
 
 

FULL-SCALE MEASUREMENTS AND SYSTEM IDENTIFICATION: 

A TIME-FREQUENCY PERSPECTIVE 

VOLUME I 

A Dissertation 

Submitted to the Graduate School 

of the University of Notre Dame 

in Partial Fulfillment of the Requirements  

for the Degree of 

Doctor of Philosophy 

by 

Tracy Lynn Kijewski-Correa, B.S.C.E., M.S.C.E. 

 _________________________________  
  Ahsan Kareem, Director 

Department of Civil Engineering and Geological Sciences 
 

Notre Dame, Indiana 
 

April 2003 



 FULL-SCALE MEASUREMENTS AND SYSTEM IDENTIFICATION: 

A TIME-FREQUENCY PERSPECTIVE 

Abstract 

 by  

Tracy Lynn Kijewski-Correa 

The rapid development of the global, urban landscape propels structures to new heights 

and spans, enhancing the role of structural engineers in assuring a safe and habitable built 

environment. In this new era of high-rise buildings and long-span bridges, design 

challenges continually arise, motivating the need to better understand the dynamic 

behavior of these structures through full-scale monitoring. In the context of such 

programs, the role of inherent damping, which proves critical for this flexible class of 

structures, must be quantified with accuracy – a challenging endeavor considering that 

narrowbanded response must be analyzed often without the benefit of measured input. 

More significantly, due to the presence of nonlinear and nonstationary characteristics in 

the measured data, traditional analysis tools may be incapable of capturing some of the 

salient features. This dissertation addresses these very issues by discussing the estimation 

of inherent damping from ambient data and evaluating its uncertainty via bootstrap 

resampling; by introducing a comprehensive wavelet-based analysis framework tailored 

to accommodate nonlinear and nonstationary features of Civil Engineering signals; and 

finally by introducing an on-going tall building monitoring program in Chicago, which 
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includes the configuration, calibration and application of Global Positioning Systems for 

the dynamic monitoring of displacements. 

In particular, the wavelet framework introduced in this research, predicated on the 

properties of the Morlet Wavelet, provides flexible criteria for the separation of closely-

spaced modal contributions, discretization of the time-frequency plane, and identification 

and melioration of end effects through a reflective padding scheme. Within this 

framework, wavelets are demonstrated to be capable of revealing hidden characteristics 

in simulated and measured wind, wave and earthquake data. In these discussions, the 

wavelet instantaneous bandwidth is introduced as a means to track subcyclic nonlinear 

behavior in a manner comparable to the Hilbert Spectra. Other wavelet applications in 

this study include its adaptation for identification of correlation in time and frequency 

and its enhancement through smart thresholding schemes. This framework also provides 

the backdrop for the extension of wavelets to the identification of frequency and damping 

in Civil Engineering structures, for which a number of processing concerns become 

paramount. 
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CHAPTER 1 

OVERVIEW 

The rapid development of the global, urban landscape continues to propel structures to 

new heights and spans, enhancing the role of structural engineers in assuring a safe and 

habitable built environment. In this new era of high-rise buildings and long-span bridges, 

the advancements in the state-of-the-art have presented new design challenges and 

unveiled dynamic behaviors that were not previously considered, but prove critical for 

this new breed of structure. Just as the limits of engineering design are tested in these 

ambitious projects, so too must the limits of the research which supports them, in the 

form of interactive design tools to better quantify the response of tall buildings in both 

sway and torsion (Zhou et al., 2003), in full-scale monitoring projects to better 

understand the in-situ dynamic response of these structures in real wind environments, 

and in innovative time-frequency analysis tools to investigate nonlinear and nonstationary 

characteristics in both their response and environmental loading. The following study 

primarily explores these latter two areas to demonstrate that the new challenges facing 

Civil Engineering can only be addressed by pushing the envelope, and in doing so, laying 

the foundation for the next generation of advancements.  
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1.1 Civil  Engineering’s Enigma 

The challenges that face Civil Engineering practice begin and end with the basic equation 

of motion: 

 FKXXCXM =++ &&&  (1.1) 

 

where M is the mass, K is the stiffness and C is the damping coefficient. X is the 

displacement response of the structure to some external force F, where the dots above the 

displacement variable are indicative of the derivative order. A great concern of Civil 

Engineering comes from the right side of this equation, in the search for accurate 

quantification of the forces or demand on the structure, often complicated by the 

stochastic nature of naturally occurring loads such as earthquakes, waves and wind. 

Meanwhile, the evolving complexity of the left hand side of this equation, corresponding 

to structural capacity, will continue to challenge Civil Engineers, in the face of 

nonlinearities, modal coupling and self-excited forces arising from modern and futuristic 

structures. However, before even moving on to more complicated versions of this 

expression and absent any external load, there is still great uncertainty in even this most 

basic equation. That uncertainty lies in damping, a true enigma in structural dynamics 

(Gurley & Kareem, 1996; Kijewski & Kareem, 2000). The second chapter of this study 

will explore the sources of uncertainty surrounding structural damping, the challenges 

associated with its estimation, and the viability of existing techniques for its extraction 

from full-scale, ambient vibration data, invoking a bootstrap resampling scheme detailed 

in the Appendix of this study to investigate the variance of damping estimates. 
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1.2 Moving into a New Analysis Domain 

The discussions of structural damping and its estimation challenges in Chapter 2 

highlight an important observation: many physical processes of interest to Civil 

Engineers manifest nonlinear and nonstationary features. As a result, their complete 

characterization may not be accomplished via Fourier Transforms, necessitating a new 

analysis framework. Chapter 3 chronicles the evolution from the Fourier domain to a 

time-frequency domain home to the multi-resolution Wavelet Transform. As motivated in 

Chapter 3, the dual nature of wavelet transforms, being a simultaneous transform in both 

time and frequency, justifies its recent extension to the analysis of stochastic processes of 

interest to Civil Engineering, adapting the transform to a number of situations where 

Fourier transforms were traditionally used to define quantities of interest. However, when 

considering the time and frequency information concurrently, wavelets can be used to 

determine the times and frequencies at which signal energy content is strongest, through 

examination of scalograms and coscalograms, e.g. Gurley & Kareem (1999). More 

specific insights into the linear and quadratic interplay between two signals in both time 

and frequency can be gained utilizing wavelet coherence and bicoherence measures 

(Gurley et al., 2003), as discussed in Chapter 6. 

By exploiting the dual potential of wavelets, other analyses based primarily in 

either the time or frequency domain can also be performed. For example, the evolution of 

frequency content in time can be examined using wavelet scalograms and wavelet 

instantaneous frequency spectra, as demonstrated in Chapter 5 for measured time 

histories of earthquakes, wind velocity and wave elevation, known to possess nonlinear 
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and nonstationary features. Similarly, the distribution of wavelet coefficients with 

frequency at a window in time provides a familiar spectral representation whose 

evolutionary properties can be monitored to provide insights into nonlinear and 

nonstationary behavior, as demonstrated with a number of measured and simulated time 

histories in Chapter 7, which evaluates the performance of Wavelet Transforms and 

Hilbert Spectral Analysis. Further, tracking the variation of wavelet coefficients in the 

time domain permits complete system identification, a process that has particular 

challenges for long-period, flexible structures, as discussed in Chapter 8. 

Of course, the introduction of new analysis frameworks brings with it a number of 

computational and processing challenges that must be fully reconciled to provide 

physically meaningful results. A large component of this study is dedicated to exploring 

and rectifying a number of these computational challenges, providing practical 

processing tools and guidelines for the implementation of wavelet transforms, 

particularly in the analysis of long-period systems. Although challenges did not surface in 

prior applications concerned with mechanical systems, who are generally characterized 

by higher frequency, broader-band signals, the transition to the time-frequency domain 

for the analysis of Civil Engineering structures highlighted the need to understand more 

fully various processing concerns, particularly for the popular Morlet wavelet. 

Specifically, as these systems may possess longer period motions and thus require finer 

frequency resolutions, the particular impacts of end effects become increasingly apparent. 

The discussion of these issues begins in Chapter 3 with an overview of Wavelet 

Transform theory and its relationships to the analytic signal. Chapter 4 then delves more 

fully into the various processing concerns in the context of the wavelet’s multi-resolution 
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character and includes guidelines for selection of wavelet central frequencies, highlights 

their role in complete modal separation, and quantifies their contributions to end effects 

errors, which may be minimized through a reflective padding scheme. Other topics 

addressed include the discretization of the time-frequency plane and ridge extraction 

techniques. Further, these processing issues and analysis guidelines are articulated 

throughout Chapters 5-8 in the analyses and examples that follow. For example, the 

presence of statistical noise due to a lack of ensemble averaging in wavelet coherence 

maps is discussed and rectified in Chapter 6 through a variety of thresholding techniques 

and variable integration schemes. Though the application of wavelet transforms in Civil 

Engineering is in its infancy, the examples provided in this study demonstrate its promise 

as a tool to redefine the probabilistic and statistical analysis of processes in Civil 

Engineering and beyond.  

1.3 The Call to Full-Scale 

As discussed in Chapter 2, constructed facilities provide the most viable venue for study 

of inherent damping, motivating the need to develop extensive monitoring programs for a 

diverse suite of buildings of varying height and structural form. The high-rise community 

would particularly benefit from this enhanced understanding. The designers in this 

community limit the drifts of a structure through an increase in stiffness provided by an 

efficient choice of lateral system to satisfy serviceability criteria, all the while 

recognizing that such modifications may not always significantly reduce the levels of 

acceleration, of particular importance for occupant comfort concerns. In this latter case, it 

is the structure’s damping that becomes the integral component in satisfying the crucial 
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habitability criteria for tall buildings, implying that a better understanding of the inherent 

damping levels in common construction is necessary to insure that modern designs are 

capable of providing the required provisions for energy dissipation. In fact, the high-rise 

community’s need for a firm and reliable understanding of in-situ damping levels is 

underscored by the plethora of auxiliary damping devices that have been installed in 

recent decades (Kareem et al., 1999). 

However, an enhanced understanding of inherent damping levels is not the sole 

benefit of full-scale monitoring. Consider the fact that tall buildings are actually one of 

the few constructed facilities whose design relies solely upon analytical and scaled wind 

tunnel models that have yet to be systematically validated in full-scale. Therefore, if full-

scale data could be compared against design predictions, tall building designers and wind 

engineers would have a firmer understanding of the deficiencies and strengths of the 

current design practice. Thus, to address these ranging needs, three tall buildings in 

Chicago, representing structural systems most common to high-rise construction, are 

being continuously monitored by the University of Notre Dame, in collaboration with the 

Boundary Layer Wind Tunnel Laboratory at the University of Western Ontario and 

Skidmore Owings and Merrill in Chicago (Abdelrazaq et al., 2000). The subsequent 

analysis of the data collected through these efforts will provide valuable insight into a 

variety of response characteristics for tall buildings, including the inherent damping, and 

permit the systematic validation and enhancement of existing design practice through 

comparisons with analytical and wind tunnel response estimates.  
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Traditional monitoring devices, including anemometers and accelerometers, 

whose selection, assembly, and installation are discussed in Chapter 9, are supplemented 

by high-precision Global Positioning Systems (GPS) to monitor structural displacements 

that were previously difficult to recover, particularly the static components of wind–

induced response and thermal effects. The systems, with real time kinematic (RTK) 

potential, allow for complete dynamic monitoring of displacements at up to 10 

samples/second. Chapter 10 introduces the concept of Global Positioning Systems for 

monitoring structural displacements in Civil Engineering and the anticipated sources of 

error, while Chapter 11 details the configuration and analysis parameters for the GPS 

components used in this research. Chapter 12 discusses a series of calibration tests 

investigating the influence of satellite position on system performance and verifying the 

ability of the GPS instrumentation to track complex waveforms and realistic long-period 

structural response to random excitations for motions at the sub-centimeter level and for 

frequencies up to 2 Hz. Chapter 13 then presents an analysis of some of the preliminary 

data from this on-going full-scale monitoring program. 

Although the tools developed in this study draw heavily from a multi-disciplinary 

foundation, they are developed with the intent of improving the Civil Engineer’s ability 

to completely characterize all the components of Equation 1.1, from the nonlinear and 

nonstationary loads impacting the structure, to the nonlinear dynamic features in the 

structure itself, none more illusive than inherent damping. As Chapter 14 summarizes, 

this often requires excursions into new research areas, borrowing from other disciplines 

in order to establish foundations for future advancements in Civil Engineering. 
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   CHAPTER 2 

DAMPING IDENTIFICATION AND ASSOCIATED UNCERTAINTY 

2.1 Introduction 

Despite the advancements that have been made in structural engineering in the last 

century, one critical parameter remains an enigma: damping. The complexity of this 

parameter is in part due to the diversity of sources contributing to the overall energy 

dissipation capability. These sources include: 1) damping inherent to the bulk material of 

which the system is formed, 2) boundary damping due to the dissipation between 

interfaces or joints in the structure, and 3) dissipation associated with the structure’s 

contact with soil or a fluid field, in the case of aerodynamic or hydrodynamic damping. 

In particular, the boundary damping is difficult to quantify and represents significant non-

linear losses. It is unclear which variables affect the damping forces and the appropriate 

models to represent these effects. As the choice of model relies on the mechanisms of 

damping, the fact that there are numerous mechanisms, which are more varied and less 

understood than the physical mechanisms governing mass and inertia, makes the 

appropriate choice of model increasingly difficult (Woodhouse, 1999; Kijewski & 

Kareem, 2000). As damping cannot be related to building materials and member 

configurations in a direct manner like mass and stiffness, a universal model for structural 
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damping is not possible and damping levels are simply assigned in the design process 

based on limited apocryphal data.  

Consider this generalized form of the aforementioned equation of motion, for a 

single-degree-of-freedom (SDOF) mechanical oscillator, given by   

 FKXfXM D =++&& . (2.1) 

The linearity of this expression is achieved by replacing the damping force fD with a 

viscous damping model: 

 XCxfd
&& =)( , (2.2) 

where C is the viscous damping coefficient. The result is the following equation of 

motion 

 M
FXXX nn =++ 22 ωξω &&&  (2.3) 

where ωn is the natural angular frequency (ωn = 2πfn) and ξ is the damping ratio, the ratio 

of the assigned viscous damping to the critical damping value. Under this accepted 

practice, any source of nonlinearity is obscured, as the linear viscous damping ratio is 

inherently independent of amplitude, in contrast to other damping models, e.g. Coulomb 

or quadratic (Kareem & Kijewski, 2000).  

The shortcomings of assuming viscous damping levels became apparent with the 

transition to light and flexible structures, as assumed levels of damping, on the order of 

1% critical damping for steel structures and 2% for concrete, were often not realized in 

the constructed building. For this class of tall, wind-sensitive structures, the diminished 
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levels of damping realized in practice led to a host of serviceability and especially 

habitability problems that were not anticipated in design. The resounding difficulty in 

engineering known levels of damping in design was partly responsible for the flurry of 

auxiliary damping devices in recent years, which were found to provide measurable and 

controllable levels of this critical parameter (Kareem et al., 1999).  

Since an exact model for damping cannot be constructed on an element level, a 

viable alternative was to develop empirical expressions for modal damping based upon 

the levels observed in existing structures. Of course, this requires an extensive and 

reliable survey of constructed facilities. Only recently have such databases become 

available in the form of the Japanese Damping Data Base (JDDB) (Tamura et al., 1996) 

featuring dynamic properties of 278 structures, and an international database featuring 

dynamic properties of 185 buildings in Asia, Europe and North America (Lagomarsino & 

Pagnini, 1995). From these and other databases, a variety of expressions have been 

developed, including those by Engineering Sciences Data Unit (1990), based upon the 

natural frequency and dimension of the building, and those fit to the JDDB dependent 

upon the natural frequency of reinforced concrete structures (Tamura, 1997). Despite the 

efforts to fit these existing databases with empirical functions, which correlate damping 

with parameters such as natural frequency, it appears that the levels of damping to be 

expected in the structure are a function of numerous other variables including the 

material and foundation type. The situation is compounded by the fact that additional 

levels of damping may be provided by non-structural elements and cladding components. 

As these characteristics vary from structure to structure, the identification of an “expected 

level of damping” for a given design becomes a daunting task.  
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The situation is further complicated by the fact that the full-scale damping data 

currently cataloged manifests considerable scatter, indicating that significant errors may 

be introduced. Haviland (1976) reported a wide range of data for different levels of 

response amplitudes in a variety of structural systems and building heights and showed 

that log-normal and gamma distributions provided the best fit to the damping variations.  

The coefficient of variation (CoV) of the damping estimates, defined as the ratio of the 

standard deviation σ to the mean µ, based on this data set, varied from 42% to 87%.  

Davenport & Hill-Carroll (1986) reexamined the database and noted that the CoV ranged 

from 33% to 78% and suggested a value of 40%.  Thus the use of empirical expressions 

based upon data with this degree of scatter could lead to the design of a building that on 

paper may meet serviceability and occupant comfort criteria, but in practice, does not. 

The limited success of these efforts may be due to a lack of structural diversity in the full-

scale observations, the damping parameter’s observed amplitude dependence, and 

difficulty in its estimation from measured ambient vibration data. This latter issue will be 

addressed in greater detail throughout this chapter. 

2.2 Traditional Approaches to Damping Identification from Wind-Induced 

Response 

As the analysis of measured response currently provides the only viable means to 

quantify the levels of damping in structures, methodologies for structural testing, 

monitoring and system identification have received considerable attention in recent 

decades. Through these efforts, a host of methodologies for system identification have 

surfaced, each tailored to specific applications. In the case where the system inputs are 
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measured or known, (e.g. forced vibrations using shaker, impact testing, earthquake 

response), a variety of attractive system identification tools are available, e.g. Ghanem & 

Shinozuka (1995). However, in the case of wind loading, due to spatio-temporal 

variations in surface pressure, there is no direct relationship between the wind speed and 

associated wind loads on the various faces of the structure (Simiu & Scanlan, 1996). 

Thus, for the analysis of most full-scale data from wind-induced response, system 

identification approaches requiring measured input are not viable. As a result, the 

assumptions of Gaussian, stationary, white noise input are invoked to permit meaningful 

analysis of wind-induced response by limited system identification approaches, e.g. 

Desforges et al. (1995), Littler (1995), Wang & Haldar (1997). Among these approaches, 

spectral analysis (SA) and the time-domain-based, Random Decrement Technique (RDT) 

are the most common, with the spectral approach being the more traditional of the two. 

2.2.1 Spectral Analysis and Inherent Errors 

With the advent of the Fast Fourier Transform in the 1960’s, Fourier spectral analysis 

became the primary means by which to analyze signals in Civil Engineering, as the 

superposition of harmonic components in Fourier Analysis is intuitively appealing for 

mechanical oscillators, providing a global energy distribution at each frequency f 

contained in the signal x(t), i.e. producing a “stationary spectrum” )(ˆ fX  called the 

Fourier spectrum: 

 dtetxfX fti π2)()(ˆ −
∞

∞−
∫= . (2.4) 
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Particularly in the case of wind-excited structures, the assumption of white noise input 

yields an attractive representation of the unknown input as a constant power spectrum, an 

assumption particularly valid in the narrow bandwidth of structural response. For this 

reason, spectral analysis became the popular choice for system identification for of wind-

induced response. 

As discussed, for example, in Bendat & Piersol (1986), the spectral estimate can 

be simply generated by segmenting the measured response time history into blocks of 

sufficient length T to provide the desired spectral resolution ∆fFFT, defined as the 

difference between adjacent discrete frequencies, given by: 

 
tN

k
T
kfk ∆

==    k= 0, 1, …, N-1 (2.5) 

where N is the actual number of discrete data points xn in the block of length T, sampled 

at the time step ∆t. Commonly, N is selected to the nearest power of 2 to permit use of the 

Fast Fourier Transform (FFT), a convention used in this chapter, according to 

 ∑
−

=
⎥⎦
⎤

⎢⎣
⎡−∆=

1

0

2exp)(ˆ
N

n
nk N

knixtfX π      k= 0, 1, …, N-1. (2.6) 

The FFT is applied to each block of data to produce the Fourier coefficients according to 

Equation 2.6. The squared magnitudes of each set of Fourier coefficients produces a 

single raw spectrum. The spectra produced by this method are then averaged, under 

standard ergodic assumptions, to obtain an estimate of the power spectral density (PSD), 

)(ˆ fxxS evaluated at discrete frequencies, fk:  



 14

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

sN

nn
knn

s
kxx fX

NT
fS

1

2
)(ˆ11)(ˆ  k= 0, 1, …, N-1. (2.7) 

where Ns is the number of spectra being averaged.  

The use of Fourier Transforms in this and other applications have highlighted 

additional concerns such as side lobe leakage, often requiring additional windowing 

measures that can increase the effective bandwidth of the spectra. As a result, an 

understanding of spectral leakage and aliasing is requisite when applying the Fourier 

Transform. These processing issues are discussed in more detail in (Bendat & Piersol, 

1986). 

The normalized bias error of the resulting power spectrum in the vicinity of the 

resonance frequency fr reflects the importance of the frequency resolution achieved in 

this process (Bendat & Piersol, 1986):  

 [ ]
2

3
1)(ˆ
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⎞
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⎛ ∆
−≈

r

FFT
rxxb B

ffSε  (2.8)  

where Br is the half-power bandwidth of the Fourier power spectrum, approximated by  

 Br = 2ξfn.  (2.9) 

Note the introduction of the half-power bandwidth (HPBW) in Equation 2.9 is an 

approximation valid only for lightly damped systems, i.e. ξ < 0.1, for which the resonant 

frequency may be taken as the natural frequency of the system (Bendat & Piersol, 1986). 

Conveniently, this relationship permits a very simple and direct means of system 

identification from the response PSD, given that the input spectrum is constant. Again, 
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this assumption is typically acceptable when the ambient excitations of the system can be 

approximated as white noise, at least in the vicinity of the spectral peak. Figure 2.1 

illustrates that the half-power bandwidth may be determined by identifying, via 

interpolation between the discrete frequencies, the two frequencies f2 and f1 that 

correspond to half the maximum amplitude of the PSD. Assuming symmetry of the 

spectral peak, the HPBW is then defined as the difference between these two frequencies: 

Br = f2- f1, with the frequency corresponding to the spectral peak taken as the natural 

frequency of the system. This permits the system damping to be identified readily from 

Equation 2.9. On the other hand, more sophisticated curve fitting the response spectra 

may also be conducted in lieu of relying on the HPBW e.g. Littler (1995) or when limited 

data is available, e.g. the maximum likelihood method (Montpellier, 1996) with 

parameter averaging (Montpellier et al., 1998) and autoregressive (AR) modeling of 

response spectra (Cao et al., 1997; Kijewski & Kareem, 1999). 

These alternative schemes are useful in situations where limited amounts of data 

render the generation of a smooth spectrum difficult, since it is governed by the limitation 

of the normalized variance given in Bendat & Piersol (1986) as 

 [ ]
s

xx N
fS 1)(ˆvar ≈ . (2.10) 

Note that this expression assumes that the raw spectra were determined from 

independent, disjoint blocks of data of length T without the inclusion of windowing.  

Overlapped processing of spectral estimates may be invoked when limited data are 

available, as discussed in Bendat & Piersol (1986). 
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For the narrowband processes common to Civil Engineering, small spectral 

bandwidths place restrictions on the frequency resolution of the transformed data, as the 

spectral resolution must be fine enough to resolve the sharp spectral peak, dictated by the 

aforementioned bias error in Equation 2.8. In addition, to minimize the variance of the 

spectral estimate in Equation 2.10, a sufficient number (Ns) of sample spectra must be 

averaged. This introduces the infamous paradox in spectral analysis: considering that 

only limited data are available for analysis, increasing the length of each ensemble to 

reduce bias errors directly implies that there will be fewer ensembles available for 

minimizing the variance. On the other hand, increasing the number of ensembles restricts 

the length of each ensemble, increasing bias. The negative bias error implies that the 

amplitude of the peak of the spectrum is always underestimated, leading to an 

overestimation of damping. In the case of stationary data analysis, increasing the time 

[ ])(ˆmax
2
1 fS xx

[ ])(ˆmax fSxx

fn 
f2 f1

)(ˆ fSxx

f

Br 

FIGURE 2.1. Schematic of half-power bandwidth 
method of spectral system identification 
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interval T over which the analysis is conducted will decrease the random errors in the 

estimates of statistical properties; however in the case of nonstationary signals, an 

increase in this interval T will result in a smoothing of the actual time variations in the 

statistical properties of the signal, reiterating the importance of stationarity assumptions 

in Fourier analysis. Thus the primary challenge in spectral analysis is obtaining a 

sufficient amount of stationary data to minimize both competing sources of error. Note 

that selective ensemble averaging and parameter averaging have been proposed to relax 

the stringent stationarity requirements (Littler, 1995; Isyumov & Morrish, 1997). 

2.2.2 Random Decrement Technique 

One way to avoid entirely the resolution issues associated with Fourier Transform 

techniques is to restrict analysis to the time domain. Though system identification in the 

time domain is often difficult without explicit knowledge of the input, under the same 

general assumptions made in spectral analysis for wind-induced response data, alternative 

analysis tools are available. One popular approach is the Random Decrement Technique 

(Gurley & Kareem, 1996), due to its ability to overcome the strict requirements for 

lengthy stationary data imposed by traditional spectral approaches.  

The decrement is generated by capturing a sample of prescribed length from the 

time history upon the satisfaction of a threshold condition (Cole, 1973). This triggering 

condition, in its strictest sense, will specify both amplitude and slope criteria, though 

applications of the RDT in the literature have adopted varying trigger conditions, as 

discussed in later in Section 2.2.2.4. Note also that the duration of segments captured is 
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subjective, but typically is on the order of a several cycles of oscillation. The segments 

meeting these conditions are averaged to in essence remove the random component of the 

response, assumed to be zero mean, leaving Random Decrement Signature (RDS). 

Mathematically this operation is represented by an expectation 

 [ ]oo XtXXtXtXED &&I ==≡ )()()()( 112τ  (2.11) 

where the assumption of stationarity allows the introduction of a time variable 12 tt −=τ . 

The RDS was shown by Vandiver et al. (1982) to be proportional to the 

autocorrelation signature ( )(τxxR ) for the system, assuming in the derivation a more 

relaxed trigger condition in that only an amplitude trigger Xo is specified: 

 [ ] )0()()()()( 12 xxxxoo RRXXtXtXED ττ ==≡ . (2.12) 

Though the RDT essentially provides an estimate of the autocorrelation function, it is 

able to produce this estimate without the same strict requirements for lengthy stationary 

data, as discussed by Jeary (1992). 

The expectation in Equation 2.11, assuming ergodicity, can be replaced by an 

average of Nr triggered segments Xtt(t) over a single time history  

 ( )∑
=

===
rN

tt
ottotttt

r

XXXXX
N

D
1

)0()0()(1)( &&Iττ . (2.13)  

A conceptualization of the process of generating the RDS, shown in Figure 2.2, reflects a 

common representation of the RDT, in which the total response is viewed as the 

superposition of the forced vibration response with the homogeneous component or free 
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vibration decay from given initial conditions, i.e. the triggering condition. Successive 

averaging of segments of this response will tend to cancel out the random component of 

the response, assumed to be zero mean. This leads to the perception that the Random 

Decrement Technique yields the free vibration response of the system. However, this is 

only the case for a linear oscillator excited by Gaussian, zero-mean, white noise, for 

which the autocorrelation function, normalized by a constant C, takes the following 

form:   

 )cos(C)( τωτ τξω
Dxx

neR −=  , (2.14) 
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FIGURE 2.2. Conceptualization of the Random Decrement 
Technique for local extrema triggering condition 
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which is analogous to the free vibration response of an oscillator with damped natural 

frequency ωD, assumed equivalent to its undamped counterpart for a lightly damped 

system.  As long as the white noise assumption remains valid (implications of this are 

discussed in Kareem & Gurley (1996) and Spanos & Zeldin (1998)), the analogs between 

Equations 2.11 and 2.14 may be exploited for system identification by a number of 

strategies, e.g. via least squares minimization to obtain best-fit estimates of damping ξ 

and natural frequency fn, letting C = Xo/Rxx(0).  

Alternatively, the damping can easily be identified from the peaks in the decay 

curve via the logarithmic decrement. Let Dp(n) and Dp(n+1) define two consecutive 

peaks in the RDS decay curve. The logarithmic decrement (LogDec) is then defined from 

these two peaks: 
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implying that for lightly damped systems, πξδ 2≈ . It has been observed (Clough & 

Penzien, 1993), that a more accurate estimate of the damping using logarithmic 

decrement is obtained by considering peaks separated by m (multiple) cycles, yielding the 

following expression for estimating the damping of lightly damped systems by 

logarithmic decrement 
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ξ . (2.16) 

to directly identify the damping from the peaks in the decay curve.  



 21

Under the aforementioned theoretical assumptions, the RDS will be unbiased with 

variance that can be expressed by (Vandiver et al., 1982): 

 )]0(/)(1[/)0()]([)]([)](var[ 2222
xxxxrxx RRNRDEDED ττττ −=−= . (2.17) 

The presence of noise was ignored in this idealized derivation, as was the potential 

correlation between the captured segments. Thus, to satisfy these theoretical constraints, 

captured segments are often not allowed to overlap. Note also that, as indicated by 

Equation 2.17, the amplitude level selected for the triggering condition is theorized to 

have no direct effect on the variance, though it will dictate the number of segments 

averaged. Clearly, this number of segments should be increased as much as possible to 

minimize variance; however, in application, the amplitude of the trigger has been 

observed to influence the accuracy of the resulting damping estimates, as discussed in 

Section 2.2.2.2.4, and in the case of systems with amplitude-dependent damping, the 

damping estimated from the resulting random decrement signature corresponds to the 

viscous damping ration at the amplitude level associated with that trigger (Tamura & 

Suganuma, 1996).  

The preceding discussion assumed that the response was comprised of a single 

mode. Conventionally, the incorporation of bandpass filtering (Kijewski & Kareem, 

1999; Tamura & Suganuma, 1996) prior to the application of the RDT is required to 

insure this condition for measured data. However, the Random Decrement Technique can 

also be applied directly to a time history that may have multiple modes present. In this 

case, the resulting RDS will be proportional to a multi-degree-of-freedom (MDOF) 

autocorrelation function, or under the assumed conditions discussed previously, a 



 22

superposition free vibration decays for several modes. The identification of the MDOF 

signature can then be conducted by an appropriate technique, e.g. Ibrahim Time Domain 

Method (Ibrahim, 1977; Mahmoud et al., 2001) or, as discussed in Chapter 8, wavelet 

transforms can be used to decouple the signature’s individual components.  

2.2.2.1 Types of Triggering Conditions 

The use of RDT in the literature has highlighted a differing opinion on the number of 

segments required to successfully average out the random component of the response. As 

demonstrated later in this chapter, this may significantly depend on the level of 

randomness in the excitation itself. However, the differing opinions may be more directly 

attributed to the triggering condition employed. As shown in Equation 2.11, trigger 

conditions can strictly specify either an amplitude or slope level or both, leading to a 

variety of trigger conditions in the literature. Ibrahim (2001) discusses the four most 

common triggers: 

level crossing:  { }ott XX =)0(   (2.18) 

positive point: { }highnlow XXX << )0(  (2.19) 

zero up-crossing: { }0)0(0)0( >= tttt XX &I  (2.20) 

local extrema: { }0)0()0( =<< tthighttlow XXXX &I . (2.21) 

The level crossing condition is arguably the most fundamental triggering condition and is 

assumed in the theoretical derivations in Vandiver et al. (1982) resulting in Equations 

2.12 and 2.17. The positive point condition, which specifies a range of values in order to 

generate more eligible samples, is a potentially more realistic version of the level 
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crossing criteria, as it is rare to encounter values within the time history that identically 

equal some arbitrary trigger amplitude. The positive point condition, in order to more 

strictly approach the level crossing condition, may assume its range based on some 

percentage of the desired amplitude level, e.g. on the order of a few percent. On the other 

hand, more robust ranges can be selected in Equation 2.19 to include a wide variety of 

amplitude levels, akin to the procedure in Tamura & Suganuma (1996). The ranges were 

selected in that study to guarantee that each had a pre-determined number of eligible 

segments. The zero up crossing condition identifies zero crossing points within the signal, 

though this condition again may require some relaxation to include a range of values 

within a few percent, as it again is rare to encounter identically zero values in a sampled 

time history. Note that this trigger condition has no potential to reference the signature to 

a specific amplitude level and therefore lacks physical significance for the applications in 

this study. The final condition, which is formally presented in Tamura & Suganuma 

(1996), captures only peaks falling within a specified amplitude range. This triggering 

condition is the most strict, as it firmly specifies both an amplitude and slope. This range 

can be made very narrow to stringently reference a particular amplitude for tracking 

amplitude-dependent dynamic properties, as advocated herein, or again relaxed for a 

more robust range of amplitudes. Tamura & Suganuma (1996) utilized this relaxed 

trigger to track amplitude-dependent damping in full-scale data. Note the trigger 

condition more completely supported by the mathematical theory developed in Vandiver 

et al. (1982) is the level crossing condition or positive point trigger with narrow range. 

The local extrema approach merely becomes a special case of the level crossing 
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condition, reducing the number of eligible segments by enforcing the zero slope 

condition.  

To this suite of triggering conditions, one may also supplement the level crossing 

by a positive slope. The best rationale for this trigger comes from the fact that, as the 

signal ascends toward a local extremum, it may pass through the specified amplitude 

level, and it may be assumed that, following this peak in the time history, the signal will 

descend toward the zero level, again crossing the specified amplitude but with a negative 

slope. As these events are usually within a limited time frame, segments captured at both 

of these crossings will likely have a high degree of correlation. As the segments are 

assumed independent in theory, the selection of a positive slope becomes a simple way to 

prevent the capture of highly correlated segments. However, if other measures are being 

taken to enforce the condition of nonoverlapping segments, this added slope condition is 

truly not necessary. 

2.2.2.2 Investigations of Factors Influencing RDT Quality 

The sensitivity of RDS to the violation of various assumptions in its theory will be 

explored in the subsequent sections. Authors have discussed the implications of violating 

the white noise assumption in the RDT (Kareem & Gurley, 1996; Spanos & Zeldin, 

1998), illustrating that the RDS cannot be equal to the free vibration curve if the 

excitation is not truly white. However, there has been no treatment of the implications of 

correlation between samples. Similarly, the influence of trigger condition and 

nonstationarity, also not explored systematically in the literature, will be investigated in 
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the subsequent sections. For demonstrative purposes, analyses of a SDOF oscillator 

excited by Gaussian, zero-mean, white noise are utilized. The response of this 0.2 Hz 

system with 1% critical damping ratio was simulated for 12 hours, sampled at 2 Hz. 

Unless stated otherwise, the strictest trigger condition of local extrema was utilized, 

specifying an amplitude range of +/- 3% of the desired trigger amplitude. 

One of critical parameters to be explored is the variance of the RDS. Though the 

variance of the signature may be obtained directly from the Nr segments used in the 

averaging process, this is merely a sample variance. However, resampling schemes such 

as bootstrapping can be exercised as an alternative means by which to estimate the true 

variance of the signatures (Efron & Tibshirani, 1993). A bootstrap resampling scheme 

will be utilized to gauge the variance of the random decrement signature, so as to obtain a 

better estimate of the true variance. The Appendix of this study contains more 

information on the bootstrap methodology for estimating the variance of random 

decrement signatures and the simulation of variance envelopes, which highlight the areas 

of greatest variance in the random decrement signature. It is hoped that the introduction 

of such a scheme will provide practitioners with a simple means by which to estimate the 

variance of their RDS and provide a measure of the reliability when theoretical 

assumptions are not entirely met and closed form expressions for variance cannot be used 

due to violations of the assumptions made in their derivation. All bootstrapped estimates 

discussed in the subsequent sections are based on B=50 replicates.  
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2.2.2.2.1 Suggested Expression for Random Decrement Signature Variance 

Before analyzing the various factors contributing to the performance of the Random 

Decrement Technique, the bootstrap variance estimate will validated against the closed 

form expression for variance in Equation 2.17. The examination of the simulated data 

shown in Figure 2.3 agrees in trend with the closed form expression. As the initial 

conditions are indeed enforced at τ=0, the RDS is theoretically most reliable at this point. 

Subsequently, the signature increasingly breaks down further from this point, as the 

deviations between the theoretical decay curve and the RDS demonstrate. The 

bootstrapped replicates of the decrement signature form a variance envelope, shown as 

the second of a sequence of plots in Figure 2.3. This provides some appreciation of the 

variance in estimates, propagating with time.  

Note also that the closed form expression for variance in Equation 2.17 is based 

upon the autocorrelation function in Equation 2.14 and yields results that are counter-

intuitive to the actual behavior. In theory, the variance will oscillate as a squared cosine 

function, indicating that it will reach maximum every half cycle. With time, these 

oscillations diminish and the variance will approach a near constant value of the signal 

variance divided by Nr. However, this variance estimate would indicate that within a half 

cycle of the trigger threshold the error has already reached its maximum value. This 

would indicate that in its present form, the error estimate is not a true representation of 

the behavior of the decrement, as the bootstrapped estimates and intuitive arguments 

presented in Vandiver et al. (1982) also confirm. This work offers a more practical, 

limiting case for the error  
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 ( )τξωτε DeNR rXXRDS
21/)0()( −−= . (2.22) 

As shown by the dashed line in Figure 2.3, this limiting error forms the lower 

bound in theory, providing a more reasonable approximation of RDS variance. The 

bootstrap, in providing a realistic estimate of variance also fits well against Equation 

2.22. As the bootstrap variance is consistent with the theoretical variance, it is deemed 

appropriate for variance estimation in this chapter. 

R
D

S 
V

ar
. 

En
ve

lo
pe

 
V

ar
., 

B
oo

ts
tra

p 
V

ar
., 

Th
eo

ry
 

Time [s] 

FIGURE 2.3. (top to bottom) RDT against theoretical autocorrelation, 
bootstrap variance envelope, bootstrapped variance estimate against 
Equation 2.17, theoretical variance in Equation 2.13, uncorrelated 
segments 
 
 
 



 28

2.2.2.2.2 Significance of Overlap Between Captured Segments 

In the development of the random decrement variance in Equation 2.17, it was assumed 

that the segments captured for averaging are independent, i.e. they do not share any part 

of the time history. This restriction limits the amount of segments available for averaging, 

an especially concerning issue since the number of segments averaged is a critical 

parameter in reducing the variance of random decrement signatures, as will be shown in 

the subsequent section. Therefore, the ability to allow overlap in captured segments 

would be beneficial. To explore the implications of violating this assumption, 

bootstrapping is used to estimate the variance of the random decrement signatures when 

overlapping of segments is permitted.  

By comparing Figure 2.3 and 2.4, the effects of correlation on the quality of the 

estimates appears not to be considerable, in comparison to the same analysis for 

uncorrelated segments in Figure 2.3. In fact, aside from some random fluctuations in the 

bootstrapped variance estimate, the correlated case produces the same limiting variance 

as the uncorrelated case, fit by Equation 2.22. Further, by examining Figure 2.5, one can 

see that there is no increase in the bootstrapped estimate of cyclic variance (averaged 

bootstrap variance in the RDS over one cycle of oscillation) as a result of permitting 

some correlation between samples. By allowing some overlap between adjacent samples, 

the user is now afforded additional samples for averaging, a critical requirement for the 

use of RDT.  
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2.2.2.2.3 Required Number of Captured Segments 

Despite the widespread use of the RDT, there still is much debate surrounding the 

amount of data required to yield reliable estimates. In order to accomplish the averaging 

required to completely remove the random component of the response, some researchers 

recommend 400 to 500 segments (Yang et al., 1983), while others recommend at least 

2000 (Tamura et al., 1992).  As shown by Figure 2.5, by averaging the bootstrap 

variances over each cycle of the RDT signature, one can monitor the increase in variance 

as more cycles are considered in the estimate. Clearly, as the number of segments 
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FIGURE 2.4. (top to bottom) RDT against theoretical autocorrelation, 
bootstrap variance envelope, bootstrapped variance estimate against 
Equation 2.12, theoretical variance in Equation 2.13, correlated 
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averaged increases, this variance decreases. However, it is interesting to note whether or 

not the RDS variance is a good indication of the accuracy of a given damping estimate. 

The error of logarithmic decrement estimates averaged over a number of cycles is also 

shown in Figure 2.5. The reliability of single cycle damping estimates is poor even 

though this is where the variance in the RDT estimate is minimum. Thus, a more accurate 

means of damping estimation is required to permit estimates using only the first few 

cycles of the RDS, which are more stable. In fact, only by considering 3 or more cycles 

do estimates approach an accuracy of 10%; however, there is a trade-off in that the 

variance in the estimates also increases with the number of cycles. Thus the estimates of 

damping by logarithmic decrement are best when performed within the first 4 cycles with 

more than Nr=200 averages, when the local extrema triggering condition is utilized, for 

which errors in damping estimation by logarithmic decrement are between 10-20%. Later 

examples will further demonstrate the accuracy of damping estimation including the 

influence of trigger condition on the required number of averages. Finally, to enhance the 

quality of damping estimate over the early cycles of the RDS, the use of a least squares 

curve-fitting approach may be advocated, as discussed later in this chapter. 

2.2.2.2.4 Significance of Triggering Condition on Damping Estimation 

The last section reflected that, for a given amplitude, an increase in the number of 

segments averaged in the decrement will reduce the signature variance, as predicted by 

the expression in Equation 2.17, though the performance in terms of damping estimation 

can be quite variable. Certainly, the variance of the RDS signifies the potential variability 

in the signature. As the damping is identified solely from the peaks of the function  
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marking the decay curve of the RDS, although variance of the signature on the whole 

may be small, damping values can still have some scatter if these peaks are the least 

reliable components of the RDS, justifying the findings in Figure 2.5. Further, the peaks 

in the decay curve may be less than or greater than the amplitudes expected in theory, 

leading to damping values that can be over or underestimates. For spectral analysis, the 

spectral bandwidth is always wider than theory, leading to a consistently overestimated 

and biased damping estimate.  Thus the behavior of estimated damping values, as shown 

in Figure 2.5, must be investigated, along with the influence of trigger condition, trigger 

amplitude and overlap between the decrement segments. Such an investigation follows 

herein. 

The only unique trigger condition that allows some amplitude referencing is the 

level crossing or positive point condition, with the local extrema being a special case of 

this condition. These latter two triggers are explored for a host of amplitude levels, with a 

range of +/-3% of the specified amplitude level. Recall that the theoretical developments 

of the RDT in Equations 2.12 and 2.17 assume the captured segments don’t overlap. Thus 

three correlation cases are considered by varying the length (TRDS) of the captured 

segments to investigate the influence of this assumption. These correlation conditions are 

TRDS  = 50 seconds (10 cycles of oscillation), implying that segments 50 seconds long will 

be captured and no portion of the time history within those 50 seconds is eligible to 

trigger the capture of a new segment. A second case lengthens this requirement to 

TRDS = 100 seconds (20 cycles of oscillation), reducing further the potential for 

correlation between segments. A third case places no restriction on overlapping 

segments, thus TRDS  = 0 s, allowing correlation freely.  
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The random response of the system discussed in Section 2.2.2.2 was simulated 

four times (referred to as Runs I, II, III, IV) using different seeds in the random number 

generator to demonstrate the variability of response histories (shown in Figure 2.6) with 

the same spectral and probabilistic description, shown in Figure 2.7, distributing 

Gaussian about a zero mean with standard deviations listed in Table 2.1. The power 

spectral densities of the response all identify the frequency of the oscillator and all appear 

to have the same distribution of energy in the low frequencies. While Runs II and IV 

have higher energy levels in the high frequencies, this characteristic has no obvious 

influence on results.  

 

TABLE 2.1 

STANDARD DEVIATIONS OF SIMULATED TIME HISTORIES 

Run I Run II Run III Run IV 
3.11 3.00 2.99 3.17 

Run I 

Run III 

Run II 

Run IV 

t [s] t [s] 

x(
t) 

x(
t) 

x(
t) 

x(
t) 

FIGURE 2.6. Time histories of SDOF response for Runs I-IV 
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The Random Decrement Technique is applied to each simulated time history, 

using varying trigger conditions and the three correlation conditions described above. A 

damping estimate is then obtained from two full cycles of the resulting signatures using 

the logarithmic decrement. To verify the inherent error in the LogDec approach, damping 

was estimated from the first two cycles of impulse response functions, generated directly 

from the system equation of motion. It was found that the LogDec overestimated the 

damping of this system as 0.0107. As a result, the quality of LogDec damping estimates 

from the RDS should be appropriately weighted for this inherent bias. The tabulated 

results provided in this chapter therefore shade the values of damping which fall within 

10% of the LogDec bias, i.e. 0.0096-0.0117, in darker hues. Results corresponding to 11-

20% error relative to the biased LogDec estimate, i.e. damping values of 0.0085-0.0095 

and 0.0118-0.0128, are shaded with a lighter hue. 

Run I Run II 
Run I

Xo Xo 

Xo Xo 

Run III 

Run II

Run III Run IVRun 
IV

FIGURE 2.7. Histograms (left) and power spectra for simulated response in Runs 
I-IV 
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Table 2.2 lists the results for the positive point trigger, specifying the target 

amplitude as a multiple M of the standard deviation of the response. Nr
tot is the total 

number of segments satisfying the trigger condition, while Nr is the number of segments 

actually averaged to form the RDS, after the enforcement of correlation restrictions. A 

visual comparison seems to reflect that Run II shows the poorest performance, 

demonstrating that the randomness inherent in some records may require relatively a 

larger number of segments to fully average out, as will be discussed further in Section 

2.3. For the positive point trigger, allowing correlation understandably increases the 

number of samples in the average, yielding more reliable damping estimates. Therefore, 

the influence of correlation does not appear negative. A fact also affirmed in Section 

2.2.2.2.2. The damping appears to be consistently estimated in Runs I, III and IV, when a 

the trigger satisfies the following condition: 3σ > Xo > 1σ.  

Low triggers, though having a large number of samples in the average, yield 

inconsistent performance. This is an interesting result, as the variance of the decrement 

signature is shown to minimize with the number of averages and lower trigger amplitudes 

certainly afford more potential averages in the Gaussian distribution of amplitude values. 

Although variance of decrement signatures is theorized not to depend upon the trigger 

level, the performance is inconsistent for Xo < σ, though at times the estimates are quite 

accurate. Intuitively, one may argue that the trigger condition bears some influence on the 

performance of the decrement. As noted by Vandiver et al. (1982), triggers below or on 

the order of the root mean square (RMS) of the process will occur frequently within the 

time history, increasing the potential for correlation that may lead to larger variance in 

cases where TRDS = 0 s. However, simulations show that the greater number of averages  
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TABLE 2.2 

ESTIMATED LOGDEC DAMPING VALUES USING POSITIVE POINT 
TRIGGERS 

Run I 
  ΤRDS = 0 s ΤRDS = 50 s ΤRDS = 100 s 

M Xo Nr/Nr
tot ξ Nr/Nr

tot ξ Nr/Nr
tot ξ 

0.5 1.55 902/903 0.0099 432/903 0.0123 291/903 0.0145 
0.75 2.33 1198/1202 0.0146 489/1202 0.0162 313/1202 0.0191 
1.0 3.10 1251/1251 0.0094 497/1251 0.0133 317/1251 0.0091 
1.5 4.66 966/968 0.0100 966/968 0.0100 256/968 0.0123 
2.0 6.21 552/555 0.0096 212/555 0.0089 157/555 0.0086 
2.5 7.76 250/252 0.0101 99/252 0.0103 81/252 0.0107 
3.0 9.32 64/64 0.0106 30/64 0.0107 27/64 0.0120 
3.5 10.8 16/16 0.0079 5/16 0.0029 5/16 0.0029 
4.0 12.4 3/3 0.0074 1/3 0.0028 1/3 0.0028 

Run II 
  ΤRDS = 0 s ΤRDS = 50 s ΤRDS = 100 s 

M Xo Nr/Nr
tot ξ Nr/Nr

tot ξ Nr/Nr
tot ξ 

0.5 1.50 882/885 0.0094 426/885 0.0086 280/885 0.0072 
0.75 2.25 1223/1224 0.0182 510/1224 0.0168 322/1224 0.0195 
1.0 3.00 1216/1216 0.0148 489/1216 0.0113 312/1216 0.0113 
1.5 4.50 1008/1008 0.0118 385/1008 0.0124 268/1008 0.0135 
2.0 6.00 539/539 0.0103 225/539 0.0100 168/539 0.0146 
2.5 7.50 248/248 0.0126 98/248 0.0141 78/248 0.0144 
3.0 9.00 77/77 0.0126 31/77 0.0119 28/77 0.0111 
3.5 10.5 12/12 0.0108 7/12 0.0145 7/12 0.0145 
4.0 12.0 2/2 0.0042 1/2 0.0055 1/2 0.0055 

Run III 
  ΤRDS = 0 s ΤRDS = 50 s ΤRDS = 100 s 

M Xo Nr/Nr
tot ξ Nr/Nr

tot ξ Nr/Nr
tot ξ 

0.5 1.49 897/899 0.0106 428/899 0.0083 287/899 0.0126 
0.75 2.24 1141/1142 0.0105 480/1142 0.0116 313/1142 0.0144 
1.0 2.99 1232/1232 0.0077 488/1232 0.0046 312/1232 0.0045 
1.5 4.49 992/992 0.0104 385/992 0.0128 253/992 0.0097 
2.0 5.98 542/542 0.0115 222/542 0.0116 168/542 0.0113 
2.5 7.48 183/183 0.0101 80/183 0.0120 66/183 0.0125 
3.0 8.98 76/76 0.0108 32/76 0.0087 27/76 0.0088 
3.5 10.5 21/21 0.0050 8/21 0.0057 8/21 0.0057 
4.0 11.9 6/6 0.0128 4/6 0.0136 4/6 0.0136 

Run IV 
ΤRDS = 0 s   ΤRDS = 50 s ΤRDS = 100 s  

M 
 

X0 Nr/Nr
tot ξ Nr/Nr

tot ξ Nr/Nr
tot ξ 

0.5 1.59 922/923 0.0131 432/923 0.0137 283/923 0.0175 
0.75 2.38 1108/1110 0.0110 469/1110 0.0093  300/1110 0.0097 
1.0 3.17 1239/1239 0.0088 473/1239 0.0106 304/1239 0.0175 
1.5 4.76 1043/1043 0.0104 386/1043 0.0112 272/1043 0.0103 
2.0 6.34 553/553 0.0100 211/553 0.0106 160/553 0.0099 
2.5 7.93 220/220 0.0094 93/220 0.0089 76/220 0.0096 
3.0 9.52 95/95 0.0101 38/95 0.0111 33/95 0.0096 
3.5 11.1 24/24 0.0141 11/24 0.0162 11/24 0.0162 
4.0 12.7 0/0 N/A 0/0 N/A 0/0 N/A 
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afforded offsets any increase in variance due to correlation, though it may be theorized 

that the lower amplitude segments within the time history have a greater level of 

correlation than the segments with higher amplitude, though this is yet to be proven. 

Conversely, the large amplitude triggers may be assumed to be particularly unreliable due 

to the limited number of averages. 

The range of behavior in Table 2.2 further emphasizes that specific features 

within a given time history may impact performance, even when all the very idealized 

theoretical conditions are satisfied, as typified by the poor performance of Run II. 

Realizing that full-scale data is far less ideal, Jeary (1992) proposed some guidelines for 

removing portions of time histories that may cause break down in decrement signatures, 

“eliminating the type of data which produce spurious results.” As certain characteristics 

in the time series can make the averaging process more difficult, Jeary recommends that 

following types of sequences be omitted from the time histories: 

• “sequences in which “drop-outs are present” 

• “sequences in which sudden changes in [root mean square] rms occur” 

• “sequences in which beating between two modes of vibration occurs”  

The customary practice of filtering about one mode of vibration aids particularly in 

enforcing this last condition. However, Jeary advocates repeatability of results as well, 

since spurious findings tend to distribute themselves randomly, in accordance with the 

nature of the process. In this work, it is suggested that such repeatability may be achieved 

by selecting several trigger amplitudes close to one another, identifying the damping 
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from each resulting decrement signature, and then examining the variability in damping 

estimates. The variability is assumedly small due to the proximity in amplitude level and 

the fact that the number of averaged segments should be similar. Outlier samples may 

then be distinguished or more appropriately, an average of the identified properties over 

this range can be taken as the damping estimate referenced to the average trigger, as 

shown in Table 2.3. 

 

TABLE 2.3 

REPEATABILITY AND LOCAL AVERAGING FOR RUN I, LOCAL 
EXTREMA TRIGGER, ΤRDS = 0 

Xo Nr ξ µ[Xo] µ[ξ] 
9.0 68 0.0088 
9.1 60 0.0101 
9.2 52 0.0117 
9.3 46 0.0110 
9.4 47 0.0096 
9.5 39 0.0103 

 
 

9.25 

 
 

0.0102 

     
 

     

Table 2.4 shows the results for the application of the RDT using the local extrema 

trigger, where the same amplitude levels used in the positive point triggers in Table 2.2 

are used as the amplitude levels in the local extrema trigger condition in Table 2.4. In 

addition, as the mean peak value is often chosen as a potential trigger, since it will afford 

a large number of averages, the analysis is conducted for this trigger as well. Looking at 

the results for the four cases in Table 2.4, there is not much loss of samples due to the 

enforcement of any correlation conditions, in part because the additional criteria on the 

slope reduces the potential proximity of captured segments that would introduce  
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TABLE 2.4  

ESTIMATED DAMPING VALUES USING LOCAL EXTREMA TRIGGER 

Run I 
 ΤRDS = 0 s   ΤRDS = 50 s ΤRDS = 100 s 

Xo Nr/Nr
tot ξ Nr/Nr

tot ξ Nr/Nr
tot ξ 

1.55 137/137 0.0226 137/137 0.0226 137/137 0.0226 
2.33 223/223 0.0197 223/223 0.0197 223/223 0.0197 
3.1 345/345 0.0131 345/345 0.0131 345/345 0.0131 
4.66 344/344 0.0118 343/344 0.0117 343/344 0.0117 
6.21 265/266 0.0124 265/266 0.0124 265/266 0.0124 
7.76 147/148 0.0093 147/148 0.0093 144/148 0.0098 
9.32 48/47 0.0098 45/47 0.0097 44/47 0.0100 
10.8 14/14 0.0086 9/14 0.0081 9/14 0.0081 
12.4 1/1 0.0028 1/1 0.0028 1/1 0.0028 
3.74* 379/379 0.0112 377/379 0.0113 376/379 0.0115 

Run II 
 ΤRDS = 0 s   ΤRDS = 50 s   ΤRDS = 100 s 

Xo Nr/Nr
tot ξ Nr/Nr

tot ξ Nr/Nr
tot ξ 

1.50 130/130 0.0358 130/130 0.0358 130/130 0.0358 
2.25 270/270 0.0314 270/270 0.0314 270/270 0.0314 
3.00 345/345 0.0217 345/345 0.0217 345/345 0.0217 
4.50 409/409 0.0145 409/409 0.0145 409/409 0.0145 
6.00 272/272 0.0107 272/272 0.0107 272/272 0.0107 
7.50 153/153 0.0129 153/153 0.0129 153/153 0.0129 
9.00 52/52 0.0144 49/52 0.0144 48/52 0.0145 
10.5 9/9 0.0122 7/9 0.0145 7/9 0.0145 
12.0 2/2 0.0042 1/2 0.0055 1/2 0.0055 
3.51* 363/364 0.0162 362/364 0.0164 359/364 0.0164 
 
*mean of peak values. 
 
 

correlation. However, as the peak condition removes many segments that were eligible in 

the positive point condition, the number of segments is minimized. Interestingly, when 

capturing only segments initiating with peaks, adding more samples does not improve 

performance dramatically and may even deteriorate the RDS. This is due to the fact that 

over the three correlation conditions the number of samples being averaged does not vary 

significantly enough to make dramatic impact on performance. As shown in Figure 2.4,  
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TABLE 2.4 (CON’T) 

Run III 
 ΤRDS = 0 s   ΤRDS = 50 s   ΤRDS = 100 s 

Xo Nr/Nr
tot ξ Nr/Nr

tot ξ Nr/Nr
tot ξ 

1.49 131/131 0.0420 47/131 0.0200 129/131 0.0428 
2.24 235/235 0.0172 235/235 0.0172 235/235 0.0172 
2.99 309/309 0.0069 309/309 0.0069 309/309 0.0069 
4.49 358/358 0.0092 358/358 0.0092 358/358 0.0092 
5.98 281/281 0.0140 279/281 0.0138 278/281 0.0138 
7.48 105/105 0.0125 102/105 0.0118 102/105 0.0118 
8.98 46/46 0.0114 44/46 0.0111 43/46 0.0116 
10.5 12/12 0.0025 11/12 0.0034 11/12 0.0034 
11.9 3/3 0.0123 2/3 0.0085 2/3 0.0085 
3.53* 348/348 0.0129 348/348 0.0129 347/348 0.0131 

Run IV 
 ΤRDS = 0 s   ΤRDS = 50 s   ΤRDS = 100 s 

Xo Nr/Nr
tot ξ Nr/Nr

tot ξ Nr/Nr
tot ξ 

1.59 132/132 0.0541 132/132 0.0541 132/132 0.0541 
2.38 230/231 0.0242 230/231 0.0242 230/231 0.0242 
3.17 323/323 0.0139 323/323 0.0139 323/323 0.0139 
4.76 395/395 0.0122 394/395 0.0122 394/395 0.0122 
6.34 273/273 0.0128 273/273 0.0128 272/273 0.0130 
7.93 126/126 0.0100 124/126 0.0100 123/126 0.0100 
9.52 63/63 0.0100 58/63 0.0096 57/63 0.0098 
11.1 20/20 0.0136 12/20 0.0149 12/20 0.0149 
12.7 0/0 N/A 0/0 N/A 0/0 N/A 
3.44* 327/327 0.0131 327/327 0.0131 327/327 0.0131 

*mean of peak values. 

despite general trends, the variance estimates can still have fluctuations, and this is 

reflected in the results in Table 2.4 in the absence of significant increases in Nr.  The 

performance of the local extrema RDS tends to stabilize as more samples are added, as 

shown later in Section 2.4.2. Thus if only limited data is available, the positive point 

method may be better. Interestingly, the amplitude levels that again performed the best 

were the same trigger levels that performed well in the positive point method. This 

finding is again surprising. While a trigger in the vicinity of the peak distribution’s 



 41

median yields a large number of averages, higher amplitude trigger levels associated with 

the 1.5-3σ amplitude often outperform them. This may again indicate that contrary to 

Expression 2.17, the trigger amplitude has some influence on performance, in 

conjunction with number of averages. It is arguable that the segments associated with 

triggers in the amplitude range of 1-3σ may have correlation behaviors different from its 

counterparts producing equal number of eligible segments at lower amplitudes. 

In a final series of simulations, the trigger condition is relaxed to allow 

consideration absolute values of a specified amplitude in Equations 2.18, 2.19 or 2.2.1. 

This modified implementation of the decrement is given by 
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which should afford additional segments for averaging, though potentially raising 

correlation concerns. The results from this investigation are shown in Table 2.5 and only 

Runs I and II are considered for brevity. By allowing the potential for full correlation 

(TRDS = 0) and using the positive point trigger, there is a marked increase in the number of 

averages in comparison to Table 2.2, but with no significant improvement in 

performance. Thus, at some point, segments may overlap so much that they do not help to 

further reduce variance, though apparently causing little determent. In this case, enforcing 

TRDS = 50 s seems to improve results for the low amplitude triggers, perhaps minimizing 

the effects of correlation, but detracts from the performance of higher amplitude triggers 

by reducing Nr. However, in the local extrema trigger simulations, the use of an absolute 

value amplitude did appear to improve performance in the fully correlated and TRDS  =    
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TABLE 2.5 

 INFLUENCE OF ABSOLUTE VALUE TRIGGER CONDITIONS 

Abs. Value Amplitude Trigger 
Run I 

  ΤRDS = 0 s ΤRDS = 50 s ΤRDS = 100 s 
M X0 Nr/Nr

tot ξ Nr/Nr
tot ξ Nr/Nr

tot ξ 
0.5 1.55 1835/1838 0.0090 568/1838 0.0107 344/1838 0.0046 
0.75 2.33 2355/2361 0.0140 612/2361 0.0114 357/2361 0.0125 
1.0 3.10 2492/2492 0.0095 602/2494 0.0115 348/2494 0.0089 
1.5 4.66 1902/1907 0.0096 432/1907 0.0107 282/1907 0.0098 
2.0 6.21 1143/1149 0.0098 253/1149 0.0087 183/1149 0.0085 
2.5 7.76 502/505 0.0101 119/505 0.0078 91/505 0.0078 
3.0 9.32 128/128 0.0110 40/128 0.0098 33/128 0.0105 
3.5 10.8 38/38 0.0057 8/38 0.0077 8/38 0.0077 
4.0 12.4 5/5 0.0089 1/5 0.0028 1/5 0.0028 

Run II 
  ΤRDS = 0 s ΤRDS = 50 s ΤRDS = 100 s 

M X0 Nr/Nr
tot ξ Nr/Nr

tot ξ Nr/Nr
tot ξ 

0.5 1.50 1816/1820 0.0101 562/1820 0.0070 343/1820 0.0090 
0.75 2.25 2402/2404 0.0155 621/2404 0.0112 365/2404 0.0129 
1.0 3.00 2497/2500 0.0141 614/2500 0.0135 363/2500 0.0187 
1.5 4.50 2003/2003 0.0117 463/2003 0.0124 299/2003 0.0117 
2.0 6.00 1109/1109 0.0113 278/1109 0.0115 198/1109 0.0125 
2.5 7.50 481/481 0.0123 124/481 0.0128 96/481 0.0134 
3.0 9.00 144/144 0.0134 40/144 0.0148 34/144 0.0146 
3.5 10.5 22/22 0.0124 9/22 0.0136 9/22 0.0136 
4.0 12.0 6/6 0.0084 1/6 0.0037 1/6 0.0037 

*mean of peak values. 

50 s cases by again generating more averages. Excessive overlap was not a consideration 

for the local extrema condition, unlike its positive point counterpart, as this stricter 

triggering condition using only peaks already minimizes the potential for overlap. 

One final interesting observation can be made for the high amplitude triggers. At 

high amplitudes, the limited number of averages prohibits consistent performance. 

However, even with so few averages, these triggers may produce more reasonable  
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TABLE 2.5 (CON’T) 

Abs. Value Peak Trigger 
Run I 

 ΤRDS = 0 s ΤRDS = 50 s ΤRDS = 100 s 
X0 Nr/Nr

tot ξ Nr/Nr
tot ξ Nr/Nr

tot ξ 
1.55 268/268 0.0206 162/268 0.0140 139/268 0.0043 
2.33 449/449 0.0160 262/449 0.0151 196/449 0.0153 
3.10 660/660 0.0103 330/660 0.0123 236/660 0.0132 
4.66 670/670 0.0111 312/670 0.0122 220/670 0.0119 
6.21 547/549 0.0112 211/549 0.0114 165/549 0.0126 
7.76 295/297 0.0105 108/297 0.0085 86/297 0.0079 
9.32 99/99 0.0103 38/99 0.0086 32/99 0.0089 
10.8 26/26 0.0084 8/26 0.0096 8/26 0.0096 
12.4 2/2 0.0064 ½ 0.0028 1/2 0.0028 
3.74* 744/744 0.0108 273/744 0.0096 236/744 0.0085 

Run II 
 ΤRDS = 0 s ΤRDS = 50 s ΤRDS = 100 s 

X0 Nr/Nr
tot ξ Nr/Nr

tot ξ Nr/Nr
tot ξ 

1.50 280/280 0.0315 181/280 0.0315 154/280 0.0353 
2.25 519/519 0.0306 283/519 0.0349 208/519 0.0309 
3.00 702/702 0.0197 350/703 0.0182 247/703 0.0182 
4.50 790/790 0.0157 344/790 0.0162 249/790 0.0153 
6.00 546/546 0.0119 241/546 0.0128 179/546 0.0133 
7.50 300/300 0.0121 118/300 0.0115 93/300 0.0124 
9.00 102/102 0.0148 39/102 0.0153 33/102 0.0142 
10.5 20/20 0.0109 8/20 0.0120 8/20 0.0120 
12.0 5/5 0.0046 1/5 0.0037 1/5 0.0037 
3.51* 740/742 0.0140 346/742 0.0129 245/742 0.0165 

*mean of peak values. 

damping estimates than the same number of averages would at a lesser amplitude levels. 

Stability is achieved when a high number of averages are present, though this will never 

be the case for the amplitude values which lying in the tails of the distribution.    

Intuitively, at high amplitudes the points satisfying the trigger condition are 

closely associated with maximum values within the signal. They may represent a pulse or 

high amplitude burst within the signal. However, following this pulse, before the arrival 
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of the next significant excitation, the amplitude will naturally tend to diminish, leading to 

a lull of the time history. As a result, the very decay characteristic, which is being 

isolated in the RDT, surfaces more likely at these higher amplitudes than at their lower 

counterparts. This may help to explain why higher amplitude triggers from 1-3 σ 

outperform other triggers that may afford more averages.  

To illustrate, consider Run III for the trigger condition of Xo=11.9 (4σ), shown in 

bold in Tables 2.2 and 2.4. The six captured segments meeting the positive point 

condition for TRDS = 0, and later averaged to form the RDS, are shown in Figure 2.8. The 

dotted line is the theoretical free vibration for this case. If the other two correlation 

conditions (TRDS = 50 and 100 s) were to be enforced, two of theses segments, X3(t) and 

X4(t), would be negated. On the other hand, the even stricter conditions imposed by the 

local extrema condition would select only X3(t), X4(t) and X5(t) for TRDS = 0 and if no 

overlap between captured segments is permitted, only X3(t) and X5(t) would be retained. 

It should be noted that indeed, at this high amplitude, some of the segments already 

closely resemble the decay curve for the system, implying that fewer averages are 

required for meaningful results. As opposed to the segments captured at smaller 

amplitudes, such as those shown by the top two images at the left of Figure 2.2, where the 

captured segments in no way resemble a decay. Unfortunately, there are few segments at 

these higher amplitude levels and typically not enough to average the RDS into a fully 

stable signature. 
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2.2.2.2.5 Influence of Nonstationarity on Random Decrement Signatures 

As the requirements of lengthy stationary data sets had often precluded the use of 

traditional spectral and autocorrelation techniques, the RDT was proposed as a way to 

circumvent this problem by permitting analysis on shorter lengths of stationary data. 

Though it is often assumed that wind-induced response of structures is stationary, 

examination of full-scale data has often demonstrated otherwise. Even so, there has been 

little treatment of the ability of RDT to perform under nonstationary conditions (Jeary, 

X
6(

t) 

X
5(

t) 
X

3(
t) 

X
4(

t) 

X
1(

t) 

X
2(

t) 

t [s] t [s] 

FIGURE 2.8. Captured random decrement segments for Run III, 
Xo=11.9. Dotted line indicates theoretical free vibration decay at this 
amplitude level 
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1992). To illustrate the implications of stationarity on the RDT, two signals were studied 

using the same oscillator defined in Section 2.2.2.2. In signal 1, the random input is 

comprised of two, 4-hour blocks of standard Gaussian white noise (termed segments 1 & 

3) separated by a 4-hour block of zero mean, white noise drawn from a uniform 

distribution (termed segment 2). The definitions of stationarity require that all statistical 

properties be invariant with time, strictly implying that all the data be drawn from the 

same distribution. A sudden pocket of nonstationarity is introduced to violate this 

assumption. 

Figure 2.9 illustrates the implications of the violation of stationarity in signal 1 by 

examining the bootstrapped variance for several triggering thresholds. Note that in each 

of these cases, the same number of segments (Nr=200) was averaged. Although the 

variance is theoretically independent of triggering level, as evidenced by Equation 2.17, 

this figure displays an increase in variance with triggering level when compared to the 

limiting variance function of Equation 2.22. These findings may be rationalized by in 

light of the histograms of the peaks within each block of data, which were omitted for 

brevity. Over ninety percent of the high amplitude peaks are located in segments 1 & 3. 

As a result, when using these higher amplitude trigger conditions, shown in blue, there 

may be only a few isolated samples drawn from segment 2. The Gaussian samples by 

themselves are incapable of averaging out the variance introduced by the isolated samples 

captured from segment 2, thus leading to corrupted results for these higher trigger levels. 

Conversely, low amplitude trigger conditions shown in shades of red have a sufficient 

number of samples drawn from segment 2 to cancel out the variance from the uniformly 

distributed response component. The presence of such localized pockets of 
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nonstationarity appears to be the culprit Jeary (1992) hoped to negate by establishing the 

conditions for feature removal bulleted in the previous section. Through the use of such 

pre-treating in the time history, these local nonstationary features can be removed to 

improve the overall reliability of the RDS. 

A second nonstationary signal was investigated by enveloping the excitation by a 

sinusoidal function. As opposed to the previous instance, this case simulates a global 

phenomenon, with a sinusoid of 2-hour period modulating the Gaussian, white noise 

excitation. As shown by Figure 2.10, in this case the dependence upon triggering 

amplitude is of course not present, as all levels of triggering reflect the same poor 

performance when compared to variance estimate in Equation 2.22, although higher 

trigger levels seem to scatter toward higher variances. This reflects the power of global 

FIGURE 2.9. Bootstrap variance estimates for non-
stationary signal 1 with error expression in Equation 
2.22 shown by solid line (Nr=200) 
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nonstationary features in the data, as the variance of estimates will be far greater than 

idealized theory would predict. 

2.3 Uncertainty in System Identification and Damping Estimation 

System identification by any approach represents the process through which optimal 

values of system parameters are obtained, though this is complicated without the benefit 

of measured input. In this process, the variability in the PSD and RDS is of concern. 

While some understanding of uncertainty is available, through Equations 2.10 and 2.17, 

specific measures of variance in frequency or damping estimates are in general not 

known. As the exercises in Section 2.2.2.2.4  and Figure 2.5 demonstrate, damping values 

FIGURE 2.10. Bootstrap variance estimates for nonstationary 
signal 2 
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can fluctuate, even when the variance is supposedly minimized. Seybert (1981) 

recognized this concern and derived approximate expressions for the bias and random 

errors in the damping estimation using the half-power bandwidth of power spectra. Even 

though these depend on the very quantity being estimated, they have proven insightful 

and indicate that the normalized bias in the damping estimate is approximately 1.5 times 

the normalized bias of the power spectrum. This derivation was made realizing that the 

bias of the PSD itself in the vicinity of the HPBW points will directly affect the estimates 

of damping. Seybert (1981) also derived an approximate expression for the normalized 

variance of the damping estimate, again confirming that the damping variance is 

proportional to the number of raw spectra considered. However, the expression has 

limited utility in this case, as the measure of the coherence function between the input 

and output processes at the HPBW points is required. Another option is empirical 

expressions for the coefficient of variation, such as those determined by Montpellier 

(1996). Though useful, these expressions are again approximate and idealized, an issue 

that will be addressed in the following section. 

To explore the variability in system identification by SA and RDT, frequency and 

damping are estimated from the response of ambiently-excited SDOF oscillators sampled 

at 10 Hz. In accordance with common practice, the minimum required spectral resolution 

is determined by limiting the normalized spectral bias error in Equation 2.8 to less than    

-2% and determining the required number of FFT points (N) conservatively to the nearest 

power of two. To minimize normalized variance errors to 10%, enough data is generated 

to yield 100 sufficiently resolved raw spectra. These time histories are generated by 

exciting a SDOF system with a band limited Gaussian, zero mean white noise process. 
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This random input was simulated from a target band-limited spectrum, with unit 

magnitude from 0 Hz to a specified cutoff frequency fc (Li & Kareem, 1993a). The 

resulting simulation parameters are documented in Table 2.6 for three cases: Cases A, B 

and C. 

Though often not obtainable in practice, significant amounts of stationary data are 

considered for illustrative purposes. The first case represents a lightly damped 1 Hz 

oscillator. The latter two cases involve more narrowband systems, requiring significantly 

more data to achieve the same spectral bias and variance errors. In Case C, though the 

same amount of data is generated, the length of segments captured in the RDT is 

shortened from TRDS = 60 s to TRDS  = 30 s in order to increase the number of segments 

being averaged, with assumedly minimal influence due to correlation. To demonstrate the 

worst-case performance of the RDT, the local extrema trigger condition is enforced, 

selecting a value of 3% the median peak value to generate most possible segments. 

Individual time histories generated by this approach were retained for the subsequent 

resampling analysis presented in Sections 2.4.1 and 2.4.2. 

Armed with this data, the normalized bias is assumed to be less than -2% and the 

normalized variance to be 10%, but the exact error in the frequency and damping 

identified from the PSD is still not known. To illustrate the variability possible, the 

systems in Table 2.6 are each simulated 50 times. In each case, the same amount of data 

is used so that the normalized bias and random errors on paper are the same, and the 

system is then identified by both the spectral analysis and Random Decrement Technique 

discussed previously. Further, since the variance in the RDS increases with each cycle of 
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oscillation, system identification is applied over only the first two cycles of the RDS. 

Since the logarithmic decrement was shown in Figure 2.5 to manifest variability in this 

range, a least squares fit of Equation 2.14 is utilized for damping identification. 

 

TABLE 2.6  

PROPERTIES OF SIMULATED CASES 

CASE fc 
(Hz) 

fn 
(Hz) 

ξ 
 

N Ns Nr
a Length of Data  

(Hr) 
A 5 1.0 0.01 4096 100 ~600-700 11.4 
B 1 0.2 0.01 16384 100 ~700-800 45.5 
C 1 0.2 0.01 16384 100 ~1100-1200 45.5 

aActual Nr will very in each run dependent upon the number of peaks forming non-
overlapping segments. 

Even in the presence of a favorable amount of data, the variability inherent in this 

random process can cause considerable scatter in the identified parameters, as shown by 

Table 2.7, summarizing the statistics of the simulations, including the mean, standard 

deviation, and coefficient of variation. From Table 2.7 and Figure 2.11, which 

graphically displays the data for Case B, it is not surprising to confirm that the frequency 

is relatively simple to identify with accuracy. The damping, on the other hand, is much 

more difficult. As expected, SA produces a biased overestimation of the damping present, 

as the smoothing of the spectrum results in an underestimation of the spectral peak and 

thus an overestimation of the damping. The fact that the SA bias is consistent should not 

be surprising since the goal was to maintain the same level of bias. Though the 

normalized bias in the power spectrum is less than –2%, the normalized bias in the  
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TABLE 2.7  

STATISTICS OF MONTE CARLO SIMULATIONS 

 µ[fn]  σ[fn] bias [fn] CoV [fn] µ[ξ] σ[ξ] bias[ξ] CoV[ξ] 
 (Hz) (Hz) (Hz)      

CASE A 
SA 1.0023 0.0012 0.0023 0.12% 0.01041 0.00029 0.00041 2.76% 

RDT 1.0003 0.0014 0.0003 0.14% 0.00921 0.00124 -0.00079 13.50% 
CASE B 

SA 0.2007 0.00026 0.0007 0.13% 0.01056 0.00033 0.00056 3.12% 
RDT 0.2001 0.000256 0.0001 0.13% 0.00995 0.00126 -0.00005 12.67% 

CASE C 
SA 0.2006 0.00027 0.00060 0.13% 0.01052 0.00032 0.00052 3.01% 

RDT 0.2000 0.00025 -0.00002 0.12% 0.01011 0.00109 0.00011 10.79% 
         
         

 

FIGURE 2.11. Identified dynamic properties of simulated data: identification 
of Case B by (a) spectral analysis and (b) Random Decrement Technique 
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damping estimated from it is several times that amount. Recall that Seybert’s (1981) 

expression underestimated this over prediction as only 1.5 times the normalized PSD 

bias. As expected, the bias does become a bigger problem in the narrowband system. For 

Case C, this narrowband system was resimulated, with the same amount of data as in 

Case B. As a result, the marginal changes in the statistics associated with the SA are only 

the result of the new random excitation generated in simulation. The variance is largely 

unchanged with standard error changing only by 4% between the two cases. The CoV for 

the SA in all cases is between 2.75 and 3.15%. It should be relatively constant for all 

cases as the length of data was selected to maintain the same bias and random errors in 

the PSD. Note that the variance estimates in Table 2.7 are still about one-half the 

estimates provided in Montpellier (1996).  

Though both approaches have near identical performance with respect to 

frequency identification, there is, unfortunately, a considerable amount of scatter in the 

RDT damping result, leading to a CoV that is an order of magnitude greater than SA 

result. This CoV is nearly half that observed by Montpellier (1996), as expected due to 

the large amount of data considered. The level of bias in the RDT result is more 

significant in the relatively broader band system, perhaps due to the limited number of 

segments being averaged. However, when large amounts of segments are available, the 

estimate of damping is nearly unbiased, as expected. Note that since the least squares fit 

is used, the biased observed in LogDec damping estimates in Section 2.2.2.2.4 is negated. 

This is advantageous since narrowband systems are increasingly difficult to identify by 

spectral analysis. The larger number of RDS averaged in Case C helps to further reduce 

the deviation of damping estimates by RDT. Increasing Nr by a few hundred samples has 
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led to a nearly a 15% decrease in the standard deviation and as shown in Section 

2.2.2.2.4, the negative impacts of correlation are often offset by this increase in the 

number of averages.  

It is important to note that due to the random nature of the process identical 

amounts of data subjected to the same SA can produce an estimate of damping which has 

no error or as much as 10% error. Though 10% error may be reasonable, this situation 

also illustrates a very favorable and perhaps unrealistic amount of stationary data. Under 

these ideal conditions, the damping estimated by independent simulations has inherent 

variability, which is no doubt enhanced under less ideal conditions. On the other hand, 

the RDT identification of the system from any one of these simulations can produce 

estimates of damping that are near exact or in error by up to 20-30%. Though Table 2.7 

illustrates that if one has the luxury of repeating an experiment 50 times under identical 

conditions, acceptable results are obtainable in the average, it is beneficial to be able to 

assess the accuracy of identified parameters from a given time history. The accuracy of 

any identification by one of these two approaches is contingent upon the level of 

randomness in the measured data and the degree to which it has been eliminated in the 

averaging process. 

2.4 Variance of Damping Estimates via Bootstrapping 

Typically, without the advantage of repeated experiments or measured input, the dynamic 

analyst is forced to make the best of only limited observations to perform system 

identification and determine the reliability of that estimate. Non-parametric resampling 
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schemes such as the bootstrapping technique introduced in this chapter and discussed 

further in the Appendix can be useful in such cases. These approaches amount to treating 

the observed samples as if they are representative of the larger population, then 

resampling this limited data to approximate variance. Using this computationally simple 

scheme, the analyst can take the time history that would normally result in a single 

estimate of damping with no variance measure and effectively “extend” that data through 

resampling in order to approximate the variance of that estimate. Such approaches further 

allow the assignment of confidence intervals without necessitating knowledge of the 

parameter distribution. This practical tool is introduced here to quantify random errors of 

damping estimates garnered from these two common system identification approaches. 

It should be noted that other system identification techniques have also considered 

the issue of statistical reliability of the identification process. For example, 

Autoregressive Moving Average (ARMA) schemes (e.g. Spanos & Zeldin, 1996; Li & 

Kareem, 1993b) or simplified Autoregressive (AR) models utilizing the Maximum 

Entropy Method, e.g. Cao et al. (1997) implicitly provide performance measures in terms 

of prediction errors, which indirectly reflect the quality of the AR or ARMA 

identification. More recently, a Bayesian spectral density approach was introduced by 

Katafygiotis & Yuen (2001) to update the PDF of modal parameters for ambiently-

excited data. The resulting PDF obtained in the minimization scheme was found to be 

well approximated by a Gaussian distribution, whose mean is indicative of the optimal 

parameter estimates and covariance yields a direct measure of uncertainty. Approaches 

like these provide a variance estimate of the damping parameter as a byproduct of the 

minimization operation or “goodness of fit” to an assumed model. The associated errors 
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then indicate how well the estimated damping parameter value fits the available data, 

providing one form of reliability measure.  

On the other hand, the intent of this work is not to propose an altogether new SI 

technique with error estimates to quantify a “goodness of fit.” Rather, this study provides 

a practical computational tool to generate the statistical reliability measures for frequency 

and damping parameters estimated using traditional approaches like SA and RDT, for 

which no statistical confidence measures are implicitly provided. It is the inherent 

randomness in the data that influences the quality of the PSD and RDS and thereby the 

damping estimates garnered from them. As these schemes must average out the effects of 

randomness, their performance becomes dependent upon sufficient amounts of available 

data. The intent of this work is to mimic this random characteristic to provide a 

supplementary tool to gauge the potential variance in the resulting damping estimate from 

a given spectral or random decrement analysis. 

For each case in Table 2.6, the bootstrapping scheme outlined in the Appendix is 

applied to selected time histories simulated by Monte Carlo in Section 2.3. To illustrate 

the information that can be gained, particularly when limited data is available, increments 

of the total time history are analyzed so that the influence of the number of raw spectra 

(Ns) and the number of segments in RDT (Nr) can be determined. As the frequency is 

estimated with near certainty every time, it shall not be discussed here for brevity. The 

tables that follow contain the bootstrap estimate of the parameter, in this case damping, 

ξboot, defined as the mean of the parameter identified from B=1000 bootstrap replicates 

(see Appendix Equation A.2). The traditional estimate of the parameter, without any 
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resampling, is commonly termed the plug-in estimate, ξplugin. The standard deviation of 

the bootstrap replicates σΒ, as defined by Equation A.1, and the CoV, defined as the ratio 

of the standard error to the bootstrap mean in Equation A.2, are also provided. The 

bootstrap bias in the estimate is then defined as the difference, ξboot - ξplugin. This measure 

is important, as a small bootstrap bias, relative to the standard error, confirms that the 

bootstrap is a good estimate of the parameter, e.g. bias/σ < 0.25. As this measure 

becomes larger, the bootstrap estimates may no longer be accurate and require bias 

correction, which is discussed further in Efron & Tibshirani (1993). Additionally, by 

virtue of the bootstrapping scheme, histograms depicting the distribution of the damping 

estimate from a given time history can be obtained. These are useful tools for identifying 

the underlying distribution of damping estimates and its associated characteristics. An 

example of such a histogram for the damping estimates from a single time history (Case 

B) is given in Figure 2.12. While viewing these results, please be reminded that the 

simulated system had a critical damping ratio of 0.01. 

Additionally, confidence intervals are defined for the damping estimate. By 

traditional analysis, only a single estimate of damping is available from each simulated 

time history. However, through the bootstrapping scheme, this estimate is enhanced by a 

family of associated estimates, which can give valuable insight into the reliability of a 

given damping estimate. In the most elementary formulation, a level of confidence can be 

selected, and then the replicates that correspond to this level can be identified from the 

resampled distribution (Efron & Tibshirani, 1993). By virtue of the non-parametric nature 

of this approach, there is no need to make any assumptions about the Normality of the  
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FIGURE 2.12. Histogram of bootstrap simulations on (a) PSD and 
(b) RDS for Case B 
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damping estimates. This is especially useful in cases where the PSD or RDS is generated 

from a limited number of samples. However, when the CoV of the bootstrapped 

replicates is small, e.g. less than 20% and the bootstrap biases are negligible, a Gaussian 

PSD may be assumed to describe the distribution of the bootstrapped damping parameter. 

The 95% confidence bands are then approximated to lie within 2 standard deviations of 

the bootstrap mean (Efron & Tibshirani, 1993). These bands are provided in the last 

column of the following tables for comparison. 

2.4.1 Discussion: Bootstrapping Damping Estimates for Spectral Analysis 

As shown in Table 2.8, the bootstrap investigations conducted on a single record from the 

Monte Carlo simulations in Section 2.3 predict significantly smaller values of standard 

errors than anticipated for spectral analysis. However, the relative changes are consistent 

with Monte Carlo predictions, when examining the full data set (Ns=100), shaded in gray. 

Case A has smallest variance, thus one would expect the Case A bootstraps to reflect that 

smaller variance in comparison to Cases B and C. Likewise, Case C produced a slightly 

smaller value of standard error than Case B, a trend reflected in the bootstrap errors. 

From the sample histogram in Figure 2.12, it is evident that in cases of limited data there 

are shifts in the damping estimate distribution about various mean values. It is only for 

Ns>50 that the behavior stabilizes and the damping estimates distribute about a relatively 

constant mean, indicating that the variance is sufficiently minimal. 

It is interesting to note that, even with modest amounts of data (e.g. Ns=10), a 

relatively good estimate of the damping is obtainable, while the addition of further  



 60

TABLE 2.8  

STATISTICS OF BOOTSTRAP REPLICATIONS OF CRITICAL DAMPING 
RATIO: ESTIMATES BY SPECTRAL ANALYSIS 

CASE A 
Ns ξboot ξplugin bias[ξ] σ[ξ] CoV 95%  

bootstrap 
95% 

normal 
10 0.010299 0.01030 -0.000011 0.000084 0.82% 

 
(0.01016, 
0.01044) 

(0.01013, 
0.01047) 

20 0.010478 0.010481 -0.000029 0.000082 0.78% 
 

(0.01034, 
0.01060) 

(0.01031, 
0.01064) 

30 0.010571 0.010564 0.000064 0.000081 0.77% 
 

(0.01044, 
0.01071) 

(0.01041, 
0.01073) 

40 0.010167 0.010165 0.000016 0.000079 0.78% 
 

(0.01004, 
0.01030) 

(0.01001, 
0.01032) 

50 0.010099 0.010096 0.000032 0.000078 0.77% 
 

(0.00997, 
0.01023) 

(0.00994, 
0.01025) 

60 0.009940 0.009940 0.000041 0.000080 0.80% 
 

(0.00981, 
0.01007) 

(0.00978, 
0.01010) 

70 0.010127 0.010131 -0.000037 0.000082 0.81% 
 

(0.00999, 
0.01025) 

(0.00996, 
0.01029) 

80 0.010075 0.010079 -0.000044 0.000079 0.78% 
 

(0.00995, 
0.01020) 

(0.00993, 
0.01023) 

90 0.010043 0.010041 0.000019 0.000076 0.76% 
 

(0.00991, 
0.01017) 

(0.00989, 
0.01019) 

100 0.010029 0.010027 0.000013 0.000083 0.83% 
 

(0.00989, 
0.01016) 

(0.00986, 
0.01019) 

CASE B  
Ns ξboot ξplugin bias[ξ] σ[ξ] CoV 95%  

bootstrap 
95% 

normal 
10 0.01044 0.01044 -0.000001 0.000049 0.47% (0.01036, 

0.01052) 
(0.01034, 
0.01054) 

20 0.01077 0.01080 -0.000031 0.000143 1.33% (0.01053, 
0.01101) 

(0.01049, 
0.01106) 

30 0.01110 0.01110 -0.000005 0.000130 1.17% (0.01088, 
0.01130) 

(0.01084, 
0.01136) 

40 0.01058 0.01061 -0.000033 0.000105 0.99% (0.01041, 
0.01077) 

(0.01037, 
0.01079) 

50 0.01043 0.01044 -0.000015 0.000095 0.91% (0.01027, 
0.01059) 

(0.01024, 
0.01062) 

60 0.01012 0.01012 0.000002 0.000104 1.03% (0.00996, 
0.01029) 

(0.00991, 
0.01033) 

70 0.01067 0.01075 -0.000081 0.000121 1.13% (0.01048, 
0.01088) 

(0.01043, 
0.01091) 

80 0.01064 0.01065 -0.000009 0.000134 1.26% (0.01043, 
0.01086) 

(0.01038, 
0.01091) 

90 0.01067 0.01069 -0.000024 0.000130 1.22% (0.01043, 
0.01089) 

(0.01041, 
0.01093) 

100 0.01061 0.01065 -0.000045 0.000132 1.24% (0.01039, 
0.01083) 

(0.01035, 
0.01087) 
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TABLE 2.8 (CON’T)  

CASE C 
Ns ξboot ξplugin bias[ξ] σ[ξ] CoV 95%  

bootstrap 
95% 

normal 
10 0.010637 0.010637 -0.000001 0.000065 0.61% 

 
(0.01053, 
0.01075) 

(0.01051, 
0.01077) 

20 0.010104 0.010104 0.000000 0.000117 1.16% 
 

(0.00992, 
0.01030) 

(0.00987, 
0.01034) 

30 0.010187 0.010193 -0.000007 0.000113 1.11% 
 

(0.01001, 
0.01038) 

(0.00996, 
0.01041) 

40 0.010453 0.010464 -0.000010 0.000107 1.02% 
 

(0.01026, 
0.01062) 

(0.01024, 
0.01067) 

50 0.010516 0.010522 -0.000006 0.000103 0.98% 
 

(0.01032, 
0.01068) 

(0.01031, 
0.01072) 

60 0.010346 0.010348 -0.000002 0.000122 1.18% 
 

(0.01015, 
0.01052) 

(0.01010, 
0.01059) 

70 0.010089 0.010094 -0.000005 0.000109 1.08% 
 

(0.00991, 
0.01026) 

(0.00987, 
0.01031) 

80 0.009837 0.009840 -0.000003 0.000123 1.25% 
 

(0.00963, 
0.01005) 

(0.00959, 
0.01008) 

90 0.009922 0.009917 0.000005 0.000121 1.22% 
 

(0.00973, 
0.01012) 

(0.00968, 
0.01016) 

100 0.009993 0.009991 0.000002 0.000116 1.16% 
 

(0.00980, 
0.01020) 

(0.00976, 
0.01022) 

        
        

recorded data may lead to poorer estimates. This may seem counterintuitive, as the 

variance of the PSD has been shown to reduce with the number of raw spectra being 

averaged. However, the inherent randomness of the process must be considered. The first 

few hours of data may not have significant randomness in comparison to later 

components of the overall time history, luckily leading to a reasonable estimate of 

damping. Likewise the variance is also dependent on the magnitude of the PSD itself, 

which also fluctuates in each case considered. These random fluctuations can and should 

be expected when limited data is used, as the variance is high (Vandermeulen et al., 

2000). It is only in the limit that a more stable and reliable PSD results – one without 
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marked fluctuations as more data is considered in the average. As evidenced by Figure 

2.12 and Table 2.8, it would indicate that this is achieved for Ns>60 for the narrowband 

system, but achieved much sooner, Ns>40 for Case A. 

As evident from Figure 2.11, there is a discernable amount of bias in the spectral 

estimate of the narrowband system, shifting the mean critical damping ratios to 

approximately 0.0105. The inherent bias in the estimate cannot be overcome by the 

bootstrapping approach, as also noted in Vandermeulen et al. (2000). Spectra with an 

outright bias cannot be enhanced by this approach, as they are not truly representative of 

the system to be identified, but rather a biased representation of that system. As the 

bootstrap cannot repair sampled data, but can merely make inferences about its various 

statistics, the confidence intervals and all relevant statistical distributions will be 

clustered about this biased mean, as illustrated by the histograms shown in Figure 2.12. 

In this case, even placing 95% confidence intervals on the estimate will not capture the 

true damping value. Note that Seybert’s (1981) derivation can provide a normalized bias 

estimate for ξ. Knowing that the SA consistently overestimates damping, the rough 

normalized bias formula may be offered as a correction to the estimates and used to 

refine the confidence bands. 

2.4.2 Discussion: Bootstrapping Damping Estimates for Random Decrement Technique 

As shown in Figure 2.11, the distribution of RDT damping estimates on the same data 

manifest considerably more scatter than SA estimates, consistent with the findings of the 

Monte Carlo simulation. The sensitivity of RDT damping estimates was fully discussed 
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in 2.2.2.2.4. It should be noted that an enhancement in performance may be achieved 

using the more relaxed positive point trigger or by using the averaging of damping 

estimates of adjacent amplitude trigger levels as shown in Table 2.3 to mitigate the 

influence of outlier segments. Once again, the distributions in Figure 2.12 shift as more 

samples are considered. As shown by Table 2.9, as Nr increases, their behavior tends to 

stabilize about a consistent mean value, similar to what was found in SA approach. Even 

in this stable range, there is still some fluctuation in the estimate, consistent with the 

findings in Section 2.2.2.2.4 requiring the aforementioned local averaging over adjacent 

triggers. 

However, unlike SA results, the behavior of RDT estimate using local extrema 

trigger clearly indicates that limited amounts of data offer little hope of an accurate result, 

as many eligible triggers are eliminated by this strict condition. In such cases, the positive 

point trigger with TRDS = 0 should be used, as advocated in Section 2.2.2.2.4. Rather, the 

results steadily improve with the number of samples being considered: for Nr>500, the 

damping estimates are consistently within 10% of the actual value. The level of variance 

in the RDT estimate, as shown by Monte Carlo simulation, is markedly greater than the 

SA, due again to the sensitivity of trigger amplitude. It can be implied that the SA 

approach is more of an averaged approach that does not allow referencing to a trigger 

level. Likewise, by selecting a local range of trigger amplitudes in the RDT, as opposed 

to just the median peak value used here, the average damping value should be 

comparable to those determined by SA, while still preserving the ability to amplitude 

reference a damping estimate. 
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TABLE 2.9  

STATISTICS OF BOOTSTRAP REPLICATIONS OF CRITICAL DAMPING RATIO: 
ESTIMATES BY RDT 

CASE A 
Nr ξboot ξplugin bias[ξ] σ[ξ] CoV 95%  

bootstrap 
95% 

normal 
100 0.010636 0.010586 0.000051 0.001105 10.39% 

 
(0.00876, 
0.01244) 

(0.00843, 
0.01285) 

200 0.012293 0.012320 -0.000023 0.001144 9.31% 
 

(0.01041, 
0.01417) 

(0.01001, 
0.01458) 

300 0.012927 0.012932 -0.000006 0.001207 9.34% 
 

(0.01088, 
0.01495) 

(0.01051, 
0.01534) 

400 0.011308 0.011340 -0.000032 0.001225 10.83% 
 

(0.00934, 
0.01339) 

(0.00886, 
0.01376) 

500 0.011149 0.011163 -0.000013 0.001264 11.34% 
 

(0.00901, 
0.01323) 

(0.00862, 
0.01368) 

600 0.010915 0.010971 -0.000056 0.001237 11.33% 
 

(0.00881, 
0.01295) 

(0.00844, 
0.01339) 

CASE B 
Nr ξboot ξplugin bias[ξ] σ[ξ] CoV 95%  

bootstrap 
95% 

normal 
100 0.01533 0.01532 0.000004 0.001239 8.08% (0.01334, 

0.01747) 
(0.01285, 
0.01781) 

200 0.01386 0.01381 0.000054 0.001223 8.82% (0.01181, 
0.01591) 

(0.01142, 
0.01631) 

300 0.01296 0.01296 0.000002 0.001259 9.72% (0.01089, 
0.01500) 

(0.01044, 
0.01548) 

400 0.01203 0.01188 0.000159 0.001174 9.76% (0.01010, 
0.01397) 

(0.00969, 
0.01438) 

500 0.01132 0.01126 0.000056 0.001231 10.88% (0.00921, 
0.01333) 

(0.00886, 
0.01378) 

600 0.00974 0.00976 -0.000013 0.001243 12.76% (0.00772, 
0.01093) 

(0.00726, 
0.01223) 

700 0.00917 0.00917 0.000005 0.001220 13.30% (0.00717, 
0.01203) 

(0.00673, 
0.01161) 

800 0.01005 0.01000 0.000048 0.001218 12.13% (0.00808, 
0.01201) 

(0.00761, 
0.01248) 
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TABLE 2.9 (CON’T)  

CASE C 
Nr ξboot ξplugin bias[ξ] σ[ξ] CoV 95%  

bootstrap 
95% 

normal 
100 0.004597 0.004578 0.000019 0.001132 24.61% (0.00281, 

0.00644) 
(0.00233, 
0.00686) 

200 0.006960 0.007009 -0.000049 0.001151 16.53% (0.00510, 
0.00889) 

(0.00466, 
0.00926) 

300 0.008277 0.008304 -0.000027 0.001175 14.20% (0.00635, 
0.01014) 

(0.00593, 
0.01063) 

400 0.008907 0.008922 -0.000015 0.001118 12.55% (0.00709, 
0.01070) 

(0.00667, 
0.01114) 

500 0.008850 0.008850 0.000000 0.001128 12.74% (0.00701, 
0.01067) 

(0.00659, 
0.01110) 

600 0.009955 0.009860 0.000095 0.001152 11.57% (0.00812, 
0.01196) 

(0.00765, 
0.01226) 

700 0.010079 0.010108 -0.000029 0.001189 11.80% (0.00810, 
0.01204) 

(0.00770, 
0.01246) 

800 0.009909 0.009971 -0.000062 0.001204 12.15% (0.00808, 
0.01198) 

(0.00750, 
0.01232) 

900 0.010256 0.010229 0.000027 0.001162 11.33% (0.00834, 
0.01219) 

(0.00793, 
0.01258) 

    
 

    

        

This large standard deviation is accurately represented by the bootstrap analysis, 

in part due to the fact that the RDT is an unbiased estimator. This was not possible in the 

biased SA where the predicted variance was much less than the observed Monte Carlo 

result. As the RDT tends to stabilize after a significant number of averages, the changes 

in standard deviation are quite small when additional samples are added. Between Cases 

A and B, the Monte Carlo standard deviation changes only marginally, by about 2%, 

explaining why the bootstrapped estimates for these two cases show only slight 

difference. In the same way, the standard deviation takes on consistently smaller values 

in Case C than in Case B, reflecting the reduction in variance due to the inclusion of 

additional segments in the average. Unlike the biased SA approach, the broad confidence 

intervals predicted by bootstrapping RDT results will encase the predicted result at 
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minimum for Nr>400. It is important to emphasize that traditional RDT damping 

estimates lack any type of interval estimate. Thus such tools can offer insight where 

previously there was none. 

Interestingly, a cursory examination of the ratio of bias to standard deviation for 

both RDT and SA data confirms that SA generally produces relatively large biases in the 

bootstrap data, whose ratios to the standard error exceed 0.25. On the other hand, RDT 

produces very small biases in the bootstrap analysis. Large biases often indicate that the 

bootstrap analysis of the data may not be accurate, as it was shown that the bootstrap 

approach could not capture the variance predicted by Monte Carlo for SA. Bias corrected 

data may be resampled, but is should be noted that this is risky practice and is thus not 

advocated in this study as it often leads to an increase in standard error. More details may 

be found in Efron & Tibshirani (1993).     

2.5 The Challenges of Nonlinearity and Nonstationarity 

Spectral analysis is marred by the unavoidable presence of nonstationarity concerns that 

are inherent in long records. As a result, curve fitting has been advocated to smooth 

spectral estimates garnered from shorter but assuredly stationary blocks of data. For 

example, Breukelman et al. (1993), Montpellier et al. (1998), and Jones & Spartz (1990) 

fit the spectral estimates to a transfer function of a SDOF system by employing a 

maximum likelihood estimator or in the latter case, a least squares approach. By selecting 

a sample length that is long enough to ensure sufficient frequency resolution, while 

avoiding nonstationarity problems, and ensemble averaging records obtained under 
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similar conditions to reduce the variance of spectral estimates, smooth spectra can be 

obtained for linear systems. However, the characteristic features of nonlinear systems that 

have transfer functions that depart from linear behavior and the response of systems to 

nonlinear loading may be obscured in such a curve fitting approach. Though this spectral 

representation can provide an “averaged” sense of the structural properties, the inability 

to track specific features and properties of a system in time limits the information which 

can be gained from the data. The transform’s inability to capture any local features of the 

signal results form the fact that it decomposes the signal into a linear combination of 

infinite trigonometric functions, which are incapable of recognizing time-varying system 

characteristics.  

These nonlinearities in either the loading or structural system induce an 

amplitude-dependence in the frequency and damping parameters, which further 

complicates estimation. In particular, the level of equivalent viscous damping has been 

shown to increase considerably with the level of response in the structure (e.g. Jeary & 

Ellis, 1981; Ellis, 1996; Fukuwa et al., 1996). This can be explained when considering 

again that viscous damping is generally proposed in the equation of motion to represent 

all of the various damping mechanisms, resulting in a model that is non-ideal over a wide 

range of amplitudes for non-linear systems. As a result, real structures with nonlinear 

characteristics, whose damping is identified assuming such a model, will manifest non-

linearity or a damping that changes with amplitude (Ellis, 1998), implying that the system 

is then assumed equivalently linear at a given amplitude level.  
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Based on such full-scale observations, it was proposed that damping in structures 

be classified into three distinct plateaus (Jeary, 1986) as illustrated by Figure 2.13. 

Considering that the boundary damping attributed to the frictional losses between 

interfaces of materials contributes significantly to the energy dissipation in structures, the 

relative displacement of these interfaces will dictate the amount of friction losses that 

occur. The intuitive arguments for this model are as follows: at low levels of motion, 

most cracks and joints within the structure are not significantly slipping. Once a sufficient 

number of these interfaces are activated, they will dissipate energy in proportion to their 

relative displacements, accounting for the linearly increasing portion of Figure 2.13. At 

the high amplitude plateau, all interfaces have been activated, thus defining the maximum 

level of damping that should not be exceeded unless damage were to occur within the 

structure. Note that the slippage of these interfaces can also be assumed to diminish 

stiffness, thereby explaining the reduction in natural frequency with increasing amplitude 
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observed in full-scale data.  

An empirical model for this type of behavior was proposed by Jeary (1986) based 

upon full-scale data generated using controlled sinusoidal excitations. This model for the 

total damping is given by 

 
H
X H

Io ξξξ +=  (2.24) 

for a given mode in the structure. ξo is the low amplitude level of damping, ξI is the 

incremental damping in the transition region, H is the height of the structure, and XH is 

the displacement at the top of the structure. Specific expressions for each variable can be 

found in Jeary (1986). Other amplitude-dependent damping expressions were proposed 

by ESDU (1983), Lagomarsino (1993) and Tamura et al. (1995).  In light of this 

amplitude dependence, any system identification approach should be capable of 

accounting for these characteristics, as observed levels of damping must be referenced to 

the amplitude of motion.  

As a result, the favorable performance of spectral analysis in comparison to the 

Random Decrement Technique with local extrema trigger shown in the idealized 

demonstrations in Section 2.4 are often negated in real-world applications where 

nonlinearities and nonstationarities are present, as the Random Decrement Technique is 

capable of detecting amplitude-dependent damping (Jeary, 1992; Tamura & Suganuma, 

1996). As shown in Kareem & Gurley (1996) through the use of a nonlinear softening 

oscillator, the damping associated with the trigger condition amplitude is estimated 

accurately within the first few cycles of the RDS decay, as they are closest to the 



 70

enforcement of the initial conditions. As a result of the nonlinearity, the damping values 

will begin to deviate in later cycles moving further from the trigger condition. As 

similarly observed by Tamura & Suganuma (1996), by treating the non-linear system as 

locally linear at the triggering condition, the RDS in the first cycle are consistent with the 

free-vibration curve of the linear system for the level of damping and natural frequency 

associated with the amplitude level specified by the triggering condition. Thus, the use of 

RDT for these types of systems should restrict amplitude-referenced frequency and 

damping estimates to the values obtained from the first few cycles of oscillation, where 

the system is locally linear. Further, when using a selective pre-treatment and processing 

of the time history introduced in Section 2.2.2.2.4, time histories with certain localized 

non-stationary features can still be processed by the Random Decrement Technique, as 

discussed in Jeary (1992). 

2.6 Conclusions 

This chapter introduced the significance of damping for minimizing wind-induced 

response and the challenges associated with its estimation from ambient vibration data.  

Two common approaches for system identification were then presented: the Random 

Decrement Technique and traditional spectral analysis. The uncertainty associated with 

the two approaches was investigated via Monte Carlo simulation, and bootstrapping was 

proposed to provide a practical tool for assessing the uncertainty associated with an 

estimate of damping by either technique. It was shown that the bootstrap standard 

deviation of the RDT damping estimate was consistent the variance of the damping 

estimates determined from repeated simulation of the system by Monte Carlo. On the 
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other hand, the bootstrapped standard deviation of the damping estimate derived from 

spectral analysis was considerably less than its Monte Carlo counterpart, attributed to the 

fact that it was tainted by the bias inherent in the sample population.  

The chapter also went into a detailed analysis of the factors contributing to the 

performance of the Random Decrement Technique. Although other studies had 

considered the ramifications of violating the white noise assumption or the nonlinearity 

of the oscillator, none had systematically addressed other issues governing the 

performance of the technique. This chapter responded to this deficiency by investigating 

the influence of potential correlation between captured segments, the required number of 

captured segments to generate a stable signature, the significance of the selected 

triggering condition, and the influence of nonstationarity. For the positive point trigger, it 

was found that the increased number of segments averaged in the RDS offsets any 

negative consequence resulting from allowing more potential correlation. The damping 

under these conditions appears to be consistently estimated in most cases when the 

trigger amplitude satisfies the following condition: 3σ > Xo > 1σ.  Further, when using 

the local extrema trigger, it was similarly found that the trigger amplitude corresponding 

to this range performed best, as opposed to low amplitude triggers that afforded more 

segments for averaging. Regardless, the performance of the RDT stabilizes under any 

trigger condition as considerably more segments are averaged, implying that when 

limited amounts of data are available, the restrictiveness of the trigger should be relaxed 

via the positive point condition. Finally, though the Random Decrement Technique was 

found to accommodate mild nonlinearity and localized nonstationarity, the prevalence of 

these features requires a modified analysis framework. 
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2.7 Moving into the Time-Frequency Domain 

As nonlinearity and nonstationarity, more often that not, characterize the processes of 

interest in Civil engineering, there was a pressing need to develop analysis tools that 

could accommodate these features. Although the Fourier Transform revolutionized signal 

processing and its applications to various disciplines perhaps like no other development, 

its inability to adequately handle nonstationary and nonlinear phenomenon has proven 

problematic. Even the Random Decrement Technique’s ability to provide nonlinear 

analysis and accommodate nonstationarity to some degree is a limited victory in light of 

the amount of data required to successfully obtain the decrement signature. The 

inadequacy of such techniques rooted in stationary assumptions becomes even more 

apparent when signals with significant nonlinearities or localized frequency 

characteristics are present. Recognizing the shortcomings of these more traditional 

approaches, a thrust towards new analysis frameworks such as time-frequency analysis is 

unfolding, as discussed in Chapter 3.  
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  CHAPTER 3 

TRANSITION TO THE TIME-FREQUENCY DOMAIN 

   

3.1 The Departure from Fourier Analysis 

While the contributions of the Fourier Transform to signal processing cannot be denied, 

the fact that actual data is often characterized by localized features obscured by the 

infinite bases of the Fourier Transform prompted a departure from this classical 

approach. To demonstrate, consider the waveform in Figure 3.1. The softening of 

frequency over an isolated time interval is not reflected in the resulting power spectrum. 

Even if the Fourier spectrum had detected this contribution and represented it as a 

secondary peak, there would be no indication of the duration of this component within 

the signal, as all time information is discarded in the transform.  

In these cases, it becomes necessary to move to another analysis domain governed 

by transforms that produce a time-frequency distribution (TFD) of energy. The 

introduction of these transforms can be traced back to the mid-1940’s, based upon the 

work of Wigner (1939) in quantum mechanics. The applications of these concepts in 

signal processing is largely credited to the work by Ville (1948) and Gabor (1946) and 
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are discussed in further detail in Carmona et al. (1998) and Mallat (1998). In this chapter, 

the theory developed by various sources are unified and organized, and the details 

relevant to Civil Engineering are highlighted. As the essential components of wavelet and 

time-frequency analysis theory are introduced, anecdotes and subsequent discussions are 

provided to assimilate the various components of the theory, largely grounded in 

mathematics and signal processing, and recast it in the unique perspective of Civil 

Engineering applications.  

Frequency [Hz] 

Time [s] 

x(
t) 

FIGURE 3.1. Sine wave with local frequency change (top) and 
traditional power spectral magnitude 
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3.2 Short-Time Fourier Transform  

To overcome the limitations of Fourier Transforms, a Short-Time Fourier Transform 

(STFT) was developed by Gabor (1946). Since the harmonic waves used in traditional 

Fourier analysis are continuous, it is impossible for this representation to have a local 

spectral density suitable for uncovering transient information. Thus, the Fourier 

Transform was modified by a short-duration window w(t) centered at time, τ. The 

spectral coefficients could then be determined over this short length of data, which is 

assumed to be stationary, yielding the STFT 

 ∫
∞

∞−

−−= dtetwtxfSTFT fti πττ 2* )()(),(  (3.1)  

where * denotes complex conjugate and i is the imaginary number. This new breed of 

transform was one of the first time-frequency distributions, named for their ability to 

depict energy densities as a dual function of frequency and time. The transform, 

appropriately nicknamed the Gabor Transform, became quite popular due to its intuitive 

appeal in light of the widely used Fourier Transform, conserving energy between the time 

and frequency domain in a similar manner.   

The performance of this transform is greatly dependent upon the choice of 

window function, which can simply be the traditional boxcar, i.e. rectangular, window. 

Proper windows are those with good localization in both the time and frequency domains 

and are chosen subjectively based on the application. Other popular choices include the 

Hanning and Hamming windows and the Gaussian function discussed in Section 3.2.2 

(Carmona et al., 1998). An energy representation, commonly known as the spectrogram, 



 76

can then be obtained by plotting the squared modulus of the transform to highlight the 

time-frequency distributions of energy in the signal. While the notion of a moving 

Fourier Transform is attractive for uncovering localized signal features, it still is plagued 

by the same issues facing the traditional Fourier Transform. 

3.2.1 Heisenberg Uncertainty Principle 

As discussed in Chapter 2, spectral analysis is limited by the fact that high resolution 

cannot be obtained in both the time and frequency domains as a result of their inverse 

relationship. Contracting a function in time to improve its localization will dilate it in the 

frequency domain. The measure of time duration, Τx, and frequency bandwidth, Βx, of a 

signal has been defined in many ways, but the most common definition was proposed by 

Gabor (1946): 
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where x(t) is a zero mean signal and )(ˆ fX  is its Fourier Transform. These in essence 

serve as a measure of the mean square value of the signal in both time and frequency 

normalized by the variance or total energy content. The product of this bandwidth and 

time duration, often termed BT product, is constant, with its minimum value possible 

obtained for a Gaussian signal, 
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π4
1

≥xxTB . (3.4) 

This relation is commonly termed the Heisenberg Inequality or Heisenberg Uncertainty 

Principle. This important development defines the primary constraint on time-dependent 

spectra, as one cannot obtain a high degree of resolution in both the time and frequency 

domains simultaneously. A rigorous proof of this principle may be found in Chui (1992).  

Similarly, this definition may be used to define the resolution of a particular zero 

mean window function: 
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where w(t) is the window function and )(ˆ fW is its Fourier Transform. The relation in 

Equation 3.4 still applies and the product of these two resolutions must be greater than or 

equal to 1/4π. As the Gaussian functions establish the lower bound in Equation 3.4, they 

are typically chosen as the window function w(t) in the STFT. Note that analogs to 

Equations 3.3-3.6 for windows or signals that are not zero mean are provided in Carmona 

et al. (1998). 
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3.2.2 Resolutions of the STFT: The Heisenberg Box 

Based on the frequency and time resolutions in Equations 3.5 and 3.6, the STFT at time t 

and frequency f represents the signal content in a distinct area of the time-frequency plane 

defined by the Heisenberg box with the following dimensions 

 [ ] [ ]wwww fffftttt ∆+∆−×∆+∆− ,, . (3.7) 
 
 

The dimensions of the box do not change with the frequency being analyzed but remain 

fixed: the box having a width of 2∆fw along the frequency axis and 2∆tw along the time 

axis. As argued by Chui (1992), since frequency is directly proportional to number of 

cycles in a specific interval of time, a narrow time window is required to locate high-

frequency phenomena and a wide time-window is necessary for more thorough 

investigation of low-frequency phenomena. As a result, this transform is not well suited 

for analysis of signals that may have both low and high frequency components. This is 

demonstrated schematically in Figure 3.2, as fewer cycles of the low frequency 

component of the signal are considered in the fixed Heisenberg box of the STFT. 

Similarly, the time resolution does not become finer at high frequencies, where it is 

required to separate rapidly varying high frequency components. To demonstrate, 

consider the sum of two hyperbolic chirps shown in Figure 3.3. The STFT’s spectrogram 

cannot track the rapidly varying frequencies of the two chirps due to its non-optimal 

resolutions, resulting in a blurring of their energy in the high frequency range.  
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3.3 Moving Toward the Wavelet Domain 

It becomes evident that by breaking the signal down into a series of basis functions of 

finite length, one can overcome some of the limitation of stationarity. As Fourier basis 

functions are localized in frequency but not in time, an alternative was introduced in the 

previous section to localize the Fourier Transform through the addition of a window 

function. However, constraints of the Heisenberg Uncertainty Principle limit the 

obtainable resolutions and render them non-optimal over a range of frequencies. An 

alternative approach would be to design basis functions that are local in both frequency 

and in time and then scaled via dilations to optimally adjust their resolutions based on the 

frequency being analyzed, yielding a multi-resolution analysis.  

2∆fw 

t 

f2 

f 

2∆tw 

2∆fw f1 

t1 t2

2∆tw 

FIGURE 3.2. Concept of Heisenberg box for short-time Fourier 
Transforms 
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The Wavelet Transform (WT) was engineered with this in mind. Through an 

adaptation to the Heisenberg Uncertainty Principle, the Wavelet Transform concedes that 

arbitrarily good resolution in both time and frequency is not possible. Thus the transform 

optimizes its resolutions as needed. It provides good resolution at high dilations or low 

frequencies, sacrificing its time resolution in this regime to satisfy the Heisenberg 

Uncertainty Principle. As the variations of low frequency components with time are 

typically gradual, this loss is not of consequence. In the time domain, the transform has 

good resolution at high frequencies in order to identify transient signal features. The 

fundamental differences between the Fourier Transform, the Short Time Fourier 

Transform and the Wavelet Transform are shown in Figure 3.4. The advantages of the 

Wavelet Transform approach are evident upon revisiting the two hyperbolic chirps in 

Figure 3.3. A plot of the energy distribution from the Wavelet Transform of the signal is 

t [s] 

f [
H

z]
 

x(
t) 

FIGURE 3.3. Sum of two hyperbolic chirps and 
resulting spectrogram (Mallat, 1998) 
 
 



 81

provided in Figure 3.5 and demonstrates that the multi-resolution time-frequency analysis 

can identify the two components. 

3.4 The Transform 

The relations governing Wavelet Transforms have been articulated and proven in a 

number of texts, e.g. Chui (1992), Mallat (1998) and Carmona et al. (1998). Therefore, 

only relevant details are presented herein for brevity. The continuous Wavelet Transform 

(CWT) is a linear transform that decomposes a signal x(t) via basis functions that are 

simply dilations and translations of the parent wavelet g(t) through the convolution with 

the signal according to 

 ∫
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where * denotes complex conjugate. Dilation by the scale, a, inversely proportional to 

frequency, represents the periodic or harmonic nature of the signal. The resulting wavelet 

coefficients, W(a,t), represent a measure of the similitude between the dilated/shifted 

FIGURE 3.4. Evolution of time-frequency analysis 
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parent wavelet and the signal at time t and scale (frequency) a.  The normalization by the 

root of scale insures that the integral energy given by the wavelet is independent of the 

dilation. 

Calculation of the Wavelet Transform can be expedited in the frequency domain 

through the use of Fourier Transforms. Thus, the convolution in Equation 3.8 can 

equivalently be represented as a product in the Fourier domain with Fourier frequency f 

 dfeafGfXataW fti π2* )(ˆ)(ˆ),( ∫
∞

∞−

= . (3.9) 

where X̂  and Ĝ denote the Fourier Transforms of the signal and the parent wavelet. 

3.4.1 Completeness 

For well-defined parent wavelets (the conditions surrounding this will be discussed in 

Section 3.4.2), the inverse transform is given by 

t [s] 

f [
H

z]
 

FIGURE 3.5. Wavelet transform of two hyperbolic 
chirps shown in Figure 3.3 (Mallat, 1998) 
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where Cg is defined as 
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From the Wavelet Transform, an energy distribution plot called a scalogram can 

be generated by plotting the squared modulus of the transform. This representation, 

analogous to the spectrogram, represents the energy content of the signal at distinct time 

and frequency (scale) pairs 
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Unlike its STFT counterpart, the energy distribution in the scalogram is multi-resolution. 

As demonstrated by proof in Chui (1992) and Mallat (1998), the Wavelet 

Transform conserves mean square energy for real signals 
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or equivalently  
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providing an analog to Plancherel’s Theorem. Thus the wavelet can be viewed either as 

measure of time-scale or time-frequency energy density.  
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3.4.2 Conditions on Parent Wavelets 

The transform offers great flexibility, in that, any number of functions satisfying some 

basic constraints can serve as the parent wavelet in Equation 3.8. This flexibility has 

permitted authors to tailor the shapes and time-frequency features of wavelets to match 

the characteristics of signals they wish to detect, e.g., Wang (2001). The first condition 

on a candidate parent wavelet g(t) is that the function ( )ℜ∈ 2Lg  satisfy an admissibility 

condition  

 +∞<gC . (3.15) 
 

This admissibility condition is necessary to guarantee that the inverse transform in 

Equation 3.10 is valid. To guarantee this, the parent wavelet should be a zero mean 

function such that  

 ∫
∞

∞−

= 0dttg )(  (3.16) 

and thereby 0)0(ˆ =G . By requiring that 0)0(ˆ =G and that )(ˆ fG  be continuously 

differentiable, the admissibility condition is automatically satisfied. The condition of 

continuous differentiability can readily be established for signals with sufficient time 

decay 

 +∞<+∫
∞

∞−

dttgt1 )()( . (3.17) 

In essence, this chain of properties helps to guarantee that the transform has finite support 

in both the time and frequency domains, forming the “little waves” that gave rise to the 
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transform’s name. Note that, in some cases, the parent wavelet may also be normalized so 

that 1tg =)( . 

Parent wavelets satisfying these conditions may be subdivided into two classes: 

real and analytic (or progressive), as discussed by Mallat (1998); however, only the 

former class are presented herein, as they are the focus of the wavelet analyses in this 

work. In general, an analytic signal is defined as a function that does not have energy 

content at negative frequencies, i.e. has Fourier coefficients of zero at these frequencies. 

Though complex in nature, analytic wavelets can be entirely characterized by their real 

component. By definition, the lower limits of integration with respect to frequency and 

scale in Equations 3.13 and 3.14 can be set to zero for this class of parent wavelets. The 

suppression of negative frequencies also introduces a factor of two to these integral 

relations, as shown in Mallat (1998). 

3.5 Wavelet Resolutions: The Heisenberg Box 

The scalogram in Equation 3.12 represents the level of energy within a box in the time-

frequency domain, called a Heisenberg box. This box is centered at time t and frequency f 

and has dimensions that are scaled versions of the time (∆tg) and frequency (∆fg) 

resolutions of the parent wavelet 

  gtat ∆=∆        and        aff g /∆=∆ . (3.18 a, b) 

The box dimensions are then given by 
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giving the box a span of 2∆t in the time domain and 2∆f in the frequency domain. Note 

that the area of this box remains constant, 4∆t∆f, though the resolutions are a function of 

scale. Thus, the Wavelet Transform gives local information about the function x(t) over 

the time interval [ ]gg tattat ∆+∆− ,  and over the frequency interval 
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ffa

ff gg , .  

These basic relations demonstrate that the Heisenberg box of the wavelet shrinks 

in the frequency domain at low frequencies (large scales) and shrinks in the time domain 

at high frequencies (small scales). As shown in Figure 3.6, this makes the transform 

better suited to capture the details of signal content at those frequencies. Though a host of 

time-frequency transformations are available, only the Wavelet Transform is uniquely 

capable of adaptively adjusting to the Heisenberg Uncertainty Principle. In essence, the 

Wavelet Transform concedes that arbitrarily good resolution in both time and frequency 

is not possible. Thus the transform optimizes its resolutions as needed. It provides good 

resolution at high dilations or low frequencies, ideal for Civil Engineering applications, 

while sacrificing its time resolution in this regime to satisfy the Uncertainty Principle. In 

the time domain, the transform has good resolution at high frequencies in order to 

identify signal singularities or discontinuities, a feature often exploited in health 

monitoring applications, e.g. Corbin et al. (2000). 
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Physically, the measure provided in Equation 3.18a,b indicates that two pulses in 

time cannot be identified unless they are more than ∆t apart. Similarly, two distinct 

frequency components cannot be discerned unless they are  more than ∆f apart.  

3.6 Discretization and Orthogonality 

Frame theory establishes the completeness, stability and redundancy of linear discrete 

signal representations, providing conditions for discretizing windowed Fourier 

Transforms and Wavelet Transforms to retain a complete and stable, though potentially 

redundant, representation (Carmona et al., 1998; Mallat, 1998). A complete 

representation can be obtained only if the Heisenberg boxes of the transform fully cover 

2∆fg/a2 

t 

f2 

f 

2∆tga2 

2∆fg/a1 

2∆tga1 

f1 

t1 t2

FIGURE 3.6. Concept of Heisenberg box for Wavelet 
Transforms  
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the time-frequency plane.  Thus the sampling of the time-frequency space is based on the 

time-frequency spread of the window w(t) in windowed Fourier Transforms or of the 

parent wavelet g(t) in Wavelet Transforms. As long as the entire time-frequency plane is 

covered by the Heisenberg boxes tied to each time and frequency/scale, the 

representation is complete, though it still may be redundant and unstable in 

reconstruction. 

In moving toward a stable representation, the scales are often sampled along an 

exponential sequence due to inverse relationship with frequency, according to the 

bandwidth of the parent wavelet, while the time translations are sampled uniformly at 

intervals proportional to the discretized scales. However, conditions introduced in Mallat 

(1998) provide for a complete and stable translation-invariant representation, a capability 

crucial in pattern recognition by discretizing only the frequency (scale). These common 

dyadic Wavelet Transforms sample at v intermediate scales, or voices, over each octave 

[ ]1jj 22 +,  and leave the time variable untouched. This leads to a dyadic scale sequence 

{ } 0j
ja <  for v

1

2a = . The dyadic discrete Wavelet Transform (DWT) is then defined for a 

signal x[n] of length N as 
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This expression of the discrete Wavelet Transform enables calculation by fast filter bank 

algorithms. More importantly, when satisfying specific conditions of tight frames, entire 

classes of orthogonal wavelets can be developed, as discussed in Carmona et al. (1998) 



 89

and Mallat (1998). Common orthogonal wavelets include Haar, Meyer and Daubechies 

class. While beyond the scope of this work, these wavelets are tailored for image/signal 

compression and reconstruction, though their time translation variance limits their usage 

for pattern recognition (Wang, 2001), in which case the same transient information at a 

different time may manifest different patterns in the time-frequency domain (Zheng et al., 

2002), motivating the use of the above mentioned dyadic transform. The use of the DWT 

is furthermore not feasible for many of these investigations due to the limitations in 

frequency and time resolution due to the sparse sampling of time-frequency space to 

create tight frames. For this reason, Continuous Wavelet Transforms are advocated in this 

work and the proper conditions for their discretization are provided in Chapter 4. 

3.7 Wavelet-Transforms and Analytic Signals 

Although the notions of TFDs have been utilized in signal processing for decades to 

examine the variations in signal frequency with time, their extension to the identification 

of the dynamic properties of mechanical and civil structures has evolved only recently. 

The foundations for these analyses are deeply rooted in analytic signal theory and the 

properties of phase and amplitude in complex signals, which are briefly overviewed 

herein. 

3.7.1 Instantaneous Frequency 

A real signal x(t) may be represented as an amplitude A(t) modulated with a time-varying 

phase φ(t) 
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 )(cos)()( ttAtx φ= . (3.21) 

The instantaneous frequency (IF) is defined as the positive derivative of the phase 

 )()( t
dt
d

2
1tIF φ
π

= . (3.22) 

While the notion of frequency at an instant may seem paradoxical, the simplest way to 

conceptualize the notion of an “instantaneous” frequency is as the frequency of a sine 

wave that locally fits the signal under consideration.  

There are indefinitely many amplitude/phase pairs that can represent the signal in 

the form of Equation 3.21. For example, the signal could be represented as a frequency-

modulated signal with constant amplitude or an amplitude-modulated signal with 

constant frequency. Amongst these pairs, there is one amplitude and phase pair that has 

many desirable properties. This pair is determined by defining an analytic signal, z(t), 

through a linear filtering operation that suppresses all negative frequencies. It was 

proposed by Gabor (1946) to generate this complex analytic signal using a filter that 

simply shifts the phases all frequency components by –π/2 

 )]([)()( txiHtxtz += . (3.23) 

The operator [ ]⋅H  denotes the Hilbert Transform, defined mathematically as 
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The operation denoted in Equation 3.24 is merely the convolution of x(t) with 1/t, or it 

can be thought of as a phase shift of the signal by 90o. As a result, x(t) and H[x(t)] are 

said to be in quadrature. This complex signal can then be completely characterized by  
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with nonnegative amplitude Az and phase φz with values in the interval [0,2π), forming 

the so-called canonical pair. 

Since [ ] )()(Re txtz =  

 )(cos)()( ttAtx zz φ=  (3.26) 

yielding the canonical representation of x(t). Based on this representation, Ville (1948) 

proposed to calculate the instantaneous frequency of the signal x(t) using the analytic 

signal z(t) 
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Note that the work in this field by Ville (1948) then led to his definition of an 

instantaneous spectrum describing the spread of frequencies about this mean frequency, 

known as the Wigner-Ville Distribution (WVD). However, for real signals, WVD 

produces “ghost terms” as a consequence of the interference between positive and 

negative frequencies (Carmona et al., 1998). It has also been observed that the WVD can 

even exhibit negative bandwidth spectra (Jones & Boashash, 1990). Such lack of physical 

significance to measures derived from the WVD led to some concerns for its practical 

application. The measure in Equation 3.25 has physical significance only when φz(t) and 

Az(t) meet some basic conditions associated with asymptotic signals, discussed in the 

following section. 
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3.7.2 Theory of Asymptotic Signals 

The class of asymptotic signals can be represented by the amplitude and phase of their 

analytic counterparts. To identify if such a representation can be made, the following 

condition is stated in Carmona et al. (1998) 

 ⎟
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3)()()( λλφ OetAtz ti     as   ∞→λ  (3.28) 

where λ is a positive number. This statement infers that the analytic signal approximation 

becomes increasingly valid as the phase variations increase relative to the amplitude 

variations. This characteristic distinguishes asymptotic signals and permits the analytic 

signal approximation 

 )()()( tietAtz λφ≈ . (3.29) 
 

In practical applications, the term λ is not known; however, Equation 3.28 nevertheless 

places a very loose condition that the oscillations coming from the phase term should be 

much faster than those coming from the amplitude term. This criterion may be best 

imagined by viewing the amplitude and phase components of the signal in the Fourier 

domain. The Fourier spectra of the amplitude (SA(f)) and phase (Sφ(f)) must be well 

separated to satisfy this condition, as shown schematically in Figure 3.7.  

Satisfaction of the asymptotic signal assumption has special benefits for analytic 

Wavelet Transforms. As proven in Carmona et al. (1998), for the class of asymptotic 

signals, the analytic Wavelet Transform coefficients at the stationary points are directly 

proportional to the analytic signal z(t) plus an error term again on the order of λ-3/2. The 
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stationary points are time-scale ordinates at which the frequency of the scaled wavelet 

coincides with the local frequency of the signal. These findings indicate that as a signal 

more strictly meets the asymptotic signal assumption, as λ → ∞, i.e. as the oscillations of 

the phase term increase relative to the amplitude term, the better the wavelet coefficients 

in the vicinity of the stationary points approximate the analytic signal. This finding then 

allows analytic wavelet coefficients at these stationary points to be used directly to 

estimate the analytic signal in Equation 3.25 instead of the Hilbert Transform as in 

Equation 3.23. The merits of this development will be highlighted in a later section.  

3.7.3 Theory of Wavelet Ridges 

In cases for which these asymptotic signal assumptions are met, the Wavelet Transform 

coefficients have some attractive characteristics in the vicinity of the aforementioned 

stationary points. At these locations, the frequency of the scaled wavelet coincides with 

the local frequency of the signal at that time. This similitude yields very large wavelet 

SA(f) Sφ(f)Sφ(f)

phase of 
asymptotic 

signal 

phase of 
non-

asymptotic 
signal 

FIGURE 3.7. Schematic representation of asymptotic 
signal conditions 
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coefficients at the scales associated with these frequencies, reflecting the property of 

analytic wavelets to “concentrate” at the dominant frequencies within an asymptotic 

signal. This pronounced localization is the hallmark of asymptotic signals in the time-

frequency domain. The scales at which these concentrations occur forms a ridge in the 

time-frequency plane described mathematically by 
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where )(tφ′  is the derivative of the phase and ωo (or fo) is the central frequency of the 

parent wavelet, i.e. the frequency at which the Fourier Transform of the parent wavelet 

focuses. This relationship indicates that once the scales associated with ridges are 

identified, they can be used to define the analytic signal directly since 

 )()),(( tzttaW r ∝  (3.31) 

and extract the instantaneous frequency of the signal, provided that there are no 

significant noise components corrupting the signal (Carmona et al., 1998). Wavelet 

coefficients along these ridges form the wavelet skeleton. The precise methodologies for 

the extraction of wavelet ridges will be overviewed in Chapter 4. 

3.7.4 Asymptotic Signals and Mechanical Oscillators 

In the simplest structural identification problem of free vibration or impulse response, the 

system has a distinguishable enveloped sinusoidal behavior given by 
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where Ao is the initial displacement condition and θ is a phase shift. The analytic signal is 

then 

 tit
o

DneAtz ωξω +−=)( . (3.33) 
The amplitude function is given by 
 t

o
neAtztA ξω−== )()(  (3.34) 

with  phase described by 
 ttzt Dωφ =∠= )()( . (3.35) 

Thus the damped natural frequency can be determined from the derivative of the phase, 

equivalently viewed as the instantaneous frequency in Equation 3.27. Assuming a lightly 

damped system, where nD ωω ≈ , the damping can be determined from Equation 3.34. 

The above relations are of course contingent upon the asymptotic signal assumption 

being met, with the phase variations occurring more rapidly than those of the amplitude. 

Later in Chapter 7, a specific example demonstrates the implications of violating this 

condition for mechanical oscillators. If the frequency and damping terms in the above 

relations are time-varying, the identification of instantaneous frequency and damping 

values for a nonlinear system can similarly be accomplished using Equations 3.34 and 

3.35. Feldman (1994a,b) advocated this more traditional approach using Hilbert 

Transforms to generate the analytic signal in Equation 3.33. However, this transform has 

inherent limitations, explored in the following section. 

3.7.5 Alternative Methods to Generate Analytic Signals for Multi-Component Data 

Despite its wide usage, the Hilbert Transform is especially sensitive to the asymptotic 

signal restrictions. The extent to which this condition is satisfied dictates whether the 
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transform truly yields the quadrature component. Breakdowns were demonstrated in the 

free vibration of mechanical oscillators with low natural frequencies as damping was 

increased (Ruzzene et al., 1997). To circumvent this, other transforms were proposed that 

would directly yield a complex representation without the approximation in Equation 

3.23. Transforms such as the Wigner-Ville Distribution (Feldman & Braun, 1995) were 

employed; however they were limited by the restriction of monocomponent signals, much 

like the Hilbert Transform. 

There is considerable debate surrounding how to quantify the conditions under 

which the Hilbert Transform can be used to obtain the analytic signal in Equation 3.25 

and allow Equation 3.27 to yield a physically meaningful instantaneous frequency. The 

leakage of signal energy into negative frequencies of the Fourier spectrum constitutes one 

condition under which the Hilbert Transform will not yield the quadrature component 

(Boashash, 1992a), as analytic signals suppress negative frequencies; however, a more 

concerning issue surrounds its inability to handle signals with multiple frequency 

components. To demonstrate, consider a signal with several distinct harmonic 

components, e.g. a summation of several sine waves of varying frequency. Despite the 

presence of several distinct frequencies, the direct application of the Hilbert Transform to 

extract the instantaneous frequency in the aforementioned strategy will yield a single 

estimate of instantaneous frequency at each instant of time that is an average or 

composite of all the individual frequency components present. This inability to directly 

distinguish multiple components leads to this "monocomponent" restriction, necessitating 

that there be only a single frequency component present in the signal at each time. 
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Therefore, prior to the application of the Hilbert Transform, "multi-component" signals 

must undergo some type of bandpass filtering operation.  

Understandably, this “monocomponent” or “multi-component” terminology arises 

from a Fourier perspective, appealing to those familiar with modal structural analysis 

backgrounds. Unfortunately, there is no clear criteria to determine if a given signal is 

truly multi-component or monocomponent, despite efforts by Boashash (1992a) defining 

multi-component signals as those that may be comprised by a weighted sum of 

monocomponent signals. Cohen & Lee (1989) used this same premise to propose similar 

methods to identify multi-component signals. However, the lack of a precise means to 

distinguish multi-component signals led to the adoption of a "narrowband" condition 

(Schwartz et al., 1966). Even with this definition, the manner in which narrowbandedness 

is determined is subjective, leaving the possibility that signals meeting a specified 

narrowband condition may still contain multiple frequency components at a given instant 

in time, as the example in Section 7.5.5 will later demonstrate. Thus, while the debate 

over correctness of terminology still ensues, the signal processing community in general 

concurs that the more closely a signal approaches a strictly narrowband condition, the 

better the Hilbert Transform approximates the quadrature signal and thereby the 

instantaneous frequency (Boashash, 1992a). For the purposes of this work, the 

terminology of monocomponent and multi-component signals will be retained to 

respectively describe signals that have one or multiple distinct frequencies at each instant 

in time.  
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The bandpassing process required for multi-component signals can be difficult for 

closely spaced modes and must be addressed when using the Hilbert Transform (Lee & 

Park, 1994) or the Wigner-Ville Distribution (Feldman & Braun, 1995). A viable multi-

component decoupling approach, Empirical Mode Decomposition, used in conjunction 

with the Hilbert Transform, was proposed by Huang et al. (1998) and will be discussed in 

further detail in Chapter 7. The use of this approach has permitted system identification 

of large structures using the Hilbert Transform analytic signal approach (Yang et al., 

2000). However, the Wavelet Transform provides an alternative analysis framework that 

directly produces a complex analytical signal and separates multiple components, 

circumventing the need for bandpass filtering. Recognizing the ability of wavelet 

transforms to decouple multi-component signals, a number of researchers began applying 

this technique in various forms for analysis of impulse (Huang et al,. 1994; Robertson et 

al., 1998a,b) and free vibration response (Hans et al., 2000; Lamarque et al., 2000; 

Ruzzene et al., 1997; Staszewski, 1997). The three latter studies drew upon the unique 

characteristics of Morlet wavelets and the relationships adapted Equations 3.34 and 3.35 

for wavelet system identification in linear and nonlinear systems, with wavelet amplitude 

and phase being proportional to their counterparts in the analytic signal along wavelet 

ridges.   

3.8 Benefits of the Wavelet Transform for Civil Engineering Applications 

This chapter chronicled the evolution of time-frequency analysis and overviewed the 

mathematical theory governing Wavelet Transforms and their relationship to asymptotic 

signals. The wavelet’s ability to uncover local and transient features, while implicitly 
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decoupling multiple frequency components, makes it a system identification and analysis 

tool well suited to a variety of problems in Civil Engineering, including the study of 

earthquake, wind and wave-induced response (Gurley & Kareem, 1999). For example, in 

the case of earthquakes, the onset of damage can be identified in time by the lengthening 

of the structural period, or shortening of natural frequency in the wavelet map, and 

related to the characteristics of the ground motion at that instant. Clearly such insights 

could not be gained through traditional Fourier techniques, as subsequent chapters will 

demonstrate in the analysis of a variety of simulated and measured signals. However, 

before such analyses can be conducted, a number of processing issues must be addressed 

to insure the proper application of the transform and meaningful interpretation of results. 

The wavelet analysis framework in Chapter 4 addresses these issues. 
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CHAPTER 4 

FRAMEWORK FOR WAVELET-BASED ANALYSIS 

 

4.1 Necessity for Unified Analysis Framework 

The use of wavelet-based analysis in a variety of fields previously focused largely on 

qualitative measures of time-varying frequency content, during which signal processing 

concerns were not previously raised. However, the adaptation of the transform to more 

quantitative analyses, including system identification, necessitates that these processing 

concerns be explored and remedied. Just as years of Fourier Transform applications have 

uncovered issues associated with leakage, aliasing and frequency resolution, investigation 

into such phenomenon for wavelet-based analysis is lacking. One component of this 

research effort was to develop a complete framework for wavelet analysis to address 

these concerns and insure the most accurate wavelet coefficients possible. This chapter 

first presents the parent wavelet that is used throughout this research and then introduces 

each of the processing considerations associated with this wavelet and, based upon the 

properties of this parent wavelet, provides some appropriate remedies. This framework 

provides the backdrop for this research, creating a single framework in which this class of 

wavelet can be extended to Civil Engineering applications. 
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4.2 Morlet Wavelets 

The great flexibility in the transform leads to a variety of parent wavelets, each providing 

a different scalogram representation for a given signal. This dependence on the choice of 

parent wavelet has been criticized by some, e.g., Huang et al. (1998). However, others 

counter that the parent wavelet should be selected based upon shape and form of the 

signal in question or a particular feature to be extracted, making this flexibility an asset. 

Wang (2001) demonstrates the significance of selecting parent wavelets that resemble 

assorted transients in mechanical systems and using this ability to zoom in on a specific 

signal feature. While there is a wide array of mother wavelets available for analysis, a 

particular class of wavelet is best suited for the purposes of this study. The Morlet 

wavelet, an approximately analytic wavelet, is merely the frequency modulation of a real 

and symmetric window function — the Gaussian window. The Morlet Wavelet 

(Grossman and Morlet, 1984) can be viewed as a Gaussian-windowed Fourier Transform  

 ))2sin()2(cos()( 2/22/ 22

tfjtfeeetg oo
ttfjt o πππ +== −− . (4.1) 

whose sine and cosine basis functions oscillate at the central frequency fo. For this reason, 

this wavelet is sometimes called the Gabor wavelet. Dilations of this temporally localized 

parent wavelet then allow the “effective frequency” of this sine-cosine pair to change in 

order to match harmonic components within the signal. Its basic analogs to the Fourier 

Transform, shown in Figure 4.1, make it well suited to for harmonic analysis in the time-

frequency domain. This wavelet approximately satisfies the conditions placed on parent 

wavelets in Section 3.4.2 for sufficiently large values of fo., e.g. greater than 5/(2π) or 0.8 

(Carmona et al., 1998).  
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The Morlet wavelet is equivalently localized in the frequency domain, as 

evidenced by the Fourier Transform of the dilated Morlet wavelet  

 
2

o
2 faf2e2afG )()( −−= ππ . (4.2) 

In the case of the Morlet Wavelet, there is a unique relationship between the dilation 

parameter of the transform, the scale a, and the Fourier frequency f at which the wavelet 

is focused. This relationship is evident by maximizing Equation 4.2 to yield: 

 f
fa o= . (4.3)  

The direct relationship to Fourier frequency and analogs to the Fourier Transform itself 

makes the Morlet wavelet analysis quite natural for interpretation by engineers already 

versed in Fourier analysis. Note that the relation between Fourier frequency and scale can 

be approximately estimated for some other parent wavelets, as discussed in Meyers et al. 

(1993), though few can deliver as direct a relation as that shown in Equation 4.3. 
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4.2.1 Frequency Resolutions: Tuning the Central Frequency  

While the relationship for wavelet frequency resolution in Equation 3.18b may seem 

straightforward, for the Morlet wavelet the issue of resolution is complicated by the fact 

that it is a Gaussian-windowed Fourier Transform. Unfortunately, this window lacks 

measurable duration. An “effective duration” can be defined by drawing on the common 

use of the Gaussian window in both the Short-Time Fourier Transform and the Morlet 

wavelet. Thus the mean-square definition for frequency duration given by Equation 3.6 

can similarly be used to yield (Chui, 1992) 
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Combining this with Equations 3.18b and 4.3, the resolution of the Morlet wavelet at a 

given frequency fi is given by  
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This not only dictates that the frequency resolution will improve for longer period 

signals, but also implies that the resolution capabilities can be appropriately adjusted for 

the analysis through careful selection of the central frequency of the Morlet wavelet, a 

fact emphasized throughout this research and by Wooh & Veroy (2001). As pointed out 

by Cohen (1999), this is a delicate matter that can lead to significant distortion of the 

signal if the trade offs between time and frequency resolution are not properly balanced. 

Intuitively, as this central frequency increases, the frequency resolution is enhanced as 

more cycles are condensed within the localized window, as shown in Figure 4.2. The 

analyses throughout this study exploit this flexibility to “tune” the wavelet analysis to 
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extract the desired characteristics of the signal under consideration, conducting analyses 

in tiers to progressively refine the frequency resolution. In Chapters 5 and 7, examples 

demonstrate the notions of primary and secondary wavelet analyses with increasing 

central frequency. The central frequency can also be varied over an entire suite of values 

by treating fo as a third variable in the Wavelet Transform, in essence creating a four-

dimensional view of wavelet coefficients varying with time, scale and central frequency, 

as proposed in Wang (2001); however, such a rigorous analysis is not required if the 

required value of the parameter can be determined a priori using a simple inspection of 

the time series.  

FIGURE 4.2. Real and imaginary components of Morlet wavelet for 
various central frequencies 
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In particular, this research has explored the issue of closely spaced frequency 

components and the importance of central frequency tuning, as shown later in Section 

7.5.5, making the following observations. To achieve complete separation, it should be 

first noted that the bandwidth (or width of the Heisenberg box) associated with a given 

frequency in a Wavelet Transform is 2∆fi. However, by basing the bandwidth measure on 

Gabor’s mean square estimate for the Gaussian window (see Equation 4.4), only about 

68% of the frequency window is accounted for. This measure essentially defines one 

standard deviation (σ) of the window mean, yielding a frequency window with a total 

bandwidth 2∆f or 2σ, as shown in Figure 4.3. However, the duration of this frequency 

window is misleadingly narrow, assuming a better frequency resolution than is truly 

present. To more strictly define the bandwidth, one should note that roughly 95% of the 

window lies within 2 standard deviations of the mean, as also noted in Figure 4.3, for 

which the effective bandwidth is 4∆f or 4σ. An even stricter condition would extend the 

definition to 3 standard deviations, also shown in Figure 4.3, encompassing 99% of the 

window. These considerations become important when confronted with the need to 

separate closely spaced modes, as demonstrated in the analyses in Chapter 8.  

Therefore, Equation 4.5 may be generalized, given the need to separate two 

closely spaced frequency components f1 and f2, where the minimum central frequency for 

an analysis can be determined by 
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f1,2 can be taken as either f1 or f2 or an average of the two, as the choice has little impact 

for small values of ∆f1,2, the separation between the two frequency components. α is the 

parameter defining how much overlap between the Gaussian analysis windows at 

adjacent frequencies is permitted. As shown in Figure 4.4, using the traditional mean 

square definition for the bandwidth of the Gaussian window amounts to α = 1. As 

determined by Equation 4.6, the wavelet analysis windows centered at the two 

frequencies will overlap significantly. However, increasing α to 2 and applying Equation 

4.6, a larger central frequency is adopted, yielding analysis windows that are narrower, 

and though centered at the same two frequencies, now has reduced overlap. Note that α 

can be increased to 3, insuring complete modal separation. As will be shown later in 
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Chapter 8, retaining α = 2 is typically sufficient to insure adequate modal separation for 

system identification in most linear systems, though total modal separation via α = 3 may 

be necessary for closely spaced modes when nonlinear system identification is 

performed.  

4.2.2 Temporal Resolution: A Physical Understanding of End Effects 

Similarly, the temporal resolution of the Morlet wavelet is dictated by the Gaussian 

window, defined using the aforementioned mean square definition (Chui, 1992) 

   f1   f2

  ∆f1    ∆f2 

   ∆f2   ∆f1

 ∆f1,2 

α=2 

α=1 

FIGURE 4.4. Schematic demonstration the implication of 
parameter selection for modal separation 
 
 
 



 108

 
2

1tg =∆  . (4.7) 

As mentioned in the discussion of the STFT in Chapter 3, the uncertainty principle 

dictates that the minimum value of the time and frequency resolution product is 1/4π, 

giving the Morlet wavelet the best possible time and frequency resolutions. 

The temporal resolutions of a wavelet analysis have direct bearing on the 

significance of end effects in Wavelet-Transformed data, which have been noted in a 

number of applications, e.g. Staszewski (1998). The presence of end effects in wavelet 

analyses was previously credited to many familiar numerical by-products of Fourier 

Transforms, as they are used to calculate Wavelet Transforms according to Equation 3.9. 

As the Fourier Transform assumes periodicity of the time series, Torrence & Compo 

(1998) proposed the familiar tactic of zero padding the beginning and end of the time 

series, lengthening the time series to the nearest power of two to speed calculations by 

FFT. However, the discontinuity potentially created at the signal ends by the sudden 

transition to zero values in padded regions manifests itself as a smearing of energy in the 

wavelet time-frequency plane. While Torrence & Compo (1998) quantify the cone of 

influence to define the region where end effects are prevalent, they proposed no formal 

solution. An alternative remedy is to create a smoother transition to zero end values, time 

series tapering using windowing functions has also been proposed (Meyers et al., 1993), 

though the modification of signal energy as a result of the windowing function is 

unattractive. However, the Gaussian window on the Fourier basis of the Morlet Wavelet 

Transform already eliminates the more classical problem that discontinuities and a lack of 
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periodicity present for Fourier-based numerical implementations, implying that the 

persistent end effects in Morlet Wavelet-Transformed data have another source.  

Though the cone of influence allows the quantification of end effects regions, it 

offers no remedy, leading to the corruption of considerable amounts of wavelet 

coefficients. This issue is addressed in this work through the following developments and 

the introduction of a reflective padding scheme. To revisit this issue, examine the 

convolution operation in Equation 3.8 and the parent wavelet in Equation 4.1. It is 

evident that, although the wavelet is focused at a given time and represents the temporal 

content in this vicinity, the window extends into both the past and future (see Figure 4.3), 

by an extent dependent on the scale being analyzed. The scaled time resolution of the 

wavelet is given by 
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As illustrated by Figure 4.5, the temporal window is elongated at the lower 

frequency, f1. As the analysis time tj lies within ∆t1 of the ends of the signal, the analysis 

window extends into a region with no available data, yielding wavelet coefficients based 

on an “incomplete” signal. Intuitively, it is reasonable to then question the accuracy of 

wavelet-transformed data within ∆ti of the beginning and end of the signal. 

Once again, this resolution in Equation 4.8 is based on the classical mean square 

definition in Equation 3.5, approximating the effective temporal duration as a single 

standard deviation of the Gaussian window. Examining Figure 4.6, in light of the 

previous discussion with respect to frequency resolution, it is evident that the expression  
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in Equation 4.8 accounts only for 68% of the total window area. A more stringent 

condition may be obtained by defining the effective temporal resolution of the Morlet 

wavelet as 2σ or 2∆ti, in order to account for about 95% of the Gaussian window. 

Defining a 3∆ti as the temporal resolution can impose an even more stringent condition.  

Dependent on the desired level of accuracy, either of these conditions can be 

imposed to quantify the regions potentially at risk to end effects. The general expression 

 iji tTtt ∆−≤≤∆ ββ , (4.9) 

where β can be set to any positive, nonzero value, provides a practical limit on the 

translations t that can be considered in a wavelet analysis of a signal of length T. Thus, 

only wavelet coefficients satisfying Equation 4.9 can be reliably analyzed. Equation 4.8 

dictates that meaningful analyses at low frequencies require larger amounts of data, so 

that several cycles of the low frequency phenomena can be retained.  

4.2.2.1 End Effects: Influence of End Effects on Spectral Amplitude 

For a simple illustration of the implications of end effects on spectral amplitude, consider 

a sine wave with frequency fn (taken as 1 Hz). In theory, the Morlet Wavelet Transform 

of this signal yields a scalogram that is constant with time 

 
22 )(432 2),( on fafaetaW −−= ππ . (4.10) 

The values of the wavelet scalogram, at a given time, can be plotted to yield an 

instantaneous power spectrum. Equation 4.10 equivalently provides this for the simple 

sinusoidal signal. 
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Performing the Morlet Wavelet Transform (fo = 2 Hz) on the sinusoid yields a 

time-varying scalogram, in contrast to the anticipated result. The evolution of the 

scalogram with time can be examined by plotting the scalogram values along the wavelet 

ridge. This result, shown in Figure 4.7, displays a rounding of what should be a constant 

scalogram coefficient. The degree of deviation from the theoretical result, shown as the 

dotted line, becomes less marked in the interior of the signal. The vertical bars denote the 

end effects regions defined in Equation 4.9 for various values of β and indicate that the 

calculated Wavelet Transform will more accurately approach the theoretical result for       

β > 2. 

Figure 4.8 further illustrates the ramifications of analyzing instantaneous power 

spectra taken from end effects regions. The calculated instantaneous spectra at each time 

are plotted one atop the other in gray, essentially collapsing the scalogram in time. 

According to Equation 4.10, there should be no variation among them. However, by  

3∆
t i 

5∆
t i 

2∆
t i 

4∆
t i 

3∆
t i 

4∆
t i 

2∆
t i 

5∆
t i 

|W
(a

,t)
|2  

t [s] 

FIGURE 4.7. Scalogram of sine wave along ridge. Dotted line denotes theory 
and solid line is calculated result. Vertical bars demarcate end effects regions, 
β∆ti, for β=1-5 
 



 113

 

f [Hz] f [Hz] 

f [Hz] f [Hz] 

|W
(a

,t)
|2  

|W
(a

,t)
|2  

|W
(a

,t)
|2  

|W
(a

,t)
|2  

β=2 β=1 

β=3 β=4 

f [Hz] 

|W
(a

,t)
|2  

β=0 

FIGURE 4.8. Deviations of simulated instantaneous spectra (gray) from 
theoretical result (black) as end-effects regions are progressively neglected 



 114

including the spectra from end effects regions (β = 0), there is considerable variance in 

the plot, as the spectra show notable deviations from Equation 4.10 shown in black. Note 

that the deviations are more marked on the high frequency side of the spectrum, a result 

of the lessened frequency resolution at lower scales. Through a more stringent condition, 

increasing β in Equation 4.9, the neglected regions lengthen, the variance among the 

spectra is reduced, and the deviations from the theoretical expression are minimized. 

Note that even the commonly used definition of wavelet temporal duration (β = 1) is an 

insufficient measure of the end effects region producing these deviant spectra. 

Unfortunately, the use of larger β values reduces the amount of useable transformed data. 

Thus, while β = 4 produces a sufficiently accurate means to quantify end effects regions 

and separate deviant spectra, β = 3 is shown in Chapter 8 to be sufficient for most 

analyses in terms of capturing accurately the spectral amplitude. 

4.2.2.2 End Effects: Influence on Spectral Bandwidth Estimation 

As a consequence of the windowing applied by the Gaussian function in the Morlet 

wavelet, the bandwidth of the resulting wavelet instantaneous spectra are larger than their 

Fourier equivalent. This gives the appearance of a larger value of effective damping in 

the signal, the extent of which depends on the scale analyzed. Consider the Morlet 

wavelet expression in the Fourier domain, given by Equation 4.2. The half-power 

bandwidth introduced in Chapter 2 can be used to provide a simple measure of the 

bandwidth of wavelet spectra. The HPBW is defined in this case as the two frequencies 

that coincide to half the amplitude of the wavelet’s instantaneous spectral peak, shown as 

f1 and f2 in Figure 4.9.  
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The HPBW is defined the difference between these two frequencies  

 12 ffBWT −= . (4.11) 

The two frequencies corresponding to the half-power level of the Morlet spectra are 

given by 
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yielding a half-power bandwidth of 
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This is the half-power bandwidth of the Morlet wavelet. For a simple sine wave, the 

Morlet Wavelet Transform will localize at the frequency of the sine wave, though the 

bandwidth of the wavelet spectrum will be completely dictated by the parent wavelet, as 
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a sine in theory has no bandwidth.  Recalling that the resolutions of the Wavelet 

Transform are merely scaled versions of the parent wavelet, this half-power bandwidth 

measure in Equation 4.13 can be similarly scaled by dividing by a. Note that in the 

definition of the half-power bandwidth, the spectra is assumed symmetrical. Due to the 

multi-resolution nature of wavelets, wavelet spectra broaden toward the higher 

frequencies, but for a narrowbanded spectrum, the assumption of symmetry can be 

retained. Therefore, the scale at which this half-power bandwidth is evaluated should be 

the scale defining the ridge of the transform, at which the signal energy is focused. 

Understandably, this scale corresponds to the instantaneous frequency of the system, or in 

this case, the frequency of a simple sine wave, fn. Thus the half-power bandwidth of a 

wavelet-transformed sine wave is given by 
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As discussed in the previous example, deviations in terms of amplitude of the 

instantaneous spectra were sufficiently mitigated by neglecting those spectra which were 

generated in the end effects regions, defined by assuming β = 4. As shown in Figure 4.7, 

the characteristic rounded amplitude deviations of end effects regions seem to diminish 

after 4∆t. However, the influence of end effects on more sensitive spectral measures such 

as the half-power bandwidth is not completely remedied by neglecting this end region. 

The implications of not neglecting spectra drawn from end effects regions is shown in the 

first image in Figure 4.10, revisiting the same signal from Section 4.2.2.1 for a more 

refined wavelet analysis with fo=5 Hz. The calculated half-power bandwidth deviates 

significantly at the ends of the signal from the theoretical result shown by the dashed line. 
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Using the criteria of β = 4 to neglect regions defined by Equation 4.9 improves the result, 

though the deviations from theory are still quite evident in the tails. By selecting more 

stringent conditions on β, the deviations from theory are minimized and the bandwidth 

estimated in the simulation takes on a constant value. For β = 6, the deviation between 

theory (BWT = 0.053) and simulation (BWT = 0.053) are essentially identical. Though the 

deviations in Figure 4.10 are easily explained by the end effects phenomenon, simply 

neglecting these regions in analysis yields to a considerable loss of data, especially in the 

case of bandwidth estimation, where for β = 6, only one-third of the transformed signal is 

deemed reliable. 

β=0 

β=5 

β=4 

β=6 

FIGURE 4.10. Improvements made in half-power bandwidth estimates by 
successively neglecting larger end effects regions. Theoretical prediction 
(dashed) and calculated result 
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4.2.2.3 End Effects: Melioration via Reflective Padding 

The loss of considerable regions of a signal is the unfortunate consequence of end effects. 

Particularly for more sensitive measures like bandwidth, the loss of useable transformed 

signal can be quite significant: approximately 10 times the effective duration of the 

lowest frequency component of interest. Meyers et al. (1993) noted the presence of these 

effects and compiled a number of strategies for their minimization. However, in these 

discussions, the authors largely attributed the problem to one associated with the use of 

Fourier transforms in calculating the wavelet transform. As a result, the authors presented 

strategies directly from Fourier processing annals. The first remedy, the introduction of a 

cosine window to preprocess the time history, essentially led to a loss of meaningful data. 

The authors then proposed detrending the data and removing the mean to enhance 

performance of the Fourier transform and found the technique to have no benefit in 

mitigating wavelet end effects. Though these are common methods for Fourier 

processing, they did not provide great utility for wavelets since they did not address the 

aforementioned root cause: the wavelet’s assimilation of past, present and future 

information in each analysis window. However, their final remedy to pad the data with a 

short tail gradually approaching zero did focus inadvertently on this root cause. Though 

never motivated in their work as such, the padding of the beginning and end of the signal 

with surrogate values to place the true signal of interest at the center of the transformed 

vector has promise. In so doing, the “dummy” values at the tails were allowed to be 

corrupted by the end effects phenomenon, preserving the true data in question. Meyers et 

al. (1993) chose this technique to force periodicity upon nonperiodic data, again 

reflecting the authors’ theory that Fourier transforms were ultimately to blame. Though 
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this was a positive first step, the rather arbitrary tails of empirically defined length did not 

preserve signal characteristics at the ends, nor provided recommendations on the length 

of tails required to mitigate end effects corruption. In a later study, Torrence & Compo 

(1998) attempted a similar elongation of a signal at its ends using zero padding; however, 

it should be reiterated that the wavelet considers both past and present information at 

each time step, so the addition of zero values still provides wavelet coefficients at the 

ends that are derived in part from a “zero-value” signal. Though the greatest contribution 

to a wavelet coefficient at that point in time comes from the signal immediately 

surrounding that point, data displaced further in time are also considered to an extent. 

Therefore the signal cannot be padded with zero values or arbitrary non-zero values as 

suggested by Meyers et al. (1993), as analysis of the true signal near the beginning and 

end of the original signal will certainly dip into these padded regions. Thus, the regions 

should locally preserve the frequency and bandwidth characteristics of the signal. 

This local preservation can be achieved by merely reflecting the signal about its 

beginning and end, appropriately based on the odd or even character of the signal. If 

continuity of the signal is not preserved in the transition to the padded region, the wavelet 

will rightfully detect a discontinuity. Thus improper padding can equally introduce 

further errors to Wavelet Transforms. To illustrate, consider a simple sine and cosine pair 

shown Figure 4.11. To preserve continuity at the ends, even functions must be directly 

reflected and odd functions must be reflected negatively. This same notion can be 

extended to more complicated signals. Figure 4.12 illustrates an arbitrary signal and the 

shaded regions that will potentially be useless following the Wavelet Transform.  
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Depending on the level of β and fo selected, these regions can consume two-thirds 

or more of the signal. In the padding operation, the signal is elongated by 2β∆t as the 

signal is continuously reflected about the start and end of the signal. Now the two shaded 

regions envelop the dummy reflections of the signal, while entire duration of the true 

signal is conserved and can be analyzed with little contamination from end effects. 

EVEN REFLECTION ODD REFLECTION 

FIGURE 4.11.  Even and odd signals and their respective reflections 
(dotted line) 
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FIGURE 4.12. Concept of signal padding for arbitrary function 
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Mathematically, this operation may be conducted by considering a signal x 

described by 

 [ ]Nxxxx K21=  (4.15)  

with sampled time vector  

 [ ]Nttt K1= . (4.16) 
 

The temporal duration of the analyzing wavelet is then determined using Equation 

4.8 based on the lowest frequency being considered in the analysis (f1), as this frequency 

will yield the longest duration ∆t1 and thereby dictates the maximum end effects 

anticipated. β is then selected based on the desired accuracy of the resulting spectra, and 

the time ordinates closest to the termination of the end effects regions are then identified 

by 

 [ ]10 min ttt ∆>= β  and [ ])(max 1tttt Nm ∆−<= β . (4.17) 

The modified signal xMOD is constructed by reflecting the signal x (for even functions) or 

its negative (for odd functions) for the duration of β∆t1 about t1 and tN, according to 

 [ ]0111 xxxxxxx NNnnMOD ±±±±= −− KKK  (4.18) 

where xn and x0 are the values of the sampled signal x at time t0 and tm.  xMOD is then 

Wavelet Transformed and the coefficients calculated from the padded regions are simply 

neglected, retaining only the coefficients of the true signal for meaningful analysis. This 

pre-processing technique will be referred to herein as reflective padding. 
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4.2.2.4 End Effects: Efficacy of Reflective Padding Scheme 

As sine waves are represented by wavelets in a very simplistic form, they are now used to 

illustrate the efficacy of the proposed padding scheme. Recall that the wavelet 

instantaneous spectrum of a simple sine wave does not vary in time. As shown by Figure 

4.7, the scalogram of a simple sine, when viewed purely as a function of time, is a 

constant. Deviations from that constant were shown to be the hallmark of end effects in 

the Wavelet Transform. Thus any signal composed of a series of M sine waves, will yield 

a scalogram containing M constant ridges in the time-frequency domain. The values of 

the scalogram along each ridge can be individually examined for deviations from the 

theoretical result. Fortunately, though this summation of sines is capable of generating 

complicated time series, they are simply analyzed in the wavelet domain by virtue of its 

inherent bandpass filtering. Therefore, the efficacy of the reflective padding scheme on a 

complicated time series can be demonstrated by examining the simple behavior of the 

component sines in the wavelet domain. 

The following signal is generated for this example 

 ∑=
i

ittx )sin()( ω   (4.19) 

where ωι = 2π [0.28 Hz, 0.5 Hz, 0.7 Hz, 1.0 Hz, 1.4 Hz, 1.65 Hz, 1.9 Hz, 2.25 Hz, 2.7 

Hz, 3.25 Hz]. The signal was simulated for 10 minutes, sampled at 10 Hz. Snapshots of 

the first 100 s of the signal are shown in Figure 4.13. As a consequence of the multi-

resolution character of wavelets, at higher frequencies, the frequency resolution is 

reduced. Thus, the last 6 harmonics may overlap one another considerably if a low 
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frequency Morlet wavelet is chosen. Therefore, to enhance the frequency resolution and 

separate closer-spaced, high frequency content, a central frequency of 10 Hz is chosen for 

the analysis.  

Following the calculation of the Wavelet Transform, the ten ridges are extracted 

from the resulting scalogram. Though omitted for brevity, these plots display a 

characteristic rounding as previously observed in Figure 4.7. It is evident that the end 

effects regions, even for such a large central frequency, decrease significantly with 

increasing frequency, as indicated by Equation 4.8. This may be the reason that previous 

studies did not encounter significant manifestations of end effects, as most wavelet 

analyses have been concerned with higher frequency mechanical systems. However, in 

t [s] t [s] 

t [s] t [s] 
x(

t) 
x(

t) 

x(
t) 

x(
t) 

FIGURE 4.13. Simulated time series for validation of 
padding scheme 
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the study of low frequency Civil Engineering structures, the presence of end effects 

should be anticipated and remedied, making the proposed padding procedure of essence.   

The overlaying of the instantaneous spectra in time to collapse the scalogram 

along that axis demonstrates the deviations that occur in these end regions, as shown in 

Figure 4.14. The calculated wavelet spectra are shown in gray, with the theoretical 

prediction in black. First note that the spectra again have a variable bandwidth that 

decreases with frequency, as discussed previously. This is a consequence of the enhanced 

frequency resolution of the wavelet for large scales.  For the low frequency components, 

the deviations are not as evident, due to the scaling of the plot. However, the deviations 

are more marked for the high frequency components due to the lack of frequency 

resolution. Although the end effects regions for the higher frequency modes are not as 

lengthy, the deviations of the few spectra taken from these regions are considerable, 

especially in the case of the 10th component. It is evident that the 10 Hz Morlet wavelet 

was capable of separating the modes of the system. Note that the quality of Figure 4.14 

could have been enhanced by simply neglecting the spectra that were derived from end 

effects regions, however that results in a loss of a significant amount of data. 

The lowest harmonic component produced the largest end effects region in the 

wavelet skeleton, approximately 100 seconds of corrupted coefficients. Thus, this value, 

at minimum, must be used to pad the signal, as discussed previously. The success of the 

padding operation is first gauged by looking at Figure 4.15, an overlay of the 

instantaneous spectra, as was shown for the unpadded case in Figure 4.14. In this case, 

the spectra generated from the Wavelet Transform of the modified signal in Equation 
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4.18 are plotted. Only spectra obtained from the true signal are plotted and all those 

determined from the virtual values of the padded signal are discarded. Note that there is 

no discernable difference between the predicted and calculated results when assuming β 

= 4.  

In terms of bandwidth estimates, the half-power bandwidth’s accuracy is 

enhanced in these end regions when the padding scheme is employed. For brevity, a 

demonstration is provided using only three of the modes. Figure 4.16 displays the 

unpadded bandwidth measures, demonstrating the characteristic trademark of end effects. 

Note again that the portions of the signal lost due to end effects is more marked at lower  

FIGURE 4.14. Superposition of instantaneous spectra over all time for 
calculated Wavelet Transform (gray) with theoretical prediction (black) 
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frequencies, where nearly one-third of the values have been compromised. As 

demonstrated in Figure 4.16, β = 6 is a necessary condition to remove all traces of end 

effects in the bandwidth measure. Using this condition in conjunction with the padding 

operation, a precise definition of the half-power bandwidth is maintained over the entire 

duration of the signal, as shown in Figure 4.16d-f. The simulated bandwidth measure is 

less than 0.2% of the theoretical prediction for all of the modes in this example. 

Although padding the signal with itself insures that the spectral content of 

surrogate regions locally matches that of the true signal, this should not be viewed as a  

|W
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,t)
|2  

f [Hz] 

FIGURE 4.15. Superposition of instantaneous spectra over all time for 
calculated Wavelet Transform (gray) with theoretical prediction (black) 
with padding operation 
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FIGURE 4.16. Efficiacy of padding operation to reduce end effects in wavelet 
bandwidth measures, theoretical prediction (dashed) and simulation (solid): (a) 
first mode half-power bandwidth without padding, (b) fifth mode half-power 
bandwidth without padding, (c) tenth mode half-power bandwidth without 
padding, (d) first mode half-power bandwidth with padding and β = 6, (e) fifth 
mode half-power bandwidth with padding and β = 6, (f) tenth mode half-power 
bandwidth with padding and β = 6 
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way to defeat the Heisenberg Uncertainty Principle. It should be reiterated that the end 

effects are merely a physical manifestation of the wavelet’s inherent analysis windows, 

which lengthen as fo is increased. Although the end effects can be repaired, the larger 

temporal analysis windows imply that changes in the system that occur in shorter time 

intervals than this window may be completely obscured. Thus, the central frequency 

should be kept to the smallest value possible to provide the needed frequency resolution 

without compromising the ability of the wavelet to detect nonlinear and nonstationary 

phenomenon. 

4.2.2.5 End Effects: Comparison of Zero Padding and Reflective Padding 

A comparison of the proposed reflected padding technique and the zero padding solution 

in Torrence & Compo (1998) is shown in Figure 4.17, zooming in at only one end, since 

the effects manifest themselves identically at both ends of the signal. The example shown 

in Figure 4.17a is the magnitude of the wavelet skeleton for a 2 Hz cosine wave. In this 

case the signal begins and terminates with a value of 1. Again, in theory this skeleton 

should be a constant value over all time. Without any padding, the skeleton magnitude 

gradually approaches the anticipated constant value. Padding with zeros actually 

amplifies the characteristic rounding within the cone of influence. On the other hand, 

using the padding scheme proposed herein, the wavelet skeleton magnitude achieves a 

constant value immediately, mitigating the presence of end effects. The theoretical 

magnitude of the wavelet skeleton is shown by a dotted line, which is actually right on 

top of the reflective padded result. Figure 4.17b shows the same analysis for a sine wave. 

In this case, the skeleton magnitudes without padding are not as dramatically diminished, 
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due to the fact that the signal already begins and ends with zero values, providing some 

periodicity of the signal from a Fourier perspective. Using the odd function, reflective 

padding scheme recommended here, the end effects are effectively mitigated. While the 

use of zero padding to the nearest power of two may increase the efficiency of 

calculations when Wavelet Transforms are calculated via Fourier Transforms, this 

measure does nothing to mitigate end effects arising from incomplete information and 

may even enhance them. Subsequent examples throughout this study will demonstrate the 

improvements in wavelet-based system identification as a result of this padding 

operation, as well as the lingering limitations. 

4.2.2.6 Tuning Temporal Separation 

It should be noted that temporal resolutions of wavelets not only dictates the end effects 

phenomenon, but also governs the ability to separate events in close temporal proximity. 

Equation 4.8 may be used to determine the central frequency necessary to separate two 

FIGURE 4.17. (a) 2 Hz cosine; (b) 2 Hz sine – influence of padding on 
wavelet skeleton magnitude 
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closely spaced events in time. The actual duration of signal characteristics from 

inspection of the time series, e.g. the time duration of a single peak or pulse in the signal, 

gives some indication of the time resolution that would be required. When deciding what 

central frequency is appropriate for a given analysis, the compromise between time and 

frequency resolution must always be carefully considered. The recommendation of this 

work is to approach analysis in tiers, particularly for complex systems or for those with 

more wideband characteristics. Such tiered analyses are presented in Chapters 5 and 7, 

with the examples in Chapter 7 providing more discussion on how to identify the 

necessary time resolution from characteristics of a time series. Just like zoom transforms 

in Fourier analysis (Bendat & Piersol, 1986), a fine frequency resolution wavelet analysis 

can be performed to accurately identify the various components in the signal. Then over 

each identified range of frequencies, a more temporally refined Wavelet Transform may 

be conducted to unveil time-varying properties, as illustrated later in Chapter 7. 

4.3 Discretization of Time-Frequency Plane 

The use of this continuous Wavelet Transform is attractive not only for its analogs to 

Fourier Transforms, but more importantly since it is not constrained in terms of 

resolution by the rigid discretization of Discrete Wavelet Transforms. The use of 

continuous Wavelet Transforms permits finer frequency resolution necessary for the 

nature of the analysis of the narrowband signals encountered in this research. As 

discussed in Chapter 3, frame theory governs the discretization of the time-frequency 

plane for windowed Fourier Transforms and Wavelet Transforms. In the case of the 

Morlet wavelet introduced in this chapter, its intimate relationship to the Fourier 
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Transform implies that it shares many aspects of the frame theory associated with 

windowed Fourier Transforms. Work by Daubechies (1990), discussed in Carmona et al. 

(1997) and Mallat (1998), identified a critical sampling density called the Nyquist density. 

In this framework, given that the time axis is sampled at increments of δt and the 

frequency axis at δf, a complete representation is obtained when   

 1ft =δδ . (4.20) 
 

According to the Balian-Low Theorem, this would require the window function 

on a Fourier basis to be either non-smooth or have slow time decay. This violates the 

basic conditions placed on the parent wavelets in Chapter 3 and excludes many windows 

with desirable properties used in Short-Time Fourier Transforms. As a result, an 

orthogonal Fourier basis with a differentiable window of compact support, either through 

Morlet wavelets or Short-Time Fourier Transforms, is not possible. (Note this fact 

motivated largely the popularity of many Discrete Wavelet Transforms.) The choice of a 

discontinuous window, e.g rectangular (boxcar), yields an orthogonal windowed Fourier 

bases according to the condition in Equation 4.20. Though this window is commonly 

used in Fourier analysis, its utility in Short-Time Fourier Transforms is limited due to its 

bad frequency localization. In general, all windows satisfying the expression in Equation 

4.20 will be poorly localized or have poor regularity (Carmona et al., 1998).  

One alternative would be to undersample the space by having δfδt > 1, yielding a 

representation that is not complete. Or conversely, sampling at less that 1 to yield a 

representation that may be overcomplete (Carmona et al., 1998). In the development of a 
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disccretization of scheme in this work for the Morlet wavelet, the following observations 

become relevant: 

• The representation can still be complete as long as the full time-frequency domain 

is covered by the Heisenberg boxes of the sampled times and scales, forcing the 

sampling at less than the Nyquist density. 

• In reconstruction, there are stability concerns associated with Wavelet Transforms 

in such cases, though that is not an issue, given that reconstruction is not within 

the scope of this work. 

• A complete but oversampled representation may be redundant and thus strategies 

to minimize redundancy must be formulated. 

Unfortunately, few authors give much thought to the appropriateness of 

discretizations used in conjunction with Morlet wavelets. At minimum, the discretization 

of the time-frequency domain must be less than the Nyquist density to avoid the loss of 

information, without resorting to a resolution that is so fine that it results in a prohibitive 

redundancy of information. Torrence & Compo (1998) simply proposed the use of 

fractional powers of two to discretize the scale (frequency) variable. However, this does 

not account in any way for the bandwidth of the parent wavelet, potentially providing 

redundant information in the frequency domain, even if the Nyqusit density condition is 

satisfied. Other applications may arbitrarily or uniformly discretize the analysis scales, 

with no regard for frame theory and the frequency resolution of the parent wavelet. 

Therefore, this study will address this issue by exploiting the flexibility this continuous 
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transform affords through an adjustable discretization framework that is considerate of 

the wavelet bandwidth. 

The duration of the Morlet wavelet in the frequency domain based on the mean-

square definition of Gabor in Equation 3.6 can be used as a guideline for the specification 

for the discrete frequencies at which to evaluate the transform to minimize the 

redundancy and gain meaningful information. Assuming the retention of all sampled time 

domain data forces δt in Equation 4.20 to the inverse of the signal sampling rate fs. Thus 

the discretization of scales to insure sampling at less than the Nyquist density requires 

only that δf<fs.  

For the Morlet wavelet, the basic frequency bandwidth δf is given by 2∆fi, where 

∆fi is defined in Equation 4.5. This requires that 

 s
o

ig f
f

ff2
<

∆
 (4.21) 

The maximum frequency fi that can be considered in an analysis is the Nyquist frequency, 

or one-half the sampling rate. As a result 

 og ff <∆  (4.22) 

where ∆fg, given in Equation 4.4, takes on a value of approximately 0.113 Hz. Recall that 

to satisfy admissibility conditions, fo must take on values greater than 0.8, thus satisfying 

this condition. Therefore, for all practical applications, as long as the scales are 

discretized so that adjacent frequencies are separated by one bandwidth of the analyzing 



 134

wavelet, the sampling will be less than the Nyquist density and will adequately represent 

the signal’s time-frequency domain. 

The above discussion demonstrates that the wavelet representations meeting these 

minimum requirements are complete, however, the issue of overresolution must still be 

addressed. Figure 4.18 demonstrates this concern. The figure shows four slices of wavelet 

scalograms at a given time, yielding wavelet instantaneous frequency spectra. The signal 

analyzed is a sine wave at 1 Hz. The scales of the Wavelet Transform are discretized by 

an arbitrary spacing, inconsiderate of the bandwidth. As the discretization of scales 

becomes finer and finer, the bandwidth of the wavelet analysis windows at adjacent 

frequencies begins to overlap. By allowing significant overlap between wavelet analysis 

windows at neighboring frequencies, significant overresolution is apparent, particularly 

in the last spectrum. Also note that the use of arbitrary discretization that does not vary 

with frequency causes the lower frequencies to be overresolved more significantly than 

higher frequencies. 

To avoid this, a framework for the discretization of scales is presented here, 

attentive to the frequency-dependent bandwidth of the Morlet wavelet. The frequencies to 

be evaluated in the wavelet analysis are specified by 

 [ ]minmax ,,,,,~ ffOFfffOFfffff 1i1ii1121 KK −− ∆+=∆−=≡=  (4.23) 

where fmax ≤ fs/2 is the maximum frequency of interest, fmin is the minimum frequency of 

interest that can be no smaller than 1/T where T is the duration of the analyzed signal, and 

OF is introduced as an overlap factor to permit flexibility. Beginning at the highest 

desired frequency and working downward insures that the discretization is conservative, 
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as the bandwidth at higher frequencies is larger. The vector of frequencies is then 

transformed, according to Equation 4.3, to scales for analysis. The overlap factor, when 

set to 2, discretizes at the bandwidth of the Morlet wavelet, in a mean-square sense, 

satisfying the Nyquist density condition as long as the central frequency satisfies 

Equation 4.22. Increasing the overlap factor beyond 2, provides a more conservative and 

potentially incomplete representation if  

 o
g f

fOF
<

2
∆

 (4.24) 

is not satisfied. Thus overlap factors of 2 and under are used in this study to provide a 

smooth description of frequencies in the wavelet analyses and insure that Equation 4.24 is 

satisfied. 

∆a=0.25∆a=0.1 ∆a=1 ∆a=0.5

∆fi-1 

fi-1 fi 

∆fi

fi+1

∆fi+1 ∆fi 

fi fi+1

∆fi+1∆fi-1 

fi-1 

FIGURE 4.18. Implications of overlapping analyzing frequencies 
 
 
 



 136

4.4 Ridge Extraction Techniques 

When the Fourier Transform of the parent wavelet is sharply concentrated at a fixed 

value of frequency, as is the case of the Morlet wavelet in Equation 4.2, the continuous 

Wavelet Transform will have the tendency to “concentrate” at the frequency values 

associated with dominant harmonics in the signal, defining a series of curves called 

ridges that evolve with time. These ridges, discussed in Section 3.7.3, are locations where 

the frequency of the scaled wavelet coincides with the local frequency of the signal, as 

shown in Equation 3.30. Note that this equation illustrates that the scales corresponding 

to these ridges can be directly used to identify the instantaneous frequency, as shown in 

Figure 4.19. The ridge in the time-frequency domain is shown, as well as a slice of the 

scalogram at a specific time to yield an instantaneous spectrum focused at the 

instantaneous frequency of the system and with measurable bandwidth indicative of the 

richness of frequency content about this mean frequency component. While this avoids 

the need for the differentiation in Equation 3.35, the wavelet phase can still be used, often 

more precisely, to determine the instantaneous frequency for the class of asymptotic 

signals, using wavelet skeletons introduced in Chapter 3. The extracted skeletons are also 

shown in Figure 4.19. 

The extraction of the ridges and their associated skeletons can be accomplished by 

a number of techniques. The differential methods are perhaps the most basic way to 

detect the ridge. In the case where the signal possesses a single ridge, it is sufficient to 

seek the maxima of the wavelet modulus over the scale variable at every time instant. 

This global maxima search is defined as 
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),(max),( taWtaW

ar =
. (4.25) 

The ridge is then given by a graph of the function ar(t) (Carmona et al., 1998). While this 

will yield a ridge estimate for the most rudimentary applications, it becomes evident that 

this approach will only be capable of capturing one ridge and must be modified to 

identify multiple local maxima for multicomponent signals. This modification is 

achieved, for example, by identifying peaks in the wavelet modulus corresponding to the 

location of ridges 
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Unfortunately, this technique is less robust in the presence of noise, which introduces 

additional local maxima (Carmona et al., 1998). More precision can be achieved using 

the Marseille Method based on the wavelet phase. These methods identify the locations 

where the wavelet modulus shows a high degree of similitude with frequency 

components within a signal. 

The ridge extraction approach can be an even more powerful tool when it is 

manipulated to extract an asymptotic signal from noise. Unlike the differential 

approaches, this more sophisticated class of techniques exploits the fact that the 

asymptotic signal has a ridge that is a smooth function of time, unlike the ridges 

associated with noise or other intermittent signal components that may appear as 

scattered fragments of a curve throughout the time-frequency plane. In addition to using 

the smoothness of the ridge to aid in the extraction scheme, information on the 

characteristics of the noise may also be integrated into the search algorithm to enhance 

performance.  

Using the fact that the wavelets localize their energy near ridges and that the 

ridges of the asymptotic signals are smooth and slowly varying functions, a penalty 

function can be formulated  

 ( ) ∫ ∫ ∫ ′′+′+−= dttadttadtttaSGa rrrr
22 )()()),(( µλε  (4.27) 

and the ridge detection problem is recast as a minimization problem on this function, as 

discussed in Carmona et al. (1998). A Bayesian approach as well as other techniques can 

be used to propose penalty functions for seeking out smooth ridges. Since the numerical 

algorithms used to solve for the ridge in this manner can be unstable, alternative 
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approaches are provided in Carmona et al. (1998), including the “Corona” Method and 

the Iterated Conditional Modes (ICM) technique. These approaches are very attractive for 

separating a single asymptotic signal ridge from a bed of noise, but if there are multiple 

asymptotic ridges, more robust algorithms are required. This approach does not use any 

type of penalty function minimization, but rather introduces a stochastic system to 

generate occupation densities that draw the ridges through the Crazy Climber Algorithm 

(Carmona et al., 1998).  

It should also be noted that the phase of the WT could also be used to isolate the 

ridges. As will be demonstrated in subsequent examples, the instantaneous frequency 

identified by the ridge is often more precise, but also more sensitive to noise (Carmona et 

al., 1997). Feldman & Braun (1995) noted that the estimate of the instantaneous 

frequency from phase information may be high in variance and concluded that a lower 

variance estimate can be obtained directly from the maxima of time-frequency 

distributions, an observation previously confirmed by Boashash (1992b). This is an 

important consideration for techniques based on Hilbert Transforms, which rely entirely 

on phase information to define the instantaneous frequency. Thus, the flexibility of dual 

venues for the instantaneous frequency estimation is a valuable asset for the Wavelet 

Transform.  

Though the extraction techniques geared specifically to separate asymptotic 

signals are powerful and attractive, smooth ridges are often not present in the case of 

arbitrary natural signals or random processes. Therefore, for the more general analyses of 

signals throughout this study, the more traditional differential extraction methods 
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(Equation 4.26) are employed so that ridges from a variety of signal types and sources 

can be isolated. Further, the ridges identified in this manner are plotted as colored 

contours in the time-frequency plane, preserving the magnitude of the various ridge 

components. This perspective is termed by the author as a wavelet instantaneous 

frequency spectrum (WIFS)  
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In this way, the dominant ridges can be differentiated from fainter ridge components that 

are often artifacts of noise variations or “shadows” of the dominant ridge, created by the 

side lobes of parent wavelet, G(ω). An example of the WIFS is also shown in Figure 

4.19. 

4.5 Conclusions 

The multi-resolution capability of Wavelet Transforms makes it a powerful tool for time-

frequency analysis, optimally adjusting to the Heisenberg Uncertainty Principle at each 

analysis frequency. However, in order to provide meaningful results, the transform must 

be applied with a proper understanding of its time-frequency resolutions. As these issues 

are rarely discussed within the literature, in part due to the infancy of Wavelet 

Transforms, a unified analysis framework is presented herein for the Morlet wavelet. This 

wavelet is advocated for use in this study by virtue of its analogs to Fourier Transforms 

and Fourier frequencies, making it well-suited for modal analysis familiar to most 

practicing engineers. A discussion of the resulting wavelet resolutions reiterated the 

importance of optimally adjusting the central frequency of the parent wavelet to achieve 
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the desired resolutions, e.g. to separate closely spaced modes. This discussion also 

provided a theoretical basis for the presence of end effects and offered a practical remedy 

in the form of reflective padding to extend the length of the time series to mitigate the 

influence of end effects. The chapter concluded by establishing a flexible framework for 

discretizing the time-frequency plane, cognizant of the bandwidth of the Morlet wavelet, 

and summarized strategies for ridge extraction, introducing the notion of wavelet 

instantaneous frequency spectra representative of the dominant frequency components 

within the signal. This processing framework provides the basis for all wavelet analyses 

that follow in the next four chapters. 
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  CHAPTER 5 

WAVELETS FOR SYSTEM IDENTIFICATION, PART I:  

APPLICATIONS TO WIND, WAVE AND SEISMIC ANALYSIS 

 

5.1 Introduction 

Civil Engineering structures assume a wide array of structural forms and dynamical 

properties, as shown in Figure 5.1, subjecting the various classes of bridges, towers, 

buildings and ocean platforms to the threats of wind, wave and earthquake loads. These 

diverse natural loadings present further challenges in that they cannot be completely 

captured in a stationary analysis framework such as that provided by Fourier Transforms. 

As motivated earlier in Chapter 3 and in work by Gurley and Kareem (1999), wavelets 

provide a new venue for the detection of nonstationary features in natural loading and the 

resultant response previously obscured by traditional spectral representations. This 

potential is more fully explored in this chapter by applying a continuous wavelet analysis 

to measured wind, wave and seismic signals serving as input to Civil Engineering 

structures. The analyses also consider measured full-scale response of buildings and 

experimental investigations of offshore platforms under wind and wave action, 

representing the characteristics of each through wavelet scalograms, wavelet 
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instantaneous frequency spectra and wavelet instantaneous spectra to reveal the 

distribution of signal energy with respect to both time and frequency. A comparison of 

wavelet marginal spectra and Fourier spectra is also provided to demonstrate the 

influence of wavelet multi-resolution characteristics on traditional spectral perspectives.    

Before these examples are introduced, however, this chapter will first introduce some 

additional wavelet theory and wavelet representations that will be employed herein, 

whose physical significance is demonstrated using a simple simulated signal. 

5.2 Preliminaries 

As discussed in Chapter 3, the wavelet scalogram, denoted as SG(a,t) by letting b ≡ t, 

was simply defined as the squared modulus of the wavelet coefficients. However, as 
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FIGURE 5.1. Spectra of environmental loads acting on 
Civil Engineering structures (taken from Kareem, 1987) 
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discussed in Chapter 4 in the context of the wavelet transformed harmonic components, 

the coefficients associated with a particular harmonic are actually weighted by the square 

root of the scale. Therefore, the amplitude of high frequency components in the 

scalogram will always be reduced by a factor of a and be smaller relative to the low 

frequency components. This convention arose from the definition of the wavelet 

transform according to Mallat (1998), who adopted this L2 normalization in the 

development of expressions to fully recover the signal energy in wavelet reconstructions. 

Besides its relevance to the conservation of energy and signal reconstruction, the 

weighting of the scalogram values by a essentially normalizes them relative to the size of 

the frequency window. Recall in Chapter 3 that the duration of the wavelet analysis 

window at a given frequency is inversely proportional to scale, implying that a wavelet 

coefficient associated with a high frequency was formed from data over a larger 

frequency range than its low frequency counterpart. The energy density of the scalogram 

can then be viewed as energy divided by the length of the frequency domain window. 

While this normalization is sensible considering the multi-resolution character of 

wavelets, it implies that a direct comparison of wavelet magnitudes cannot always be 

used to distinguish the relative contributions of a frequency component at a given instant 

in time, i.e. through instantaneous spectra or WIFS. Instead, the scalogram and WIFS can 

be used to identify the presence of particular frequency components in time and the 

frequencies with the highest energy densities relative to their respective frequency 

resolutions. To uncover the relative contributions of frequency components energy 

measures associated with the wavelet scalogram must be consulted.  
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The marginal wavelet power spectrum, also referred to as the mean wavelet 

spectrum (Lewalle, 1998), can be estimated by integration over the time variable as 

discussed in Perrier et al. (1995), which when implemented for a signal of finite duration 

T, may be expressed as 

 ⎥⎦
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where Cg is the admissibility factor or norm of the parent wavelet, introduced in Chapter 

3, and the factor of two is necessary since the analytic wavelets, such as the Morlet, 

suppress all negative frequencies. Note that the Fourier frequency corresponding to each 

scale in Equation 5.1 can be determined through the inverse relationship, making SWT 

equivalently a function of frequency that can be readily compared to traditional Fourier 

spectra. In the case of the Morlet Wavelet, the admissibility factor is a function of the 

central frequency and can be determined by the numerical integration of the following 

expression 
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Note that the definition of the admissibility condition in Chapter 3 specified limits of 

integration from zero to infinity. For this analytic wavelet, however, the localization of 

the Morlet wavelet in the frequency domain allows the numerical evaluation of Equation 

5.2 to be conducted over a finite range of frequencies. Recall that the mean-square 

definition of the Morlet’s frequency resolution, introduced in Chapter 3, spans one 

standard deviation of the Gaussian window. Extending this notion, 99.7% of the Gaussian 

window density lies within 3 standard deviations of the mean value, which in this case is 
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the central frequency. Thus, the infinite limits of integration can be reduced to just 

beyond the effective duration of the Gaussian window itself, to ease computation. 

Therefore, let T1 and T2 be defined as 
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Note that a parametric investigation affirmed that assuming five standard deviations was 

sufficient to accurately compute the admissibility factor, as visualized when plotting the 

function G(ω)/ω in Figure 5.2 for the case of a ωo=4π rad/s Morlet wavelet. 

 

 

FIGURE 5.2. Admissibility function for 2 Hz 
Morlet wavelet 
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The mean square value or variance of the assumed zero mean signal can be then 

determined from the wavelet marginal power spectrum by integrating over the range of 

scales 

 ∫=
na

a
WTWT a

daaS
1

2
2 )(σ . (5.4) 

Note that the limits of integration are defined in terms of the finite range of scales 

considered in the analysis and will identically capture the signal variance as a1→ 0 and 

a2→∞, equivalent to the theoretical expression in Mallat (1998). Similarly, integrating 

over the range of Fourier frequencies can also provide an estimate of signal variance, as 

discussed in Mallat (1998), 
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where SWT(fo/f)≡SWT(a), f1=fo/a1 and fn=fo/an. The factor fo emerges from the change of 

variables between Equation 5.4 and 5.5, and the negative sign arises from the inverse 

relationship between scale and frequency, essentially inverting the limits of integration. 

Either expression can be used to obtain a wavelet-based estimate of the signal variance 

that is equivalent to the true variance, provided that the limits of integration approach [0, 

∞]. 

The wavelet marginal spectrum will be compared to the traditional Fourier 

spectrum in this chapter to highlight the added low-frequency insights afforded by 

wavelets. Ideally the Fourier spectra computed via the Fast Fourier Transform and 

marginal wavelet spectrum should be calculated using similar frequency resolutions, for a 
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fair comparison. However, due to the multi-resolution character of wavelets, this is not 

possible. Instead, the resolution of the Fourier analysis is kept close to a wavelet mean 

frequency resolution. The wavelet transform is calculated for a range of scales, associated 

with Fourier frequencies ranging from zero up to the Nyquist frequency, i.e. fs/2. 

Therefore, the wavelet mean frequency resolution, f∆  is defined as 
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where WTf is the mean of the Fourier frequencies considered in the wavelet analysis. A 

mean temporal resolution can be defined in a similar manner 
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These two measures will be referenced in some examples within this chapter to indicate 

the relative accuracy of the wavelet analysis. The frequency resolution of the Fourier 

analysis ∆fFFT is then determined by selecting the number of FFT points (NFFT), to the 

nearest power of two, that, when inverted and multiplied by the sampling rate fs, is 

comparable to the mean wavelet mean frequency resolution. Fourier spectra are then 

calculated by breaking the signal into Ns blocks of length NFFT, spanning T= NFFT / fs 

seconds. The Fourier coefficients are calculated over that block of discretely sampled 

points xn, via fast Fourier transforms (Bendat & Piersol, 1986), according to 
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where k is the index corresponding to the discrete frequencies of the Fourier spectrum 
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T
kfk =         k = 0, 1, 2, …, N/2. (5.9) 

An estimate of the power spectrum is then made by averaging the squared 

magnitude of the Fourier coefficients from each block, according to (Bendat & Piersol, 

1986) 
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Note the averaging here replaces the expected value operation, and the factor of 2 is 

introduced to compensate for the fact that this is a one-sided spectral density, as indicated 

in Equation 5.9. The signal variance associated with the Fourier power spectrum is then 

estimated by the following expression 
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In addition to comparisons of the wavelet marginal spectrum and its Fourier 

counterpart, wavelet measures of energy accumulation are also presented throughout this 

chapter. The energy accumulations in the frequency domain, denoted E(f), are determined 

by an integral operation at each frequency of the wavelet marginal spectrum, according to 

 ∫ ⎟
⎠
⎞⎜

⎝
⎛=

if

f

o
WTi dff

fSfE
1

)(        for  i=1, 2, .. n (5.12)  

for each of the n Fourier frequencies considered in the wavelet analysis. Similarly, a time 

analog to the marginal spectrum may be defined as 
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Energy accumulations in the time domain, denoted E(t), are then appropriately 

determined by 

 ( )∫=
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for each of the j discretely sampled time ordinates considered in the wavelet analysis. 

Rates of change or derivatives of each of these accumulation measures, with respect to 

frequency or time, denoted respectively as dE(f)/df or dE(t)/dt, and the maximum values 

of these accumulation rates will be of particular interest in subsequent discussions as they 

identify the arrival of significant events in time and frequency. 

As mentioned previously, the assessment of the relative strength of a frequency 

component at a given instant in time should not be based on the amplitude of wavelet 

coefficients, but rather by the energy associated with that scale and can be determined by 

integrating the area under an instantaneous spectral peak. For this reason, a relative 

energy measure is provided by this work. Instantaneous spectra are merely scalogram 

coefficients associated with a particular instant in time that peak at each instantaneous 

frequency component denoted by IFi. Therefore, the relative contribution to the 

instantaneous signal energy at that time tj from that frequency component is defined here 

as the ratio of the area under that particular spectral peak to the overall area under the 

instantaneous spectrum 
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In this case, the limits of integration in the numerator are the frequencies associated with 

the initiation and termination of an individual spectral component. Note each of the 

integrations specified in Equations 5.1, 5.2, 5.4, 5.5 and 5.11-5.15 are achieved 

numerically in this chapter using trapezoidal integration. 

The following simulated example will demonstrate the utility of these additional 

wavelet spectral representations and energy measures, noting their ability to identify the 

arrival and participation of different frequency components. Armed with an 

understanding of these measures and wavelet visualizations, the analysis approach 

introduced here will then be extended to a number of measured earthquake ground 

motions and structural responses to earthquakes, winds and waves. 

5.3 Example 

The physical significance of the preceding measures is demonstrated by a simplified 

example. Consider a 100 second signal sampled at 10 Hz. For the first 50 s of the signal, 

a lone cosine described by 5cos(8πt) is present. In the last 50 s of the signal, this is 

supplemented by an additional cosine of the same amplitude and half the frequency. A 

Morlet wavelet analysis with fo = 3 Hz is conducted. This produces a wavelet mean 

frequency resolution of 0.103 Hz and mean temporal resolution of 0.771 s. Accordingly, 

128 FFT points were selected to produce Fourier spectra with a resolution of 0.078 Hz. 
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The wavelet padding scheme discussed in Chapter 4 was implemented for β = 3 and an 

overlap factor, OF =1 was selected to produce the smooth wavelet spectra with minimal 

computational effort. As noted by Gurley & Kareem (1999), discretization of scales can 

be critical in insuring that a wavelet analysis accurately captures signal energy and 

spectral shape, often limiting the utility of the DWT in these arenas. The flexibility 

provided by the overlap factor, allows finer discretizations at the expense of 

computational effort. As shown in Table 5.1, the OF = 2 provides the most proper 

discretization of scales in terms of bandwidth definitions discussed in Chapter 4 and 

marks the maximum allowable OF providing reasonable estimates of signal variance. By 

increasing OF and essentially over resolving the space, there is no marked improvement 

in results despite greater computational expense. Thus the ability of the wavelet 

transformed data to replicate the actual RMS of the signal serves as a metric to assess the 

quality of the analysis parameters chosen. 

 
TABLE 5.1 

 
INFLUENCE OF OVERLAP FACTOR ON WAVELET ENERGY ESTIMATES 

 
OF Error in Energy Estimate 
4 -13.4% 
3 11.2% 
2 0.345% 
1 -0.140% 

0.5 -0.162% 
  
  

 

The resulting scalogram and wavelet instantaneous frequency spectrum are 

provided in Figure 5.3. Note that both the scalogram and the wavelet instantaneous 
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frequency spectrum isolate the involved frequency bands as well as the time at which the 

second frequency contribution appears, albeit more precisely in the form of ridges in the 

WIFS. The relative magnitude of the peaks in the Fourier spectrum identify the higher 

frequency component as the more dominant in the signal, but this does not give any 

indication of how long each component was present. The Fourier spectrum could be 

interpreted as two frequency components of equal amplitude, but with the low frequency 

component only present a fraction of the time (as is the case here) or as two frequency 

components both present for the same amount of time, but the higher frequency 

component having a larger magnitude. The wavelet marginal spectral amplitudes are 

much less than their Fourier counterpart, due to the increased bandwidth from the 

FIGURE 5.3. Example signal, wavelet scalogram and WIFS (left, top to 
bottom) and marginal spectral comparison with Fourier power spectrum 
(right) 
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Gaussian window. In order for energy to be conserved by the wavelet, these amplitudes 

must be smaller.  The relative magnitude of the wavelet peaks, if interpreted in the same 

manner as the Fourier spectrum, would indicate that the low frequency component 

slightly dominates. Recall however that the bandwidth of the high frequency component 

is larger than the low frequency component, as a result of the frequency dilation of the 

wavelet analysis window. The larger bandwidth implies that a lower spectral amplitude is 

necessary to insure that the area under the spectral peak corresponds to the true energy 

contribution from that particular frequency. This emphasizes the need to consider the area 

under the wavelet spectrum rather than its spectral amplitude when assessing the relative 

contributions of two well-separated components. Still, the overall signal energy is well 

captured by the wavelet. The RMS value of the signal is 4.34, while the area under the 

wavelet marginal spectrum produces a value of 4.33, and the area under the Fourier 

spectrum is 4.25. This proves that the measure in Equation 5.5 does compensate 

appropriately for the multi-resolution character of wavelets, which results in the modified 

spectral amplitudes. 

The energy accumulation plots are provided in Figure 5.4 and are useful in 

determining critical events within the course of a signal. As the frequency energy 

accumulation plot at the left demonstrates, when read from right to left, the signal has no 

energy until 4 Hz, where it receives approximately two thirds of the total signal energy. 

The plateau between 4 Hz and 2 Hz further indicates that there are no additional energy 

contributions in this range. The increase to 100% energy at 2 Hz affirms that the 

remainder of the signal energy resides at this frequency. In time, it is similarly affirmed 

that one third of the signal energy is present at 50 s, when the second cosine is 
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introduced, changing the slope of the energy accumulation. The rates of change of the 

accumulation plots, presented in Figure 5.5, identify the arrival of specific events in time 

and frequency. The maximum change in energy in the frequency domain occurs at 4.05 

Hz, corresponding to the dominant frequency component in the signal. The dramatic shift 

in the rate of energy accumulation in time is evident in the left image, with the maximum 

energy in the time domain being fully realized at 53 s and sustaining itself for the 

duration of the signal. Understandably, the major changes in energy accumulation with 

frequency occur at the two harmonics of the signal. Though for this simple example, the 

plots in Figure 5.5 don’t seem to provide any significant additional information, these 

measures have greater utility in the case of more complex signals with a richer 

distribution of frequencies and nonstationary characteristics, which will be considered 
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FIGURE 5.4. Energy accumulation in frequency 
domain (left) and time domain 
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subsequently. Note again that these energy accumulations, being based on the area under 

the wavelet spectra, again compensate for the amplitude distortions that result from the 

multi-resolution analysis and therefore provide a true representation of the energy 

contributed by each frequency component.  

The final series of plots in Figure 5.6 demonstrates the instantaneous spectra at 4 

distinct time intervals in the course of the signal. The first plot is taken from the signal 

when only the 4 Hz component is present. The subsequent pair of plots show the 

appearance of the second component in the vicinity of 50 s, as the energy associated with 

that component gradually phases in to the scalogram. Once both components are fully 

present in the last plot, it is evident that the magnitudes of the instantaneous spectral 

peaks are not equal, despite the two cosines having the same amplitude. Again, this is to 

insure energy conservation, since the higher frequency peak is associated with a larger 

frequency range and thereby greater bandwidth, accounted for by the scaling of wavelet 
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FIGURE 5.5. Signal and rate of change of energy accumulation in time 
domain (left) and marginal spectrum and rate of change of energy 
accumulation in frequency domain for example cosine signal 
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scalogram values by a. However, by integrating the areas under the spectral peaks in each 

plot of Figure 5.6 and dividing by the total area under the curve as described in Equation 

5.15, the relative strength of each component at that instant in time is assessed. The 

results are tabulated in Table 5.2 and indicate that the individual frequency components 

were identified with sufficient accuracy and their relative contributions, outside of the 

transitory period, were accurately identified, again affirming that by considering spectral 

energy and not amplitude, the effects of a multi-resolution analysis can be adequately 

compensated for. Note that the transitory period exists since the wavelet considers 

information to the past and future of a given time instant. Therefore, the occurrence of the  
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FIGURE 5.6. Wavelet instantaneous spectra taken at critical time steps 
in the example signal evolution: t=20 s, 48.5 s, 51 s, 75 s 
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TABLE 5.2 

 
 RELATIVE CONTRIBUTIONS OF EACH COMPONENT TO INSTANTANEOUS 

SPECTRA FOR EXAMPLE 
 

tj IF1 )(ˆ
1 jtE  IF2 )(ˆ

1 jttE =  
20 s n/a n/a 3.98 100% 
49 s 1.98 7.4% 3.98 92.3% 
51 s 1.98 45% 3.98 54.7% 
75 s 1.98 50% 3.98 50% 

  
 
 

 
 

  

     

second cosine is not pinpointed at an instant, but its occurrence is sufficiently localized in 

time. The scalograms, wavelet instantaneous frequency spectra and wavelet marginal 

spectra are considered throughout the subsequent discussions to permit a general 

identification of frequency components in time and to isolate meaningful events. The 

other wavelet energy measures based on wavelet instantaneous spectra are then consulted 

to determine the relative contributions of each frequency component or event in the 

signal. 

5.4 Earthquakes 

The birth of wavelets can actually be traced back to its applications in seismology. It was 

Morlet’s work in reflection seismology that led him to propose sending shorter 

waveforms at high frequencies obtained by scaling a single function called a wavelet. At 

the same time, Grossman was working on coherent quantum states and realized the 

applicability of Morlet’s idea to his field. The collaboration between these two led to the 

formalization of the continuous wavelet transform, known in French as Ondelettes 
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(Grossman & Morlet, 1984). Though these ideas were not new to mathematicians 

working in harmonic analysis and researchers in multi-scale image processing, the work 

of Grossman and Morlet, as well as the mathematician Meyer, brought together 

researchers from a variety of fields to unify the theory of wavelets. Therefore it is only 

fitting to return to the seismic problem as the first example of wavelet applications in 

Civil Engineering. As the discussions in Gurley & Kareem (1999) suggest, there is 

considerable promise in the applications of wavelet transforms in the analysis of not only 

seismic ground motions, but also the resulting response. The following sections apply the 

aforementioned wavelet measures in the analysis of nearfield records from five seismic 

events: El Centro (1940), Mexico City (1985), Loma Prieta (1989), Northridge (1994) 

and Kobe (1995). For these events, only the ground motions associated with the larger of 

the two horizontal directions are analyzed – the vertical components are not considered at 

this time. For each of these events, due to the short duration characteristics, a fo = 1 Hz 

Morlet wavelet was first applied, and a more detailed examination of the frequency 

content was achieved using fo = 3 Hz, with overlap factor (OF) of 1. These two analyses 

are referred to throughout the examples in this section as the primary and secondary 

analyses, respectively. Each signal is analyzed at scales corresponding to Fourier 

frequencies from 0.05 Hz to the Nyquist frequency. Dependent on the length of the 

record and the central frequency chosen, padding was provided wherever possible using  

β = 2 or 3. Subsequently, the analysis of a low-rise structure’s response to the Northridge 

quake will also be investigated. It should be cautioned when viewing the following 

results that each of these earthquake records and their associated time and frequency 

characteristics depend strongly on local soil conditions and topography and should not be 
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considered representative of the complete suite of seismic motions associated with the 

event. 

Finally, it should be again noted that all wavelet scalograms, marginal spectra, 

and instantaneous spectra do not correct for reduced spectral amplitude or enhanced 

spectral bandwidth that results from the multi-resolution analysis, though the area under 

each spectral peak does appropriately reflect the energy contributions of each component. 

For this reason, all energy accumulations and energy measures defined in this chapter and 

calculated from the data presented herein are based upon the area under the wavelet 

spectra, as discussed previously, and thus directly account for the consequences of multi-

resolution analyses, providing a true energy measure and gauge of the relative 

contributions of each component, which cannot be ascertained directly from wavelet 

spectral amplitudes. Therefore, only the plots of energy accumulation and rates of change 

of energy accumulation appropriately account for this multi-resolution effect. 

5.4.1 El Centro (1940) 

The El Centro earthquake struck southern California on May 18, 1940 at 20:37 local 

time. The recorded time history of the event, sampled at 50 Hz, is subjected to two 

aforementioned wavelet analyses. The mean wavelet resolutions are given for each 

analysis in Table 5.3. 

Figure 5.7 shows the wavelet scalograms for these two analyses and their 

accompanying wavelet instantaneous frequency spectra. The impact of wavelet 

resolutions is immediately obvious, as the coarser frequency resolution of the primary  
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TABLE 5.3  
 

RESOLUTIONS OF FOURIER AND WAVELET ANALYSES 
 

 fo = 1 Hz fo = 3 Hz 
 

 
∆fFFT f∆  t∆  f∆  t∆  

El Centro 0.19 Hz 1.41 Hz 0.05 s 0.47 Hz 0.17 s 
Guerrero MC 0.31 Hz 1.13 Hz 0.07 s 0.38 Hz 0.21 s 
Loma Prieta 0.19 Hz 0.71 Hz 0.11 s 0.23 Hz 0.34 s 
Northridge 0.19 Hz 0.71 Hz 0.11 s 0.23 Hz 0.34 s 
Kobe 0.10 Hz 0.71 Hz 0.11 s 0.23 Hz 0.34 s 
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FIGURE 5.7. El Centro ground motion, wavelet scalogram and WIFS (top to 
bottom) for primary (left) and secondary analyses 
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analysis leads to long vertical bands and the coarser temporal resolution of the secondary 

analysis produces horizontal energy bands. However, viewing the two analyses in tandem 

can be beneficial. The primary analysis provides better temporal information and affirms 

that the energy lies dominantly between 4 and 7 s, though mostly near the former. In fact, 

three distinct events are detected in the vicinity of 3.6, 6.5 and 13.8 s. The first event has 

a broadband energy range the sweeps from 1 to 4 Hz, though focused between 1-2 Hz 

until the fifth second, when it narrows to the 1 Hz range. The second event also clusters 

in the 1-2 Hz range, while the third event is decidedly in the 1 Hz vicinity. Despite the 

presence of low frequency components in the wake of the first event, their contributions 

appear from the scalogram to be minor, as are the trace high frequency components. The 

WIFS affirms the richness of frequencies particularly associated with the first major pulse 

of the quake and to some extent, the secondary pulse, while isolating the persistent 1 Hz 

component. A wealth of intermittent high frequency and low frequency contributions is 

apparent, specifically in the vicinity of the first event near 4 s.  

The secondary analysis separates distinct bands of energy near 1, 1.5, 1.7 and 2 

Hz, though clearly concentrated near 1.5 Hz. In agreement with the primary analysis, the 

broadband features and dominant energy are localized near 5 s, which extends into the 

higher frequencies. The additional burst of energy at 27 s is more clearly associated with 

2 Hz. The enhanced resolution of the WIFS in the secondary analysis affirms the richness 

of energy at 2.3 Hz and even down to 0.4 Hz. While the presence of contributions 

beneath 1 Hz were noted for this record by Huang et al. (1998), their contributions to the 

overall signal energy, relative to the other participating frequencies will be addressed 
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subsequently. Note also the variation in the ridges that indicate subtle shifts to higher and 

lower frequencies, only evident due to the enhanced frequency resolution.  

A comparison of the Fourier power spectrum and the marginal wavelet spectrum 

for each analysis is provided in Figure 5.8. Table 5.3 lists the frequency resolution of the 

Fourier analysis and the mean frequency and time resolutions of the wavelet analysis. 

The traditional Fourier spectrum indicates that there is noteworthy energy below 1 Hz in 

this quake, though the vast majority of the signal’s energy concentrates between 1 and 2.2 

Hz, with peaks at 1.4 and 2.0 Hz and an additional peak near 4 Hz. Beyond 5 Hz, there is 

little energy content within the record. The low frequency energy rapidly falls off beneath 

0.84 Hz. As expected the marginal wavelet spectrum in the primary analysis identifies the 

same general frequency content and dominance of the 1-2 Hz content, but with less of the 

details, due to the lower frequency resolution. The enhanced resolution of wavelets at the 

lower frequencies more clearly identifies the distinct presence of a low frequency 

contributor between 0.3 and 0.6 Hz, but lacking sufficient energy. The more refined 

resolutions in the secondary analysis provide greater detail on the robust distribution of 

energy between 0.82 and 2.5 Hz. The energy falls of quickly beyond this range. While a 

low frequency component is noted down to 0.4 Hz, it relative contributions again seem to 

pale in comparison to the energetic components in the vicinity of 1-2 Hz.  While the 

general trends in the secondary wavelet marginal spectrum are consistent with that of the 

Fourier spectrum, there is a difference in amplitude, which is merely the function of the 

finer bandwidth in the secondary wavelet analysis, directly accounted for in the scaling 

by a. Still the energy is completely conserved in the wavelet representation, as evidenced 

by Table 5.4 when compared to the signal standard deviation σ. 
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TABLE 5.4  

 
SIGNAL STANDARD DEVIATION AS ESTIMATED FROM FOURIER AND 

WAVELET MARGINAL SPECTRA 
 

 σWT 
[cm/s2] 

 

σ 
[cm/s2] 

σFFT 
[cm/s2] 

fo = 1 Hz fo = 3 Hz 
El Centro 44.06 44.15 44.10 44.07 
Guerrero MC 24.20 24.81 24.21 24.20 
Loma Prieta 71.32  75.44  71.39  71.32 
Northridge 69.06 71.43 69.12 69.07 
Kobe 115.19 155.19 115.31 115.17 
     
  

 
   

The energy accumulation plots account for the multi-resolution characteristics of 

wavelets and provide a more objective tool for investigating the dominant energy 

components in the signal in comparison to the magnitude of wavelet scalograms, as 

shown in Figure 5.9. The primary energy accumulation in time demonstrates a jaggedness 

indicative of the arrival of distinct energetic pulses. By compromising this temporal  
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FIGURE 5.8. Wavelet marginal spectra with Fourier power spectrum for 
primary (left) and secondary analyses for El Centro quake 
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FIGURE 5.9. Energy accumulation in frequency domain and time domain 
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FIGURE 5.10. Wavelet marginal spectrum and rate of change of energy 
accumulation in frequency domain for primary (left) and secondary analysis 
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resolution in the secondary analysis, a more precise measure of the energy accumulation 

in frequency is achieved. To enhance the discussion further, the rates of change of these 

energy measures in both frequency and time, are presented in Figures 5.10 and 5.11.  

 

Looking first at the accumulation of energy in the frequency domain, from Figure 

5.10, it is evident that the maximal rate of change in the primary analysis occurs at 1.35 

Hz, though there is limited detail due to the loss of frequency resolution. The frequencies 

associated with these elevated rates of energy accumulation span a wide band from 1 to 

1.9 Hz, with a minor change in energy associated with 0.4 Hz and no significant energy 

beyond 10 Hz. The secondary analysis, by virtue of a refined frequency resolution, 

identifies several distinct frequencies at which energy is contributed. Still the, maximum 

rate of change in the signal is constrained between 1.15 and 2.0 Hz. Beyond 2.5 Hz, there 

is little change in the energy accumulation within the signal. The steep ascent at 2.5 Hz in 

FIGURE 5.11. El Centro ground acceleration and rate of change of energy 
accumulation in time domain for primary (left) and secondary analysis 
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Figure 5.9, marked by the dotted vertical line in the secondary analysis, affirms this 

concentration. Based on the noteworthy frequencies identified in Figure 5.10, an 

indication of the energy associated with these frequencies can be determined from the 

accumulation plots in 5.9. Dotted lines are used to indicate frequencies of interest.  

In the primary analysis, the dominant influx of energy came from the frequencies 

between 1 and 1.9 Hz. At this time, the signal energy jumps from 61% to 88%. 

Investigating this in more detail through the secondary analysis, it is shown that 37.6% of 

the energy is associated with frequencies beyond 2.5 Hz. About 40% of the total signal 

energy is associated with frequencies between 1.15 and 2.5 Hz. Frequencies from 0.8 to 

1.15 Hz account for only a few percent of the signal energy. Only 8% of the energy lies 

below 0.8 Hz. It is clear from the energy accumulation plot in Figure 5.9 that the single 

greatest jump in energy is associated with 1.15 Hz, where the cumulative energy rises 

from nearly 80% to 90%. From this analysis, it is evident that the range of frequencies 

from 1.15 to 2 Hz is the most energetic. 

In the time domain, it is evident from Figure 5.11 that the primary analysis is 

superior in capturing many of the individual pulses in the record, though both analyses 

capture the same overall trends. The primary analysis indicates that most rapid changes in 

the energy within the signal occur between 4 and 7 s. Within this time frame, three 

distinct events are discernable: 4.1 s, 5.5 s and 6.7 s, with the most rapid change in energy 

being associated with the first in this series. The energy falls of very quickly following 

this flurry of activity. Beyond 10 s, there are 4 events, all bringing comparable levels of 
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energy: 11.1 s, 13.7 s, 26.2 s and 27.9 s. The occurrence of each of these events is 

denoted by dotted lines in the primary energy accumulation plot in Figure 5.9.  

The accumulation of energy in time is not smooth due to the arrival of many small 

pulses associated with the arrival of the primary (P) and secondary (S) waves. With the 

arrival of the first pulse at 4.1 s, the energy accumulated doubles from 14% to 28%. The 

intermediate event at 5.5 s brings the energy levels up to 35.8%, with the next major 

event at 6.7 s causing a jump in accumulated energy from 41% to 55%. The accumulated 

energy tends to slowly level off near 8 s at about 60% of the total signal energy. The 

minor event at 11.1 s brings the accumulated energy to 65%, followed by the event near 

14 s by which time the accumulated energy has reached 75%, steadily ascending. The last 

two minor events cause the accumulated energy to spike up from 89% to 93%, followed 

by a slow accumulation for the next 30 s. Though lacking the same level of detail, the 

secondary analysis affirms that the major pulse is associated with the fourth second and 

energy levels are generally sustained up to the seventh second, rapidly falling off after 10 

s. Minor events do follow, with the most distinct near 28 s. This analysis is in agreement 

with the primary analysis that 50% of the signal energy is released in the first 7 s. 

Based on these temporal analyses, four instantaneous spectra were extracted for 

more detailed analysis in Figure 5.12. Near 4 s, marked by the arrival of the P-waves, the 

primary analysis detects a very broadband spectrum holding 96% of the signal energy at 

this time, indicating a large suite of contributing frequencies. Though peaking at 1.6 Hz, 

the lack of frequency resolution implies that there are likely multiple distinct frequency 

components at this time. The secondary analysis sheds more light on the situation. The  
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display has several peaks between 1 and 2 Hz, where most of the energy appears to 

reside. The level of energy between 3 and 6 Hz is fairly constant and holds 30.6% of the 

signal energy at this time. There is only a minor low frequency contribution centered at 

0.45 Hz, with only 2.1% of the instantaneous signal energy. As listed in Table 5.5, there 

are distinct components in the vicinity of 1 and 2 Hz that contribute fairly equally to the 

overall instantaneous energy of the signal. In total, over 40% of the signal energy lies in 

this vicinity. An additional component of high frequency energy accounts for another 

12.3% of the instantaneous signal energy. At 6.5 s, the primary analysis now identifies 

more distinct components, indicating that the wide array of frequencies was only present 

in that first pulse. The component centered at 0.62 Hz contributes 7.1% to the energy at 

this time. The second component, centered at 1.8 Hz, but essentially including 

contributions from 1.6 to 2 Hz by virtue of the reduced frequency resolution, captures 

51.7% of the signal energy. A third component centered at 5.2 Hz includes energy from 

4.6 to 5.8 Hz, holds 33.5% of the signal energy at this time. The added detail of the 

secondary analysis affirms a richness of energy from 1-3 Hz. Lumping this energy into 

two modes at 1.2 and 2.2 Hz, corresponding to 23.5% and 30.7% of the instantaneous 

signal energy, generally consistent with the distribution of energy noted by the primary 

analysis. Again, while visible, the low frequency component centered at 0.55 Hz 

contributes only 3.8% to the instantaneous signal energy. By 13.6 s, both the primary and 

secondary analyses concur that there is a single mode response near 1.5 Hz associated 

with over 60% of the overall instantaneous signal energy, as shown in Table 5.5. At 28 s, 

the last significant pulse arrives. With its arrival, a suite of frequency components returns. 

The primary analysis detects three major components. The component centered at 2.1 Hz  
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TABLE 5.5 

 
RELATIVE CONTRIBUTIONS OF EACH COMPONENT TO INSTANTANEOUS 

SPECTRA FOR EL CENTRO EARTHQUAKE PRIMARY AND SECONDARY 
ANALYSES 

 
tj  

[s] 
IF1 

[Hz] 
)(ˆ

1 jtE
[%] 

IF2 
[Hz] 

)(ˆ
2 jtE

[%] 

IF3 
[Hz] 

)(ˆ
3 jtE  
[%] 

IF4 
[Hz] 

)(ˆ
4 jtE

[%] 
IF5 

[Hz] 
)(ˆ

5 jtE
[%] 

Primary Analysis 
4.0   1.60* 96.0       
6.5 0.62 7.1 1.87 51.7   5.21 33.5   
13.6   1.47 79.4       
28.0   1.51 65.3 2.13 35.3 4.69 56.5   

Secondary Analysis 
4.0 1.13 11.6 1.88 16.7 2.16 13.3 4.0* 30.6 7.6 12.3 
6.5 1.20* 12.5   2.20* 30.7     
13.6   1.55 62.0       
28.0     2.13 43.7 3.89* 48.6   

*broadband energy contribution centered or peaking at this frequency. 

assimilates contributions from 1.9 to 2.4 Hz for a 35.6% share of the instantaneous signal 

energy. A broader-band component near 4.7 Hz with contributions from 4.19 to 5.19 Hz 

holds 56.5% of the instantaneous energy. Again, a low frequency component near 0.89 

Hz is present but makes a contribution of only 4% to the energy at that time. The 

resolution of the secondary analysis is able to separate more of the high frequency 

components and affirms that the only significant components is actually at 2.13 Hz with 

43.7% of the signal energy. A broadband characteristic, centered at approximately 4 Hz, 

appears to include the contributions of two modes and nearly one half the signal energy, 

as shown in Table 5.5. Though the Fourier spectrum agrees that energy is dominant 

between 1-2 Hz in this signal, the intermittent presence of specific contributions to the 
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overall signal energy can only be uncovered through time-frequency analyses such as 

those presented here. 

Interestingly, a similar time-frequency analysis via Hilbert spectra was conducted 

by Huang et al. (1998) on the same El Centro record, but with startlingly different results. 

The analysis suggested that tall buildings with frequencies less than 0.5 Hz are the 

primary targets of seismic energy during this event, contrary to all that was previously 

observed. The authors suggest that this feature of seismic motion went previously 

unnoticed as a direct consequence of the limited Fourier perspective in earthquake 

engineering. In this controversial analysis, Huang et al. produced a marginal Hilbert 

Spectrum with its energy focused below 5 Hz and more importantly dominating the sub-

0.5 Hz frequency range, in direct contrast to the Fourier spectrum. Their findings are 

shown in Figure 5.13. 

Based on this, Huang et al. (1998) cautioned that the “high density and low 

frequency should cause major concerns for earthquake engineering, for this is exactly the 

range of resonance for high-rise buildings.” However, these findings seem suspicious. As 

demonstrated in Figure 5.14, a cursory inspection of the IMFs generating the Hilbert 

marginal spectrum in Figure 5.13 indicates that the largest decomposed amplitudes are 

associated with the first 4 IMFs, which by inspection contain predominantly higher 

frequencies. (Note that the amplitude ultimately plotted in the Hilbert spectrum and its 

marginal spectrum is merely the SRSS combination of the real and imaginary 

components of the Hilbert transform of each IMF, i.e. the signal and its quadrature 

component (This procedure is discussed in more detail later in Chapter 7). The last five 
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IMFs appear to be associated with the frequencies of less than 1 Hz. Note that the 

amplitudes of these IMFs are markedly smaller. It makes little sense then for these 

components to produce the largest Hilbert spectral coefficients, as suggested by Figure 

5.13. 

 The concerns raised by Huang et al. (1998) were based upon a marginal Hilbert 

spectrum that misrepresented the nature of the seismic event. An explanation of the 

marginal Hilbert spectrum is given by Huang et al. (1998): 

…the frequency in either [the Hilbert Spectrum or Marginal Hilbert Spectrum] 
has a totally different meaning than the Fourier spectral analysis. [In the Hilbert 
Marginal Spectrum], the existence of energy at the frequency, ω, means only that, 
in the whole time span of the data, there is a higher likelihood for such a wave to 
have appeared locally...Consequently, the frequency in the marginal spectrum 
indicates only the likelihood that an oscillation with such a frequency exists.  

FIGURE 5.13. (a) Fourier spectrum and (b) low 
frequency zoom; (c) Hilbert marginal spectrum and 
(d) low frequency zoom for El Centro analysis 
conducted by Huang et al. (1998) 
 



174 

Viewed from this perspective, the heavy concentration of low frequency components in 

the marginal Hilbert spectrum of Figure 5.13 only indicates that the low frequency 

components occurred locally most persistently throughout the time history. However, this 

does not imply that they carried the majority of the seismic energy, as the IMFs in Figure 

5.14 affirm. As the scalogram and WIFS of the secondary analysis in Figure 5.7 

demonstrate, the persistent presence of low frequency components can be rationalized, 

however the detailed analysis of these components reflects that their energy contributions 

are not dominant relative to other more energetic components between 1 and 2 Hz. As 

discussed previously in Figure 5.9 in the context of cumulative energy in the frequency 

domain, 90% of the signal energy lies below 1 Hz. Further, the instantaneous spectral 

analyses discussed previously affirm that, while these components are present, their 

FIGURE 5.14. Ten IMF components from El Centro data provided 
by Huang et al. (1998) 
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contributions to each instantaneous power spectrum was on the order of a few percent, 

and no components of any substance were observed below 0.4 Hz. On no account does 

the wavelet analysis herein affirm Huang et al.’s findings. In fact, the wavelet marginal 

spectra show good agreement overall with the Fourier representation, as expected. 

It is not clear whether the calculation of the marginal Hilbert spectrum was 

erroneous or if its general tendency to display “likely components” as opposed to more 

“energetic components” is to blame for the counterintuitive perspectives in Figure 5.13. 

Regardless, any discussions based on time-frequency analyses must be conducted with 

care and verified against physical observations before unsubstantiated claims of 

ignorance on the part of earthquake engineers are levied. 

5.4.2 Mexico City (1985) 

This magnitude 8.1 earthquake that devastated Mexico City on September 19, 1985 

remains in the minds of many as one of the most tragic quakes in North American 

history, as news cameras documented rescue attempts amidst the rubble of apartment 

buildings and hospitals. The quake, which occurred on the western coast of the Mexican 

peninsula, had tremendous impacts upon the valley of Mexico City as a result of unique 

soil conditions, which amplified the low frequency components.  Though the frequencies 

of amplification varied from site to site within the city, the amplification was largely 

between 0.2 and 0.7 Hz. The concentrations of energy in the range of 0.2-0.6 Hz, being 

much higher than in previous quakes of comparable magnitude, led to heavy damage of 

structures in this period range (Jennings & Sanchez-Sesma, 1989). To demonstrate the 

pronounced impacts of soil conditions, a nearfield record taken near the epicenter in the 
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coastal regions of Mexico is first analyzed, recorded at Caleta de Campos, part of the 

Guerrero Array. To avoid confusion, this nearfield record will be referred to as the 

Guerrero MC (Mexico City) record in subsequent discussions. This coastal station had an 

epicentral distance of 27.1 km, making it well suited to capturing the nearfield 

characteristics of the quake. Subsequently, a free field record from the Mexico City 

valley, which typifies the low frequency amplification causing much of the damage in 

this quake, will also be analyzed. The nearfield Guerrero MC record is of considerable 

duration, although the peak ground accelerations are not as significant. The record, 

originally sampled at 200 Hz, is downsampled to 40 Hz for analysis. 

The primary and secondary wavelet scalograms and WIFS for the Guerrero MC 

nearfield record are presented in Figure 5.15. For reference, the mean wavelet resolutions 

for each analysis are again provided in Table 5.3. The enhanced temporal resolution of 

the primary analysis isolates 3 energetic bursts: one event between 10 and 15 s and the 

other between 1 and 1.75 Hz, followed by strong shaking between 2 and 3 Hz 

accompanied by a low frequency component near 20 s. A slight burst of energy near 21 s 

is also apparent. From the scalogram and the associated WIFS, there is a collection of 

energy over 30 s and spanning a robust range of frequencies. Note in the primary WIFS 

that dominant ridges surface near 1.75 Hz and 0.5 Hz, the latter particularly in the 

vicinity of the strong shaking at 20 s. These are flanked by intermittent contributions in 

the high frequency range. The refined frequency resolution in the secondary analysis 

further affirms the richness of energy and the concentrations near 2.55 Hz and 1.75 Hz 

around the 20th second, as well as the precursor to the strong shaking at 12 s. Though 

diminished in magnitude by virtue of the dilated temporal windows, a residual low 
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frequency component is still apparent and further affirmed by the ridges in the secondary 

WIFS. The secondary scalogram does give a better perspective on the intermittence of 

high frequency components within the record, though the resolutions in the low 

frequency lead to a dilation of the time windows evident by the elongated bands in the 

low frequency domain. The fluctuations of these high frequency ridges become more 

readily apparent in the secondary WIFS, as does the downshift of midrange frequencies 

and upshift of the low frequencies approaching the strong shaking near the 20th second. 

A comparison of the Fourier spectrum and wavelet marginal spectrum is provided 

in Figure 5.16. From the Fourier spectrum, it is clear that there are two “tiers” of energy 
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FIGURE 5.15. Guerrero MC nearfield ground motion, wavelet scalogram 
and WIFS (top to bottom) for primary (left) and secondary analyses 
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associated with this record. The first and more energetic tier has energy from 0.25 to 5 

Hz, peaking at several distinct frequencies: 0.62, 1.86, 2.83, 3.75 and 4.72 Hz. The 

second tier from 5.3 to 9.6 Hz has diminished spectral amplitudes. The largest Fourier 

amplitude is associated with 1.86 Hz, as shown in the plot at the left in Figure 5.17. The 

wavelet marginal spectrum of the primary analysis accentuates the low frequency 

components of the record, though identifying a similar band of contributing frequencies, 

though with finer detail in the secondary analysis. Both analyses affirm the presence of a 

low frequency component as well as the presence of energy out to 5 Hz, then rapidly 

falling off by 10 Hz. The efficacy of both wavelets and Fourier transforms in capturing 

the signal energy is chronicled in Table 5.4. 

Figure 5.17 presents the energy accumulation rates in frequency and time for the 

primary and secondary analyses. As the figure demonstrates, the primary analysis 

smoothes out many of the details of the energy accumulation with frequency. The rates of  

FIGURE 5.16. Wavelet marginal spectra with Fourier power 
spectrum for primary (left) and secondary analyses for Guerrero MC 
nearfield record 
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FIGURE 5.17. Energy accumulation in frequency domain and time domain 
for primary (left) and secondary analysis of Guerrero MC nearfield record 
 

FIGURE 5.18. Wavelet marginal spectrum and rate of change of energy 
accumulation in frequency domain for primary (left) and secondary analysis 
of Guerrero MC nearfield motion 
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change of energy accumulation in frequency and time, shown respectively in Figures 5.18 

and 5.19, offer a more complete description of the energetic components of the quake. 

Due to the compromised frequency resolution in the primary analysis, the rate of 

change of energy accumulation in the time domain in Figure 5.19 is able to isolate a very 

energetic component at 0.47 Hz followed by a more broadband contribution peaking at 

1.76 Hz. The broadness of this peak implies that a bulk of the influx of energy into the 

system comes from frequencies in this vicinity. After plateauing at 4 Hz, the rate of 

change of energy accumulation in the frequency domain begins to fall off steeply by 12 

Hz. The secondary analysis provides some additional details on the participating 

frequencies. The richness affirms that while the single most energetic component is at 

0.48 Hz, a rather robust contribution from frequencies near 2 Hz is present. The peaks 

associated with influxes of energy into the system can be traced back to the accumulation  

FIGURE 5.19. Guerrero MC nearfield ground acceleration and rate of change 
of energy accumulation in time domain for primary (left) and secondary 
analysis 
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plot in Figure 5.17 to isolate specific contributions, as shown by the dotted vertical lines. 

This analysis reflects that approximately 6% of the signal energy lies at or below 0.49 

Hz. Though several frequency components less than 2 Hz are shown to provide increases 

to cumulative energy in the signal, a total of approximately 20% of the nearfield signal 

resides less than 2 Hz. Another 20% resides at frequencies above 7.62 Hz, consistent with 

the findings from simulation studies, which found that the Guerrero gap might produce 

energy at a wide distribution of frequencies including high frequency motions (Jennings 

et al., 1989). The primary analysis affirms that 79% of the energy associated with this 

nearfield motion is associated with frequencies greater than 1.8 Hz, despite the sharp 

increase in energy accumulation near 0.5 Hz. The nearfield Guerrero MC record was 

found to contain only approximately 3% of its energy at frequencies under 0.5 Hz. 

The intricacy of the rate of change in the time domain in Figure 5.19 highlights 

one of the unique characteristics of this event. Even with the reduced resolution of the 

secondary analysis, the energy influx into to the system is changing consistently between 

10 to 20 s with a number of small events where the rate of energy accumulation suddenly 

increases. The most noteworthy of these events is at the twentieth second. Though falling 

off between 20 and 35 s, the level of activity in this event spans nearly 40 s. A number of 

these isolated events can be traced back to the accumulation plots in Figure 5.17. In doing 

so, it is shown that 13% of the energy arrives in the first 10.4 s. After which, the next 3 s 

bring an additional 13% of the energy. The ten seconds of shaking from 14 to 24 s brings 

over 46% of the signal energy, isolating the most energetic component near 20 s. The 

following seven seconds bring another 14% of the signal energy before quickly falling 

off beyond the thirty-first second. The accumulation in this event takes longer than the 
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other events considered in this study. The enhanced temporal resolution of the primary 

analysis, if anything, affirms the flurry of activity associated with this quake. The primary 

analysis generally confirms that the first 10 s is associated with only 10% of the signal 

energy, while 47% of the signal energy comes in the next 10 s of shaking.   

The analyses of the instantaneous spectra taken at critical moments in the 

nearfield event are shown in Figure 5.20. In the primary analysis, the coarse frequency 

resolution results in the lumping of energy into wider frequency bands. At 10.3 s, despite 

the presence of a low frequency component near 0.5 Hz, a large concentration of energy 

is associated with the high frequencies. As shown in Table 5.6, the component near 1.87 

Hz, which broadly captures contributions from 1.66 to 2.08 Hz, holds 18.6% of the 

instantaneous energy. The next component at 3.37 Hz representing frequency content 

from 2.99 to 3.74 Hz, is associated with over one-fourth of the instantaneous energy. The 

higher frequency bands from 6.42 to 8.05 Hz hold the most energy, 42.5%. The 

secondary analysis, though providing added detail, generally confirms that there is a 

robust distribution of energy noted in the primary analysis. Again the contributions near 

0.5 Hz are just over 2%, as shown in Table 5.6. The first harmonic component of the 

primary analysis is now broken into two peaks at 1.41 and 1.87 Hz, which pool between 

them nearly 20% of the instantaneous signal energy. A very wide suite of energy from 3 

to 6 Hz contains 33.2% of the instantaneous signal energy. A large contribution of energy 

near 7 Hz is also noted. The primary analysis at the twentieth second, now associated a 

more definitive share of the instantaneous energy with the mode near 0.5 Hz. By virtue of 

the enhanced temporal resolution, it is apparent that the majority of energy associated 

with this low frequency component is associated with the pulse at the twentieth second,  



183 
 

FIGURE 5.20. Wavelet instantaneous spectra taken at 
critical time steps in the Guerrero MC nearfield event for 
primary (top) and secondary analysis 
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as instantaneous spectral analyses at other time intervals fail to show such a strong 

component at this frequency. Despite this contribution, as shown in Table 5.6, a majority 

of the energy in this time interval remains in the high frequency ranges. The secondary 

analysis affirms that the low frequency components begin to more clearly separate into 

two distinct components less than 1 Hz, do retain more significance within the shaking 

near the twentieth second. They are coupled with contributions of similar order (see 

Table 5.6) from distinct frequencies near 1.93, 2.78 and 3.70 Hz. A very wide band of 

high frequencies attributes the remaining energy in this time interval. Moving away from 

the most energetic moment in the shaking, the emphasis on the low frequencies 

diminishes and the energy again moves toward the higher frequencies. Energy now is 

detected in significant quantities all the way to 8.62 Hz, as shown in Table 5.6, affirming 

the ability of the Guerrero gap to produce such excitations. The presence of high 

frequency shaking is affirmed in the secondary analysis in Table 5.6, though still 

retaining the significance of the low frequency component. This may be due to the fact 

that the compromised temporal resolution of this analysis leads to a smearing of energy 

with time at low frequencies.  

By 33.5 s, some of the low frequency content has resurfaced in the primary 

analysis, though paling in comparison to the contributions at higher frequencies. The 

simultaneous presence of both high and low frequency shaking is a unique characteristic 

of the Mexico City event. The individual contributions are again noted in Table 5.6. The 

secondary analysis affirms a decided shift toward the higher frequencies, concentrating a 

majority of the instantaneous energy above 5 Hz. However, the persistent presence of the  
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TABLE 5.6 
 

 RELATIVE CONTRIBUTIONS OF EACH COMPONENT TO INSTANTANEOUS 
SPECTRA FOR GUERRERO MC NEARFIELD EARTHQUAKE PRIMARY AND 

SECONDARY ANALYSES 
 

tj  
[s] 

IF1 
[Hz] 

)(ˆ
1 jtE
[%] 

IF2 
[Hz] 

)(ˆ
2 jtE

[%] 

IF3 
[Hz] 

)(ˆ
3 jtE  
[%] 

IF4 
[Hz] 

)(ˆ
4 jtE

[%] 
IF5 

[Hz] 
)(ˆ

5 jtE
[%] 

Primary Analysis 
10.3   1.87 16.7 1.87 18.6 3.37 26.3 7.24 42.5 
20.0 0.49 12.1      3.77 41.6 6.72 34.76 
24.7 0.49 2.56 1.34 5.43   4.82 53.4 8.62 29.9 
33.5 0.56 5.54 1.47 11.9   5.34 25.9 8.68 42.2 

Secondary Analysis 
10.3 0.49 2.2 1.41 6.8 1.87 13.5 4.03* 33.2 7.05 36.3 
20.0 0.49 4.91 0.95 4.02 1.93 9.48 2.78 17.3 3.70 13.1 
24.7 0.49 6.05   4.69 34.7 5.87 11.9 9.14 24.9 
33.5 0.56 4.50 1.41 5.86 2.45 3.80 5.08 21.6 8.23 46.4 

*midpoint of wide band energy distribution. 

low frequency contributions at 0.5 Hz should be noted, as they will play a critical role 

once the seismic waves arrive in the Mexico City valley. 

The collapse of a number of high-rise dwellings in the Mexico City earthquake 

emphasized the significance of site conditions in enhancing seismic risk, as it was 

observed that, at some locations in and near Mexico City, components in the vicinity of 

0.5 Hz were dramatically amplified. Such amplification was not evident in coastal 

records, as shown in the preceding analysis and in Singh et al. (1989). In fact, ground 

motion at the lakebed sites in Mexico City were amplified nearly 75 times in the vicinity 

of 0.5 Hz in comparison to the costal sites of equal distance from the source (Singh et al., 

1989). To demonstrate the dramatic amplification of the low frequency component, a free 

field record from the Mexico City Valley is analyzed by the aforementioned primary 
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analysis technique. The mean wavelet time and frequency resolutions are 0.113 s and 

0.706 Hz, respectively, and the resolution of the accompanying Fourier analysis is 0.098 

Hz. Upon comparing the farfield time history in Figure 5.21, recorded in Mexico City, 

with the nearfield Guerrero MC time history in Figure 5.15, the regular periodic 

characteristic of the farfield record and the elongation of period are immediately evident. 

An inspection of the marginal wavelet spectrum and the Fourier spectrum in Figure 5.21 

demonstrates the amplification of the low frequency energy of the event that is largely 

credited with the heavy damage to structures of comparable period, as noted in the post-

disaster surveys of Mexico City. A strong amplification of the 0.49 Hz component is 

apparent with only a slight presence at 1.46 Hz, which is comparatively negligible. 

Though this 0.5 Hz component was present in the coastal Guerrero MC record analyzed 

previously, the local site conditions clearly amplified this component of the shaking far 

above all others. The agreement between the wavelet marginal spectrum and the Fourier 

spectrum is excellent in this regard. The areas under the respective spectra also show 

good agreement with the signal variance. The signal had a standard deviation of 29.13 

cm/s2 in comparison to the 29.61 cm/s2 estimated from the Fourier spectrum and the 

29.16 cm/s2 from the wavelet spectrum. The enhanced low frequency resolution of the 

wavelet analysis is particularly beneficial in capturing the energy of this record. 

The scalogram also in Figure 5.21 affirms the concentration of energy at this 

frequency and identifies short duration pulses preceding the major pulse. The ridge 

extraction of the WIFS detects a subtle shifting of frequency. In comparison to the 

nearfield analysis in Figure 5.15, it becomes apparent that the amplification of the 0.5 Hz 

component dwarfs any residual contributions at the many other frequencies present in the 
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quake. The energy accumulations in time and frequency and the rate of change in time 

are provided in Figure 5.22. The rate of change in the frequency domain (not shown), 

peaks at 0.47 Hz, as can be inferred from the accumulation plot in Figure 5.22 that has a 

steep descent in this vicinity. From this plot, it is demonstrated that 80% of the energy at 

this site comes from frequencies between 0.37 and 0.67 Hz. An additional 10% of the 

energy is associated with frequencies less than 0.37 Hz. The rate of change of energy 

accumulation in the time domain is actually more insightful, isolating the three pulses in 

the quake at 42.5s, 50.4 and 58.5 s, which happens to be most energetic. Relaying this 

information to the energy accumulation, it is demonstrated that one-quarter of the signal 

energy arrives with this main pulse. To determine the frequency content of the quake at 
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FIGURE 5.21. Comparison of Fourier spectrum and wavelet marginal 
spectrum (left) for Mexico City farfield ground motion with wavelet 
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these various time intervals, several instantaneous spectra are assembled in Figure 5.23. 

At each of the time steps associated with peaks in the rate of change of energy 

accumulation in Figure 5.22, the single component at 0.49 Hz dominates, with 

approximately 98% of the instantaneous signal energy at that particular time interval. 

Only after the shaking has subsided at 79.4 s does another frequency component surface, 

as approximately 20% of the energy surfaces at 1.47 Hz, the component just barely 

visible in the Fourier spectrum presented previously. This analysis affirms that shaking 

associated with the main three pulses are strongly focused at 0.5 Hz, while it is only in 

the residual shaking afterward that the additional component at 1.47 Hz emerges. The 

complexity of the instantaneous power spectrum in this latter stage of shaking reflects 

that under the diminished shaking, the amplitude of the 0.5 Hz begins to approach the 

energy levels associated with other harmonics. 
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FIGURE 5.22. Energy accumulation in frequency and time (left), 
accompanied by Mexico City nearfield ground acceleration and rate of change 
of energy accumulation in time domain 
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5.4.3 Loma Prieta (1989) 

An earthquake measuring 7.1 Ms occurred 18 km beneath the Santa Cruz Mountains in 

California on October 17, 1989, at 17:04 local time. The California Strong Motion 

Instrumentation Program (CSMIP) station closest to the epicenter of this so-called Loma 

Prieta event was the Corralitos station, located approximately 10 km away and very close 

to the San Andreas fault near the center of the aftershock zone. At this site, 0.64 g of 

motion was detected. At that time, this was the first nearfield record of a magnitude 7 

event (Benuska, 1990). The ground motion record, with peak acceleration (PGA) of 

0.6297 g, was fortunately relatively short in duration.   

Again the two standard wavelet analyses used previously are presented in tandem 

for this event. The mean wavelet resolutions are given in Table 5.3. The signal was 

FIGURE 5.23. Wavelet instantaneous spectra 
taken at critical time steps in the Mexico City 
farfield record 
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downsampled from its original sampling rate of 50 Hz to 25 Hz to ease computation. 

Figure 5.24 shows the wavelet scalograms and the accompanying wavelet instantaneous 

frequency spectra for both analyses. Both the scalograms and WIFS affirm that the 

energy is primarily released within the first 10 s of the event. The primary analysis 

provides better temporal information and affirms that the energy lies between 2-10 s and 

concentrates at approximately 2.7-3 s, with the arrival of the largest pulse. The primary 

analysis detects a broad range of frequency contributions near 1 Hz and spanning all the 

way to nearly 4 Hz. Some secondary energy arrives near 5 and 7 s but pales in 

comparison to this initial pulse. The ridges in the primary analysis detect some slight high 

and low frequency contributions, which are minor in contrast to the persistent frequency 

contributions in the vicinity of 1.15 Hz, 1.5 Hz and 2.25 Hz. This latter component 

demonstrates a shift toward 3 Hz and then softens in frequency. Note that the most 

energetic burst at 2.8 s is tied to this higher frequency component. 

The secondary analysis affirms that the primary burst of energy is concentrated 

near 2.75 Hz, though there are now more distinct bands of frequency evident, by virtue of 

the enhanced resolution, at approximately 1.25 Hz, 1.75 Hz, 2.25 Hz and 3 Hz. 

Interestingly these latter two components begin to approach one another, the 3 Hz 

softening toward the stiffening 2.75 Hz component. This stiffening and softening was 

crudely captured in the primary analysis by the increase and drop in the higher frequency 

component peaking near 3 Hz. The energy associated with higher frequencies between 3 

and 4 Hz also is readily more apparent.  
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A comparison of the Fourier power spectrum and the marginal wavelet spectrum 

for each analysis is provided in Figure 5.25. The coarser primary analysis lumps the 

signal energy into two dominant bands of energy near 1.5 Hz and 3 Hz. However, 

revisiting Table 5.3, the frequency  resolution of the secondary wavelet analysis is more 

akin to the resolution of the Fourier spectrum. As such, this secondary analysis detects 

many of the finer spectral details of the Fourier analysis. The Fourier analysis identifies a 

dominant contribution near 1.4 Hz coupled with an energetic component near 2.8 Hz. 

These two dominant modes are similar to those specified by the primary wavelet 

marginal spectrum. The differences in amplitudes are merely the function of the finer 
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FIGURE 5.24. Loma Prieta ground motion, wavelet scalogram and WIFS (top to 
bottom) for primary (left) and secondary analyses 
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bandwidth in the secondary wavelet analysis directly accounted for in the scaling by a. 

Still the energy is completely conserved in the wavelet representation and even more so 

than the Fourier analysis, as evidenced by Table 5.4 when comparing to the signal 

standard deviation σ. Note that at the low frequencies, the superior resolution of the 

wavelet provides some added detail. In general, both the wavelet and Fourier spectra 

confirm that there is only trace energy below 1 Hz and above 4 Hz. 

The energy accumulation plots in Figure 5.26 account for the multi-resolution 

characteristics of wavelets and provide a more objective tool for investigating the 

dominant energy components in the signal in comparison to the magnitude of wavelet 

scalograms. The dotted lines on the energy accumulation with frequency are associated 

with the most significant spectral peaks identified in the primary and secondary analyses.  

In the primary analysis, the energy accumulated up to 2.8 Hz is 46%, and by 1.5 

Hz, 79% of the signal energy has been expelled. The four major peaks identified by the 

FIGURE 5.25. Wavelet marginal spectra with Fourier power 
spectrum for primary (left) and secondary analyses for Loma Prieta 
quake 
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secondary analysis verify that at 3.8 Hz, only 16% of the signal energy has been realized. 

By 2.8 Hz, this has jumped to 42% followed by a steep vertical ascent to 50% of the 

signal energy. This would indicate that nearly 35% of the total signal energy is associated 

with this component of the spectrum.  70% of the signal energy lies above 1.8 Hz with 

81% of the energy above 1.4 Hz again followed by a very steep ascent to nearly 90% of 

the signal energy. Thus 20% of the signal energy is associated with this lower frequency 

component. The vertical ascents at 2.8 and 1.4 Hz are indicative of very rapid changes in 

signal energy. The frequencies at which these occur can be considered the most energetic 

frequency components in the signal. This can be more readily visualized by examining 

the rates of change of energy accumulation, shown for frequency in Figure 5.27. For the 

primary analysis, it becomes evident that the most energetic frequency component is 

associated with 1.5 Hz, which corresponds to the dominant frequency component in the 

Fourier spectrum. An additional energetic component at 2.8 Hz is also affirmed, along 

with a minor low frequency presence at 0.5 Hz. The accumulation curves in Figure 5.28 

f [Hz] t [s] f [Hz] t [s] 
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E(
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FIGURE 5.26. Energy accumulation in frequency domain and time domain 
for primary (left) and secondary analysis of Loma Prieta 
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affirm that 90% of the signal energy is above approximately 1.25 Hz. In the secondary 

analysis, the findings are quite similar though more details are resolved. Still the energy 

is harnessed at 1.8 Hz and additionally near 3 Hz. The highest rates of change in energy 

accumulation are appropriately associated with the marginal spectral peaks and the 

analysis provides no evidence of significant high or low frequency contributions. 

The rate of change of energy accumulations in the time domain is provided in 

Figure 5.28. The superior time resolution of the primary analysis is evident. Not only is 

the arrival of the major pulse at 2.8 s clearly identified, but also the sustaining of energy 

between 3 and 8 s, with the exception of occasional spikes at 4 and 5.5 Hz. The 

termination of the major energetic components occurs near 8 s. After this point, the 

energy drops off steeply and has hardly any contributions beyond 9 s. Returning to the 

energy accumulation in Figure 5.26, the dotted line indicates the arrival of the major 

FIGURE 5.27. Wavelet marginal spectrum and rate of change of energy 
accumulation in frequency domain for primary (left) and secondary analysis 
of Loma Prieta 
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pulse where signal energy jumps from 25% to 30% and sustains its intensity over the first 

5 s, as over half the signal energy arrives. By nearly 7.8 s, 90% of the energy has passed, 

accounting for the drop off in dE(t)/dt beyond 8 s.  The secondary analysis is incapable of 

providing such detail. It captures the major event at 2.8 s and the cumulative energy plot 

affirms a jump from 24% signal energy to 33%, followed by a rather gradual decline in 

energy terminating at 10 s. This loss of resolution is the consequence of the trade-offs 

between time and frequency resolution. Still the analysis sufficiently gauges the 

localization of energy, with the times and frequencies associated with the maximum rates 

of change in energy accumulation representing the most significant contributors to the 

event. 

Four instantaneous spectra were extracted at key moments in the progression of 

the earthquake, as shown in Figure 5.29. At 2.8 s, the arrival of the major pulse of the 

quake, the primary analysis detects a bi-modal response peaking at 1.7 and 3.4 Hz. These 

two components respectively contribute 16.7 and 78.7 % of the energy at this time. The  

FIGURE 5.28. Loma Prieta ground acceleration and rate of change of energy 
accumulation in time domain for primary (left) and secondary analysis 
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analysis 
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enhanced resolution of the secondary analysis at this same time frame identifies two 

groupings of frequency contributions, each manifesting multiple peaks. The major 

grouping near 1.6 Hz holds 21% of the instantaneous signal energy and the grouping near 

3 Hz holds 71% of the instantaneous energy at this time. These statistics are chronicled in 

Table 5.7. Both analyses confirm that this first and most energetic pulse contains 

dominant energy in the vicinity of 3 Hz. The next instantaneous spectrum at 

approximately 4 s, associated with the minor event, shows a slight low frequency 

component but two major peaks at 1.27 and 2.91 Hz, a down shift in frequency from the 

earlier pulse. Still the energy contributions are primarily associated with the higher 

frequency component (82.4%), with only 11.1% associated with the 1.27 Hz peak. By 5.5 

s, the primary analysis continues to display two dominant modes with some minor low 

frequency content. The two peaks shift to the higher frequencies of 1.43 and 3.56 Hz with 

the arrival of this third event, also denoted in Figure 5.29. More energy is present in the 

lower frequency peak (31.6%) than previously observed, though the 3.56 Hz component 

still garners the most energy (63.6%). For the secondary analysis, this is better resolved 

to identify three major clusters of frequency contributions 1.5 Hz, 2.8 Hz and 3.9 Hz with 

respective instantaneous energy of 37%, 16% and 27%. While the primary and secondary 

analysis are in agreement with the energy contained in the 1.5 Hz vicinity, the  increase in 

resolution identifies in greater detail that the energy in the higher frequencies is 

predominantly near 3.9 Hz. 

By the 8th second, energy is known to drop off dramatically. The primary analysis 

identifies two components at 1.51 and 3.89 Hz, again shifting to higher frequencies, and 

energy now associated more so with the lower frequency component, 65.3% vs. 32.2%.  
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TABLE 5.7 
 

RELATIVE CONTRIBUTIONS OF EACH COMPONENT TO INSTANTANEOUS 
SPECTRA FOR LOMA PRIETA EARTHQUAKE PRIMARY AND SECONDARY 

ANALYSES 
 

tj  
[s] 

IF1 
[Hz] 

)(ˆ
1 jtE
[%] 

IF2 
[Hz] 

)(ˆ
2 jtE

[%] 

IF3 
[Hz] 

)(ˆ
3 jtE  
[%] 

IF4 
[Hz] 

)(ˆ
4 jtE

[%] 
IF5 

[Hz] 
)(ˆ

5 jtE
[%] 

Primary Analysis 
2.8   1.70 16.7   3.40 78.7   
4.0   1.27 11.1   2.91 82.4   
5.5   1.43 31.6   3.56 63.6   
8.0   1.51 65.3   3.89 32.2   

Secondary Analysis 
2.8   1.59 71.0   3.0 21.0   
5.5   1.50 37.0   2.8 16.0 3.9 27.0 
8.0   1.43 60.0       
14.0 0.70 15.6 1.52 23.7 2.50 14.9 3.32 20.7 3.97 15.6 

           
     

 
      

In the secondary analysis, the diminishing high frequency components are affirmed, as 

the instantaneous spectrum falls into a single modal response at 1.43 Hz, harnessing 60% 

of the instantaneous energy. The secondary analysis is extended to 14 s, where the energy 

release has mostly subsided. The response here still concentrates at 1.52 Hz (with 23.7% 

of the instantaneous energy), accompanied by a 0.70 Hz component (15.6%), a 2.50 Hz 

component (14.9%), a 3.32 Hz component (20.7%) and a 3.97 Hz component (15.6%). In 

terms of energy distribution, the energy of the quake following strong shaking is 

relatively broadband. A primary analysis (not shown) at this same time affirmed shared 

energy over a range of frequencies, with 28% localized near 1.5 Hz and 42% between 

2.32 and 3.67 Hz, in general agreement with the secondary analysis. 

When interpreting the primary analysis results, it is important to recall that a 

wider range of frequencies is contributing to the energy near 3 Hz, from 2.32 to 3.67 Hz, 
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giving it a consistently dominant share of the instantaneous energy. The secondary 

analysis identifies many contributors in this range whose individual share of the 

instantaneous energy generally sums to the energy associated with the higher frequency 

mode of the primary analysis. However, the rates of change of energy accumulation 

affirm that the frequencies near 1.8 Hz are responsible for the most sudden influx of 

energy. This is the single most dominant component of the quake, as also affirmed by 

Fourier, while the most dominant range of frequencies contributing to the shaking is near 

3 Hz, corresponding to the spectral contributor with the greatest “bandwidth,” a 

characteristic that also can be affirmed from the Fourier spectrum in Figure 5.25.  

5.4.4 Northridge (1994) 

The 6.7 magnitude Northridge earthquake on January 17, 1994 represented California’s 

most devastating earthquake in recent history. Striking at 04:30 local time, collapses of 

residential dwellings caught many victims in their sleep, prompting a wave of seismic 

research to uncover the sources of numerous failures and deficiencies in constructed 

facilities. The particular record analyzed herein was taken 2.31 km from the epicenter, 

representing nearfield, strong shaking. The signal was sampled originally at 50 Hz and 

then downsampled to 25 Hz for the following wavelet analysis, whose resolutions are 

provided in Table 5.3.   

As demonstrated by the primary analysis scalogram in Figure 5.30, with time, the 

energy associated with each pulse tends toward higher frequencies in a general hardening 

trend, observed near 4 s and 8 s. The first event has a distinctly higher frequency content, 

centered around 2 Hz, while the latter event shifts to 1.3 Hz. The majority of the signal 
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energy is released within the first 10 s of the event. Though detecting a slight high 

frequency contribution, the WIFS affirms the dominance of energy between 1 and 2 Hz. 

The two signatures at 4 and 8 s share an ascending characteristic with neighboring 

frequency bands. Persistent components at 0.5 and 0.8 Hz are also noteworthy. 

In the secondary analysis, also shown in Figure 5.30, the temporal bleeding noted 

previously is again present. The enhancement of frequency resolution isolates a few 

distinct frequency bands in the scalogram. The first event tends to focus primarily in the 

2.3 Hz range. The latter event has more of a concentration near 2.21 Hz, flanked by a 

0.76 Hz component. The abundance of low frequency ridges in the secondary WIFS may  
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FIGURE 5.30. Northridge ground motion, wavelet scalogram and WIFS (top to 
bottom) for primary (left) and secondary analyses 
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be a direct consequence of an over resolution in the low frequency range. It does however 

detect two mirroring ridges near 2 and 3 Hz.  

The Fourier spectrum in Figure 5.31 indicates that a wide band of energy from 

0.46 to 3.01 Hz provides the driving energy in the earthquake. The largest Fourier 

amplitudes are near 2.3 Hz, but there also is a strong component near 0.8 Hz, as 

mentioned previously in the discussion of the scalograms. Beyond 3 Hz, the energy 

rapidly falls off. The wavelet marginal spectrum in the primary analysis captures largely 

the same trends, though the relative magnitudes emphasize the lower frequencies, as 

expected. The wider bandwidth of the components greater than 1 Hz implies that their 

amplitudes must be reduced in order to conserve energy. As noted in Table 5.4, energy is 

better captured by the primary wavelet analysis. The added detail in the secondary 

marginal wavelet spectrum reveals three contributing bands of energy near 0.6 Hz, 1.7 Hz 

and 2.4 Hz. These are consistent with the bands observed at different times in the wavelet 

scalogram and will be discussed in more detail in the instantaneous spectral analysis. The 

enhanced resolution in the secondary analysis, permits a better estimation of the overall 

energy, as shown in Table 5.4.   

The energy accumulation plots in Figure 5.32 will now be discussed in parallel 

with the energy accumulation rates of change in the frequency and time domains, shown 

respectively in Figures 5.33 and 5.34. As noted previously, diminished resolutions in the 

time and frequency domains tend to smooth out the details of the energy accumulation 

plots, as seen from the primary and secondary analyses in Figure 5.32. In the frequency 

domain, as shown in Figure 5.33, the primary analysis, lacking sufficient detail, identifies  
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FIGURE 5.32. Energy accumulation in frequency domain and time domain for 
primary (left) and secondary analysis of Northridge 
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FIGURE 5.33. Wavelet marginal spectrum and rate of change of energy 
accumulation in frequency domain for primary (left) and secondary analysis of 
Northridge 
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FIGURE 5.34. Northridge ground motion and rate of change of energy 
accumulation in time domain for primary (left) and secondary analysis 
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a large band of frequencies associated with the release of energy during the quake. This 

would indicate that a suite of frequencies from 0.4 to 2.7 Hz contributes in a comparable 

manner to the shaking. The frequency associated with the greatest change in energy 

accumulation is 0.76 Hz, closely followed by the component at 2.25 Hz.  The bandwidths 

of contributing frequencies as well as the two aforementioned peak frequencies are 

denoted in Figure 5.32 by dotted lines. The energy accumulation plot in the time domain 

reflects that 27.3% of the energy lies above 2.76 Hz. 14% of the energy is between 2.3 

and 2.7 Hz, while 40% of the energy is between 0.78 and 2.3 Hz, the broad range in 

which most of the scalogram energy was focused. Approximately 10% of the signal 

energy lies below 0.78 Hz.  

The secondary analysis in Figure 5.33 provides some additional insights. Two 

distinct contributions to the rate of change of energy accumulation are observed at 0.48 

and 0.79 Hz, followed by a constant influx of energy between 1.3 and 1.8 Hz. This is 

trailed by another influx of energy at 2.4 Hz. Again relating these particular frequency 

components to the energy accumulations in Figure 5.32 reveals that 38.4% of the signal 

energy is associated with frequencies higher than 2.4 Hz, while 13% are associated with 

frequencies from 1.9 to 2.4 Hz. The bands from 1.3 to 1.8 Hz and 0.8 to 1.3 Hz both are 

associated with approximately 12% of the signal energy. Only 6% of the energy is 

associated with 0.5-0.8 Hz. These analyses indicate that the dominant energy of the signal 

lies between 0.8-2.4 Hz, in agreement with the Fourier spectrum. However, the most 

energetic frequency contribution comes from 0.78 Hz. This frequency brings the single 

greatest influx of energy to the signal – a characteristic not evident from the Fourier 

spectrum. 
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 From the time rate of change in Figure 5.34, the primary analysis denotes a 

constant energy contribution from 3.3 to 9.6 s, during which there are four distinct events 

at 4.24, 5.72, 7.64 and 8.92 s. These are the peak events creating the energy ascent 

demonstrated previously in the scalogram. These instances can be correlated back to the 

energy accumulation plots in Figure 5.32, as denoted by the dotted lines. This analysis 

indicates that 15% of the energy arrives in the first 4.14 s, at which point the cumulative 

energy jumps another 5%, marking the time with the highest energy influx. In the next 

two seconds, another 16% of energy is released. The following two seconds provide 

another 20% jump in energy. By 7.6 s, there is a spike in energy of 3% and then a 14% 

rise in energy up to 8.9 s. By this point, 75% of the quake’s energy has been released, 

affirming the concentration of energy in the scalogram under 10 s. The secondary 

analysis smoothes out many of these details, as shown in Figure 5.34. Needless to say, 

the energy is still shown to lie between 3 and 10 s, peaking at 4.86 s, with a lesser peak at 

8.95 s. A similar inspection of the accumulation plot in Figure 5.36 demonstrates that 

only 6.5% of energy lies in the first 3 s of shaking. The majority of the energy (45%) is 

released between 4.8 and 9 s, consistent with the primary analysis. 

The primary instantaneous spectral analysis in Figure 5.35 provides more insights 

into the spectral distribution of energy during different critical events in the Northridge 

quake. The first spectrum, associated with 4.2 s, identifies one major energy component 

at 2.26 Hz, accompanied by some lower frequency content. As shown in Table 5.8, 

88.9% of the instantaneous signal energy is associated with this single component. By 

5.72 s, this low frequency component becomes more energetic, holding 18.37% of the 

instantaneous energy. At the same time, the dominant mode has stiffened and holds  
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FIGURE 5.35. Wavelet instantaneous spectra taken at 
critical time steps in the Northridge event for primary (top) 
and secondary analysis 
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72.5% of the instantaneous energy. By 7.6 s, the response has focused toward a single 

mode at 1.8 Hz holding most of the energy, as shown in Table 5.8. Concurrently, the 

lower frequency mode has also shifted toward lower frequencies and holds 12.6% of the 

instantaneous signal energy. This tendency was reflected in the scalogram through a shift 

of energy toward lower frequencies in the two consecutive major events. By 8.9 s, the 

energy has been halved, though a low frequency mode at 0.62 Hz remains, with its 

energy content somewhat diminished. The combination of contributions at 1.8 and 2.3 Hz 

now hold 64.3% of the signal energy, with the addition of a high frequency component at 

5 Hz, which represents a range of energy from 4.5 to 5.5 Hz. These analyses again 

demonstrate the importance of understanding that the energy under instantaneous spectra, 

and not the spectral amplitude, should be consulted to determine the dominant frequency 

within a signal.  Marginal spectra demonstrated larger amplitudes at the lower 

frequencies, but the detailed analysis of energy distribution affirms that the dominant 

component in the quake was actually near 2.26 Hz.  

The secondary analysis, also shown in Figure 5.35, provides potential over 

resolution of the low frequency components, but still discerns a dominant mode at 2.46 

Hz at 4.2 Hz and is capable of separating out an additional mode at 3.11 Hz, whose 

respective energy contributions are given in Table 5.8. These two higher frequency 

modes then collapse into one peaking at 2.52 Hz and again comprising the primary 

energy source for the quake, accompanied by a broad band of energy in the low 

frequency range. By 7.6 s, these low frequency components become more distinct but 

still reiterating the strength of contributions in the vicinity of 2 Hz. At 8.9 s, the same  
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TABLE 5.8 
 

RELATIVE CONTRIBUTIONS OF EACH COMPONENT TO 
INSTANTANEOUS SPECTRA FOR NORTHRIDGE EARTHQUAKE 

PRIMARY AND SECONDARY ANALYSES 
 

tj  
[s] 

IF1 
[Hz] 

)(ˆ
1 jtE
[%] 

IF2 
[Hz] 

)(ˆ
2 jtE

[%] 

IF3 
[Hz] 

)(ˆ
3 jtE  
[%] 

IF4 
[Hz] 

)(ˆ
4 jtE

[%] 
Primary Analysis 

4.2     2.26 88.9   
5.7 0.82 18.4   2.72 72.5   
7.6 0.75 12.6 1.80 84.0     
8.9 0.62 6.3 1.80 64.3 2.26 ** 5.0 23.0 

Secondary Analysis 
4.2 0.75* 28.9   2.46 43.6 3.11 16.0 
5.7 0.75 34.0   2.52 47.0   
7.6 0.75 9.2 1.74 41.3 2.39 28.3   
8.9 0.75 7.7 1.67 30.0 2.39 26.2 4.88 17.3 

*Broadband energy peaking at this frequency. 
**Shares energy in one broad peak with previous frequency component. 

contributors remain, joined however by an additional component near 5 Hz, whose 

instantaneous spectral energy contributions are listed in Table 5.8.  

5.4.5 Kobe (1995) 

One year after Northridge, on January 17, 1995 at 05:46 local time, a magnitude 7.2 

earthquake hit Kobe, Japan, an area viewed previously to have relatively low seismic 

risk. The Nojima fault triggered the earthquake and subsequent rupture of several smaller 

faults in the Kobe area. The loss of 5600 lives and destruction of 100,000 buildings 

affirmed the devastation of this event. The Takatori N-S Kobe ground motion, measured 

approximately 10 km from the epicenter, is analyzed herein. The signal, sampled 

originally at 100 Hz, is downsampled to 25 Hz and analyzed by the aforementioned  
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wavelets to produce the scalograms and WIFS in Figure 5.36. Note the strong period of 

shaking in the time history in Figure 5.36 for the first 15 s, followed by a regular, 

periodic motion. 

Both the primary and secondary analyses reiterate the same general finding: the 

Kobe event focused its dominant energy below 1 Hz. The primary analysis further 

affirms the arrival of a large low frequency pulse near 5 s and even lower frequency 

shaking subsequently. The scalogram is generally devoid of higher frequency content. 

The last meaningful shaking subsides by 15 s. The low frequency energy is flanked at 

three distinct locations by energy in the 2 Hz vicinity, in the primary event and in 

subsequent pulses near 10 and 15 s. The WIFS merely affirms the predominance of 

shaking below 1 Hz. In the secondary analysis, two predominant ridges are more clearly 

defined near 0.78 and 1.3 Hz. At the major pulse of the quake, some additional frequency 

components between these two also surface. This plethora of ridges may be the 

consequence of over resolution in the low frequency range. After 5 s, the components 

near 2 Hz split and move toward higher and lower frequencies.  

Analysis of the traditional Fourier spectrum in Figure 5.37 affirms that the energy 

is focused in a narrowband between 0.4 and 1 Hz., peaking at a value of 0.9 Hz. The 

presence of minor yet constant energy between 1 and 3 Hz is also noted, though this 

energy falls off rapidly beyond 3 Hz. Both the wavelet marginal spectra and Fourier 

spectra in the primary and secondary analyses capture the frequency content of the signal. 

The amplification of amplitudes and the added detail in the higher frequencies in the 

secondary analysis is a consequence of the enhanced frequency resolution in the  
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FIGURE 5.36. Kobe ground motion, wavelet scalogram and WIFS (top to 
bottom) for primary (left) and secondary analyses 
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secondary analysis. The conservation of energy of all the spectral representations is again 

demonstrated in Table 5.4.  

The energy accumulation plots in Figure 5.38, when viewed in conjunction with 

the energy accumulation rates of change in the frequency and time domains, shown 

respectively in Figures 5.39 and 5.40, provide a comprehensive perspective on the time 

and frequency characteristics and their energy contributions to the signal. In Figure 5.39, 

the rate of change of energy accumulation in the frequency domain from the primary 

analysis demonstrates a concentration of energy between 0.45 and 1.0 Hz, peaking at 

0.76 Hz. Though some minor energy is infused between 1.5 and 3 Hz, the energy 

associated with this quake is concentrated in a relatively narrow band. The secondary 

analysis affirms this and provides more detail, identifying two events in that narrow band 

and then sharply dropping off at 1 Hz. The two peaks accentuated by the finer frequency 

resolution of the secondary analysis are at 0.54 Hz and 0.84 Hz. The frequencies are 

demarcated by dotted lines in the accumulation plots in Figure 5.38. From the 

accumulation plots in the primary analysis, the rapid ascent in energy is apparent. At 1 

Hz, the accumulated energy rises from 38% to 41%. Further analysis shows that only 3% 

of the signal energy resides under 0.4 Hz. 20% of the signal energy lies between 0.4 and 

0.76 Hz, and the frequency range of 0.76 Hz to 1 Hz holds 25% of the energy. As 

demonstrated by Figure 5.38, more than half the energy in the primary analysis is less 

than 1 Hz. The largest single jump in frequency occurs near 0.76 Hz, where the 

accumulated energy ascends from 66 to 74%. The secondary analysis confirms that 36% 

of the energy resides at frequencies greater than 1 Hz, in general agreement with the 

primary analysis. Further about 20% of the energy lies between 0.84 Hz and 1 Hz and  
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FIGURE 5.38. Energy accumulation in frequency domain and time domain 
for primary (left) and secondary analysis of Kobe 
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between 0.54-0.84 Hz, respectively. Ten percent of the signal energy is found at 

frequencies less than 0.54 Hz. The accumulated energy increases most drastically at 0.84 

Hz, where it rises from 57.4% to 63.0%. The next major rise in energy is at 0.54 Hz, 

where the accumulated energy jumps from 86.4% to 92%.  

Referring now to the rate of change in accumulated energy in the time domain, in 

Figure 5.40, the primary analysis affirms that a first event arrives near 3 s and is followed 

by the major event at 4.58 s. The energy rates fall of quickly until the arrival of a smaller 

event at 13.2 s, after which the infusion of energy falls quickly to zero within 20 s. 

Noting these critical time instants, an analysis of the accumulated energy in Figure 5.38 

reveals that the event at 3.16 s was associated with only 3% of the overall energy. 

Subsequently, in the next two seconds the accumulated energy quickly rises another 10%. 

With the arrival of the event at 13.2 s, over 90% of the quake’s energy has been recorded. 

Many of the details of the arrival of individual events are obscured in the secondary 
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FIGURE 5.40. Kobe ground acceleration and rate of change of energy 
accumulation in time domain for primary (left) and secondary analysis 
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analysis, due to the temporal smoothing. Still, the major pulse is identified at 4.06 s, after 

which the energy falls off, in tiers after 5 and 10 s.   

A more careful analysis of the contributions by the various frequency components 

at particularly interesting sequences of the quake is provided in Figure 5.41 through the 

wavelet instantaneous power spectra. At 3.0 s, the primary analysis identifies 3 major 

components at 0.52, 0.84 and 2.60, with the former two being very closely coupled. Their 

respective energy contributions are tabulated in Table 5.9. They indicate that the low 

frequency component at 0.84 Hz is very strong. The component at 2.6 Hz, which 

represents contributions from 2.3 to 2.9 Hz, carries a significant portion of the 

instantaneous signal energy.  

The secondary analysis, with a more refined resolution, gives a more precise 

depiction of the higher modes, identifying an energetic band between 1.5 and 2 Hz. A 

distinct mode at 2.67 Hz surfaces, carrying 22.2% of the instantaneous spectral energy. 

The lower frequency component at 0.84 Hz actually dominates in this analysis, carrying 

27.6% of the instantaneous spectral energy. At 4.5 s, the energy has shifted in the primary 

analysis to one lower frequency mode at 0.8 Hz accompanied by a higher mode at 1.8 Hz. 

41.2% of the instantaneous spectral energy resides in the narrow frequency band 

represented by the 0.8 Hz component. In the secondary analysis, the energy associated 

with 2.6 Hz has diminished somewhat, but the remaining characteristics of the spectra are 

largely unchanged from what was observed at 3 s. The coupled low frequency 

components in the primary analysis are still present at 7.4 s, with approximately 75% of 

the signal energy in this band of frequencies between 0.5 and 1 Hz. The presence of the  
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FIGURE 5.41. Wavelet instantaneous spectra taken at critical 
time steps in the Kobe event for primary (top) and secondary 
analysis 
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third mode at 2.38 Hz now becomes more visible, making a 12.5% contribution to the 

instantaneous spectral energy. The secondary analysis results shown in Table 5.9 confirm 

these findings and noting that the energy at this point is shifting to lower frequencies than 

the previous times analyzed. By the thirteenth second, the contributions of the higher and 

lower frequency components, in comparison to the energy associated with 0.84 Hz, are 

minor. The secondary analysis, with a finer resolution, indicates that the ground motion is 

not so periodic. As shown in Table 5.9, the energy in the second mode at 0.81 Hz 

dominates, though there is noteworthy energy at 0.55 Hz (21.0%) and 2.38 Hz (16.4%). 

 

TABLE 5.9 
 

RELATIVE CONTRIBUTIONS OF EACH COMPONENT TO 
INSTANTANEOUS SPECTRA FOR KOBE EARTHQUAKE PRIMARY 

AND SECONDARY ANALYSES 
 

tj   
[s] 

IF1  
[Hz] 

)(ˆ
1 jtE  
[%] 

IF2  
[Hz] 

)(ˆ
2 jtE  
[%] 

IF3 

 [Hz] 
)(ˆ

3 jtE   
[%] 

Primary Analysis 
3.0 0.52 4.0 0.84 28.9 2.60 43.2 
4.5   0.80 41.2 1.80 53.1 
7.2 0.55 41.1 0.91 34.6 2.38 12.5 
13.0 0.38 3.17 0.84 67.7 2.24 24.7 

Secondary Analysis 
3.0 0.55 10.9 0.84 27.6 2.67 22.2 
4.5 0.55 10.9 0.88 29.2 2.67 14.3 
7.2 0.55 29.1 0.88 41.3 2.31 16.6 
13.0 0.55 21.0 0.81 42.9 2.38 16.4 

*Broadband energy contribution centered or peaking at this frequency. 
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5.4.6 Comparison of Earthquake Properties 

A comparison of the properties of the various nearfield earthquake records can be 

garnered from the wavelet energy accumulation rates. As the primary analysis had 

superior time resolution, its results are used to create the comparative energy 

accumulation in the time domain in Figure 5.42. Conversely, the secondary analysis is 

used to generate the same figure for the frequency domain. The richness of the Guerrero 

MC nearfield event is quite apparent, as its accumulation of energy is very gradual over a 

wide range of frequencies. The El Centro and Northridge events parallel each other, with 

very similar distributions of energy with frequency, though El Centro has elevated energy 

levels for frequencies greater than 3 Hz. The black horizontal lines delineate the 90 and 

95% energy levels. The frequencies corresponding to these levels are tabulated in Table 

5.10. As the table demonstrates, Loma Prieta comparatively has the least low frequency 

energy, evident from its curve’s steep ascent followed by only modest energy gains under 

2 Hz. Interestingly, the Guerrero MC nearfield record, similarly reflects a minimal energy 

contribution under 1 Hz, though this minor contribution was markedly amplified in the 

farfield record from the Mexico City valley, as shown previously in Figure 5.21. The 

Kobe record here provides the most dramatic energy profile in the frequency domain, 

emphasizing its concentration at low frequencies, a fact affirmed in Table 5.10 as it has 

the lowest frequencies at the 90 and 95% levels of the analyzed records. 
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TABLE 5.10  

 
COMPARISON OF ENERGETIC COMPONENTS AND ENERGY 

ACCUMULATION LEVELS IN TIME AND FREQUENCY FOR FIVE 
EARTHQUAKE RECORDS 

 
 Most Energetic 

Component 
90% of Signal Energy 95% of Signal Energy 

 f [Hz] t [s] f [Hz] t [s] F [Hz] t [s] 
El Centro 1.1 4.1  0.93 26.5 0.64 28.1 
Guerrero MC 0.5 10.3 1.09 33.3 0.53  35.9 
Loma Prieta 1.4 2.8 1.41 7.7 1.21  9.4 
Northridge 0.8 4.1 0.76 12.1 0.50  15.2 
Kobe 0.8 4.6 0.54 13.1 0.40 14.4 
       
       

f [Hz] 
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FIGURE 5.42. Comparison of energy accumulation curves in 
frequency domain for each of the five nearfield earthquake records 
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To further enhance the discussion, Table 5.10 also tabulates the most energetic 

components of these records, identified as those inducing the maximum rate of change of 

energy accumulation in the frequency and time domain. It is striking to note the parallels 

between Kobe and Northridge, occurring on the same day of the year and possessing very 

similar energetic components. Both have very strong energetic components at 0.8 Hz. 

The Fourier spectrum did detect sizeable energy in this range for both quakes, as shown 

in Figure 5.31 and Figure 5.37, however it can be implied that the enhanced low 

frequency resolution in the wavelet analysis was better suited to emphasize and capture 

the true energetic content at this frequency. For Loma Prieta and El Centro, again the 

most energetic component is consistent with the Fourier spectral representation shown 

respectively in Figures 5.25 and 5.8, though identified at slightly lower frequencies, 

perhaps again due to the enhanced resolution in this regime. Interestingly, the only 

record, which did not find agreement between Fourier spectral amplitudes and the 

wavelet energetic components listed in Table 5.10 is the Guerrero MC record. In the 

Fourier spectrum in Figure 5.16, though a low frequency presence is noted, it is dwarfed 

by the energy near 2 Hz. However, the wavelet analysis in Figure 5.18 detects that this 

single frequency component near 0.5 Hz in the Kobe quake is the most energetic 

component, though with narrow bandwidth. Eventually, the large contributions at a wide 

range of frequencies in the vicinity of 2 Hz ultimately dwarf this low frequency 

component in the Fourier spectrum in Figure 5.16, but the 0.5 Hz component consistently 

appears in the wavelet representation, again perhaps better detected due to the enhanced 

frequency resolution. Ironically, as the quake arrives in the Mexico City valley, it is this 

ever present component that is amplified and leads to widespread destruction. 
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The analysis of energy accumulation in the time domain is provided by Figure 

5.43. Kobe, El Centro and Northridge each release their energy at a similar rate in time, 

though the intensity of El Centro trails off sooner than the other two events, having 

longer duration. The energy in Loma Prieta is released most quickly of all the records, as 

noted in Table 5.10. Mexico City tends to release her energy most gradually and does not 

manifest a single big event indicated by a steep ascent in the energy accumulation plot, 

making this earthquake very unique by conventional standards.  

t [s] 
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t) 

FIGURE 5.43. Comparison of energy accumulation curves in 
frequency domain for each of the five nearfield earthquake records 
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5.4.7 Seismic Response of a Building 

The previous analyses have highlighted the wavelet’s ability to capture the nonstationary 

characteristics of earthquakes and reveal the evolution of frequency content with time. 

Similar and more physically meaningful insights for Civil Engineers can be obtained by 

applying this tool for the analysis of structural responses under these highly nonstationary 

events. The unique ability of wavelets to capture these nonstationarities has made it 

equally useful in the simulation of structural responses to these events (Basu & Gupta, 

1997; 2000). To demonstrate the ability of the wavelet to capture nonstationary 

characteristics of structural response, consider the roof level acceleration of a 13-story 

commercial building (Sherman Oaks), along its longitudinal (E-W) axis during the 1994 

Northridge earthquake. The measured acceleration is shown in Figure 5.44a. A wavelet 

analysis of the signal, with central frequency of 2 Hz and a highly refined discretization 

(OF = 0.5), was conducted. The resulting marginal spectrum and its Fourier counterpart 

is shown in Figure 5.44b. From this spectral representation, it appears that the response is 

dominant in the first mode near 0.38 Hz, accompanied by lesser contributions from the 

second mode at 1.17 and the third mode at 2.34 Hz. The irregular shape of the wavelet 

marginal spectral peak in the first mode suggests the presence of nonlinearity. While the 

wavelet and Fourier representations are in good agreement in identifying the modes and 

their relative contributions, this detail in the fundamental mode is obscured by a 

comparable Fourier analysis. The wavelet spectrum further identifies the total energy of 

the system more accurately, with a standard deviation of 56.5 cm/s2 verses the Fourier 

estimate of 60.0 cm/s2, in good agreement with standard deviation of the signal itself  
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FIGURE 5.44. (a) Recorded structural response to Northridge ground motion, 
(b) Fourier and wavelet marginal spectra; (c) scalogram; (d) WIFS; (e) zoom 
of third mode ridge; (f) zoom of second mode ridge; (g) zoom of fundamental 
mode ridge 
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(56.6 cm/s2). Despite capturing the energy accurately, any time-dependence has been 

completely lost. 

The wavelet scalogram in Figure 5.44c preserves these evolutionary features, 

identifying two bursts of energy after the tenth and thirty-fifth seconds. As evident in the 

time series in Figure 5.44a, only the former large-amplitude response includes the two 

higher modes. An extraction of wavelet ridges produces the wavelet instantaneous 

frequency spectrum in Figure 5.44d. The ridges, though fainter for the higher frequency 

modes, manifest distinct fluctuations and an apparent softening of the fundamental ridge. 

Figure 5.44e zooms in on the third mode, darkening the plot and showing a hardening 

with the strong shaking, followed by a decrease in stiffness. The contributions of this 

mode are relatively isolated and manifest only with the strong shaking of the first 15 s. 

The second mode is present in both major shaking events, and when amplified and 

darkened in Figure 5.44f and echoes a similar characteristic of softening, again reaching a 

minimum stiffness following the major pulse near 10s. The dominant low frequency 

ridge in Figure 5.44g begins at a plateau near 10 s and then softens in the subsequent 10 

s, manifesting some slight hardening during the second event, which primarily affects this 

lowest mode. It is apparent that by the conclusion of the shaking, this structure’s 

fundamental period has softened, an indicator of some permanent damage in the 

structure. Interestingly, a comparison of the structural frequencies obtained through 

testing after the quake with some estimates taken before the quake may have detected this 

softening. However, without a baseline for comparison, the frequencies identified during 

or after the quake shed little light. On the other hand, the wavelet analysis allows the 

determination of frequency throughout the shaking, so that one record alone can be used 
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to document the onset of softening. In this context, wavelet-based analysis provides an 

attractive framework for structural health monitoring in the absence of such baseline data, 

which may not be available for most buildings. 

The energy accumulation plots in Figure 5.45 reflect that energy is strongly 

accumulated near 0.347 Hz, corresponding to the first mode of the structure in its 

damaged state. The accumulation in the frequency domain plateaus at three distinct 

points, readily identifying the three modes and their relative contributions. The third 

mode contributions are quite scarce, while the second mode contributes 10-15% of the 

total energy and the first mode is responsible for nearly 70% of the total signal energy. 

Accumulation in time occurs distinctly in two events, representative two periods of 

activity sandwiching the lull between 20 and 30 s. The rate of change of energy 

accumulation in the time domain identifies the precise onset of the two events and the 

times of maximal energy influx, in this case occurring at 11.2 s.  

FIGURE 5.45. Energy accumulation in frequency domain and time domain (left) and 
structural accelerations and rate of change of energy accumulation in time domain for 
Sherman Oaks building under Northridge earthquake 
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A microscopic zoom of the energy distribution at distinct points within the 

response time history is provided by the instantaneous spectra in Figure 5.46. The first 

spectrum is associated with the plateau region in the rate of change in energy 

accumulation with time. This is a region where the rate of energy accumulation held 

relatively steady prior to strong shaking. At this time, all three modes appear to be 

present, though the two higher modes are sharing energy over a broad range of 

frequencies. The side lobes on the fundamental spectral peak indicate the presence of 

additional adjacent frequencies that could indicate a nonlinearity within that mode. Note 

also the surfacing of a fourth, high frequency mode. The relative energy contributions 

from these modes are listed in Table 5.11. The next two spectra are associated with peaks 

in that first strong shaking, denoted by the two peaks near 10 s in the rate of change in 

energy accumulation plot in Figure 5.45. At 8.7 s, there is a relatively larger contribution 

from frequencies in the vicinity of the second mode, diminishing the influence of the 

third mode. At 11.1 s, the energy has shifted dominantly towards the first mode coupled 

by a robust distribution of energy near the third mode. The last spectrum is associated 

with the final significant response within the structure. As evidenced previously, this 

response is dominantly in the first mode, as evidenced by Table 5.11, with a minor 

second mode contribution. The more detailed investigations of energy distribution with 

time, provided in the instantaneous spectra, indicate that the energy is more prominently 

associated with the higher modes in the first 9 s of the event. Even at 11.1 s, despite the 

surging first mode response, there is still a strong contribution in the vicinity of the third 

mode. It is only in the decline in energy accumulation rates symbolized by the dramatic 

fall off after 11 s in Figure 5.45 that the first mode overwhelmingly dominates the  



226 

 

 
TABLE 5.11 

 
RELATIVE CONTRIBUTIONS OF EACH COMPONENT TO 

INSTANTANEOUS SPECTRA FOR SHERMAN OAKS BUILDING IN 
NORTHRIDGE EARTHQUAKE 
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5.0 0.40 32.9 1.38 28.4 2.28 19.5 
8.7 0.42 40.7 1.13 44.5 2.50 13.4 
11.1 0.42 50.6 1.08 17.3 2.20 31.0 
37.1 0.34 93.7 1.10 5.8   

       
       

 

 

FIGURE 5.46. Wavelet instantaneous spectra taken at 
critical time steps in the Sherman Oaks building 
response in the Northridge earthquake 
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response. The Fourier perspective cannot reflect such significance of higher modes over 

specific durations of the response.  

5.5 Wind-Induced Response of a Tall Building 

While relatively stiffer structures bear the brunt of most earthquakes, it is the tall, flexible 

buildings that produce dynamic responses driven primarily by wind. Under the action of 

wind, oscillations of high-rise buildings occur in three simultaneous directions: 

alongwind, acrosswind and torsion, as shown in Figure 5.47. The alongwind motion 

primarily results from the pressure fluctuations on the windward and leeward faces, 

which generally follow the fluctuations in the approach flow, at least in the low 

frequency range. The lateral motion, in the acrosswind direction, is introduced by 

pressure fluctuations on the side faces, induced by the fluctuations in the separated shear 

layers and wake flow fields. The wind-induced torsional effects result from an imbalance 

in the instantaneous pressure distribution on the building surface (Simiu & Scanlan, 

1996). 

The action of wind on structures may be one of the best-suited areas for the 

application of wavelets due to the time-dependency of the loading. As with most 

environmental loads, the magnitudes of loading are indeed time-varying; however, in the 

case of wind, this situation is further complicated by the fact that the direction of loading 

can also manifest marked time-variations within a single event. This unique situation can 

lead to rapid changes in the structural response as the alongwind and acrosswind 

directions of motion evolve with time, further complicated by the intermittent role of 

torsion arising from the instantaneous distributions of pressures on the structure. The 
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ability to examine the frequency content of the resultant response alongside the time-

varying wind speed and direction was previously limited prior to the advent of time-

frequency transformation tools. The following example demonstrates the utility of 

wavelet transforms in this regard.  

5.5.1 Preliminaries 

A five-year full-scale monitoring program was initiated between 1973 and 1978 on an 

800-foot building in Boston that had manifested some undesirable response 

characteristics and failure of building envelope components (Durgin & Gilbert, 1994). 

Due to legalities, more specific details of the structure cannot be disclosed here. The 

extensive monitoring program included the collection of wind speed and accelerations at 

8 locations in the building: with four sensors located on the 57th floor and another four at 

the 35th. In particular, these accelerometers at the higher elevation detected significant 

amplitude motions capable of causing occupant discomfort. The analysis of the data 

FIGURE 5.47. Response components for buildings 
under the action of wind loading (taken from Kijewski 
et al., 2001) 
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obtained in the monitoring program is complicated by the fact that the structure is known 

to have both sway fundamental frequencies and its fundamental torsional frequency very 

closely aligned. Testing of the building indicated that the fundamental sway mode in the 

softer direction was 7.36 s (0.136 Hz) and the torsional mode was 6.37 s (0.157 Hz). The 

locations of the four accelerometers on the 57th floor are shown in Figure 5.48. The two 

sensors measuring the motion parallel to the long face of the building were termed the 

“NS” sensors by the original monitoring team. The other sensors capturing motions 

parallel to the building’s shorter axis were termed “EW”. The sensor pairs are positioned 

at opposite corners of the building plan and named based on the column they are 

associated with, i.e. 2 or 59.  

FIGURE 5.48. Plan view of monitored building with accelerometer locations 
and orientations 
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The record analyzed here corresponds to March 10, 1974 (record id: MR10743) 

and resulted in the largest levels of peak acceleration observed in the tower over the 

monitoring period. Over the course of this hour-long record, the mean wind speed, 

measured at 100 ft above the rooftop, was 53.7 mph, gusting to 77.3 mph, primarily out 

of the west-northwest at 290°. This mean wind direction and its orientation relative to the 

building’s primary axes are shown approximately in Figure 5.48.   

Knowing the close proximity of the sway and torsional frequencies, it is assumed 

that beating between these modes is a very probable occurrence. The first priority was to 

define the wavelet central frequency necessary to separate these modes. A 3 Hz Morlet 

wavelet was selected, capable of achieving this separation down to 0.012 Hz. An overlap 

factor of 1 and padding factor β = 1 were used in the analysis. Due to the potential for 

beating between modes, before analyzing the record, a baseline wavelet representation of 

this phenomenon was established. This is accomplished using the summation of two sine 

waves of identical amplitude and with fundamental frequencies of 0.13 Hz and 0.16 Hz, 

representing two closely spaced modes of vibration observed previously in data taken 

from this building. Two wavelet perspectives are provided in Figure 5.49. The first is the 

marginal wavelet spectrum, shown by the solid lines in Figure 5.49a. Its Fourier 

counterpart is shown by the dotted lines. Both representations detect a pair of spectral 

peaks at 0.135 and 0.165 Hz. Investigating the time-varying behavior of this system 

through wavelet instantaneous spectra at several time intervals unveils more details of the 

interaction between the two waveforms. At periods of high amplitude motion, the 

bandwidth of the two modes modulates and the two appear to merge into a single mode, 

though the individual peaks of the two modes are still discernable. At lower amplitudes 
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of motion, the two modes separate again into distinct yet closely-spaced modes, with the 

pattern repeating itself throughout the beating phenomenon. The wavelet consistently 

identifies the two peaks at 0.135 and 0.165 Hz in each instantaneous spectrum, indicating 

that while bandwidths may modulate the frequencies remain intact. However, this 

idealized system manifests no nonlinearities, which may further complicate the beating 

phenomenon as frequencies shift with amplitude. Further, these two sines maintain the 

same amplitude level throughout the simulated signal. Thus, if amplitude modulation is 

also introduced, the situation is complicated as either one of the spectral peaks may dwarf 

the presence of the other due to an unequal distribution of energy at that instant. As the 

subsequent analysis reveals, such amplitude fluctuations, the melding of two modes in a 

beating phenomenon and the presence of nonlinearity all play a role in the response of the 

monitored building in Boston. Finally, in this discussion there is no need to investigate 

S W
T(

f o
/f)

, S
FF

T(
f)

 

f [Hz] 

(a) (b)

1 

2 

5 

6 5 

4 

3 

4 

2 3 

6 

1 

Time [s] 

S W
T(

f o
/f,

 t=
t j)

 
x(

t) 

f [Hz]

FIGURE 5.49. (a) Comparison of wavelet marginal spectrum (solid) and 
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the energy associated with each component, as a cursory assessment of the relative 

magnitude of the wavelet coefficients will be sufficient, contrary to the statements in 

Section 5.3, since the spectral components are assumed to be in very close proximity, 

they have comparable bandwidths and therefore comparable amplitude reduction to 

account for increased bandwidth. Thus, in the subsequent discussions, wavelet coefficient 

amplitudes will be assumed to be an accurate direct indicator of the relative strength of 

each of these components. 

5.5.2 Global Analysis 

The analysis begins by examining the wavelet marginal spectra calculated from the entire 

length of the record, shown in Figure 5.50. These provide a similar perspective as that 

obtained by Fourier analysis, but through the discretization scheme in Chapter 4 these 

wavelet marginal spectra can provide a smoother representation with enhanced resolution 

at the lower frequencies. Note that due to the discrete frequencies chosen in the analysis 

the wavelet spectra will focus at the discrete frequency closest to the actual frequency of 

the system. Figures 5.50b and 5.50d manifest two modes, consistent with the closely 

coupled sway and torsional modes known to exist in this structure. The softer of the two 

is associated with the fundamental sway mode along the NS axis, while the higher 

frequency is associated with the first torsional mode. Note interestingly that in Figure 

5.50a and 5.50c, the EW sway mode is oddly not present, with only dominant torsion 

detected. However, an investigation of the larger data set was able to identify the EW 

sway component in other records and found that the fundamental modal frequencies from 

lowest to highest are: sway detected by the NS sensors, followed by sway detected by the 
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EW sensors, and finally torsion (Brown, 2003), indicating that all three frequencies lie in 

that order within a span of 0.136 to 0.157 Hz, though suggesting that the potential for 

coupled response between sway and torsion may be observed in those EW sensors. 

Nevertheless, the spectra associated with this event reflect that motion at the corners of 

the structure is dominated by torsion, facilitated by the larger torsional arm to that 

direction. In fact, even in the NS sensors, where torsional arms are shortened, torsion still 

overshadows NS sway. This is a disturbing feature since torsional accelerations are the 

most perceivable motions from an occupant comfort perspective.  

The magnitudes of the spectra also manifest some interesting features, e.g. the 

windward EW torsional peak is twice the amplitude of its leeward counterpart’s. While 
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this feature may be attributed to the inability of the floor diaphragms to sufficiently 

transmit the forces over the entire structural system (comprised solely of a moment 

resisting frame and core), this does not fully explain the discrepancy. On the other hand, 

the structure tends to twist and sway at comparable levels at both the leeward and 

windward ends of the building in the other direction, as shown in Figure 5.50b and 5.50d. 

Note however that the amplitudes of the spectral peaks are slightly diminished at the 

windward side of the building in Figure 5.50d, particularly in sway. The consistency 

between Figure 5.50b and 5.50d affirms a torsional frequency of 0.160 Hz and NS sway 

of 0.132 Hz, while the EW sway cannot be identified from the marginal spectra.  The 

torsional frequency is confirmed as 0.160 Hz according to Figure 5.50c; however, Figure 

5.50a provides the most interesting point of discussion in this analysis. Here at the 

windward face of the building the same torsional frequency that was found at #02-EW is 

not observed, but rather what appears to be a softened version (0.153 Hz). Hence, these 

global spectra for the EW sensors would indicate that the building is twisting at two 

different frequencies. Further, it is at this windward sensor that the largest amplitudes of 

motion are detected (note the spectral amplitude twice its counterpart #02-EW), 

indicating that the structure is effectively fishtailing in the wind due to an eccentricity 

between its mass and elastic centers. Recall also that this is the sensor set that would be 

measuring the sway mode closest to the known fundamental torsional frequency. Thus 

the building’s response in both amplitude and frequency vary over the building’s plan, an 

intriguing feature that will be explored utilizing wavelet instantaneous information. 

The analysis of this feature and its explanation can commence through a wavelet 

analysis focused on distinct events within the time histories. As sensor #59-EW manifests 
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this very interesting behavior, six high amplitude events in its response were identified 

and the response of the other sensors during these six events is analyzed to determine the 

overall behavior of the building. The time histories recorded at each sensor are shown in 

Figure 5.51, with arrows demarcating the six events analyzed herein. Event 1 generates 

the highest amplitude shaking and will be discussed at great length for each of the four, 

recorded channels of data. Subsequently, analyses of some of the remaining events are 

provided to reinforce observations from Event 1. Only selected figures are included from 

these other events for brevity. 

5.5.3 Event 1: 0-200 s 

The images in Figure 5.50 can be viewed as global wavelet marginal spectra, as they 

represent an averaged perspective over the entire time history. On the other hand, local 
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wavelet marginal spectra can give an averaged representation of isolated signal features 

over particular events. The local marginal spectrum for sensor #59-EW is provided in 

Figure 5.52 and helps to unveil the particular behavior at this location during the first 

event shown in Figure 5.51, typified by an isolated high amplitude burst at the beginning 

of the record. Though the wavelet analysis retains the same resolution in every figure 

presented herein, this local marginal spectrum identifies two peaks, one at 0.153 Hz with 

very broad bandwidth and the indication of second mode sharing the same spectral band, 

an interesting finding considering this sensor is measuring that more likely coupled 

frequency pair. The presence of a higher mode contribution at 0.460 Hz is also 

noteworthy. Gurley & Kareem (1999) recommended the application of wavelets to 

identify the participation of higher modes in the response of tall buildings. Wavelets 

provide one of the few viable strategies to uncover such details, since the presence of 

these higher modes may depend greatly on the turbulent structure of the wind and its 

evolution with time. As a result, the relative contributions of each mode may suddenly 

increase for the same mean wind speed due to the instantaneous changes in the 

distribution of energy at different frequencies. As this is a time-varying phenomena, it 

cannot be identified through classical spectral techniques.  

Analyzing the instantaneous wavelet details (Figure 5.53) during this event, the 

highest amplitude response occurs when the wind direction shifts and aligns with the 

corner of the building (270°) commensurate with the peak wind speed during this event. 

As the wind shifts back toward 290°, the response level subdues to an extent. It is just 

prior to and following this highly energetic burst that the single mode response, identified 

in the global marginal spectrum at 0.153 Hz, is observed, as shown in Figure 5.53. Note 
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the large bandwidth associated with this spectral peak, broadening toward the high 

frequencies, suggestive of a coalescence of the two modes. The wide bandwidth of the 

response in conjunction with the wind direction supports the conclusion that both EW 

sway and torsional responses are sufficiently large and simultaneous in the response, 

leading to a melding of spectral bandwidth in the beating phenomenon similar to the 

example in Figure 5.49. This situation can be particularly energetic if both response 

components are of comparable amplitude. In spectra 1-3, this strong vibration is 

stimulated by the wind direction shift, proving critical for this building’s geometry within 

the site-specific surroundings. Of the data collected, this wind direction shift is only 

observed in this record and this is also the only time motions of this structure reach the 20 

milli-g levels. As the amplitude increases in the 3rd, 4th and 5th spectra, a shift of this 

spectral peak to a lower frequency of 0.148 Hz occurs. This is the characteristic softening 

of frequency that has been observed in full-scale measurements, (e.g. Tamura, 1998), as  
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the contacts between structural members diminishes and greater slip in joints reduces 

stiffness. This phenomenon is not indicative of permanent damage. At lower amplitudes 

of motion, contacts between surfaces again resume and a frequency increase is generally 

observed. More importantly, as the wind direction shifts back toward 280°, the response 

level diminishes and spectra 5 and 6 begin to separate into two peaks reminiscent of what 

was observed globally at the NS sensors in Figure 5.50. The torsional response gradually 

eases and separates toward the higher frequencies, allowing the sway to reappears as the 

dominant mode.  

This behavior indicates that the isolated high amplitude motions here are 

facilitated by the presence of significant EW sway and torsion. Spectra 7 and 8 continue 

to manifest the bi-modal response, mostly torsional in nature, again an unsettling feature 

considering the significance of torsional motion in perception. As this occurs, in spectra 9 

and 10, EW sway response gradually diminishes. Note the bandwidth of the dominant 

torsion in spectra 11 and 12 in comparison with the first few instantaneous spectra, 

further affirmation that this energetic event early in the time history was not a single 

mode response, but the product of modal coupling. 

The ability of the structure to respond in such a manner is certainly facilitated by 

the beat phenomenon within the system and more importantly aided by the potential 

nonlinearities in stiffness and damping that can shift the torsional frequency toward the 

EW sway mode and markedly accentuate spectral bandwidths. However, the continuous 

beating in Figure 5.49 will not be observed in this structure due to the fact that both 

response components must be in equal measure and the dominance of torsion is 
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dependent on the instantaneous distributions of wind pressure on the building’s faces. 

However, Event 1 demonstrates the ideal conditions to stimulate such behavior.  As 

discussed by Yalla & Kareem (2001), in systems with closely coupled modes the bi-

modal beat phenomenon is suppressed as the two modal frequencies coalesce into a 

single frequency, particularly facilitated through an increase in damping. Though the 

increase in damping was shown by the authors to induce this effect, it is hypothesized 

that the combinatorial effect of amplitude-dependence in stiffness, accompanied by a 

moderate increase in damping achieves the same effect, though this requires amplitude 

levels sufficient to induce the nonlinearity. An investigation of the behavior of the #02-

EW sensor, measuring the same direction of motion but on the leeward side of the 

building provides added insights. At the leeward face, where global spectra in Figure 

5.50c previously did not detect a discernable bi-modal response, the instantaneous 

wavelet spectra clearly manifest both modes prior to the high amplitude response, though 

torsion dominates (Figure 5.54). These two modes occupy the same spectral band as the 

single mode response shown previously in the instantaneous spectra numbered 1-4 in 

Figure 5.53. During high amplitude motion, spectra 2-3 manifest some melding and 

softening of torsion into the lower sway mode. At the highest amplitude of motion, the 

two modes nearly coalesce as observed at the windward face of the building, but this 

transformation is not ever fully realized, reinforcing the particular local features that 

facilitate this behavior. As a result, full melding never occurs in spectra 4-6, as torsion 

diminishes and sway starts to dominate. By the 7th spectra, the sensor is now detecting a 

dominant torsional component. Recall, this is consistent with the other sensor. Moving 

toward the 9th -12th spectra, small hitches in spectra 9 and 10 are the only remnant of the  
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sway response, and a single torsional mode response is observed to occur globally in both 

Figure 5.53 and 5.54, though interestingly, the building’s torsion motion appears stiffer at  

the windward face than at the leeward. This again may be the localized by-product of 

fishtailing due to the orientation of the core, which is not aligned with the geometric 

center of the building and is shifted more towards the windward face of the building. 

Note that in the later spectra in Figure 5.54 there is no clear sway component but a 

widened bandwidth at the base of the spectra, though there is some trace sway at the 

windward sensor, emphasizing the localized features of this energetic event. 

Examining the response in this event for #59-NS in Figure 5.55, the structure 

manifests two modes in spectrum 1 with NS sway dominant, but by the 2nd and 3rd 

spectra, the melding of the two fundamental modes due to a softening of torsion is 

evident. Further note the appearance of a higher mode of appreciable amplitude. By the 

4th and 5th spectra, the melding of both modes into a single broadband peak is again 

observed. The coalescence phenomenon emerges at the highest amplitude shaking, 

facilitated again by torsion frequency softening and enhanced bandwidth due to damping 

increase with the amplitude of motion. The broad bandwidth of the coalesced mode in the 

4th spectra supports the premise of a merger between two independent modes of 

vibration. Because spectra 1-4 occur at the same amplitude level, the suppression of 

either mode is not the result of it being dwarfed by the other mode. Instead, the data 

reflects a physical manifestation of beat phenomenon interaction. The same holds true for 

the previous discussion of the EW sensors and the following discussion of the other NS 

sensor during this event. 
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Akin to spectrum 6 for the EW sensor at this same location, the melded modal response 

soon breaks down, but in a more dramatic fashion. The simultaneous presence of both a 

coalesced mode sandwiched between sway and torsion indicates the presence of all three 

characteristics within the local wavelet analysis window, though beyond this point the 

coalesced mode disappears leaving again the bi-modal response. Dominant torsion 

response ensues in spectra 7-10, though both modes are clearly present and better 

separated than in the other axis of the building. Note that the response observed here in 

the later stages of the event is one-tenth of the motion observed in Figure 5.53. Note also 

that at lower amplitude levels, the torsional response occurs at a higher frequency, 

consistent with the observed amplitude dependence mentioned previously.   

At the leeward face, the first instantaneous spectrum in Figure 5.56, in 

comparison to Figure 5.55, has a comparable level of torsion motion, but diminished 

sway. Again, as observed in the #02-EW sensor, the two response components are not of 

comparable amplitude a melding in spectra 1-4 that never achieves the single mode 

response observed at the windward side. The lack of this feature is also due to absence of 

sufficient amplitude motion to soften the torsional mode and enhance the damping in the 

system. Soon after, spectra 5-8 show the emergence of the sway component, though the 

motion at this point is of lower amplitude. However, the sway component is only 

discernable due to the low amplitude of the torsional component at this time. By spectra 

9-12, the appearance of this sway component is hardly evident and a low amplitude 

torsion component remains. Note that the residual torsional component is less than its 

counterpart at the windward side in Figure 5.55, due to structural eccentricities. Also 

comparing to Figure 5.55, these latter spectra more clearly reflect the more energetic  
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sway response experienced in the windward corner is not present the other side of the 

building.  

5.5.4 Event 2: 1350-1550 s 

In Figure 5.57, it is again demonstrated that under similar spectral amplitudes, during the 

second noted event, the familiar coalesced response associated with high amplitude 

motion is observed again at sensor #59-NS, subsequently separating back into the two 

commonly identified modes. The presence of a coalesced mode at any frequency between 

the predominant sway and torsional modes (in this case at 0.153 Hz) is verified by the 

marked bandwidth of the spectral peak, particularly at the base and often asymmetric. As 

shown here, once separation occurs, due to a reduction of either response component, 

leading to lower amplitudes of motion, a decrease in damping, and increase of stiffness, 

the dominant torsional component remains. Again the prevalence of torsion is concerning 

and may perhaps again be attributed to an eccentricity between the geometric and elastic 

centroids of the building, as a result of the core being shifted from the centerline of the 

building and toward the leeward side, as shown in Figure 5.48. 

5.5.5  Event 4: 2600-2800 s 

Event 4 provides an opportunity to explore the effect of sway on dominantly torsional 

responses. Figure 5.58 compares the instantaneous spectra for #59-EW and #02-EW 

during part of this event. At the windward side of the building, the first spectrum 

indicates the notable presence of sway, as observed previously. This contribution is not 

present at the leeward side. In the ensuing amplification of the sway response, the torsion 
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present in the windward motions converges with the sway mode in the second spectra, 

resulting in a single mode response at a lower frequency and with larger bandwidth than 

the torsion response detected at the leeward side of the building. A comparison of spectra 

2-4 for both sensors affirms this. This is the effect of torsion beating the sway mode at the 

windward side of the building, a local effect at that critical windward corner. As the 

amplitude level decreases in spectra 5 and 6, both sensors are beginning to detect similar 

torsional motions manifesting comparable spectral amplitudes, bandwidths and resonant 

frequencies. The windward sensor continues to manifest a low frequency asymmetry due 

to some residual sway component. 

The WIFS provides another useful tool for macroscopic study of the response 

characteristics. The WIFS for #02-NS during Event 4 is provided in Figure 5.59. The 

WIFS manifests a bi-modal response in which the energy is dominantly focused with the  
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torsion component from 2600-2700 s and then transitions to dominant motions in the 

sway mode. Note that the higher frequency torsional mode shows far greater fluctuations 

in its instantaneous frequency ridge, demonstrating an increased sensitivity to amplitude 

variations than the lower frequency sway mode. During low amplitude events, e.g. 2700 

–2730 s, the frequency is higher than during stronger vibrations, e.g. at 2660 s. This may 

explain why the torsional mode is often observed to soften into the sway mode and 

induced the coalesced response associated with beat phenomena. 

FIGURE 5.59. WIFS for #02-NS (Event 4) 
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5.5.6 Event 5: 3000-3200 s 

Figure 5.60, spectra 1 displays a dominant torsion response of #02-EW during Event 5, a 

feature often expected at this sensor. In spectra 1-4 the separation between the dominant 

sway torsion and the diminished sway component is very evident. In this case, as  

the amplitude of motion increases, the dominant torsion mode associated dwarfs any 

sway component. Moving through spectra 5-9, the frequency of this torsional response 

softens, as the sustained amplitude of building motion increases. The bandwidth here 

does not indicate an expansion indicative of the coalescence observed previously. It may 

instead be hypothesized that the high amplitude torsional responses in Event 5 led to a 

softening of that modal frequency leading to the shift toward 0.153 Hz, a fact affirmed 

through the WIFS analysis shown in Figure 5.61. The WIFS shows only trace sway and a 

gradual softening of torsion frequency during the high amplitude response, after which it 

begins to stiffen again. It is this increased energy in the softened torsion mode led to 

heightened spectral amplitude, so much so that it completely dwarfed any sway response. 

Note that this softening is not evident in the global spectrum and only apparent in the 

local analysis presented here. Though omitted for brevity, the same dominant single 

mode torsional softening is observed at #59-EW in high amplitude responses, meanwhile, 

the NS sensors maintain the presence of both sway and torsion at low amplitudes. In this 

event, the motion is clearly dominated by torsion, obscuring any contributions due to 

sway. This prevalence of torsion is the infamous characteristic of this building.  
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5.5.7 Conclusions Based on Wavelet Spectral Analysis 

In conclusion, the strongest and most sudden shaking was associated with Event 1, during 

which a sudden change in wind angle led oncoming winds directed toward the west 

corner of the building, an orientation more conducive to separation of flow, helping to 

further simulate strong torsional motions due to alternating vortices on the two long faces 
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FIGURE 5.60. Response at #02-EW (Event 5) with wavelet 
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of the structure. The comparable levels of sway and torsion in this event, and the high 

amplitudes of motion, facilitated a softening of the torsion mode and enhanced the 

damping sufficiently such that the beating of the two coalesced into a single mode 

response of high amplitude wide spectral bandwidth. As the wind direction changed 

quickly from this orientation, the isolated burst in response subsided, and the modes 

separated again, as the torsional component inducing beating diminished and 

nonlinearities in stiffness and damping were less pronounced. The coalescence associated 

with beat phenomenon only occurs under unique situations where the amplitude of 

motion is high enough to enhance nonlinearities and when torsional and sway 

contributions are significant. However, this phenomenon appears to be highly local, since 
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this coalescent phenomenon was only observed at the windward side of the building as a 

result of a fishtailing spurred by structural eccentricity. Further, since the NS sway 

frequency its orthogonal counterpart, the potential for coupling with the torsional mode is 

diminished, explaining the lack of coalescent behavior in these sensors. 

Further, the potential for coupling of the sway and torsional modes often 

eliminates any physical decoupling of sway and torsion through a simple algebraic 

combination of the sensor outputs. It is important to note that the manifestation of 

amplitude dependence in dynamic properties and the evolution of a coalescent beat 

phenomenon are not apparent from just a global spectral representation, such as that of 

Figure 5.50. It is only in the in-depth investigations of time-frequency energy evolution 

that such interaction between modes can be uncovered to enhance understanding of 

building performance. Fortunately, these investigations of instantaneous modal properties 

are now made possible through the wavelet framework presented here.  

5.6 Offshore Platforms 

The previous analysis of wind and seismic response in buildings highlighted the ability of 

wavelets to uncover nonlinear and intermittent response characteristics. The final analysis 

in this chapter, focused on the response of tension leg platforms (TLP) under the action of 

wind and waves, will demonstrate the ability of the transform to capture time-varying low 

frequency content within the resulting response. The TLP response analyzed herein was 

obtained from experiments conducted through a joint industry project discussed in Gurley 

(1993). This experiment measured the response of a 1:160 scale model in six degrees of 

freedom, as shown in Figure 5.62, with longitudinal, transverse and vertical motions, 
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referred to as surge, sway and heave, respectively, and angular motions in a transverse, 

longitudinal and horizontal plane: respectively, roll, pitch and yaw.  

The thrust toward deep-water drilling gave birth to this class of compliant 

structure, designed to move with the environmental loadings rather than resisting them 

rigidly (e.g. Kareem, 187). One benefit of compliance is the ability to design these 

platforms with very low natural frequencies in surge, sway and yaw degrees of freedom, 

as shown in Figure 5.1. As wave motions have a narrow spectra centered about 

comparatively higher frequencies, compliant structures generally will not experience any 

dynamic amplification of wave-induced response, apart from second-order effects. 

However, they are relatively more susceptible to dynamic effects of wind than 

conventional fixed leg platforms and therefore must be designed to resist both dynamic 

FIGURE 5.62. Schematic of response 
components for tension leg platforms (taken 
from Kareem, 1985) 
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wind and wave loadings (Kareem, 1987). As these loading sources simultaneously 

produce low frequency wind and wave excitations, as well as higher frequency wave 

excitations, this situation is well-suited for a multi-resolution wavelet analysis, exploiting 

the wavelet’s low-frequency resolution capabilities and the wavelet instantaneous 

spectral representations to distinguish the response components associated with wind and 

those resulting from wave action. Further, the ability of wavelets to track nonlinear 

features, as demonstrated in the previous analysis of building response, will have added 

utility in the analysis in light of the known system nonlinearities and those of the wave 

field (Kareem, 1985). Since the heave, pitch and roll are beyond the wave spectrum, they 

will not be considered at this time. 

Before beginning the analysis of the platform response under the combined 

effects of wind and wave loads, some details of the oncoming wave field and the 

experimental model are defined. First, all discussions that follow will consider the scaled 

experimental data to give an indication of the likely behavior of this system at full-scale. 

Two sea states will be considered in this section, the first a mild sea state with significant 

wave height of 9.61 m and peak frequency, as determined from the Fourier power 

spectrum in Figure 5.63a, of 0.077 Hz. The severe sea state, whose Fourier power 

spectrum of wave height is provided in Figure 5.63b, is characterized by a wave 

frequency of 0.056 Hz and significant wave height of 20.23 m. Again, additional 

information on this experimental program, including the properties of the platform model 

and the experimental facilities, can be found in Gurley (1993). 
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The surge response (Figure 5.64a) is analyzed first, using a wavelet analysis with fo = 0.5 

Hz to unveil any time-varying characteristics associated with wave loading. Considering 

that typical wave spectra are known to peak near 0.08 Hz and wind spectra at generally 

lower frequencies, the wave-induced response of the platform can be readily 

distinguished through the wavelet analysis. Both a mild and severe sea state are analyzed 

and compared herein to emphasize the relative role of wave action in each. The 

scalogram in Figure 5.64b identifies the wave frequency response with added intermittent 

components, which can be attributed to occasional slamming of waves on the platform 

hull in the severe sea state through the light, higher frequency bands. These oscillations 

of frequency are also observed later in Chapter 7 in the discussion of random sea states 

characterized by nonlinear waves. The precision of the WIFS in Figure 5.64c indicates 

that this wave component within the severe sea state manifests significant fluctuations in 

the instantaneous frequency. Also noted are the gradual fluctuations in the ridge 

associated with the resonant response of the platform near 0.007 Hz, manifesting 

nonlinearities consistent with the modeling of stiffness as a hard spring in the scaled 

model, increasing with displacement. Due to the long period of response, this occurs very 

gradually. Note the increase in instantaneous frequency between 800 and 1400 s followed 

by a softening between 1400-2000 s and a recurrent hardening beyond 2000 s. 

Meanwhile, the fluctuations in the wave component near 0.06 Hz follow the trends in the 

amplitude modulation of the time history. This is perhaps most clearly indicated by the 

two modulations in the WIFS between 2100 and 2400 s, following amplitude 

modulations of the same form in 5.64a. The low frequency ridges may also represent 

contributions from the second order, slowly varying drift forces at low frequencies, 
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caused by the second-order contribution resulting from interactions between components 

of the wave spectrum.  

The WIFS demonstrates that the occurrence of peak surge response is not always 

commensurate with the wave frequency response, as large response excursions may also 

result from low frequency hydrodynamic loads due to the passage of large waves. For 

example near 1200s, a large surge response occurs without a strong wave frequency 

response component. This unique wavelet perspective allows differentiation of the 

relative contributions of wind and waves, both at the wave frequency and at lower 

frequencies, to a given event, readily garnered through examinations of the instantaneous 

spectra in Figure 5.64d-g. For example, Figure 5.64e has a significant high frequency 

contribution associated with wave frequency response while Figure 5.64g has a 

significant low frequency component. Comparing Figure 5.64d and 5.64e, it becomes 

evident that high amplitude surge response is not always driven by higher frequency 

wave frequency response and further distinguishes response due to higher frequency 

wave frequency response and low frequency wind/wave effects. 

On the other hand, in the mild surge response, wind forces create a large response 

at the resonant frequency of the platform. The differences in the response characteristics 

between the mild and severe sea states are readily summarized by comparing their 

Fourier spectra and wavelet marginal spectra in Figure 5.65a. Both responses feature a 

low frequency component in the vicinity of the system’s natural frequency, which arises 

due to nonlinear interactions between the inputs, resulting in forcing energy in a wider 

range of frequencies (Kareem et al., 1998). The wavelet marginal spectra are shown as 
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solid lines and their Fourier counterparts are shown as dotted lines. The enhanced low 

frequency resolution capabilities of the wavelet become immediately apparent. In the 

severe sea state (red), the component associated with the high frequency wave excitations 

is immediately apparent. Though, as shown by the energy accumulation plots in Figure 

5.65b, this wave component, while more pronounced, contributes less than 10% to the 

overall response: the severe sea state surge response is still dominated by the energetic 

low frequency wind and second order wave effects, as shown by the dark red hues in the 

scalogram of Figure 5.64b. The majority of energy in this case is associated with 

frequencies less than 0.01 Hz.  
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FIGURE 5.65. Comparison of surge response in mild (blue) and severe 
(red) sea states: (a) wavelet marginal spectrum (solid) and Fourier 
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In the mild sea state, the energy concentrates at decidedly higher frequencies than 

the severe sea state, as shown again in Figure 5.65b. The mild sea state surge response 

(blue) has a richer distribution of energy in the frequency band under 0.02 Hz, where 

98% of the energy is concentrated. Note the absence of energy at higher frequencies as 

further evidence of a lack of sizeable wave frequency response in the mild sea state. As 

shown by the scalogram in Figure 5.66b, the high frequency wave frequency response is 

minimal, though again manifesting an intermittent, time-varying frequency character. The 

WIFS in Figure 5.66c demonstrates the interchange of energy between second order 

wave components and resonant wind response. The hitches in these low frequency ridges 

in the vicinity of high amplitude events at 1800 and 2000 s may be due to hardening 

characteristic of the platform resonant response. In particular, the mild sea state surge 

analysis demonstrates that the primary effect of waves is not significant to the overall 

motion of TLPs, though it is well known that slowly varying drift forces at low 

frequencies caused by nonlinear interactions between wave components in wave 

spectrum may result in low frequency resonant oscillations of TLPs (Kareem, 1985).  The 

prevalence of these low frequency components is highlighted by the instantaneous 

spectra in Figure 5.66d-g.  

Ideally in the case of wind and waves approaching at a zero angle of attack, there 

should be no sway motion. However, due to the coupled nature of the TLP’s degrees of 

freedom, the lateral motion may be induced by vortex shedding or through coupling that 

exists with the yaw motion. Sway may also result from any misalignment of the model in 

the wind/wave test facility.  The resulting sway response in the mild sea state, garnered 

from a fo = 1 Hz wavelet analysis, is characterized by a significant component of energy 



261 

in the wavelet marginal spectrum (blue) associated with the wave frequency response, as 

denoted by the energetic contribution near the peak of the wave spectrum in Figure 5.67a. 

This component contributes 30% of the total energy to the sway response, as shown by 

the accumulation curve in Figure 5.67b, a comparatively greater contribution that than 

observed in the surge response. As shown by the scalogram in Figure 5.68b and its 

associated WIFS in Figure 5.68c, this component of the response is highly energetic and 
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shows marked fluctuations, similar to what was observed in the surge response of the 

severe sea state, a detail obscured in a conventional Fourier analysis.  

Conversely, the severe sea state sway response has a strong, quasi-static 

component and the absence of any wave frequency response, a feature similarly affirmed 

by the energy accumulation plot in Figure 5.67b. This low-frequency component 

manifests trends consistent with that observed in the surge response. The scalogram 

associated with this sea state is shown in Figure 5.69. Note the increasing prominence of 

the resonant component of the response and the decreasing frequency of this response as 

the amplitude of sway declines beyond 1600 s, again suggesting the manifestation of the 

hardening spring action in the scaled model. 
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The lateral motion induced by yaw is the final response component considered here using 

a fo = 1 Hz wavelet analysis. This response component arises from asymmetrical 

distributions of the wind or wave loads but can be accentuated by uneven pre-tension in 

the tendons and potential eccentricity in the center of mass, which can  induce surge-yaw 

coupling (Gurley, 1993). As shown by Figure 5.70b, the accumulation of energy in both 

the mild (blue) and severe (red) sea states is nearly identical, concentrated entirely in the 

low frequencies under 0.02 Hz. The difference lies in how this energy distributes within 

the low frequency range. As shown by Figure 5.70a both the wavelet (solid) and Fourier 

(dotted) spectra, the mild case manifests a sharp peak with a broad bandwidth and anti-

symmetric shape. This spectral peak is flanked to the right by a slight, quasi-static 
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FIGURE 5.70. Comparison of yaw-induced lateral response in mild (blue) and 
severe (red) sea states: (a) wavelet marginal spectrum (solid) and Fourier 
spectrum (dotted); (b) energy accumulation with frequency 
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component. The severe sea state also shows this same quasi-static component but of a far 

more pronounced stature, however, the single response peak observed in the mild sea 

state has separated into a bi-modal characteristic, retaining the same resonant frequency 

as the mild state but now dwarfed by a higher-frequency component previously buried in 

the widened bandwidth of the mild sea state. 

The averaged representation provided by the marginal spectrum fails to shed light 

on the true behavior of the yaw response. The scalogram in Figure 5.71b indicates that 

this bi-modal characteristic is present intermittently throughout the mild sea state time 

series in Figure 5.71a. The marginal spectrum merely represented the occasional presence 

of the higher mode in this pair as a widened bandwidth. The presence of both modes is 

very pronounced between 800 and 1200 s, concentrating at near 0.01 and 0.005 Hz.  

f [Hz] 
f [Hz] 

E(
f)

 

S W
T(

f o
/f)

, S
FT

(f
) 

 

(a) 
(b) 

FIGURE 5.70. Comparison of yaw-induced lateral response in mild (blue) and 
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FIGURE 5.71. (a) Yaw-induced lateral response for mild sea state and (b) 
scalogram; (c) yaw-induced sway response for severe sea state and (d) 
scalogram 
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Between 1200 and 1400 s it reverts strongly back toward a resonant response at 0.005 Hz 

only revert back to this bimodal characteristic at 1400 s, repeating this trend later in the 

scalogram. The trace presence of a quasi-static component near 0.002 Hz is evident 

throughout though most pronounced between 1400 and 1800 s. The severe sea state 

produces a yaw scalogram in Figure 5.71c that demonstrates the enhanced presence of the 

higher mode in that bi-modal characteristic near 0.013 Hz, particularly between 800 and 

1000 s and from 1800 s until the termination of the time series. Strong periodicity in the 

time series indicative of resonant response is identified by two isolated bursts of bright 

hues in the scalogram at 1200 and 2000 s. The quasi-static response is also very strongly 

evident in the severe sea state, becoming far more pronounced and persistent from 1000 s 

and on. 

5.7 Summary 

This chapter presented specific examples of wavelet analyses of environmental loads and 

associated response of Civil Engineering structures, highlighting the wavelet’s ability to 

uncover intermittent and nonlinear characteristics through wavelet scalograms and 

instantaneous frequency spectra. In particular, the ability to detect and model nonlinear 

characteristics is particularly important for seismic analysis, where large amplitude 

response and structural damage can induce frequency variations. Further, in the design 

and modeling of compliant structures, wavelets can be beneficial in distinguishing wind 

and wave driven response of systems with nonlinearities in stiffness and subject to the 

action of nonlinear wave fields. In fact, this inherent nonlinearity in wave excitations will 

be a subject of further study in Chapter 7, where wavelets will be used in the analysis of 
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Stokian waves and to uncover the intermittent characteristics of random sea states. 

However, even under the lower amplitude excitations of wind, wavelets were shown in 

this chapter to be a critical tool in unlocking peculiar behavior trends in a tall building 

due to intermittent aerodynamic actions that were obscured in Fourier analyses. The 

following chapter will further demonstrate the utility of wavelets in unlocking such 

intermittent characteristics in wind fields through a wavelet-based coherence measure and 

its associated processing tools. 
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CHAPTER 6 

WAVELET SYSTEM IDENTIFICATION II:  

APPLICATIONS TO WAVELET COHERENCE 

6.1 Introduction 

As motivated in the preceding chapters, though transients have long defined signature 

characteristics across the engineering spectrum, available analysis tools like Fourier 

transforms have been ill equipped to represent this phenomenon. It was not until the time-

frequency revolution of the 20th century that such signals could be adequately treated by 

the likes of the Gabor transform and the Wigner-Ville distribution. Today, wavelet 

transforms lead the transition to this new analysis domain, providing the ability to display 

time and frequency information independently and unveil the hidden features of 

evolutionary phenomena.  

Particularly in the areas of aerodynamics and wind engineering, wind field 

fluctuations result in spatio-temporal pressure fluctuations on the surfaces of bluff bodies, 

e.g. buildings. These pressure fluctuations are manifestations of complex, nonlinear 

interactions that take place as the wind passes around a bluff structure. The spatio-

temporal pressure fluctuations exhibit drastic transient features depending on their 
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location on the surface and, with the exception of the windward face, are not amenable to 

a functional relationship with the oncoming wind field. Efforts to identify significant 

linear correlation between wind and pressure fluctuations were unsuccessful, especially 

in the separated flow regions. This has led to the consideration of higher-order 

correlation, e.g. bicoherence (Gurley et al., 1997a). However, these efforts highlighted 

the inability of such Fourier-based measures to capture transient higher-order correlations 

that may exist between wind and pressure fluctuations. 

With the availability of time-frequency analysis via wavelets, linear correlation 

analyses were enhanced by way of the coscalogram (Gurley & Kareem, 1999). This 

approach did identify some intermittent correlation between wind and pressure and will 

be further developed in this chapter as a tool for delineating any previously obscured 

intermittent relationship between certain wavelengths in the approach flow and the 

resulting pressure fluctuations. The potential for such insights have made wavelets an 

insightful tool for other applications in wind engineering. For example, early 

investigations of turbulent wind effects were conducted by Farge (1992), who applied 

wavelet-based spectral analysis to the modeling of atmospheric turbulence. Gurley & 

Kareem (1997a) later adapted this to the analysis of turbulence and resulting pressures in 

full-scale dynamic response data. In total, the use of wavelet transforms in this field 

continues to advance, as overviewed by Gurley & Kareem (1999) and applications of 

wavelets in wind, offshore, and earthquake engineering in Chapter 5.  

This chapter continues the work in wavelets for both wind and waves by applying 

wavelet transforms to identify first-order intermittent correlation between measured 
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records. While this representation allows a display in terms of time and frequency, the 

influence of noise in the estimation of coherence over a localized time frame is 

significant, making a distinction between the true correlation and noise a major issue to 

be addressed. This chapter revisits the classical approach for reduction of variance, 

averaging, in the multi-resolution context of wavelets, and later discusses three tiers of 

denoising schemes, which minimize the need for localized averaging in order to preserve 

temporal information. While hard thresholding based on global maxima of the wavelet 

coherence map can be used to isolate meaningful coherence, other thresholding 

simulation schemes are proposed to provide a reference noise map to more accurately 

separate spurious noise effects from true signal content. These reference maps are 

generated using independent realizations of time histories to establish a statistical 

measure of the expected noise in the estimated coherence. The robustness of these 

schemes is established using both simulated and measured data. The method is shown to 

significantly reduce the presence of spurious coherence, even in cases where variance and 

leakage are prevalent. 

6.2 Wavelet Coherence Background: Scalogram and Coscalogram  

The localized wavelet coefficients are well suited for analyzing non-stationary events, 

with their squared values plotted on a time-scale (time-frequency) grid. This 

visualization, called the scalogram or mean square map, reveals the frequency content of 

the signal at each time step to pinpoint the occurrence of transients while tracking 

evolutionary phenomena in both time and frequency. However, in some recent studies, 

the concept of the scalogram has been advanced to identify correlation between signals in 
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which the squared coefficients are replaced with the product of the wavelet coefficients 

of two different processes (e.g., Hudgins et al., 1993; Gurley & Kareem, 1999). This 

coscalogram produces a view of the coincident events between the processes, revealing 

time-varying pockets of correlation over frequency.  

To demonstrate this concept, full-scale pressures measured on a building and the 

upstream wind velocity fluctuations were analyzed by Kareem & Gurley (1999). The 

scalogram of wind velocity and simultaneously measured pressure are presented along 

with their coscalogram in Figure 6.1a-c. The light hues of the coscalogram identify areas 

of correlation. Figure 6.1d-f presents the same information for two uncorrelated records. 

The resulting coscalogram (Fig. 6.1f) of these two unrelated processes shows no distinct 

correlation. The coscalogram contains wavelet coefficients determined from segments of 

the signal isolated by the sliding window of the scaled parent wavelet. At each time step, 

the calculated wavelet coefficients comprise a single raw spectrum across the range of 

scales, equivalent to a spectrum obtained from a single time history in the traditional 

Fourier analysis. These raw spectra that are assembled along the time axis in the 

scalogram and coscalogram lack the ensemble averaging necessary in traditional Fourier 

methods to reduce the variance in the estimate, resulting in noisy displays where 

correlated events are difficult to differentiate from random coincident coefficients. 

Though this simple measure of correlation has been used to qualitatively identify first-

order wind velocity and pressure relationships (Gurley & Kareem, 1999), it is refined in 

this chapter by the introduction of a wavelet coherence measure. 
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6.3 Wavelet-based Coherence Map 

As the Morlet wavelet introduced in Chapter 4 is merely a localized form of the Fourier 

transform, it can intuitively be substituted into classical spectral measures to uncover 

time-varying frequency content, effectively windowing the Fourier analysis. For this 

reason, it is again the preferred wavelet in this application. The equivalence of traditional 

Fourier measures with those newly recast using Morlet wavelets was previously shown in 

Gurley & Kareem (1999) for quantities such as scalogram and coscalogram, analogs to 
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FIGURE 6.1. (a) Scalogram of upstream wind velocity 1; (b) scalogram of rooftop 
pressure; (c) coscalogam of these two correlated processes; (d) scalogram of upstream 
wind velocity 2; (e) scalogram of rooftop pressure; (f) coscalogram of these two 
uncorrelated processes (taken from Gurley & Kareem, 1999) 
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the auto-spectrum and cross-spectrum. Their abilities to capture marginal spectral 

characteristics and measures of signal energy were further validated in Chapter 5. In this 

chapter, the classical coherence definition is modified utilizing spectra defined locally by 

Morlet wavelets to yield a time-frequency coherence function. The traditional form of the 

coherence function can be retained as the ratio of the wavelet cross-spectrum to the 

product of the wavelet auto-spectra of the two signals x(t) and y(t). The wavelet 

coherence map is thus defined as 
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where the localized power spectra discussed above are given by 
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with the subscripts on the wavelet coefficients indicating their association with each 

signal. 

The localized time integration window in Equation 6.2, [ ]TtTtT ∆+∆−= , , is 

selected based on the time resolution desired in the resulting coherence map and 

essentially performs the same ensemble averaging operation, albeit localized in time, as 

traditional Fourier analysis to obtain an auto-spectrum or cross-spectrum of two signals. 

The map is bounded between 0 and 1 and provides a view of the localized correlation 

with respect to both time and frequency. Equivalence of this proposed time-frequency 

coherence map with its classical formulation is demonstrated in the following section.  
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It should be noted that discussions in Torrence & Compo (1998) highlight that an 

earlier coherence measure defined by Liu (1994), similar to that used by Shin et al. 

(1999), had limited physical meaning without the smoothing introduced here by T in 

Equation 6.2, and hint that averaging to some extent is necessary to provide a useful 

measure of coherence. The parameter T in Equation 6.2 addresses this concern, although, 

being somewhat arbitrary, it also presents the potential for a loss in time localization. 

6.3.1 Comparison of Wavelet- and Fourier-based Coherence Estimates 

The validity of the coherence map in Equations 6.1-6.2 is demonstrated by first applying 

the wavelet-based coherence to stationary signals. The standard Fourier-based coherence 

estimate is directly compared with the wavelet-based coherence by averaging out the time 

information in the wavelet coherence map, according to 

 ( )( ) ( )( )∑
=

=
nt

i
i

W tac
nt

ac
1

22
,1 , (6.3) 

where nt is the number of discrete time steps resulting from the localized time window, T. 

The signals being analyzed in this example are the upstream wave elevation and 

the resulting surge response of a tension leg offshore platform (TLP) 1:200 scale model, 

measured experimentally in a wind/wave tank facility and shown in Figure 6.2a,b. 

Sampled at 1 Hz, 4096 s of data is used in this analysis. This is a part of the larger data 

set investigated in Section 5.6. Standard Fourier coherence estimation and Equations 6.1-

6.3 are applied to these signals with the results shown in Figure 6.2c. The coherence is 

well represented by both estimates, demonstrating the accuracy of the wavelet-based  
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FIGURE 6.2. (a) Incoming wave surface elevation; (b) 
TLP surge response; (c) wavelet and FFT coherence 
estimates between wave elevation and TLP response; (d) 
wavelet and FFT coherence estimates between wave 
elevation and TLP response with incoherent nose added to 
each 
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coherence estimate with respect to both magnitude and frequency. A second example 

demonstrates that wavelet-based coherence can accurately estimate smaller levels of 

linear correlation. In this case, independent white noise vectors are added to the wave 

surface and TLP response time histories to reduce the level of correlation, and coherence 

estimates are again produced. Figure 6.2d shows the wavelet coherence representing the 

reduced correlation accurately. 

6.3.2 Application of Wavelet-Coherence to Non-stationary Signals 

The previous section demonstrated that wavelet-coherence viewed only with respect to 

frequency provides an effective coherence estimate. The advantage of wavelet-based 

coherence in identifying the time at which coherence between two signals occurs is now 

demonstrated by its application to velocity and pressure signals with known pockets of 

short duration correlation. Two independent Gaussian wind velocity signals (v1(t), v2(t)) 

are simulated for 2048 s at 1 Hz. A pressure record is then created by combining 

independent white noise ε (t) with the v2(t) wind record and a quadratic term  

 ( ) ))(()()()( 2
2

2
2 tvtGtvttpr +++= εε . (6.4) 

For this example, G = 0.05. Two small segments of the pressure record, over the time 

interval t’, are then replaced with signals generated by 

 ( ) ))'('()'()'()'( 2
1

2
1 tvtGtvttpr ff +++= εε , (6.5) 
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where v1f(t') indicates v1(t’) after band pass filtering is applied to correlate the pressure 

and the velocity record over selected frequency ranges. The use of Equation 6.5 produces 

a pair of signals, pr(t) and v1(t), correlated only from 512 to 768 s between 0.0625 and 

0.25 Hz and from 1536 to 1792 s between 0.19 and 0.37 Hz, and uncorrelated 

everywhere else.  

The standard Fourier-based coherence between v2(t) and pr(t) and between v1(t) 

and pr(t) are displayed in Figure 6.3. Note that the intermittent coherence between v1(t) 

and pr(t) cannot clearly be distinguished, suggesting that the signals are uncorrelated, 

whereas the relationship between v2(t) and pr(t), as expected, appears fairly strong. 
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Isometric and overhead views of the wavelet-coherence map between v1(t) and 

pr(t), as generated by Equation 6.1,  are shown in Figure 6.4. For this example, and those 

which follow, a value of fo = 5/(2π) was deemed sufficient to provide the necessary time 

and frequency resolutions, though a more precise frequency resolution (larger fo) may be 

required in other cases, as discussed in more specifically in Chapter 7. A time integration 

window of T = [t - 64 s, t + 64 s] was applied. Pockets of strong correlation can then be 

identified in these displays that include the time and frequency regions of introduced 

correlation, approximately boxed. However, the coherence estimate also displays 

phantom correlation in regions where no correlation exists, particularly in the low 

frequency regions as emphasized by the semi-logarithmic plot in Figure 6.4. This noise is 

similar to that seen in Fourier-based spectral methods, where, due to a finite number of 

ensembles, variance errors are introduced. In the case of the wavelet coherence map, the 

localized time integration window T determines the number of ensembles used in the 

estimation of coherence in Equation 6.1. Increasing T can reduce the noise in the 

coherence estimate at the expense of temporal resolution. 

6.4 Minimization of Spurious Coherence  

Classically, the presence of variance in raw spectral estimates necessitates the use of 

averaging in order to obtain more reliable results. However, the transient information 

sought in a time-frequency analysis may be obscured through excessive averaging, 

especially in the low frequency regime, where spurious coherence seems most prevalent. 

A variable integration scheme is proposed in the following section to address this issue, 
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 followed by alternative approaches designed to better preserve temporal resolution using 

simulated signals to build reference noise maps. 

6.4.1 Multi-Resolution Integration Windows 

In the initial formulation of the wavelet coherence, the localized time window is constant 

throughout the analysis. However, unlike its Fourier counterpart, the wavelet transform is 

multi-resolution, having scale-dependent time and frequency resolutions. Each wavelet 

coefficient, at given (frequency) scale ai and time tj, is the result of analyzing a local 

section of the time history windowed by the scaled Gaussian function of the Morlet 

wavelet. Thus, the signal’s content ∆ti before that point in time and ∆ti after that point in 

time is used to estimate the wavelet coefficient W(ai,tj), where ∆ti is dictated by ai 

according to Equation 4.5. Note that the central frequency implicitly dictates this 

resolution and becomes one of the parameters influencing the extent of the spurious 

coherence in the wavelet coherence map. This is demonstrated in Figure 6.5 using the 

simulated velocity and pressure signals with known coherent pockets boxed in the figure. 

In this demonstration, a constant 64-second integration window was used to evaluate the 

coherence every 10 seconds to expedite calculations. The larger values of central 

frequency elongate the temporal windows of the scaled wavelets, reducing the averaging 

achievable in the analysis and leading to extensive spurious coherence. The spurious 

coherence diminishes for lower wavelet central frequencies as more averaging is 

achieved, but this also implies that the frequency resolution capabilities are lost, leading 

to a smearing of energy. A balance between the two extremes is achieved for fo=5/2π and 

thus this is why it is used as the baseline case in this discussion. The influence of central  
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FIGURE 6.5. Influence of central frequency on the occurrence of 
spurious coherence in wavelet coherence map. Known coherent 
pockets between v1(t) and pr(t) designated by boxes 
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frequency in the context of the developments in Chapter 4 should be kept in mind 

throughout the subsequent discussions.    

For the analysis conducted in Section 6.3.2 and shown in Figure 6.4 (referred to 

herein as the baseline example), the choice of a constant window spanning a total of 128 

s implies that at very low frequencies, as little as one unique local section of the time 

history is effectively being included in the estimate of the wavelet local spectrum in 

Equation 6.2. For fo = 5/2π, at 0.01 Hz nearly all the wavelet coefficients in that 128 s 

time span are estimated from the same section of the time history, approximately 112 s 

long (∆ti~56.27 s), and are thereby virtually non-unique. Thus their subsequent averaging 

does little to reduce the variance, as conceptualized by Figure 6.6a. The figure illustrates 

that at low frequencies there can be considerable overlap of the Morlet wavelet’s 

Gaussian window within the analysis horizon T, yielding only three unique wavelet 

windows, shown in white. Conversely, at higher frequencies, the same T affords five 

unique wavelet windows. The ramifications parallel the estimation of power spectra from 

Fourier-transformed blocks of a time history. Consider a signal of finite duration from 

which five raw spectra can be generated only by heavily overlapping the blocks of the 

time history being Fourier transformed. These five spectra are highly dependent and thus 

only minimally reduce the variance when averaged. However, if the signal were long 

enough to estimate five raw spectra from non-overlapping segments of the signal, their 

averaged result would have far less variance, just as in the case of the higher frequencies 

in Figure 6.4, whose wavelet coefficients are estimated using windows with temporal 

duration of only a few seconds. The localized spectra in Equation 6.2 at these frequencies 

include markedly more wavelet coefficients generated from independent segments of the 
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time history. Now the same fo = 5/2π Morlet wavelet, at 0.5 Hz, produces a wavelet 

coefficient from only 2.24 s of data (∆t~1.12 s), affording over fifty coefficients from 

non-overlapping segments of the 128 s analysis window for averaging and sizeable 

reductions in variance. This explains why lower frequencies in the coherence map seem 

to be heavily plagued by spurious coherence, as emphasized when the coherence map is 

plotted as semi-logarithmic in frequency in Figure 6.4. 

The use of a fixed integration window (FIW) in Equation 6.2 actually provides 

differential treatment to the high frequency components, in terms of the number of 

uniquely estimated wavelet coefficients included in the averaging process. Due to the 

multi-resolution character of the wavelet analysis, T in Equation 6.2 should be replaced 
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FIGURE 6.6. Illustration of variable integration 
window concept 
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by T(a), so that the integration in Equation 6.2 averages the same number of “ensembles” 

over all frequencies, as also conceptualized in Figure 6.6b, where at both high and low 

frequencies there are at least three unique wavelet windows, shown in white.  

A scheme predicated upon variable integration windows (VIW) proceeds by 

defining the window of integration for each frequency as an integer multiple (βT) of the 

temporal resolution of the analyzing wavelet at that scale, given as 

 
2

2
2

22)(
f

fataT oTT
T

βββ ==∆≥  (6.6) 

for the Morlet wavelet. Thus βT would be chosen as a constant for the entire map, 

dependent on the number of desired averages in the coherence measure, and T(a) would 

vary, inversely proportional to the frequency being analyzed. The inequality in Equation 

6.6 arises from the fact that the times at which the signal is sampled will not coincide 

with the effective initiation and termination of an arbitrary dilated wavelet, such that T(a) 

must be rounded to the nearest sampled point. This fact leads to the overlapping which 

may occur at lower frequencies, as visualized in Figure 6.6. Note that Equation 6.6 

insures that there is a minimum of βT independent time segments being windowed in the 

estimation of wavelet coefficients, but there certainly may be additional overlapping 

ensembles present, especially in the lower frequencies. As the number of independent 

ensembles makes the most significant contributions to variance reduction, it allows the 

simplest and most direct criteria for defining T(a).  
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In Figure 6.7, the benefits of variable integration are evaluated by comparing the 

baseline case to three other cases: βT = 10, 20 and 50. Note that in the baseline case, the 

fixed integration window yielded approximately βT = 50 in the high frequencies while 

affording as little as βT = 1 in the low frequencies, accounting for the prevalence of 

spurious coherence in this region. As shown in Figure 6.7, by averaging over a horizon 

long enough to permit a sufficient number of wavelet coefficients to be estimated from 

non-overlapping windowed sections of the time history, much of the low frequency 

spurious coherence is minimized. The higher frequencies still appear to be plagued in 

comparison to the baseline case, as expected, since the baseline essentially had βT =50 in 

this region. Increasing the number of ensembles being averaged to βT =20 and 50 yields 

further improvements in the higher frequencies, though the known pockets of coherence 

are now beginning to bleed temporally, a consequence of increasing the time frame for 

local averaging. This loss of temporal resolution in the coherence map is an unavoidable 

consequence of increasing the number of ensembles in the averaging process. However, 

the examples provided in Figure 6.7 illustrate that meaningless coherence can be 

attributed to the effective number of ensembles in the averaging process in Equation 6.2 

and justifies the use of a variable time window for this integration, as defined by 

Equation 6.6.  

Note that spectral averaging in general makes implicit assumptions of stationarity. 

The stationary assumption is rarely justified in the wavelet analysis, as the suspicion of 

evolutionary characteristics motivates the use of wavelet analysis in the first place. Still, 

by viewing the problem as one with locally stationary blocks, this localized averaging 

process can be reasonably justified. It is then left to the discretion of the user to determine 
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how transient the process is when specifying integration windows so that evolutionary 

behavior is not masked. The averaging operation provides a more reliable description of 

coherence as opposed to the raw coscalogram, providing a smoothed, yet biased estimate, 

however it becomes evident that there is a delicate balance between a sufficient 

integration window to minimize variance and one that is so long that it obscures relevant 

time-varying information. In cases where highly evolutionary characteristics are 

suspected, integration windows must be tightly localized, placing practical limits on the 

use of localized integration to diminish spurious coherence, motivating more 

sophisticated techniques to remove noise from the map, introduced below. 
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FIGURE 6.7. Examples of variance reduction by variable integration window 
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6.4.2 Ridge Extraction by Hard Thresholding 

As wavelet analysis is used commonly for the study of evolutionary behavior with 

relatively short duration data, the possibility of significant amounts of averaging becomes 

increasingly difficult if not impossible, particularly if the signal contains transient 

information that would be completely obscured in the averaging process. An alternative 

approach is to separate the signal from the noise surrounding it. In the case of analyzing 

wavelets whose Fourier transforms are sharply focused near a fixed frequency value (e.g. 

Morlet wavelet), the maxima of the resulting wavelet transform reflect the locations 

where the energy of the signal concentrates, defining a curve in the time-frequency plane 

termed the ridge – quite useful in situations where frequency-modulated signals are 

imbedded in noise. Recall this concept was discussed more fully in Chapter 4 and has 

been repeatedly exploited thus far in Chapter 5 and will continue to be revisited in future 

chapters. Although noise is spread throughout the time-frequency plane, the contribution 

of the signal is much greater than the noise in the vicinity of the ridges, which can be 

extracted as discussed in Section 4.4. 

However, in the coherence analysis presented here, the coherent pockets are 

intermittent and not suitable for extraction techniques geared for smooth, continuous 

ridges. Still, the theory of ridges implies that globally, as the truly coherent pockets will 

show stronger coherence than the surrounding noise, leading to larger coefficients. As a 

result, the truly coherent pockets may be separated by globally identifying the maximum 

coherence (max[cw]) in the map and applying denoising schemes such as hard 

thresholding. This process is defined by 
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This process roughly approximates a ridge identification procedure, effectively 

extracting the locations where the true coherence lies. Here λΤ is the assigned threshold 

factor, taking on a value between 0 and 1 to define the percentage of the maximum 

coherence deemed meaningful. The thresholding not only removes spurious coherence as 

the result of variance, but also removes the effects of the Gaussian windowing operation 

in the Morlet wavelet transform, which introduces a known enhancement of spectral 

bandwidth discussed previously in Chapter 4. Though lesser values of coherence 

surrounding a point in time and frequency are produced as a result of this window, the 

highest coherences will still manifest along these ridge points, which carry all the 

meaningful coherence information. 

The thresholding operation in Equation 6.7 was applied to some of the cases 

considered in the previous section, as the combination of ridge extraction by hard 

thresholding and variable integration provides a simple means to extract meaningful 

coherence from the wavelet coherence map. For βT =10, increasing the threshold factor to 

0.75 approximately isolates both pockets of known coherence, as clearly shown when 

comparing the results from Figure 6.7 to the filtered results in Figure 6.8. However, by 

selecting too stringent a threshold (λT = 0.90, not shown), only a portion of the first 

pocket of coherence is retained, while the second is completely lost. When the number of 

ensembles is more sizeable, the threshold factor can be relaxed considerably, as βT = 50, 

λT = 0.50 illustrates. Recall that this thresholding approach is merely another strategy to 



 290

separate true coherence from noise. As the noise is primarily the byproduct of variance, 

or a lack of averaging, in cases where variable integration has insured a large number of 

ensembles in the average (e.g. βT =50), the noise has already been considerably alleviated 

(see Fig. 6.7). In such cases, the noise is less dominant, taking on lower amplitudes in 

comparison to the coherent ridges, thereby relaxing the necessary threshold value λT. 

Note again, that the bleeding of temporal information, particularly for the first pocket of 

known coherence, is an unavoidable consequence of increasing the number of ensembles 

in the averaging process. Thus far, Sections 6.4.1 and 6.4.2 have discussed two 

techniques for reducing the appearance of spurious wavelet coherence that, while simple, 

are quite subjective. The following sections discuss more sophisticated techniques that 

remove much of this subjectivity and provide an effective means to separate meaningful 

pockets of coherence without requiring the use of variable integration windows.     

Frequency [H
z] 

βT =10, λT =0.50 βT =10, λT =0.75 

βT =50, λT =0.50 βT =50, λT =0.75 

 
Time [s] 

Frequency [H
z] 

 
Time [s] 

FIGURE 6.8. Examples of coarse ridge extraction by thresholding 
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6.4.3 Filtered Wavelet Coherence Map Based on White Noise 

Though the coarse ridge extraction by thresholding is a simple means to identify 

meaningful coherence, the insouciant use of hard thresholding based on global maxima 

may obscure meaningful coherence that is weaker than the dominant coherent 

components. Any coherence, real or noise-induced, falling below the threshold value is 

neglected. Recognizing that the spurious coherence is the result of inherent randomness, 

one alternative would be to conduct repeated Monte Carlo simulations of white or 

colored random noise in order to determine the likely levels of variance in a given 

wavelet spectral measure. By this approach, peaks in a wavelet scalogram, for example, 

are deemed statistically significant if they surpass a given confidence level defined by the 

random noise simulations. This type of approach was detailed in Torrence & Compo 

(1998) for statistical significance of wavelet power spectra.  J. Huang et al. (1998) 

applied a similar technique to define a reference map for multi-resolution Fourier 

cospectra. This approach is extended herein to wavelet coherence.  

This process initiates with the generation of a reference coherence noise map 

through repeated simulation of independent, zero mean, Gaussian white noise processes 

at the same sampling rate and of the same duration as the original signals. The wavelet 

coherence of the two simulated white noise signals is delineated by ( )( )2,tacwn
i  and is 

repeatedly calculated for N independently simulated white noise signal pairs, according to 

Equations 6.1 and 6.2. These simulated coherence maps, which should represent spurious 

coherence associated with random signals, are then averaged to produce a mean noise 

reference map 



 292

 ( )( ) ( )( )∑
=

=
N

i

wn
imn tac

N
tac

1

22 ,1,  (6.8) 

with standard deviation ( )tacst , . The threshold value of a statistically meaningful 

correlation can them be defined as the sum of this mean and the standard deviation 

weighted by a factor g 

 ( ) ( ) ( )( )tacgtactac stmnth ,,, += . (6.9) 

The noise factor g, which need not be an integer value, must then be selected 

based on the desired likelihood of noise exceeding the threshold, providing a quantitative 

measure of statistically meaningful correlation, where the distribution of the random 

noise map is taken as Gaussian, consistent with the simulated noise. As a result, selecting 

g = 1 implies a probability of suppressing 68.3% of the spurious coherence, g = 2 sets a 

more stringent level at 95.4%, and g = 3 raises that level to 99.7%. With the reference 

map cth(a,t) now in place, the actual wavelet coherence of x(t) and y(t) can be generated 

by Equation 6.1 and then subjected to a thresholding scheme, yielding a filtered 

coherence map according to 
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The noise factor g in Equation 6.9 must be selected judiciously, as a choice that is too 

large may negate statistically meaningful, albeit reduced, levels of correlation, as 

observed in the thresholding procedure in the previous section. While the choice of g may 

be rather arbitrarily defined, e.g. Hangan et al. (2001), a less subjective choice for g may 
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be determined based on the probability distribution of the noise coherence maps, as 

recommended here. 

To demonstrate the efficacy of this approach, N = 100 pairs of statistically 

independent, zero mean, Gaussian white noise signals of the same length and sampling 

rate of v1 and pr are simulated and the threshold of statistically meaningful correlation is 

determined by Equation 6.9 for g = 1, 2 and 3. The unfiltered wavelet coherence map of 

v1 and pr and the filtered maps for the varying levels of g are shown in Figure 6.9. By 

progressively increasing the factor g, a more stringent thresholding condition is achieved. 

The latter two figures clearly demonstrate the minimization of spurious coherence in the 

low frequency range by virtue of this approach. Note that these results were achieved 

without the use of any variable integration schemes but merely assuming ∆T = 64 s, 

leading to the strong coherence in the low frequency range. By assuming a uniformly 

distributed noise field and then performing the wavelet coherence operation, the spurious 

coherence that results from implicit biases in the transform are recreated in the reference 

thresholds and can be removed through the aforementioned thresholding operations 

through minimal computational effort. For g = 3 the two known coherent pockets are 

identified with some scattered, minor spurious coherent pockets remaining. 

6.4.4 Filtered Wavelet Coherence Map Based on Signal Characteristics 

The technique in the preceding section is more generalized assuming that a threshold 

level representative of the spurious coherence can be generated using generic white noise 

signals. However, this approach does not incorporate any specific information on the 

spectral or probabilistic structure of the analyzed signals, perhaps leading to those 
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residual trace coherent patches in Figure 6.9. As a result, a more sophisticated tool was 

proposed by Dunyak et al. (1997) through a method to quantify the statistical relevance 

of wavelet coefficients when detecting coherent wind gusts. These sustained gusts are 

delineated from short incoherent bursts by establishing a reference distribution of wavelet 

coefficients from simulated Gaussian signals with no sustained gusts. This notion can be 

extended for the purposes of wavelet coherence analysis by employing a “smart” 

thresholding scheme that exploits both the spectral and probabilistic information from the 

g = 1: 31.7% exceedence 

g = 2: 4.6% exceedence g = 3: 0.3% exceedence 

Fr
eq

ue
nc

y 
[H

z]
 

Fr
eq

ue
nc

y 
[H

z]
 

Fr
eq

ue
nc

y 
[H

z]
 

Fr
eq

ue
nc

y 
[H

z]
 unfiltered

Time [s] 

Time [s] Time [s] 

Time [s]
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signals being analyzed to generate a map describing the expected noise threshold (Gurley 

et al., 2003). 

In this case, the expected noise map associated with the wavelet coherence for a 

given pair of signals, x(t) and y(t), is developed by first generating multiple simulations of 

the second signal, denoted ys(t). These simulated signals are independent of each other 

and x(t) and are statistically identical to the original signal y(t) in both the power spectral 

density and probability density function, through the use of a recently developed non-

Gaussian simulation algorithm (Gurley & Kareem, 1997a). The wavelet coherence 

between x(t) and each of the simulated versions of the second signal (ys(t)) is calculated 

using Equation 6.1. The resulting wavelet coherence, denoted ( )( )2,tacnc
i , takes the place 

of ( )( )2,tacwn
i  in Equation 6.8. The mean noise reference map is then calculated by this 

modified version of Equation 6.8 and the thresholding operations in Equations 6.9 and 

6.10 are repeated using this “smarter” reference threshold incorporating the spectral and 

probabilistic structure of the signals. 

The non-Gaussian probability distribution of the random noise map in this case 

must be approximated by considering higher-order statistics collected from the multiple 

simulated noise maps, in addition to their mean and standard deviation. As the extreme 

regions of the established distribution are used to determine the threshold, the probability 

model used must reliably reflect the actual distribution of noise. An extreme value-type 

distribution that does not explicitly include any information on the higher-order statistics 

is disregarded in favor of more advanced four parameter models. A modified Hermite 

polynomial-based model and a maximum entropy-based model are used in Gurley et al. 
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(2003). Both of these have been shown to be very effective in representing the tail region 

of non-Gaussian processes (Gurley & Kareem, 1997b) and produced almost identical 

results for the examples used in this chapter. The tail region of the resulting PDF 

represents the probability of noise exceeding the selected threshold that demarcates 

correlation in the wavelet coherence map.  

To illustrate the proper selection of the factor g, in light of this modified 

thresholding scheme, as well as the robustness of this approach, a filtered wavelet 

coherence map is generated using N = 100 for the baseline analysis of the velocity and 
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FIGURE 6.10. Filtered wavelet coherence map between v1(t) and pr(t) with g
selected for varying noise exceedence levels, based on signal characteristics 
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pressure signals, v1(t) and pr(t), discussed in Section 6.3.2. Note that this baseline case 

also does not exploit the use of the variable integration windows (see Section 6.4.1) and 

thus provides significant low frequency noise, just as the example in Section 6.4.3. As 

Figure 6.10 illustrates, the performance of the unfiltered map is greatly enhanced as the 

noise exceedence criterion is made more stringent. At the 1% exceedence level, both 

regions of known coherence are completely isolated, even in the low frequency range, 

indicating that the technique can remove spurious coherence that results from variance, in 

the low frequency regime. Note that the trace pockets of spurious coherence that 

remained in Figure 6.9 using a very strict thresholding condition of g = 3 were mitigated 

fully by this “smarter” thresholding scheme thanks to the incorporation of the 

probabilistic and spectral features of the signals themselves. 

To further illustrate the application of the filtered wavelet coherence map, 

measured full-scale incident wind velocity fluctuations and their corresponding pressure 

variation over a building surface are analyzed. Note the strong low frequency correlation 

evident in the time histories of velocity and pressure shown in Figure 6.11a,b. The 

filtered wavelet coherence map is generated using a threshold reference map based on 

500 simulated realizations of the data. Figure 6.11c-f shows the resulting filtered wavelet 

coherence map at several levels of the noise factor g. Extraneous noise again is removed 

as g increases, leaving a clearer portrait of the pockets of strong correlation. Though 

relatively intensive, the application of these filtered wavelet coherence estimates to wind 

data may be useful for identifying intermittent variations in the relationship between the 

velocity and pressure introduced by a change in wind direction or due to the evolution of 

a flow structure under the separation zone. Such maps can enhance the understanding of  
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wind pressure; (c) unfiltered wavelet coherence map; 
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complex wind-structure interactions and open new avenues for data analysis, modeling, 

and simulation. 

6.5 Scale/Frequency-averaged Wavelet Coherence Map 

Traditionally, coherence is displayed as a function of frequency only, averaged over the 

entire time duration, as shown previously in Figure 6.3. As a result of the dual character 

of wavelet transforms, the resulting coherence maps may be manipulated in order to view 

coherence with respect to time. The wavelet coherence between two signals and those 

between the first signal and simulated versions of the second signal are each averaged 

over the scale component. In doing so, a display of the scale-averaged coherence, ( )tc , 

mean noise reference coherence, ( )tcmn , and threshold coherence, ( )tcth , between the two 

signals can be generated with respect to time rather than frequency. Such an 

interpretation for the simulated velocity and pressure, v1(t) and pr(t), is displayed in 

Figure 6.12a. The intermittent correlated regions clearly stand out as those surpassing the 

noise threshold, determined as a percent exceedence in the Hermite polynomial-based 

probability distribution model derived from the first four moments of the noise coherence 

maps as shown in Figure 6.12b.  

6.6 Conclusions 

In this chapter, wavelet decomposition was used to produce a time-frequency display of 

the coherence between signals intermittently correlated. Unfortunately, raw spectral 

estimates used in the definition of coherence were inherently laden with statistical noise. 
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The classical approach for reduction of variance is to perform ensemble averaging by 

using localized time integration. In this case, the introduction of a variable integration 

window predicated on the multi-resolution character of wavelets highlighted that the lack 

of ensemble averaging results in much of the observed spurious coherence. Insuring 

sufficient ensembles in the average reduced the spurious coherence, though the loss of 

temporal resolution was a limiting factor. As a result, a three-tiered thresholding 

approach was introduced to isolate meaningful coherence. Hard thresholding, when 

coupled with sufficient ensembles in the variable integration scheme, was shown to 

enhance performance. However, to preserve evolutionary characteristics while removing 

significant noise, more sophisticated approaches were required which do not involve 

extensive averaging and VIW. The use of reference maps to filter the wavelet coherence 

and distinguish meaningful coherence from bi-products of the transform was shown to be 

quite effective in isolating known coherent pockets. This was first achieved by simply 

using repeated simulations of white noise processes, which provided quite reasonable 
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FIGURE 6.12. (a) Scale-averaged coherence along with mean coherence 
and noise threshold; (b) Hermite polynomial-based PDF model of 
reference noise maps 



 301

results that could be further enhanced by the third tier: a “smart” thresholding simulation 

scheme. In both approaches, the noise was filtered from the display map by comparison 

with a threshold describing the likely noise level. In the latter approach, this threshold 

was created by averaging a series of reference correlation maps between one signal and 

uncorrelated simulations of the second signal. Examples demonstrated that this technique 

was capable of identifying first-order correlation and effectively reducing the presence of 

noise in the correlation displays for both simulated and measured data. Though relatively 

intensive, these approaches facilitated the removal of significant levels of all of the 

various contributing noise sources.  

Unfortunately, even with such refinements, the wavelet fails to reveal the 

instantaneous higher-order correlations that may exist in the transient spikes of 

fluctuating pressures. On the other hand, while Fourier-based higher-order spectral 

measures such as bicoherence can capture higher-order correlations, they have difficulty 

detecting such intermittent nonlinear interactions. The same can be said for the case of 

high amplitude, nonlinear extreme waves, whose first- and second-order components are 

phase coupled over relatively short intervals (Powers et al., 1997). This motivated the 

need for wavelet-based measures such as bicoherence to study nonstationary and 

nonlinear characteristics of random waves and the resulting response of floating offshore 

platforms, as well as prompting their consideration in Gurley et al. (2003) for higher-

order intermittent correlation analysis of wind velocity and fluctuating pressures. In this 

latter study, it is shown that this analysis framework can also be extended to a higher-

order wavelet bicoherence measure to capture intermittent second-order correlation. In 

total, when combined with the wavelet capabilities demonstrated in Chapter 5, the 
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wavelet correlation detection analysis schemes presented here offer immediate 

applications where the determination of intermittent correlation between linear and even 

nonlinear processes is required, e.g. bluff body aerodynamics in turbulent flows, wave-

structure interactions in nonlinear random seas, and the nonlinear and non-stationary 

seismic response of structures. The next chapter will extend these wavelet frameworks to 

the identification of frequency and damping in Civil Engineering structures. 
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       CHAPTER 7 

WAVELET SYSTEM IDENTIFICATION III:  

ANALOGS TO HILBERT SPECTRAL ANALYSIS 

 

7.1 Introduction 

Recently, the merits of the Hilbert transform with Empirical Mode Decomposition 

(EMD), or Hilbert Spectral Analysis (HSA), have been explored for time-frequency 

analysis by a number of studies. The use of this approach has been advocated widely by 

illustrating its superior performance in comparison to the continuous wavelet transform 

through a number of nonlinear and nonstationary examples. Although HSA itself 

provides a new and useful tool for time-frequency analysis, at times, its comparisons with 

wavelet transforms may be misleading and cast significant doubt on the wavelet’s ability 

to provide satisfactory time-frequency analysis. This chapter shall revisit many of the 

examples used to establish the Hilbert spectral analysis within the wavelet analysis 

framework overviewed in Chapter 4 to offer a different perspective to these 

commentaries, illustrating cases where the two approaches perform comparably and 

highlighting situations where one is truly superior to the other. It is demonstrated that the 

two approaches provide comparable evidence of nonlinear and nonstationary behavior for 
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a number of classical examples, though this evidence is presented in distinctly different 

manners with Hilbert spectral analysis relying solely on instantaneous frequency and the 

wavelet using information from both this measure and the instantaneous bandwidth. The 

intent of this chapter is not to advocate the use of one over the other, but rather to 

objectively assess their efficacy and clarify some of the misconceptions surrounding 

these applications. 

7.2 Theory of Hilbert  Spectral Analysis  

As discussed in Chapter 3, the Hilbert transform cannot separate multiple frequency 

components at any given point in time. Therefore, the application of this transform to 

multi-component signals requires pre-processing of the data by bandpass filtering or 

other appropriate methods to separate the various components (Lee & Park, 1994). Huang 

et al. (1998) introduced the concept of Empirical Mode Decomposition to accomplish this 

decomposition using empirical bases termed Intrinsic Mode Functions (IMFs), permitting 

the application of the HT. These IMFs are defined so as to insure that they have well-

behaved Hilbert Transforms. These conditions are based on the fact that the instantaneous 

frequency is accurately defined by restricting a function to be symmetric with respect to 

the local zero mean level and by requiring that, within a given time series, the number of 

zero crossings and extrema must be equal or at most differ by one. This latter condition is 

established to insure that the IMF is monocomponent in nature. The term 

monocomponent is somewhat ill defined, as discussed in Section 3.7.5; therefore, Huang 

et al. (1998) had adopted a narrowband condition, based on the traditional characteristics 

of a stationary, narrowband Gaussian process. 
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While the full details of EMD can be found in Huang et al. (1998), the procedure 

can be summarized as follows, retaining here the notation used in that study. The process 

initiates with identification of the local extrema. These extrema are then used in 

conjunction with a cubic spline fit to construct an upper and lower envelope for the 

signal. The average of the upper and lower envelopes, as a function of time, is defined as 

the envelope mean, which may not correspond to the local signal mean. The difference 

between the signal and envelope mean is defined as the first component, h1.  

To eliminate riding waves and make the wave profiles more symmetric, this first 

component h1 is treated as the data, and the process of fitting extrema and determining 

their mean is repeated in the so-called sifting process such that 

 
kkk mhh 1)1(11 −= −
. (7.1) 

Thus, in the kth iteration, the previous component’s extrema are fit and the mean is again 

removed. This process of sifting is repeated until the two conditions placed on a proper 

IMF are satisfied. Then the resulting sifted data is treated as the first IMF component, 

c1=h1k. This component will contain the finest scale. This finest scale represented by the 

first IMF is then removed from the data, leaving the residue,  

 r1=x(t)-c1 (7.2) 

and the residue r1 is now treated as the data and the entire sifting process is repeated to 

obtain the second IMF, c2, and so on to obtain all remaining IMFs such that 

 rn = rn-1 – cn . (7.3) 
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The process will terminate when rn or cn become very small, or rn is essentially 

monotonic. The subsequent IMFs obtained in this manner will progressively capture the 

coarser scales remaining in the signal. The signal can then be reconstructed by the 

superposition of these N IMFs according to 
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It should be noted that the determination of appropriate IMFs is predicated on the 

restrictions levied by the Hilbert Transform to provide an accurate instantaneous 

frequency, requiring the IMFs to be symmetric with respect to the local zero mean and 

have the same number of zero crossings and extrema. If the IMFs generated in this 

process meet these conditions, then the monotonic signal conditions surrounding the HT 

should be satisfied and the HT can be applied to each IMF to obtain an estimate of the IF 

with time. Constructed in this fashion, the IMFs are entirely empirical, and a given IMF 

may even contain two distinct frequency components, though at each point in time, the 

IMF is entirely monocomponent. Thus, the decomposition is different from Fourier 

transforms, where each component is related to a given frequency for its entire duration. 

In this decomposition, the data are expanded in a basis derived from the data itself.  

As Huang et al. (1998) reiterates, an IMF on its own has little meaning and the 

true physical meaning can only be garnered from the complete Hilbert spectrum. This 

Hilbert spectrum (HS) is generated by converting each IMF into an analytic signal by 

Equation 3.23. The resulting amplitude of the analytic signal for each IMF is plotted as a 

dual function of instantaneous frequency, as determined by Equation 3.27, and time. The 

result is often viewed in two dimensions by studying the contours of the HS in the time-
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frequency plane. This total process employing EMD and the HT is termed the Hilbert 

Spectral Analysis. The fact that the performance of wavelet transforms are heavily 

dependent upon the parent wavelet chosen was a motivating factor for developing the 

HSA, as the IMFs serving as basis functions are derived from the data itself and thus 

maintains physical resemblance. 

7.3 Preliminaries 

It should be noted that the ability of this technique to characterize the instantaneous 

frequencies within the data rests upon two critical elements: first upon the ability of EMD 

to separate the various components within the signal, and secondly, upon the ability of 

the Hilbert Transform to truly yield the quadrature component of the signal, dictating the 

accuracy with which the instantaneous frequency is identified. As will be discussed 

throughout this chapter, limitations in either one of these areas can affect the performance 

of Hilbert Spectral Analysis. Before discussing these and other issues by example, a few 

additional preliminary discussion points must be established. 

7.3.1 Resolutions of Hilbert Spectral Analysis 

The accuracy of IF estimation is dependent upon the resolutions of the time-frequency 

transform. The resolutions associated with the Morlet wavelet transform were discussed 

in considerable detail in Chapter 4. On the other hand, the resolutions of the Hilbert 

Transform are difficult to clearly quantify. The transform’s temporal localization is 

verifiable, as the signal is being convolved with 1/t in Equation 3.24. As a consequence 

of the Heisenberg Uncertainty Principle, the good localization in the time domain implies 
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poor frequency resolution, necessitating the incorporation of bandpass filtering, or in this 

case EMD, to insure modal separation. As a result, the inherent accuracy of these pre-

processing tools indirectly dictates the frequency resolution of HSA. Therefore, the 

frequency resolution of HSA is based upon EMD’s frequency resolution, essentially the 

narrowband condition on the maxima and zero crossings. The implications of this will be 

discussed in subsequent examples. 

7.3.2 End Effects in Hilbert Spectral Analysis 

Just as with wavelet transforms, the implementation of numerical schemes using Fourier 

transforms can introduce end effects. It was shown in Chapter 4 that these end effects are 

attributed to this but more importantly to an additional source in wavelet transforms. 

Huang et al. (1998) had also observed end effects, attributed to the spline fitting in the 

EMD procedure and due to the fact that the Hilbert Transform was implemented via 

Fourier Transforms. The authors remedied this using characteristic waves to extend the 

data and reduce discontinuities at the ends. This can be likened to the reflective padding 

scheme presented for wavelets in Chapter 4. 

7.3.3 Introduction of Instantaneous Bandwidth 

While the notion of instantaneous frequency has been generally accepted in the literature 

as the average of the frequencies at each point in time (Priestley, 1988), the discussion 

has not fully extended to consider the instantaneous bandwidth or spread of frequencies 

contributing to this mean. In recent years, a few definitions of instantaneous bandwidth 

have surfaced within the literature, though these discussions have not fully demonstrated 
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the utility of this measure. However as the examples in this chapter will later show, in the 

case of wavelet analysis in nonlinear systems, the spread about the instantaneous 

frequency is equally as important as the mean frequency itself.  

As discussed in Cohen & Lee (1990), the squared bandwidth can be classically 

defined as 
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where S(ω) is the Fourier transform of some arbitrary signal s(t) and <ω> is the mean 

frequency defined by   
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As discussed in Jones & Boashash (1990), these spectral measures in Equations 7.5 and 

7.6 can similarly be normalized by the area under the power spectrum. Regardless, this 

bandwidth can then be related to the amplitude and phase of the signal by 
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where the first term is independent of phase and the second defines the deviation of the 

instantaneous frequency from the mean frequency of the signal. What this relation 

implies is that contributions to the signal bandwidth arise from two sources, the 
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amplitude variations (first term) and frequency variations (second term), i.e. from AM 

and FM sources.  

Replacing S(ω) with a time-frequency energy distribution (e.g. Wavelet or Short 

Time Fourier Transform), changes Equation 7.6 into an expression for instantaneous 

frequency or mean frequency of an instantaneous power spectrum. Similarly Equation 7.7 

becomes a measure of instantaneous bandwidth or the deviation from the instantaneous 

spectral mean. 

Cohen & Lee (1990) later show that an instantaneous bandwidth measure can be 

equivalently obtained from the analytic signal itself. Consider again the analytic signal 

introduced in Equation 3.25. The amplitude term AZ(t) can be viewed as an envelope 

function, and provided that the this envelope varies more slowly than the phase, as 

discussed previously in the theory of asymptotic signals in Section 3.7.2, the 

instantaneous frequency can be identified from the derivative of the phase. According to 

Cohen & Lee (1990), the instantaneous bandwidth can then be obtained from the 

derivative of the analytic signal’s envelope:  
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Based on this definition, the concepts of instantaneous frequency and bandwidth make 

sense only for signals that are locally narrowband (Ristic & Boashash, 1996). However, 

Boashash (1992a) has been critical of this definition, as it focuses entirely on the 

amplitude modulations and implies that if no amplitude modulation is present, i.e. Az(t) is 
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constant, then the signal would have zero bandwidth and only one frequency present. 

These intuitive difficulties have presented concerns for this definition, though in the case 

of amplitude modulated signals, it has been shown by Cohen & Lee (1989) that this 

definition produces the same value of instantaneous frequency as the classical definition. 

Despite this attractive theoretical framework, the resulting instantaneous 

bandwidth measures are not always physically meaningful. For example, Jones & 

Boashash (1990) concluded that the Wigner-Ville and Choi-Williams distributions could 

produce negative spectral bandwidths due to the inherent negativity in the distributions 

themselves. As a result, only a measure of spread derived from a positive definite 

distribution such as the Short Time Fourier Transforms are physically useful, as 

demonstrated by Barnes (1992) in the analysis of seismic reflection data and the 

aforementioned examples by Cohen & Lee (1989). Fortunately, the wavelet similarly 

provides the opportunity for meaningful analysis of instantaneous bandwidths. 

The calculation of derivative in the instantaneous bandwidth of Equation 7.8 can 

be difficult, prompting authors to use other approaches, e.g. maximum likelihood 

estimators (Ristic & Boashash, 1996). Similarly, approaching the problem as an integral 

operation on an instantaneous spectrum, as suggested by Equation 7.5, is complicated for 

multi-component signals, as it can be difficult to isolate the spectral band associated with 

each component in order to identify its instantaneous bandwidth. In such cases, limits of 

integration must be imposed, a task which is somewhat ambiguous and arbitrary. As a 

result, it is suggested herein to make use of a different estimator that is localized in the 

vicinity of the spectral peak, making it easy to apply in multi-mode scenarios and 
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circumventing the aforementioned concerns. The half-power bandwidth measure first 

introduced and discussed in Section 4.2.2.2 can provide such an estimator in a simplified 

and straightforward manner. Though arbitrary in its definition, this bandwidth measure 

allows the tracking of variations of the instantaneous bandwidth in time to uncover the 

presence of nonlinearity in the signal, within a computationally efficient framework. It is 

this relative bandwidth variation that is of most utility in the subsequent discussions.   

Finally, it should be noted that the spectral bandwidth is often exaggerated by the 

window effects introduced by local transforms. This detail must be kept in mind when 

analyzing instantaneous spectral bandwidths. Cohen & Lee (1989, 1990) investigated the 

relationship between signal bandwidth and window bandwidth for Short-Time Fourier 

Transforms. Though the exact relations can be found in the cited reference, the study 

overall conveys the fact that the bandwidth of the spectrogram (BSP) includes both the 

signal’s true bandwidth Bs and the Bw bandwidth associated with the window of the 

transform: 
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Cohen (1999) has also investigated the moments of the wavelet transform. Although he 

noted the more complicated entanglement that occurs as the result of scaling, the first and 

second moments contain the contributions of both the window and the signal bandwidth, 

as noted previously for the Short Time Fourier Transform. Despite this fact, the half-

power bandwidth measure presented earlier in Chapter 4 can be used to identify relative 

changes in spectral bandwidth, as the window contributions remain constant throughout 

the analysis. These relative fluctuations in bandwidth represent variations in the range of 
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frequencies present locally in time, vital information for nonlinear systems, when viewed 

in conjunction with the dominant frequency in that locality, provided by the traditional 

instantaneous frequency.  

7.4 Proper Conditions for Comparison of Hilbert Spectral Analysis and 

Wavelet Transforms 

A critical reason for advocating the use of HSA over a WT analysis has been its ability to 

provide a clearly defined time-frequency skeleton plot. In contrast, the WT is shown in 

Huang et al. (1998) to provide a somewhat smeared and less precise representation as 

frequency ranges are plotted in a color contour map. However, by examining closer the 

theory behind both approaches, one can identify the rationale behind this discrepancy in 

performance. Recall that the wavelet transform is inherently a two variable transform, 

being a function of scale (frequency) and time. Thus, a wavelet analysis directly provides 

an energy density that is simultaneously a function of both frequency (scale) and time. In 

particular, as the Morlet wavelet considers windowed sections of the signal in its 

analysis, these windows modify the bandwidth of the signal, as discussed in the previous 

section. This characteristic helps to explain the “smeared” appearance of a continuous 

wavelet scalogram as noted in Huang et al. (1998), though the extent of this leakage can 

be minimized by adjusting the Morlet wavelet’s central frequency. 

Like the WT’s scalogram, Hilbert spectra also yield the time-frequency energy 

density; however, in this case the transformation is not inherently a function of both 

frequency and time. Instead, the use of the HT allows the complex analytic signal to be 

formed, which is not a function of frequency but merely a function of time. It is only in 
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the subsequent calculation of the instantaneous frequency from the phase of this analytic 

signal that a frequency variable can be obtained for the HSA. By calculating the 

frequency from the phase relationship, the Hilbert spectrum provides a single frequency 

coordinate for each component in the signal. This is an important distinction that helps to 

further explain the reason for the poor performance of the WT in its initial comparisons 

to the HSA in Huang et al. (1998). 

Since the WT provides a complex signal directly, as a function of both frequency 

and time, it too can be used to determine the instantaneous frequency of the signal. In a 

similar manner, the scalogram values at these instantaneous frequencies may be plotted at 

each point in time to yield the wavelet ridge (Staszewski, 1997; 1998). Such 

representations, defined previously in Chapter 4, are termed wavelet instantaneous 

frequency spectra in this study, to simply reinforce its parallels with the Hilbert spectra. 

In this way, the performance of the HSA and WT can be compared via equivalent 

standards by examining the ability of each to identify the evolution of the instantaneous 

frequency with time. It should be reiterated that the HT would not be able to provide an 

estimate of frequency without invoking the calculation of instantaneous frequency, just as 

the WT will never be able to provide a point estimate of frequency without also 

calculating an estimate of IF. As previous comparisons in Huang et al. (1998; 1999) did 

not consider this, the WIFS is used throughout this chapter to revisit these continuous 

wavelet comparisons to the HSA. 
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7.5 Examples 

The following sections shall revisit a number of examples presented originally in Huang 

et al. (1998), examining the HSA results against revised Morlet wavelet analyses 

performed within the framework offered by this study. The current continuous wavelet 

results simulated by Equation 3.9 feature enhanced resolution by adjusting the central 

wavelet frequency, include the proper discretization and appropriate padding for end 

effects, discussed in Chapter 4, and are presented in a form analogous to the HS via the 

WIFS. In these comparisons, Hilbert spectra adapted directly from Huang et al. (1998), 

which provided the first meaningful comparison between HSA and WT, will be 

considered in order to give complete justice to HSA. Any differentiation of phase data to 

estimate the instantaneous frequency is accomplished by determining the slope of a 

piecewise linear fit to the phase data by a least squares approach. For comparison, the 

original continuous wavelet analyses conducted by Huang et al. (1998) are also provided. 

Note that the quality of these analyses depend on the discretization of the time-frequency 

domain as well as the central frequency fo of the Morlet wavelet applied. Specific details 

on these parameters used in Huang et al. (1998) were not provided. 

7.5.1 Example 1: Localized Sine Wave 

The first example presented is a single cycle of a 1 Hz sine wave. Figure 7.1a,b displays 

the signal and the scalogram generated using the Morlet wavelet. What should be noted 

in this case is that an analysis of such transient phenomena requires a wavelet with a 

localized temporal resolution, adjusting fo to 1 Hz. The dark red patch in the center of the 

wavelet map has pinpointed the time location and frequency content of the signal. The 



 316

“bleeding” of the wavelet scalogram is the result of inherent window effects in the time 

and frequency domains; however, these Gaussian windows will produce maximum 

wavelet coefficients at the time and frequency where the signal’s energy content is 

concentrated, pinpointing the ridge. Using a global search for maxima of the wavelet 

modulus, the actual value of instantaneous frequency identified by the wavelet is shown 

by the WIFS in Figure 7.1c. By this approach, the wavelet will precisely identify the 

instantaneous frequency of the signal in the range of 4.1-4.2 seconds and 4.8-4.9 seconds 

as 0.98 Hz. This identification becomes even more exact at the heart of the transient, 

between 4.3 and 4.7 seconds with the identified value of 1.08 Hz. The continuous wavelet 

transform was previously criticized by Huang et al. (1998) for using spurious harmonics 

to isolate the transient (Fig. 7.1d). However, the wavelet analysis in Figure 7.1b does not 
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rely on higher harmonics, as the maxima of the transform, colorized in red, are restricted 

to the 1 Hz range. In fact, the localization in time and frequency of the WIFS is 

comparable to that generated by the HSA (shown in Figure 7.1e) and may even surpass 

its performance at the initiation and termination of the single cycle of oscillation.  

7.5.2 Example 2: Sine Wave with Frequency Discontinuity 

Another example of a sudden change of a signal’s frequency is given in Huang et al. 

(1998) by a 0.03 Hz sine wave that suddenly shifts to a 0.015 Hz frequency of oscillation. 

The occurrence of this shift is highly localized in time, occurring suddenly at the 500th 

second, as shown in Figure 7.2a. In the continuous wavelet analysis by Huang et al. 

(1998), the smearing of information in both frequency and time is highly undesirable 

(Fig. 7.2e) and pales to the pinpoint precision of the HSA (Fig. 7.2d). Revisiting the 

continuous wavelet example again using a Morlet wavelet with better frequency 

resolution properties (fo=5 Hz), two distinct frequency bands are identified in Figure 7.2b, 

although the transition between the two is masked by an apparent smearing of the wavelet 

coefficients due to window effects. However, upon examining the WIFS, a plot of the 

identified wavelet instantaneous frequency, analogous to the quantity portrayed in the 

Hilbert spectrum, is shown in Figure 7.2c and illustrates the precision with which the 

continuous wavelet can identify both the frequency and time characteristics of this signal. 

7.5.3 Example 3: Quadratic Chirp 

To examine if the temporal smearing of the scalogram is problematic for a case where 

nonlinear frequency changes occur continuously throughout the signal, the example of a 
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quadratic chirp is considered. The chirp (shown in Figure 7.3a) quadratically varies from 

0.2 Hz at 0 seconds to 0.17 Hz at 120 seconds. Hilbert and continuous wavelet (fo=3 Hz) 

analyses were conducted, with the scalogram shown in Figure 7.3b and the identified 

instantaneous frequencies for the Hilbert transform (red) and continuous wavelet 

transform (blue) shown in Figure 7.3c. Note that the analysis of this chirp signal does not 

require pre-processing by EMD, as it possesses a unique frequency component at each 

instant in time. Both capture the quadratic variation in frequency, despite some end 

effects problems. The padding operation discussed previously is performed on the 

quadratic chirp signal and the continuous wavelet and Hilbert transforms are again 

determined. The result in shown in Figure 7.3d-e and demonstrates that the padding 

operation, not only enhances the performance of the continuous wavelet transform, but 

improves the Hilbert result as well – diminishing the large swings at the ends. Note  
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however that the two transforms treat the signal in different ways. The HT manifests 

oscillations of the instantaneous frequency in addition to the global quadratic decay. The 

WT does not detect this oscillatory behavior and instead provides equivalently piecewise 

fit of the IF law to capture the overall quadratic nonlinearity. Note that in Figure 7.3c, the 

nature of this piecewise fit was rather coarse; however by choosing a finer discretization 

of scales in the wavelet analysis in Figure 7.3e, the identified IF law is far smoother. This 

piecewise fit arises from the fact that the wavelet fits small waves or “wavelets” to the 

signal at each point in time – as expected, a locally linear approximation to the quadratic. 

Note that in Figure 7.3e, the actual quadratic frequency relation used to simulate the chirp 

is plotted in green to demonstrate the accuracy of HT and WT in identifying the 

frequency variations. The WT result in blue nearly overlays identically with the 

theoretical result in green. The HT result in red is slightly less accurate and manifests an 

oscillatory behavior that is not present in the actual quadratic IF law. Thus far, Examples 

2 and 3 respectively illustrate the equal ability of both techniques to identify changes in 

frequency occurring over a range of frequencies and at an isolated instant in time. 

7.5.4 Example 4: Stokes Wave 

The true significance of the Morlet wavelet’s central frequency can be discerned in the 

example of the idealized Stokes wave in deep water. The use of a perturbation analysis to 

solve this system illustrates the common practice of representing nonlinear phenomena as 

a summation of harmonic components, with the second-order approximation to the 

Stokes wave profile given by 
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in which a is the amplitude and k is the wave number. By choosing a=1, k=0.2 and 

ω=2π/32, as discussed in Huang et al. (1998), Figure 7.4a is generated. By inspecting the 

instantaneous wavelet modulus taken at an instant in time, as demonstrated in Figure 

7.4b, a component at 0.0320 Hz is evident, representing the 0.0313 Hz harmonic. The 

presence of a higher mode at 0.0622 Hz, though evident only in the wavelet modulus in 

Figure 7.4b due to its small magnitude relative to the dominant ridge of the scalogram in 

Figure 7.4c, confirms the presence of the 0.0625 Hz component. Figure 7.4c displays the 

resulting Morlet wavelet scalogram for fo=5 Hz, whose color scale does not clearly reflect 

the second mode, though the WIFS in Figure 7.4d detects the two frequencies identified 

from the local maxima shown in Figure 7.4b. The Morlet wavelet with 5 Hz central 

frequency, though having a refined frequency resolution, will have a poor temporal 

resolution of over 100 seconds. Thus it behaves much like a Fourier harmonic analysis 

and is well suited to capture the dual harmonics used in Equation 7.10 to simulate the 

second-order approximation to the Stokes wave. It unfortunately has no ability to capture 

the local nonlinearities of the wave profile. Note that the degree of smearing has been 

minimized in the current continuous wavelet analysis in Figure 7.4c in comparison to the 

previous findings in Figure 7.4e. This perspective offered by the wavelet analysis reflects 

the philosophy used to simulate the nonlinear system – represent the nonlinearity by a 

sum of harmonics. 

In contrast, Figure 7.4f displays the HSA result, which oscillates about 0.0313 Hz 

and shows no evidence of the second mode. To justify this result, Huang et al. (1998) 
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explained that Stokes waves could similarly be modeled as a cosine with modulated 

frequency 

 
))sin(cos()( tttX ωεω +=

, (7.11) 

which is much like the frequency modulated signal in communication theory, with ω 

serving as the carrier frequency and the second frequency term being the transmitted 

signal. As argued by Huang et al. (1998), if there are any frequency changes within the 

wave’s oscillation, then its profile can no longer be a simple sinusoid. A visual inspection 

of the simulated Stokes wave in Figure 7.4a demonstrates that there is such a subtle 

departure from the simple sinusoidal shape. This deviation from a simple sinusoid 
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FIGURE 7.4. Example 4: (a) Second order approximation to the Stokes wave; (b) 
wavelet modulus at t=250 s; (c) wavelet scalogram; (d) WIFS; (e) Huang et al.’s 
(1998) Morlet wavelet result; (f) Huang et al.’s (1998) Hilbert spectrum 
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observed in Stokian waves is the result of intrawave frequency modulation, represented 

by the second frequency term in Equation 7.11.  

An enhanced temporal wavelet analysis echoes this behavior. Inspecting the time 

series, peaks have a frequency of around 0.03 Hz or a period of about 32 s. The resolution 

of the wavelet in both time and frequency must be sufficient to capture this. From the 

relations in Equation 4.5 and Equation 4.8, a central frequency of 0.5 to 1 Hz will be 

required to balance the time and frequency resolution capabilities. Thus the wavelet 

analysis of the Stokian wave simulated by Equation 7.10 (shown again in Figure 7.5a) is 

repeated with fo=0.5 Hz. In this analysis, the scalogram (in Figure 7.5b) still concentrates 

near 0.03 Hz, however there is no evidence of a higher harmonic. Instead there is an 

oscillatory variation toward the high frequency range, evidenced by the light blue hues. 

Inspection of the WIFS (Figure 7.5c) still does not confirm this, as it manifests a single 

frequency component at 0.0303 Hz that does not vary with time. Looking at the 

instantaneous frequency estimated from the phase of the wavelet transform, a nearly 

constant frequency value is again identified, though more precise, at 0.0312 Hz. Still, the 

scalogram behavior indicates that the wavelet is detecting some variation of evolutionary 

energy content. As discussed previously in Section 7.3.3, the spectral characteristics of a 

system are not merely defined by the instantaneous frequency.  As a result, the bandwidth 

of each instantaneous spectra produced from the wavelet analysis is provided in Figure 

7.5d and demonstrates that this value oscillates about a mean value with a period of 

approximately 32 seconds in the same manner as the HS in Figure 7.4f.  
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Application of a similar wavelet analysis on measured surface elevation of wave 

tank data verifies these characteristics of Stokian waves. Figure 7.6a displays wave data 

generated mechanically by a 1 Hz sinusoidal excitation with +/- 9 mm amplitude. Note 

that the time series manifests narrowed peaks and widened toughs, highlighting a subtle  

deviation from a simple sinusoidal shape. By inspection of the time series, the peaks are 

separated by approximately 1 s, necessitating a temporally refined wavelet capable of 

determining variations occurring over less than one second and frequency sensitivity a  
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FIGURE 7.5. Example 4 via refined wavelet analysis: (a) 
second order approximation to the Stokes wave; (b) 
wavelet scalogram; (c) WIFS; (d) wavelet instantaneous 
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fraction of 1 Hz. With fo=0.5 Hz, a temporal resolution of 0.35 s is possible, with a 0.22 

Hz frequency resolution. The scalogram for this analysis, shown in Figure 7.6b, again 

concentrates near 1 Hz with its warm hues, but the lighter shades of blue fluctuating in 

the higher frequency scales again indicate the presence of time-varying frequency 

content. The WIFS in Figure 7.6c, as observed in the previous example of Stokian waves, 

remains constant at 0.94 Hz, giving an averaged interpretation of the instantaneous 

frequency as a result of the wavelet approximation. Zooming in on the more precise 

phase-based instantaneous frequency estimate, in Figure 7.6d, the minor modulations 

reveal time-variance in the local mean frequency. Further fluctuations about this mean 

frequency are then identified in the instantaneous bandwidth in Figure 7.6e, which 

provides a rich display of nonlinear characteristics beyond that of the numerically 

simulated Stokes waves in Figure 7.5. The bandwidth in this case oscillates again at the 

frequency identified in the WIFS, however, the periodic modulations of the bandwidth 

indicate a regular variation of frequencies concomitant at each instant in the signal. A 

Hilbert Spectral Analysis by Huang et al. (1998) of measured wave data affirmed similar 

phenomena, albeit displayed solely in the instantaneous frequency. The direct application 

of the Hilbert transform in Figure 7.6f can affirm the variations of the frequencies present 

in the system, though this perspective is far noisier without the filtering afforded by 

EMD. 

This example illustrates two important facts: first, that a wavelet analysis with 

poor temporal resolution inherently treats the signal in the same manner as Fourier 

analysis, while a wavelet analysis with refined temporal resolution is capable of detecting 

nonlinear wave characteristics. It is the resolutions tied to a specific analysis that 
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ultimately dictate whether the nonlinear system will be viewed in terms of harmonics or 

intrawave modulated waves, i.e. waves deviating from a simple sinusoid with subcyclic 

oscillations. While the resolutions of HSA, though temporally precise, remain fixed, the 

flexibility in wavelet transforms allowed both of these perspectives to be realized. 

Secondly, but perhaps more importantly, the wavelet does not necessarily manifest these 

indicators in the instantaneous frequency, but instead in the instantaneous bandwidth. 

Recall again that the wavelet fits small waves or “wavelets” to the signal at each point in 

time. In the case of the Morlet wavelet, these localized waves are sinusoidal in nature. 

The IF identified in Figure 7.5c is then the frequency of the best fit widowed sinusoid. 

However, as the Stokian wave profile subtlety deviates from the simple sinusoid, it is not 

unreasonable to expect that additional neighboring frequencies are required to capture 

these deviations. The involvement of such adjacent frequencies is represented by the 

bandwidth measure. Thus in the truest sense indicated by Priestly (1988), the wavelet IF 

is the mean frequency and the bandwidth reflects the deviation of these frequencies from 

this mean as they evolve in time.  

7.5.5 Example 5: Linear Sum of Two Closely-Spaced Cosines 

As the previous example demonstrated, the temporal resolution of HSA is fixed, yet 

precise.  The time resolution is a consequence of the Hilbert transform’s convolution in 

Equation 3.24 involving a highly localized function. The following example will 

demonstrate a situation in which the sacrificed frequency resolution in HSA can be 

problematic. A pair of closely spaced cosine waves was generated by 
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The frequencies of these two harmonics are approximately 0.0294 and 0.0333 Hz. Figure 

7.7a shows the signal with characteristic beat phenomena. In order to separate the two 

components, a given analysis technique must have a refined frequency resolution, 

consistent with the findings of Delprat et al. (1992). In Huang et al. (1998), it was shown 

that neither a continuous wavelet analysis nor HSA could identify two distinct harmonic 

components, as shown in Figure 7.7e. Revisiting this problem using fo=5 Hz for the 

Morlet wavelet, presumably different from Huang et al.’s (1998) analysis, the wavelet 

scalogram (Fig. 7.7b) was generated. As the zoom in Figure 7.7c illustrates, two distinct 

bands of energy are revealed, shown in red and light blue. Searching the localized 

maxima, two instantaneous frequency components can be identified at 0.0303 Hz and 

0.0340 Hz, within 3% of the actual signal frequencies, as shown by the WIFS in Figure 
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FIGURE 7.7. Example 5: (a) linear combination of two closely-spaced cosine 
waves; (b) wavelet scalogram; (c) wavelet scalogram (zoom); (d) WIFS; (e) Huang 
et al.’s (1998) Morlet wavelet analysis with Hilbert spectrum contours 
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7.7d. Figure 7.7e again displays the wavelet scalogram obtained by Huang et al. (1998) 

with the Hilbert spectrum superimposed as contours. Though the signal is the linear 

combination of two distinct harmonics, according to Huang et al. (1998), neither 

approach accurately captures this. The wavelet scalogram indicates a high concentration 

of energy at approximately 0.03 Hz, but does not distinguish between the two 

components. However, the continuous wavelet’s inability to separate the harmonics in 

Huang et al. (1998) should not be interpreted as a failure of the continuous wavelet in 

theory, but rather a byproduct of the selection of an insufficient central frequency fo in the 

analysis.  

Likewise, the Hilbert spectrum localizes in the same vicinity but also shows some 

spurious oscillatory behavior in the instantaneous frequency between 0.025 Hz and 0.035 

Hz, treating the beat phenomena as a frequency modulated wave. As shown in the 

previous example, the presence of multiple components in an IMF will result in nonlinear 

phase terms once the HT is applied. In such cases, the HT treats the closely spaced 

harmonics by some non-physical modulated wave. The misrepresentation in this example 

may be a direct consequence of EMD. In this case of two closely spaced modes, the EMD 

required a very stringent condition of 3000 siftings to obtain only eight IMF components, 

which still could not represent the true signal (Huang et al., 1998). The inability to 

distinguish between two distinct components may be traced to the definitions of the IMFs 

to satisfy the restrictions of the Hilbert transform. As discussed previously, Huang et al. 

(1998) used a more relaxed narrowband condition, placing conditions on the number of 

zero crossings and maxima. In doing so, the resulting IMFs are narrowband in character 

but not strictly monocomponent, potentially encapsulating in that narrow band both 
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closely spaced harmonics, leading to the inability of the Hilbert spectrum to capture the 

dual harmonic character of this signal. Unfortunately, the frequency resolution of EMD 

cannot be readily refined.  

7.5.6 Example 6: Amplitude Modulated Signal with Constant Frequency 

In another example provided by Huang et al. (1998), the physical significance of the HSA 

result is again called into question. In this case, an amplitude-modulated (AM) wave is 

generated by 
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which represents the impulse response function of a single-degree-of-freedom mechanical 

oscillator with frequency of 0.0313 Hz and damping ratio of approximately 5%, shown in 

Figure 7.8a. Although the signal is completely amplitude-modulated in theory, there is a 

minor frequency modulation revealed upon applying the Hilbert transform, as shown later 

in Figure 7.9b. Huang et al. (1998) argue that this result should be expected as amplitude 

variations influence the bandwidth of a process, viewed in terms of traditional power 

spectra as a spread of frequencies about the mean frequency. Based on that argument, the 

authors contend that this spread of frequency may be manifested in time as a slight 

deviation of the IF from the mean frequency of the process, in this case yielding 

oscillations about a frequency of 0.0313 Hz (see Figure 7.9b). This spread of frequencies 

about the IF at each instant in time is one means to account for the many neighboring 

frequencies produced by AM, however, the IF should theoretically surface as the average 

of the frequencies at each point in time, as discussed in Priestley (1988) and would be 
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expected not to oscillate for this linear system. As the signal has no true frequency 

modulation, how should the oscillatory component detected by the HT be interpreted?  

On the other hand, the analysis by the continuous wavelet transform (fo=1 Hz), 

shown in Figure 7.8b, captures the transient nature of the signal, with the reds denoting 

the maximum energy content concentrated near 0.03 Hz. Examining the WIFS in Figure 

7.8c illustrates that the extracted estimate of the IF (0.0315 Hz), though lacking accuracy 

at the initiation of the signal due to an end effect, is within 1% of the theoretical 
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frequency, shown by the dotted line. Beyond 400 seconds, the identification of the IF is 

no longer accurate, as the signal energy is fading. Note, as shown in Figure 7.9a, that 

Huang et al. (1998) similarly observed end effects anomalies in their wavelet analysis. As  

discussed previously, end effects can pose a significant limitation to the quality of 

wavelet analyses, particularly for short duration signals. To insure local preservation of 

spectral characteristics, the signal in Equation 7.13 is padded using the reflective padding 

scheme previously introduced. The resulting scalogram and WIFS are shown in Figure 

7.8d-e. The use of this technique eliminates the poor performance at the initiation of the 

signal and greatly enhances its accuracy at the conclusion of the signal, though there are 
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still some deviations due again to the fact that the signal, at that point, has nearly damped 

out completely.  

To further validate the ability of the wavelet to analyze this signal and 

demonstrate the dual potential of the wavelet, the instantaneous frequency is also 

identified using the derivative of the wavelet phase. As this often can be a more precise 

means of identifying the instantaneous frequency, it is a useful exercise to see if the 

wavelet can detect any physical influence of amplitude decay in the instantaneous 

frequency. As shown in Figure 7.8f, the wavelet instantaneous frequency extracted from 

phase takes on a constant value of 0.0313 Hz and when zoomed in to a scale of +/-1% of 

the oscillator frequency, there is no evidence of oscillation. There is a slight deviation 

early in the signal, corresponding to a residual byproduct of end effects. At the end of the 

signal, the estimation quality rapidly degrades due to the difficulty of phase identification 

once the signal energy is nearly completely damped out. 

It was also demonstrated in previous examples that instantaneous bandwidth can 

manifest evidence of nonlinearity or physically meaningful intrawave frequency 

modulation. SDOF oscillators like the one considered here, the half-power bandwidth has 

a unique relationship to the oscillator frequency and its damping. The HPBW of each 

instantaneous spectra produced from the wavelet analysis is provided in Figure 7.8g and 

demonstrates that this value holds relatively constant throughout the decay in the signal, 

as expected, since the expression in Equation 7.4 represents an oscillator with constant 

frequency and damping for which both the resonant frequency and bandwidth should not 

vary with time. Note that at the beginning of the signal, the bandwidth suffers from a 
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more visible inaccuracy, attributed to the fact that the bandwidth measure is far more 

sensitive than the instantaneous frequency to end effects, as discussed in Chapter 4 and 

demonstrated by several additional examples in Chapter 9. As discussed later in Chapter 

9, even with the addition of padding, bandwidth measures within 3∆t of the beginning 

and end of the signal can have some residual inaccuracy. For this analysis, that region 

would encompass 68 seconds at the ends of the signals, clearly marked by the rounded 

characteristic in Figure 7.8g. Neglecting these two regions, the bandwidth holds constant, 

as expected. The sudden drop off beyond 450 s is again the consequence of attempting to 

identify a signal for which has almost entirely damped out. Figure 7.9b similarly affirms 

that the Hilbert Spectrum can also no longer identify frequency content beyond 200 

seconds, again to the decay of signal energy. 

Contrary to the HSA result, oscillatory frequency modulations are not reflected in 

the wavelet HPBW measure, or in the instantaneous frequencies identified using either 

the amplitude or phase of the wavelet. In fact, the presence of amplitude modulations in 

this signal are ultimately observed in the three-dimensional perspective offered by the 

wavelet scalogram in Figure 7.8h, where the amplitudes of wavelet coefficients reflect 

the decay of energy in the signal. This information has been used in system identification 

applications where nonlinearities in damping and stiffness are detected via changes in the 

wavelet amplitude and phase, respectively, with time (Feldman, 1994a,b; Staszewski 

1998). This example illustrates that the harmonic wavelet analysis will identify the true 

frequency of the signal and does not identify an amplitude-induced FM in either its IF or 

bandwidth, though identification of the amplitude modulation can be retained from the 

amplitude of the wavelet coefficients.  



 335

While the notion of intrawave frequency modulation may be physically 

meaningful in some cases, in this example the presence of this phenomenon is not, 

effectively indicating a slight nonlinearity in a linear the system, though it is noted in 

Huang et al. (1998) that the magnitude of this intrawave modulation is only +/- 1.5%. 

Still it must be clarified if this frequency modulation is due to physical changes in 

frequency or due to a numerical byproduct of the HT. The analytic signal generated using 

the HT will always provide a unique complex representation, however, as Boashash 

(1992a) has stated, “whether or not it corresponds to any physical reality is another 

question.”  This indeed depends on the extent to which asymptotic signal assumptions are 

met. In this case, the presence of frequency modulation in a constant frequency oscillator 

can be deceiving and may actually be the consequence of a violation of asymptotic signal 

assumptions. The definition of the instantaneous frequency in Equation 3.27 is only valid 

if the envelope and phase are well separated. For an arbitrary signal in the form of  
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as in Equation 7.13, this implies that the Fourier transform of a(t) must be well separated 

from and less than the Fourier transform of cos(φ(t)), as discussed in Chapter 3. This is 

because the HT inherently selects the highest frequency component of the signal as the 

complex phase term. If the Fourier spectrum of the oscillatory component of the signal is 

not located at a frequency higher than and well separated from the envelope's spectrum, 

then the Hilbert transform operation will be a result of overlapping and phase-distorted 

functions. This will give rise to a waveform that can no longer be described by a purely 

AM law, even though it was generated by an AM process (Rihaczek, 1966). In such 
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cases, "the HT and the analytic signal are not always interpretable in a way which is 

physically meaningful and representative of physical phenomena" (Boashash, 1992a).  

Examining the signal generated in Example 6 (Fig. 7.10a), a plot of the Fourier 

spectrum of its exponential envelope and phase term at 1/32 Hz is shown in Figure 

7.10b,c. In this case, it is clear that there is some overlap in these two spectra, indicating 

that the envelope and phase may not be well separated in frequency and may cause 

phase-distortions for the Hilbert transform. Figure 7.10d-f provides an example of a 

signal with no significant spectral overlap between the amplitude and phase, as the cosine 

frequency in Equation 7.14 is increased to 4 Hz. It is interesting then to examine the 

implications of these overlapping envelope and phase spectra on the estimation of the 

instantaneous frequency using the Hilbert transform. Figure 7.11b,c shows the estimated 

instantaneous frequencies of these cases. The axis on the frequency coordinate is scaled 
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to +/-1% of the true frequency in each case to provide an equivalent basis for comparison. 

For further illustration, a case where the level of overlap is greater than in Example 6 is 

also provided in Figure 7.11a by decreasing the cosine frequency in Equation 7.13 to 1/64 

Hz. In this case, where the overlap is most significant (Fig. 7.11a), the level of this 

intrawave modulation is more marked. As the overlap is lessened in Example 6 (Fig. 

7.11b), the intrawave modulation is still present but reduced. In case of the higher 

frequency signal in Figure 7.11c, the presence of this oscillation is hardly notable. It can 

be inferred that the intrawave modulation in this case actually results from the Hilbert 

transform not being able to clearly identify the phase and misinterpreting contributions 

from the envelope as a result of their overlap in the Fourier domain.  

In the case of this exponentially decaying envelope, by increasing the frequency 

of the oscillatory term in Equation 7.14, the degree of overlap is not only being 

minimized, but also the bandwidth of the system is also being increased. Note that the 

product of the bandwidth and duration, or BT product, was introduced in Chapter 3 as a 
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measure of the richness of the signal. The exercise in Figure 7.10 equally illustrates the 

role of the BT product in the reliability of an IF measure produced by the HT. For signals 

with small BT, e.g. a low frequency, well damped oscillator, the IF is difficult to identify 

at an instant since there is no dominant frequency (Boashash, 1992a). This does not 

preclude the use of the HT for small BT signals – it only raises concerns for the 

interpretation of results.  

In practice, it is desirable to examine asymptotic signals, which are characterized 

by a finite duration, bandwidth and energy, but with large BT product; however, the term 

“large” is quite ambiguous. Although, Slepian et al. (1961) determined that 99% of a 

signal’s energy is typically preserved within the limits of BxTx > 5, Boashash (1992a) 

suggested limiting analysis to signals with BxTx >10 such that the approximation error 

resulting from assuming band and time limited functions is minimal. This will include, in 

practice, signals used in communications and seismic applications. In Boashash (1992a) 

it is shown that for a given signal, the analysis of short duration records (small BT) will 

manifest significant leakage in the time-frequency energy density. Increasing the duration 

(larger BT), reduces this effect so that the deviations from the true IF diminish.  

Thus, the demonstrations in Figure 7.11 further illustrate that the estimated IF 

approaches the anticipated result, with levels of IF oscillation decreasing, as the 

bandwidth of the signals, and thereby the BT product, increases. Either the possibility of 

spectral overlap between the phase and envelope or the implications of a small BT 

product serve as viable explanations for the apparent “intrawave frequency” modulation 
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cited by Huang et al. (1998) and demonstrate that this characteristic is not physical but a 

numerical byproduct of the Hilbert transform. 

7.5.7  Example 7: Duffing Equation 

Huang et al. (1998, 1999) explore a variety of classical nonlinear problems with distinctly 

different frequency nonlinearities using continuous wavelets and HSA. The simplest of 

these systems is the Duffing oscillator under harmonic excitation, in accordance with the 

second-order differential equation 
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where ε, γ are constants and ω is the harmonic forcing frequency. The term in parenthesis 

represents nonlinearity in the stiffness of the oscillator, which will lead to a frequency 

that changes with amplitude. As discussed in Stoker (1966), Duffing (1918) noted that 

the motions of this system were periodic but not simple harmonic, resulting in a period 

that is “a unique function of amplitude”. The variation of frequency with time observed 

in the Duffing oscillator is a physical reality due to the nonlinearity of the stiffness in 

Equation 7.15 and has been identified by other authors using both Hilbert (Feldman, 

1994a,b) and wavelet transforms (Staszewski, 1998). Huang et al. (1998, 1999) 

investigated the solution for a strongly nonlinear case (Fig. 7.12a) using HSA and 

identified 3 IMF components contributing to the system response, as shown in Figure 

7.12b, for ε = -1, γ = 0.1 and ω = 1/25 Hz. The dominant component of the oscillator 

displays marked intrawave oscillations of both long and short period, expanded upon in 
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Huang et al. (1998). Meanwhile, the low frequency component, represented by the IMF 

near 0.04 Hz, is attributed to the forcing function (at 1/25 Hz). The lowest frequency 

component is attributable to a slow wobbling of the phase. Huang et al. (1998) noted that 

the Morlet wavelet could not capture this nonlinear behavior in terms of the intrawave 

frequency modulations, though identifying the dominant frequency content in the region 

near the intrinsic frequency of 0.124 Hz as shown by Figure 7.12c. Note however that 

even this basic wavelet analysis by Huang et al. (1998) manifests some oscillatory 

characteristic in the high frequency range, indicating a time-varying bandwidth and 
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FIGURE 7.12. Example 7: (a) Duffing oscillator 
under harmonic excitation; (b) Huang et al.’s (1998) 
Hilbert spectrum manifesting 3 IMF components; (c) 
Huang et al.’s (1998) Morlet wavelet result 
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demonstrating again that the wavelet’s ability to detect nonlinear behavior lies in its 

bandwidth measure. 

In order to expand upon these findings, the response of the system in Equation 

7.15 is generated using a 4th order Runga Kutta simulation to determine if the wavelet is 

sensitive enough to detect even subtler nonlinearities, embodied by a Duffing oscillator 

with ε = -0.22, γ = 0.1. For a more basic understanding of the wavelet interpretation, the 
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FIGURE 7.13. Example 7: (a) Duffing oscillator in free vibration, zoomed in 
from 50 to 100 s; (b) wavelet scalogram; (c) WIFS; (d) wavelet instantaneous 
frequency spectra at each time step plotted one atop another; (e) instantaneous 
frequency identified by phase of WT; (f) instantaneous half-power bandwidth 
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system is first released from the initial conditions of x(0) = 0 and x’(0) = 1 and allowed to 

freely vibrate, as shown in Figure 7.13a. From the time series itself, the frequency of 

oscillation can be estimated as 0.14 Hz. Applying the Morlet wavelet with fo=0.25 Hz, in 

order to achieve a refined temporal resolution, yields a scalogram capturing the dominant 

harmonic component, shown in Figure 7.13b. The extracted WIFS shown in Figure 7.13c 

reiterates this finding through a single ridge near 0.12 Hz. The lack of accuracy in this 

identified instantaneous frequency ridge can be justified in light of the reduced frequency 

resolution for fo=0.25 Hz, which was conceded to enhance the temporal resolution. 

Plotting the instantaneous spectra at each time step one atop another (Fig. 7.13d), 

essentially collapsing the scalogram in time, confirms the presence of a single response 

component, however the thickness of the profile indicates that there is some variation in 

the amplitude, peak position and bandwidth. Although the maxima of the wavelet 

scalogram cannot be used to directly identify the instantaneous frequency accurately for 

such a fine time resolution analysis, the phase of the wavelet transform can still be used 

to provide a more precise identification of instantaneous frequency. The IF determined 

from the wavelet skeleton’s phase along the ridge in Figure 7.13c is provided in Figure 

7.13e and affirms the presence of a frequency component near 0.143 Hz. The oscillation 

of the phase instantaneous frequency reflects at the subtle nonlinearity of this system. The 

findings in Figure 7.13e imply that the peaks of the instantaneous spectra in Figure 7.13d 

are gradually shifting back and forth about 0.1431 Hz. By examining the instantaneous 

half-power bandwidth, Figure 7.13f provides additional evidence of the subtle 

nonlinearity of this system with oscillations occurring at twice the frequency of the 

oscillation of the Duffing system. The fluctuations of the bandwidth measure describe the 
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variation of the spread of frequencies about the instantaneous frequency in Figure 7.13e, 

the source of the thickened line on the backside of the instantaneous power spectra. As 

the red frames in Figure 7.13 help to demonstrate, the bandwidth, sensitive to signal 

amplitude, takes on its lowest values in the signal’s troughs and peaks at the zero 

crossings of the signal, where the Duffing oscillator is essentially a linear system, while 

intermediate troughs occur at the signal maxima. As the envelope of the signal in Figure 

7.13a is constant due to the lack of dissipative term, one may expect a constant 

bandwidth in the response. However, the subtle bandwidth fluctuations are a result of the 

nonlinearity in frequency and affirm the bandwidth sensitivity to even very mild 

nonlinear phenomenon. It should be reiterated that if fo were chosen too large, much of 

this behavior would be obscured, as also demonstrated previously in the Stokes wave 

analysis. 

Looking at the forced response of the same system for ω = 1/50 Hz in Figure 

7.14a, the envelope of the signal manifests a low frequency oscillation as a result of the 

forcing function. Inspection of the wavelet scalogram in Figure 7.14b reveals that the 

warmest hues indicate the frequencies at which the signal concentrates, which again are 

focused at 0.12 Hz due to the loss of frequency resolution in the scalogram discussed 

previously. The bright blue band at the foot of the scalogram indicates the 0.02 Hz 

forcing function. While the energy is clearly concentrated in the vicinity of the 

oscillator’s dominant frequency, the higher frequencies of the scalogram manifest a 

rippling indicative of fluctuations in the frequency content with time. The instantaneous 

frequencies were identified from the ridges of the transform and are shown in Figure 

7.14c. Two dominant components were observed: one near 0.12 Hz and one  
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FIGURE 7.14. Example 7: (a) Duffing oscillator in forced vibration; (b) 
wavelet scalogram; (c) WIFS; (d) wavelet instantaneous frequency spectra at 
each time step plotted one atop another; (e) instantaneous frequency of high 
frequency component identified by phase of WT; (f) instantaneous half-
power bandwidth of high frequency component; (g) estimate of 
instantaneous frequency by Hilbert Transform 
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corresponding to the forcing frequency near 0.02 Hz. Contrary to Figure 7.13b, the ridge 

associated with the nonlinear oscillator now manifests some fluctuation. The same 

overlay of instantaneous spectra in Figure 7.14d reveals that a more marked spread in 

bandwidth, peak frequency and amplitude of the spectral peak than in its counterpart in 

Figure 7.13b, indicative of more prominent time-varying characteristics. Turning again to 

the instantaneous frequency estimate from the wavelet phase in Figure 7.14e, the range of 

oscillation of the instantaneous frequency is identified more precisely in the vicinity of 

0.14 Hz, as before. Note that the wavelet instantaneous frequency estimate, grounded in 

Fourier harmonics, manifests a smooth regular periodicity. Again recalling that the 

wavelet analysis fits small waves to the data, the instantaneous frequency estimate is 

more representative of the best-fit frequency over some short time interval but may not 

fully capture subcyclic characteristics. Turning to the instantaneous bandwidth in Figure 

7.14f, a different perspective with a far more oscillatory characteristic is evident. The red 

box denotes a region of downshift, during which the local signal mean shifts to lower 

amplitudes. Each downshift is followed by an upshift. These trends occur in a periodic 

manner as a consequence of the forcing frequency, thus the duration of downshift region 

is half the forcing period or 25 s. The initiation and termination of the downshift are 

marked by troughs in the wavelet instantaneous frequency in Figure 7.14e and the 

deepest troughs of the instantaneous bandwidth in Figure 7.14f. This pattern repeated in 

the bandwidth is a consequence of the amplitude modulation arising from the forcing 

function, while the higher frequency fluctuations spanning the downshift region reflect 

the nonlinearity of frequency in the signal. Note that both the frequency and bandwidth 

qualitatively manifest local symmetry over the downshift region. This result can be 
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compared to the instantaneous frequency estimated via the Hilbert transform, shown in 

Figure 7.14g. This result shows more irregularity when compared to the wavelet 

instantaneous frequency in Figure 7.14e, as expected. The wavelet instantaneous 

frequency is characteristically smooth as discussed above, being a best-fit local mean to 

the frequency at that time. For the wavelet, any fluctuations or spread about this mean are 

carried in the bandwidth in Figure 7.14f. The Hilbert result does not separate these two 

contributors of frequency evolution and provides an instantaneous frequency estimate 

whose peaks and troughs shift and lean, though in a repeating pattern, as a result of 

intrawave fluctuations. The appropriateness of either representation depends entirely on 

the perspective desired.     

This example again reiterates the distinction between these two techniques: the 

HSA will in general detect these subtle changes in frequency due to some nonlinearity, 

essentially identifying subcyclic frequency changes, while the Morlet wavelet’s 

instantaneous frequency will only detect changes in the instantaneous frequency in its 

truest mean sense, as it locally fits windowed sinusoids to the data and is thus capable of 

detecting only nonlinearities evolving over entire cycles of oscillation or following 

significant changes in amplitude, which will be referred to herein as supercyclic 

oscillations. One period of oscillation in the Duffing oscillator corresponds to a marked 

amplitude change, easily detectable by the Morlet wavelet’s instantaneous frequency 

extracted from the phase.  

 However, the rippling manifested in the scalogram, particularly in the high 

frequency range, suggests that the wavelet is detecting some of the subcyclic oscillations 
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of the Duffing oscillator, not through its ridges or instantaneous frequency, but through 

its spectral bandwidth, as introduced in Example 5. The bandwidth fluctuations, being 

more sensitive than instantaneous frequency, are not as precise near end effects regions, 

as discussed in more detail later in Chapter 8. Even so, they capture repeating patterns of 

frequency spread with time. Further, they demonstrate a secondary fluctuation in the 

bandwidth with a periodicity that corresponds to the time between a signal peak and its 

subsequent trough – a subcyclic phenomenon. Thus, it appears that while the wavelet’s 

instantaneous frequency captures only supercyclic oscillations and mean behaviors of 

frequency over small windows, the additional insights provided by the bandwidth affirm 

the deviations from the instantaneous frequency, affirming the presence of subcyclic 

phenomenon or a frequency that continuously varies with amplitude for the same reasons 

as discussed following the Stokes wave examples.   

7.5.8 Example 8: Lorenz Equation 

The Lorenz equation, initially proposed to study deterministic non-periodic flow, has 

become a fundamental system for the investigation of chaos and was considered in 

Huang et al. (1998) as another classic nonlinear system for investigation using HSA. The 

system is described by 

 
xybzzxzyrxyyxx +−=−−=+−= &&& σσ

 (7.16) 

where s, r and b are positive constants, assumed to be 10, 20 and 3, respectively, for the 

purpose of this example. The system is released from its initial position of (10, 0, 0), 

resulting in the x-component response shown in Figure 7.15a, illustrating the transient 
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characteristics of the system. The Hilbert spectrum generated by Huang et al. (1998) is 

provided in Figure 7.15b and reveals the characteristic intrawave frequency modulation 

observed in other non-linear systems as a result of subcyclic frequency variations. The 

Hilbert spectrum also manifests a low frequency component, which rapidly drops from 1 

Hz and lingers around 0.1-0.2 Hz. This mode corresponds to the rapid transient drop 

occurring in the first few seconds of the Lorenz response. After this transient period, the 

oscillator tends to behave as a damped nonlinear system. Note the decaying of the 

instantaneous frequency indicating supercyclic FM due to the damping characteristic as 

well as the oscillations about 1.4 Hz due to subcyclic nonlinear behavior. Linearization of 

the system in Huang et al. (1998) yielded a dominant frequency of about 1.46 Hz, 

consistent with the main frequency about which intrawave modulations occur. 
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FIGURE 7.15. Example 8: (a) Lorenz equation x-component; (b) 
Huang et al.’s (1998) Hilbert spectrum of Lorenz equation, x-
compnent; (c) Huang et al.’s (1998) Morlet wavelet result 
 
 



 349

The continuous wavelet analysis by Huang et al. (1998) shown in Figure 7.15c 

captures the transient nature of the signal, but the frequency resolution may not be 

sufficient to disclose the nonlinearities present. The revisited Morlet wavelet analysis of 

the Lorenz x-component response (Fig. 7.16a) is shown in Figure 7.16b. While the 

scalogram indicates that the wavelet has captured the transient behavior with the intense 

red patches, it is the wavelet instantaneous frequency spectrum (Fig. 7.16c) that truly 

provides clear representation of the behavior. Consistent with the HSA in Figure 7.15b, 

the Morlet wavelet with fo=0.5 Hz, chosen for more precise temporal resolution, was 

capable of detecting the marked frequency shifts due to the transient behavior in the first 

few seconds of the signal. This is characterized by a shift in the low frequency 

component from about 0.75 Hz to 0.019 Hz. After this transition range, the wavelet 

detects a bi-modal response, with the low frequency response near 0.019 Hz and the 

oscillator’s response at about 1.4 Hz, near the 1.46 Hz theoretical prediction of the 

linearized system. The estimation of instantaneous frequency of this mode becomes 

unreliable beyond 10-15s, as the signal’s energy decays, shown by the diminishing light 

blue patch in the scalogram. This observation is consistent with the HS in Figure 7.15b, 

which indicates that the instantaneous frequency estimate about 1.4 Hz is scarcely 

detected beyond 10 seconds, though the lower frequency response is still clearly present. 

The subcyclic oscillations about 1.4 Hz, occurring essentially in the decaying component 

of the response, are subtly evident in the WIFS in Figure 7.16c, apparently becoming 

more pronounced as the signal dissipates. To more closely inspect these subcyclic 

oscillations, the instantaneous frequency of this component is also identified from the 

wavelet phase. The result, shown in Figure 7.16d demonstrates that subtle oscillations are 
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detected by the wavelet phase, though not of the magnitude detected in HSA. These 

oscillations grow in amplitude slightly, however, this is not a physical reality but rather a 

bi-product of the increasing difficulty in estimating the instantaneous frequency 

accurately from the phase as the signal’s energy rapidly diminishes. The amplitude of 

wavelet coefficients during this decaying phase of the higher frequency component 

FIGURE 7.16. Example 8: (a) Lorenz equation x-component; 
(b) wavelet scalogram; (c) WIFS; (d) instantaneous frequency 
of high frequency component identified by phase of WT; (e) 
instantaneous half-power bandwidth of high frequency 
component 
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initiate at a maximum value of around 8.5 and fall beneath 10% of this value by the tenth 

second, becoming essentially zero by the twentieth second.  

The dual characteristic of the continuous wavelet transform allows the 

investigation of instantaneous spectra, taken as slices of the wavelet scalogram along the 

time axis. These spectra provide snapshots of the system’s frequency domain behavior. 

Critical points in the response of the Lorenz equation’s x-component are labeled in 

Figure 7.17 by asterisks, and their associated instantaneous spectra are provided. The first 

three points are part of the rapid transient decay. Their instantaneous spectra reveal the 

predominantly monocomponent nature of this transient region, with the broad spectral 

peak shifting from near 1 Hz to a lower frequency value near 0.5 Hz. By the fourth point, 

the system has entered into an essential free vibration about 1.4 Hz accompanied by the 

persistent low frequency component. The presence of both modes continues through 

points 5 and 6, though the magnitude of the second peak associated with the free 

vibration oscillations is steady decreasing as the system’s energy is dissipated. 

Simultaneously, the low frequency component approaches DC and becomes highly 

concentrated, reflecting the permanent offset of the system as the response decays. An 

investigation of the half-power bandwidth of the second peak is provided in Figure 7.16e, 

affirming again the presence of nonlinearity in the frequency spread at each instant in 

time, with a periodicity similar to that observed in the phase-identified instantaneous 

frequency. It should be noted that the diminished values of the bandwidth at the 

beginning of the signal is a consequence of enhanced sensitivity in the end effects region, 

discussed more fully in Chapter 8. Again, the WIFS and wavelet bandwidth concur with 

the findings of HSA: observing an oscillatory characteristic in the high frequency 
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component of this nonlinear system and identifying the transient behavior of the constant 

offset. 

7.5.9 Example 9: Rössler Equation 

Huang et al. (1998) also investigated the Rössler Equation for the famous period doubling 

event described by 
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FIGURE 7.17. Example 8: Lorenz equation, x-component, 
instantaneous spectrum from wavelet transform at critical points in 
the response 
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where µ = 3.5. The system simulated by a first-order forward difference technique from 

the initial conditions {x(0) = -4, y(0) = 4, z(0) = 0} is shown in Figure 7.18a. The Hilbert 

spectral analysis of the x-component of the Rössler system, as performed by Huang et al. 

(1998), is provided in Figure 7.18b. Note that the EMD of the data yielded 2 meaningful 

IMF components, one oscillating between 0.17 and 0.25 Hz, representing the dominant 

nonlinear characteristic of this system. The lower frequency component, near 0.1 Hz, is 

assumed to be the result of some numerical error, as it is quite low in energy and is 

surfacing in a system known to have only two dominant scales. 

Huang et al. (1998) states that “to represent such a [system] with either Fourier 

spectrum or wavelet analysis, one would need many harmonics.” Indeed, a continuous 

wavelet analysis may represent globally this system by a series of harmonics if the 

temporal resolutions are insufficient to resolve the nonlinearities, as shown by Figure 

7.18c. Inspecting the signal shown again in Figure 7.19a, there are large amplitude peaks 

occurring about every 11 seconds, indicating that there is some frequency content in the 

vicinity of 0.1 Hz. Temporally, smaller peaks occur approximately 5 seconds after a large 

peak, so the wavelet chosen must not have a time resolution greater than 5 seconds in 

order to detect the changes in the signal with time. Wavelet analyses can often be 

performed in stages. In the first stage, it is often desirable to identify components within 

the signal by choosing a wavelet with sufficiently fine frequency resolution. As the 

dominant peaks have a frequency in the vicinity of 0.1 Hz, one may seek a wavelet with a 

resolution 10% of this value, or 0.01 Hz. This can be achieved using fo=5 Hz, though the 
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temporal resolution for this wavelet is about 7 seconds and thus will not capture the 

variations which occur every 3-4 seconds. Using this fine frequency resolution first, in 

stage 1 of the analysis, two distinct components are identified at around 0.09 and 0.17 

Hz, demonstrated in Figures 7.19b-c. This information then defines two frequency ranges 

over which to apply a more temporally refined analysis in stage 2. The first component 

near 0.1 Hz was cited by Huang et al. (1998) as some numerical artifact from the 

simulation of the system. As this component does not manifest marked temporal variation 

in the refined analysis, it will not be included in subsequent discussions. However, it will 

be shown that the component near 0.17 Hz does reveal interesting phenomena in a 

refined analysis. Again, to track the time-evolving amplitude changes, a wavelet with fine 

time resolution must be chosen. For fo=0.25 Hz, the temporal resolution is enhanced to 

approximately 1.75 s. Using this wavelet to analyze the second component of the system 

as stage 2, the scalogram in Figure 7.19d is obtained. Note that the color contours of the 

wavelet scalogram mimic the same oscillatory peaking of the frequency observed in the 

Hilbert spectrum in Figure 7.18b. The WIFS is generated in Figure 7.19e and reveals that  
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FIGURE 7.18. Example 9: (a) Rössler equation x-component; (b) Huang et al.’s 
(1998) Hilbert spectrum; (c) Huang et al.’s (1998) Morlet wavelet result 
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the energy is primarily concentrated in an oscillatory pattern between 0.1375 and 0.1665 

Hz, with a period of oscillation of 11.4 seconds, capturing the period of the large peaks in 

the time series.  

As the scalogram fluctuations in the high frequency range indicate some variation 

of energy in time, a half-power bandwidth analysis is performed as part of stage 2 on this 

second component. The results, shown in Figure 7.19f, clearly demonstrate the behavior 

identified by Huang et al. (1998) in Figure 7.18b, with large peaks interlaced with 

smaller, rounded humps. The period between the major peaks in bandwidth is 11.4 

seconds, corresponding to the period of the large peaks in the signal. Approximately 5.5 

seconds after each major peak in the HPBW, a smaller peak follows, as also observed in 

the time series. The period between the smaller peaks of the HPBW is also 11.4 seconds. 

Thus the dual identification of the instantaneous frequencies and bandwidth from the 

wavelet transform illustrates the ability of the Morlet wavelet to characterize this 

nonlinear behavior, albeit differently than the HSA, and dispute the claim by Huang et al. 

(1998) that “no other methods can match the resolution power displayed here.” As 

demonstrated in previous examples, while the instantaneous frequency can signal the 

presence of nonlinear behavior in response to marked amplitude changes in the signal, it 

does so in a more averaged sense. It is the sensitivity of the instantaneous bandwidth that 

detects the presence of waves of neighboring scales indicative of a deviation from a 

perfect sinusoid – a trademark of the nonlinear system. 
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7.5.10 Example 10: Random Wave Data 

While the wavelet analyses presented thus far have considered a number of nonlinear and 

nonstationary systems, Huang et al. (1998) extended the time-frequency analyses to 

measured wave data. While the intent of this chapter is not to provide such an exhaustive 

array of examples, the analysis of measured wave data was included in the discussions of 

the Stokes wave. To enrich this discussion further, the analysis of experimentally 

observed random sea waves is presented herein. The waves were generated by a 

JONSAWP random excitation with amplitude of 64 cm. The power spectrum of the 

excitation affirms discernable frequency content up to approximately 2 Hz, although this 

broad peak focuses at approximately 0.4 Hz. The resulting waves at one measuring 

station are provided in Figure 7.20a for 200 seconds of the total measured record. From 

inspection of the time series, the fundamental period of oscillation is approximately 2 

seconds, though the wave profiles are not smooth, indicating the presence of other 

frequencies or nonlinearities in the data. A continuous wavelet analysis with fo=1 Hz 

produced the scalogram shown in Figure 7.20b. The scalogram reflects several pockets of 

intense energy bursts, associated with high amplitude events in the data, and concentrated 

at around 0.5 Hz. The presence of lighter hues fading into the high frequency range again 

suggests the detection of a distribution of energy beyond the fundamental observed 

frequency. Ridge extraction from the wavelet modulus revealed up to three local maxima 

for any given instantaneous spectrum. The maxima take on the highest values in the 

vicinity of 0.5 Hz, as shown in red on the WIFS in Figure 7.20c, accompanied by 

intermittent lower amplitude components in a relatively lower and higher frequencies, 

shown in light green and yellow. Individual analyses of the occurrence of the three ridges 
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are provided in Figure 7.21. Figure 7.21a displays the instantaneous frequency associated 

with the simplest harmonic representation observed in the signal – for which there is only 

one dominant oscillatory component near 0.5 Hz, typified by the instantaneous spectrum 

to the right. The frequency content of the signal often shifts then to a bi-modal 

characteristic, centered around 0.5 Hz, as shown in Figure 7.21b, but alternating its 

dominant peak between approximately 0.4 and 0.6 Hz, as shown by the two example 

instantaneous spectra. The occurrence of a third peak is usually an intermittent 

phenomenon of relatively lower energy and accompanies the dominant presence of the 

same two harmonics centered near 0.5 Hz. It is important to reiterate that wavelet 

instantaneous spectra, when viewed in tandem with the wavelet instantaneous frequency  
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FIGURE 7.20. Example 10: (a) measured random wave 
data; (b) wavelet scalogram; (c) WIFS for up to three 
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spectrum, serve as a microscope for studying the evolution of multiple harmonic 

components within the response. In particular, the alternating characteristic of the two 

dominant components centered near 0.5 Hz represents a temporal variation of the 

fundamental wave frequency that would be obscured in traditional Fourier analysis. This 

observation, coupled with the intermittent characteristics, further highlights the richness 

of the energy distribution in the wave profile, similar to the findings in Huang et al. 

(1998).        
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7.6 Discussion: Processing Concerns and Performance in Noise 

While the examples provided herein have reassessed the performance of the continuous 

wavelet transform and the Hilbert transform with Empirical Mode Decomposition for a 

number of nonlinear and nonstationary systems, these results are not achieved without a 

proper understanding of each approach. For example, the successful application of the 

Hilbert transform is predicated on the IMFs satisfying certain narrowband and symmetry 

conditions. The quality of the IMFs produced by EMD is dependent upon the spline fit 

procedure employed, particularly near the ends, where cubic spline fits have wide swings 

that may eventually propagate inward and corrupt the entire data span. Corrective 

measures such as the inclusion of characteristic waves are discussed in Huang et al. 

(1998) and should be applied as needed to insure optimal performance. The use of spline 

fitting or oversampling of the data will additionally be required to determine the 

derivatives of the phase with sufficient accuracy. This is true of the wavelet analysis as 

well if the phase is used to estimate the instantaneous frequencies, though in the 

examples provided it is often sufficient to use the maxima of the transform for this 

identification, alleviating the need for any differentiation.  

The sifting process used to generate the IMFs should also be used with care, since 

when applied in excess, it can completely obliterate meaningful amplitude modulations 

and yield purely frequency-modulated components. Thus, the user of the EMD approach 

should be well versed in determining when to terminate the sifting process and the 

suitability of the resulting IMFs, as well as in distinguishing if any corruptions by the 

spline fits are present.  
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By the same token, the users of continuous wavelet transforms must be cognizant 

that the result of their analysis relies heavily on the parent wavelet employed. As stated 

by Lewalle (1998) “Each wavelet shape is selected by the user – as is the conventional 

sine wave [of Fourier Analysis] -, and this limits the type of questions that can be 

answered.” Thus the choice of an appropriate parent wavelet will vary in each application 

and will greatly influence the results, though the Morlet wavelet is a natural choice for 

any analysis seeking to replicate local Fourier perspectives. Further, “the freedom to 

choose between wavelets implies the responsibility to interpret the results accordingly” 

(Lewalle, 1998). The poor interpretation of Morlet wavelet results in Huang et al. (1998) 

was largely responsible for many of the misleading statements surrounding wavelet 

performance. Specifically, when using the Morlet wavelet, to completely exploit the 

resolution capabilities, users should make careful selections of the central frequency fo 

within the framework presented in Chapter 4. A lack of understanding of the durations of 

the dilated time and frequency windows of the analysis can yield misleading results and 

may have in part led to the poor results noted in the literature. Though Huang et al. 

(1998) did not report the exact central frequency used in their Morlet wavelet analysis, 

statements referring to the Morlet wavelet as “Gaussian enveloped sine and cosine wave 

groups with 5.5 waves” would hint at the use of a central frequency near 5/(2π), the 

default value in the MATLABTM Wavelet Toolbox. In this form, the undilated Morlet 

wavelet would have only a few cycles of oscillation in the Gaussian window, as shown in 

Figure 7.22a, clearly not appropriate for the wide array of signals analyzed here. In fact, 

the discussion of the Stokes wave highlighted the fact that a high frequency resolution 

wavelet analysis begins to approach the Fourier harmonic analysis and loses much of its 
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temporal sensitivity, while a lower frequency analysis can uncover the nonlinear 

characteristic. On the other hand, as demonstrated in Example 5, for the two closely 

spaced waves, a higher value of central frequency was necessary to separate the two 

modes. These higher values of central frequency permit improved frequency resolution 

by packing more waves into the Gaussian window, as shown in Figure 7.22b. Therefore, 

it should be noted that the value of this central frequency was changed throughout this 

chapter and this work in order to properly tune the parent wavelet. As such discussions 

are not mentioned in Huang et al. (1998), it is assumed that this value was not changed 

for each example in that study, a fact reflected by the poor wavelet results in that work. 

Further, to obtain the wavelet instantaneous frequency spectrum, users must 

extract the ridges of the transform. By visual inspection, one can clearly discern the 

highest energy in the contour map, but to obtain a skeleton plot comparable to the Hilbert 

spectrum, ridges must be extracted, most easily by using the local maxima of the modulus 

of the transform. In cases where excessive noise induces spurious local maxima, the use 

of more sophisticated extraction techniques is required (Carmona et al., 1998). These 
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FIGURE 7.22. (a) Real component of Morlet wavelet basis function for 
fo=5/(2π) Hz; (b) real component of Morlet wavelet basis function for fo=5 Hz 
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approaches use the smoothness of the ridge as an additional condition in the minimization 

scheme and require additional experience and programming, as discussed in Chapter 4. 

Finally, the examples provided in this chapter have not explored either 

technique’s performance in the presence of noise. Huang et al. (1998, 1999) did examine 

several sets of measured data from earthquake, wind and wave events, which can be 

assumed to contain some noise, from which the HSA was able to extract IMF 

components and their instantaneous frequencies. However, in general, the performance of 

HSA in noise is dictated by approach used to accomplish the differentiation required to 

obtain the instantaneous frequency from the phase and the ability of the EMD process to 

separate noise from the signal. The differentiation scheme is particularly crucial in the 

accurate identification of the instantaneous frequency. A comparison of the performance 

of several of these differentiation approaches in the presence of noise was conduced by 

Boashash (1992b) and revealed that some approaches using the phase information (e.g. 

central difference) may have considerable difficulty in noisy situations, requiring the use 

of more sophisticated approaches such as Maximum Likelihood Estimators. However, all 

of these discussions are relevant only to the Hilbert transform itself and not the overall 

Hilbert Spectral Analysis. It is possible that the inclusion of EMD prior to the application 

of the HT may have enhanced the performance discussed by Boashash (1992b). As a 

result, these findings do not necessarily demonstrate a shortcoming of HSA.  

On the other hand, approaches that utilized the peaks in the modulus of time-

frequency distributions such as the STFT or WVD to determine the instantaneous 

frequency were some of the most accurate in noisy situations (Boashash, 1992b), 
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supporting the use of this approach for the continuous wavelet transforms in this study. 

This point was also made by Carmona et al. (1997), who indicated that the phase might 

be difficult to control in noisy situations, motivating the use of the wavelet modulus for 

the extraction of ridges. Delprat et al. (1992) illustrated the ability of wavelet ridges to 

identify a bat sonar signal embedded in noise with amplitude comparable to the signal 

itself. This theory of wavelet ridges was also used by Staszewski (1997, 1998) to examine 

the ability of wavelets to perform system identification by adding known levels of white 

noise to simulated structural responses and found the technique to be quite robust, even in 

the often problematic estimation of structural damping. The robustness of time-varying 

frequency system identification by wavelets in the presence of noise was also quantified 

by Ghanem & Romeo (2000), while the use of wavelets for cleaning noisy observations 

was previously advocated by Coca & Billings (1997) and Gurley & Kareem (1999). 

7.7 Discussion: A Fundamental Difference 

The examples presented in this chapter have highlighted a fundamental difference 

between the wavelet analysis and that provided by the HSA: the manner in which 

physically meaningful intrawave or subcyclic frequency modulations are identified. The 

concepts of subcyclic oscillations, denoting changes in frequency that occur within a 

single cycle of oscillation, and supercyclic oscillations, denoting changes in frequency 

that occur over the course of one or more cycles or due to rapid changes in amplitude, are 

introduced to help explain the performance of the continuous wavelet transform and the 

Hilbert spectral analysis. As exercises in nonlinear systems have indicated, the presence 

of intrawave modulation may be rationalized as a physical phenomenon by both 
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techniques. In the wavelet interpretation of these systems, the fitting of wavelets or small 

waves of a given scale (frequency) tends to capture local mean trends in the instantaneous 

frequency of the system. For systems undergoing significant amplitude fluctuations or 

marked supercyclic oscillations, which would induce significant frequency variations, 

such as in the Duffing, Lorenz and Rössler examples, the wavelet instantaneous 

frequency captured fundamental supercyclic frequency modulations; however the subtle 

characteristics of intrawave frequency variation are not held in this measure. As Priestley 

(1988) indicated, the instantaneous frequency is an averaged measure of the frequencies 

present at that instant in time. So for the Morlet wavelet, it is the frequency of the best-fit 

sinusoid to the data over a shortened time window. However, sinusoids at neighboring 

frequencies may also show some similitude with the signal over this same interval, 

indicating oscillations that are not perfectly sinusoidal but deviate in some way. This 

nonlinearity represented by subcyclic deviations must locally be treated by a summation 

of neighboring harmonics. The spread of these neighboring frequencies is captured by the 

instantaneous bandwidth measure presented in this chapter. When viewed in totality, the 

wavelet instantaneous frequency represents an averaged sense of the frequency of the 

system with time, and the bandwidth or deviation from this mean value, indicative of 

evolving fluctuations in signal frequency content. As demonstrated in the case of Stokian 

waves, these nonlinearities can be so subtle that they often only reveal themselves in the 

wavelet’s instantaneous bandwidth. Thus the Hilbert instantaneous frequency captures 

both super and subcyclic oscillations simultaneously, while the wavelet separates the two 

classes of oscillations, with its instantaneous frequency detecting the presence of any 

supercyclic oscillations and the instantaneous bandwidth capturing the subcyclic features. 
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7.8 Conclusions 

This chapter revisited many of the continuous wavelet examples used to establish the 

efficacy of the Hilbert Spectral Analysis, not to advocate the use of one over the other, 

but rather to represent both in a fair light and dispel some of the misconceptions 

surrounding continuous wavelets for these applications. To provide a fair comparison, a 

wavelet instantaneous frequency spectrum was introduced, which plots the wavelet 

estimates of instantaneous frequency as a function of time. This perspective produces the 

same skeleton plot as the Hilbert spectrum, which also must estimate instantaneous 

frequency. Throughout the examples provided using this representation, the judicious 

choice of the central frequency in the Morlet wavelet is reiterated, as improper temporal 

resolution of the wavelet is shown to produce results that approach a traditional Fourier 

analysis, while refined temporal resolutions were capable of identifying nonlinear and 

nonstationary signal characteristics.  

While the physical meaning of the HSA result was questioned in two examples 

involving closely spaced cosine waves and an amplitude modulated, constant frequency 

oscillator, the two approaches provided comparable evidence of nonlinear behavior for a 

number of classical examples. However, this evidence was presented in distinctly 

different manners: the instantaneous frequency of Hilbert spectral analysis detects both 

subcyclic and supercyclic frequency modulations, while the wavelet instantaneous 

frequency can only detect supercyclic frequency characteristics and instead relies on the 

additional measure of the instantaneous bandwidth to provide subcyclic information. This 

finding is expected, as the continuous wavelet fits small waves over a local window in 
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time. The instantaneous frequency will in this case truly correspond to the scale 

producing the best local fit of the wavelet to the data. However, this analysis is a local 

summation of wavelets and therefore the number of additional wavelets at neighboring 

scales required to truly fit the data also provides meaningful information on the spread of 

frequencies about this instantaneous or best fit mean. The instantaneous bandwidth 

measure provides this information and the key to uncovering subcyclic phenomena.  

Therefore, the selection of one approach over the other is entirely dependent on the 

perspective desired. 
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CHAPTER 8 

WAVELET SYSTEM IDENTIFICATION IV: FREQUENCY AND DAMPING 

ESTIMATION FOR CIVIL ENGINEERING STRUCTURES 

8.1 Introduction 

As motivated previously, the dual time-frequency character of wavelet transforms allows 

adaptation of both traditional time and frequency domain system identification 

approaches to examine non-linear and non-stationary data. The adaptations of spectral-

based approaches in this research were presented in Chapters 5, 6 and 7. In particular, the 

coherence discussions in Chapter 6 foreshadowed some of the unique processing 

challenges associated with this new analysis domain. Similarly, when utilizing time-

domain information from wavelet coefficients in order to conduct more precise system 

identification of dynamic properties, a number of the processing challenges associated 

with wavelets, introduced and largely addressed in Chapter 4, have increasing relevance. 

Although such challenges did not surface in prior applications concerned with 

mechanical systems, characterized by higher frequency, broader-band signals, the 

transition to the time-frequency domain for the analysis of Civil Engineering structures 

highlighted the need to understand more fully the issues chronicled in Chapter 4, 

especially for the popular Morlet wavelet. In particular, as these systems may possess 
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longer period motions and thus require finer frequency resolutions, the specific impact of 

end effects becomes increasingly apparent. This chapter discusses these considerations in 

the context of the wavelet’s multi-resolution character and includes guidelines for 

selection of wavelet central frequencies, highlights their role in the complete modal 

separation measure introduced in Chapter 4, and quantifies their contributions to end 

effects errors and their residual impacts on estimated instantaneous frequency and more 

markedly, damping.  

8.2 Previous Applications of Wavelets for System Identification 

The Morlet wavelet and other classes of discrete and continuous wavelets have been 

applied to a variety of problems ranging from image and acoustic processing to fractal 

analysis. This study has showcased a number of these applications in the context of Civil 

Engineering and the adaptation of wavelet transforms to situations where Fourier 

transforms were traditionally used to define quantities of interest. Meanwhile, the more 

rigorous application of wavelets to system identification of mechanical systems is still 

advancing, but shows great promise thanks to the suite of parent wavelets available and 

flexibility inherent in the wavelet transform itself, allowing the use of many traditional 

time and frequency domain-based approaches.  

In terms of analysis stemming from the frequency domain, the instantaneous 

spectrum introduced in Section 4.4 can be utilized in more traditional frameworks for 

system identification via wavelet-based frequency response functions (Hartin, 2001; 

Staszewski & Giacomin, 1997; Kyprianou & Staszewski, 1999), as well as the coherence 

applications in Chapter 6 and the general applications system identification in Chapters 5 
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and 7. A number of other researchers have also noted this dual identification potential, 

integrating the wavelet transform with number of system identification schemes 

traditionally based upon Fourier transforms, e.g. Coca & Billings (1997), Ghanem & 

Romeo (2000). Huang et al. (1994) used its localization and multi-resolution properties to 

identify the mass, stiffness, and damping matrices from measured accelerations, 

velocities, displacements and ground accelerations of MDOF systems to illustrate the 

ability of the wavelet-based approach to accurately identify stiffness and damping from 

short earthquake time histories, even in the presence of noise. Robertson et al. (1998a) 

used the discrete form of the transform to extract impulse response functions from 

measured system inputs and response. In comparison to traditional Fourier-based 

approaches, the DWT-based approach provided superior results, even with limited 

ensembles under various types of excitations. A second study then used this approach 

along with the Eigensystem Realization Method (ERA) to identify the dynamic properties 

and mode shapes of the system subjected to various excitations (Robertson et al., 1998b).  

It should be noted that in the course of these studies, various parent wavelets were 

employed in continuous and discrete forms of the transform. 

As discussed previously, the analysis of free vibration or impulse response 

function (IRF) from a structure serves as one of the simplest means to identify the 

frequency and damping in the time domain. In the case of single degree of freedom 

(SDOF) structures, this identification may be easily conducted using techniques such as 

the logarithmic decrement, the Hilbert transform in the context of analytic signal theory, 

or a least squares fit of the decay curve. However, in cases where multiple degrees of 

freedom (MDOF) are participating, the identification becomes more involved and 
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necessitates the use of bandpass filtering or more advanced MDOF identification 

schemes. Recognizing the ability of wavelet transforms to decouple multi-component 

signals and their dual potential to allow analysis within the time domain, a number of 

researchers began applying this technique in various forms for analysis of impulse or free 

vibration response, e.g. Hans et al. (2000) and Lamarque et al. (2000). These concepts 

were overviewed in Section 3.7.4 within the broader context of a discussion on wavelet 

ridges and analytic signal theory in Section 3.7.  

Furthermore, as the damping and natural frequency for a nonlinear mechanical 

system may be time-varying, piecewise linear fits to the phase and the natural log of the 

amplitude can be used to identify the system as it evolves with time. Variations on these 

concepts in Section 3.7 have been utilized by Ruzzene et al. (1997) and Staszewski 

(1997) to illustrate their applicability to linear system identification. Staszewski (1998) 

later demonstrated the applicability of the approach for non-linear systems, where the 

time-varying estimates of frequency and damping are truly required. Though 

Staszewski’s work (1997, 1998) was primarily directed toward mechanical systems with 

fundamental frequencies larger than most found in Civil Engineering, Ruzzene et al. 

(1997) and Hans et al. (2000) provided examples geared specifically toward Civil 

Engineering, applying the techniques to full-scale data, though without any consideration 

of the processing concerns detailed in this chapter. When considering Civil Engineering 

structures of even longer period, for which the characteristics of narrowbanded response 

become increasingly prevalent, these previously unaddressed processing concerns 

highlighted in this chapter begin to surface more critically. As these systems are usually 

of longer period, frequency resolutions must be refined to insure modal separation. This 
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in turn results in an increase of end effects errors that can have a dramatic influence on 

the quality of wavelet amplitudes and modal properties such as damping. The occurrence 

of these phenomena is rationalized in this study for the popular Morlet wavelet and a 

framework for the analysis of ambient vibration data using wavelets and the Random 

Decrement Technique discussed in Chapter 2 is introduced. Demonstrations on simulated 

and measured full-scale data within this chapter highlight these important considerations 

and the manner in which the provisions in Chapter 4 are applied in wavelet-based system 

identification schemes for Civil Engineering applications. 

8.3 Influence of End Effects in System Identification: Spectral Measures 

One of the more notable signal processing concerns in the identification framework for 

wavelets is end effects, introduced previously in Section 4.2.2. Their impacts can be 

examined in both the temporal and spectral representations of wavelet transforms. While 

the influence of end effects in the frequency domain was clearly visualized in Figure 4.8, 

they may be further quantified via time-varying spectral measures. The signal under 

consideration, shown in Figure 8.1a, is the free vibration response of a SDOF oscillator 

with natural frequency fn of 0.15 Hz and critical damping ratio ξ of 0.01. In the case of a 

fo = 1 Hz wavelet analysis, the end effects have no influence on the estimate of 

instantaneous frequency from the ridge of the transform, but have a considerable effect 

on the amplitude of the wavelet skeleton for the first and last few cycles of oscillation, as 

shown in Figure 8.1b,e. The vertical dotted lines mark integer multiples of ∆t for this 

analysis in the end effects measure in Equation 4.9. It is not until 3∆t that the end effects 

on the wavelet skeleton amplitude diminish. This is rectified by applying the padding  
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FIGURE 8.1. (a) Signal; (b) & (e) signal (dark) and wavelet skeleton (light) at 
ends without padding; (c) & (f) signal (dark) and wavelet skeleton (light) at ends 
with padding; (d) & (g) signal (dark) and difference between signal and wavelet 
skeleton (light) at ends with padding; (e) bandwidth estimate with & without 
padding 
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operation for β = 4, as shown in Figure 8.1c,f. After doing so, the wavelet skeleton can 

hardly be discerned from the actual signal, though as Figure 8.1d,g reveals, a slight 

deviation of the amplitude is still present at the very beginning and end of the signal, 

though it is small relative to the signal’s amplitude at these points in time. The half-power 

bandwidth identified from the wavelet instantaneous spectra is constant, as expected for 

this linear oscillator, with the exception of the end effects region. As shown in Figure 

8.1h, the bandwidth measure, being more sensitive, is significantly influenced by the end 

effects. When padded with β = 4, the bandwidth accuracy is vastly improved, though 

Figure 8.1h demonstrates that within the first 3∆t, the bandwidth is still deviating, a result 

that cannot be fully improved with larger values of β. This is due to the fact that the 

remaining slight inaccuracies in the amplitude lead to a more marked inaccuracy in the 

sensitive bandwidth measure. Note also that the bandwidth of the resulting wavelet 

instantaneous spectra are larger than their Fourier equivalent, as a result of the 

windowing applied by the Gaussian function of the Morlet wavelet, a feature 

demonstrated previously Chapter 4. 

8.4 Influence of End Effects in System Identification: Time Domain 

Time domain system identification on the system in Figure 8.1a may proceed as 

discussed in Section 3.7.4. As a result of the reflective padding operation, the estimation 

of damping in the time domain is also enhanced, though not completely rectified. As 

shown in Figure 8.1e, the deviations in the amplitude with padding are slight and 

diminish with each cycle of oscillation, but still have marked impact for the more 

sensitive estimation of damping in this system. Note that the bandwidth in the previous 
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section and decay envelope in the previous section are both the major descriptors of 

damping in mechanical oscillators and are most significantly impacted by residual end 

effects. The error in the wavelet skeleton’s amplitude is most significant at t = 0, though 

reduced from 50% to about 5% with the addition of padding. This does not affect the 

estimation of instantaneous frequency, which is consistently within 1%. Table 8.1 lists 

the identified damping from each cycle of the decay. The time span of each cycle is 

provided in parenthesis and less reliable values of damping are shaded in gray. As shown 

in column one, without padding, the damping can only be reliably estimated beyond 

about 5∆t. Therefore, direct application of the techniques discussed in Ruzzene et al. 

(1997) and Staszewski (1998) for such narrowband systems should proceed using only 

the wavelet data beyond 5∆t, though the authors make no mention of this nor account for 

this in their estimations. However, the padding operation introduced in this study leads to 

a vast improvement in the estimates from the first three cycles and produces highly 

accurate estimates after only 3∆t, allowing more of the signal to be used in system 

identification. 

 
 

TABLE 8.1 
 

ESTIMATE OF DAMPING FROM WAVELET SKELETON OF SDOF SYSTEM 
 

 fo = 1 Hz,  
β = 0 

fo = 1 Hz,  
β = 4 

fo = 0.5 Hz,  
β = 4 

fo = 0.25 Hz, 
β = 4 

Critical End Effects 
Region 

5∆t = 23.57 s 3∆t = 14.14 s 3∆t = 7.07 s 3∆t = 3.53 s 

1st Cycle (0-6.7 s) -0.0678 0.0034 0.0054 0.0097 
2nd Cycle (6.7-13.3 s) -0.0123 0.0084 0.0099 0.0102 
3rd Cycle (13.3-20.0 s) 0.0067 0.0098 0.0099 0.0101 
4th Cycle (20.0-26.7 s) 0.0099 0.0099 0.0099 0.0101 
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Note that since the identification of this system is proceeding in the time domain, 

a reduced value of fo can be used to diminish end effects, though sacrificing the frequency 

resolution. When doing so, it becomes possible to identify the damping within 1% 

accuracy using virtually the full length of padded data, as demonstrated in the last two 

columns of Table 8.1. While this is attractive, it is demonstrated in the following section 

that this may not be plausible for MDOF systems, particularly those with closely spaced 

modes. 

8.5 System Identification from Free Vibration: MDOF Example 

Additional issues associated with wavelet system identification are can be demonstrated 

through a MDOF example, where the issues of modal separation can be most clearly 

investigated. Recall that the Morlet wavelet-based analysis allows flexibility in the value 

of the central frequency fo to obtain desired resolutions, as discussed previously in 

Chapter 4. This selection becomes critical if closely spaced modes are suspected. 

Staszewski (1997) discussed the use of shifted Morlet wavelets for separation of closely 

spaced, high frequency modes; however, in the case of low-frequency systems, the 

judicious selection of the central frequency of the Morlet wavelet can similarly 

accomplish the same operation directly. This is illustrated by the analysis of 100 seconds 

of data (shown in Figure 8.2), sampled at 10 Hz from the impulse response of the 

following system MDOF system 

 )(tδkxxcxm =++ &&&  (8.1) 
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where m, c and k are the mass, damping and stiffness matrices, respectively, x is the 

vector of displacements, x&  and x&&  are the first and second derivatives of x, and δ (t) is 

the unit impulse function. In order to achieve the desired frequency characteristics, the 

following mass and stiffness matrices were defined 
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where I is the identity matrix, m=1000 kg and k=10 kN/m. As the system is assumed to 

have a critical damping ratio ξ = 0.01 in each mode, a damping matrix can be defined as 

 [ ] [ ]mMMmc T

M
M

M
ΦΦ 1

33

22

11
1

200
020
002

−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

ξω
ξω

ξω
 (8.3) 

where M1,2,3 are the modal masses of the modal mass matrix M, the modal frequencies are 

ω1,2,3 = 2 π f1,2,3, and Φ is the matrix of mode shapes. The response at the third degree of 

freedom of the MDOF system as the result of a unit impulse at that location was then 

IR
F 

t [s] 

FIGURE 8.2. Impulse response function of MDOF system 
with closely spaced modes 
 



378 

generated via state-space simulation of Equation 8.1. Note that the stiffness and mass 

matrices in Equation 8.2a,b were selected to achieve a response with both low frequency 

content and closely spaced modes. The resulting frequencies are 0.567, 1.006 and 1.095 

Hz, and all three modes have a critical damping ratio of 0.01. The latter two modes are 

within 10% of one another, requiring a refined frequency resolution, and thus providing 

an ideal venue in which to explore the significance of fo for optimal modal separation.  

Without a priori knowledge of the system, the selection of a central frequency for 

analysis should initiate from information gathered through a visual inspection of the time 

series, as discussed in Chapter 5. Such inspection indicates that one obvious period of 

oscillation is on the order of 1 s. As a general rule of thumb, a frequency resolution of 

one-tenth the period of oscillation is desirable, i.e. ∆f1,2 = 0.1 Hz. This serves as a starting 

point for the analysis and may be refined even further in subsequent analyses to uncover 

additional details. For the purposes of demonstration, varying levels of α in Equation 4.6 

are used to demonstrate the influence of analysis window overlap in the adjacent 

frequency bands. Assuming α = 1 defaults to a direct application of Gabor’s mean square 

duration and necessitates a minimum wavelet central frequency of 2.25 Hz. To simplify, 

3 Hz is chosen for analysis. As suggested previously, α = 2 and 3 provide a more 

accurate means of modal separation. To demonstrate the influence of these parameters, fo 

= 6 Hz and 8 Hz wavelet analyses are also performed on the same signal. Table 8.2 lists 

the resulting frequency and temporal resolutions as defined by Equations 4.5 and 4.8. 
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TABLE 8.2 
 

WAVELET-BASED IDENTIFICATION OF MDOF SYSTEM WITH CLOSELY 
SPACED MODES 

 
Resolutions Actual Analytic Signal ID Ridge IF & Log Dec ID M

O
D
E 

∆ti  
[s] 

∆fi   
[Hz] 

fn  
[Hz] 

ξ  
 

avg[fn]  
[Hz] 

avg[ξ] CoV[ξ] avg[fn]  
[Hz] 

avg[ξ] CoV[ξ] 

fo=3 Hz, β=0 
1 3.74 0.021 0.567 0.01 
2 2.11 0.038 1.006 0.01 
3 1.94 0.041 1.095 0.01 

Incomplete 
Modal Separation 

fo=6 Hz, β=0 
1 7.49 0.011 0.567 0.01 0.567 0.0098 4.48% 0.566 0.0099 4.61% 
2 4.21 0.019 1.006 0.01 1.006 0.0099 4.43% 1.005 0.0099 8.15% 
3 3.87 0.020 1.095 0.01 1.095 0.0098 10.0% 1.094 0.0098 10.4% 

fo=8 Hz, β=0 
1 9.98 0.008 0.567 0.01 0.567 0.0098 6.58% 0.565 0.0097 5.93% 
2 5.62 0.014 1.006 0.01 1.006 0.0098 4.79% 1.008 0.0097 9.48% 
3 5.17 0.015 1.095 0.01 1.095 0.0098 3.98% 1.098 0.0096 12.5% 

fo=6 Hz, β=4 
1 7.49 0.011 0.567 0.01 0.567 0.0099 1.12% 0.566 0.0100 2.47% 
2 4.21 0.019 1.006 0.01 1.006 0.0100 1.53% 1.005 0.0101 7.09% 
3 3.87 0.020 1.095 0.01 1.095 0.0100 8.93% 1.095 0.0100 13% 

fo=8Hz, β=4 
1 9.98 0.008 0.567 0.01 0.567 0.0099 1.74% 0.565 0.0099 2.91% 
2 5.62 0.014 1.006 0.01 1.006 0.0100 1.13% 1.008 0.0101 8.58% 
3 5.17 0.015 1.095 0.01 1.095 0.0100 0.91% 1.098 0.0098 10.4% 

 

8.5.1 Ridge Extraction and Wavelet Instantaneous Spectra 

The MDOF system identification procedure employed here is schematically represented 

in Figure 8.3. In this case the input to the wavelet framework comes directly from 

impulse response functions, following Track B in the figure. As shown in Figure 8.4a, the 

wavelet instantaneous frequencies identified from the ridges for fo = 3 Hz successfully 

identify the first mode, but have difficulty fully separating the second and third modes, 

clearly indicating that the choice of central frequency did not provide adequate frequency 

resolution. The ridge identification using Equation 4.25 becomes very poor beyond 80 s –  
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a direct consequence of the diminished amount of signal energy at this point and 

demonstration of the influence of end effects. Figure 8.4b reveals that separation was 

possible for fo = 6 Hz, again with some difficulty at the final seconds of the signal. The 

analysis for fo = 8 Hz in Figure 8.4c merely extends the end effect region deeper into the 

signal. With the introduction of the padding scheme introduced in Chapter 4 to the case 

of fo = 6 Hz, the slight end effects at the initiation of the signal are remedied in Figure 

8.4d and diminished at the termination of the signal, although the lack of signal energy in 

this region makes identification of the highest mode difficult.  

In general, the influence of end effects is not observed to significantly influence 

instantaneous frequencies, as discussed in Section 8.4. To demonstrate, the instantaneous 

spectra are provided in Figure 8.5, verifying the concentration of energy at the ridge 

frequencies. Note that Figures 8.5a and 8.5b illustrate the intermittency of modal 

separation evident in the first mode ridge (Figure 8.4a) for the fo = 3 Hz analysis. Further, 

the progressive narrowing of the instantaneous spectral bandwidth within the frames, 
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FIGURE 8.4. Instantaneous frequencies identified from ridges of wavelet transform 
for (a) fo = 3 Hz, (b) fo = 6 Hz, (c) fo = 8 Hz and (d) fo = 6 Hz with padding 
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thereby indicating more complete modal separation, illustrates the refinement of 

frequency resolution as central frequency is increased. 

8.5.2 Wavelet Skeletons and End Effects 

The wavelet skeleton introduced in Chapter 3 can be extracted from the ridges identified 

in Figure 8.3, with the real component being proportional to the signal itself. Figure 8.5a 

reiterates the inability of the fo = 3 Hz analysis to separate the two higher modes. The 

analyses in Figures 8.5b and 8.5c further demonstrate that such modal separation is 

possible with sufficient frequency resolution. It was noted in Section 8.4 that, in general, 

the wavelet skeletons are not capable of accurately capturing the amplitude of the signal 
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FIGURE 8.5. Instantaneous wavelet spectra for 
(a) fo = 3 Hz when two modes are present, (b) fo 
= 3 Hz when three modes are present, (c) fo = 6 
Hz and (d) fo = 8 Hz 
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for the first 3∆ti due to the end effects phenomenon, requiring β = 3 in Equation 4.9. 

These critical regions are marked by the vertical dotted line in each plot. Within this 

region, the initiation of the impulse response function in Figure 8.6 manifests a rounded 

hump, very evident in the second mode in Figures 8.6b and 8.6c. In addition, at the end of 

the signal, a flare in amplitude also occurs in this 3∆ti region, intensifying with time. 

Particularly in the case of fo = 8 Hz, the end effects regions for the first mode can 

consume a significant portion of the signal. It becomes evident that for high-resolution 

analyses, the end effects at low frequencies leave little useable signal for reliable system 

identification. Note that such marked end effects were not apparent in previous work due 

to the smaller central frequencies employed, as a result of the attention toward higher 

frequency phenomenon and the lack of closely spaced modes. However, in the analysis of 

many Civil Engineering structures, such manifestations should be expected. In efforts to 

diminish the presence of end effects, the reflective padding procedure of Chapter 4 is 

employed in Figure 8.6d, revealing the marked improvement in the wavelet 

approximations of the signal, shifting the vertical bars denoting the 3∆ti regions engulfed 

by end effects to t = 0 and t = T = 100 s, essentially preserving the entire signal. 

8.5.3 System Identification via Wavelet Amplitude and Phase 

Figure 8.7 displays the phase and amplitude curves of the wavelet-transformed data for 

each mode, later used to identify frequency and damping for the fo = 6 and 8 Hz analyses, 

which produced meaningful wavelet skeletons. For this system with constant dynamic 

properties, these should be straight lines, though some minor rippling occurs in the 

amplitude envelopes, particularly near the end effects regions. Using the analytic signal  
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FIGURE 8.6. Real component of wavelet skeleton – each panel 
contains skeleton for the ridge associated with modes 1, 2 and 3, 
respsectivley, for (a) fo = 3 Hz, (b) fo = 6 Hz, (c) fo = 8 Hz and (d) 
fo = 6 Hz with padding. Dotted vertical line demarks the 3∆ti
region of end effects 
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FIGURE 8.7. Wavelet phase and amplitude curves for system identification of 
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theory discussed previously, the frequency and damping may be identified via Equations 

3.35 and 3.34, through a piecewise linear fit to the phase and the natural log of the 

wavelet amplitude along the ridges, respectively. While the identification of frequency is 

generally not difficult, damping proves to be a far more elusive parameter to identify. As 

shown in Figure 8.8, the piecewise fits of the amplitude curves in Figure 8.7 produce 

damping estimates that gradually approach the actual damping of 0.01. The initial 

inaccuracies are the result of end effects, producing negative values of damping in 

Figures 8.8a and 8.8c due to the rounding of the skeleton shown in Figures 8.6b and 8.6c. 

As discussed in Section 8.4, without padding, damping values do not stabilize until 5∆ti, 

marked by the third vertical bar in each plot. By introducing the padding operation, 

Figures 8.8b and 8.8d, the signatures do not manifest negative damping and stabilize 

within 3∆ti. As discussed previously, the manifestation of end effects in the wavelet 

amplitudes can be minimized through the reflective padding procedure; however, slight 

inaccuracies in the amplitude remain, on the order of a few percent, for the first 3∆ti. For 

the more sensitive bandwidth measures, the presence of even slight errors in the 

amplitude translates into more significant deviations in parameters like damping. Still, 

the introduction of padding eliminates negative damping estimates and stabilizes the 

damping estimate sooner, though system identification for the purpose of damping 

estimation should not be performed on the first or last 3∆ti of the wavelet skeleton. In 

light of this, the fact that many Civil Engineering structures possess very low levels of 

damping is actually a benefit, as the IRFs will take longer to decay, leaving adequate 

amounts of data for analysis despite neglecting some regions. 
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By constraining the identification of the system to the regions beyond 3∆ti of 

ends, the frequency and damping can be identified on average with considerable 

accuracy, as summarized in Table 8.2 provided previously in Section 8.5. The natural 

frequencies of the system show little fluctuation and are identified with precision and 

manifest little sensitivity to end effects. The damping estimates, in terms of their mean 

and coefficient of variation (CoV), are also quite reliable, though they temporally vary. 

The introduction of padding to the systems, results in a decrease in the CoV, again 

affirming the efficacy of this pre-processing tool. The increase in central frequency does 

not markedly affect the statistics of the damping estimation, though Figure 8.8 

demonstrates that the behavior temporally is more reasonable. Therefore, if estimates of 

frequency and damping are to be obtained for a known linear system, a linear fit to the 

entire curve in Figure 8.7 may be performed to yield estimates similar to the averaged 

quantities in Table 8.2, and a value of α = 2 should be sufficient. However, in the case of 
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FIGURE 8.8. Identification of damping from piecewise fit to amplitude curves 
of MDOF system for (a) fo = 6 Hz, (b) fo = 6 Hz with padding, (c) fo = 8 Hz, 
and (d) fo = 8 Hz with padding. Each panel contains data for modes 1, 2 and 3 
from left to right. Dotted vertical line demarks the 3∆ti, 4∆ti and 5∆ti end 
effects regions 
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nonlinear systems, as explored by Staszewski (1998), a piecewise analysis is necessary to 

capture time-varying dynamic properties. However, note the rippling of damping 

estimates in the fo = 6 Hz analysis (Figures 8.8a and 8.8b). The rippling in this case is 

indicative of incomplete modal separation. While the frequency ridges in Figure 8.4b 

indicated that separation was successful, it is again the more sensitive damping measure 

that verifies that the bandwidths of the two systems are still slightly overlapping. This is 

evident when comparing Figures 8.5c and 8.5d. The increase in fo eliminates this spurious 

behavior (Figures 8.8c and 8.8d), though again at the expense of temporal resolution, 

requiring some compromise between achieving modal separation and minimizing end 

effects. Unfortunately, a choice of too small a fo may produce rippling such as that in 

Figure 8.8a that may be mistaken for nonlinear behavior. Therefore, if the assumption of 

a linear system cannot be safely made, α = 3 may be more appropriate for time-varying 

system identification. Clearly for low frequency Civil Engineering systems this can lead 

to a significant loss of data.  

For comparison, the frequencies corresponding to the scales of the ridges are 

listed in Table 8.2 and are reasonably accurate estimates of the natural frequency. As a 

result, for time-frequency analysis such as that presented in Sections 8.3 and 8.4, 

frequencies can usually be identified solely from the amplitude of the wavelet transform 

for α = 1 or α = 2 if closely spaced modal components are suspected. For further 

comparison, an alternative means for damping estimation is provided by a logarithmic 

decrement approach applied to wavelet skeletons (Hans et al., 2000; Lamarque et al., 

2000). Such an approach, being reliant on the peaks of the amplitude decay, is more 

susceptible to fluctuations, particularly in the higher modes, even when modal separation 
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is achieved. Figure 8.9 demonstrates this for the logarithmic decrement identification of 

damping for fo  = 8 Hz with padding applied. Note the stabilization trend in the damping 

witnessed in Figure 8.8 is again apparent, though with more irregular variations. The 

statistics of the logarithmic decrement identification are also provided in Table 8.2 for 

comparison and reveal that the damping estimates are reasonable in the mean. Without 

padding, the CoV of the logarithmic decrement results is comparable to those obtained 

using the method based on analytic signal theory. However, when padding is applied and 

complete modal separation is assured (fo = 8 Hz, β = 4), the CoV of the logarithmic 

decrement technique is significantly larger than that derived from the analytic signal 

identification approach presented in Figure 8.3, especially for the higher modes. This 

highlights that much of the variance in damping identified by the analytic signal approach 

is merely due to end effects and the lack of modal separation. 
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FIGURE 8.9. Identification of damping via logarithmic decrement of 
wavelet skeleton for fo = 8 Hz with padding; modes 1, 2 and 3 shown 
from left to right 
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8.6 System Identification from Ambient Vibration: MDOF Example 

Before the framework denoted as Track A in Figure 8.3 is introduced for application to 

actual measured data, the efficacy of the approach must be assessed. This assessment is 

conducted utilizing a simulated two-degree-of-freedom (2DOF) system, with frequencies 

of 0.2757 Hz and 0.3559 Hz and critical damping ratios of 0.01. The system is repeatedly 

simulated, progressively increasing the length of simulated data: Case 1 is comprised of 5 

hours of data sampled at 10 Hz, Case 2 extends this to 10 hours and Case 3 to 30 hours. 

Intuitively, one would expect that the decrement signature more closely approximates the 

true impulse response or decay signature of the 2DOF system as the number of averages 

in the decrement increases. This generally holds true from repeated simulations of Cases 

1, 2 and 3. However, it is observed that the agreement between the RDS and the signal 

decay diminishes in the transition zones between pockets of higher amplitude response, a 

consequence of the two modes beating, as shown in Figure 8.10 in the comparison of 

RDS obtained using the strictest RDT with local extrema trigger condition (see Chapter 

2) with the actual impulse response function for the system. As a result, it can take a 

considerable number of averages to produce decrement signatures that more closely 

approximate this IRF, dependent on the random characteristics of the response within that 

simulation. Note in Figure 8.10 that the ability to replicate these low amplitude 

transitional ranges is limited. Though the periodicity is well captured, deviations in the 

amplitudes, even in the high amplitude peaks, are a clear sign of the difficulty in 

obtaining realistic envelope curves via RDT, and thereby accurate estimates of damping. 
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The system identification methodology overviewed as Track A in Figure 8.3 is 

applied to the Random Decrement Signatures, with fo = 2 Hz, β = 4 and OF = 1. In order 

to isolate the errors associated with inaccuracies in the Random Decrement Signature 

from those associated with the modal decoupling and system identification using the 

wavelet approximation to the analytic signal, the frequencies and dampings estimated 

from the RDS using this wavelet technique (Track A) are compared to those estimated 

from the actual system IRFs (Track B) using the same wavelet technique. The results for 

all three cases are chronicled in Table 8.3. 

Table 8.3 demonstrates that the problem is not with the analytic signal 

identification technique or modal separation using wavelets, as all Track B identifications 

Case 1 Case 2 

Case 3 

Time [s] Time [s] 

Time [s] 

FIGURE 8.10. Random decrement signatures (solid) in comparison to actual 
impulse response function (dashed) for 2DOF system 
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using the IRF directly are within a few percent of the actual values. It appears instead to 

be tied to the RDT itself. The use of random decrement technique to obtain the decay 

signatures can have some uncertainty in general, as discussed in Section 2.3, and even 

more pronounced in the case of systems with modes that have close proximity where 

some beating of the envelope function occurs. In some cases the RDT may have 

difficulty in fully removing the random component of the response. For example, in Case 

1, with only limited data, reveals good performance for Mode 1 but not for Mode 2.  

 
TABLE 8.3 

 
 WAVELET FREQUENCY AND DAMPING ESTIMATES FROM RDS (TRACK A) 

AND IRF (TRACK B) 
 

 Track A Track B Track A Track B 
 f1 

[Hz] 
ξ1 f1 

[Hz] 
ξ1 f2 

[Hz] 
ξ2 f2 

[Hz] 
ξ2 

Case 1 0.2764 0.0096 0.2753 0.0097 0.3561 0.0127 0.3559 0.0102 
Case 2 0.2753 0.0088 0.2753 0.0097 0.3558 0.0105 0.3559 0.0102 
Case 3 0.2755 0.0089 0.2757 0.0100 0.3560 0.0086 0.3559 0.0102 

 

Doubling the amount of random data, the estimate of Mode 2 is enhanced but the 

estimate of Mode 1 degrades to some extent. The use of thirty hours of data in Case 3 

produced underestimates of damping that are comparable if not reduced in quality 

compared to the data from Case 2. In fact, Case 2 gives the best overall estimate of 

damping in both modes, the reason for which becomes very clear when looking at how 

well the RDS approximates the IRF in Figure 8.10. The fact that Cases 1 and 3 produced 

less accurate damping estimates is clearly evident from Figure 8.10, demonstrating their 

inability to capture decay amplitudes and transition regions well. Thus it would seem that 
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the presence of more data does not offer clear improvement in the ability to accurately 

estimate damping. Moreover, this trend merely echoes the findings of Section 2.3, where 

the inherent randomness associated with a given simulation was found to influence the 

quality of the RDS and the ensuing damping identification.  

To demonstrate this is again the case for this 2DOF system, Cases 1 and 2 were 

simulated several times and the Track B approach was applied to each time history. The 

results are shown in Figure 8.11. As expected, the variability in frequency estimation is 

limited, however, in terms of the identified damping levels, the variation between 

Fr
eq

ue
nc

y 
[H

z]
 

Fr
eq

ue
nc

y 
[H

z]
 

D
am

pi
ng

 R
at

io
 

D
am

pi
ng

 R
at

io
 

Simulation Number Simulation Number 

FIGURE 8.11. Frequency and damping identification by RDT and wavelet transform 
framework for repeated simulations of (a) Case 1 and (b) Case 2 
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simulations reflects the themes observed in Chapter 2. The level of variability is 

somewhat reduced when more data is considered, but again highlights the influence that 

the randomness of the process has on the performance of RDT. From the simulations of 

Case 2, with the aid of greater lengths of data, the average damping ratio in Mode 1 is 

conservatively estimated as 0.0085 and in Mode 2 as 0.0096. The good performance 

noted in Simulation number 2 for Case 2 (Fig. 8.11b) is the result of an RDT signature 

that closely approximated the actual IRF due to the random components of the response 

being fully cancelled in the averaging. The fact that this is not always achieved further 

emphasizes the need for accompanying measures such as the bootstrap approach in the 

Appendix of this study to evaluate the level of variance in decrement signatures. 

Examples of some of the intermediate steps in this identification procedure are 

shown in Figure 8.12.  Obviously, the breakdowns of the RDS due to increasing variance 

in the signature limits the amount of useable data. The progressive difficulty in ridge and 

skeleton extraction is evident in Figure 8.12a. Figure 8.12 demonstrates that the phase 

relations are about equal in the identification by both tracks and the damping in the first 

mode shows similar features. However, it is the higher mode damping that presents more 

obvious challenges, as the degree of rippling is far more pronounced in Track A again 

due to limitations in the RDT in recreating the proper IRF.  

These examples and others within this chapter emphasize the interplay between 

the various parameters in the wavelet framework in Chapter 4 and the competing interests 

of the decrement signatures discussed in Chapter 2, particularly with respect to the end 

effects phenomenon, which, as shown in the beginning of this chapter, still has residual 



394 

effects on damping estimation, even when reflective padding is utilized. As a result, the 

identification from both the IRF and RDS within this section is performed only on the 

useable signal components, lying beyond 3∆ti of the padded signal. Within this region, 

the IRF is understandably the more consistent performer. However, to the benefit of 

applications to ambient vibrations, the prevalence of the first mode in the response 

usually permits lower values of central frequency than those required for systems such as 

those in Section 8.5, in which the responses are characterized by two closely spaced 

modes comparably participating to the response. As will be shown in the subsequent 

example, the dominant first mode response under wind does not typically result in 

φ(
t) φ(

t) 

ln
 [A

(t)
] 

ln
 [A

(t)
] 

Mode 1 

Mode 1 

Mode 2

Mode 2

Time [s] Time [s] 

φ(
t) 

ln
 [A

(t)
] 

φ(
t)  

ln
 [A

(t)
] 

Mode 1

Mode 1

Mode 2

Mode 2

Time [s] Time [s] 

Sk
el

. 1
 

Sk
el

. 1
 

Sk
el

. 2
 

Sk
el

. 2
 

(a) Track A (b) Track B 

FIGURE 8.12. Wavelet-based system identification from (a) Random Decrement 
Signatures and (b) Impulse Response Functions 
 



395 

significant excitation of higher modes and thus this technique can be quite attractive for 

application, as the higher modes and noise make minor contributions and need only to be 

low pass filtered from the response, allowing lower central frequency values and thereby 

reduced end effects regions. 

8.7  System Identification from Ambient Vibration Data: Full-Scale 

Example 

Obtaining the IRF or free vibration curve can be difficult if not impossible for many Civil 

Engineering structures, as controlled testing can be costly in terms of equipment or 

disruptive to the daily function of the building. As a result, there is interest in developing 

approaches to permit the extraction of decay curves from ambient vibration data — an 

oftentimes challenging proposition. The Random Decrement Technique has evolved as a 

popular analysis tool, as discussed in greater detail in Chapter 2. Though Ruzzene et al. 

(1997) employed this technique to analyze full-scale bridge data, some added concerns 

surface when the wavelet system identification approach discussed here is merged with 

the RDT for low frequency systems. Chapter 2 has shown that the variance of RDS 

signatures increases with each cycle of oscillation as one moves further from the trigger 

condition, indicating that system identification should be restricted to the first few cycles 

of the RDS. A variance envelope on the decrement signature, developed in Chapter 2 and 

the Appendix of this study, illustrates, via Figure 8.13, the limited number of cycles over 

which identification can be reasonably made. The degradation of decrement signatures is 

problematic for low-frequency Civil Engineering structures, when wavelets are employed 

in the framework of Figure 8.13 in Track A, since the end-effect region described in 
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Equation 4.9 lengthens. While padding does repair the amplitudes considerably, reliable 

damping identification should only proceed outside of the 3∆ti end effects region, though 

frequency identification and signal amplitude reconstruction remains viable throughout. 

The amount of data lost can be offset to some extent by decreasing the analyzing 

frequency fo of the Morlet wavelet, albeit compromising the ability to distinguish closely 

spaced modes. This permits the identification of damping from more reliable portions of 

the RDS. As motivated above, this compromise can be justified for dominant first mode 

responses under wind. 

To illustrate, the RDT is applied to 1.5 hours of measured full-scale acceleration 

data, sampled at 20 Hz, a portion of which is shown in Figure 8.14. The data was 

measured along the y-axis of a tower in Japan during a typhoon (Tamura et al., 1993). 

Note that during simple free vibration tests, the tower was found to have a fundamental 

sway period of 1.6 seconds in both directions, with a critical damping ratio of 0.015. The 
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FIGURE 8.13. Example of Random 
Decrement Signature (gray) and variance 
envelope 
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application of RDT in the strict peak trigger condition yielding 225 averaged segments, 

yields the signature shown in Figure 8.15a. Note the signature lacks the smooth 

characteristic one would anticipate from a decay of a SDOF damped oscillator, indicating 

the presence of higher modes or other noise in the RDS, which would normally have to 

be separated through some bandpass filtering. However there is no characteristic beating 

in the RDS, observed previously in the presence of closely spaced modes in Section 8.6, 

allowing the relaxation of the wavelet resolutions. Therefore, a very relaxed resolution 

wavelet (fo=0.5 Hz) may be applied. The low value of central frequency then allows the 

maximization of the amount of usable transformed signal in light of the competing 

restrictions of variance in the Random Decrement Signature and the end effects of the 

wavelet transform, minimized to some extent with the padding operation. The real 

component of the wavelet coefficients, given in Figure 8.15b, identifies a single mode 

contributing to the response, as typically observed under wind excitation, and the 

decaying oscillatory character of the decrement signature. The breadth of the scalogram 

in the frequency domain reiterates the loss in frequency resolution, which resulted from 

the choice of a Morlet wavelet with superior time resolution. The skeleton extracted from  
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FIGURE 8.14. Ten-minute segment of the acceleration 
response (y-dir) of tower in typhoon 
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the ridge of the wavelet is shown in Figure 8.15c and is clean and smooth, as the wavelet 

transform has separated the higher frequency noise in the RDS in Figure 8.15a. The RDS 

embodied by the skeleton appears to be relatively stable up to about 10 seconds, after 

which it degrades in quality as a result of the increasing variance shown in Figure 8.13. 

As a result, the system identification should be performed at most on the first 10 seconds 

of the RDS. Figure 8.15d shows a comparison between the signature in the first 10 
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FIGURE 8.15. (a) Random decrement signature, (b) real component of wavelet-
transformed Random Decrement Signature in 3D; (c) real-valued skeleton; (d) zoom 
of real-valued skeleton (solid) with theoretical skeleton (dotted) for fn = 0.625 Hz and 
ξ = 0.015 
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seconds and the anticipated signature, based on the structure’s known frequency and 

damping. Inconsistencies in amplitude and phase between the two propagate with time, as 

a result of RDS variance, and suggest that system identification should be performed 

within the first 3-4 seconds of the RDS. Though the comparison in Figure 8.15d is not 

available during the typical system identification process, the variance envelopes shown 

in Figure 8.13 allow the user to make a similar conclusion that the RDS quality is suspect 

beyond 4 seconds. 

As discussed previously, due to minor end effects remaining in spite of padding, 

identification of damping should proceed beyond 3∆t1 of the initiation of the wavelet-

transformed Random Decrement Signature. Thus the useable portion of the RDS may be 

first defined as, tuse = 1.66 to 10 seconds. The end effects region was minimized as a 

result of compromising frequency resolution, which will not significantly affect the 

results for this system since no closely spaced modes are present. Identification of 

frequency and damping by the procedure based on analytic signal theory produced 

estimates of frequency and damping shown in Figures 8.16a and 8.16c. Note that beyond 

10 seconds, the quality of estimates rapidly degrades, due to the variance of the RDS. 

Zooming in on the first 10 s in Figures 8.16b and 8.16d reaffirms two previous 

observations: the identified frequency suffers very little as the result of end effects, and 

even with the padding operation, damping estimates are less reliable in the first 3∆t1 

(marked by the dashed line in Figure 8.16d) though gradually approaching more stable 

levels. As summarized in Table 8.4, piecewise fits of the amplitude and phase of the RDS 

over only tuse produced mean frequency and damping estimates consistent with that 

observed from free vibration testing, though with considerable variance in the damping 
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estimate. Note that the tracking of nonlinear frequency and damping characteristics via 

the Random Decrement Technique, discussed by Tamura & Suganuma (1996), can be 

accomplished by varying the trigger condition on captured segments. The resulting 

decrement signature will manifest, in its first few reliable cycles, the frequency and 

damping referenced to the amplitude level defined by the trigger. Therefore, the RDS 

associated with a given trigger level can be assumed linear and any nonlinearity will be 

evident as the trigger level is changed and other RDS are analyzed.  

In such cases where the RDS is known to represent a linear system, it is more 

reasonable to conduct a best fit of the entire length of tuse as shown in Figures 8.16e and 

8.16f. Note that there is still a slight deviation in the log of the amplitude, producing a 

slightly smaller damping estimate than the piecewise mean. However, re-inspection of 
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FIGURE 8.16. (a) Frequency and (c) damping identified from wavelet skeleton, 
zoom of (b) frequency and (d) damping estimates, (e) wavelet phase along ridge, 
(f) wavelet amplitude along ridge 
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Figure 8.15d reveals that significant deviations in phase and amplitude in the decrement 

signature are evident beyond the 4th second, a fact affirmed by Figure 8.16. Therefore, 

restricting the identification to tuse = 1.657 - 4 s, is more reasonable. The resulting 

estimates of damping (0.0151) and frequency (0.645 Hz), are both within a few percent 

of the values observed in free vibration test. These results are also consistent with the 

findings of Tamura et al. (1993) from data collected during the passage of several 

typhoons. The results in Table 8.4 and Figure 8.16 highlight the importance of 

identification in the early stages of Random Decrement Signatures. It is interesting to 

note that Ruzzene et al. (1997) found some discrepancy between the identified damping 

values and those observed previously by other techniques, possibly due to estimation of 

damping from the later, less-reliable cycles of the RDS. Such characteristics of the RDT 

make it vital that the end effects issues in wavelet transformed Random Decrement 

Signatures are recognized and accounted for to insure reliable system identification. 

 
 

TABLE 8.4 
 

WAVELET-BASED IDENTIFICATION FROM FULL-SCALE AMBIENTLY-
EXCITED DATA 

 
Measured in Free 

Vibration Test 
Identified Piecewise over tuse Identified from 

tuse = 3∆t1 - 10 s 
Identified from  
tuse = 3∆t1 - 4 s 

fn 
[Hz] 

ξ fn  
[Hz] 

avg[ξ] CoV[ξ] fn 
[Hz] 

ξ fn  
[Hz] 

ξ 

0.625 0.0150 0.650 0.0141 18.43% 0.651 0.0136 0.645 0.0151 
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8.8 Conclusions 

The last several chapters have demonstrated the utility of wavelet transforms in analyzing 

a variety of signals in Civil Engineering, for not only time-frequency analysis but also for 

system identification. This popularity stems in part from its multi-resolution capabilities 

and the potential for direct relations to the Fourier transforms. This chapter focused on 

some of the processing concerns which surface in Civil Engineering applications and 

introduced a system identification framework applicable to measured free vibrations or 

ambient vibration data.  

The discussions and examples in this chapter emphasized that application of the 

Morlet wavelet requires judicious selection of central frequency in light of the resulting 

time and frequency resolutions, a fact that becomes significant for Civil Engineering 

structures, whose dynamics are often more narrowbanded than traditional mechanical 

systems. For such systems, the presence of end effects can compromise the accuracy of 

wavelet skeletons and have even more marked effects on bandwidth measures. While the 

padding operation is demonstrated to improve the scalogram amplitudes thereby 

eliminating the appearance of negative damping, and more quickly stabilizing the 

behavior of damping estimates, reducing their coefficient of variation. However, the 

sensitivity of the damping measure still results in some inaccuracy within 3∆ti of the 

ends, defining the acceptable analysis regimes of the transformed signal. Though an 

improvement over the results without padding, to minimize this effect, the central 

frequency should be kept to the smallest value possible without compromising the ability 

to separate closely spaced modes, an important consideration when the Random 
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Decrement Technique is applied for analysis of ambient vibration data. However, it was 

observed the when adequate modal separation was achieved and padding was applied, the 

coefficient of variation in the analytic signal approach is quite low, highlighting that 

much of the variance in damping estimates may be attributed to end effects and modal 

overlap and not the identification technique itself. In total, the discussions in Chapter 2 

and this chapter highlight the challenges facing Civil Engineers in the identification of 

damping from ambient vibration. The next chapters now discuss the manner in which 

such ambient vibration data can be obtained. 
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