion-distortion method in stochastic systems literature (e.g., [11], [16], [46]). For a given

static single-valued nonlinearity ,where  is a standard normal Gaussian pro-

x F 1– Φ u( )( )=

x

u x

x g u( )= u
46



cess, the desired auto-correlation of  in terms of  can be expressed as

; , (3.1)

where  is the normalized autocorrelation of the non-Gaussian process, and  is the

 Hermite polynomial given by

. (3.2)

A simulation based on the schematic shown in Fig. 3.1 would eliminate the spectral

distortion caused by the nonlinear transformation, since its inverse is employed to reverse

the distortion.     

The simulation algorithm is as follows:

(i) Estimate the auto-correlation of the mean-removed normalized sample non-Gaussian

process to be simulated ; 

(ii) transform to the auto-correlation of the underlying Gaussian process, , by

solving for  in the following equation [98],

, (3.3)

where

, , , and  and  are the
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∞
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FIGURE 3.1 Schematic of the correlation distortion method
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skewness and kurtosis of the fluctuating process. 

(iii) simulate a Gaussian process, , using the spectrum, , associated with ; 

(iv) transform this simulated process  back to a non-Gaussian process using

; (3.4)

(v) replace the mean and variance of the original parent process to produce a simulation,

 of the original non-Gaussian process .

Figure 3.2 compares a measured wind pressure signal with a single realization of a

correlation distortion simulation of that signal in the top left and right figures, respec-

tively. The bottom figures compare the power spectral density and pdf of the measured

data with that from the ensemble average of 100 correlation distortion simulations.       

The statistical moments of the normalized parent non-Gaussian signal are compared

with the average moment statistics of the 100 realizations in table 3.1. The higher kurtosis

in the Correlation Distortion simulations can be observed in both the time history and the

pdf comparison. This distortion in the higher moments is a function of the departure of the

parent non-Gaussian signal from Gaussian. The coefficients in the Hermite transformation

provided in Eq. 3.3 have been derived based on the assumption of small departures from

TABLE 3.1 STATISTICS OF MEASURED WIND PRESSURE DATA AND 
ENSEMBLE AVERAGED SIMULATED DATA USING CORRELATION 
DISTORTION AND MODIFIED DIRECT SIMULATION.

Std Skewness Kurtosis

Measured pressure Data 1.0 -0.8309 4.9940

Ensemble of 100 Correlation Dis-
tortion Simulations

.9927 -0.7960 5.6711

Ensemble of 100 Modified Direct
Transformation Simulations

.9960 -0.8120 4.7676

us Guu ω( ) Ruu τ( )

us

x α u ĥ3 u2 1–( ) ĥ4 u3 3u–( )+ +[ ]=

xs x
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Gaussian. The parent non-Gaussian signal in this example is highly non-Gaussian, making

the application of Eq. 3.3 inappropriate. An alternative transformation method is now pre-

sented to overcome this restriction. 
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FIGURE 3.2 Measured wind pressure signal (top left), a correlation distortion simulation (top 
right), and power spectral density and pdf of the measured data and ensemble of 
100 simulations.
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3.2.3 Modified Direct Transformation

An alternative to the correlation-based approach is to begin with a sample of a non-

Gaussian time history rather than its autocorrelation. The non-Gaussian sample process,

, is transformed to its Gaussian underlying form, , through 

, (3.5)

where , , , ,

and the other parameters are defined after Eq. 3.3. The operation of Eq. 3.5 on the time

history is referred to as direct transformation. 

Direct application of Eq. 3.5 to the parent non-Gaussian pressure history will not pro-

vide the desired Gaussian underlying process. This is again due to the restriction of the

coefficients of Eq. 3.5 to mild non-Gaussian cases.

A modification is now suggested to remove this distortion in direct transformation

using Eq. 3.5. The governing parameters , and thus , are dependent on the

parameters representing skewness and kurtosis,  and .  and  may be treated as

adjustable input parameters in order to force the transformed process, , to be Gaussian

in terms of the third and fourth moments. Optimization of these two parameters is based

on the minimization of the function

, (3.6)

where  are the skewness and kurtosis of the transformed process . The opti-

mized input parameters  and  now provide a Gaussian process in terms of third and

fourth moments. The same parameters are used to transform back to a non-Gaussian simu-

lation whose pdf and power spectral density closely match those of the sample process.
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This technique is called the Modified Direct Transformation, and is diagramed in Fig. 3.3. 

 The optimization of Eq. 3.5 is referred to as a backward Modified Hermite Transfor-

mation, and will be used in later chapters. The direct transformation from Gaussian to

non-Gaussian using Eq. 3.4 can be optimized in the same way, and is referred to as for-

ward Modified Hermite Transformation. 

An example of the improvement afforded by the modified direct transformation

method is demonstrated in Fig. 3.4. Again the measured pressure trace in the top left is

simulated and displayed in the top right. The power spectral density and pdf of the data

and simulations are shown in the bottom figures. Table 3.1 shows an improved ability to

match higher order statistics compared with the correlation distortion method. By observ-

ing the positive and negative extreme behavior, as well as the fluctuation amplitude close

to the mean, the modified direct simulation can be seen to emulate the characteristics of

the measured process better than correlation distortion. This behavior is quantified by the

kurtosis and standard deviation, which match well with the data (table 3.1).     

A second example further demonstrates the performance of the modified direct trans-

formation. The sample process to be simulated is the measured response of a model ten-

x t( ) u x( ) Guu ω( ) us x( )
xs t( )FFT Simulate

Gaussian?
new
γ3 γ4,

(3.6)(3.5)
(3.4)

FIGURE 3.3 Schematic of the modified direct transformation method
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sion leg platform (TLP) under a random wind and wave field in a test facility. The

response is highly non-Gaussian and has two dominant frequencies. Figure 3.5 shows a

portion of the measured data and a realization using modified direct transformation simu-

lation in the top and bottom plots, respectively. Figure 3.6 is a comparison of the PDF and

PSD of the sample 100 realizations of the simulations. Table 3.2 lists statistics from the

data and an ensemble of 100 realizations. The modified direct transformation provides
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right), and power spectral density and pdf of the measured data and ensemble of 100 
simulations.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

−7 −6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

simulation

measured data

measured data

simulation
52



realizations which match the sample PDF well, particularly in terms of positive and nega-

tive extreme behavior.

          

3.2.4 Restrictions of the Modified Direct Transformation Method

3.2.4.1 Restrictive Applicability

The Modified Direct Transformation method is restricted to the simulation of records

for which a sample exists. This is not the case in many practical cases where a non-Gauss-

ian simulation is desired. A more general approach has been taken by a previously dis-

TABLE 3.2 STATISTICS OF MEASURED TLP RESPONSE DATA AND 
ENSEMBLE AVERAGED SIMULATED DATA USING 100 
REALIZATIONS.

Std Skewness Kurtosis

Measured TLP Data 1.0 0.8165 3.7455

Ensemble of 100 Modified
Direct Simulations

0.9720 0.8187 4.2127 
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FIGURE 3.5 Measured TLP response, modified direct transformation and direct 
transformation simulations.
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cussed non-Gaussian simulation techniques (see 2.8.1), which requires only the target

spectrum and probabilistic characteristics of the desired process as input. 

Portions of the Modified Direct Transformation method are used in chapter 5 in the

development of a non-Gaussian simulation method which requires only the target spec-

trum and desired first four moments as input.

3.2.4.2 Matching Higher Order Statistics

The shortcoming of any static transformation is its inability to properly reflect the non-

linear dependence between different times. This memory relationship is necessary to

retain the full nonlinear phase interaction among related frequency components, quanti-

fied by higher order spectra, e.g. the bispectrum. The bispectrum is a representation of the

quadratically coupled frequency components of a realization. Just as the power spectral

density is the distribution of the variance of a signal with respect to frequency, the bispec-

trum is the distribution of skewness with respect to frequency pairs. 

Although static transformation methods are able to replicate the volume under the
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bispectrum, i.e. the skewness, they are not suited to correctly match the distribution of

skewness with respect to frequency. Figure 3.7 compares the bispectrum contour of the

sample TLP response process with that of the modified direct transformation simulations

in the previous example. The simulations are unable to reproduce the shape of the mea-

sured bispectrum.
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3.3 Simulation with Memory Models

When the only available information is a sample of the final process to be simulated

(e.g., wind pressure on a building face), this static transformation method is quick and

promising. However, if more information is available (e.g., the upwind wind velocity), it

is possible to better simulate the desired process by establishing a system identification

model between, in this case, velocity and pressure. The limitation of static transformation

techniques is overcome by the application of memory-based system identification models.

A memory transformation is described by an operator function  that produces a

process  which is a function of both current and previous values of another process

. No general method for determining the probabilistic characteristics of  as the

output of a memory model is yet available. Further, the selection of a form of the memory

transformation  to produce a specified distribution in  has only been solved for spe-

cial cases. This renders memory transformation methods of non-Gaussian simulation

impractical as a general tool for simulation non-Gaussian processes of specified but non-

restrictive frequency content and probabilistic characteristics.

Memory models are often used to identify a nonlinear system where measured input

and output are available. The estimated model is then used to simulate system output using

simulated input. This can be preferable to direct simulation of the output using static trans-

formation methods, as the memory model may capture important characteristics in the

output. However, when only a small amount of data is available, the model estimate may

not reflect the true system accurately enough to offer this advantage. 

The applicability of static or memory transformations may then be differentiated as

follows. Static models addressed in this study are intended for the simulation of non-Gaus-

g y t( )( )

x t( )

y t( ) x t( )

g x t( )
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sian input to systems whose mathematical model is available. Transformation of the simu-

lated input through the known model then produces the system output for analysis.

Memory transformation is applicable where samples of system input and output are avail-

able, but the system mathematical model is not. A memory model of appropriate form is

selected, and the system is identified by numerically estimating parameters for the model.

System output is then simulated by applying simulated input to the estimated model.

3.3.1 Volterra Series Models

In the Volterra series formulation, the input-output relationship may be expressed in

terms of a hierarchy of linear, quadratic and higher-order transfer functions or impulse

response functions [e.g., 55, 93, 77]. These transfer functions can be determined from

experimental data or from theoretical considerations. For example, a nonlinear system

modeled by a Volterra series expansion is described by

, (3.7)

where ,  and  are the first, second and third-order impulse

response functions, and  is some known input to be transformed to . The Fourier

transform of the Volterra series expansion in Eq. 3.7 gives the response in the frequency

domain as

. (3.8)

The Volterra series model in Eq. 3.8 lends itself to the simulation of nonlinear pro-

x t( ) h1 τ( )y t τ–( )dτ h2 τ1 τ2,( )y t τ1–( )y t τ2–( )dτ1dτ2 +∫∫+∫=
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cesses for which the transfer functions  are available or

may be estimated. 

When the input  and output  of a system is available, the information can be

used to estimate the Volterra kernels in Eq. 3.8 directly. The first and second order transfer

functions are given by

. (3.9)

and

, (3.10)

Just as the linear transfer function  is a function of the cross spectrum

, the quadratic transfer function (QTF) is a function of the cross bispec-

trum , which describes the level of quadratic interaction

between  and . 

The memory retained by convolution with the higher-order transfer functions (HOTF)

facilitates the simulation of processes that are able to match not only the power spectrum

of the target process, but the higher-order spectra as well. These higher order spectra are

the multiple-Fourier transform counterparts to higher order correlations functions

 . (3.11)

For , Eq. 3.11 is the well known auto-correlation function, whose value at  is

the second moment of . The Fourier transform of the auto-correlation function pro-

vides the power spectral density of , which describes the distribution of the second

moment with respect to frequency. For , the third-order auto-correlation provides
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the third moment for . Its two-fold Fourier transform over all  provides

the auto bispectrum, which describes the distribution of the third moment with respect to

frequency pairs.

3.3.1.1 Example: Non-Gaussian Sea State

A sample of a nonlinear simulation using a Volterra series model is shown in Fig. 3.8.

This realization is the surface elevation of gravity waves, with the non-Gaussian train

showing the characteristic high peaks and shallow troughs. In this case the second-order

Volterra kernel is analytically derived (e.g., [36, 42, 53, 95]) and referred to as a nonlinear

interaction matrix (NIM). The NIM relates a quadratic non-Gaussian process to its under-

lying Gaussian process. In terms of Eq. 3.8,  is the desired non-Gaussian wave eleva-

tion,  is the underlying linear sea state, and  is unity.  is first simulated,

then used to generate the second-order contributions.   

3.3.1.2 Size Restriction

The computational cost of Volterra simulation increases rapidly with the length of the

desired signal due to the required frequency domain convolution. Additionally, the storage

of the required QTF can become prohibitive for long realizations. The simulation of a real-

ization of length  requires the storage of a QTF matrix of size on the order of .

Using symmetry properties offers some reduction in size, which in certain cases can be

reduced to . These factors effectively limit either the total time length of the desired

realization, or the frequency resolution.

This limitation can restrict analysis methods which require very long continuous time

histories generated using Volterra series simulation. This has recently occurred during the

τ1 τ2 0= = τ1 τ2,
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X f( ) H1 f( ) X f( )

N NxN

N
2
----x

N
2
----
59



development of probabilistic models of a special form of offshore structural response

known as ringing [35]. 

Ringing is characterized by infrequent transient bursts of response due to nonlinear

wave-structure interactions, and is known to occur almost exclusively as a result of non-

Gaussian sea states. The probabilistic model requires very long duration simulations of the

sea states most associated with ringing, which are generated using the Volterra series

through second order. The length of the necessary simulations required some approach to

overcome the computational and storage restrictions. A segmented Volterra simulation

method has been developed, and is presented in the next section.
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FIGURE 3.8 Realization of a Gaussian and non-Gaussian wave height generated by 
Volterra series using a nonlinear interaction matrix
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3.3.1.3 Segmented Volterra Simulation

The simulation of non-Gaussian waves as in Fig. 3.8 is a two step process:  

1)  A Gaussian wave elevation record, , is generated using an appropriate target PSD

and standard Gaussian simulation techniques.

2)   is passed through Eq. 3.8 truncated after the second-order term to produce the

non-Gaussian wave profile . The linear transfer function is unity, and the QTF is the

nonlinear interaction matrix from section 3.3.1.1.

Equation 3.8 transforms the entire Gaussian time history to non-Gaussian in the fre-

quency domain, and requires a square matrix to represent the QTF of dimensions ,

where  is the length of the input signal  and output non-Gaussian signal .

If Eq. 3.8 is applied sequentially to overlapping segments of length  of the total

Gaussian wave elevation , then the size of the QTF matrix may be fixed to some

dimension , where , and  is an integer. Each individual segment of the

total transformed non-Gaussian wave elevation is of a length determined by the percent

overlap of the Gaussian segments. 

The generation of  from  is a memory transformation. Thus the beginning of

any output segment requires some information about the preceding segment’s input to

accurately account for the relationship between  and . The use of overlapping

segments of input provides this information to the output.

An example of a segmented Volterra simulation is shown in Fig. 3.9. The goal is to

simulate a non-Gaussian wave elevation record of length 512 seconds. The sampling rate

is 1.0 Hz, and the peak frequency of the wave spectrum is 0.1 Hz. The non-Gaussian wave

record is simulated using both the full length of a Gaussian wave record, and using seg-
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ments of the Gaussian wave record sequentially. The procedure and a description of Fig.

3.9 follows:

1)  The size of the desired wave record is 512 seconds sample at 1.0 Hz, which makes the

size of the QTF for full length simulation .

2)  For segmented simulation, the size of the segments is selected to be , which

sets the size of the QTF for segmented simulation to .

3)  The segmented simulations will use overlapping segments of the Gaussian simulation.

The overlap is chosen to be 25% of the segment length, or 32 seconds. This means the first

segment will be 128 seconds long, and the overlap of 32 seconds leads to subsequent seg-

ments which are 96 seconds long when the overlapped portion is truncated when assem-

bling the total non-Gaussian record.

4)  The number of segments needed to generate the 512 second non-Gaussian segmented

simulation is determined from

, (3.12)

where , ,  and represents the selected percent overlap, and 

is the integer number of segments to solve for such that the right and left hand sides of Eq.

3.12 are as close to equal as possible without violating the inequality.  provides the

number of segments necessary, excluding the first segment, to build the full non-Gaussian

record of at least length  after truncating the overlapping portion. For this example,

 equates the right and left hand sides of Eq. 3.12 exactly.

5)  A Gaussian simulation of the wave elevation, , is generated with total time length

equal to the right hand side of Eq. 3.12, in this example it is 512 seconds.

6)  A full length non-Gaussian simulation,  is generated using the  QTF oper-
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ating on the Gaussian record,  from . This is the full simulation to be com-

pared with the segmented simulation.

7)  The first segment of  from  is operated on using a QTF of size ,

where the cutoff frequency is the same as that of the  QTF. This produces the first

 seconds of the segmented realization. 

8)  The next segment is produced by operating on  from , thus overlap-

ping the last 32 seconds of the previous Gaussian segment. The last 96 seconds of the 128

second segment is joined with the endpoint of the previous iteration to produce  from

. 

9)  Remaining three segments continue to use the Gaussian segments of length 128 sec-

onds, where the time frame overlaps the last 32 seconds of the previously generated seg-

ment. The last three segments lead to , , and finally 

seconds of the non-Gaussian wave elevation record .

The resulting non-Gaussian full and segmented simulations are plotted in Fig. 3.9,

with the segmented components separated by vertical lines. The top plot is the entire

length of 512 seconds. The middle and bottom plots are close up views of two spots in the

record where overlapping segments connect. It is difficult to distinguish between the two. 

The quality of the segmented Volterra simulation is a function of the amount of over-

lap used, the frequency resolution of the segmented QTF, and the level of memory in the

full second order impulse response function. The frequency resolution in the  QTF

should be fine enough to adequately represent the full  QTF, and adequately represent

the linear power spectrum as well.
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FIGURE 3.9 Simulated non-Gaussian wave train using Volterra on full length of Gaussian 
waves, and using Volterra on five overlapping segments of Gaussian waves.
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3.3.2 Bendat’s Simplified Volterra-type System Identification

Conceptually the Volterra series may easily be extended to the simulation of nonlinear

processes beyond second-order, although considerable computation time is added by con-

volution of the Fourier components with higher-order transfer functions. Also, the acquisi-

tion of higher-order transfer functions from measured data becomes difficult and the

number of parameters necessary to describe them becomes prohibitive. This has lead to

the development of alternative models given in Bendat [5], which reduce the computa-

tional difficulties by simplifying the higher order transfer functions to functions of a single

frequency.

Bendat has proposed several models which lead to a significant reduction in the above

restrictions. The two and three fold convolution integrals in the time domain are replaced

with either single fold integrals of squared and cubed input, or squared and cubed single

fold integrals of the input. The general third order Volterra model in Eq. 3.7 is replaced

respectively by either

, (3.13)

or

. (3.14)

Equations 3.13 and 3.14 are referred to as Case 1 and Case 2 simplifications of the

general third order Volterra model. In each case the two and three fold convolution terms

of the general Volterra model are replaced with a static transformation in series with a first

order impulse response function. Cases 1 and 2 are delineated from each other and the

x t( ) h1 τ( )y t τ–( )dτ h2 τ( )y2 t τ–( )dτ h3 τ( )y3 t τ–( )dτ∫+∫+∫=
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general third order model in the schematic in Fig. 3.10.     

Case 1 can be interpreted as a general Volterra model where the off-diagonal terms in

the second and third order impulse response functions are zero-valued. Eq. 3.13 can now

be rewritten as a special case of the general Volterra model

. (3.15)

Case 2 is also a special case of the general Volterra model, where in this case the

higher-order impulse response functions are the product of single variate functions. Eq.

FIGURE 3.10 Schematic of the general third order Volterra model, and the Case 1 and 2 
Bendat models
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3.14 is rewritten as

. (3.16)

The transfer functions corresponding to the impulse response functions 

are functions of the cross bispectrum  and cross trispectrum  between input and

output, and the auto bispectrum  and trispectrum  of the input. Bendat shows

(1990) that these higher order cross- and auto-spectra are functions of a single frequency

variable for the case 1 and case 2 simplified models. The transfer functions describing the

nonlinear terms are then a function of a single frequency variable as well. This greatly

reduces the number of parameters necessary to develop the system model, and also

requires far less data to accurately estimate these transfer functions. Other models are

available which fall in between complete Volterra and Bendat-type models [e.g. 56].

When they are appropriate, these models can greatly enhance the efficiency and appli-

cability of a nonlinear frequency domain analysis and simulation. 

3.3.3 Neural Network System I.D. Approach with Input & Output

Another recently developed approach to nonlinear system identification is the applica-

tion of neural networks. A neural network consists of multi-layered set of processing ele-

ments that receive input information and iteratively adjusts a weighting factor between

each of the elements by minimizing the error between the resulting and measured target

output.

Figure 3.11 shows an example network with three weighting layers ,

where , , and  and  are the number of elements in the 
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and the  layers, respectively. The network in Fig. 3.11 has two hidden element lay-

ers  and  between the input and output layers  and . In this example

the input layer consists of the input occurring at the same time as the current output from

, and the two inputs preceding this lead input (a two delay input system). 

then represents the weighting of the output from the element  before its input to

element . The output of each element is a nonlinear function of the weighted linear

sum of the output from each of the elements in the previous layer as in (Kung [61])   

, (3.17)

,   ,   , (3.18)

where  is a threshold value fixed for each . Various nonlinear functions may be

applied at the elements, under the restriction that the output must be limited to

. One commonly applied function is the sigmoid function 

, (3.19)

where  is a parameter to control the shape of .    

The element weights in the neural network are adjusted iteratively, commonly with a

back propagation scheme, which minimizes the error between the resulting and desired

final output. This is known as the training phase, in which the optimum model parameters

 are identified, where  is the number of network layers, and 

for the example in Fig. 3.11 [61].
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3.3.3.1 Neural Network Simulation Example

A nonlinear transformation of Gaussian wave elevation is used for a neural network

simulation example. The system input is a linear wave train simulated based on a JON-

SWAP spectrum with a peakedness of 5, and a peak frequency of 0.05 Hz. The nonlinear

output, , is generated from the linear wave train, , by a hypothetical nonlinear

function

. (3.20)

A neural network with two delays is trained to model the input / output from 4096 data

points. This model is then used to simulate realizations of the output in Eq. 3.20 by pass-

ing Gaussian simulations of the input, , through it. The modified direct transformation is

also used to simulate the output directly, without knowledge of the input. A comparison of

FIGURE 3.11 Multilayer neural network with three weighting layers and two hidden layers 
(adapted from Kung [61]).
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statistical results is presented in table 3.3, where it can be seen that the modified direct

transformation does not match the statistics as well as in previous examples.

    

Figure 3.12 presents the original sample output from Eq. 3.20 in the top figure, and a

neural network and modified direct transformation realization in the next two, respec-

tively. Figure 3.13 shows a contour representation of the bispectrum of the sample output

process, and of an ensemble average of 10 realizations using the neural network and mod-

ified direct transformation models. At first glance, the modified direct transformation sim-

ulation bispectrum contour appears only slightly different from that of the neural network

simulation and the sample, which are almost identical. However, significant differences

can be seen in an isometric view of the bispectra in Fig. 3.14. This figure also shows the

neural network bispectrum to closely resemble that of the original sample, due to the

memory retention.               

3.3.4 Associated Difficulties with Memory Based Simulation

Each of the memory simulation methods discussed have some restrictions. These are

system identification based simulation techniques. Thus if the input process is not known,

the method breaks down, as the resulting models are not easily adaptable for simulation

TABLE 3.3 STATISTICS OF MEASURED NONLINEAR WAVE PROCESS AND 
ENSEMBLE AVERAGED SIMULATED DATA.

Std Skewness Kurtosis

Measured Output Data 0.4950 2.2800 9.8329

Ensemble of 10 Modified Direct
Transformation Simulations

0.3948 1.8911 8.5284

Ensemble of 10 Neural Network
Simulations

0.4692 2.1256 8.6640
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purposes. If the measured input is non-Gaussian, it must be of a class that is well described

by static polynomial transformations of a Gaussian process. If this is not the case, the

memory model identified is not strictly applicable to a simulated non-Gaussian input

based on static transformation. 

General Volterra type memory models require either abundant data to accurately esti-

mate the higher order transfer functions (HOTF), or require HOTFs known apriori. The

amount of data required for system identification becomes restrictive, particularly for
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FIGURE 3.12 Sample output from Gaussian sea state input using Eq. 3.20 (top), a simulation 
using a neural network trained on the sample input / output (middle), and a 
simulation using modified direct transformation (bottom).
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higher than quadratic order systems, and analytical HOTFs are only available for a few

special cases. Thus, general Volterra models are not readily adaptable as a universal mem-

ory based method of simulating non-Gaussian processes.

Bendat presents a class of finite memory nonlinear models which reduce the general

Volterra HOTFs dependence to a single frequency variable. These models greatly reduce

the computational effort, but they are not appropriate when the static nonlinear transfor-

mation in series with a linear transfer function is insufficient to describe the relationship

between input and output. 

FIGURE 3.13 Bispectrum contour of Eq. 3.20 output (top left), bispectrum contour of 10 neural 
network realizations (top right), and bispectrum contour of 10 modified direct 
transformation realizations (bottom left).
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3.4 Concluding Remarks

Several non-Gaussian simulation techniques are presented in this chapter. The applica-

tions may divided into two cases. The first concerns the simulation of a non-Gaussian pro-

cess as system input, where the output may be generated through a known system model.

This case uses static transformation of a Gaussian process to generate the non-Gaussian

input. 

FIGURE 3.14 Isometric view of Fig. 3.13. Bispectrum of Eq. 3.20 output (top left), bispectrum of 
10 neural network realizations (top right), and bispectrum of 10 modified direct 
transformation realizations (bottom right). 
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The second concerns the simulation of system output, where system identification

models are discussed. The application of memory models is presented in the context of

system identification, where the unknown system equation is estimated based on available

samples of the system input and output, or analytical system models. A specialized appli-

cation of Volterra-based simulation is developed for the generation of very long realiza-

tions, and applied in the development of probabilistic models of offshore transient

structural response modelling. Neural networks are applied as a system i.d and simulation

tool. An example application demonstrates the potential to retain better higher order spec-

tral information when memory models are used for simulation.

The methods in this chapter are not applicable for general non-Gaussian simulation,

where only a PDF and non-Gaussian characteristics are available to describe the desired

process. Portions of the Modified Direct Transformation method are used later in the

development of a non-Gaussian simulation method which requires only the target spec-

trum and desired first four moments as input. This forthcoming method will be shown to

perform well for cases where current methods in the literature fall short, and will be

extended to both multivariate and conditional non-Gaussian simulation.
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CHAPTER 4

MODELLING OF PDFs FOR NON-GAUSSIAN PRO-

CESSES

4.1 Introduction

Approximate nonlinear system response methods often result in statistical descriptions

of response in the form of higher order moments. Since exact response distributions of

nonlinear systems are only available in a few special cases, approximate methods using

these estimated moments are employed. Series distribution methods, including Gram-

Charlier, Edgeworth, and Longuet-Higgins series methods, all based on Hermite polyno-

mials, have been commonly used (e.g., [71]). These series methods all tend to exhibit

oscillating and negative tail behavior. For extreme response analysis, alternative means

must be considered. Models based on maximum entropy and a Hermite transformation

approach are considered here.

The principle of maximum entropy is employed under three different types of con-

straint conditions based on moment information from either the system equations or esti-

mated from measured data. The advantages of the various formulations are examined,
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with some emphasis on a new form of constraint condition which shows improvement

over the more traditional forms. The Hermite moment model is also employed in this

study to model the probability density function, and is shown to provide accurate esti-

mates of extreme system response. Two sets of constraints are added to the standard

closed form Hermite moment model to improve performance and enhance applicability. 

The maximum entropy- and Hermite moment-based PDF models, and their modified

versions discussed herein, are employed in later chapters to accurately describe the proba-

bilistic content of non-Gaussian processes for simulation purposes. Portions of the follow-

ing work was published in the Journal of Wind Engineering and Industrial Aerodynamics

[28].

4.2 Maximum Entropy Method (MEM)

4.2.1 Traditional Formulation

An approach to approximate the pdf of nonlinear systems is the Maximum Entropy

Method (MEM), in which the entropy functional is maximized subject to constraints in the

form of moment information. In the limiting case of infinite moment information, a

unique PDF is defined. In reality, there is always a finite amount of moment information,

for which there are an infinite number of admissible probability density functions.

According to the maximum entropy principle, the PDF which maximizes the entropy

functional is the least biased estimate for the given moment information. The application

of entropy concepts to estimate an unknown probability distribution was first suggested by

Jaynes [44]. Sobczyk and Trebicki [91], provide a clear framework for the development of
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the maximum entropy formulation for stochastic systems. The presentation found in [91]

is given below

Consider a system of stochastic equations

, (4.1)

where  is an unknown response process and  is a given stochastic excitation. If the

excitation process is represented as a filtered white noise, the excitation terms can be

appended to the response process such that the new  contains as many variates as the

total input / output system order.

The available information for  is in terms of either moments or moment equations,

expressed here generically as the expected value of some polynomial function of 

denoted . The expected value is then

, (4.2)

where  is the number of degrees of freedom in the system, and  where

 is the maximum order or correlation moment.

One possible pdf estimate of the process  is that which maximizes the entropy

functional

, (4.3)

subject to constraints in the form of system information.

After application of the Lagrange multiplier method, the resulting description of 

is
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. (4.4)

Substitution of Eq. 4.4 into the constraints in Eq. 4.2 and an additional normalization con-

straint  gives the following system of equations [91]

, (4.5)

. (4.6)

This system of nonlinear integral equations is solved numerically and the results yield

the leased biased estimate of the system joint PDF under the given moment constraints

using Eq. 4.4, 4.5, 4.6.

An alternative formulation reduces the set of nonlinear integral equations to a single

concave function whose minimum provides the optimal Lagrange parameters [1]. This

method is employed in this work, and aids in the speed of solution by lessening restric-

tions on the initial values of the Lagrange parameters.

4.2.2 MEM Applied with System Equations

When the system equations are available, the system information used to constrain Eq.

4.3 is typically a set of higher order moments. For this case the general polynomial func-

tion becomes

, (4.7)

and includes all combinations of
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 (4.8)

such that

 , (4.9)

where again  is the desired maximum order or correlation moment.

The values  from Eq. 4.2, representing the set of joint moments, are necessary for

solution of the Lagrange parameters. Tagliani has derived the limiting values of higher

moments for which a maximum entropy solution will exist [94].

Application of Ito’s formula to the system equation provides the system’s moment

equations, the solution of which yields the desired joint moments. For constant coefficient

linear systems, the moment equations are a closed set for any desired order, and the

moment values are easily found. For nonlinear systems, the moment equations are an infi-

nite hierarchy, and some closure technique needs to be applied to approximate the joint

moments to desired order [92].

Use of the full set of joint moment values leads to an estimate of the joint PDF through

order . This requires a large number of parameters to satisfy Eqs. 4.4-4.9, and the

repeated numerical solution of an  fold integral. Further, if the system is nonlinear, the

resulting PDF model will be based only on an approximated set of joint moments, and the

intense numerical effort may lead to a poor estimate.

An alternative to applying closure to nonlinear system moment equations is to apply

the moment equations through order  directly as the constraints in Eq. 4.2. In this case

the constraints  are the moment equations, and . This avoids the need

for closure methods, while providing accurate system information for nonlinear systems

[90].
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The number of parameters in the MEM formulation increase rapidly as the number of

degrees of freedom and the desired order increase. Each parameter has an associated non-

linear integral equation, and the solution requires multiple evaluation of each of these inte-

gral equations. The analytical evaluation of the equations is in general not available,

making time consuming numerical evaluation of a large number of multi-fold integrals

necessary.

If the marginal PDFs of one or more degrees of freedom are all that is needed, it is

highly desirable to solve for the marginal distribution directly. This may be done by solv-

ing the moment equations for the marginal moments, or numerically estimating the mar-

ginal moments. There is considerable computational savings involved in solving Eqs. 4.5

and 4.6 as a one degree of freedom integral with 4 unknowns, when the alternative is solv-

ing the much larger full set of constraints with multi-fold integrals. 

Marginal PDFs cannot be evaluated directly using the moment equations as con-

straints. Rather, the joint PDF is estimated, and the marginal PDFs are estimated through

integration of the joint PDF. The numerical difficulties associated with solving a system

with a large number of parameters prohibits the application of MEM to special cases

where either constitutive relationships between moment equations can be analytically

identified and used to reduce the number of parameters (e.g., [91]), or the system order is

small enough to allow direct solution of the full system. 

Based on the authors’ experience with MEM joint PDF estimates of general higher

order systems, the correlation order  should be no less than four to produce acceptable

estimates. Given this restriction, systems of order  higher than 2 cannot be practically

solved using MEM without system dependent reductions in the number of parameters.

M

n
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4.2.3 Examples of MEM Using System Equations

Sobczyk and Trebicki [90, 91] have shown numerous examples of the application of

both moment and moment equation constraints. Further examples can be found elsewhere

[e.g. 9]. Here we repeat an example of a first order system using moment constraints, and

extend the example to include moment equation constraints. 

The first system under consideration is given by [90]

, (4.10)

where  is a white noise, and . The moment equations are found

through application of the Ito formula to Eq. 4.10, giving constraints

, . (4.11)

Figure 4.1 shows the exact PDF provided [90], and MEM estimates using 4 moments

and 4 moment equations as constraints. While the approximations fit well in the mean

region, the inset figure shows the equation constraint model more accurately represents

the distribution at its limiting value .

Quantitative measures of the goodness of fit the PDF estimates will be presented in

section 4.2.6 when this example is revisited using an alternative form of MEP constraints.     

4.2.4 MEM Applied with Measured Data

For the later work on non-Gaussian simulation methods, we seek PDF models devel-

oped from measured data to be used for simulation purposes. When the system informa-

tion is in the form of measured or simulated data, either the joint or marginal PDFs may be

estimated using estimated moments. If the measured response of a system described by

dx t( )
dt

------------ ax t( ) b
x t( )
---------–+ Dξ t( )=

ξ t( ) b 0.5 a, 1 D, 1= = =

Gi x( ) 1
2
--- i 1–( )D2x i 2–( ) bx i 2–( ) axi–+= i 1 ... M, ,=

y 0=
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Eq. 4.10 were available and sufficiently large, the MEM estimate would approach that in

Fig. 4.1 where the exact moments are known.  The inclusion of uncertainty in estimating

the moments of limited data is addressed in Ciulli, et al. [10].

The motivation for using an MEM estimate over a generic curve fit of a PDF histo-

gram of the data lies in the physical principles behind the MEM approximation. While

MEM is a curve fitting model in a sense, it is constrained only by statistical characteristics

of the system, not by fitting points in a data set. It can be argued that the MEM offers a

best estimate short of making further assumptions concerning the nature of the data, as a

generic curve fit would require. This is addressed in a thorough treatment of MEM in texts

by Siddall [88], and Sobczyk [89], and it is stated as a motivating factor for the selection

of MEM as an appropriate PDF model for reliability based applications in the litera-

ture[e.g. 72].
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FIGURE 4.1 Exact PDF of Eq. 4.10, and MEM estimates using 4 moments and 
4 equations.
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4.2.5 Restriction of MEM in the Extreme Regions

MEM has been used to describe the PDFs of multi-degree of freedom systems using

either moments or moment equations as constraints. For these examples the fit of the

MEM solution to the exact PDF is good in the mean region of the distributions when the

moment order  is sufficiently high. However, the form of the MEM pdf model restricts

its applicability in the tail region. The MEM method expresses the pdf as an exponential of

a polynomial of at least fourth order. Regardless of the value of the Lagrange parameter

associated with the higher order terms, they will tend to dominate in the extreme regions

[99]. This results in tails that roll off from the exact distribution.

An example is shown in Fig. 4.2, which is a close up of the tail of Fig. 4.1 on both lin-

ear- and semi-log scales. It can be seen that both estimates clearly diverge from the exact

solution. Further, the equation constraint estimate is not monotonic in the extreme region.

This is a severe restriction, and limits the usefulness of MEM to analyses where the tail

region is not of interest. An alternative formulation of MEM constraints will be proposed

which overcomes this restrictive tail behavior.   

4.2.6 Alternative MEM Constraints

As discussed in section 4.2.4, for the case where the system information is in the form

of measured or simulated data, MEM provides an approximate PDF given estimates of the

moments. 

The basis of the MEM approximation is to constrain Eq. 4.3 through system informa-

tion of the form in Eq. 4.2. Traditionally, the first four moments are chosen as constraints,

since they are readily available either from the moment equations or from estimates using

M
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measured data. Higher order moment constraints are realized in Eq. 4.4 as cubic, quartic,

and possibly higher functions of the process variate , and lead to problems in the tail

region as  gets large. However, the MEM is not restricted to using system information of

this form. Any information which adequately represents the characteristics of the system

may be applied to constrain the entropy functional. 

The tail behavior may be alleviated by replacing the higher order moment constraints

, (4.12)

with, for example, the constraints [28]

. (4.13)

FIGURE 4.2 Linear- and semi-log scale views of the tail region in Fig. 4.1.
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 In this form, the MEM PDF estimate will not be dominated by higher order polynomi-

als as  gets large. The selected constraints in Eq. 4.13 may be altered to various combina-

tions of  to fit the particular data being modeled.

The previous example is used again in Fig. 4.3, where a third MEM estimate has now

been added using the constraints in Eq. 4.13, denoted as MEP II in the figure. The top

graph is a complete view of the exact PDF with the MEM estimates, and the lower left and

right graphs are log-scale views of the left and right tails, respectively. The MEM II esti-

mate provides a better fit than the previous two MEM estimates in the mean region. More

importantly, the exact PDF is almost indistinguishable from the MEM II estimate in the

tail region, where the other MEM estimates diverge rapidly.   

x

E x
n[ ] E x
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FIGURE 4.3 Exact PDF of Eq. 4.10, and 3 MEM estimates using 4 moments, 4 
equations, and MEM II (Eq. 4.13).  
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Two measures of the goodness of fit are now applied to quantitatively differentiate

between the PDF estimates. The first test is the mean square error (MSE) between the

exact and fitted distributions, and the second is a K-S goodness of fit test, which is essen-

tially the maximum error between the model and exact cumulative distribution functions

(e.g., [4]). Both tests will later be used to compare the MEM and Hermite PDF estimates. 

Table 4.1 shows the MSE and K-S goodness of fit test results, where lower values

indicate a better fit. The quantitative results indicate that the new constraint formulation

provides the best fit in this example.

        

A second example from Sobczyk and Trebicki [90] considers the system

, (4.14)

with the parameter values  . Sobczyk and Tre-

bicki [90] present the exact PDF and compare it with MEM estimates using both moment

and moment equation constraints. In Fig. 4.4 this work is repeated, and a third estimate is

included where the constraints are of the form in Eq. 4.13. In this case the standard con-

straints provide better MEM estimates than the new formulation, particularly in the tail

region. Table 4.2 provides the goodness of fit results to confirm these observations.

        

TABLE 4.1 MEM FIT TESTS FOR FIG. 4.3

MSE K-S

4 moments 7.48e-4 0.0196

4 equations 4.12e-4 0.0120

MEM II (eq. 4.13) 1.31e-4 0.0074

dx t( )
dt

------------ a1x t( ) a2x
2 t( ) a3x

3 t( ) ln
x t( )

β
------------+ + + Dξ t( )=

a1 0.5 a2, 0.25–= = a3 5.2= β, 1 D, 1= =
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4.3 Hermite Moment Method

4.3.1 Formulation of Hermite Moment PDF Estimate

This approach is based on a functional static transformation of a standard Gaussian

process, , to a non-Gaussian process, , (e.g., [21])

. (4.15)

FIGURE 4.4 Exact PDF of Eq. 4.14, and 3 MEM estimates using 4 
moments, 4 equations, and MEM II (Eq 4.13). 

   
TABLE 4.2 MEM FIT TESTS FOR FIG. 4.4

MSE K-S

4 moments 5.14e-4 0.0113

4 equations 2.24e-4 0.0173

MEM II (eq. 4.13) 1.90e-3 0.0304
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Several choices of  are possible to preserve only the first four moments. A cubic model

of  offers a convenient and fairly accurate representation [98].

The PDF of  is given by [21]

, (4.16)

where  is expressed in terms of  for softening processes (kurtosis > Gaussian) as [98]

, (4.17)

and its inverse is 

, (4.18)

where 

, (4.19)

, , , (4.20)

, , (4.21)

 , (4.22)

and  and  are the skewness and kurtosis of the process . For hardening processes

(kurtosis < Gaussian),  is expressed in terms of  in similar form to Eq.4.17.
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4.3.2 Limitations in the Standard Hermite Model

The various parameters in Eqs. 4.17-4.22, all dependent on , have been derived

based on the assumption of small deviations from Gaussian. When the Hermite transfor-

mation is applied in cases where the skewness and kurtosis vary significantly from Gauss-

ian, the transformation fails to accurately capture the non-Gaussian characteristics.

Examples will follow the proposed improvements.

4.3.3 Modified Hermite Models

The PDF estimate provided by Eq. 4.16 can be viewed as a two parameter model

whose shape is determined by . These define the skewness and kurtosis of the PDF

estimate. The mean and variance can be accounted for through translations and dilation of

the PDF model.

An improvement to this model is provided by using the expressions for  and 

given previously (which are approximations) as initial conditions for solving the follow-

ing pair of nonlinear algebraic equations [96]:

, (4.23)

, (4.24)

where  are the target skewness and kurtosis. Solution of these equations leads to val-

ues for , which lead to the necessary values for . These equations have been

derived by setting the third-and fourth-order central moments of  equal to the

known central moments of the non-Gaussian process .

γ3 γ4,

γ3 γ4,

ĥ3 ĥ4

γ3 α3 8ĥ3
3 108ĥ3ĥ4

2 36ĥ3ĥ4 6 ĥ3+ + +( )=

γ4 3+ α4 60 ĥ3
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A more robust method of identifying the optimal parameters  is to numerically

minimize the error between the target skewness and kurtosis  and the skewness and

kurtosis measured from the estimated PDF in Eq. 4.16. The optimization minimizes the

constraints on the higher order statistics as

, (4.25)

  are provided by

, (4.26)

, (4.27)

where  are the lower and upper bounds of integration, and

,   . (4.28)

The minimization of the error in Eq. 4.25 provides the optimal values  to produce

an estimate  that maintains the desired skewness and kurtosis .

In the case where system equations are available in place of measured data, the optimi-

zation function in Eq. 4.25 may again be constrained in terms of higher order moment

information. However, when the system is nonlinear, the moment equations may be used

directly as constraints in order to avoid the application of closure. The expected value of

any moment equation for a stationary system is zero, and the objective function becomes

. (4.29)
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The relationship between the standard normal process  and the non-Gaussian pro-

cess  in Eq. 4.16 can be described by any static transformation  which is capable

of producing a non-Gaussian process with the desired non-Gaussian skewness and kurto-

sis. The use of the Hermite polynomials here provides PDF estimates whose skewness 

is independent of , and kurtosis  independent of  through the orthogonal property

of the Hermite polynomials. This increases the efficiency of the optimization algorithm.

4.3.4 Example Application of Modified Hermite PDF Estimation Method

The previous example system in Eq. 4.10 is used to demonstrate the Hermite based

PDF estimates. Figure 4.5 presents the exact PDF, the standard Hermite moment PDF

model (Eqs. 4.16-4.22), denoted ‘Herm.’, the modified Hermite model using moment con-

straints, denoted ‘Herm. mom’, and the modified Hermite model using moment equation

constraints, denoted ‘Herm. Eq.’. Both Fig. 4.5 and the fit statistics in Table 4.3 indicate

no obvious superiority of one estimate over another in this case.     

The second example considers the exact PDF corresponding to Eq. 4.14 and the three

Hermite estimates denoted as in the previous example. Figure 4.6 shows all three models

provide conservative and acceptable estimates in the tail region. The standard Hermite

model is not an accurate estimate in the mean region, while both modified Hermite models

(equation constraints and moment constraints) provide a more acceptable fit in the mean.

The fit statistics in Table 4.4 confirm the improvements offered by both modified Hermite

estimates.      

Comparing these results with the previous example, it can be seen that the MSE and

K-S fit statistics are capable of distinguishing between estimates that are similar, and esti-

mates that significantly differ.

u t( )

x t( ) g u( )

γ3e

γ4 γ4e γ3
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4.4 PDF Estimates of Measured Data

A final pair of examples estimate the PDF of measured data, where no system equa-

tions are available. These examples illustrate the intended purpose for the PDF models

developed here, to represent the probabilistic characteristics of measured data use in simu-

lation methods.

FIGURE 4.5 Exact PDF of Eq. 4.10, and 3 Hermite estimates using standard 
model, 4 moment equation constraints, and 4 moment 
constraints.  

   
TABLE 4.3 MEM FIT TESTS FOR FIG. 4.5

MSE K-S

Herm. 9.02e-4 0.0278

Herm. Eq 7.25e-4 0.0219

Herm. mom 6.52e-4 0.0261
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The first example uses a full scale non-Gaussian pressure record measured on the top

of a building in a separated flow region. An accurate PDF model would be necessary, for

example, to provide a statistical description of input to a reliability model of cladding

components. In Fig. 4.7 the data histogram is compared with 4 PDF estimates. Two esti-

mates are the standard ‘Herm.’ and modified Hermite model using moment constraints

‘Herm. mom’. Two MEM estimates are also included. One uses the standard 4 moments

exact    
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Herm. Eq.

Herm. mom
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FIGURE 4.6 Exact PDF of Eq. 4.14, and 3 Hermite estimates using standard 
model, 4 moment equation constraints, and 4 moment 
constraints.   

    
TABLE 4.4 HERMITE FITS FOR FIG. 4.6

MSE K-S

Herm. 5.20e-3 0.0731

Herm. Eq 1.20e-3 0.0304

Herm. mom 5.45e-4 0.0132
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constraints, denoted ‘MEM I’, and the other uses Eq. 4.13 for constraints, denoted ‘MEM

II’. Some of the important features of Fig. 4.7 are the oscillating tail behavior of the MEM

I estimate in the extreme region, and the good fit provided in this region by both Hermite

models and MEP II model. In the right tail, only MEP II follows the data trend well, and in

the mean region the MEM II seems to provide the best estimate. The fit statistics in Table

4.5 indicate that the standard Hermite and MEM models are less appropriate than the mod-

ified versions proposed in this study.        

The second in this pair of examples concerning experimental data uses the measured

non-Gaussian response of a model compliant offshore platform subjected to random wind

and waves. The input sea state is non-Gaussian, and the structural system is nonlinear. Fig-

ure 4.8 presents the data histogram and the four PDF estimates. The most obvious feature

is the divergent tail behavior of the MEP I estimate, and its poor fit in the mean region.

Table 4.6confirms that MEP I is by far the least appropriate fit. The table suggests also

that MEP II is the best fit, although all three estimates excluding MEP I fit the mean

region and the important extreme right tail region very well.     

4.5 Concluding Remarks

This study reviews two existing PDF models based on either system equations or mea-

sured data, and presents modifications to these models which can improve performance.

Alternative constraints for the maximum entropy method are presented which overcome

the oscillating tail behavior associated with the traditional MEM formulation. An optimi-

zation routine is employed to improve the standard Hermite moment PDF estimation

model using either moment value or moment equation constraints. Systems with known
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exact PDFs are used to demonstrate the potential improved performance of the proposed

modifications. The models are also applied to measured data, and the performance of the

various estimates are compared. 

In the following chapters, the new non-Gaussian simulation methods require accurate

information regarding the non-Gaussian character of the processes to be simulated. It is
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FIGURE 4.7 Pressure data PDF histogram, and four PDF estimates using two 
Hermite models and two MEM models.  

     
TABLE 4.5 FIT TEST RESULTS FOR FIG. 4.7

MSE K-S

Herm. 3.96e-3 0.0542

Herm. mom 1.67e-3 0.0336

MEM I 2.68e-3 0.0410

MEM II 6.44e-4 0.0159
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not suggested that the modified models are universally more applicable than their standard

counterparts. Rather, these modifications extend their versatility to situations where they

may otherwise not be appropriate, and offer more alternatives for simulation purposes.

FIGURE 4.8 Offshore platform response data PDF histogram, and four PDF 
estimates using two Hermite models and two MEM models.   

        
TABLE 4.6 FIT TEST RESULTS FOR FIG. 4.8

MSE K-S

Herm. 7.72e-4 0.0429

Herm. mom 5.36e-3 0.0563

MEM I 5.9e-3 0.1156

MEM II 5.2e-4 0.0197
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CHAPTER 5

SIMULATION OF UNI-VARIATE NON-GAUSSIAN

PROCESSES: THE SPECTRAL CORRECTION

METHOD (SC)

5.1 Introduction

The PDF models developed in chapter 4 were shown to effectively represent non-

Gaussian characteristics measured from data. The Modified Hermite and MEM probabil-

ity models are now used to represent non-Gaussian characteristics in a simulation algo-

rithm. 

An earlier study by the author [32] presented the development of the so called Modi-

fied Direct transformation method for the simulation of non-Gaussian processes, utilizing

the backward Modified Hermite Transformation (see section 3.2.3). This work focussed

on the simulation of processes for which a sample time history was available. It is not

capable of simulation based on only a target spectrum and target PDF, and is of limited

application. A far more robust and versatile method of non-Gaussian simulation makes

use of the backward and forward Modified Hermite Transformations, and is capable of
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matching a target power spectrum.

This FFT-based iterative simulation technique generates non-Gaussian processes that

match a target power spectrum and either four target moments or an analytical PDF

model. This technique is referred to as the spectral correction method (SC), and will be the

basis for new methods of multi-variate and conditional simulation in later chapters. Por-

tions of the work in this chapter have recently been published [28].

The method is described schematically in a step by step procedure. Examples are then

provided to demonstrate the method’s effectiveness. The stationary property is discussed,

and the convergence of this iterative method is shown. The various input options, and

options in the SC algorithm are then addressed.

5.2 Previous Work, the Modified Hermite Transformation

It was shown in chapter 4 that the Modified Hermite PDF estimate provides an ade-

quate representation of experimental data using the first four moments. The Modified Her-

mite moment-based PDF model is applied to a Gaussian normal time history such that the

moments of the transformed process match a set of target values through an iterative pro-

cedure which optimizes the transformation parameters. The static transformation applied

to the normal Gaussian process  is of the form introduced in chapter 4, Eq. 4.17. An opti-

mization procedure minimizes the error between the measured third and fourth moments

of , and the target moments. This procedure is referred to as the forward Modified Her-

mite Transformation when applied to produce a non-Gaussian realization . 

The inverse procedure is also available, where the optimization applies the inverse of

Eq. 4.17, to transform a non-Gaussian realization, , to a process which reflects Gaussian

u

x

x

x
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skewness and kurtosis values. In this form, the optimization procedure is referred to as

backward Modified Hermite Transformation.

5.3 Schematic: Spectral Correction Simulation

Spectral correction is a robust new simulation method which utilizes user specified

non-Gaussian characteristics and frequency content in the form of target moments through

fourth order and a target power spectrum. Alternatively, the user may define non-Gaussian

characteristics through a PDF model. 

There are two options for the exit criterion in the iterative SC algorithm. The first

option is discussed in the following section, and the second thereafter.

5.3.1 Spectral Correction: Exit Option 1

Spectral correction is shown in a schematic in Fig. 5.1. A six step description of the

algorithm in Fig. 5.1 follows.   

1) Generate a Gaussian normal process using a random amplitude random phase (RARP)

algorithm (see section 2.2.1)

, (5.1)

or

, (5.2)

where , and .  and  are independent Gaussian ran-

dom variables with values at equally spaced discrete frequencies  separated by  with
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covariance

,     . (5.3)

 and the first four target moments,  are sent into the moment correction sec-

tion of the algorithm.

2) Apply Forward Modified Hermite Transform to  to produce a non-Gaussian pro-

cess 

, (5.4)

where  is the forward modified Hermite transformation (section 3.2.3).  can be

expressed as the sum of cosine functions

, (5.5)

FIGURE 5.1  Schematic of the spectral correction method, exit option one
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where  are functions of  and the transformation . The sum frequencies

resulting from the nonlinear transformation which are greater than  are ignored due to

the pre-assigned cutoff frequency. 

The moments of  match the target moments , and has a power spectrum  which

no longer matches the target spectrum  due to distortion caused by the Modified Her-

mite Transformation. The non-Gaussian process, , is then directed to the spectral correc-

tion section.

3) The spectral correction section transforms the process, , to a process, , whose spec-

trum again matches the target spectrum . The amplitude correction is applied to the

Fourier coefficients of , represented by , while maintaining the phase . In

the time domain,  is transformed to

. (5.6)

4) The spectral correction transformation from  to  distorts the target moments in . A

check is performed on the error between the target, , and the resulting simulation

skewness and kurtosis, , of . 

. (5.7)

If the error is within the specified tolerance, the algorithm stops and  is the output

non-Gaussian process with target spectrum . If the error is not within the specified tol-

erance, another iteration is begun in step 5).
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5) The next iteration is begun by a backward Modified Hermite Transform of  to a

process with Gaussian skewness and kurtosis 

, (5.8)

where  is the backward modified Hermite transform (section 3.2.3)

6) The algorithm now returns to step 2), where  is replaced for the second and any future

iterations with  as

. (5.9)

In each iteration a check of the error is performed at step 4), and the iterative cycle is

stopped if the tolerance is reached. The error measured after step 3) by Eq. 5.7 becomes

smaller in each subsequent iteration, for reasons to be addressed later. 

5.3.2 Spectral Correction: Exit Option 2

The algorithm in Fig. 5.1 will exit the loop after the spectral correction section if the

error between the target moments and the distorted moments in  is small.

The second exit option is described in the schematic in Fig. 5.2. In this case, the same

iterative corrections to the moments and spectrum are applied. However, rather than exit-

ing based on the error between target and resulting moments after the spectral correction

section, this algorithm exits based on an acceptable error between the target and resulting

spectrum after the moment correction section. Using this approach, the moments will

match the target, and the spectrum will be within a specified tolerance.

Both exit options have been applied and readily converge to solution within several
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iterations. Details of the method will be examined after the presentation of some exam-

ples.   

5.3.3 Simulation Examples

5.3.3.1 Simulation of a Sea State

Recall the example given in section 3.1.1 demonstrating the Yamazaki and Shinozuka

method by simulating non-Gaussian waves. The results of this example are presented

again, and compared to the results of a spectral correction simulation of the same process.

The target spectrum is a narrow banded JONSWAP sea state spectrum with a peak factor =

6.0, and a peak frequency = 0.1 Hz.

Figure 5.3 shows the target PSD with PSDs measured from SC and Y&S simulations.

The Y&S method is unable to reproduced the narrow banded spectrum in the low fre-

quency region, resulting in energy from 0 to 0.05 Hz that is not specified in the target

spectrum. The SC simulation is able to emulate the target spectrum throughout the entire

moment correction spectral correction

FIGURE 5.2  Schematic of the spectral correction method, exit option two.
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frequency range.    

Figure 5.4 shows the Modified Hermite PDF model used to specify the non-Gaussian

characteristics of the simulations, and the estimated PDFs of the two simulations. SC uses

a Hermite transformation directly on the time history, and Y&S uses a CDF mapping

scheme. The bottom two figures indicate acceptable tail representation for both cases.   

The target and simulation skewness and kurtosis are listed in Table 5.1 below. It is

noted that the SC simulation has skewness and kurtosis closer to the target values. Figure

5.5 shows two sample realizations of wave elevation using SC and Y&S non-Gaussian

simulation methods. The added low frequency content in the Y&S simulation is mani-

fested as grouped clusters of large magnitude waves. 

target spectrum
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FIGURE 5.3  Wave elevation data: Comparison of target PSD and simulation 
PSDs using SC and Y&S.
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5.3.3.2 Simulated Pressure Data

A second example uses the SC and Y&S methods to simulate wind induced pressure

data measured on a building rooftop in a separated flow zone. This is a practical example

of a highly non-Gaussian process which is commonly encountered in wind engineering,

TABLE 5.1   COMPARISON OF TARGET SKEWNESS AND 
KURTOSIS WITH THOSE MEASURED FROM 
THE SC AND Y&S SIMULATIONS OF WAVE 
ELEVATION

skewness kurtosis

target 0.5 4.5

SC simulation 0.49 4.45

Y&S simulation 0.39 4.03
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FIGURE 5.5  Simulated wave elevation using SC and Y&S
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and is the source of roof and building envelope damage in extreme wind events.

Figure 5.6 shows the target PSD measured from the data with PSDs measured from SC

and Y&S simulations. Both method represent the target spectrum well in the low fre-

quency range, and SC is able to emulate the target spectrum throughout the entire fre-

quency range. A course frequency resolution provides better delineation of the three

spectral estimates, and reduces variance error in the estimates.    

Figure 5.7 shows the Modified Hermite PDF model used to specify the non-Gaussian

characteristics of the pressure simulations, and the estimated PDFs of the two simulations.

SC uses a Hermite transformation directly on the time history, and Y&S uses a CDF map-

ping scheme. The CDF mapping of Y&S leads to a non-Gaussian time history that better

represents the PDF model in this case than does the SC transformation. This can be seen in

FIGURE 5.6  Pressure data: Comparison of target PSD and simulation PSDs 
using SC and Y&S.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
−4

10
−2

10
0

Auto−spectrum: measured data, simulated SC and Y&S data (semi−log scale)

frequency

pressure data 

SC simulation 

Y&S simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Auto−spectrum: measured data, simulated SC and Y&S data
107



the right tail region in the first and second plots of Fig. 5.7, where the measured data is not

presented. The third plot shows the measured data PDF as the bars, and the PDF model

and simulation PDFs as solid, dashed, and dotted lines. Now it can be seen that the SC

Modified Hermite transformation operating directly on the time series better represents

the actual data than does either the PDF Modified Hermite model, or its application in the

Y&S simulation. This demonstrates that matching the first four moments through direct

Modified Hermite transformation can in some cases better represent measured data than

CDF transformation. The bottom two figures are close up views of the tails of the third

plot, indicating acceptable left tail representation for both cases, and a better right tail rep-

resentation using SC simulation. Note that the data and the SC simulation do not cross

above zero pressure, while the Y&S simulation does. This is of course a function of the

PDF model selected for the CDF transformation, where here the Modified Hermite model

is used as a general method for fitting a class of measured data.    

The target and simulation skewness and kurtosis are listed in Table 5.1 below. The

skewness and kurtosis values for the Y&S simulation under-represent the target values,

which is a function of the right tail region. Figure 5.8 shows the measured pressure data,

the SC simulation, and the Y&S simulation. Close examination of the region near zero

pressure shows the crossing above zero in the Y&S simulation. This will again be

addressed in the demonstration of crossing rates in a later section. 
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FIGURE 5.7  Pressure data: Comparison of target PDF with simulation PDFs using SC and 
Y&S.
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5.4 Analysis of Stationarity and Convergence

This section first discusses the stationary property of the spectral correction algorithm

in detail, then addresses the convergence of the SC iteration scheme.

5.4.1 Stationary Property of Spectral Correction Simulation

The stationary property of the spectral correction simulation algorithm is shown ana-

lytically, and then demonstrated numerically through an ensemble of realizations.

5.4.1.1 Analytical Derivation of the Stationary Property of Spectral Correction

The spectral correction algorithm can be shown to produce ensembles of realizations

which are stationary. The proof consists of four parts, which are listed here, and then

proven in sequence.

1)   A process, , generated by the RARP spectral method in section 2.2.1, Eqs. 2.1,

2.3, is Gaussian and strict sense stationary (SSS) for any spectral discretization. 

2)   A nonlinear static transform of a stationary process is itself stationary.

3)   Given a non-Gaussian stationary process  resulting from a static polynomial trans-

form of a Gaussian stationary process ,

TABLE 5.2  COMPARISON OF MEASURED TARGET 
SKEWNESS AND KURTOSIS OF THE 
PRESSURE DATA WITH THOSE MEASURED 
FROM THE SC AND Y&S SIMULATIONS OF 
WAVE ELEVATION.

skewness kurtosis

target -1.40 5.15

SC simulation -1.35 5.07

Y&S simulation -0.95 4.56

y t( )

x t( )

y t( )
110



 , (5.10)

changing the amplitude of the Fourier coefficients of  does not affect the stationary

property.

4)   A process formed by iterative static transformations and amplitude corrections is sta-
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tionary if the original process being operated on is stationary.

These four parts proof the stationary property of spectral correction. They are now

addressed individually.

Proof of part 1):

A process, , generated by the RARP spectral method in section 2.2.1, Eqs. 2.1, 2.3,

is Gaussian and strict sense stationary (SSS) for any spectral discretization. 

The equations for RARP simulation are rewritten here

, (5.11)

where  and  are independent Gaussian random variables with values at equally

spaced discrete frequencies  separated by  with covariance

, (5.12)

. (5.13)

The process  is a linear combination of Gaussian random variables, as in Eq. 5.11,

and is itself Gaussian for any  [23].

Alternatively, Eq. 5.11 can be expressed

. (5.14)

where  

, and . (5.15)

It can be shown [e.g. 73] that the random variables  and  are statistically indepen-

dent due to the Gaussian property of  and the property in Eq. 5.13. Futher,  is uni-
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formly distributed and statistically independent. 

The process  is shown to be wide sense stationary if the expected value of the first

and second order moments are independent of time. The expected value of the first order

moment is shown to be time independent by expanding

. (5.16)

Using the property that the operations of expectation and summation are commutative,

and the independence of  and , Eq. 5.16 is rewritten

. (5.17)

The expectation on  is known to be time independent as a function of time independent

variables (Eq. 5.15). Now expressing the second expectation as

, (5.18)

and substituting the uniform distribution for  gives

. (5.19)

The expected value of the second order moment is also shown to be time invariant

through

. (5.20)

Applying once again the commutative property, Eq. 5.20 can be rewritten as
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. (5.21)

For the case where , the statistical independence of  gives

, (5.22)

and the individual expectation terms equal zero following Eq. 5.19.

For the case where , Eq. 5.21 is

. (5.23)

Using the trigonometric identity  gives

, (5.24)

or

. (5.25)

The first cosine expectation term is zero following Eq. 5.19, leaving

. (5.26)

The second order moment in Eq. 5.26 is independent of time, and only depends on the

time shift .

It has been shown that  is wide sense stationary and Gaussian for any . The

Gaussian properties lead to the proof of part 1), that  is strict sense stationary (SSS).

Proof of 2):

A nonlinear static transform of a stationary random process is itself stationary. 
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Define a process  as the result of a static transform of a process  through the

operation 

. (5.27)

 can be expressed also as the inverse operation in terms of  as 

. (5.28)

The probability of  at some time  is expressed in terms of the probability of  as

, (5.29)

or in terms of the relationships in EQS. 5.27, 5.28 [5, 23]

. (5.30)

This describes the marginal distribution of the process  at some time . The full 

dimensional distribution for all discrete time values of  can also be expressed

in terms of the distribution of the individual mapping at each time [23]. Since the opera-

tors in both expressions in Eq. 5.30 are independent of time, so too is the full distribution

of  for all times . This time independence shows that  is stationary if 

is stationary. Note that this proof does not require the transformed process  be Gauss-

ian, only stationary.

Proof of 3):

Given a non-Gaussian stationary process  resulting from a static polynomial trans-

form of a Gaussian stationary process , as in , changing the amplitude of

the Fourier coefficients of  does not affect the stationary property.

Define a non-Gaussian process  as any static transformation of a Gaussian station-

ary process,  generated using Eqs. 5.11-5.13.  can be expressed as
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, (5.31)

where  are functions of  in Eq. 5.11, and the transformation . The first and

second order moments are expressed as

, (5.32)

. (5.33)

Application of the commutative property now gives

, (5.34)

. (5.35)

It is not necessarily trivial to show that the expectations in Eqs. 5.34 and 5.35 yield

time invariant functions, since the probabilistic characteristics of the phase  and ampli-

tude  depend on the nonlinear operator . However, it need not explicitly be shown that

these functions are time invariant.  has been defined as the static transform of a SSS

process, it is known to be stationary through the proof in part 2).

What needs to be shown to prove part 3 is that when the nonlinear operator  is a

polynomial static transformation, the expectations in Eqs. 5.34 and 5.35 remain time

invariant if the random variables  are replaced with constants and pulled outside the

expectation. Thus, replacing these amplitudes will not effect the stationary property of

. 
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If it can be shown that  and  are statistically independent, the expectations in Eqs.

5.34 and 5.35 can be expressed as

, (5.36)

, (5.37)

where the time invariant property is guaranteed by the proof in part 2). Each expectation

term is then time invariant, and the proof of part 3) will be complete.

It will now be shown that  and  are statistically independent. Consider first the

case where  is a square operator, giving . The squaring operation in the

time domain is equivalent to convolution in the frequency domain, such that the Fourier

components of  can be written in terms of the Fourier components of  as

. (5.38)

It can be shown that the Fourier components of  can expressed in a complex form

, where  and  are the  and  from Eq. 5.11, 5.12

with a notation change. The new notation uses a subscript to indicate the process from

which the variable is taken, and the argument  indicates frequency place of the sub-

script .

Eq. 5.38 can be rewritten as

. (5.39)

Expanding and expressing in terms of real and imaginary components of  gives
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, (5.40)

and

. (5.41)

Both Eqs. 5.40 and 5.41 are the sum of products of independent variables for any fre-

quency , that is 

 , (5.42)

and

. (5.43)

Thus, each frequency component of  and  is Gaussian by the central limit the-

orem. This will be demonstrated numerically later.

Additionally, it can be shown that the real and imaginary components are uncorrelated

for any frequency 

. (5.44)

Expansion of the expectation above in terms of Eqs. 5.40 and 5.41 gives

(5.45)

Further expansion inside the expectation leads to the sum of four expressions
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. (5.46)

Each of the four expected value expressions consists of four statistically independent

terms, each one which has an expected value of zero. For the case when , each

expectation is reduced to three independent terms, two of which have expected values of

zero. Thus Eq. 5.44 is shown to hold.

The time domain expression for  in Eq. 5.31 is in terms of polar coordinates,

where the amplitude  and phase  are 

, (5.47)

. (5.48)

Using the results that  and  are Gaussian and uncorrelated, it can be shown that

 and  are statistically independent [73].

Using the above proof of Eqs. 5.36 and 5.37, Eqs. 5.34 and 5.35 can be rewritten

, (5.49)

, (5.50)

where the time invariant property is guaranteed by the proof in part 2). For Eqs. 5.49 and

5.50, the individual expectations are each time invariant.

It can be seen now that the results of the expectation operating on the cosine terms in

Eqs. 5.49 and 5.50 is time invariant. The expectation on the amplitude variables may then

be replaced with constants without affecting the stationary property of .
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The above proof is for the case where . The same results are found when the

operator is a cubing function. In this case Eq. 5.38 becomes 

. (5.51)

The Gaussian property of the components  and , and their statistical inde-

pendence is demonstrated numerically in Fig. 5.9 and Table 5.3, where in this case 

and  are the result of a third order polynomial transformation of a Gaussian process.

10,000 realizations of a Gaussian process are simulated based on a wide banded wind

spectrum. Each realization is passed through a third order Hermite polynomial transforma-

tion with coefficients chosen to produce skewness and kurtosis of 0.1 and 5.0, respec-

tively. The first four moments are estimated at each frequency through the ensemble

average of the 10,000 realizations for both  and . Table 5.3 gives the statistics

of the skewness and kurtosis in terms of their mean and standard deviation about their

expected values of zero and three, respectively. Table 5.3 shows the same information for

the components,  and , of the Gaussian simulations before transformation.

These components are know to be Gaussian and orthogonal, and have the same variance

about their expected values as do the components of the non-Gaussian process.

The ensemble averaged expected values  and  are

shown at every frequency in Figure 5.9. These plots and Table 5.3 demonstrate the Gauss-

ian property and orthogonality between  and .

 Since every real and imaginary component is Gaussian and SI, the phase will be inde-

pendent of the magnitude, and the proof in part 3) holds.

x y2=
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It has been shown that a third order polynomial transformations of a Gaussian process

is stationary when its amplitude coefficients are replaced with constants after transforma-

tion.

TABLE 5.3  MEAN AND STD OF SKEWNESS AND KURTOSIS ESTIMATES 
OF THE FOURIER COMPONENTS FROM A NON-GAUSSIAN 
AND GAUSSIAN SIMULATION

mean skewness 0.001 .001 0.01 0.004

std skewness 0.058 0.061 0.055 0.056

mean kurtosis 2.999 3.006 3.007 3.008

std kurtosis 0.111 0.116 0.107 0.1130
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FIGURE 5.9  Expected value of the product of the real and imaginary Fourier 
components at every frequency through an ensemble of 10,000 realizations. 
top: non-Gaussian simulation. Bottom: Gaussian simulation.
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Proof of 4):

A process formed by iterative static transformations and amplitude corrections is sta-

tionary if the original process being operated on is stationary. Static transform and ampli-

tude correction operations have been shown to preserve the stationary property, so a

process formed by iterative static transforms and amplitude corrections is stationary if the

original process being operated on is stationary. This proof follows directly from parts 1)

through 3). 

5.4.1.2 Numerical Demonstration of the Stationary Property

The stationary property of the spectral correction algorithm is here numerically dem-

onstrated by showing time invariance through multiple realizations. The example simu-

lates 10,000 zero mean unit variance realizations of a non-Gaussian sea state with 2048

seconds per realization using a unit sampling frequency. The skewness and kurtosis values

are 0.5 and 6.0, respectively. 10,000 Gaussian realizations are simulated using RARP. A

narrow banded JONSWAP spectrum is used as the target, with a peak factor of 3.3, a peak

frequency of 0.1 Hz, and a sampling rate of 1.0 Hz. 

The auto-correlation is measured through the ensemble centered at eight evenly

spaced time intervals

, (5.52)

where  seconds, and  seconds.

Figure 5.10 shows the superposition of resulting auto-correlation at eight times for the

non-Gaussian and Gaussian simulations, and their total superposition. It is clear that no

significant difference exists, demonstrating the independence of frequency content with

respect to time.  

E x ti( )x ti τ+( )[ ]
t1 1 t2, 257 t3, 513 ... t8, , 1793= = = = τ 1...512=
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The first four moments are also calculated at each time step through the ensemble. Fig-

ure 5.11 is a plot of the first four normalized moment histories, and Fig. 5.12 shows these

results for Gaussian simulations. There are no obvious trends in the moment histories of

the Gaussian realizations in Fig. 5.12. No trends are observed in the moment histories in

Fig. 5.11 using non-Gaussian SC simulation, which supports the stationary hypothesis.     

In order to quantify any trends in the moment histories that indicate nonstationary

behavior, reverse arrangement tests are performed on each of the eight moment histories in

Figs. 5.11 and 5.12. This test uses the number of changes in sign in a sequence of statisti-
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FIGURE 5.10  Superposition of auto-correlation function centered at eight evenly 
spaced times. Top: non-Gaussian simulation. middle: Gaussian 
simulation. bottom: superposition of top and middle.
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FIGURE 5.11  First four normalized moments at each time step through an ensemble 
of 10,000 realizations of a non-Gaussian process simulated using SC.

FIGURE 5.12  First four normalized moments at each time step through an ensemble 
of 10,000 realizations of a Gaussian simulated process.
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cal measurements to estimate the likelihood of trends in data sets. For the tables that fol-

low, a larger number of reverse arrangements indicates a greater degree of certainty in the

assumed stationary hypothesis. Details of the reverse arrangement test may be found in

[6]. 

Table 5.4 shows the results of this test for all eight histories representing the first four

normalized moments through the ensemble of 10,000 realizations for the Gaussian and

non-Gaussian simulations. Every 32nd point in the moment history is used in the test.

There are at least as many reverse arrangements in the moment histories from the non-

Gaussian simulations as there are for the Gaussian moment histories. This indicates that,

with at least as much certainty as for the Gaussian moment histories, no trends can be

identified in the statistics of the non-Gaussian ensemble of processes. To the degree that

the Gaussian simulation method is accepted as stationary, so too can the SC method.   

    

As a final example, consider the justification of the stationary assumption for a single

realizations of measured data. A single very long realization of a non-Gaussian process is

generated with target skewness and kurtosis values of  0.7 and 6.0, respectively. A corre-

sponding Gaussian simulation of the same length and target spectrum is generated. The

data is divided into 64 segments, and the first four moments are calculated in each seg-

TABLE 5.4  REVERSE ARRANGEMENT TEST RESULTS ON MOMENTS 
HISTORIES IN FIGS. 5.11, 5.12.

Reverse arrangements

mean std skewness kurtosis

Gaussian simula-
tion (Fig. 5.12)

953 926 872 969

non-Gaussian sim-
ulations (Fig. 5.11)

1201 1154 1269 1125
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ment. The reverse arrangement test is applied to both sets of four moments, presented in

table 5.5. Comparison of the results of the reverse arrangement test on the Gaussian and

non-Gaussian realization indicate at least as great a degree of certainty of the stationary

hypothesis for the non-Gaussian realizations. Thus, the non-Gaussian simulation is

accepted as stationary with the same confidence as the Gaussian realization. 

 

5.4.2 Convergence of Spectral Correction

The user specifies the exit criterion based on either the error between simulated and

target moments, or the error between the simulated and target spectrum. The SC algorithm

iteratively converges upon both target moments and a target spectrum, and it is shown that

the convergence of both are directly related. The schematic of the SC algorithm shown in

Fig. 5.1 is given in a simplified form in Fig. 5.13.   

Referring to the schematic, each iteration consists of a moment correction section, pro-

ducing a process, , which has the target moments and a spectrum which is distorted from

the target .  is passed to the spectral correction section, where  is transformed to ,

which has no spectral distortion, but does have moment distortion from the target

moments . After each iterative correction to the spectral contents of , the resulting

TABLE 5.5  REVERSE ARRANGEMENT TEST RESULTS 
ON A SINGLE REALIZATION

reverse 
arrangements

Gaussian 
simulation

non-Gaussian 
simulation

mean value 1189 1254
std 1115 1160
skewness 1063 1130
kurtosis 923 1065

x

G
T

x x xc

mk
T x
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moments of  are closer to the target than the previous iteration, thus achieving conver-

gence.

This moment convergence in  is a function of the decreasing distortion in the spec-

trum of  with each iteration. In terms of the Fourier components, the amount of correc-

tion from  to , , becomes smaller after each iteration, until the

correction  is small enough such that the moments of  are within acceptable error.

5.4.2.1 An Illustration of Convergence

This convergence process is shown in several steps in Fig. 5.14, in terms of a hypo-

thetical target auto-correlation function, , and the measured auto-correlation, , of the

process  through four iterations. The steps to convergence are as follows:    

step 1)  The initial Gaussian simulation,  is sent to the moment correction section to pro-

duce . This results in a distortion in the auto-correlation , shown in Fig. 5.14 in the

top left.
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Simulation
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OutputGT
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FIGURE 5.13  Schematic of SC algorithm with error in moments as the exit criterion.
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step 2)   is sent to spectral correction to restore , producing the first iteration of ,

denoted . The transformation  consists of small corrections to the amplitude of

the Fourier coefficients of . Since the change in amplitude is small,  is still non-

Gaussian, but not as severely as , and it is also true that .

step 3)  The second iteration begins by correcting the moments of  to produce 

through another moment correction transformation. Now since the non-Gaussian proper-

ties of  and  are closer than in the first iteration, , the moment correction is less
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FIGURE 5.14  Illustration of the convergence of the auto-correlation function of  to its target 
value through four iterations (hypothetical demonstration).
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severe. The distortion between  from  is also less severe, as shown in the top right

plot in Fig. 5.14.

step 4)  The distortion in  is corrected to produce . Now, since the spectral distortion

being corrected is less severe than in the first iteration, the moments of  are less dis-

torted from the target than were . 

These same steps are repeated, with each iteration correcting smaller distortions in the

moments and spectrum, until the moments of  are within an acceptable tolerance of the

target moments , or the auto correlation  is within acceptable tolerance of . This

demonstrates that the convergence of both the spectrum and moments are related, and hap-

pen simultaneously. Thus either exit option (sections 5.3.1 and 5.3.2) is appropriate for

exiting the SC algorithm.

5.4.2.2 Example of the Convergence of an Actual Simulation

The hypothetical example in Fig. 5.14 is complemented in this section with a demon-

stration of the convergence of an actual realization. A wide banded target spectrum is

employed to simulate a realization of non-Gaussian wind velocity. The distorted spectrum

of  and the distorted moments of  converge with iteration as demonstrated in Fig. 5.15.

Figure 5.16 shows the convergence of the skewness and kurtosis of  with iterations, and

the sum of the percent difference between the target and simulation values. The distortion

of skewness and kurtosis in , seen in Fig. 5.16, is presented in Table 5.6 along with the

target skewness and kurtosis through six iteration.  

R2
x RT

R2
T

xc2

xc2

xc1

xc

mk
T Rx RT

x xc

xc

xc
129



      

TABLE 5.6  THE TARGET SKEWNESS AND KURTOSIS, THE SIMULATED 

VALUES IN , AND THE SUM OF THE SKEWNESS AND 

KURTOSIS PERCENT DIFFERENCE.

skewness kurtosis
sum of % diff. 

from target

target 0.4 6.0 0.0

1st iteration 0.232 4.25 71.135 %

2nd iteration 0.312 5.08 37.410 %

3rd iteration 0.353 5.52 19.621 %

4th iteration 0.375 5.76 10.312 %

5th iteration 0.387 5.87 5.436 %

6th iteration 0.393 5.94 2.867 %
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FIGURE 5.15  Demonstration of the convergence of the auto-spectrum of  to its target 
value through four iterations (actual realization).
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5.5 Target Spectral Options

It was shown in Chapter 2 on Gaussian simulation methods that both random ampli-

tude random phase (RARP) and deterministic amplitude random phase (DARP) are com-

monly used spectral simulation techniques. Although both have been shown by Grigoriu

[22] to be appropriate under most conditions, some preference has been given to RARP in

other literature. Using RARP, the power spectrum of a particular realization matches the

target spectrum only in an ensemble averaged sense, but individual realizations do not
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FIGURE 5.16  Convergence of the normalized moments of  to their target 
values through six iterations (actual realization corresponding to 
Fig. 5.15).
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match the target spectrum. This can be argued to be a more accurate reflection of the

nature of a real stochastic process, where the target spectrum is typically obtained through

an ensemble averaging procedure.

It is proposed to use spectral correction mainly to generate input for Monte Carlo sim-

ulation of systems subjected to non-Gaussian loads. A Monte Carlo analysis of system

response typically requires the results of a large ensemble of response simulations in order

to reduce variance error in the resulting statistical output. In light of the variance of spec-

tral contents in naturally occurring system inputs, some attempt should be made to emu-

late spectral variance in simulated input.

The generation of a realization using the spectral correction method relies on correct-

ing the spectral amplitude to a deterministic target spectrum in each iteration. The power

spectrum of each realization will match the target spectrum, and thus spectrum correction

can be classified as a DARP method. In order to retain the desired spectral variance

between individual realizations, the spectral correction algorithm includes an option to

emulate this variance through pseudo RARP type realizations.

The pseudo RARP option is accomplished by generating a randomized target spectrum

which is used as the deterministic target for a spectral correction realization. An individual

simulated realization will match this randomized target spectrum using the standard spec-

tral correction algorithm. The next realization uses another random realization of the orig-

inal target spectrum as its deterministic target. The ensemble will then consist of

realizations generated using the DARP spectral correction method, where the determinis-

tic amplitude (DA) to be matched is determined by a random amplitude (RA) realization

of the target spectrum . The simulated realizations will then match the original targetGT
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spectrum in an ensemble sense.

The RA realizations of the DA are generated by simulating a Gaussian realization

using Eqs. 5.1 and 5.3. The resulting randomized version of the target spectrum is retained

as the DA for a single realization using spectral correction.

5.6 Transformation Options

Central to SC is the static transformation of a Gaussian realization to non-Gaussian.

The characteristics of the desired non-Gaussian process are often described in terms of

either higher moments or an analytical PDF. While an analytical PDF contains more infor-

mation than the first four moments, an analytical PDF is not always available. In these

cases the first four moments can be adequate information to develop a static transform

based on an assumed form of analytical PDF. 

The SC algorithm is capable of using either the first four moments or a PDF model to

produce a process with the associated non-Gaussian characteristics. These two options are

discussed briefly below.

5.6.1 Modified Hermite Transformation (first four moment method)

It was shown in the chapter concerning PDF modelling that the modified Hermite

moment based PDF model provides an adequate representation of experimental data using

the first four moments. The modified Hermite transformation is adapted to operate directly

on a time history such that its moments match the target values. This has been addressed

previously in sections 3.2.3 and 5.2. The static transformation applied to the normal Gaus-

sian process  is of the formu
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, (5.53)

where the coefficients are defined through the optimization discussed in Section 5.2

This option is applicable for the simulation of experimentally measured data when it

can be shown that the modified Hermite moment PDF model (section 4.3.3) is a good rep-

resentation of the data histogram. This option has been employed thus far for all examples

of SC, and is preferred for its flexibility.

5.6.2 Transformation Using a PDF Model

The SC algorithm can employ a PDF model as the source of information about the

characteristics of the desired non-Gaussian process. This adds a great deal of flexibility to

the method, since the Hermite transformation may not always be the most appropriate

PDF model.

The Modified Hermite transformation in Eq. 5.53 is replaced with

, (5.54)

where  is the cumulative distribution function of a normal Gaussian process, and  is

the inverse cumulative distribution function derived from the analytical PDF of the target

non-Gaussian process. SC applies the transform in Eq. 5.54 through a direct mapping

technique, and eliminates the need for an analytical inverse function.

The error between target and simulated moments is not optimized explicitly when Eq.

5.54 is applied as the nonlinear transformation. It is more appropriate in this case to use

the iteration termination option outlined in Fig. 5.2, where error between the target and

simulation spectrum is measured after the moment correction section.

x u ĥ3 u2 1–( ) ĥ4 u3 3u–( )+ +=

x F 1– Φ u( )[ ]=

Φ F 1–
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5.6.2.1 Example of CDF Transformation Based Spectral Correction Simulation

The chapter on PDF modelling showed cases where the histogram of measured full

scale pressure data was modeled most appropriately using a modified maximum entropy

model referred to as MEM II. This model is applied here as input to the spectral correction

algorithm to represent the non-Gaussian characteristics of the measured pressure data. Fig.

5.17 shows the measured data and spectral correction simulations using the CDF transfor-

mation option with the MEM II model, and the four moment Modified Hermite transfor-

mation option. Figure 5.18 compares the PDFs of the simulations with the MEM II model

and the measured data PDF. Although the MEM II PDF model fits the data better than the

Modified Hermite PDF model, it is of little consequence in this simulation example.     

5.7 Crossing Rates using SC and Y&S Simulation

An important statistical measurement of non-Gaussian processes is the crossing rate of

extreme values. This study compares the crossing rate of measured data with simulated

data using Spectral Correction (SC) and the Yamazaki and Shinozuka method (Y&S). SC

is applied using both the raw amplitude coefficients of the Fourier transform of the data as

the target spectrum, and using a ensemble averaged target spectrum measured from the

data and applied using the pseudo RARP method described in section 5.5. The average

crossing rate of 50 realizations of each method are compared with the measured data.

A realization of both measured pressure data and measured tension leg platform surge

response data are used in this study. The measured records are shown in Fig. 5.19.
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5.7.1 Case 1: Pressure Data

The measured pressure record used in section 5.3.3.2 is used here to describe the target

spectral and non-Gaussian characteristics of the simulations. Figure 5.20 shows the abso-
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FIGURE 5.17  Measured pressure data and two simulations using : middle: Spectral Correction 
with CDF transformation option using MEM II PDF model, bottom: Spectral 
Correction with four moment Modified Hermite transformation.
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lute value of the crossing rate measured from the data, and from the three simulations.

These three simulations are denoted in the legend as SC-f, SC-r, and Y&S, referring to SC

simulation using the raw amplitude coefficients of the Fourier transform of the data as the

target spectrum, SC simulation using the pseudo RARP method described in section 5.5,

and the Yamazaki and Shinozuka method, respectively. The figure shows acceptable

reproduction of the measured crossing rate in the right extreme for all three simulations.

Near zero the Y&S method does not reproduce the measured crossing rate well. This was

MEM II PDF model                          

PDF from SC using Modified Hermite        
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FIGURE 5.18  Measured PDF of data, MEM II model, and simulations from Fig. 5.17
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discussed in section 5.3.3.2.

    

5.7.2 Case 2: TLP surge data

The response of a tension leg platform (TLP) to random wind and waves is measured

in an experimental facility. The horizontal response parallel with incoming waves, surge,

is the measured data under consideration. Figure 5.21 compares the measured crossing

rate from data and from the three simulations. In this case all three methods produce

acceptable representations over the range of measured data. 
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FIGURE 5.19  Measured pressure and TLP surge records used in section 5.7.
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5.8 Concluding Remarks

This chapter presents the uni-variate spectral correction simulation method (SC),

which is capable of producing time history realizations that match both probabilistic and

spectral input information. The stationary and convergence properties are discussed as

well as several options in the algorithm. Several examples are presented and results are

compared with an existing technique. It is shown that SC performs well, and succeeds

even in special cases where the existing method fails to correctly reflect the target spec-

trum.

Spectral correction is extended to multivariate simulation in the next chapter, and is
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used as the central algorithm for non-Gaussian conditional simulation techniques in chap-

ter 7.

FIGURE 5.21  Crossing rate of TLP surge data and the average crossing rate of 50 realizations 
using three simulation methods.
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CHAPTER 6

MULTI-VARIATE SPECTRAL CORRECTION (MSC)

6.1 Introduction

The previous chapter presented the development of the spectral correction method for

simulating single point (uni-variate) non-Gaussian processes with a wide range of power

spectral densities and probability density functions. Spectral correction is here extended to

include multi-point (multi-variate) simulation, where several non-Gaussian correlated

time histories are generated simultaneously. Multi-variate simulation becomes necessary

for cases where non-Gaussian processes at spatially distributed locations are desired. For

example, simulation of multi-variate velocity and pressure fields. The multivariate spec-

tral correction algorithm is referred to as MSC.

6.2 Overview

Two MSC methods are presented here. The first simulates processes which match the

absolute value of the target coherence. This scheme is designed for cases where the coher-

ence target is analytical and real valued, resulting in a target cross-spectral density matrix
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whose off diagonal terms are real. In this case corrections are iteratively made to the real

valued design coherence function to achieve convergence within an error tolerance. This

scheme is referred to as MSC I.

The second scheme is designed for cases where the cross-spectral density matrix has

complex components. A correction to the absolute value of the design coherence will not

properly account for the phase relationship. Iterative corrections are made to the design

cross-correlation functions between each pair of variates. Proper matching of the cross-

correlation function will account for both the magnitude and the phase of the cross-spec-

tral density matrix. This scheme is intended for use when the target statistics are measured

from experimental data, where the off diagonal terms in the measured target cross-spec-

trum will in almost all cases be complex. This scheme is referred to as MSC II.

6.3 MSC I - Matching Coherence

Coherence is a measure of linear correlation between two processes in terms of their

auto-and cross-spectra

. (6.1)

where  is the auto spectrum for  and the cross spectrum otherwise. A reliable mea-

sure of coherence requires the ensemble averaging of numerous samples to represent the

auto- and cross-spectra. Thus, the coherence cannot be corrected through direct manipula-

tion of individual Fourier components without interfering with the desired non-Gaussian

characteristics set in place by spectral correction.

γ i j
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GiiGjj

----------------------------=
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It is possible to correct the coherence between processes without distorting the desired

non-Gaussian transformation if this correction is made prior to the application of SC. The

proposed method corrects the design coherence function used to generate the correlated

parent Gaussian signals before application of SC.

The methodology is based on the simulation of Gaussian correlated processes using

standard techniques, followed by transformation to the desired non-Gaussian processes

using SC. The Gaussian simulation is based on the target spectral matrix and a design

coherence. In some cases the coherence between the transformed non-Gaussian processes

match the target coherence well enough to warrant no further corrections.

In other cases the resulting correlation is significantly distorted through the transfor-

mation. In order to correct this distortion, the Gaussian processes are re-simulated with a

new design coherence. These are then re-mapped to non-Gaussian space. Typically, two or

three iterations bring the coherence of the non-Gaussian processes into agreement with the

target coherence. 

6.3.1 Schematic: Development of MSC I

Figure 6.1 shows a schematic representation of the first multivariate spectral correc-

tion (MSC I) method. The iterative procedure is divided into 6 steps.

   

1) The target autospectra, , target moments, , and target coherence

functions, , describing the correlated  non-Gaussian process are input to the

algorithm. The iteration counter is set to 1, and the design coherence for Gaussian simula-

tion in the current iteration is set to the target coherence .

2) A set of Gaussian correlated processes  are generated using a standard multivariate

Gii
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T=

xG
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Gaussian simulation algorithm. The target statistics are defined by the current iteration’s

design coherence , and the target autospectra .

3) The  correlated Gaussian processes  are sent to the spectral correction section.

Here each realization is individually transformed to a non-Gaussian realization  which

matches its target spectrum, , and target moments .

4) The coherence, , between the non-Gaussian realizations is measured and com-

pared with the target coherence  to determine the error as some function of the two

. (6.2)

FIGURE 6.1 Schematic of the Multivariate Spectral Correction Simulation method MSC I.
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If the error is within acceptable limits, the algorithm ends, and  are output as the

final simulated realizations. If the error is unacceptable, the algorithm advances to the next

stage. The specific error criteria will be discussed in a later section.

5) When the error between the target and measured coherence is not within the desig-

nated tolerance, the design coherence,  used to generate the Gaussian processes is

updated as a function of the current design coherence and the target and measured coher-

ence

. (6.3)

The update scheme is a hybrid of two functions, and is discussed in a later section.

6)The algorithm now returns to the top of the iteration loop with the new design coher-

ence. Steps 2) through 5) are repeated until  is acceptable.  

6.3.2 An Example: Simulated Pressure

Before proceeding to a more detailed discussion of the algorithm, an example is now

shown to demonstrate the effectiveness of MSC I. The wind pressure on the edge of a

building is simulated at two closely located positions. The locations lie within the separa-

tion zone where the pressure is non-Gaussian suction-type. A broad banded spectral model

is used to represent the spectral contents of the pressure, and the coherence is modeled as

an exponentially decaying function with parameters dependent on spatial separation.

Based on measured full scale data, the target skewness and kurtosis are -.5 and 5.5, respec-

tively.

Figure 6.2 shows the development of the coherence between the two non-Gaussian

pressure simulations as the number of iterations progress from 1 through 20. It can be seen
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that in this case 3 iterations are enough to adequately match the target coherence. The

lower right plot is the error measurement as a function of iterations. It can be seen that the

error quickly drops within a few iterations. 

Later examples will demonstrate the effectiveness of MSC I for simulating more than

two processes. First, MSC II is developed and applied to the generation of samples based

on measured rather than analytical autospectra and coherence models.  
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FIGURE 6.2 (top left): The target and measured coherence between two simulated pressure records 
after 0 iterations. (top right): The target and measured coherence after 3 iterations. 
(lower left): The target and measured coherence after 20 iterations. (bottom right): the 
error as a function of iterations on a semi-log scale.
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6.4 MSC II - Matching Cross Correlation

The matching of the coherence as defined in Eq. 6.1 between locations  and  is

equivalent to matching the absolute value of the target cross-spectral density . This is

appropriate when real valued coherence models are used, and no particular phase relation-

ship is assumed. However, when dealing with sets of correlated experimental data, it is

often the case that the phase contains important information. For these circumstances the

matching of the coherence function is insufficient for proper simulation, and MSC I algo-

rithm in inappropriate.

Both the phase and magnitude information of the cross-spectral matrices are contained

in the time domain equivalent cross-correlation function through inverse Fourier trans-

form

, (6.4)

where  is the two sided target cross-spectral density function. A pair of simulated

processes with the same cross-correlation function as the target, , will

properly reflect the phase and magnitude of the target.

The MSC II algorithm is of the same structure as MSC I, where now the iterative

update is performed in the time domain on the design cross-correlation . The algo-

rithm proceeds exactly as outlined in the six steps in section 6.3.1, with the following sub-

stitutions

,   ,   (6.5)
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The schematic is shown in Fig. 6.3, where all coherence terms have been replaced with

cross-correlation terms. Example applications of MSC II will follow a closer look at the

three main components of the MSC algorithms.  

FIGURE 6.3 Schematic of the Multivariate Spectral Correction Simulation method MSC II.
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6.5 The Three Main Components of the MSC algorithms

6.5.1 Gaussian Multivariate Simulation

The first part of the iterative algorithm supplies correlated Gaussian processes which

match the design auto-spectra and the design coherence. The commonly used spectral

decomposition method was introduced in the chapter concerning Gaussian simulation

techniques, and is used in the MSC algorithms.

The major factor in this selection is the speed of the method, which is based on the

efficient fast Fourier transform. The use of long realizations provides Gaussian simula-

tions which well represent the design coherence [58].

6.5.2 Transformation to Non-Gaussian via Spectral Correction

It was shown in the previous chapter that SC is an effective tool for simulating non-

Gaussian processes based on four moments and a target spectrum as input. Here it is con-

verted to a transformation tool, where the inputs include the target moments and spectrum,

and the Gaussian parent process which is to be transformed. 

SC, when used for simulation, produces an initial random phase of uniform distribu-

tion to generate the simulation. For use as a transformation tool, the phase from the input

parent process is used to seed the SC algorithm, and the magnitude of the parent process is

replaced with the desired target spectrum. 

Using SC, the  individual realizations of  are reliably transformed to

non-Gaussian realizations  with the desired autospectra  and moments . This

transformation process distorts the coherence and cross-correlation associated with ,

and instigates the need for iteration in MSC if the distortion is significant.
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6.5.3 Measuring, Comparing, and Updating the Coherence Function (MSC I)

6.5.3.1 Bias and Variance Error Effects

The coherence between the non-Gaussian processes are measured for comparison with

the target coherence. These estimates contain some error due to the uncertainty in the auto

and cross-spectral expectations in Eq. 6.1. 

 The number of segments, , used in the ensemble average will determine the bias

error

, (6.6)

where  is the random variable, and  is the estimate or simulation of the random vari-

able. Bendat and Piersol [6] suggest an estimate of bias error for measured coherence as a

function of the number of segments 

. (6.7)

More significant bias error is associated with lower levels of coherence and fewer seg-

ments . 

In order to demonstrate the effect of bias error, three correlated Gaussian processes are

simulated with their target coherence defined by sine waves. The coherence is measured

between the three processes using both  and  segments in the ensemble.

The target coherence and Eq. 6.7 are used to estimate the coherence with the bias error

added.

Figure 6.4 presents the target, simulated, and bias-added coherence functions between

processes 1 and 2, and 1 and 3. The dashed line in the figure represents the target coher-

ence, the solid line is the simulated coherence using 1024 segments in the ensemble aver-
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age, the dashed-dot line is the measured coherence using 16 segments, and the dotted line

is the target coherence added to the predicted bias error using Eq. 6.7. The distortion in the

measured coherence is most pronounced for the 16 segment case in the low frequency

region.

 

Eq. 6.7 provides a good estimate of the bias error due to insufficient ensembles in the

average. However, removing the bias in the measured coherence using Eq. 6.7 is not a via-

ble solution unless the exact coherence of the process is know apriori. This is not the case

in the MSC algorithm. In order to remove any significant bias error, the rule of thumb
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FIGURE 6.4 Effects of bias error on the measured coherence using 16 
and 1024 segments in the ensemble estimation.
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applied to this study is to use at least 100 segments whenever possible to reduce maximum

error in measured  to 0.1. 

Variance error is defined as the variance of the measured process about its expected

value. This is a result of the random nature of measured data, and is often called random

error. An approximate expression for variance error associated with measured coherence

is given in [6] as

. (6.8)

More segments reduce variance error just as in the case of bias error.

6.5.3.2 Error Criterion for Comparison of Target with Resulting Coherence

The termination of the iterative algorithm MSC I is dependent on the error between the

target coherence and the coherence of the simulated processes . Two error criteria are

used to account for both bias and variance error. The expected bias and variance error are

determined at each frequency by Eqs. 6.7 and 6.8 using the target coherence and the num-

ber of samples, , to be used to measure the coherence of the simulation

, (6.9)

. (6.10)

The first error criterion is that the simulation coherence must lie within the bounds of

the expected variance at every frequency,

   if       for all , (6.11)
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 otherwise, (6.12)

where  indicates the iterations must continue.

The second criterion is that the mean error between target and simulation coherence

over all frequencies must lie within the mean bias error

 if , (6.13)

 otherwise, (6.14)

where  is the number of discrete frequencies in the coherence function, and 

indicates that the iterations must continue.

6.5.3.3 Updating the Design Coherence Function

Before the algorithm begins a new iteration, the design coherence used to generate the

Gaussian processes is updated as a function of the previous iteration’s design coherence,

and the target and measured coherence functions. Two updating schemes are used in the

MSC algorithm. The first is adapted from Yamazaki and Shinozuka’s method for non-

Gaussian simulation, [101], discussed in section 2.8.1. Equation 6.3 from the development

section is

. (6.15)

The second method is adapted from Elishakoff’s method for conditional non-Gaussian

simulation [18], discussed in section 2.10. This update is given by

. (6.16)
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both Eq. 6.15 and Eq. 6.16 will reduce the design coherence, thus reducing the measured

coherence in the next iteration. Conversely, the design coherence is increased if  to

increase  in the next iteration. 

An example is used to demonstrate the correction to the design coherence. Starting at

the first iteration, the target and design coherence are set to 0.5 and denoted Ct and Cd. We

assume that after the first non-Gaussian transformation the resulting measured coherence

is as in the top plot of Fig. 6.5, and denoted Cx. The second iteration will begin with the

same target spectrum, while the design spectrum is corrected by either Eq. 6.15 or 6.16,

shown in the bottom plot. 

The bottom plot in Fig. 6.5 demonstrates that Eq. 6.15 produces a larger correction

than does Eq. 6.16. Equation 6.15 is capable of significantly reducing the coherence error

within a few iterations, but under certain conditions this has the undesired effect of over-

compensating for the coherence error, and results in oscillation about the target coherence

without convergence. This has been observed only when the error has been reduced

through several previous iterations, typically when three or more variates are being simu-

lated. The smaller corrections using Eq. 6.16 virtually eliminate this oscillating behavior

at the expense of more iterations to reduce the coherence error. Figure 6.6 demonstrates

the rate of coherence error reduction using Eqs. 6.15 and 6.16. Equation 6.15 is observed

to more quickly converge. Later examples will show the oscillating behavior.     

The MSC algorithm uses both correction schemes to optimize speed while preventing

oscillations in convergence. The first several iterations make use of Eq. 6.15, which

reduces coherence error quickly, and any further iterations use Eq. 6.16 to fine tune the

design coherence  without over-compensating.
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FIGURE 6.5 (top plot): An example of a target coherence and the resulting measured coherence. 
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6.5.4 Measuring, Comparing, and Updating the Cross-Correlation Function

6.5.4.1 Error Criterion for Comparison of Target and Simulated Coherence

The termination of the iterative algorithm MSC II is dependent on the error between

the target cross-correlation, , and the cross-correlation,  of the simulated processes

. In MSC I, the error is measured on the coherence function, which is in the range

. In order to quantify error for the cross-correlation function, the mean squared

error and mean error are measure using the target and cross-correlations normalized by the

largest value in the target cross-correlation, 

, (6.17)

 . (6.18)

The MSE error criterion is then

  if   for all (6.19)

 otherwise, (6.20)

where the variance error for cross correlation measured as the inverse Fourier transform of

the cross spectrum is defined in [6] as

. (6.21)

In the above,  is the number of segments used in the spectral estimate, and  is the num-

ber of data points used in each segment. 
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There is no inherent bias error associated with the cross-correlation measurement.

However, the mean error between the target and simulation cross-correlation does steadily

decrease as the fit becomes more accurate. The mean error criterion is set to

 if , (6.22)

 otherwise, (6.23)

where  is typically set to 0.0001.

6.5.4.2 Updating the Design Cross-Correlation Function

Before the algorithm begins a new iteration, the design cross-correlation used to gen-

erate the Gaussian processes is updated as a function of the target-, simulated, and the pre-

vious iteration’s design cross-correlation functions. The updating scheme used in the MSC

II algorithm is 

(6.24)

where  is removed for convenience, but implied, and

. (6.25)

The updating scheme in Eq. 6.24 allows larger adjustments of the design cross-correla-

tion at larger values of , and was found to be the most appropriate of the various

schemes tried.
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6.6 Example Applications of MSC I

This section will present two examples of the simulation of multi-variate non-Gauss-

ian processes using MSC I. A significant difference between the target and final design

coherence is shown in the first example to demonstrate the necessity of iteration. A simu-

lation of ten correlated processes is presented to show the convergence of the MSC I algo-

rithm is not restricted to a few variates. 

6.6.1 Sine Wave Coherence Functions

This example shows the contrast between the final design coherence, , and the tar-

get coherence, . Three non-Gaussian processes are simulated using a broad banded tar-

get spectrum describing wind turbulence, and target skewness and kurtosis values of -0.1

and 5.5, respectively. The three target coherence functions are 

, (6.26)

where  in 129 discrete increments. The processes consist of 16384 data points,

and are divided into 128 segments of 128 data points each for the ensemble measurement

of coherence.

Figure 6.7 compares the target, final design, and final simulated non-Gaussian coher-

ence functions, , and the coherence error for each case with respect to itera-

tions. First it is noted that the design coherence has a positive mean offset from the target

in each case. This indicates that the measured non-Gaussian coherence after the first itera-

tion had a negative mean offset w.r.t. the target. The bottom plot of the coherence error
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with iteration demonstrates the beginning of the oscillating behavior (noted in section

6.5.3.3) at the 5th iteration. At the fifth iteration the design coherence correction in Eq.

6.15 is replaced with Eq. 6.16 and MSC achieves a steady state coherence error. 
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FIGURE 6.7  Example from section 6.6.1: Target, design, and measured coherence 
functions after 10 iterations, and the coherence error.
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6.6.2 Example: 10 Correlated Wind Pressure Processes Using MSC I

This example simulates ten correlated processes representing wind velocity at ten ver-

tically separated locations in a separated reverse flow region. A broad banded wind spec-

trum is used to define the target auto-spectra, and the target coherence function is

, (6.27)

,   , (6.28)

where  is the frequency,  is the horizontal location of point ,  is the vertical location

of , ch and cv are constants with values of 256 and 100, and  is the mean wind velocity

at location .  is assigned a constant value for all locations, and . The

skewness and kurtosis values of -1.0 and 6.5 are assigned to each process.

Forty-five coherence functions are necessary to describe the relationship between all

possible pairs of the ten processes. Figure 6.8 is a view of the coherence between the clos-

est two locations, the most distant, and two in between. Each plot shows the target and

resulting measured coherence, delineated as Ct and Cx, where the plot title ‘cohij’ indi-

cated the coherence between the processes at the ith and jth locations. The inability to

match the very low level coherence in the bottom two plots is a result of the inherent bias

error, which, from Eq. 6.7, is .    

Figure 6.9 presents the coherence error with respect to iterations. The top plot is the

error between the coherence functions in Fig. 6.8. The lowest error corresponds to loca-

tions close together (1 and 2), where the target coherence is of significant value over the

frequency range up to the cutoff frequency. The lower plot demonstrates the oscillatory
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behavior of the coherence error for the closely spaced locations 2 and 3. When the MSC

algorithm switches update schemes from Eq. 6.15 to Eq. 6.16, the coherence error contin-

ues to converge to an acceptable value. Figure 6.10 is a portion of four of the ten records.

The retention of low frequency correlation in the non-Gaussian characteristics is easily

observed.          

6.7 Simulation of Measured Data (MSC II)

Examples are now considered where the phase of the target cross-spectrum is also con-

sidered. MSC II is used for simulations based on target inputs from measured data.
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FIGURE 6.8 Section 6.6.2: Selected target coherence (Ct) and measured coherence 
(Cx) from ten correlated wind velocity simulations.
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6.7.1 Measured Full Scale Wind Pressure Data

The first example uses full scale pressure data measured simultaneously at several

locations on the roof of an instrumented building at Texas Tech University (TTU). Here

we consider three locations on the roof in a separation zone where the pressure is highly

non-Gaussian. Figure 6.11 is a diagram of the approximate locations of the pressure taps.

Their locations are slightly offset from each other both parallel and perpendicular to the

incoming wind. The offset parallel with incoming wind leads to a non-zero phase relation-

ship between locations, as the turbulent wind field arrives at each location at slightly dif-

FIGURE 6.9 Section 6.6.2: Error between Ct and Cx in Fig. 6.8 (top). 
Demonstration of oscillating coherence error (bottom).
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FIGURE 6.10 Section 6.6.2: Four records from a set of ten correlated wind velocity simulations.
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ferent times. This was not the case in the previous examples, where the locations had no

offset parallel with the incoming wind. 

The statistics of the measured records used to define the target inputs for this example

are listed in Table 6.1. Using Spectral correction as the non-Gaussian transformation tech-

nique, the moments of the resulting simulated pressure records are within 5% of their tar-

gets in Table 6.1. 

          

The goal of this example is to generate realizations of three pressure records which

maintain the complex coherence between the measured records, while properly reflecting

the higher order statistics and spectral contents. Figures 6.12-6.14 compare the three target

TABLE 6.1 STATISTICS OF THE 3 TAPS IN FIG. 6.11

mean std skewness kurtosis

tap 1 -0.7131 0.2862 -0.9584 5.2566

tap 2 -0.7112 0.2944 -1.1076 5.6147

tap 3 -0.8994 0.3393 -0.8049 4.1397

FIGURE 6.11 Section 6.7.1: Location of pressure taps on Texas Tech building.
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and simulated cross-spectral functions in the significant frequency range, and the target

and simulated cross-correlations. The match between target and simulated cross-spectra

are excellent in the low frequency range where there is significant energy. The cross-cor-

relation errors are shown in Fig. 6.15 as a function of the 20 iterations used.            

Figures 6.16 and 6.17 show the time history of the three full scale measured pressure

records, and their simulations using MSC II. The low frequency correlation can be seen in

both figures, and the non-Gaussian characteristics of the measured and simulated records

look similar. To quantify the similarity of the non-Gaussian characteristics, linear and

semi-log views of the measured and simulated histograms are shown in Fig. 6.18, and

show excellent compatibility between measured and simulated data. This is expected, as
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FIGURE 6.12 Section 6.7.1: Target and simulated statistics between wind 
pressure records 1 and 2. Top left: Absolute value of the cross-
spectrum, Top right: phase of the cross-spectrum, Bottom: cross-
correlation function.
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FIGURE 6.13 Section 6.7.1: Target and simulated statistics between wind pressure 
records 1 and 3. Top left: Absolute value of the cross-spectrum, Top right: 
phase of the cross-spectrum, Bottom: cross-correlation function
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FIGURE 6.14 Section 6.7.1: Target and simulated statistics between wind pressure records 2 and 3. 
Top left: Absolute value of the cross-spectrum, Top right: phase of the cross-spectrum, 
Bottom: cross-correlation function.
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the first four moments of each realization are within 5% of their corresponding measured

sample through the error criteria specified in the spectral correction algorithm.           

6.7.2 Measured Offshore Tension Leg Platform Response

This last example utilizes experimental data from extensive tests performed on the

response of a scale model tension leg platform under simultaneous random wind and wave

input. The measured data records under consideration describe the wave height elevation

as it impinges upon the structure, and the horizontal response of the platform parallel with

the wave direction (surge response). These are referred to in this example as records 1 and

2, respectively. The tests conducted were intended to represent extreme sea conditions,

resulting in non-Gaussian input waves. The TLP system stiffness is nonlinear, and is sub-
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FIGURE 6.15 Section 6.7.1: Normalized mean and mean square error between 
RT and RX in Figs. 6.12-6.14.
167



0 100 200 300 400 500 600 700 800
−3

−2

−1

0

1

pr
es

su
re

location 3 measured

0 100 200 300 400 500 600 700 800
−3

−2

−1

0

1

pr
es

su
re

location 2 measured

0 100 200 300 400 500 600 700 800
−3

−2

−1

0

1

pr
es

su
re

location 1 measured

FIGURE 6.16 Section 6.7.1: Measured rooftop pressure at the three locations in Fig. 6.11.
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FIGURE 6.17 Section 6.7.1: Simulated rooftop pressure at the three locations in Fig. 6.11.
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jected to non-Gaussian input, leading to a non-Gaussian surge response. The statistics of

the two records used in this example are reported in Table 6.2, and the moments of the

simulations are within 5% of the targets using spectral correction. 

  

Figure 6.19 shows the target and simulated cross-spectrum function, and the match

between the target and simulated cross-correlation function. Both the phase and magni-

tude of the target cross-spectrum are well represented by the simulation, with small dis-

crepancies in the high frequency range where there is very little process energy. Figure

6.20 compares the histograms of the measured and simulated data on linear and semi-log

scales. Figures 6.19 and 6.20 demonstrate the ability of the MSC II algorithm to simulate

correlated non-Gaussian processes.        

6.8 Concluding Remarks

Spectral correction is extended to multivariate simulation. Two algorithms, MSC I and

MSC II, are developed for the simulation of processes where the cross spectral terms are

real or complex, respectively. MSC I iterates in the frequency domain on a design coher-

ence function used to generate Gaussian realizations for transformation using SC, whereas

MSC II iterates in the time domain on the design cross-correlation used to generate the

Gaussian realizations. Examples demonstrate the effectiveness of both algorithms.

TABLE 6.2 STATISTICS FOR TLP MEASURED DATA

mean std skewness kurtosis

wave elevation  0.003 0.193  0.227 3.604

surge response  0.208 0.2742  0.6021 3.529
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CHAPTER 7

CONDITIONAL SIMULATION OF NON-GAUSSIAN

PROCESSES

7.1 Introduction

Simulated random signals at un-instrumented locations of a structure are often needed

in areas of wind, wave and earthquake engineering. For example, malfunctioning equip-

ment may leave a hole in a data set or information may be lacking due to a limited number

of instruments. Dynamic analysis schemes which utilize integration techniques may

require loading time histories at a number of unmeasured locations. Conditional simula-

tion methods simulate realizations at desired locations conditioned on the measured data

at other locations. Gaussian methods were discussed in a previous chapter, here we present

a non-Gaussian conditional simulation method using spectral correction.

The previous chapter dealt with the simultaneous simulation of multiple correlated

non-Gaussian processes, an unconditional simulation method. The multi-variate non-

Gaussian simulation algorithms have been extended to include conditional simulation in

both the frequency and time domains. The frequency domain conditional simulation gen-
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erates time histories at new locations when one or more time series for the full length

interval are given. Time domain conditional simulation extends existing records beyond

the total sample time for cases where conditioning time series are limited to a small sub-

interval of the full length.

7.2 Review of Gaussian Conditional Simulation

 As discussed in the chapter on Gaussian conditional simulation, two approaches have

been introduced in which the simulation is either based on a linear estimation (kriging) or

on a conditional probability density function. It was shown that these two approaches are

equivalent. Following Borgman’s work on ocean waves [7], Kareem and Murlidharan [58]

have developed schemes for conditional simulation of Gaussian wind fields utilizing both

frequency and time domain conditioning. This work is outlined below as a short overview

of the conditional simulation methods presented in the Gaussian simulation chapter.

Consider a pair of correlated Gaussian random vectors  and . Let the two variate

normal distribution of these variables be denoted 

, (7.1)

where  is the mean value of the variable , and  is the auto or cross-covariance

between the variables  and . If a sample of  is measured and denoted as , then it is

the conditional simulation of  based on the measured record  that is desired. The con-

ditional PDF for  given the information on  is expressed as

, (7.2)
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and a conditional simulation is provided by 

. (7.3)

where  are unconditionally simulated known and unknown variates, respectively,

and  is the known measured variate. Derivations of the covariance matrices  and 

in the time and frequency domain provide the necessary information needed for condi-

tional simulation.

For clarity in the following presentation, the subscripts  will replace  to indi-

cate known and unknown processes, respectively. Using this convention, the simulation of

the known portion, simulation of the unknown, the measured known, and the covariance

matrices,  will be represented in the schematics as ,

and Eq. 7.3 can be replaced with

. (7.4)

When more than one known or unknown process is under consideration, the subscripts

 and  will represent all the processes. Thus, for example,  could be written more

explicitly as , where  known processes are under consideration.

7.3 Methodology for Extension to Non-Gaussian Simulation

7.3.1 Problem Statement

Conditional simulation begins with the unconditional simulation of all the known and

desired processes, denoted above as . In frequency based simulation, this means the

unknown spatially separated variables are simulated along with new realizations of the
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known processes. In time based simulation, the single record being conditionally extended

based on its known portion is first unconditionally simulated to its full desired length. In

both cases, the unconditionally simulated processes are then combined with the known

processes using either the spectral or covariance matrix (Eq. 7.3) under the condition that

all processes involved are Gaussian.

We are restricted to using Gaussian processes when combining simulated and mea-

sured records to arrive at conditionally simulated records using Eq. 7.3. Thus a direct

approach of simulating  as non-Gaussian records through spectral correction and

applying Eq. 7.3 is not possible. Methods using a combination of nonlinear transforma-

tion, spectral correction, and application of Eq. 7.4 on Gaussian parent processes are pre-

sented next.

7.3.2 Time Domain Non-Gaussian Conditional Simulation

In the time domain case we seek to extend the length of a known (presumably mea-

sured) non-Gaussian time history using the statistics from the known portion of length ,

and a simulated record of the desired length , where . With respect to Eq. 7.4, the

simulated record from  is denoted , and from  is denoted . The known

record is of length  and denoted . The covariance matrix measured from  is

used to generate  and , and Eq. 7.4 is used to generate the conditional simulation of

length .

The approach taken in the time domain is to transform the non-Gaussian measured

(known) process such that its third and forth order moments are the expected values for a

Gaussian process via backward modified Hermite transformation. Once the known non-
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T τ T<

1...τ Vk τ...T Vu
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Gaussian process is back-transformed, its covariance and auto-spectrum are measured and

used to simulate the needed  for Eq. 7.4 using a standard Gaussian unconditional

simulation technique. After application of Eq. 7.4, the resulting conditionally simulated

Gaussian process is transformed to the desired non-Gaussian domain.

7.3.2.1 Schematic Representation 

Figure 7.1 is a schematic of the method to conditionally simulate an extended length of

a measured non-Gaussian process. The method is divided into 7 steps.

  

Vk Vu,

FIGURE 7.1 Schematic of the Time Domain non-Gaussian conditional simulation 
method.
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1)  Begin with a measured non-Gaussian process  of length . A backward modified

Hermite transformation (see section 3.2.3 and [32]) is applied to  to produce a process

 which is statistically Gaussian. The necessary parameters  for the inverse opera-

tion  are retained for later reconstruction of . 

2)  The power spectral density  of the Gaussian process  is then measured and used

to produce an unconditional simulation of  denoted  which is of length . 

3)  The covariance of  is measured, denoted , and split into its components . 

4)  Equation 7.4 is now applied using , , , and

. This results in a conditionally simulated Gaussian process of length ,

denoted . 

5)  The known portion of the original non-Gaussian record, , is reconstructed

from  by applying a forward transformation using the parameters  retained

in step 1).

6) A nonlinear transform is applied to the Gaussian conditionally simulated record

, producing the conditionally simulated non-Gaussian record .

7)   is placed at the end of the known record  to yield a condition-

ally simulated non-Gaussian process of length  as in 

.    (7.5)

The nonlinear transform in step 6) is not straightforward, and will be discussed follow-

ing an example of the method.
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7.3.2.2 Example: TLP Response

A demonstration of the proposed technique is seen in Fig. 7.2. The measured data is an

experimental non-Gaussian TLP surge response record consisting of 1000 data points. Let

us assume that the only the first 670 data points were measured, and it is desired to aug-

ment the record such that it consists of 1000 points. In terms of the schematic, ,

and  for a sampling rate of 1.0 Hz. 

The first 670 data points are the known portion of a non-Gaussian record, denoted 

in section 7.2, and also denoted  in the schematic representation. The remaining

 data points are simulated using the method discussed in

section 7.3.2. The full measured record is shown in Fig. 7.2 as the black line. The condi-

tional simulation, , of the last 671-1000 points is overlaid in gray for comparison. The

conditional simulation is expected to have statistical characteristics similar to the record it

replaces, as it does in this example. Note that the portion of the dark line record from 671-

1000 is not used in the simulation. Statistical comparisons will be made in later examples

following a discussion of the transformation in step 6).     

7.3.2.3 Non-Gaussian Transformation in Step 6)

In the previous example, the nonlinear transformation applied in step 6) to  is the

same transformation used to reconstruct the known portion of the record in step 5), which

is just the inverse of the transformation used in step 1). Application of the same transfor-

mation to both the known and simulated portions of the Gaussian record  main-

tains the property of smooth transition at the joint. 
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The difficulty is that this transformation leads to distortions in the statistics of the non-

Gaussian simulated portion . Over an ensemble of conditional simulations

using the same data as in the previous example, the skewness and kurtosis of 

tend to overshoot the target values by approximately 10%. Thus the conditionally simu-

lated non-Gaussian portion does not match the target non-Gaussian statistics, and does not

provide an adequate simulation.

One possible solution is to apply the optimizing modified Hermite transformation to

the conditionally simulated portion of the Gaussian time history, . The coeffi-

cients used to bring the first half (known) back to its original non-Gaussian form are not

applied to the second half, rather a new set of coefficients are found such that the first four

moments of the second half match those of the first half. The resulting statistics of the con-
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FIGURE 7.2  A realization of conditionally simulated TLP non-Gaussian surge response.
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ditionally simulated time history will match the target statistics. 

The problem with the above solution is at the joining portion, where the known non-

Gaussian time history meets with the conditionally simulated portion. In the Gaussian

domain the known portion joins smoothly with the simulated portion via Eq. 7.4. If one

nonlinear transformation is applied to the known half, and another to the conditionally

simulated half, the smooth transition is distorted.

Thus we have two competing distortions. In order to maintain smoothness at the tran-

sition, the same nonlinear transformation should be applied to both the known and simu-

lated portions of the Gaussian signal. In order avoid a bias in the desired statistics of the

simulated half, two separate nonlinear transformations should be applied to the known and

conditionally simulated portions. To correct one is to distort the other.

It is possible to have both smoothness and accurate moments by combining the two

different transformation options. The conditionally simulated portion of the Gaussian sig-

nal  is transformed to two separate cases of  using each of the

two transformation options. These two are averaged together over a number of data points

using a linear weighting function. The simulation designed for smoothness dominates

where the known and simulated processes join, and in the remaining portion the simula-

tion designed for accurate moments prevails. The two cases of  are created

using only slightly different input parameters to a Hermite transformation. Thus their dif-

ferences are small, and the smoothing function does not have to account for any large dis-

crepancies.

This hybrid method is shown in a schematic in Fig. 7.3., where the two transforma-

tions of  are delineated  and . The simulation, , which uses the same trans-
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formation as the known portion will contribute to the first  points of the hybrid

simulation, each successively weighted less than the previous.  uses a separate trans-

formation optimization on the Gaussian simulation,  to bring it back to the

desired higher moments.  is un-weighted at the transition, then weighted successively

higher throughout the first  points. Beyond the first  points the hybrid simulation

consists entirely of . The number of points, , used in the weighted combination of

 and  is set such that the combining procedure takes place over several cycles of a

dominant frequency. This method results in a conditionally simulated non-Gaussian time

history, , which matches the target moments, and provides a smooth transition between

the known and simulated portions of the conditional simulation. 

A similar linear combination technique has been applied for the simulation of non-sta-

tionary earthquake records [97].    

7.3.2.4 Examples of the Hybrid Method

Examples of this method are shown in Figs. 7.4 and 7.5, where TLP surge response

and measured rooftop suction pressure are the signals being conditionally simulated. For

each of these examples, the measured data consists of  points, and the total

desired length is  points. A close up of the joining region is shown in each figure

to demonstrate the smooth transition. Table 7.1 below lists the desired higher order statis-

tics from the known record portion, and the resulting statistics of the ensemble average of

10 simulations out to the desired time. The skewness and kurtosis from simulations are

measured over the entire extended record, including both known and simulated portions,
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and are clearly within an acceptable range of error with respect to the target taken from the

known portion only. 

The PDF and PSD of the target and an ensemble of 10 simulations are shown in Figs.

7.6-7.9. The measured data histograms and PSDs are estimated from the limited data of

the known portion of the non-Gaussian record, and as such contain significant variance

error. The results presented in table 7.1, and Figs. 7.6 and 7.7 indicate an acceptable repre-

sentation of the known data. The target PSD in Fig. 7.8 and 7.9 have a variance error of

about 35%. The measured spectrum from the simulated records fit well within the vari-

ance error bounds.    

FIGURE 7.3 Schematic of the Time Domain non-Gaussian conditional simulation method 
with hybrid transformation.
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7.4 Frequency Domain Conditional Simulation

In the frequency domain, conditional simulation adds additional records at new loca-

tions using the statistics from records measured at other locations. Conditional simulation

begins with the unconditional simulation of all the known and unknown processes, ,

where  are new realizations of the known  processes . The cospectral matrix

TABLE 7.1  TARGET HIGHER MOMENTS AND SIMULATION RESULTS FOR FIG. 7.4

std skewness kurtosis

TLP data 1.0000 0.6505 3.2350

TLP simulation, 100 ensembles (std) 0.9996 0.6533 (.054) 3.2989 (.110)

Pressure data 1.0000 -1.1631 4.6980

Pressure simulation, 100 ensembles (std) 0.9996 -1.1586 (.04) 4.7369 (.174)
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FIGURE 7.4 Measured TLP surge response data and a time domain non-
Gaussian conditional simulation.
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FIGURE 7.5 Measured rooftop pressure and a time domain non-Gaussian 
conditional simulation.
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FIGURE 7.6 PDF Histogram of known TLP data and conditional 
simulation using 100 ensembles
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FIGURE 7.7 PDF Histogram of known pressure data and conditional 
simulation using 100 ensembles 
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FIGURE 7.8 Power spectral density of known TLP data and conditional 
simulation using 100 ensembles
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measured between  is used to generate , and the cross-covariance functions

become

, (7.6)

where  are the expected value of the th and th known processes, and

 known processes. The subscripts are left off the covariance and correlation

terms for convenience.

 Equation 7.4 is then applied under the condition that all processes involved are Gaus-

sian.
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FIGURE 7.9 Power spectral density of known pressure data and conditional 
simulation using 100 ensembles 
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7.4.1 Methodology for Extension to Non-Gaussian Simulation

Recall the chapter concerning multivariate unconditional simulation. The method iter-

atively updates the design cross-correlation functions used to generate Gaussian pro-

cesses, such that application of spectral correction for transformation to the non-Gaussian

domain distorts the resulting cross-spectrum toward the target.

The same idea is applied for conditional simulation, where the multivariate algorithm

is iteratively used to simulate the fields . Equation 7.4 is applied in the Gaussian

domain, and the resulting conditionally simulated process is transformed to non-Gaussian

using spectral correction. The distortion from the transformation is corrected through iter-

ative changes to the target cross spectral matrix input to the multi-variate spectral correc-

tion algorithm used to generate .

7.4.2 Schematic Representation

Figure 7.10 is a schematic of the method to conditionally simulate non-Gaussian pro-

cesses in the frequency domain. The algorithm is given in 8 steps. 

   

1)  The algorithm begins with the known non-Gaussian processes , their measured cova-

riance matrices , the target spectra of the unknown processes , their target moments

, and the target cross-covariance matrix between the measured and simulated pro-

cesses . The design cross-covariance is set to the target cross-covariance  for

the first iteration.

2)  MSC is applied to produce Gaussian versions of , denoted  using the

input .
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FIGURE 7.10 Schematic of the frequency domain conditional simulation algorithm using 
spectral correction. 
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3)  A modified backward Hermite transform is applied to  to produce a Gaussian ver-

sion   and  have the desired spectral characteristics of the final non-Gaussian

processes.

4)  The output of steps 1 and 2 are the Gaussian processes  from which the spec-

tral matrices  are estimated. 

5)  Equation 7.4 is then applied to produce a Gaussian conditional simulation at the

unknown locations, denoted .

6)  The Gaussian process  are sent through the spectral correction transformation to pro-

duce the non-Gaussian simulation  with target moments, , and autospectra .

7)  The cross-covariance between  and  are measured, denoted , and compared

with the desired target cross-covariance . If the error between the measured and target

covariance is not acceptable, the design cross-covariance used to generate  is

updated for use in the next iteration. The error criteria and the updating scheme for  are

the same as are applied in the MSC algorithm. 

8)  The updated  is sent to step 2) for the next iteration. The same random phase vec-

tors are used to generate  in each iteration. 

7.4.3 Example Application: Measured Pressure

The statistics of a measured non-Gaussian roof suction pressure record are used in

conjunction with a standard wind velocity coherence model to generate four spatially sep-

arated non-Gaussian pressure records using MSC. The points of measurement are

assumed to be 4 meters apart perpendicular to the wind direction, and no separation paral-

lel to the wind direction. The first four normalized central moments of each process is

[0, 1, -1.05, 5.5]. The fourth location is assumed now to be damaged, and the conditional
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simulation algorithm presented above is used to replace it based on knowledge of the other

three existing records.  

Figure 7.11 is a view of the missing record and its conditionally simulated replace-

ment. Note that the records were not simultaneously simulated, and have very strong low

frequency correlation. Fig. 7.12 is a view of the three known records and the simulated

fourth record in the bottom plot. The fourth record has been simulated conditioned on the

first three. Figure 7.13 shows the coherence between the six pairs of processes. Coherence

functions involving record 4 match the target coherence very well, demonstrating that it is

a suitable replacement for the missing record. Figure 7.14 is a comparison of the PDF of

the missing recorded and its replacement. The use of the spectral correction algorithm
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conditionally simulated wind pressure

FIGURE 7.11 The pressure record assumed missing, and its simulated replacement 
using frequency domain non-Gaussian conditional simulation.
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within the conditional simulation algorithm ensures excellent agreement between target

and simulated marginal distribution and auto-spectrum.           
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FIGURE 7.12 Three known pressure records at locations 1,2 and 3 (top three plots). A 
simulated record at location 4 using frequency domain non-Gaussian 
conditional simulation (bottom plot).
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7.5 Concluding Remarks

The multi-variate non-Gaussian spectral correction algorithms have been extended to

include conditional simulation in both the frequency and time domains. Time domain con-

ditional simulation extends existing records beyond the total sample time for cases where

conditioning time series are limited to a small sub-interval of the full length. A Gaussian
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FIGURE 7.13 Comparison of the target and simulated coherence functions for the pressure data 
at 4 locations in the section 7.4.3 example. The simulated record is at location 4, and 
the known records are at locations 1,2 and 3.
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conditional simulation is transformed to non-Gaussian, and combined with the known

non-Gaussian measured realization using a hybrid scheme.

The frequency domain conditional simulation generates time histories at new locations

based on one or more measured time series at other locations. An iterative mapping tech-

nique is employed between the Gaussian domain, where the Gaussian conditional simula-

tion method is applied, and the non-Gaussian domain, where target and measured statistics

are compared, and updated for the next iteration are made. Spectral correction is used as

the mapping from Gaussian to non-Gaussian, and ensures that the auto-spectral and non-

Gaussian characteristics of each realization are accurate. Examples validate these non-

Gaussian conditional simulation methods.
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PDF of simulated record at location 4
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FIGURE 7.14 PDF Histogram of the pressure record at location 4 that is assumed missing 
(denoted measured), and histogram of its replacement using frequency domain non-
Gaussian conditional simulation.
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CHAPTER 8

SUMMARY AND FUTURE WORK

8.1 Summary of Contributions

8.1.1 Chapter 2

Section 2.5 presents two formulations for Gaussian conditional simulation. One for-

mulation is referred to as kriging, and is on the best linear unbiased estimator. A second

formulation is derived based on a conditional probability density function. Both

approaches have been shown to be equivalent, but CPDF is often preferred for its basis on

probability theory rather than a best linear unbiased estimate. It is shown in section 2.5.3

that the kriging formulation has been derived based on probability theory.

8.1.2 Chapter 3

This chapter presents several non-Gaussian simulation techniques developed during

the course of this research [32, 34].

A static transformation method referred to as Modified Direct Transformation is able

to produce realizations of a sample measured process using optimized iterative Hermite
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polynomial transformation and its inverse. An example using measured non-Gaussian suc-

tion pressure on a rooftop demonstrates the ability to produce realizations which match the

spectral and probabilistic characteristics of the sample measured process. The application

of this method is restricted to cases where a sample record is available, and is therefore not

a generally applicable tool. 

A simulation technique using neural network system identification is also presented,

and its ability to reproduce higher-order spectra is demonstrated in an example. This non-

linear memory model is restricted to cases where both system input and output are avail-

able. 

The Volterra series is applied to simulation when the higher order transfer functions

are available. A technique is developed to allow very long simulations while maintaining

computational efficiency in the frequency domain convolution with a second order trans-

fer function of fixed size. This technique has recently been applied to a probabilistic

approach to modelling nonlinear transient offshore system response [35].

8.1.3 Chapter 4

This chapter presents several approaches to modelling the PDF of known systems and

measured non-Gaussian data. The traditional maximum entropy and Hermite-moments

PDF models are first discussed, and modifications to these methods are presented [28].

Examples are provided to show that the modified MEM and Hermite PDF models have

the potential to provide more accurate probabilistic descriptions of the tail regions of mea-

sured data. These modified models are then applied as input for simulation methods in

chapter 5.
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8.1.4 Chapter 5

This chapter presents the uni-variate spectral correction simulation method (SC),

which is capable of producing time history realizations that match both target probabilistic

and target spectral information. The desired non-Gaussian characteristics are input as

either the first four central moments, or as a PDF model. The stationary and convergence

properties are discussed as well as several options in the algorithm. Several examples are

presented and results are compared with an existing technique. It is shown that SC per-

forms as well and potentially better than the existing method used for comparison, and

succeeds even in special cases where the existing method fails [28].

8.1.5 Chapter 6

Spectral correction is extended to multi-variate simulation, where several non-Gauss-

ian correlated time histories are generated simultaneously. Strategies are developed to

handle cases where the cross spectrum between realizations is real and complex. Exam-

ples are shown using both measured data and models to describe the non-Gaussian statis-

tics and correlation [31].

8.1.6 Chapter 7

In the frequency domain, multivariate non-Gaussian spectral correction simulation is

extended to multivariate non-Gaussian conditional simulation. This facilitates the genera-

tion time histories at new locations based on one or more measured time series at other

locations. Spectral correction is used as the mapping from Gaussian to non-Gaussian, and

ensures the auto-spectral and non-Gaussian characteristics of each realization are accurate.

Time domain conditional simulation extends existing records beyond the total sample
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time for cases where conditioning time series are limited to a small sub-interval of the full

length. A Gaussian conditional simulation is transformed to non-Gaussian, and combined

with the known non-Gaussian measured realization using a hybrid scheme [29].

8.2 Future Considerations

The spectral correction simulation method is an iterative approach which applies

numerical optimization of the static transformation in each iteration. While the computa-

tional cost of simulating a realization is on the same order as that of existing methods,

there is a potential to greatly improve the efficiency of SC. There are several techniques

currently under investigation which may significantly reduce the number of iterations nec-

essary to complete a SC simulation. One such techniques is the incorporation of adaptive

correlation methods to find the most appropriate initial Gaussian design spectrum before

static transformation. Also, extension of the current multi-variate case to multidimen-

sional is desirable.

Simulation of Gaussian Non-stationary processes has received considerable attention

in the literature. Spectral correction has been developed for the simulation of stationary

non-Gaussian processes. A useful extension would include the simulation of non-station-

ary non-Gaussian processes.

The work in this study focuses on simulation using nonlinear static transformation

methods, and retains higher order spectral information in a scalar sense. The extension to

nonlinear memory transformation can potentially provide more accurate representation of

the distribution of higher-order moments with respect to frequency.

A new simulation method is currently being investigated which represents both the
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probabilistic and spectral characteristics through a vector or parameters. The simultaneous

optimization of this set of parameters provides simulations with the desired characteris-

tics.
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