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Abstract

A fundamental tenet assumed by many classification al-
gorithms is the presumption that both training and testing
samples are drawn from the same distribution of data – this
is the stationary distribution assumption. This entails that
the past is strongly indicative of the future. However, in
real world applications, many factors may alter the One
True Model responsible for generating the data distribu-
tion both significantly and subtly. In circumstances violat-
ing the stationary distribution assumption, traditional vali-
dation schemes such as ten-folds and hold-out become poor
performance predictors and classifier rankers. Thus, it be-
comes critical to discover the fracture points in classifier
performance by discovering the divergence between popu-
lations. In this paper, we implement a comprehensive eval-
uation framework to identify bias, enabling selection of a
”correct” classifier given the sample bias. To thoroughly
evaluate the performance of classifiers within biased distri-
butions, we consider the following three scenarios: missing
completely at random (akin to stationary); missing at ran-
dom; and missing not at random. The latter reflects the
canonical sample selection bias problem.

1 Introduction

Consider the fundamental task of data mining: given a
training sample of data, formulate a model which optimizes
some measurement criteria, typically accuracy. This model
is then applied to an as yet unseen set of testing examples.
Depending on the nature of the data, a practitioner might
select a model generated through decision trees algorithms,
Bayesian methods, calculating nearest neighbors, or sup-
port vector machines. Typically an empirical validation ap-
proach is used such as ten-fold cross-validation or leave-one
out validation on the training set. Structural risk minimiza-
tion might be used if the Vapnik-Chervonenkis dimension
of the model space is known [19].

Assuming that the expression for the One True Model for
data is within the set of Turing machines, then it is possible

to express a well-calibrated classifier: the proper class oc-
currence rate is mapped correctly for each unseen example.
[3] further suggests that any reasonable performance metric
should be optimized by this one true model and no other
model should yield better performance.

Unfortunately, this task makes several fundamental as-
sumptions, namely the “stationary distribution assumption”
[21] in the machine learning literature and “non-biased dis-
tribution assumption” [24] in the data mining community.

Definition 1 The Stationary or Non-Biased Distribution
Assumption [21] states that for each and every training set
instance and test set instance is identically and indepen-
dently drawn from the common distribution Q(x, y).

Previous work [4, 5, 6, 24] has already introduced in-
stances violating this assumption through injection bias in
data. In this case, even the One True Model may become
irrelevant when applied to future instances should the data
distribution change substantially and unpredictably. How-
ever, we have identified two issues within the context of
this problem. First, can we identify changes in performance
attributable to bias? Second, can we detect the presence
and degree of bias between two distributions of data?

Generally, we try to determine generalization error based
on a training set for a set of classifiers in order to determine
which will generally perform best. However, both theoret-
ical and empirical methods can be limited in the presence
of such distributional divergences. The structural risk mini-
mization bound established as a function of the VC dimen-
sion makes the critical stationary distribution assumption.
Thus, implying that the bounds may not hold in the sce-
narios containing distribution drifts [21, 5]. The empirical
methods comprising of ten-fold cross-validation, bootstrap,
leave-one out, etc. generate empirical measures on the gen-
eralization performance of a classifier. It is obvious that
these measures are limited as they are generated from the
validation set, which is derived from a similar distribution
as the training set. These measures, by no means, reflect the
effective generalization in the presence of changes in testing
set distributions. This presents the challenge of establishing
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Figure 1. The proposed Bias Identification
and Response Framework

a landscape of classifiers’ performance across different data
assumption.

Thus, our paper focuses on the following critical com-
ponents relevant to an application of knowledge discovery
and data mining process: a) detection of deviation in the
predictive estimates over the testing set as compared to the
validation set; b) identification of causes for such a drift in
distribution that is what feature(s) are responsible for the
testing population to change. We believe these issues are
pervasive in the real-world deployment and evaluation of
data mining solutions.

Contribution This paper outlines a statistical framework,
as depicted in Figure 1, to identify the fracture in predic-
tive distributions and biases in feature space. We consider
changes in data distribution by injecting scenarios of sam-
ple selection bias. We approach the problem in two stages.
In stage one, we detect whether there is a statistically sig-
nificant shift in the predictive distributions. We propose to
use the Kruskal-Wallis test [7] to isolate bias through the
distribution of probabilities generated by a learning algo-
rithm. Note that the tests are unsupervised as we will not be
aware of the actual testing set classes. Thus, we compare the
posterior probability distributions between the validation set
and testing set. If this test indicates that there is indeed a
shift in the predictive distribution, a practitioner may then
use a series of unsupervised statistical measures based on
the Kolmogorov-Smirnov Test [11, 20] and Hellinger Dis-
tance [2] to indicate the presence or absence of bias in the

feature space. With this information, a practitioner becomes
aware of bias in data and is equipped to make informed clas-
sifier choices or take additional bias correcting steps. We
use four different classifiers and nine different datasets to
assess the utility of this framework. Thus, the key questions
that we address in the paper are: a) How to detect fracture in
the predictive distributions on the testing set? and b) How
to detect the feature(s) responsible for the introduction of
bias in the testing set?

We would also like to point out that this framework can
be used to construct a sensitivity index for different classi-
fiers during training. That is, one can simulate different bi-
ases during validation and observe the variation in the per-
formance of classifiers over the biases. Accordingly, the
most generalizable classifier can be chosen, as demanded
by an application or domain.

The remainder of this paper is divided as follows: Sec-
tion 2 defines bias and our treatment of the same in this
paper. Section 3 describes the datasets and classifiers used
in the paper. Section 4 presents a case study on performance
of classifiers in the presence of bias. Section 5 then identi-
fies how bias may be detected between data samples; it also
provides a thorough description of the statistical methods
used in our work. Section 6 draws conclusions to the work
presented in this paper.

2 Bias in Data

Sample selection bias [4, 5, 9, 24] provides our primary
vehicle for establishing a violation of the stationary dis-
tribution assumption. Suppose that we consider examples
(x, y, s) drawn independently from a distribution D where
the domain is X × Y × S, with X being the feature space,
Y is the class label space, and S is a binary space for which
the variable s indicates the example is in the training when
s = 1 and is not in the training set when s = 0. Operating
in this environment, the following cases emerge regarding
the dependency of s on (x, y) [9, 15].

Definition 2 The missing completely at random (MCAR)
sample selection bias occurs when s is independent of both
x and y. We thus state that P (s = 1|x, y) = P (s = 1),
thus the sample bias depends on a factor totally indepen-
dent from the feature vector x and class label y. This im-
plies that the training and testing sets are derived from the
same distribution. The stationary distribution assumption
theoretically holds under MCAR, but we include it in our
paper for completeness.

Definition 3 Sampling bias is missing at random (MAR)
if s depends on x but conditional on x is independent of y,
thus, we may state P (s = 1|x, y) = P (s = 1|x). There-
fore, sampling is feature dependent as the sampling proba-
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Dataset Examples Features
Compustat (7,400, 2,958, 3,299) 20

E-State (2,662, 1,064, 1,596) 12
Mammography (5,593, 2,236, 3,354) 6

Oil (470, 188, 279) 49
Page (2,738, 1,094, 1,641) 10

Pendigits (5,497, 2,198, 3,297) 16
Phoneme (2,702, 1,081, 1,621) 5
Satimage (3,218, 1,287, 1,930) 36
Segment (1,155, 462, 693) 19

Table 1. Datasets used in this study. Column
Examples indicates the number of examples
given as (training, validation, testing)

bility varies according to the feature vector x, but is inde-
pendent to the class label y. This situation can occur if the
testing set is thresholded on one or more known features.

Definition 4 Missing not at random (MNAR) bias occurs
when there is no independence assumption between x, y,
and s. This scenario essentially introduces the sample se-
lection bias, as the cause of distributional shifts may be un-
known. That is, one may not have access to the feature
leading to the censoring in the dataset. We may state the
tautology of P (s = 1|x, y) �= P (s = 1|x). Thus, at any
particular feature x, the distribution of observed y in the
training set is different from the observed y in the testing
set – P (y = 1|x, s = 1) �= P (y = 1|x, s = 0).

We establish the biases as follows. MCAR is used to re-
move 25% and 50% of the testing set; the examples are re-
moved uniformly at random. We also use MAR and MNAR
by removing the top 25% and 50% of values along one fea-
ture. We first sort the dataset based on one particular fea-
ture and then remove the top 25% or the top 50% of ex-
amples conditioned on that particular feature. In the case
of MNAR, the remaining examples have the selected fea-
ture masked as “Unknown”. This incorporates a significant
bias, as a substantial portion of the distribution is removed.
By masking the feature as unknown or missing, we are able
to inject the “latent” MNAR bias. We generate separate
MAR and MNAR biased testing distributions for each fea-
ture within the dataset and the reported results within this
paper are aggregates to indicate the “average case” for bias
introduction. For fairness, an equivalent number of MCAR
samples were generated; thus, MCAR results are similarly
aggregated.

3 Datasets and Classifiers

This paper uses several common UCI [16] and real-
world datasets, summarized in Table 1. These datasets vary
extensively in both size and distribution, offering many dif-
ferent domains. Page, Pendigits, Phoneme, Satimage, and
Segment come from the UCI Machine Learning repository
[16]. The Oil dataset contains a set of oil slick images based
on live data [12]. Compustat represents real world finance
data and may contain natural bias as the training and test-
ing samples come from different two-year periods, while
Mammography comes from studying calcifications in the
medical domain [22]. E-State consists of electrotopological
state descriptors for a series of compounds from the Na-
tional Cancer Institute’s Yeast AntiCancer drug screen [8].

For the experiments conducted, we used C4.5 Decision
Trees, Naive Bayes, k-Nearest Neighbor (where k = 5),
and Support Vector Machines. Each classifier formed prob-
ability estimating models. Decision trees were trained as
Probability Estimation Trees (PETs) [17]. k-Nearest Neigh-
bor formed predictive probabilities as the proportion of the
classes for the set of nearest neighbors. For SVM, the
SVMlight software [1] was used with default parameters to
form probabilistic predictions. Naive Bayes naturally forms
probabilities. We restrained ourselves to default parameters
for all classifiers to establish an even playing-field.

4 Effect of Bias on Classification

Various factors can be responsible for introducing distri-
butional divergences in the testing set. The feature space
could be biased through a number of methods, causing the
classifier to generate inappropriate predictive distributions.
In some cases, bias occurs as a result of collecting sepa-
rate sub-populations governed by independent feature and
class probability density functions within a single distribu-
tion. An example is the frequencies of measured wingspans
of one species of bird found on two independent tropical
islands. Temporal distance may also incorporate bias: the
rules governing data may change slightly or drastically over
time. Such biases can occur in various applications such as
marketing and credit scoring, as the targeted population can
change over time.

We now present a case study across classifiers and dif-
ferent datasets to demonstrate the effect of biases in the
testing set. We use the Friedman test to statistically vali-
date whether the predictions in the testing set start to sig-
nificantly differ from the validation set once the biases are
introduced. We will discuss the Friedman test before pre-
senting our results.
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Figure 2. Friedman Test p-values across all datasets. +’s represent the average p-value.

4.1 Friedman Test

The Friedman test is a non-parametric statistical test de-
veloped by the U.S. economist Milton Friedman [14]. The
Friedman test is used for two-way analysis of variance by
ranks. This two-way test assumes that all data comes from
populations having the same continuous distribution, apart
from possibly different locations due to column and row ef-
fects and that all observations are mutually independent. An
example Friedman test evaluation is of n welders using k
welding torches with the ensuing welds were rated on qual-
ity. Is there one torch that produced better welds than the
others?

X is a matrix such that observances are placed in
columns and samples are stored across rows. r(xij) is then
the rank within block (i.e. within its row). The average rank
per sample is calculated as

rj =
k∑

i=1

r(xij) (1)

k is the number of samples and n represents the num-
ber of examples in each sample. With the above ranking,
calculate the following:

χ2 =
12

kn(k + 1)

k∑
j=1

r2
j − 3n(k + 1) (2)

with χ2 as an associated p-value. This is the p-value for the
null hypothesis that the column medians are essentially the
same. When the p-value is very low, this indicates that this
is likely not the case and the null hypothesis is void.

To apply Friedman, we begin by first randomly partition-
ing the dataset into 50% for training, 20% for validation,
and 30% for testing. Each classifier learned on the corre-
sponding training set is then applied to the natural validation
and testing samples, resulting in probabilistic predictions on
both sets. This formed the Base results for the stationary
distribution assumption, that is both validation and testing
sets were derived from the same distribution.

We introduced the three biases — MCAR, MNAR, and
MAR — as follows. Considering a feature for each data
set at a time, we injected the corresponding amounts of bi-
ases as discussed in the previous section. This resulted in as
many testing sets as the number of features for each dataset
and bias combination. This allowed us to avoid the domi-
nance of results by any one feature in particular. We applied
the same classifiers learned on the training set to each of the
generated biased testing sets resulting in probabilistic pre-
dictions.

Then, we formed 100 bootstraps on each (validation and
testing) set of probabilistic predictions for each dataset and
calculated accuracies on each. The Friedman test was then
used to test the null hypothesis: there is no statistically sig-
nificant difference between the validation and testing set ac-
curacies for a dataset. Figure 2 shows the resulting p-values.
The p-values for a given amount of bias are the averages of
the p-values from the application of that particular bias to
each feature in the dataset. Thus, it reflects the summarized
p-value given a bias, dataset, and classifier. The convention
in the figure is: the x-axis domain shows the different test-
ing biases, including the Base stationary distribution. Each
bias has a cluster of four lines representing the different
classifiers. The y-axis shows the range of p-value across
all the datasets for each classifier. As the p-value decreases,
the hypothesis is more strongly rejected.

Figure 2 shows a compelling trend. If we run along the x-
axis, we observe that the range drops as we go more towards
heavily biased testing sets. This confirms the premise that
the performances of classifiers will suffer in non-stationary
environments. Among the classifiers, decision trees and k-
nearest neighbor seem to be less sensitive to distributional
biases as compared to SVM and Naive Bayes. Since the y-
axis reflects the range over datasets, we observe that some
datasets lead to a complete failure of predictive estimates (p-
value of approximately 0). Nevertheless, within 85% confi-
dence all the classifiers fail for all the datasets at MNAR-50.
This is a strong demonstration of the fragility of classifiers
in changing distributions, hence the forming the main moti-
vation of our work.
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Figure 3. Kruskal-Wallis Test p-values across all datasets. +’s represent the average p-value.

We note that one can directly use this framework to gen-
erate biases during the validation process. This can result
in an immediate evaluation of sensitivity of different classi-
fiers as the population drifts. Then, conditioned on the na-
ture of the application, one can then choose a classifier that
is most consistent, perhaps at the cost of some accuracy at
the stationary distribution.

5 Detecting and Identifying Bias

The goal of this work is to apply unsupervised meth-
ods to detect bias. Unsupervised methods are required as
the class of testing data is presumed to be unknown at the
time of evaluation. The following subsections provide tests
for finding bias through three separate tests: the Kruskal-
Wallis Test in Section 5.1, the χ2 test for nominal features
in Section 5.2 and the Kolmogorov-Smirnov test for con-
tinuous features in Section 5.3, and Hellinger Distance in
Section 5.4. Together, they provide a statistical framework
as shown in Figure 1. We have split the original data into
the 50 : 20 : 30 training, validation, and testing propor-
tion, respectively, as described before. We introduce MAR
and MNAR onto each feature independently to form a sep-
arate testing sample and MCAR to generate the same num-
ber of testing samples. The results in Sections 5.1, 5.3, and
5.4 all represent the average values found across bias on all
features. This reflects the “average case” feature becoming
biased in a particular dataset.

5.1 Kruskal-Wallis Analysis of Generated
Probability Estimates

Kruskal-Wallis one-way analysis of variance by ranks is
a non-parametric method for testing equality of population
medians among groups [7]. Unlike One-way ANOVA, no
assumption regarding a normal distribution is made since
the test is non-parametric. There is also no assumption that
the population variables between compared groups are the

same. This test calculates the following statistic

K = (N − 1)
∑g

i=1 ni(r̄i − r̄)2∑g
i=1

∑ni

j=1(rij − r̄)2
(3)

where ng is the number of observations in group g, rgj is
the overall rank of observation j in group g, N is the total
number of observations, r̄g is the average rank of the ob-
servations within group g, and r̄ is the average rank of all
observations. The p-value is then calculated as

Pr(χ2
g−1 ≥ K) (4)

This is the p-value of the null hypothesis that all samples
are drawn from the same population or different populations
of the same distribution. Therefore, this is a very useful
test for determining if sets of probabilities are drawn from
the same or different distributions. Here it is applied as a
comparison of the probabilities estimated on the validation
set against the natural testing distribution and the six other
biased distributions.

In Figure 3 we observe the calculated set of Kruskal-
Wallis p-values. Those generated in comparing the set
of validation probabilities against those of the testing set
and distributions formed through MCAR are quite similar,
which is expected as there is similarity between the valida-
tion sample and the testing and completely randomly biased
testing samples. However, there is a substantive difference
to the MAR and MNAR biased sets. Under these sophisti-
cated biases, the distribution of probability estimates differs
significantly. With such a drastic change in the estimates,
there should follow a fairly substantial change in the clas-
sifier performance. We also note that the values captured
through Kruskal-Wallis are quite correlated to those found
under the supervised (determining accuracy and rank-order
requires known classes) Friedman test (Figure 2).

With this information, it is both feasible and useful for
the practitioner to initially train a model and predict prob-
abilities on both the validation and testing data samples.
Using Kruskal-Wallis, the practitioner may then determine
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whether the the sets of probabilities came from different
populations. If so, it is then wise to use the tests in Sections
5.3 and 5.4 to attempt to determine bias type and isolate
biased features.

5.2 χ2 Test

χ2 is a statistical test used to compare observed nominal
data. This is useful in determining whether the distribution
of observations within categorical data are dissimilar.

χ2 =
p∑

i=1

v∑
j=1

ni,j

N − n̂j

n̂j
(5)

when there are p populations and v values, np,v rep-
resents the count of value v in population p, np is the
count within population p, N =

∑p
k=1 nk and n̂j =∑p

k=1 nk,jnk/N . We note that as we are comparing two
distributions, p = 2. To determine a p-value with this test,
degrees of freedom are also considered as

df = (p − 1)(v − 1) (6)

Based on the found values of χ2 and df , a look-up table
is then used to determine a p-value. With this test, we may
determine an appropriate p-value for nominal features.

5.3 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test (often called the KS test)
determines if there is divergence between two underlying
one-dimensional probability distributions or whether an un-
derlying probability distribution differs from a hypothesized
distribution, in either case based on finite samples [11, 20].

The two-sample KS test is particularly useful as a gen-
eral nonparametric method of comparing two sample distri-
butions as it detects divergence in both location and shape
of the observed distribution functions. KS has an advantage
over other statistical methods in that it makes no assump-
tion on the distribution of data, which other methods such
as Student’s t-test make. However, other methods may be
more sensitive if the distributional assumptions are met.

Quite simply, KS makes use of a plot of the Cumula-
tive Fraction Function. Suppose we have two distributions,
such that A = { 0.34, 0.94, 0.24, 1.26, 6.98, 0.95, 0.15, -
2.08, 0.17, 1.55, 3.20, 0.50, 0.70, 4.55, 0.10, 0.49, 0.38,
0.42, 1.37, 1.75} and B = { 0.15, -0.62, -0.17, -0.31, -0.50,
0.38, 2.30, 0.37, -1.79, -0.87, 1.72, -0.09, -1.54, 0.30, -2.39,
-0.74, 0.22, 1.28, 0.19, -1.10}. The KS test begins by sort-
ing both sets of values independently. A single plot of both
distributions is then generated. The x-axis contains the val-
ues of distribution. For each point x, the y-axis is calculated
as the percentage of instances strictly smaller than x; hence,
it is the cumulative fraction of the data which is smaller
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Figure 4. An example KS test plot. Here,
the distributions are significantly divergent
as D = 0.5.

than x. Figure 4 contains a plot of A against B. Using a
planesweep, the KS test then calculates the maximum ver-
tical deviation between the two distributions. For A and B,
Figure 4 indicates this as D. In this case, the maximum ver-
tical deviation is 0.5. We would like to state whether this
value represents a significant distance. We calculate

χ2 =
4D2n1n2

n1 + n2
(7)

where n1 and n2 are the number of examples in the two
samples. Using d = 2 and the χ2 calculation, the resul-
tant p-value suggests whether there is a significant differ-
ence between the two distributions and may be compared
against a desired confidence level. Within the context of
data-mining, we may use the KS test to determine if there is
a significant distributional difference between the training
and testing distributions for continuous features. When fea-
tures are nominal, a χ2 test is instead applied to determine
p-value.

To do so, we must iterate through both distributions on
a feature wise basis, and tabulate the number of failing fea-
tures, which is why using Kruskal-Wallis on the probability
distributions is a better first step. Table 2 represents the
proportion of features failing the KS test under each bias.
Based on these results, we observe that Compustat, Page,
and Segment contain some degree of natural bias between
training and testing distributions. Of these, Compustat is
the least surprising as its training and testing data come
from two independent sets of financial information covering
separate and sequential two year periods. For these three
datasets, it is noted that MCAR actually reduces the fail-
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Dataset Base MCAR 25 MCAR 50 MAR 25 MAR 50 MNAR 25 MNAR 50
compustat 0.400 0.367 0.347 0.552 0.672 0.529 0.655

estate 0.000 0.000 0.007 0.125 0.174 0.083 0.136
Mammography 0.000 0.028 0.028 1.000 1.000 1.000 1.000

oil 0.000 0.004 0.005 0.266 0.397 0.252 0.386
page 0.300 0.190 0.100 0.560 0.590 0.511 0.544

pendigits 0.000 0.004 0.027 0.461 0.523 0.425 0.492
phoneme 0.000 0.000 0.000 0.520 0.600 0.400 0.500
satimage 0.000 0.000 0.000 0.875 1.000 0.871 1.000
segment 0.053 0.022 0.033 0.421 0.446 0.395 0.421

Table 2. Proportion of features failing the KS test at 95% confidence

Dataset MCAR25 MCAR50 MAR25 MAR50 MNAR25 MNAR50
compustat 0.046 ± 0.003 0.053 ± 0.004 0.391 ± 0.003 0.217 ± 0.017 0.361 ± 0.026 0.250 ± 0.021

estate 0.000 ± 0.000 0.000 ± 0.000 0.175 ± 0.021 0.128 ± 0.016 0.104 ± 0.013 0.057 ± 0.007
Mammography 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

oil 0.001 ± 0.000 0.004 ± 0.000 0.554 ± 0.004 0.388 ± 0.002 0.476 ± 0.003 0.400 ± 0.003
page 0.114 ± 0.028 0.156 ± 0.014 0.461 ± 0.069 0.399 ± 0.054 0.554 ± 0.069 0.479 ± 0.052

pendigits 0.000 ± 0.000 0.069 ± 0.006 0.405 ± 0.003 0.362 ± 0.020 0.453 ± 0.001 0.412 ± 0.013
phoneme 0.000 ± 0.000 0.000 ± 0.000 0.467 ± 0.016 0.349 ± 0.026 0.783 ± 0.069 0.650 ± 0.074
satimage 0.000 ± 0.000 0.000 ± 0.000 0.037 ± 0.001 0.000 ± 0.000 0.051 ± 0.001 0.014 ± 0.000
segment 0.002 ± 0.000 0.009 ± 0.001 0.311 ± 0.003 0.235 ± 0.011 0.235 ± 0.014 0.249 ± 0.006

Table 3. Average φ-correlation for feature failure

ure proportion somewhat, likely because there are unusual
values creating large maximum separations. The random
bias removes these values and reduces the separation, hence
dropping the feature failure rate. In the remaining datasets,
MCAR very minimally increases the feature failure rate, if
at all. It is observed that the more systematic biases MAR
and MNAR increase the feature failure rate substantially.
This indicates that the KS test may be used simply and quite
effectively to detect a bias incorporated between two data
distributions.

In addition to understanding the degree to which bias
causes feature failure under the KS test, we seek to study the
interaction of a particular feature failing on other features.
Restated, Do features tend to fail independently or concomi-
tantly? To this end, a Failure Correlation Matrix F was con-
structed where Fi,j represents the count for which features
i and j fail under KS concomitantly. Based on the counts
within F , the φ-correlation is calculated for each pairwise
set of features as

φ =
Fi,iFj,j − Fi,jFj,i√

(Fi,i + Fi,j)(Fi,j + Fj,j)(Fi,i + Fj,i)(Fj,i + Fj,j)
(8)

as φ is a strong measure of the associativity of two di-

chotomies and discounts the effects of sample size. The
average correlation per pairwise comparison is reported in
Table 3. Values between 0.0 and 0.3 are considered to have
little to no associativity, 0.3 to 0.7 have some associativity,
and above 0.7 has very strong associativity.

The average φ-correlation is quite low, if not zero, for
the baseline comparison and MCAR. Thus, there is little
correlation between the failure of features, if failure occurs
at all. As MAR and MNAR are introduced, there is a spike
in φ-correlation. This is an expected result as there is some
degree of covariance among the measured features; thus, a
bias on one feature will to some degree incorporate a bias to
related features. The exception to this trend is Mammogra-
phy, which reports zero correlation categorically, as within
each test either all or none of the features fail the KS test
except for some MCAR trials for which failure occurred to-
tally at random.

We have thus demonstrated how the Kolmogorov-
Smirnov Test may be used in identifying the proportion of
features which are significantly different within two data
samples. A more difficult bias usually causes a greater pro-
portion of features to fail KS. In addition, we have com-
bined KS with φ-correlation to determine how features fail
independently and concomitantly under different bias.

Once bias is suspected through the Kruskal-Wallis test
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Figure 5. Hellinger Distance detecting bias. From left to right each set of bars indicates the relative
change in Hellinger Distance between the testing sample and MCAR25, MCAR50, MAR25, MAR50,
MNAR25, MNAR50 for each dataset.

on the set of predicted probabilities, the KS Test operates
as a “quick” method to check for the existence of bias to
see if a fairly high proportion of the features fail this test (in
most cases, 30% feature failure appears to be a reasonable
point to presume some bias as observed in Table 2). Table
3 reported the φ-correlation of the KS Test as capable of
determining groups of features which tend to fail together.
Suppose there is a high correlation of failure between two
features. In the case that only one fails, one may assume
a reasonable correlation between the two features and omit
the failing feature during model training confident that the
succeeding feature will account for much of the information
contained within the failing one. As seen in Table 2, the KS
Test struggles to isolate individual biased features. Thus,
it is a good method to confirm the findings from Kruskal-
Wallis. To more acutely determine degree and which fea-
tures are biased, we turn to Hellinger Distance.

5.4 Hellinger Distance

Hellinger Distance [2], also referred to as Bhattacharyya
Distance [10], is a measure of distributional divergence.
[13] concludes that for linear ordination, the Hellinger Dis-
tance offers a better compromise between linearity and res-
olution, as compared to similar metrics such as the χ2

metric and the χ2 distance. Hellinger distance has been
used effectively within the ecological domain and is recom-
mended for clustering or ordination of species abundance
data [18]. This measure has also been used as a means of
locating statistical outliers for fraud detection in insurance
applications[23].

To apply this measure of density, we presume two in-

dependent distributions of data X and Y . Both X and Y
contain p bins, where each bin contains the count of some
logical subunits measured between X and Y . The Hellinger
Distance between X and Y is then calculated by

Hellinger(X, Y ) =

√√√√√ p∑
j=1

(√
Xj

|X | −
√

Yj

|Y |

)2

(9)

Suppose that there exist two populations, Pop1 and
Pop2. The occurrence count of value a, b, and c within
each population have been tabulated and are reported in Ta-
ble 4.

a b c
Pop1 7 0 0
Pop2 0 10 2

Table 4. Example population data

Using (9), Hellinger(Pop1, Pop2) =
√

2, which happens
to be the maximum possible Hellinger Distance. This is
expected as Pop1 and Pop2 are completely divergent: there
is no overlap in values a, b, and c.

Hellinger Distance can be applied simply to each feature
individually. In the case of nominal features, each feature
value forms a separate bin. Hellinger then measures the
difference between the counts of each value. Continuous
features are treated similarly through discretization by 30
equal-width bins. For each dataset, the average per feature
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Dataset MCAR 25 MCAR 50 MAR 25 MAR 50 MNAR 25 MNAR 50
Compustat -0.790 -0.751 -0.562 -0.554 -0.554 -0.545

E-State -0.195 -0.055 -0.349 -0.618 -0.715 -1.115
Mammography 0.634 0.466 -0.332 -0.021 -0.179 0.274

Oil 0.957 0.911 0.868 1.007 1.131 1.183
Page -0.609 -0.253 -0.239 -0.137 -0.103 -0.060

Pendigits -0.271 -0.836 -0.283 -0.413 -0.161 -0.295
Phoneme -0.171 0.049 -0.095 -0.002 0.527 0.448
Satimage -0.097 -0.127 -0.008 -0.025 0.010 -0.001
Segment -0.656 -0.445 0.134 0.092 0.306 0.272

Table 5. Skew of the average Hellinger Distance per feature

Hellinger Distance is then calculated. The observed rela-
tive changes from the distance calculated on the base test-
ing distribution are summarized in Figure 5. The calculated
distances tend to be relatively low between the base training
and testing distributions and testing distributions generated
through MCAR. There is a substantial increase in Hellinger
Distance when an MAR or MNAR is at play. Thus, apply-
ing Hellinger Distance is quite effective in differentiating
between the relative level of bias sophistication.

Of additional interest is the skew of Hellinger Distances
produced. In fact, Table 5 demonstrates that there is typi-
cally a substantial negative skew to the set of distances cal-
culated, meaning there is a tail of values below the mean.
This is indicative that is more data below the mean than
would be expected in a normal distribution. There are a few
very high distances shifting the mean upwards causing the
lower distance values to be further from the mean than in
a normal population. We note that Oil violates this trend,
likely due to the extremely small size of this dataset. In
general, Hellinger Distance enables the isolation of features
along which bias occurs.

From these experiments, we note that Hellinger is able to
corroborate the findings of KS and complements the differ-
entiation and determination of biases. The KS Test is useful
in determining if there is a significant maximal point of sep-
aration. Hellinger Distance is more refined in isolating bias
since it is a method of comparing the relative densities of
two distributions. MCAR is the lowest range, then MNAR,
then MAR. We expect this ordering: MCAR is sampled at
random and should fairly closely resemble the training set.
MAR should produce the highest changes in Hellinger: the
feature(s) generating bias have been observed and the dis-
tributional change will be reflected by this distance. MNAR
is expected to produce results between MCAR and MAR
since the feature MNAR biases along is hidden, but it is
also reasonable to expect some level of correlation to the
observed features. We recommend a coupled usage of KS
test and Hellinger distance to isolate the biased features.

6 Conclusions

Data mining is presented with the challenge of drifts in
data distribution between the training and testing samples.
The basic assumption that the past is a reasonable predictor
of future may not hold in different scenarios. This certainly
hinders the performance of learning algorithms, as we have
also demonstrated in this work. Thus, it becomes critical
to identify and react to the changes in data distribution. To
that end, we implemented a framework that comprised of a
family of statistical measures. We showed that it is possi-
ble to proactively detect fractures in classifier performance.
Our test suite comprised of a variety of classifiers and data
sets with different characteristics.

Based on our observations, we make the following rec-
ommendations. Using Kruskal-Wallis on the distributions
of validation and testing probabilities is useful as a first step.
If the practitioner determines there is no significant differ-
ence between them, then it is possible to proceed as per typ-
ical. Otherwise, the practitioner should use the following
tests to isolate biased features. The Kolmogorov-Smirnov
Test ably detects independent feature failure. Through φ-
correlation analysis, KS also determines the co-failure of
features, which is quite strong under sophisticated bias.
Hellinger Distance is also quite useful as it readily identi-
fies and differentiates the level of bias, even when the factor
of bias is unmeasured, such as MNAR. When the cause of
bias is known, a high skew in Hellinger Distances is indica-
tive that it is capable of isolating features generating bias
between samples. We believe that a single statistical mea-
sure cannot be used in isolation, rather a family of measures
should be used in conjunction to remain more confident in
detecting fractures in classifier predictions.
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