TABLE OF CONTENTS

LIST OF TABLES..vi

LIST OF FIGURES...viii

ACKNOWLEDGEMENTS...xiv

CHAPTER 1: INTRODUCTION...1
 1.1 Introduction..1
 1.2 Literature Review...4
 1.3 Applications...7
 1.3.1 Ship/Offshore applications...
 1.3.2 Structural Applications..11
 1.4 Motivation of Present Work..16
 1.5 Organization of Dissertation..18

CHAPTER 2: MODELING OF SLOSHING..20
 2.1 Introduction...20
 2.1.1 Numerical Modeling of TLDs...
 2.1.2 Mechanical Modeling of TLDs..
 2.2 Sloshing-Slamming (S2) Damper Analogy..24
 2.2.1 Liquid Sloshing...
 2.2.2 Liquid Slamming...25
 2.2.3 Proposed Sloshing-Slamming (S2) Analogy..26
 2.2.4 Numerical Study...31
 2.2.5 Base Shear Force...33
 2.3 Impact Characteristics model...34
 2.4 Equivalent Linear Models...37
 2.4.1 Harmonic Linearization..37
 2.4.2 Statistical Linearization..38

ii
2.5 Concluding Remarks..40

CHAPTER 3: TUNED LIQUID COLUMN DAMPERS...41
3.1 Introduction...41
3.2 Modeling of Tuned Liquid Column Dampers...43
 3.2.1 Equivalent Linearization:...44
 3.2.2 Accuracy of Equivalent linearization...45
3.3 Optimum Absorber Parameters...47
 3.3.1 White Noise excitation...50
 3.3.2 First Order Filter (FOF)..53
 3.3.3 Second Order Filter (SOF)..55
 3.3.4 Example...56
3.4 Multiple Tuned Liquid Column Dampers (MTLCDs) ..57
 3.4.1 Effect of Number of dampers..59
 3.4.2 Effect of damping ratio of dampers...59
 3.4.3 Effect of Frequency range..60
3.5 Concluding Remarks..63

CHAPTER 4: BEAT PHENOMENON...65
4.1 Introduction...65
4.2 Behavior of SDOF system with TLCD...68
 4.2.1 Case 1: Undamped Combined System..68
 4.2.2 Case 2: Linearly Damped Structure with Undamped Secondary System...71
 4.2.3 Case 3: Damped Primary and Secondary System..74
4.3 Experimental Verification...79
4.4 Concluding Remarks...80

CHAPTER 5: SEMI-ACTIVE SYSTEMS AND APPLICATIONS.................................81
5.1 Introduction...81
5.2 Gain-scheduled Control...82
 5.2.1 Determination of Optimum Headloss Coefficient...83
5.3 Applications...86
 5.3.1 Example 1: SDOF-TLCD system under random white noise.........................86
 5.3.2 Example 2: Application to Offshore Structure..88
5.4 Clipped-Optimal System...92
 5.4.1 Control Strategies...95
8.3.1 Decision analysis framework ... 159
8.3.2 Reliability Analysis ... 162
8.3.3 Cost and Utility Analysis .. 165
8.3.4 Risk-based Decision Analysis ... 166
8.4 Design of Dampers .. 167
8.4.1 Design Guidelines .. 167
8.4.2 Control Strategy ... 169
8.4.3 Design Procedure .. 170
8.4.4 Technology ... 174
8.5 Concluding Remarks .. 176

CHAPTER 9: CONCLUSIONS ... 177

APPENDIX .. 181

REFERENCES .. 184
LIST OF TABLES

TABLE 2.1 Parameters of the model ...32
TABLE 3.1 Example forcing functions ...49
TABLE 3.2 Comparison of optimal parameters for TMD and TLCD52
TABLE 3.3 Optimum parameters for white noise excitation for different mass ratios 53
TABLE 3.4 Optimum absorber parameters for FOF for different parameter ν_1 54
TABLE 3.5 Optimum absorber parameters for FOF for various mass ratios54
TABLE 3.6 Optimum absorber parameters for SOF for different values of b_1 57
TABLE 3.7 Optimum absorber parameters for SOF for various mass ratios57
TABLE 3.8 Optimum absorber parameters ...58
TABLE 3.9 Optimum parameters for MTLCD configurations62
TABLE 5.1 Comparison of different control strategies: Example 188
TABLE 5.2 Numerical parameters used: Example 2 ...89
TABLE 5.3 Comparison of various control strategies: Example 3101
TABLE 5.4 Comparison of various control strategies: Example 4106
TABLE 6.1 Time lag and impact influence factor for different sensor locations122
TABLE 7.1 Performance of semi-active system as compared to uncontrolled and passive system ...146
TABLE 8.1	Component comparison of different DVAs	156
TABLE 8.2	Comparison of different systems for varying wind conditions	159
TABLE 8.3	Random Variables used in Reliability analysis	164
TABLE 8.4	Probability of Failure under different wind speeds	164
TABLE 8.5	Costs and Normalized Utility Analysis	165
TABLE 8.6	Utility analysis based on the decision analysis	166
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>(a) Frahm anti-rolling tank (b) nutation dampers in satellite applications</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>(a) Bi-directional TLCD (b) V-shaped TLCD</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Types of passive/ controllable-passive tanks for ships</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>(a) Free surface damping tanks (b) Semi-active control for structure with open bottom tanks</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>Aqua dampers (Courtesy: MCC Aqua damper literature)</td>
<td>11</td>
</tr>
<tr>
<td>1.6</td>
<td>(a) Schematic of TLDs installed in SYPH (b) Actual installation in the building (taken from Tamura et al. 1995)</td>
<td>12</td>
</tr>
<tr>
<td>1.7</td>
<td>(a) Liquid damper with pressure adjustment concept (b) photograph of Hotel Cosima, Tokyo</td>
<td>13</td>
</tr>
<tr>
<td>1.8</td>
<td>Millennium tower: passive and active TLCD concept</td>
<td>14</td>
</tr>
<tr>
<td>1.9</td>
<td>(a) Shanghai Financial Trade Center (b) 7 South Dearborn Project</td>
<td>15</td>
</tr>
<tr>
<td>1.10</td>
<td>TLDs installed in chimneys</td>
<td>16</td>
</tr>
<tr>
<td>2.1</td>
<td>(a) Equivalent mechanical model of sloshing liquid in a tank (b) Impact damper model</td>
<td>26</td>
</tr>
<tr>
<td>2.2</td>
<td>Variation of (a) jump frequency and (b) damping ratio of the TLD with the base amplitude (taken from Yu et. al 1999)</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Frames from the sloshing experiments video at high amplitudes: a part of water moves as a lumped mass and impacts the container wall. (Video Courtesy: Dr. D.A. Reed)</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic diagram of the proposed sloshing-slamming (S^2) analogy</td>
<td>29</td>
</tr>
</tbody>
</table>
Figure 2.5 Comparison of experimental results with S2 simulation results: (a), (b): experimental results; (c), (d): simulation results for $\Omega = 1.0$ and 0.9......32

Figure 2.6 (a) schematic of the jump phenomenon (b) Variation of the non-dimensionalized base shear force with the frequency ratio. (experimental results taken from Fujino et al. 1992)..33

Figure 2.7 Non dimensional interaction force curves for different η36

Figure 3.1 Schematic of the Structure-TLCD system ...43

Figure 3.2 Exact (Non-linear) and Equivalent Linearization results............................46

Figure 3.3 Time histories for $\zeta = 75$...46

Figure 3.4 Variation of dynamic magnification factor with the head-loss coefficient and frequency ratio for a TLCD...47

Figure 3.5 Comparison of optimum absorber parameters for a TLCD with varying α and a TMD..51

Figure 3.6 Transfer function of the filters and the primary system: (a) first order filters (b) second order filters...55

Figure 3.7 MTLCD configuration ..58

Figure 3.8 Effect of number of dampers on the frequency response of SDOF-MTLCD system...61

Figure 3.9 Effect of damping ratio of the dampers on the frequency response of SDOF-MTLCD system..61

Figure 3.10 Effect of frequency range on the frequency response of SDOF-MTLCD system..62

Figure 4.1 Different coupled system (a) Vibration absorber (b) Coupled penduli system (c) Electrical system (d) Fluid coupling within two cylinders.......66

Figure 4.2 Uncontrolled and Controlled response of a structure combined with (a) TLD (b) TLCD..67

Figure 4.3 Different combined systems ..68
Figure 4.4 Phase plane portraits of the undamped coupled system

Figure 4.5 Time histories of primary system displacement for $\alpha=0$ and $\alpha=0.6$

Figure 4.6 Variation of ω_A and ω_B and as a function of α

Figure 4.7 Time histories of response for $\zeta_1=0.005$ and $\zeta_1=0.05$

Figure 4.8 Anatomy of the damped response signature

Figure 4.9 Time histories of response for $\xi=0.2,2$ and 50

Figure 4.10 Modal frequencies and modal damping ratios of combined system as a function of the damping ratio of the TLCD

Figure 4.11 Phase-plane 3D plots (a) uncoupled system (b) case 1: undamped system (c) case 2: system with damping in primary system only (d) case 3: system with damping in both primary and secondary systems

Figure 4.12 Experimental setup for combined structure-TLCD system on a shaking table

Figure 4.13 Experimental free vibration response with different orifice openings ($\theta=0$ fully open)

Figure 5.1 Gain scheduling concept

Figure 5.2 Flowchart of the two algorithms (a) iterative method (b) direct method

Figure 5.3 Iterative method (a) convergence of response quantities (b) optimum headloss coefficient

Figure 5.4 Variation of optimum headloss coefficient with loading intensity: white noise excitation

Figure 5.5 Example 1: SDOF system under random excitation

Figure 5.6 (a) Single degree of freedom idealization of the offshore structure (b) Concept of Liquid Dampers in TLPs

Figure 5.7 Optimal Absorber parameters as a function of loading conditions
Figure 5.8 (a) Variation of Optimal headloss coefficient with loading conditions for different wave spectra (b) Spectra of structural acceleration at $U_{10}=20$ m/s for different ξ...

Figure 5.9 Semi-active TLCD-Structure combined system.

Figure 5.10 Schematic of the control system.

Figure 5.11 Schematic of 5DOF building with semi-active TLCD on top story.

Figure 5.12 Wind loads acting on each lumped mass.

Figure 5.13 Displacements and Acceleration of Top Level under various control strategies.

Figure 5.14 Variation of performance indices with maximum headloss coefficient.

Figure 5.15 Displacement of Top Floor under various control strategies.

Figure 5.16 Variation of headloss coefficient with time.

Figure 5.17 Variation of RMS displacements, RMS accelerations, maximum story shear and maximum inter-story displacements.

Figure 6.1 (a) Schematic of the experimental setup (b) pressure sensor locations.

Figure 6.2 Sample time-histories of the shear force at $A_e = 0.3$ cm and 2.0 cm.

Figure 6.3 Nonlinear Optimization Scheme.

Figure 6.4 Curvefitting the parameters of the impact characteristics model.

Figure 6.5 (a) Experimental plots of non-dimensional sloshing force as a function of excitation frequency for different amplitudes (b) Simulated curves after optimization.

Figure 6.6 Response of the structure for different amplitudes.

Figure 6.7 Pressure time histories for various frequency ratios ($A_e = 1.0$ cm).

Figure 6.8 Probability distribution function of the peak impact pressures.
Figure 6.9 (a) Anatomy of a single pressure pulse (b) wavelet scalogram of the pressure signal...121

Figure 6.10 (a) Pressure pulses at different locations on the wall (b) Wavelet coscalograms with sensor 2 as reference..124

Figure 6.11 Typical sloshing wave with pressure pulse and wave mechanism schematic for (a) shallow water ($h/a =0.12$) and (b) deep water ($h/a = 0.25$) case..125

Figure 6.12 Variation of the peak pressure coefficient with height of the tank wall...126

Figure 6.13 Hardware-in-the-loop concept for structure-liquid damper systems128

Figure 6.14 Schematic of the experimental setup for the HIL simulation129

Figure 6.15 Hardware-in-the-loop simulation for random loading case.................130

Figure 7.1 (a) Photograph of the Electro-pneumatic actuator (b) Schematic diagram of the experimental set-up..134

Figure 7.2 (a) Transfer functions for different tuning ratios (b) Variation of H_2 norm with tuning ratio...137

Figure 7.3 Transfer functions for different valve angle openings138

Figure 7.4 Variation of transfer functions for different amplitudes of excitation.....139

Figure 7.5 (a) Optimization of H_2 norm (b) look-up table for semi-active control...140

Figure 7.6 (a) Comparison of transfer functions: (a) $\theta =40$ deg, $\zeta_f = 9 \%$ (optimal damping) (b) $\theta = 60$ deg, $\zeta_f = 30\%$ (non-optimal damping)......................141

Figure 7.7 3-D plot of transfer function as a function of effective damping and frequency (a) experimental results (b) simulation results.................................142

Figure 7.8 Excitation time histories, valve angle variations and the resulting accelerations for uncontrolled, passive and semi-active systems for time-history 1...144

Figure 7.9 Excitation time histories, valve angle variations and the resulting accelerations for uncontrolled, passive and semi-active systems for time-history 2...145
Figure 8.1 Implementation ideas for tuned liquid dampers (a) bridge towers (b) tall
buildings..149

Figure 8.2 TMD system installed in the Citicorp Building, New York City (taken
from Wiesner, 1979)..151

Figure 8.3 (a) Single-stage (b) multi-stage Pendulum-type TMDs (c) TMDs with
laminated rubber bearings (taken from Yamazaki et al. 1992).................................152

Figure 8.4 Equipment schematic for a building-mounted TLCD ..155

Figure 8.5 Variation of RMS accelerations of the top floor with increasing wind
velocity..159

Figure 8.6 Elements of Decision analysis ..160

Figure 8.7 Decision Tree for Building Serviceability ..166

Figure 8.8 Semi-active control strategy in tall buildings...170

Figure 8.9 (a) Equivalent white noise concept (b) Variation of equivalent white noise
with wind velocity..172

Figure 8.10 Electro-pneumatic valve (courtesy Hayward Controls).................................174

Figure A.1 (a) Variation of Valve Conductance (b) Variation of headloss coefficient
with the angle of valve opening...183
ACKNOWLEDGEMENTS

I would like to first thank my advisor and guru, Prof. Ahsan Kareem, who provided encouragement, support and friendship throughout the length of my stay at Notre Dame. The confidence he placed in me has been instrumental in my professional development. I would also like to thank my committee members, particularly Prof. Bill Spencer and Prof. Jeff Kantor, who guided me through many concepts in dynamics and control. I would also like to thank Prof. Yahya Kurama and Prof. Steven Skaar for their valuable guidance and constructive comments. I would also like to thank the staff in the Department of Civil Engineering and Geological Sciences, particularly Tammy, Molly and Chris. Our laboratory technician, Brent Bach, helped me in most stages of the experiments.

Next, I would like to thank my family, both in India and the U.S., who have constantly supported me during my years in graduate school. Thank you Amma, Daddy, Kumar, Chinni and others. I don’t know what I would have done without my friends: Cass, Vicky, Adrish and all the other long lasting friendships I made at Notre Dame. Finally, many thanks to the wonderful campus of the University of Notre Dame whose lakes, Grotto and Fischer graduate apartments provided a home away from home and a wonderful place to grow and learn.