CHAPTER 5

INTEGRALS AND DERIVATIVES

In the preceding chapters we looked at the basics of computer programming using Python and solved some simple physics problems using what we learned. You will get plenty of further opportunities to polish your programming skills, but our main task from here on is to learn about the ideas and techniques of computational physics, the physical and mathematical insights that allow us to perform accurate calculations of physical quantities on the computer.

One of the most basic but also most important applications of computers in physics is the evaluation of integrals and derivatives. Numerical evaluation of integrals is a particularly crucial topic because integrals occur widely in physics calculations and, while some integrals can be done analytically in closed form, most cannot. They can, however, almost always be done on a computer. In this chapter we examine a number of different techniques for evaluating integrals and derivatives, as well as taking a brief look at the related operation of interpolation.

5.1 Fundamental methods for evaluating integrals

Suppose we wish to evaluate the integral of a given function. Let us consider initially the simplest case, the integral of a function of a single variable over a finite range. We will study a range of techniques for the numerical evaluation of such integrals, but we start with the most basic—and also most widely used—the trapezoidal rule. \(^1\)

\(^1\)Also called the trapezium rule in British English.
CHAPTER 5 | INTEGRALS AND DERIVATIVES

Figure 5.1: Estimating the area under a curve. (a) A simple scheme for estimating the area under a curve by dividing the area into rectangular slices. The gray shaded area approximates the area under the curve, though not very well. (b) The trapezoidal rule approximates the area as a set of trapezoids, and is usually more accurate. (c) With a larger number of slices, the shaded area is a more accurate approximation to the true area under the curve.

5.1.1 THE TRAPEZOIDAL RULE

Suppose we have a function \(f(x) \) and we want to calculate its integral with respect to \(x \) from \(x = a \) to \(x = b \), which we denote \(I(a, b) \):

\[
I(a, b) = \int_a^b f(x) \, dx. \tag{5.1}
\]

This is equivalent to calculating the area under the curve of \(f(x) \) from \(a \) to \(b \). There is no known way to calculate such an area exactly in all cases on a computer, but we can do it approximately by the method shown in Fig. 5.1a: we divide the area up into rectangular slices, calculate the area of each one, and then add them up. This, however, is a pretty poor approximation. The area under the rectangles is not very close to the area under the curve.

A better approach, which involves very little extra work, is that shown in Fig. 5.1b, where the area is divided into trapezoids rather than rectangles. The area under the trapezoids is a considerably better approximation to the area under the curve, and this approach, though simple, often gives perfectly adequate results.
5.1 | Fundamental methods for evaluating integrals

Suppose we divide the interval from \(a \) to \(b \) into \(N \) slices or steps, so that each slice has width \(h = (b - a) / N \). Then the right-hand side of the \(k \)th slice falls at \(a + kh \), and the left-hand side falls at \(a + kh - h = a + (k - 1)h \). Thus the area of the slice is

\[
A_k = \frac{1}{2}h \left[f(a + (k - 1)h) + f(a + kh) \right]. \quad (5.2)
\]

This is the trapezoidal rule. It gives us a trapezoidal approximation to the area under one slice of our function.

Now our approximation for the area under the whole curve is the sum of the areas of the \(N \) slices:

\[
I(a, b) \simeq \sum_{k=1}^{N} A_k = \frac{1}{2}h \sum_{k=1}^{N} \left[f(a + (k - 1)h) + f(a + kh) \right]
= h \left[\frac{1}{2}f(a) + f(a + h) + f(a + 2h) + \ldots + \frac{1}{2}f(b) \right]
= h \left[\frac{1}{2}f(a) + \frac{1}{2}f(b) + \sum_{k=1}^{N-1} f(a + kh) \right]. \quad (5.3)
\]

This is the extended trapezoidal rule—it is the extension to many slices of the basic trapezoidal rule of Eq. (5.2). Being slightly sloppy in our usage, however, we will often refer to it simply as the trapezoidal rule. Note the structure of the formula: the quantity inside the square brackets is a sum over values of \(f(x) \) measured at equally spaced points in the integration domain, and we take a half of the values at the start and end points but one times the value at all the interior points.

Example 5.1: Integrating a function

Let us use the trapezoidal rule to calculate the integral of \(x^4 - 2x + 1 \) from \(x = 0 \) to \(x = 2 \). This is actually an integral we can do by hand, which means we don’t really need to do it using the computer in this case, but it’s a good first example because we can check easily if our program is working and how accurate an answer it gives.

Here is a program to do the integration using the trapezoidal rule with \(N = 10 \) slices:

```python
def f(x):
    return x**4 - 2*x + 1

File: trapezoidal.py
```

139
\[N = 10 \\
\text{a} = 0.0 \\
\text{b} = 2.0 \\
\text{h} = (\text{b}-\text{a})/N \\
\]
\[
\text{s} = 0.5*\text{f(a)} + 0.5*\text{f(b)} \\
\text{for k in range(1,N):} \\
\quad \text{s} += \text{f(a+k*h)} \\
\]
\text{print(h*s)}

This is a straightforward translation of the trapezoidal rule formula into computer code: we create a function that calculates the integrand, set up all the constants used, evaluate the sum for the integral \(I(a, b) \) term by term, and then multiply it by \(h \) and print it out.

If we run the program it prints

4.50656

The correct answer is

\[
\int_0^2 (x^4 - 2x + 1)dx = \left[\frac{1}{5}x^5 - x^2 + x \right]_0^2 = 4.4. \tag{5.4}
\]

So our calculation is moderately but not exceptionally accurate—the answer is off by about 2%.

We can make the calculation more accurate by increasing the number of steps. As shown in Fig. 5.1c, we approximate the area under the curve better when \(N \) is larger, though the program will also take longer to reach an answer because there are more terms in the sum to evaluate. If we increase the number of steps to \(N = 100 \) and run the program again we get 4.40107, which is now accurate to 0.02%, which is pretty good. And if we use \(N = 1000 \) we get 4.40001, which is accurate to 0.0002%. In Section 5.2 we will study in more detail the accuracy of the trapezoidal rule.

Exercise 5.1:

In the on-line resources you will find a file called velocities.dat, which contains two columns of numbers, the first representing time \(t \) in seconds and the second the \(x \)-velocity in meters per second of a particle, measured once every second from time \(t = 0 \) to \(t = 100 \). The first few lines look like this:
Write a program to do the following:

a) Read in the data and, using the trapezoidal rule, calculate from them the approximate distance traveled by the particle in the x direction as a function of time. See Section 2.4.3 on page 56 if you want a reminder of how to read data from a file.

b) Extend your program to make a graph that shows, on the same plot, both the original velocity curve and the distance traveled as a function of time.

5.1.2 Simpson’s rule

The trapezoidal rule is the simplest of numerical integration methods, taking only a few lines of code as we have seen, but it is often perfectly adequate for calculations where no great accuracy is required. It happens frequently in physics calculations that we don’t need an answer accurate to many significant figures and in such cases the ease, speed, and simplicity of the trapezoidal rule can make it the method of choice. One should not turn up one’s nose at simple methods like this; they play an important role and are used widely. Moreover, the trapezoidal rule is the basis for several other more sophisticated methods of evaluating integrals, including the adaptive methods that we will study in Section 5.3 and the Romberg integration method of Section 5.4.

However, there are also cases where greater accuracy is required. As we have seen we can increase the accuracy of the trapezoidal rule by increasing the number N of steps used in the calculation. But in some cases, particularly for integrands that are rapidly varying, a very large number of steps may be needed to achieve the desired accuracy, which means the calculation can become slow. There are other, more advanced schemes for calculating integrals that can achieve high accuracy while still arriving at an answer quickly. In this section we study one such scheme, Simpson’s rule.

In effect, the trapezoidal rule estimates the area under a curve by approximating the curve with straight-line segments—see Fig. 5.1b. We can often get a better result if we approximate the function instead with curves of some kind. Simpson’s rule does exactly this, using quadratic curves, as shown in Fig. 5.2. In order to specify a quadratic completely one needs three points, not just two as with a straight line. So in this method we take a pair of adjacent slices and fit
Figure 5.2: Simpson’s rule. Simpson’s rule involves fitting quadratic curves to pairs of slices and then calculating the area under the quadratics.

Simpson’s rule involves fitting a quadratic through the three points that mark the boundaries of those slices. In Fig. 5.2 there are two quadratics, fitted to four slices. Simpson’s rule involves approximating the integrand with quadratics in this way, then calculating the area under those quadratics, which gives an approximation to the area under the true curve.

Suppose, as before, that our integrand is denoted \(f(x) \) and the spacing of adjacent points is \(h \). And suppose for the purposes of argument that we have three points at \(x = -h, 0, \) and \(+h \). If we fit a quadratic \(ax^2 + bx + c \) through these points, then by definition we will have:

\[
\begin{align*}
 f(-h) &= ah^2 - bh + c, \\
 f(0) &= c, \\
 f(h) &= ah^2 + bh + c.
\end{align*}
\]

(5.5)

Solving these equations simultaneously for \(a, b, \) and \(c \) gives

\[
\begin{align*}
 a &= \frac{1}{h^2} \left[\frac{1}{2} f(-h) - f(0) + \frac{1}{2} f(h) \right], \\
 b &= \frac{1}{2h} \left[f(h) - f(-h) \right], \\
 c &= f(0),
\end{align*}
\]

(5.6)

and the area under the curve of \(f(x) \) from \(-h \) to \(+h \) is given approximately by the area under the quadratic:

\[
\int_{-h}^{h} (ax^2 + bx + c) \, dx = \frac{2}{3} ah^3 + 2ch = \frac{1}{3} h \left[f(-h) + 4 f(0) + f(h) \right].
\]

(5.7)
This is Simpson’s rule. It gives us an approximation to the area under two adjacent slices of our function. Note that the final formula for the area involves only h and the value of the function at evenly spaced points, just as with the trapezoidal rule. So to use Simpson’s rule we don’t actually have to worry about the details of fitting a quadratic—we just plug numbers into this formula and it gives us an answer. This makes Simpson’s rule almost as simple to use as the trapezoidal rule, and yet Simpson’s rule often gives much more accurate answers, as we will see.

To use Simpson’s rule to perform a general integral we note that Eq. (5.7) does not depend on the fact that our three points lie at $x = -h, 0,$ and $+h$. If we were to slide the curve along the x-axis to either higher or lower values, the area underneath it would not change. So we can use the same rule for any three uniformly spaced points. Applying Simpson’s rule involves dividing the domain of integration into many slices and using the rule to separately estimate the area under successive pairs of slices, then adding the estimates for all pairs to get the final answer. If, as before, we are integrating from $x = a$ to $x = b$ in slices of width h then the three points bounding the first pair of slices fall at $x = a, a + h$ and $a + 2h$, the second pair at $a + 2h, a + 3h, a + 4h$, and so forth. More generally the boundaries of the kth pair of slices fall at $a + (2k - 2)h, a + (2k - 1)h,$ and $a + 2kh$. Hence Simpson’s rule gives the area under the kth pair, approximately, as

$$A_k = \frac{1}{3} h \left[f(a) + 4f(a + h) + f(a + 2h) \right].$$ (5.8)

Since there are N slices in total, there are $N/2$ pairs of slices, and the approximate value of the entire integral is given by the sum

$$I(a, b) \simeq \sum_{k=1}^{N/2} A_k = \frac{1}{3} h \sum_{k=1}^{N/2} \left[f(a + (2k - 2)h) + 4f(a + (2k - 1)h) + f(a + 2kh) \right]$$

$$= \frac{1}{3} h \left[f(a) + 4f(a + h) + 2f(a + 2h) + 4f(a + 3h) + \ldots + f(b) \right]$$

$$= \frac{1}{3} h \left[f(a) + f(b) + 4 \sum_{k=1}^{N/2} f(a + (2k - 1)h) + 2 \sum_{k=1}^{N/2-1} f(a + 2kh) \right].$$ (5.9)

Note that the total number of slices must be even for Simpson’s rule to work.

Comparing the last line of Eq. (5.9) to Eq. (5.3) we see that Simpson’s rule is modestly more complicated than the trapezoidal rule, but not enormously so. Programs using it are still straightforward to create.

As an example, suppose we apply Simpson’s rule with $N = 10$ slices to the integral from Example 5.1, $\int_0^2 (x^4 - 2x + 1)dx$, whose true value, as we saw, is
4.4. As shown in Exercise 5.2, this gives an answer of 4.400427, which is already accurate to better than 0.01%, orders of magnitude better than the trapezoidal rule with \(N = 10 \). Results for \(N = 100 \) and \(N = 1000 \) are better still—see the exercise.

If you need an accurate answer for an integral, Simpson’s rule is a good choice in many cases, giving precise results with relatively little effort. Alternatively, if you need to evaluate an integral quickly—perhaps because you will be evaluating very many integrals as part of a larger calculation—then Simpson’s rule may again be a good choice, since it can give moderately accurate answers even with only a small number of steps.

Exercise 5.2:

a) Write a program to calculate an approximate value for the integral \(\int_0^2 (x^4 - 2x + 1) \, dx \) from Example 5.1, but using Simpson’s rule with 10 slices instead of the trapezoidal rule. You may wish to base your program on the trapezoidal rule program on page 139.

b) Run the program and compare your result to the known correct value of 4.4. What is the fractional error on your calculation?

c) Modify the program to use a hundred slices instead, then a thousand. Note the improvement in the result. How do the results compare with those from Example 5.1 for the trapezoidal rule with the same numbers of slices?

Exercise 5.3: Consider the integral

\[
E(x) = \int_0^x e^{-t^2} \, dt.
\]

a) Write a program to calculate \(E(x) \) for values of \(x \) from 0 to 3 in steps of 0.1. Choose for yourself what method you will use for performing the integral and a suitable number of slices.

b) When you are convinced your program is working, extend it further to make a graph of \(E(x) \) as a function of \(x \). If you want to remind yourself of how to make a graph, you should consult Section 3.1, starting on page 86.

Note that there is no known way to perform this particular integral analytically, so numerical approaches are the only way forward.

Exercise 5.4: The diffraction limit of a telescope

Our ability to resolve detail in astronomical observations is limited by the diffraction of light in our telescopes. Light from stars can be treated effectively as coming from a point
source at infinity. When such light, with wavelength \(\lambda \), passes through the circular aperture of a telescope (which we’ll assume to have unit radius) and is focused by the telescope in the focal plane, it produces not a single dot, but a circular diffraction pattern consisting of central spot surrounded by a series of concentric rings. The intensity of the light in this diffraction pattern is given by

\[
I(r) = \left(\frac{J_1(kr)}{kr} \right)^2,
\]

where \(r \) is the distance in the focal plane from the center of the diffraction pattern, \(k = 2\pi/\lambda \), and \(J_1(x) \) is a Bessel function. The Bessel functions \(J_m(x) \) are given by

\[
J_m(x) = \frac{1}{\pi} \int_0^\pi \cos(m\theta - x \sin\theta) \, d\theta,
\]

where \(m \) is a nonnegative integer and \(x \geq 0 \).

a) Write a Python function \(J(m, x) \) that calculates the value of \(J_m(x) \) using Simpson’s rule with \(N = 1000 \) points. Use your function in a program to make a plot, on a single graph, of the Bessel functions \(J_0, J_1, \) and \(J_2 \) as a function of \(x \) from \(x = 0 \) to \(x = 20 \).

b) Make a second program that makes a density plot of the intensity of the circular diffraction pattern of a point light source with \(\lambda = 500 \text{ nm} \), in a square region of the focal plane, using the formula given above. Your picture should cover values of \(r \) from zero up to about \(1 \mu \text{m} \).

Hint 1: You may find it useful to know that \(\lim_{x \to 0} J_1(x)/x = \frac{1}{2} \). Hint 2: The central spot in the diffraction pattern is so bright that it may be difficult to see the rings around it on the computer screen. If you run into this problem a simple way to deal with it is to use one of the other color schemes for density plots described in Section 3.3. The “hot” scheme works well. For a more sophisticated solution to the problem, the \texttt{imshow} function has an additional argument \texttt{vmax} that allows you to set the value that corresponds to the brightest point in the plot. For instance, if you say “\texttt{imshow(x, vmax=0.1)}”, then elements in \(x \) with value 0.1, or any greater value, will produce the brightest (most positive) color on the screen. By lowering the \texttt{vmax} value, you can reduce the total range of values between the minimum and maximum brightness, and hence increase the sensitivity of the plot, making subtle details visible. (There is also a \texttt{vmin} argument that can be used to set the value that corresponds to the dimmest (most negative) color.) For this exercise a value of \(\texttt{vmax}=0.01 \) appears to work well.

5.2 ERRORS ON INTEGRALS

Our numerical integrals are only approximations. As with most numerical calculations there is usually a rounding error when we calculate an integral, as described in Section 4.2, but this is not the main source of error. The main
source of error is the so-called approximation error—the fact that our integration rules themselves are only approximations to the true integral. Both the trapezoidal and Simpson rules calculate the area under an approximation (either linear or quadratic) to the integrand, not the integrand itself. How big an error does this approximation introduce?

Consider again an integral \(\int_a^b f(x) \, dx \), and let us first look at the trapezoidal rule of Eq. (5.3). To simplify our notation a little, let us define \(x_k = a + kh \) as a shorthand for the positions at which we evaluate the integrand \(f(x) \). We will refer to these positions as sample points. Now consider one particular slice of the integral, the one that falls between \(x_{k-1} \) and \(x_k \), and let us perform a Taylor expansion of \(f(x) \) about \(x_{k-1} \) thus:

\[
f(x) = f(x_{k-1}) + (x - x_{k-1})f'(x_{k-1}) + \frac{1}{2}(x - x_{k-1})^2f''(x_{k-1}) + \ldots \tag{5.10}
\]

where \(f' \) and \(f'' \) denote the first and second derivatives of \(f \) respectively. Integrating this expression from \(x_{k-1} \) to \(x_k \) gives

\[
\int_{x_{k-1}}^{x_k} f(x) \, dx = f(x_{k-1}) \int_{x_{k-1}}^{x_k} dx + f'(x_{k-1}) \int_{x_{k-1}}^{x_k} (x - x_{k-1}) \, dx
\]

\[
+ \frac{1}{2}f''(x_{k-1}) \int_{x_{k-1}}^{x_k} (x - x_{k-1})^2 \, dx + \ldots \tag{5.11}
\]

Now we make the substitution \(u = x - x_{k-1} \), which gives

\[
\int_{x_{k-1}}^{x_k} f(x) \, dx = f(x_{k-1}) \int_0^h du + f'(x_{k-1}) \int_0^h u \, du + \frac{1}{2}f''(x_{k-1}) \int_0^h u^2 \, du + \ldots
\]

\[
= hf(x_{k-1}) + \frac{1}{2}h^2f'(x_{k-1}) + \frac{1}{6}h^3f''(x_{k-1}) + O(h^4), \tag{5.12}
\]

where \(O(h^4) \) denotes the rest of the terms in the series, those in \(h^4 \) and higher, which we are neglecting.

We can do a similar expansion around \(x = x_k \) and again integrate from \(x_{k-1} \) to \(x_k \) to get

\[
\int_{x_{k-1}}^{x_k} f(x) \, dx = hf(x_k) - \frac{1}{2}h^2f'(x_k) + \frac{1}{6}h^3f''(x_k) - O(h^4). \tag{5.13}
\]

Then, taking the average of Eqs. (5.12) and (5.13), we get

\[
\int_{x_{k-1}}^{x_k} f(x) \, dx = \frac{1}{2}h[f(x_{k-1}) + f(x_k)] + \frac{1}{2}h^2[f'(x_{k-1}) - f'(x_k)]
\]

\[
+ \frac{1}{12}h^3[f''(x_{k-1}) + f''(x_k)] + O(h^4). \tag{5.14}
\]
Finally, we sum this expression over all slices k to get the full integral that we want:

$$\int_a^b f(x) \, dx = \sum_{k=1}^N \int_{x_{k-1}}^{x_k} f(x) \, dx$$

$$= \frac{1}{2}h \sum_{k=1}^N [f(x_{k-1}) + f(x_k)] + \frac{1}{4}h^2 [f'(a) - f'(b)]$$

$$+ \frac{1}{12} h^3 \sum_{k=1}^N [f''(x_{k-1}) + f''(x_k)] + O(h^4). \quad (5.15)$$

Let’s take a close look at this expression to see what’s going on.

The first sum on the right-hand side of the equation is precisely equal to the trapezoidal rule, Eq. (5.3). When we use the trapezoidal rule, we evaluate only this sum and discard all the terms following. The size of the discarded terms—the rest of the series—measures the amount we would have to add to the trapezoidal rule value to get the true value of the integral. In other words it is equal to the error we incur when we use the trapezoidal rule, the so-called approximation error.

In the second term, the term in h^2, notice that almost all of the terms have canceled out of the sum, leaving only the first and last terms, the ones evaluated at a and b. Although we haven’t shown it, a similar cancellation happens for the terms in h^4, h^6, and all even powers of h.

Now take a look at the term in h^3 and notice the following useful fact: the sum in this term is itself, to within an overall constant, just the trapezoidal rule formula, Eq. (5.3), for the integral of $f''(x)$ over the interval from a to b:

$$\int_a^b f''(x) \, dx \simeq \frac{1}{2}h \sum_{k=1}^N [f''(x_{k-1}) + f''(x_k)]. \quad (5.16)$$

But $\int_a^b f''(x) \, dx = f'(b) - f'(a)$ and, substituting this into Eq. (5.15) and canceling some terms, we find

$$\int_a^b f(x) \, dx = \frac{1}{2}h \sum_{k=1}^N [f(x_{k-1}) + f(x_k)] + \frac{1}{12} h^2 [f'(a) - f'(b)] + O(h^4). \quad (5.17)$$

Thus, to leading order in h, the value of the terms dropped when we use the trapezoidal rule, which equals the approximation error ϵ on the integral, is

$$\epsilon = \frac{1}{12} h^2 [f'(a) - f'(b)]. \quad (5.18)$$

This is the Euler–Maclaurin formula for the error on the trapezoidal rule. More correctly it is the first term in the Euler–Maclaurin formula; the full formula
keeps the terms to all orders in \(h \). We can see from Eq. (5.17) that the next term in the series is of order \(h^4 \). We might imagine it would be of order \(h^5 \), but the \(h^5 \) term cancels out, and in fact it’s fairly straightforward to show that only even powers of \(h \) survive in the full formula at all orders, so the next term after \(h^4 \) is \(h^6 \), and so forth. So long as \(h \) is small, however, we can neglect the \(h^4 \) and higher terms—the leading term, Eq. (5.18), is usually enough.

Equation (5.18) tells us that the trapezoidal rule is a **first-order** integration rule, meaning it is accurate up to and including terms proportional to \(h \) and the leading-order approximation error is of order \(h^2 \). That is, a first-order rule is **accurate** to \(O(h) \) and has an error \(O(h^2) \).

In addition to approximation error, there is also a rounding error on our calculation. As discussed in Section 4.2, this rounding error will have approximate size \(C \) times the value of the integral, where \(C \) is the error constant, which is about \(10^{-16} \) in current versions of Python.\(^2\) Equation (5.18) for the approximation error tells us that this error gets smaller as \(h \) gets smaller, so we can make our integral more accurate by using smaller \(h \) or, equivalently, larger numbers \(N \) of slices. However, there is little point in making \(h \) so small that the approximation error becomes much smaller than the rounding error. Further decreases in \(h \) beyond that point will only make our program slower, by increasing the number of terms in the sum for Eq. (5.3), without improving the accuracy of our calculation significantly, since accuracy will be dominated by the rounding error.

Thus decreases in \(h \) will only help us up to the point at which the approximation and rounding errors are roughly equal, which is the point where

\[
\frac{1}{12} h^2 [f'(a) - f'(b)] \simeq C \int_a^b f(x) \, dx. \quad (5.19)
\]

Rearranging for \(h \) we get

\[
h \simeq \sqrt{\frac{12 \int_a^b f(x) \, dx}{f'(a) - f'(b)}} C^{1/2}. \quad (5.20)
\]

\(^2\)One might imagine that the rounding error would be larger than this because the trapezoidal rule involves a sum of terms in Eq. (5.3) and each term will incur its own rounding error, the individual errors accumulating over the course of the calculation. As shown in Section 4.2 and Eq. (4.7), however, the size of such cumulative errors goes up only as \(\sqrt{N} \), while the trapezoidal rule equation (5.3) includes a factor of \(h \), which falls off as \(1/N \). The net result is that the theoretical cumulative error on the trapezoidal rule actually decreases as \(1/\sqrt{N} \), rather than increasing, so it is safe to say that the final error is no greater than the error incurred by the final operation in the calculation, which will have size \(C \) times the final value.
Or we can set $h = (b - a)/N$ to get

$$N \simeq (b - a) \sqrt{\frac{f'(a) - f'(b)}{12 \int_a^b f(x) \, dx}} \, C^{-1/2}.$$ (5.21)

Thus if, for example, all the factors except the last are of order unity, then rounding error will become important when $N \simeq 10^8$. Looked at another way, this is the point at which the accuracy of the trapezoidal rule reaches the "machine precision," the maximum accuracy with which the computer can represent the result. There is no point increasing the number of integration slices beyond this point; the calculation will not become any more accurate. However, $N = 10^8$ would be an unusually large number of slices for the trapezoidal rule—it would be rare to use such a large number when equivalent accuracy can be achieved using much smaller N with a more accurate rule such as Simpson’s rule. In most practical situations, therefore, we will be in the regime where approximation error is the dominant source of inaccuracy and it is safe to assume that rounding error can be ignored.

We can do an analogous error analysis for Simpson’s rule. The algebra is similar but more tedious. Here we’ll just quote the results. For an integral over the interval from a to b the approximation error is given to leading order by

$$\epsilon = \frac{1}{90} h^4 \left[f'''(a) - f'''(b) \right].$$ (5.22)

Thus Simpson’s rule is a third-order integration rule—two orders better than the trapezoidal rule—with a fourth-order approximation error. For small values of h this means that the error on Simpson’s rule will typically be much smaller than the error on the trapezoidal rule and it explains why Simpson’s rule gave such superior results in our example calculations (see Section 5.1.2).

The rounding error for Simpson’s rule is again of order $C \int_a^b f(x) \, dx$ and the equivalent of Eq. (5.21) is

$$N = (b - a) \sqrt{\frac{90 \int_a^b f(x) \, dx}{f''(a) - f''(b)}} \, C^{-1/4}. \tag{5.23}$$

If, again, the leading factors are roughly of order unity, this implies that rounding error will become important when $N \simeq 10^4$. Beyond this point Simpson’s rule is so accurate that its accuracy exceeds the machine precision of the computer and there is no point using larger values of N. By contrast with the case for the trapezoidal rule, however, $N = 10^4$ is not an unusually large number of slices to use in a calculation. Calculations with ten thousand slices
can be done easily in a fraction of a second. Thus it is worth bearing this result in mind: there is no point using more than a few thousand slices with Simpson’s rule because the calculation will reach the limits of precision of the computer and larger values of \(N\) will do no further good.

Finally in this section, let us note that while Simpson’s rule does in general give superior accuracy, it is not always guaranteed to do better than the trapezoidal rule, since the errors on the trapezoidal and Simpson rules also depend on derivatives of the integrand function via Eqs. (5.18) and (5.22). It would be possible, for instance, for \(f'''(a)\) by bad luck to be large in some particular instance, making the error in Eq. (5.22) similarly large, and possibly worse than the error for the trapezoidal rule. It would be fair to say that Simpson’s rule usually gives better results than the trapezoidal rule, but the prudent scientist will bear in mind that it can do worse on occasion.

5.2.1 Practical estimation of errors

The Euler–Maclaurin formula of Eq. (5.18), or its equivalent for Simpson’s rule, Eq. (5.22), allows us to calculate the error on our integrals provided we have a known closed-form expression for the integrand \(f(x)\), so that we can calculate the derivatives that appear in the formulas. Unfortunately, in many cases—perhaps most—we have no such expression. For instance, the integrand may not be a mathematical function at all but a set of measurements made in the laboratory, or it might itself be the output of another computer program. In such cases we cannot differentiate the function and Eq. (5.18) or (5.22) will not work. There is, however, still a way to calculate the error.

Suppose, as before, that we are evaluating an integral over the interval from \(x = a\) to \(x = b\) and let’s assume that we are using the trapezoidal rule, since it makes the argument simpler, although the method described here extends to Simpson’s rule too. Let us perform the integral with some number of steps \(N_1\), so that the step size is \(h_1 = (b - a)/N_1\).

Then here’s the trick: we now double the number of steps and perform the integral again. That is we define a new number of steps \(N_2 = 2N_1\) and a new step size \(h_2 = (b - a)/N_2 = \frac{1}{2}h_1\) and we reevaluate the integral using the trapezoidal rule, giving a new answer, which will normally be more accurate than the previous one. As we have seen, the trapezoidal rule introduces an error of order \(O(h^2)\), which means when we half the value of \(h\) we quarter the size of our error. Knowing this fact allows us to estimate how big the error is.

Suppose that the true value of our integral is \(I\) and let us denote our first
estimate using the trapezoidal rule with \(N_1 \) steps by \(I_1 \). The difference between
the true value and estimate, which is the error on the estimate, is proportional
to \(h_1^2 \), so let us write it as \(ch_1^2 \), where \(c \) is a constant. Then \(I \) and \(I_1 \) are related by
\(I = I_1 + ch_1^2 \), neglecting higher-order terms.

We can also write a similar formula for our second estimate \(I_2 \) of the integ-
ral, with \(N_2 \) steps: \(I = I_2 + ch_2^2 \). Equating the two expressions for \(I \) we then
get
\[
I_1 + ch_1^2 = I_2 + ch_2^2,
\]
(5.24)
or
\[
I_2 - I_1 = 3ch_2^2,
\]
(5.25)
where we have made use of the fact that \(h_1 = 2h_2 \). Rearranging this expression
then gives the error \(\varepsilon_2 \) on the second estimate of the integral to be
\[
\varepsilon_2 = ch_2^2 = \frac{1}{3} (I_2 - I_1).
\]
(5.26)
As we have written it, this expression can be either positive or negative, de-
dpending on which way the error happens to go. If we want only the absolute
size of the error then we can take the absolute value \(\frac{1}{3} |I_2 - I_1| \), which in Python
would be done using the built-in function \texttt{abs}.

This method gives us a simple way to estimate the error on the trapezoidal
rule without using the Euler–Maclaurin formula. Indeed, even in cases where
we could in principle use the Euler–Maclaurin formula because we know the
mathematical form of the integrand, it is often simpler in practice to use the
method of Eq. (5.26) instead—it is easy to program and gives reliable answers.

The same principle can be applied to integrals evaluated using Simpson’s
rule too. The equivalent of Eq. (5.26) in that case turns out to be
\[
\varepsilon_2 = \frac{1}{15} (I_2 - I_1).
\]
(5.27)
The derivation is left to the reader (see Exercise 5.5).

Exercise 5.5: Error on Simpson’s rule
Following the same line of argument that led to Eq. (5.26), show that the error on an
integral evaluated using Simpson’s rule is given, to leading order in \(h \), by Eq. (5.27).

Exercise 5.6: Write a program, or modify an earlier one, to once more calculate the
value of the integral \(\int_0^2 (x^4 - 2x + 1) \, dx \) from Example 5.1, using 20 slices, but this time
have the program also print an estimate of the error on the result, calculated using the method of Eq. (5.26). To do this you will need to evaluate the integral twice, once with $N_1 = 10$ slices and then again with $N_2 = 20$ slices. Then Eq. (5.26) gives the error. How does the error you calculated compare with a direct computation of the error as the difference between your value for the integral and the true value of 4.4? Why do the two not agree perfectly?

5.3 Choosing the Number of Steps

So far we have not specified how the number N of steps used in our integrals is to be chosen. In our example calculations we just chose round numbers and looked to see if the results seemed reasonable. This is fine for quick calculations, but for serious physics we want a more principled approach. In some calculations we may know in advance how many steps we want to use. Sometimes we have a “budget,” a certain amount of computer time that we can spend on a calculation and our goal is simply to make the most accurate calculation we can in the given amount of time. If we know, for instance, that we have time to do a thousand steps, then that’s what we do.

But a more common situation is that we want to calculate the value of an integral to a given accuracy, such as four decimal places, and we would like to know how many steps will be needed. So long as the desired accuracy does not exceed the fundamental limit set by the machine precision of our computer—the rounding error that limits all calculations—then it should always be possible to meet our goal by using a large enough number of steps. At the same time, we want to avoid using more steps than are necessary, since more steps take more time and our calculation will be slower. Ideally we would like an N that gives us the accuracy we want and no more.

A simple way to achieve this is to start with a small value of N and repeatedly double it until we achieve the accuracy we want. As we saw in Section 5.2.1, there is a simple formula, Eq. (5.26), for calculating the error on an integral when we double the number of steps. By using this formula with repeated doublings we can evaluate an integral to exactly the accuracy we desire. The procedure is straightforward. We start off by evaluating the integral with some small number of steps N_1. For instance, we might choose $N_1 = 10$. Then we double the number to $N_2 = 2N_1$, evaluate the integral again, and apply Eq. (5.26) to calculate the error. If the error is small enough to satisfy our accuracy requirements, then we’re done—we have our answer. If not, we double again to $N_3 = 2N_2$ and we keep on doubling until we achieve the re-
CHOOSING THE NUMBER OF STEPS

required accuracy. The error on the \(i\)th step of the process is given by the obvious generalization of Eq. (5.26):

\[
e_i = \frac{1}{2}(I_i - I_{i-1}),
\]

(5.28)

where \(I_i\) is the \(i\)th estimate of the integral.

This method is an example of an adaptive integration method, one that changes its own parameters to get a desired answer. A particularly nice feature of the method is that when we double the number of steps we don’t actually have to recalculate the entire integral again. We can reuse our previous calculation rather than just throwing it away. To see this, take a look at Fig. 5.3. The top part of the figure depicts the locations of the sample points, the values of \(x\) at which the integrand is evaluated in the trapezoidal rule. The sample points are regularly spaced, and bear in mind that the first and last points are treated differently from the others—the trapezoidal rule formula, Eq. (5.3), specifies that the values of \(f(x)\) at these points are multiplied by a factor of \(\frac{1}{2}\) where the values at the interior points are multiplied by 1.

The lower part of the figure shows what happens when we double the number of slices. This adds an additional set of sample points half way between the old ones, as indicated by the arrows. Note that the original points are still included in the calculation and still carry the same multiplying factors as before—\(\frac{1}{2}\) at the ends and 1 in the middle—while the new points are all multiplied by a simple factor of 1. Thus we have all of the same terms in our trapezoidal rule sum that we had before, terms that we have already evaluated, but we also a set of new ones, which we have to add into the sum to calculate its full value. In the jargon of computational physics we say that the sample points for the first estimate of the integral are nested inside the points for the second estimate.

To put this in mathematical terms, consider the trapezoidal rule at the \(i\)th step of the calculation. Let the number of slices at this step be \(N_i\) and the width of a slice be \(h_i = (b - a) / N_i\), and note that on the previous step there were half

\[
\begin{align*}
\frac{1}{2} & \quad 1 \\
\frac{1}{2} & \quad 1 & \quad \frac{1}{2}
\end{align*}
\]

Figure 5.3: Doubling the number of steps in the trapezoidal rule. Top: We evaluate the integrand at evenly spaced points as shown, with the value at each point being multiplied by the appropriate factor. Bottom: when we double the number of steps, we effectively add a new set of points, exactly half way between the previous points, as indicated by the arrows.
as many slices of twice the width, so that \(N_{i-1} = \frac{1}{2} N_i \) and \(h_{i-1} = 2h_i \). Then

\[
I_i = h_i \left[\frac{1}{2} f(a) + \frac{1}{2} f(b) + \sum_{k=1}^{N_{i-1}} f(a + kh_i) \right]
\]

\[
= h_i \left[\frac{1}{2} f(a) + \frac{1}{2} f(b) + \sum_{k=1}^{N_i/2 - 1} f(a + 2kh_i) + \sum_{k=1}^{N_i/2} f(a + (2k - 1)h_i) \right]
\]

\[
= \frac{1}{2} h_{i-1} \left[\frac{1}{2} f(a) + \frac{1}{2} f(b) + \sum_{k=1}^{N_{i-1} - 1} f(a + kh_{i-1}) \right] + h_i \sum_{k=1}^{N_i/2} f(a + (2k - 1)h_i).
\]

(5.29)

Now we note that the term \(h_{i-1} \ldots \) in the last line is precisely the trapezoidal rule estimate \(I_{i-1} \) of the integral on the previous iteration of the process, and hence

\[
I_i = \frac{1}{2} I_{i-1} + h_i \sum_{k=1}^{N_i/2} f(a + (2k - 1)h_i).
\]

(5.30)

In effect, our old estimate gives us half of the terms in our trapezoidal rule sum and we only have to calculate the other half. In this way we avoid ever recalculating any term that has already been calculated, meaning that each term in our sums is calculated only once, regardless of how many levels of the calculation it’s used in. This means it takes only about as much work to calculate \(I_i \) by going through all the successive levels \(I_1, I_2, I_3, \ldots \) in turn as it does to calculate \(I_i \) outright using the ordinary trapezoidal rule. Thus we pay very little extra price in terms of the running time of our program to use this adaptive method and we gain the significant advantage of a guarantee in the accuracy of our integral.

The entire process is as follows:

1. Choose an initial number of steps \(N_1 \) and decide on the target accuracy for the value of the integral. Calculate the first approximation \(I_1 \) to the integral using the chosen value of \(N_1 \) with the standard trapezoidal rule formula, Eq. (5.3).

2. Double the number of steps and use Eq. (5.30) to calculate an improved estimate of the integral. Also calculate the error on that estimate from Eq. (5.28).

3. If the absolute magnitude of the error is less than the target accuracy for the integral, stop. Otherwise repeat from step 2.

We can also derive a similar method for integrals evaluated using Simpson’s rule. Again we double the number of steps on each iteration of the pro-
cess and the equivalent of Eq. (5.28) is
\[e_i = \frac{1}{15} (I_i - I_{i-1}). \]
(5.31)

The equivalent of Eq. (5.30) is a little more complicated. We define
\[S_i = \frac{1}{3} \left[f(a) + f(b) + 2 \sum_{k=1}^{N_i/2-1} f(a + 2kh_i) \right], \]
(5.32)
and
\[T_i = \frac{2}{3} \sum_{k=1}^{N_i/2} f(a + (2k-1)h_i). \]
(5.33)

Then we can show that
\[S_i = S_{i-1} + T_{i-1}, \]
(5.34)
and
\[I_i = h_i (S_i + 2T_i). \]
(5.35)

Thus for Simpson’s rule the complete process is:

1. Choose an initial number of steps and a target accuracy, and calculate the sums \(S_1 \) and \(T_1 \) from Eqs. (5.32) and (5.33) and the initial value \(I_1 \) of the integral from Eq. (5.35).
2. Double the number of steps then use Eqs. (5.33), (5.34), and (5.35) to calculate the new values of \(S_i \) and \(T_i \) and the new estimate of the integral. Also calculate the error on that estimate from Eq. (5.31).
3. If the absolute magnitude of the error is less than the target accuracy for the integral, stop. Otherwise repeat from step 2.

Again notice that on each iteration of the process you only have to calculate one sum, Eq. (5.33), which includes only those terms in the Simpson’s rule formula that have not previously been calculated. As a result, the complete calculation of \(I_i \) takes very little more computer time than the basic Simpson rule.

5.4 Romberg Integration

We can do even better than the adaptive method of the last section with only a little more effort. Let us go back to the trapezoidal rule again. We have seen that the leading-order error on the trapezoidal rule, at the \(i \)th step of the adaptive method, can be written as \(ch_i^2 \) for some constant \(c \) and is given by Eq. (5.28) to be
\[ch_i^2 = \frac{1}{3} (I_i - I_{i-1}). \]
(5.36)
But by definition the true value of the integral is
\[I = I_i + ch_i^2 + O(h_i^4), \]
where we are including the \(O(h_i^4) \) term to remind us of the next term in the series—see Eq. (5.17). (Remember that there are only even order terms in this series.)

So in other words
\[I = I_i + \frac{1}{3}(I_i - I_{i-1}) + O(h_i^4). \]
(5.37)

But this expression is now accurate to third order, and has only a fourth order error, which is as accurate as Simpson’s rule, and yet we calculated it using only our results from the trapezoidal rule, with hardly any extra work; we are just reusing numbers we already calculated while carrying out the repeated doubling procedure of Section 5.3.

An alternative way to arrive at the same result is to write out the expressions for the integrals at successive steps of the doubling procedure in full:

\[I = I_i + ch_i^2 + O(h_i^4), \]
(5.38)

\[I = I_{i-1} + ch_{i-1}^2 + O(h_{i-1}^4) = I_{i-1} + 4ch_i^2 + O(h_i^4), \]
(5.39)

where we have used \(h_{i-1} = 2h_i \). Now we multiply the first equation by 4 and subtract the second from it to get Eq. (5.37) again.

We can take this process further. Let us refine our notation a little and define
\[R_{i,1} = I_i, \quad R_{i,2} = I_i + \frac{1}{3}(I_i - I_{i-1}) = R_{i,1} + \frac{1}{3}(R_{i,1} - R_{i-1,1}). \]
(5.40)

Then, from Eq. (5.37),
\[I = R_{i,2} + c_2h_i^4 + O(h_i^6), \]
(5.41)

where \(c_2 \) is another constant and we have made use of the fact that the series for \(I \) contains only even powers of \(h_i \). Analogously,
\[I = R_{i-1,2} + c_2h_{i-1}^4 + O(h_{i-1}^6) = R_{i-1,2} + 16c_2h_i^4 + O(h_i^6). \]
(5.42)

Multiplying the first of these equations by 16 and subtracting the second then gives
\[I = R_{i,2} + \frac{1}{15}(R_{i,2} - R_{i-1,2}) + O(h_i^6). \]
(5.43)

Now we have eliminated the \(h_i^4 \) term and generated an estimate accurate to fifth order, with a sixth-order error!

We can now continue this process, canceling out higher and higher order error terms and getting more and more accurate results. In general, if \(R_{i,m} \) is
an estimate calculated at the ith round of the doubling procedure and accurate
to order h_i^{2m-1}, with an error of order h_i^{2m}, then

$$I = R_{i,m} + c_m h_i^{2m} + O(h_i^{2m+2}), \quad (5.44)$$

$$I = R_{i-1,m} + c_m h_i^{2m} + O(h_i^{2m+2}) = R_{i-1,m} + 4^m c_m h_i^{2m} + O(h_i^{2m+2}). \quad (5.45)$$

Eliminating the term in h_i^{2m} then gives us

$$I = R_{i,m+1} + O(h_i^{2m+2}), \quad (5.46)$$

where

$$R_{i,m+1} = R_{i,m} + \frac{1}{4^m - 1} (R_{i,m} - R_{i-1,m}), \quad (5.47)$$

which is accurate to order h_i^{2m+1} with an error of order h_i^{2m+2}.

To make use of these results in practice we do the following:

1. We calculate our first two estimates of the integral using the regular
 trapezoidal rule: $I_1 \equiv R_{1,1}$ and $I_2 \equiv R_{2,1}$.
2. From these we calculate the more accurate estimate $R_{2,2}$ using Eq. (5.47).
 This is as much as we can do with only the two starting estimates.
3. Now we calculate the next trapezoidal rule estimate $I_3 \equiv R_{3,1}$ and from
 this, with Eq. (5.47), we calculate $R_{3,2}$, and then $R_{3,3}$.
4. At each successive stage we compute one more trapezoidal rule estimate
 $I_i \equiv R_{i,1}$, and from it then, with very little extra effort, we can calculate
 $R_{i,2} \ldots R_{i,i}$.

Perhaps a picture will help make things clearer. This diagram shows which
values $R_{i,m}$ are needed to calculate further Rs:

```
    I_1 \equiv R_{1,1}
      \downarrow
    I_2 \equiv R_{2,1} \rightarrow R_{2,2}
      \downarrow \downarrow
    I_3 \equiv R_{3,1} \rightarrow R_{3,2} \rightarrow R_{3,3}
      \downarrow \downarrow \downarrow
    I_4 \equiv R_{4,1} \rightarrow R_{4,2} \rightarrow R_{4,3} \rightarrow R_{4,4}
      \downarrow \downarrow \downarrow \downarrow
```

Each row here lists one trapezoidal rule estimate I_i followed by the other
higher-order estimates it allows us to make. The arrows show which previous
estimates go into the calculation of each new one via Eq. (5.47).
Note how each fundamental trapezoidal rule estimate \(I_i \) allows us to go one step further with calculating the \(R_{i,m} \). The most accurate estimate we get from the whole process is the very last one: if we do \(n \) levels of the process, then the last estimate is \(R_{n,n} \), which is accurate to order \(h_{n,n}^2 \).

This procedure is called Romberg integration. It’s essentially an “add-on” to our earlier adaptive trapezoidal rule scheme: all the tough work is done in the trapezoidal rule calculations and the Romberg integration takes almost no extra computer time, although it does involve extra programming. The payoff is a value for the integral that is accurate to much higher order in \(h \) than the simple trapezoidal rule value (or even than Simpson’s rule).

Exercise 5.7: Consider the integral

\[
I = \int_0^1 \sin^2 \sqrt{100x} \, dx
\]

a) Write a program that uses the adaptive trapezoidal rule method of Section 5.3 and Eq. (5.30) to calculate the value of this integral to an approximate accuracy of \(\epsilon = 10^{-6} \) (i.e., correct to six digits after the decimal point). Start with one single integration slice and work up from there to two, four, eight, and so forth. Have your program print out the number of slices, its estimate of the integral, and its estimate of the error on the integral, until the target accuracy is reached. (Hint: You should find the result is around \(I = 0.45 \).)

b) Now modify your program to evaluate the same integral using the Romberg integration technique described in this section. Have your program print out a triangular table of values, as on page 157, of all the Romberg estimates of the integral.

Exercise 5.8: Write a program that uses the adaptive Simpson’s rule method of Section 5.3 and Eqs. (5.31) to (5.35) to calculate the same integral as in Exercise 5.7, again to an approximate accuracy of \(\epsilon = 10^{-6} \). Starting this time with two integration slices, work up from there to four, eight, and so forth, printing out the results at each step until the required accuracy is reached. You should find you reach that accuracy for a significantly smaller number of slices than with the trapezoidal rule calculation in part (a) of Exercise 5.7.
5.5 Higher-order integration methods

As we have seen, the trapezoidal rule is based on approximating an integrand \(f(x) \) with straight-line segments, while Simpson’s rule uses quadratics. We can create higher-order (and hence potentially more accurate) rules by using higher-order polynomials, fitting \(f(x) \) with cubics, quartics, and so forth. The general form of the trapezoidal and Simpson rules is

\[
\int_a^b f(x) \, dx \approx \sum_{k=1}^N w_k f(x_k),
\]

(5.48)

where the \(x_k \) are the positions of the sample points at which we calculate the integrand and the \(w_k \) are some set of weights. In the trapezoidal rule, Eq. (5.3), the first and last weights are \(\frac{1}{2} \) and the others are all 1, while in Simpson’s rule the weights are \(\frac{4}{3} \) for the first and last slices and alternate between \(\frac{4}{3} \) and \(\frac{2}{3} \) for the other slices—see Eq. (5.9).

For higher-order rules the basic form is the same: after fitting to the appropriate polynomial and integrating we end up with a set of weights that multiply the values \(f(x_k) \) of the integrand at evenly spaced sample points. Here are the weights up to quartic order:

<table>
<thead>
<tr>
<th>Degree</th>
<th>Polynomial</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Straight line</td>
<td>(\frac{1}{2}, 1, \ldots, 1, \frac{1}{2})</td>
</tr>
<tr>
<td>2</td>
<td>Quadratic</td>
<td>(\frac{1}{3}, \frac{4}{3}, \frac{4}{3}, \ldots, \frac{4}{3}, \frac{1}{3})</td>
</tr>
<tr>
<td>3</td>
<td>Cubic</td>
<td>(\frac{3}{3}, \frac{9}{3}, \frac{9}{3}, \ldots, \frac{9}{3}, \frac{1}{3})</td>
</tr>
<tr>
<td>4</td>
<td>Quartic</td>
<td>(\frac{14}{45}, \frac{64}{45}, \frac{64}{45}, \ldots, \frac{64}{45}, \frac{14}{45})</td>
</tr>
</tbody>
</table>

Higher-order integration rules of this kind are called Newton–Cotes formulas and in principle they can be extended to any order we like.

However, we can do better still. The point to notice is that the trapezoidal rule is exact if the function being integrated is actually a straight line, because then the straight-line approximation isn’t an approximation at all. Similarly, Simpson’s rule is exact if the function being integrated is a quadratic, and the \(k \)th Newton–Cotes rule is exact if the function being integrated is a degree-\(k \) polynomial.

But if we have \(N \) sample points, then presumably that means we could just fit one \((N - 1) \)th-order polynomial to the whole integration interval, and get an integration method that is exact for \((N - 1) \)th order polynomials—and for any lower-order polynomials as well. (Note that it’s \(N - 1 \) because you need three points to fit a quadratic, four for a cubic, and so forth.)
But we can do even better than this. We have been assuming here that the sample points are evenly spaced. This has some significant advantages. Methods with evenly spaced points are relatively simple to program, and it’s easy to increase the number of points by adding new points half way between the old ones, as we saw in Section 5.3. However, it is also possible to derive integration methods that use unevenly spaced points and, while they lack some of the advantages above, they have others of their own. In particular, they can give very accurate answers with only small numbers of points, making them particularly suitable for cases where we need to do integrals very fast, or where evaluation of the integrand itself takes a long time.

Suppose then that we broaden our outlook into include rules of the form of Eq. (5.48), but where we are allowed to vary not only the weights \(w_k \) but also the positions \(x_k \) of the sample points. Any choice of positions is allowed, and particularly ones that are not equally spaced. As we have said, it is possible to create an integration method accurate to \((N - 1)\)th order with \(N \) equally spaced points. Varying the positions of the points gives us \(N \) extra degrees of freedom, which suggests that it then might be possible to create an integration rule that is exact for polynomials up to order \(2N - 1 \) if all of those degrees of freedom are chosen correctly. For large values of \(N \) this could give us the power to fit functions very accurately indeed, and hence to do very accurate integrals. It turns out indeed that it is possible to do this and the developments lead to the superbly accurate integration method known as Gaussian quadrature, which we describe in the next section.

5.6 Gaussian Quadrature

The derivation of the Gaussian quadrature method has two parts. First, we will see how to derive integration rules with nonuniform sample points \(x_k \). Then we will choose the particular set of nonuniform points that give the optimal integration rule.

5.6.1 Nonuniform Sample Points

Suppose we are given a nonuniform set of \(N \) points \(x_k \) and we wish to create an integration rule of the form (5.48) that calculates integrals over a given interval from \(a \) to \(b \), based only on the values \(f(x_k) \) of the integrand at those points. In other words, we want to choose weights \(w_k \) so that Eq. (5.48) works for general \(f(x) \). To do this, we will fit a single polynomial through the values \(f(x_k) \)
and then integrate that polynomial from \(a \) to \(b \) to calculate an approximation to the true integral. To fit \(N \) points we need to use a polynomial of order \(N - 1 \). The fitting can be done using the method of interpolating polynomials.

Consider the following quantity:

\[
\phi_k(x) = \prod_{m=1, m\neq k}^{N} \frac{(x - x_m)}{(x_k - x_m)}
\]

which is called an interpolating polynomial. Note that the numerator contains one factor for each sample point except the point \(x_k \). Thus \(\phi_k(x) \) is a polynomial in \(x \) of degree \(N - 1 \). For values of \(k \) from 1 to \(N \), Eq. (5.49) defines \(N \) different such polynomials.

You can confirm for yourself that if we evaluate \(\phi_k(x) \) at one of the sample points \(x = x_m \) we get

\[
\phi_k(x_m) = \begin{cases}
1 & \text{if } m = k, \\
0 & \text{if } m \neq k,
\end{cases}
\]

or, to be more concise,

\[
\phi_k(x_m) = \delta_{km},
\]

where \(\delta_{km} \) is the Kronecker delta—the quantity that is 1 when \(k = m \) and zero otherwise.

So now consider the following expression:

\[
\Phi(x) = \sum_{k=1}^{N} f(x_k) \phi_k(x).
\]

Since it is a linear combination of polynomials of degree \(N - 1 \), this entire quantity is also a polynomial of degree \(N - 1 \). And if we evaluate it at any one of the sample points \(x = x_m \) we get

\[
\Phi(x_m) = \sum_{k=1}^{N} f(x_k) \phi_k(x_m) = \sum_{k=1}^{N} f(x_k) \delta_{km} = f(x_m),
\]

where we have used Eq. (5.51).

In other words \(\Phi(x) \) is a polynomial of degree \(N - 1 \) that fits the integrand \(f(x) \) at all of the sample points. This is exactly the quantity we were looking for.
for to create our integration rule. Moreover, the polynomial of degree \(N - 1 \) that fits a given \(N \) points is unique: it has \(N \) free coefficients and our points give us \(N \) constraints, so the coefficients are completely determined. Hence \(\Phi(x) \) is not merely a polynomial that fits our points, it is the polynomial. There are no others.

To calculate an approximation to our integral, all we have to do now is integrate \(\Phi(x) \) from \(a \) to \(b \) thus:

\[
\int_a^b f(x) \, dx \simeq \int_a^b \Phi(x) \, dx = \int_a^b \sum_{k=1}^N f(x_k) \phi_k(x) \, dx
\]

\[
= \sum_{k=1}^N f(x_k) \int_a^b \phi_k(x) \, dx,
\]

(5.54)

where we have interchanged the order of the sum and integral in the second line. Comparing this expression with Eq. (5.48) we now see that the weights we need for our integration rule are given by

\[
w_k = \int_a^b \phi_k(x) \, dx.
\]

(5.55)

In other words we have found a general method for creating an integration rule of the form (5.48) for any set of sample points \(x_k \): we simply set the weights \(w_k \) equal to the integrals of the interpolating polynomials, Eq. (5.49), over the domain of integration.

There is no general closed-form formula for the integrals of the interpolating polynomials.\(^3\) In some special cases it is possible to perform the integrals exactly, but often it is not, in which case we may have to perform them on the computer, using one of our other integration methods, such as Simpson’s rule or Romberg integration. This may seem to defeat the point of our calculation, which was to find an integration method that didn’t rely on uniformly spaced sample points, and here we are using Simpson’s rule, which has uniformly spaced points! But in fact the exercise is not as self-defeating as it may appear.

The important point to notice is that we only have to calculate the weights \(w_k \) once, and then we can use them in Eq. (5.48) to integrate as many different functions over the given integration domain as we like. So we may have to put some effort into the calculation of the weights, using, say, Simpson’s rule with

\(^3\)One can in principle expand Eq. (5.49) and then integrate the resulting expression term by term, since powers of \(x \) can be integrated in closed form. However, the result would be a sum of \(2^{N-1} \) different terms, which would be intractable even for the fastest computers, for relatively modest values of \(N \).
very many slices to get as accurate an answer as possible. But we only have
to do it once, and thereafter other integrals can be done rapidly and accurately
using Eq. (5.48).

In fact, it’s better than this. Once one has calculated the weights for a par-
ticular set of sample points and domain of integration, it’s possible to map
those weights and points onto any other domain and get an integration rule
of the form (5.48) without having to recalculate the weights. Typically one
gives sample points and weights arranged in a standard interval, which for
historical reasons is usually taken to be the interval from $x = -1$ to $x = +1$.
Thus to specify an integration rule one gives a set of sample points in the range
$-1 \leq x_k \leq 1$ and a set of weights

$$w_k = \int_{-1}^{1} \phi_k(x) \, dx. \tag{5.56}$$

If we want to use any integration domain other than the one from -1 to $+1$, we
map these values to that other domain. Since the area under a curve doesn’t
depend on where that curve is along the x line, the sample points can be slid up
and down the x line en masse and the integration rule will still work fine. If the
desired domain is wider or narrower than the interval from -1 to $+1$ then we
also need to spread the points out or squeeze them together. The correct rule
for mapping the points to a general domain that runs from $x = a$ to $x = b$ is:

$$x'_k = \frac{1}{2}(b - a)x_k + \frac{1}{2}(b + a). \tag{5.57}$$

Similarly the weights do not change if we are simply sliding the sample points
up or down the x line, but if the width of the integration domain changes then
the value of the integral will increase or decrease by a corresponding factor,
and hence the weights have to be rescaled thus:

$$w'_k = \frac{1}{2}(b - a)w_k. \tag{5.58}$$

Once we have calculated the rescaled positions and weights then the integral
itself is given by

$$\int_a^b f(x) \, dx \simeq \sum_{k=1}^{n} w'_k f(x'_k). \tag{5.59}$$

5.6.2 Sample Points for Gaussian Quadrature

The developments of the previous section solve half our problem. Given the
positions of the sample points x_k they tell us how to choose the weights w_k, but
we still need to choose the sample points. As we argued in Section 5.5, in the best case it should be possible to choose our N points so that our integration rule is exact for all polynomial integrands up to and including order $2N - 1$. The proof that this is indeed possible, and the accompanying derivation of the positions, is not difficult, but it is quite long and it’s not really important for our purposes. If you want to see it, it’s given in Appendix C on page 466. Here we’ll just look at the results, which definitely are important and useful.

The bottom line is this: to get an integration rule accurate to the highest possible order of $2N - 1$, the sample points x_k should be chosen to coincide with the zeros of the Nth Legendre polynomial $P_N(x)$, rescaled if necessary to the window of integration using Eq. (5.57), and the corresponding weights w_k are

$$w_k = \left[\frac{2}{(1 - x^2)} \left(\frac{dP_N}{dx} \right)^{-1} \right]_{x=x_k},$$

(5.60)
also rescaled if necessary, using Eq. (5.58).

This method is called Gaussian quadrature and although it might sound rather formidable from the description above, in practice it’s beautifully simple: given the values x_k and w_k for your chosen N, all you have to do is rescale them if necessary using Eqs. (5.57) and (5.58) and then perform the sum in Eq. (5.59).

The only catch is finding the values in the first place. In principle the results quoted above tell us everything we need to know but in practice the zeros of the Legendre polynomials are not trivial to compute. Tables containing values of x_k and w_k up to about $N = 20$ can be found in books or on-line, or they can be calculated for any N using a suitable computer program. Python functions to perform the calculation are given in Appendix E and also in the on-line resources in the file `gaussxw.py`—Example 5.2 below shows how to use them. Figure 5.4 shows what the sample points and weights look like for the cases $N = 10$ and $N = 100$. Note how the points get closer together at the edges while at the same time the weights get smaller.

--

4 It’s called “Gaussian” because it was pioneered by the legendary mathematician Carl Friedrich Gauss. “Quadrature” is an old (19th century) name for numerical integration—Gauss’s work predated the invention of computers, to a time when people did numerical integrals by hand, meaning they were very concerned about getting the best answers when N is small. When you’re doing calculations by hand, Simpson’s rule with $N = 1000$ is not an option.

5.6 | GAUSSIAN QUADRATURE

Figure 5.4: Sample points and weights for Gaussian quadrature. The positions and heights of the bars represent the sample points and their associated weights for Gaussian quadrature with (a) \(N = 10 \) and (b) \(N = 100 \).

EXAMPLE 5.2: GAUSSIAN INTEGRAL OF A SIMPLE FUNCTION

Consider again the integral we did in Example 5.1, \(\int_0^2 (x^4 - 2x + 1) \, dx \), whose true value, as we saw, is 4.4. Here’s a program to evaluate the same integral using Gaussian quadrature. Just to emphasize the impressive power of the method, we will perform the calculation with only \(N = 3 \) sample points:

```python
def f(x):
    return x**4 - 2*x + 1

N = 3
a = 0.0
b = 2.0

# Calculate the sample points and weights, then map them to the required integration domain
x, w = gaussxw(N)
xp = 0.5*(b-a)*x + 0.5*(b+a)
wp = 0.5*(b-a)*w
```

File: gaussint.py
Perform the integration
s = 0.0
for k in range(N):
 s += wp[k]*f(xp[k])

print(s)

For this program to work you must have a copy of the file gaussxw.py in the same folder as the program itself.

Note how the function gaussxw(N) returns two variables, not just one. We discussed functions of this type in Section 2.6 but this is the first time we’ve seen one in use. In this case the variables are arrays, x and w, containing the sample points and weights for Gaussian quadrature on N points over the standard interval from −1 to +1. Notice also how we mapped the points and the weights from the standard interval to our desired integration domain: we have used Python’s ability to perform calculations with entire arrays to achieve the mapping in just two lines.

There is also an alternative function gaussxwab(N,a,b) that calculates the positions and weights and then does the mapping for you. To use this function, we would say "from gaussxw import gaussxwab", then

```python
x,w = gaussxwab(N,a,b)
s = 0.0
for k in range(N):
    s += w[k]*f(x[k])
```

It’s worth noting that the calculation of the sample points and weights takes quite a lot of work—the functions above may take a second or so to complete the calculation. That’s fine if you call them only once in your program, but you should avoid calling them many times or you may find your program runs slowly. Thus, for instance, if you need to do many integrals over different domains of integration, you should call the function gaussxw once to calculate the sample points over the standard interval from −1 to +1 and then map the points yourself to the other integration domains you need. Calling gaussxwab separately for each different integration domain would be slow and wasteful, since it would needlessly recalculate the zeros of the Legendre polynomial each time.

Our Gaussian quadrature program is quite simple—only a little more complicated than the program for the trapezoidal rule in Example 5.1. Yet when we run it, it prints the following:
The program has calculated the answer exactly, with just three sample points! This is not a mistake, or luck, or a coincidence. It's exactly what we expect. Gaussian integration on \(N \) points gives exact answers for the integrals of polynomial functions up to and including order \(2N - 1 \), which means up to fifth order when \(N = 3 \). The function \(x^4 - 2x + 1 \) that we are integrating here is a fourth-order polynomial, so we expect the method to return the exact answer of 4.4, and indeed it does. Nonetheless, the performance of the program does seem almost magical in this case: the program has evaluated the integrand at just three points and from those three values alone it is, amazingly, able to deduce the integral of the entire function exactly.

This is the strength of Gaussian quadrature: it can give remarkably accurate answers, even with small numbers of sample points. This makes it especially useful in situations where you cannot afford to use large numbers of points, either because you need to be able to calculate an answer very quickly or because evaluating your integrand takes a long time even for just a few points.

The method does have its disadvantages. In particular, because the sample points are not uniformly distributed it takes more work if we want to employ the trick of repeatedly doubling \(N \), as we did in Section 5.3, to successively improve the accuracy of the integral—if we change the value of \(N \) then all the sample points and weights have to be recalculated, and the entire sum over points, Eq. (5.48), has to be redone. We cannot reuse the calculations for old sample points as we did with the trapezoidal rule; in the language of computational physics we would say that the sample points are not nested.\(^6\)

\(^6\)There are other methods, such as Gauss–Kronrod quadrature and Clenshaw–Curtis quadrature, which have nonuniformly distributed sample points and still permit nesting, although these methods have their own disadvantages. Gauss–Kronrod quadrature permits only one step of nesting; it provides two sets of integration points, one nested inside the other, but no way to generate subsequent points nested inside those. Two sets of points are enough to make error estimates, via a formula analogous to Eq. (5.26), but one cannot keep on doubling the number of points to reduce the error below a given target, as with the adaptive method of Section 5.3. Clenshaw–Curtis quadrature does permit nesting over an arbitrary number of steps, but is not based on an integration rule of the simple form (5.48). Instead the method uses a more complicated formula whose evaluation involves, among other steps, performing a Fourier transform, which is more computationally demanding, and hence slower, than the simple sum used in Gaussian quadrature. In addition, neither Gauss–Kronrod quadrature nor Clenshaw–Curtis quadrature achieves the level of accuracy provided by Gaussian quadrature, although both are highly accurate and probably good enough for most purposes. Gauss–Kronrod quadrature in particular is widely used in mathematical software to compute definite integrals, because of its ability to provide both good accuracy and error estimates. Gauss–Kronrod quadrature is discussed further in Appendix C.
Exercise 5.9: Heat capacity of a solid

Debye’s theory of solids gives the heat capacity of a solid at temperature T to be

$$C_v = 9V\rho k_B \left(\frac{T}{\theta_D}\right)^3 \int_0^{\theta_D/T} \frac{x^4 e^x}{e^x - 1} dx,$$

where V is the volume of the solid, ρ is the number density of atoms, k_B is Boltzmann’s constant, and θ_D is the so-called Debye temperature, a property of solids that depends on their density and speed of sound.

a) Write a Python function $cv(T)$ that calculates C_v for a given value of the temperature, for a sample consisting of 1000 cubic centimeters of solid aluminum, which has a number density of $\rho = 6.022 \times 10^{28} \text{ m}^{-3}$ and a Debye temperature of $\theta_D = 428 \text{ K}$. Use Gaussian quadrature to evaluate the integral, with $N = 50$ sample points.

b) Use your function to make a graph of the heat capacity as a function of temperature from $T = 5 \text{ K}$ to $T = 500 \text{ K}$.

Exercise 5.10: Period of an anharmonic oscillator

The simple harmonic oscillator crops up in many places. Its behavior can be studied readily using analytic methods and it has the important property that its period of oscillation is a constant, independent of its amplitude, making it useful, for instance, for keeping time in watches and clocks. Frequently in physics, however, we also come across anharmonic oscillators, whose period varies with amplitude and whose behavior cannot usually be calculated analytically.

A general classical oscillator can be thought of as a particle in a concave potential well. When disturbed, the particle will rock back and forth in the well:

The harmonic oscillator corresponds to a quadratic potential $V(x) \propto x^2$. Any other form gives an anharmonic oscillator. (Thus there are many different kinds of anharmonic oscillator, depending on the exact form of the potential.)
One way to calculate the motion of an oscillator is to write down the equation for the conservation of energy in the system. If the particle has mass \(m \) and position \(x \), then the total energy is equal to the sum of the kinetic and potential energies thus:

\[
E = \frac{1}{2} m \left(\frac{dx}{dt} \right)^2 + V(x).
\]

Since the energy must be constant over time, this equation is effectively a (nonlinear) differential equation linking \(x \) and \(t \).

Let us assume that the potential \(V(x) \) is symmetric about \(x = 0 \) and let us set our anharmonic oscillator going with amplitude \(a \). That is, at \(t = 0 \) we release it from rest at position \(x = a \) and it swings back towards the origin. Then at \(t = 0 \) we have \(\frac{dx}{dt} = 0 \) and the equation above reads \(E = V(a) \), which gives us the total energy of the particle in terms of the amplitude.

a) When the particle reaches the origin for the first time, it has gone through one quarter of a period of the oscillator. By rearranging the equation above for \(\frac{dx}{dt} \) and then integrating with respect to \(t \) from 0 to \(\frac{1}{4} T \), show that the period \(T \) is given by

\[
T = \sqrt{8m} \int_0^a \frac{dx}{\sqrt{V(a) - V(x)}}.
\]

b) Suppose the potential is \(V(x) = x^4 \) and the mass of the particle is \(m = 1 \). Write a Python function that calculates the period of the oscillator for given amplitude \(a \) using Gaussian quadrature with \(N = 20 \) points, then use your function to make a graph of the period for amplitudes ranging from \(a = 0 \) to \(a = 2 \).

c) You should find that the oscillator gets faster as the amplitude increases, even though the particle has further to travel for larger amplitude. And you should find that the period diverges as the amplitude goes to zero. How do you explain these results?

5.6.3 ERRORS ON GAUSSIAN QUADRATURE

In our study of the trapezoidal rule we derived an expression, the Euler–Maclaurin formula of Eq. (5.18), for the approximation error on the value of an integral. There exists a corresponding expression for Gaussian quadrature but it is, unfortunately, ungainly and not easy to use in practice. What it does tell us, however, is that Gaussian quadrature is impressively accurate. Roughly speaking, the approximation error—the difference between the value of an integral calculated using Gaussian quadrature and the true value of the same integral, neglecting rounding error—improves by a factor of \(c/N^2 \) when we increase the number of samples by just one, where \(c \) is a constant whose value depends on the detailed shape of the integrand and the size of the domain of
integration. Thus, for instance, if we go from \(N = 10 \) to \(N = 11 \) our estimate of the integral will improve by a factor of order a hundred. This means that we converge extremely quickly on the true value of the integral, and in practice it is rarely necessary to use more than a few tens of points, or at most perhaps a hundred, to get an estimate of an integral accurate to the limits of precision of the computer.

There are some caveats. An important one is that the function being integrated must be reasonably smooth. When one is calculating an integral using a relatively small number of sample points, the points will inevitably be far apart, which leaves room for the function to vary significantly between them. Since Gaussian quadrature looks only at the values of the function at the sample points and nowhere else, substantial variation between points is not taken into account in calculating the value of the integral. If, on the other hand, the function is relatively smooth, then the samples we take will give a good approximation of the function’s behavior and Gaussian quadrature will work well. Thus for rapidly varying functions one needs to use enough sample points to capture the variation, and in such cases larger values of \(N \) may be warranted.

Another issue is that there is no direct equivalent of Eq. (5.26) for estimating the error in practice. As we have said, however, the error improves by a factor of \(c/N^2 \) when the number of samples is increased by one, which is typically a substantial improvement if \(N \) is reasonably large. And if we double the value of \(N \) then we compound many such improvements, giving an overall reduction in the error by a factor of something like \(N^{-2N} \), which is typically a huge improvement.

If we make a Gaussian estimate \(I_N \) of the true value \(I \) of an integral using \(N \) sample points, then \(I = I_N + \epsilon_N \), where \(\epsilon_N \) is the approximation error. And if we double the number of samples to \(2N \) we have, \(I = I_{2N} + \epsilon_{2N} \). Equating the two expressions for \(I \) and rearranging, we have

\[
\epsilon_N - \epsilon_{2N} = I_{2N} - I_N. \tag{5.61}
\]

But, as we have argued, the error is expected to improve by a large factor when we double the number of sample points, meaning that \(\epsilon_{2N} \ll \epsilon_N \). So, to a good approximation,

\[
\epsilon_N \simeq I_{2N} - I_N. \tag{5.62}
\]

Another way of saying this is that \(I_{2N} \) is so much better an estimate of the true value of the integral than \(I_N \) that for the purposes of estimating the error we
can treat it as if it were the true value, so that $I_{2N} - I_N$ is a good estimate of the error.

We can use Eq. (5.62) in an adaptive integration method where we double the number of sample points at each step, calculating the error and repeating until the desired target accuracy is reached. Such a method is not entirely satisfactory, for a couple of reasons. First, when we double the number of sample points from N to $2N$, Eq. (5.62) gives us only the error on the previous estimate of the integral I_N, not on the new estimate I_{2N}. This means that we always end up doubling N one more time than is strictly necessary to achieve the desired accuracy, and that the final value for the integral will probably be significantly more accurate than we really need it to be, which means we have wasted time on unnecessary calculations. Second, we have to perform the entire calculation of the integral anew for each new value of N. As mentioned earlier, and unlike the adaptive trapezoidal method of Section 5.3, we cannot reuse the results of earlier calculations to speed up the computation. So an adaptive calculation of this type would be slower than just a single instance of Gaussian quadrature. On the other hand, it’s straightforward to show that the total number of terms in all the sums we perform, over all steps of the process, is never greater than twice the final value of N used, which means that the adaptive procedure costs us no more than about twice the effort required for the simple Gaussian quadrature. Moreover, as we have said, we rarely need to go beyond $N = 100$ to get a highly accurate answer, so the number of times we double N is typically rather small. If we start with, say, $N = 10$, we will probably only have to double three or four times. The net result is that, despite the extra work, Gaussian quadrature is often more efficient than methods like the trapezoidal rule or Simpson’s rule in terms of overall time needed to get an answer to a desired degree of accuracy.

An alternative, though more complex, solution to the problem of estimating the error in Gaussian quadrature is to use Gauss–Kronrod quadrature, a variant of Gaussian quadrature based on the properties of Stieltjes polynomials, which provides not only an accurate estimate of our integral (though not quite as accurate as ordinary Gaussian quadrature) but also an estimate of the error. We will not use Gauss–Kronrod quadrature in this book, but the interested reader can find a short discussion, with some derivations, in Appendix C.
5.7 INTEGRALS OVER INFINITE RANGES

Often in physics we encounter integrals over infinite ranges, like \(\int_{0}^{\infty} f(x) \, dx \). The techniques we have seen so far don’t work for these integrals because we’d need an infinite number of sample points to span an infinite range. The solution to this problem is to change variables. For an integral over the range from 0 to \(\infty \) the standard change of variables is

\[
 z = \frac{x}{1+x} \quad \text{or equivalently} \quad x = \frac{z}{1-z}. \quad (5.63)
\]

Then \(dx = dz/(1-z)^2 \) and

\[
 \int_{0}^{\infty} f(x) \, dx = \int_{0}^{1} \frac{1}{(1-z)^2} f\left(\frac{z}{1-z} \right) \, dz, \quad (5.64)
\]

which can be done using any of the techniques earlier in the chapter, including the trapezoidal and Simpson rules, or Gaussian quadrature.

This is not the only change of variables that we can use, however. In fact, a change of the form

\[
 z = \frac{x}{c+x} \quad (5.65)
\]

would work for any value of \(c \), or \(z = x^\gamma/(1 + x^\gamma) \) for any \(\gamma \), or any of a range of other possibilities. Some choices typically work better than others for particular integrals and sometimes you have to play around with things a little to find what works for a given problem, but Eq. (5.63) is often a good first guess. (See Exercise 5.1 for a counterexample.)

To do an integral over a range from some nonzero value \(a \) to \(\infty \) we can use a similar approach, but make two changes of variables, first to \(y = x - a \), which shifts the start of the integration range to 0, and then \(z = y/(1+y) \) as in Eq. (5.63). Or we can combine both changes into a single one:

\[
 z = \frac{x-a}{1+x-a} \quad \text{or} \quad x = \frac{z}{1-z} + a, \quad (5.66)
\]

and again \(dx = dz/(1-z)^2 \), so that

\[
 \int_{a}^{\infty} f(x) \, dx = \int_{0}^{1} \frac{1}{(1-z)^2} f \left(\frac{z}{1-z} + a \right) \, dz. \quad (5.67)
\]

Integrals from \(-\infty\) to \(a \) can be done the same way—just substitute \(z \to -z \).

For integrals that run from \(-\infty\) to \(\infty \) we can split the integral into two parts, one from \(-\infty\) to 0 and one from 0 to \(\infty \), and then use the tricks above for the
two integrals separately. Or we can put the split at some other point \(a\) and perform separate integrals from \(-\infty\) to \(a\) and from \(a\) to \(\infty\). Alternatively, one could use a single change of variables, such as
\[
x = \frac{z}{1 - z^2}, \quad dx = \frac{1 + z^2}{(1 - z^2)^2} \, dz,
\]
which would give
\[
\int_{-\infty}^{\infty} f(x) \, dx = \int_{-1}^{1} \frac{1 + z^2}{(1 - z^2)^2} f\left(\frac{z}{1 - z^2}\right) \, dz.
\]
Another possibility, perhaps simpler, is
\[
x = \tan z, \quad dx = \frac{dz}{\cos^2 z},
\]
which gives
\[
\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\pi/2}^{\pi/2} f(\tan z) \cos^2 z \, dz.
\]

Example 5.3: Integrating over an Infinite Range

Let us calculate the value of the following integral using Gaussian quadrature:
\[
I = \int_{0}^{\infty} e^{-t^2} \, dt.
\]
We make the change of variables given in Eq. (5.63) and the integral becomes
\[
I = \int_{0}^{1} e^{-z^2/(1-z)^2} \, dz.
\]
We can modify our program from Example 5.2 to perform this integral using Gaussian quadrature with \(N = 50\) sample points:
```python
def f(z):
    return exp(-z**2/(1-z)**2)/(1-z)**2

N = 50
a = 0.0
b = 1.0
x,w = gaussxwab(N,a,b)
```


\[s = 0.0 \]
\[\text{for } k \text{ in range}(N): \]
\[s += w[k]*f(x[k]) \]
\[\text{print}(s) \]

If we run this program it prints

\[0.886226925453 \]

In fact, the value of this particular integral is known exactly to be \(\frac{1}{2} \sqrt{\pi} = 0.886226925453 \ldots \) Again we see the impressive accuracy of the Gaussian quadrature method: with just 50 sample points, we have calculated an estimate of the integral that is correct to the limits of precision of the computer.

Exercise 5.11: The Stefan–Boltzmann constant

The Planck theory of thermal radiation tells us that in the (angular) frequency interval \(\omega \) to \(\omega + d\omega \), a black body of unit area radiates electromagnetically an amount of thermal energy per second equal to \(I(\omega) \, d\omega \), where

\[I(\omega) = \frac{\hbar}{4\pi^2c^2} \omega^3 \left(\frac{\omega}{k_B T} - 1 \right). \]

Here \(\hbar \) is Planck’s constant over \(2\pi \), \(c \) is the speed of light, and \(k_B \) is Boltzmann’s constant.

a) Show that the total energy per unit area radiated by a black body is

\[W = \frac{k_B^4 T^4}{4\pi^2\hbar^3} \int_0^\infty \frac{x^3}{e^x - 1} \, dx. \]

b) Write a program to evaluate the integral in this expression. Explain what method you used, and how accurate you think your answer is.

c) Even before Planck gave his theory of thermal radiation around the turn of the 20th century, it was known that the total energy \(W \) given off by a black body per second followed Stefan’s law: \(W = \sigma T^4 \), where \(\sigma \) is the Stefan–Boltzmann constant. Use your value for the integral above to compute a value for the Stefan–Boltzmann constant (in SI units) to three significant figures. Check your result against the known value, which you can find in books or on-line. You should get good agreement.

Exercise 5.12: Quantum uncertainty in the harmonic oscillator

In units where all the constants are 1, the wavefunction of the \(n \)th energy level of the one-dimensional quantum harmonic oscillator—i.e., a spinless point particle in a
quadratic potential well—is given by
\[\psi_n(x) = \frac{1}{\sqrt{2^n n! \pi}} e^{-x^2/2} H_n(x), \]
for \(n = 0 \ldots \infty \), where \(H_n(x) \) is the \(n \)th Hermite polynomial. Hermite polynomials satisfy a relation somewhat similar to that for the Fibonacci numbers, although more complex:
\[H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x). \]
The first two Hermite polynomials are \(H_0(x) = 1 \) and \(H_1(x) = 2x \).

a) Write a user-defined function \(H(n, x) \) that calculates \(H_n(x) \) for given \(x \) and any integer \(n \geq 0 \). Use your function to make a plot that shows the wavefunctions for \(n = 0, 1, 2, \) and \(3 \), all on the same graph, in the range \(x = -4 \) to \(x = 4 \). Hint: There is a function \texttt{factorial} in the \texttt{math} package that calculates the factorial of an integer.

b) Make a separate plot of the wavefunction for \(n = 30 \) from \(x = -10 \) to \(x = 10 \). Hint: If your program takes too long to run in this case, then you’re doing the calculation wrong—the program should take only a second or so to run.

c) The quantum uncertainty of a particle in the \(n \)th level of a quantum harmonic oscillator can be quantified by its root-mean-square position \(\sqrt{\langle x^2 \rangle} \), where
\[\langle x^2 \rangle = \int_{-\infty}^{\infty} x^2 |\psi_n(x)|^2 \, dx. \]
Write a program that evaluates this integral using Gaussian quadrature on 100 points and then calculates the uncertainty (i.e., the RMS position of the particle) for a given value of \(n \). Use your program to calculate the uncertainty for \(n = 5 \). You should get an answer in the vicinity of \(\sqrt{\langle x^2 \rangle} \approx 2.3 \).

5.8 MULTIPLE INTEGRALS

Integrals over more than one variable are common in physics problems and can be tackled using generalizations of the methods we have already seen. Consider for instance the integral
\[I = \int_0^1 \int_0^1 f(x, y) \, dx \, dy. \]
(5.74)

We can rewrite this by defining a function \(F(y) \) thus
\[F(y) = \int_0^1 f(x, y) \, dx. \]
(5.75)
Then

$$I = \int_0^1 F(y) \, dy. \quad (5.76)$$

Thus one way to do the multiple integral numerically is first to evaluate $F(y)$ for a suitable set of y values, which means performing the integral in Eq. (5.75), then using those values of $F(y)$ to do the integral in Eq. (5.76). For instance, if we do the integrals by Gaussian quadrature with the same number N of points for both x and y integrals, we have

$$F(y) \simeq \sum_{i=1}^{N} w_i f(x_i, y) \quad \text{and} \quad I \simeq \sum_{j=1}^{N} w_j F(y_j). \quad (5.77)$$

An alternative way to look at the calculation is to substitute the first sum into the second to get the Gauss–Legendre product formula:

$$I \simeq \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j f(x_i, y_j). \quad (5.78)$$

This expression has a form similar to the standard integration formula for single integrals, Eq. (5.48), with a sum over values of the function $f(x, y)$ at a set of
Figure 5.6: 128-point Sobol sequence. The Sobol sequence is one example of a low-discrepancy point set that gives good results for integrals in high dimensions. This figure shows a Sobol sequence of 128 points in two dimensions.

sample points, multiplied by appropriate weights. Equation (5.78) represents a kind of two-dimensional Gaussian quadrature, with weights w_iw_j distributed over a two-dimensional grid of points as shown in Fig. 5.5.

Once you look at it this way, however, you realize that in principle there’s no reason why the sample points have to be on a grid. They could be anywhere—we can use any set of 2D locations and suitable weights that give a good estimate of the integral. Just as Gaussian quadrature gives the best choice of points for an integral in one dimension, so we can ask what the best choice is for two dimensions, or for higher dimensions like three or four. It turns out, however, that the answer to this question is not known in general. There are some results for special cases, but no general answer. Various point sets have been proposed for use with 2D integrals that appear to give reasonable results, but there is no claim that they are the best possible choices. Typically they are selected because they have some other desirable properties, such as nesting, and not because they give the most accurate answer. One common choice of point set is the Sobol sequence, shown for $N = 128$ points in Fig. 5.6. Sobol sequences and similar sets of points are known as low-discrepancy point sets or sometimes quasi-random point sets (although the latter name is a poor one because there’s nothing random about them). Another common way to
choose the sample points is to choose them completely randomly, which leads to the method known as Monte Carlo integration. Choosing points at random may seem like an odd idea, but as we will see it can be a useful approach for certain types of integrals, particularly integrals over very many variables. We will look at Monte Carlo integration in Section 10.2, after we study random number generators.

In the integral of Eq. (5.74) the limits of both integrals were constant, which made the domain of integration rectangular in \(xy\) space. It’s not uncommon, however, for the limits of one integral to depend on the other, as here:

\[
I = \int_0^1 dy \int_0^y dx f(x, y). \tag{5.79}
\]

We can use the same approach as before to evaluate this integral. We define

\[
F(y) = \int_0^y f(x, y) \, dx, \tag{5.80}
\]

so that

\[
I = \int_0^1 F(y) \, dy, \tag{5.81}
\]
and then do both integrals with any method we choose, such as Gaussian quadrature. The result, again, is a two-dimensional integration rule, but now with the sample points arranged in a triangular space as shown in Fig. 5.7.

This method will work, and will probably give reasonable answers, but it’s not ideal. In particular note how the sample points are crammed together in the lower left corner of the integration domain but much farther apart at the top. This means, all other things being equal, that we’ll have lower accuracy for the part of the integral at the top. It would be better if the accuracy were roughly uniform.

And things can get worse still. Suppose the domain of integration takes some more complicated shape like Fig. 5.8. We will not come across any examples this complicated in this book, but if we did there would be various techniques we could use. One is the Monte Carlo integration method mentioned above, which we study in detail in Section 10.2. Another is to set the integrand to zero everywhere outside the domain of integration and then integrate it using a standard method over some larger, regularly shaped domain, such as a rectangle, that completely encloses the irregular one. There are many more sophisticated techniques as well, but we will not need them for the moment.
Exercise 5.13: Gravitational pull of a uniform sheet

A uniform square sheet of metal is floating motionless in space:

![Diagram of a uniform square sheet with a point mass at a distance z from the center.]

The sheet is 10 m on a side and of negligible thickness, and it has a mass of 10 metric tonnes.

a) Consider the gravitational force due to the plate felt by a point mass of 1 kg a distance \(z \) from the center of the square, in the direction perpendicular to the sheet, as shown above. Show that the component of the force along the \(z \)-axis is

\[
dF_z = G \rho \int_{-L/2}^{L/2} \int_{-L/2}^{L/2} \frac{dx \, dy}{(x^2 + y^2 + z^2)^{3/2}},
\]

where \(G = 6.674 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2} \) is Newton’s gravitational constant and \(\rho \) is the mass per unit area of the sheet.

b) Write a program to calculate and plot the force as a function of \(z \) from \(z = 0 \) to \(z = 10 \) m. For the double integral use (double) Gaussian quadrature, as in Eq. (5.78), with 100 sample points along each axis.

c) You should see a smooth curve, except at very small values of \(z \), where the force should drop off suddenly to zero. This drop is not a real effect, but an artifact of the way we have done the calculation. Explain briefly where this artifact comes from and suggest a strategy to remove it, or at least to decrease its size.

5.9 Derivatives

The opposite of a numerical integral is a numerical derivative. You hear a lot less about numerical derivatives than integrals, however, for a number of reasons:
1. The basic techniques for numerical derivatives are quite simple, so they
don’t take long to explain.
2. Derivatives of known functions can always been calculated analytically,
so there’s less need to calculate them numerically.
3. There are some significant practical problems with numerical deriva-
tives, which means they are used less often then numerical integrals.
(There are, however, some situations in which they are important, par-
ticularly in the solution of partial differential equations, which we will
look at in Chapter 9.)

For all of these reasons this is a short section—you need to know about numer-
ic derivatives, but we won’t spend too much time on them.

5.9.1 FORWARD AND BACKWARD DIFFERENCES

The standard definition of a derivative, the one you see in the calculus books,
is
\[\frac{df}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}. \] (5.82)
The basic method for calculating numerical derivatives is precisely an imple-
mentation of this formula. We can’t take the limit \(h \to 0 \) in practice, but we
can make \(h \) very small and then calculate
\[\frac{df}{dx} \approx \frac{f(x + h) - f(x)}{h}. \] (5.83)

This approximation to the derivative is called the \textit{forward difference}, because
it’s measured in the forward (i.e., positive) direction from the point of inter-
est \(x \). You can think of it in geometric terms as shown in Fig. 5.9—it’s simply
the slope of the curve \(f(x) \) measured over a small interval of width \(h \) in the
forward direction from \(x \).

There is also the \textit{backward difference}, which has the mirror image definition
\[\frac{df}{dx} \approx \frac{f(x) - f(x - h)}{h}. \] (5.84)
The forward and backward differences typically give about the same answer
and in many cases you can use either. Most often one uses the forward dif-
fERENCE. There are a few special cases where one is preferred over the other,
particularly when there is a discontinuity in the derivative of the function at
the point \(x \) or when the domain of the function is bounded and you want the
value of the derivative on the boundary, in which case only one or other of the
two difference formulas will work. The rest of the time, however, there is little
to choose between them.

Before using either the forward or backward difference we must choose a
close value for h. To work out what the best value is we need to look at the errors
and inaccuracies involved in calculating numerical derivatives.

5.9.2 Errors

Calculations of derivatives using forward and backward differences are not
perfectly accurate. There are two sources of error. The first is rounding error of
the type discussed in Section 4.2. The second is the approximation error that
arises because we cannot take the limit $h \to 0$, so our differences are not really
ture derivatives. By contrast with numerical integrals, where, as we have seen,
rounding error is usually negligible, it turns out that both sources of error are
important when we calculate a derivative.

To understand why this is let us focus on the forward difference and con-
sider the Taylor expansion of $f(x)$ about x:

$$f(x + h) = f(x) + hf'(x) + \frac{1}{2}h^2f''(x) + \ldots$$ \hspace{1cm} (5.85)

where f' and f'' denote the first and second derivatives of f. Rearranging this
expression, we get

\[f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{1}{2} hf''(x) + \ldots \]

(5.86)

When we calculate the forward difference we calculate only the first part on
the right-hand side, and neglect the term in \(f''(x) \) and all higher terms. The
size of these neglected terms measures the approximation error on the forward
difference. Thus, to leading order in \(h \), the absolute magnitude of the approxi-
mation error is \(\frac{1}{2} h |f''(x)| \), which is linear in \(h \) so that, as we would expect, we
should get more accurate answers if we use smaller values of \(h \).

But now here is the problem: as we saw in Section 4.2, subtracting numbers
from one another on a computer can give rise to big rounding errors (in frac-
tional terms) if the numbers are close to one another. And that’s exactly what
happens here—the numbers \(f(x+h) \) and \(f(x) \) that we are subtracting will be
very close to one another if we make \(h \) small. Thus if we make \(h \) too small,
we will get a large rounding error in our result. This puts us in a difficult
situation: we want to make \(h \) small to make the forward difference approxi-
mation as accurate as possible, but if we make it too small we will get a large
rounding error. To get the best possible answer, we are going to have to find a
compromise.

In Section 4.2 we saw that the computer can typically calculate a number
such as \(f(x) \) to an accuracy of \(C f(x) \), where the value of the error constant \(C \)
can vary but is typically about \(C = 10^{-16} \) in Python. Since \(f(x+h) \) is normally
close in value to \(f(x) \), the accuracy of our value for \(f(x+h) \) will also be about
the same, and the absolute magnitude of the total rounding error on \(f(x+h) - f(x) \) will, in the worst case, be about \(2C |f(x)| \)—it might be better than
this if the two errors go in opposite directions and happen to cancel out, but
we cannot assume that this will be the case. Then the worst-case rounding
error on the complete forward difference, Eq. (5.83), will be \(2C|f(x)|/h \).

Meanwhile, the approximation error is, as we have said, about \(\frac{1}{2} h |f''(x)| \)
from Eq. (5.86), which means that the total error \(e \) on our derivative, in the
worst case, is

\[e = \frac{2C |f(x)|}{h} + \frac{1}{2} h |f''(x)|. \]

(5.87)

We want to find the value of \(h \) that minimizes this error, so we differentiate
with respect to \(h \) and set the result equal to zero, which gives

\[-\frac{2C |f(x)|}{h^2} + \frac{1}{2} |f''(x)| = 0, \]

(5.88)
or equivalently

$$h = \sqrt{4C \left| \frac{f(x)}{f''(x)} \right|}. \quad (5.89)$$

Substituting this value back into Eq. (5.87) we find that the error on our derivative is

$$\epsilon = h |f''(x)| = \sqrt{4C |f(x)f''(x)|}. \quad (5.90)$$

Thus, for instance, if $f(x)$ and $f''(x)$ are of order 1, we should choose h to be roughly of order \sqrt{C}, which will be typically about 10^{-8}, and the final error on our result will also be about \sqrt{C} or 10^{-8}. A similar analysis can be applied to the backward difference, and gives the same end result.

In other words, we can get about half of the usual numerical precision on our derivatives but not better. If the precision is, as here, about 16 digits, then we can get 8 digits of precision on our derivatives. This is substantially poorer than most of the calculations we have seen so far in this book, and could be a significant source of error for calculations that require high accuracy.

5.9.3 CENTRAL DIFFERENCES

We have seen that forward and backward differences are not very accurate. What can we do to improve the situation? A simple improvement is to use the central difference:

$$\frac{df}{dx} \approx \frac{f(x + h/2) - f(x - h/2)}{h}. \quad (5.91)$$

The central difference is similar to the forward and backward differences, approximating the derivative using the difference between two values of $f(x)$ at points a distance h apart. What’s changed is that the two points are now placed symmetrically around x, one at a distance $\frac{1}{2}h$ in the forward (i.e., positive) direction and the other at a distance $\frac{1}{2}h$ in the backward (negative) direction.

To calculate the approximation error on the central difference we write two Taylor expansions:

$$f(x + h/2) = f(x) + \frac{1}{2}hf'(x) + \frac{1}{8}h^2f''(x) + \frac{1}{48}h^3f'''(x) + \ldots \quad (5.92)$$

$$f(x - h/2) = f(x) - \frac{1}{2}hf'(x) + \frac{1}{8}h^2f''(x) - \frac{1}{48}h^3f'''(x) + \ldots \quad (5.93)$$

Subtracting the second expression from the first and rearranging for $f'(x)$, we get

$$f'(x) = \frac{f(x + h/2) - f(x - h/2)}{h} - \frac{1}{24}h^2f'''(x) + \ldots \quad (5.94)$$
To leading order the magnitude of the error is now $\frac{1}{24} h^2 |f'''(x)|$, which is one order in h higher than before. There is also, as before, a rounding error; its size is unchanged from our previous calculation, having magnitude $2C |f(x)|/h$, so the magnitude of the total error on our estimate of the derivative is

$$\varepsilon = \frac{2C |f(x)|}{h} + \frac{1}{24} h^2 |f'''(x)|. \quad (5.95)$$

Differentiating to find the minimum and rearranging, we find that the optimal value of h is

$$h = \left(\frac{24C \left| \frac{f(x)}{f'''(x)} \right|}{|f'''(x)|} \right)^{1/3}, \quad (5.96)$$

and substituting this back into Eq. (5.95) we find the optimal error itself to be

$$\varepsilon = \frac{1}{8} h^2 |f'''(x)| = \left(\frac{9}{8} C^2 |f(x)|^2 |f'''(x)| \right)^{1/3}. \quad (5.97)$$

Thus, for instance, if $f(x)$ and $f'''(x)$ are of order 1, the ideal value of h is going to be around $h \approx C^{1/3}$, which is typically about 10^{-5} but the error itself will be around $C^{2/3}$, or about 10^{-10}.

Thus the central difference is indeed more accurate than the forward and backward differences, by a factor of 100 or so in this case, though we get this accuracy by using a larger value of h. This may seem slightly surprising, but it is the correct result.

Example 5.4: Derivative of a Sampled Function

As an example application of the central difference, suppose we are given the values of a function $f(x)$ measured at regularly spaced sample points a distance h apart—see Fig. 5.10. One often gets such samples from data collected in the laboratory, for example. Now suppose we want to calculate the derivative of f at one of these points (case (a) in the figure). We could use a forward or backward difference based on the sample at x and one of the adjacent ones, or we could use a central difference. However, if we use a central difference, which is based on points equally spaced on either side of x, then we must use the points at $x + h$ and $x - h$. We cannot, as in Eq. (5.91), use points at $x + h/2$ and $x - h/2$ because there are no such points—we only have the samples we are given. The formula for the central difference in this case will thus be

$$\frac{df}{dx} \approx \frac{f(x + h) - f(x - h)}{2h}. \quad (5.98)$$
This means that the interval between the points we use is $2h$ for the central difference, but only h for the forward and backward differences. So which will give a better answer? The central difference because it’s a better approximation or the forward difference because of its smaller interval?

From Eq. (5.90) we see the error on the forward difference is $h |f''(x)|$ and from Eq. (5.97) the error on the central difference—with h replaced by $2h$—is $h^2 |f'''(x)|$. Which is smaller depends on the value of h. For the central difference to give the more accurate answer, we require $h^2 |f'''(x)| < h |f''(x)|$ or

$$h < \frac{|f''(x)|}{|f'''(x)|}. \quad (5.99)$$

If h is larger than this then the forward difference is actually the better approximation in this case.

But now suppose that instead of calculating the value of the derivative at one of the sample points itself, we want to calculate it at a point x that lies halfway between two of the samples—case (b) in Fig. 5.10. Viewed from that point we do have samples at $x + h/2$ and $x - h/2$, so now we can use the original form of the central difference, Eq. (5.91), with an interval only h wide, as with the forward difference. This calculation will give a more accurate answer, but only at the expense of calculating the result at a point in between the samples.
5.9.4 HIGHER-ORDER APPROXIMATIONS FOR DERIVATIVES

One way to think about the numerical derivatives of the previous sections is that we are fitting a straight line through two points, such as the points \(f(x) \) and \(f(x + h) \), and then asking about the slope of that line at the point \(x \). The trapezoidal rule of Section 5.1.1 does a similar thing for integrals, approximating a curve by a straight line between sample points and estimating the area under the curve using that line. We saw that we can make a higher-order—and usually better—approximation to an integral by fitting a quadratic or higher-order polynomial instead of a straight line, and this led to the Simpson and Newton–Cotes rules for integrals. We can take a similar approach with derivatives by fitting a polynomial to a set of sample points and then calculating the derivative of the polynomial at \(x \).

Consider, for example, fitting a quadratic curve \(y = ax^2 + bx + c \) to the function \(f(x) \). We require three sample points to make the fit and, as with the central difference of Section 5.9.3, the best results are obtained by placing the points symmetrically about the point of interest \(x \). Suppose, for example, that we are interested in the derivative at \(x = 0 \), so we place our three points at \(-h\), \(0\), and \(+h\), for some \(h \) that we choose. Requiring that our quadratic is equal to \(f(x) \) at these three points gives us three equations thus:

\[
\begin{align*}
ah^2 - bh + c &= f(-h), \\
c &= f(0), \\
ah^2 + bh + c &= f(h),
\end{align*}
\]

(5.100)

In principle, we can now solve these equations for the three parameters \(a \), \(b \), and \(c \). (This is the same calculation that we did in Section 5.1.2 for Simpson’s rule.) However, in this case, we don’t need the whole solution, because we
don’t need all of the parameters. Given the quadratic fit \(y = ax^2 + bx + c \), the derivative of the curve at the point \(x = 0 \) is

\[
\frac{dy}{dx} = \left[2ax + b \right]_{x=0} = b. \tag{5.101}
\]

So we need only the one parameter \(b \), which we can get from Eq. (5.100) by subtracting the first equation from the third to give \(2bh = f(h) - f(-h) \) and rearranging. Thus our approximation for the derivative at \(x = 0 \) is

\[
\frac{df}{dx} \approx \frac{f(h) - f(-h)}{2h}. \tag{5.102}
\]

We have done this calculation for the derivative at \(x = 0 \), but the same result applies at any other point—we can slide the whole function up or down the \(x \)-axis, to put any point \(x \) at the origin and then calculate the derivative from the formula above. Or, equivalently, we can just write

\[
\frac{df}{dx} \approx \frac{f(x+h) - f(x-h)}{2h} \tag{5.103}
\]

for general \(x \).

This is the correct result for the quadratic approximation, but it’s a disappointing result, since Eq. (5.103) is nothing other than the central difference approximation for sample points \(2h \) apart, which we already saw in Eq. (5.98). In other words, the higher-order approximation has not helped us in this case.

However, going to still higher orders does help. If we use a cubic or quartic approximation, we do get improved estimates of the derivative. At higher orders there is a distinction between the odd- and even-order approximations. For the odd-order ones the sample points fall at “half-way” points, as with the central difference of Eq. (5.91). For instance, to get the four sample points required for a cubic approximation, symmetrically distributed about zero, we would choose them to fall at \(x = -\frac{3}{2}h, -\frac{1}{2}h, \frac{1}{2}h, \) and \(\frac{3}{2}h \). For even-order approximations, on the other hand, the samples fall at “integer” points; the five points for the quartic approximation, for instance, fall at \(-2h, -h, 0, h, \) and \(2h \).

The methodology for deriving the higher-order approximations follows the same pattern as for the quadratic case: we write down the required value of the polynomial at each of the sample points, which gives us a set of simultaneous equations in the polynomial coefficients. As before, we actually need only one of those coefficients, the coefficient of the linear term in the polynomial. Solving for this coefficient gives us our expression for the derivative. At each order the expression is a linear combination of the samples, divided by \(h \). We
Table 5.1: Coefficients for numerical derivatives. The coefficients for central approximations to the first derivative of \(f(x) \) at \(x = 0 \). To derive the full expression for an approximation, multiply the samples listed in the top row of the table by the coefficients in one of the other rows, then divide by \(h \). For instance, the cubic approximation would be \(
abla f(\frac{3}{2}h) - \frac{27}{24} f(\frac{1}{2}h) + \frac{27}{24} f(\frac{1}{2}h) - \frac{1}{24} f(\frac{3}{2}h) \) \(/h \). For derivatives at points other than \(x = 0 \) the same coefficients apply—one just uses the appropriate sample points around the value \(x \) of interest. The final column of the table gives the order of the approximation error on the derivative.

<table>
<thead>
<tr>
<th>Degree</th>
<th>(f(-\frac{5}{2}h))</th>
<th>(f(-2h))</th>
<th>(f(-\frac{3}{2}h))</th>
<th>(f(-h))</th>
<th>(f(-\frac{1}{2}h))</th>
<th>(f(0))</th>
<th>(f(\frac{1}{2}h))</th>
<th>(f(h))</th>
<th>(f(\frac{3}{2}h))</th>
<th>(f(2h))</th>
<th>(f(\frac{5}{2}h))</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>(-1)</td>
<td>1</td>
<td>(-1)</td>
<td>1</td>
<td>(-1)</td>
<td>1</td>
<td>(-1)</td>
<td>1</td>
<td>(O(h^2))</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>(-\frac{1}{2})</td>
<td></td>
<td>(-\frac{27}{24})</td>
<td>(-\frac{27}{24})</td>
<td>(\frac{1}{2})</td>
<td>(-\frac{1}{24})</td>
<td>(-\frac{1}{12})</td>
<td>(-\frac{1}{24})</td>
<td>(O(h^4))</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(-\frac{3}{64})</td>
<td>(\frac{1}{24})</td>
<td>(-\frac{2}{24})</td>
<td>(-\frac{27}{24})</td>
<td>(\frac{27}{24})</td>
<td>(\frac{5}{5})</td>
<td>(-\frac{1}{24})</td>
<td>(\frac{3}{64})</td>
<td>(O(h^6))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(-\frac{5}{64})</td>
<td>(\frac{1}{24})</td>
<td>(-\frac{27}{24})</td>
<td>(-\frac{27}{24})</td>
<td>(3)</td>
<td>(-\frac{25}{384})</td>
<td>(\frac{75}{64})</td>
<td>(-\frac{25}{384})</td>
<td>(O(h^4))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(-\frac{3}{256})</td>
<td>(\frac{25}{384})</td>
<td>(-\frac{75}{64})</td>
<td>(-\frac{75}{64})</td>
<td>(2)</td>
<td>(-\frac{1}{12})</td>
<td>(O(h^6))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

will not go through the derivations in detail, but Table 5.1 gives the coefficients of the combinations for the first five approximations.

Each of the approximations given in the table is exact, apart from rounding error, if the function being differentiated is actually a polynomial of the appropriate (or lower) degree, so that the polynomial fit is a perfect one. Most of the time, however, this will not be the case and there will be an approximation error involved in calculating the derivative. One can calculate this error to leading order for each of the approximations by a method analogous to our calculations for the forward, backward, and central differences: we perform Taylor expansions about \(x = 0 \) to derive expressions for \(f(x) \) at each of the sample points, then plug these expressions into the formula for the derivative. The order in \(h \) of the resulting error is listed in the final column of Table 5.1. As before, this approximation error must be balanced against the rounding error and a suitable value of \(h \) chosen to minimize the overall error in the derivative.

An interesting point to notice about Table 5.1 is that the coefficient for \(f(0) \) in all the approximations is zero. The value of the function exactly at the point of interest never plays a role in the evaluation of the derivative. Another (not unrelated) point is that the order in \(h \) of the error given in the final column does not go up uniformly with the degree of the polynomial—it is the same for the even-degree polynomials as for the next-lower odd-degree ones. We saw a special case of this result for the quadratic: the quadratic fit just gives us an ordinary central difference and therefore necessarily has an error \(O(h^2) \), the same as the central difference derived from the linear fit. In general, the odd-degree approximations give us slightly more accurate results than the even-degree ones—the error is of the same order in \(h \) but the constant of proportionality
is smaller. On the other hand, the odd-degree approximations require samples at the half-way points, as we have noted, which can be inconvenient. As discussed in Example 5.4, we sometimes have samples at only the “integer” points, in which case we must use the even-degree approximations.

We will not be using quadratic or higher-order derivative approximations in the remainder of this book—the forward, backward, and central differences will be all we need. But it is worth knowing about them nonetheless; such things come in handy every once in a while.

5.9.5 SECOND DERIVATIVES

We can also derive numerical approximations for the second derivative of a function \(f(x) \). The second derivative is, by definition, the derivative of the first derivative, so we can calculate it by applying our first-derivative formulas twice. For example, starting with the central difference formula, Eq. (5.91), we can write expressions for the first derivative at \(x + h/2 \) and \(x - h/2 \) thus:

\[
\begin{align*}
 f'(x + h/2) &\approx \frac{f(x + h) - f(x)}{h}, \\
 f'(x - h/2) &\approx \frac{f(x) - f(x - h)}{h}.
\end{align*}
\]

(5.104)

Then we apply the central difference again to get an expression for the second derivative:

\[
\begin{align*}
 f''(x) &\approx \frac{f'(x + h/2) - f'(x - h/2)}{h} \\
 &= \frac{[f(x + h) - f(x)]/h - [f(x) - f(x - h)]/h}{h} \\
 &= \frac{f(x + h) - 2f(x) + f(x - h)}{h^2}.
\end{align*}
\]

(5.105)

This is the simplest approximation for the second derivative. We will use it extensively in Chapter 9 for solving second-order differential equations. Higher-order approximations exist too, but we will not use them in this book.

We can also calculate the error on Eq. (5.105). We perform two Taylor expansions of \(f(x) \) thus:

\[
\begin{align*}
 f(x + h) &= f(x) + hf'(x) + \frac{1}{2}h^2 f''(x) + \frac{1}{6}h^3 f'''(x) + \ldots \\
 f(x - h) &= f(x) - hf'(x) + \frac{1}{2}h^2 f''(x) - \frac{1}{6}h^3 f'''(x) - \ldots
\end{align*}
\]

(5.106) (5.107)

Adding them together and rearranging, we find that

\[
 f''(x) = \frac{f(x + h) - 2f(x) + f(x - h)}{h^2} - \frac{1}{12}h^2 f'''(x) + \ldots
\]

(5.108)
The first term on the right is our formula for the second derivative, Eq. (5.105), and the remainder of the terms measure the error. Thus, to leading order, the absolute error inherent in our approximation to the second derivative is $\frac{1}{12}h^2 |f'''(x)|$. As before, we also need to take rounding error into account, which contributes an error of roughly $C |f(x)|$ on each value of $f(x)$ so that, in the worst case, the total rounding error in the numerator of (5.105) is $4C |f(x)|$ and the rounding error on the whole expression is $4C |f(x)|/h^2$. Then the complete error on the derivative is

$$\varepsilon = \frac{4C |f(x)|}{h^2} + \frac{1}{12}h^2 |f'''(x)|.$$
(5.109)

Differentiating with respect to h and setting the result to zero then gives an optimum value of h of

$$h = \left(48C \left| \frac{f(x)}{f'''(x)} \right| \right)^{1/4}. \quad (5.110)$$

Substituting this expression back into Eq. (5.109) gives the size of the optimal error to be

$$\varepsilon = \frac{1}{6}h^2 |f'''(x)| = \left(\frac{1}{3}C |f(x)f'''(x)|\right)^{1/2}. \quad (5.111)$$

So if, for instance, $f(x)$ and $f'''(x)$ are of order 1, the error will be roughly of order \sqrt{C}, which is typically about 10^{-8}. This is about the same accuracy as we found for the forward and backward difference approximations to the first derivative in Section 5.9.2. Thus our expression for the second derivative is not very accurate—about as good as, but not better than, the forward difference. As we mentioned above, there are higher-order approximations for the second derivative that can give more accurate answers, but for our purposes, Eq. (5.105) will be good enough.

5.9.6 Partial derivatives

We will come across a number of situations where we need to calculate partial derivatives—derivatives of a function of several variables with respect to only one of those variables. The calculation of such partial derivatives is a simple generalization of the calculation of ordinary derivatives. If you have a function $f(x,y)$ of two variables, for instance, then the central difference approximations to derivatives with respect to x and y are

$$\frac{\partial f}{\partial x} = \frac{f(x + h/2, y) - f(x - h/2, y)}{h}, \quad (5.112)$$

$$\frac{\partial f}{\partial y} = \frac{f(x, y + h/2) - f(x, y - h/2)}{h}. \quad (5.113)$$
By analogy with our approach for the second derivative in Section 5.9.5 we can also calculate second derivatives with respect to either variable, or a mixed second derivative with respect to both, which is given by

\[
\frac{\partial^2 f}{\partial x \partial y} = \frac{f(x + h/2, y + h/2) - f(x - h/2, y + h/2) - f(x + h/2, y - h/2) + f(x - h/2, y - h/2)}{h^2}.
\]

(5.114)

We leave the derivation to the avid reader.

5.9.7 Derivatives of Noisy Data

Suppose we have some measurements of a quantity that, when plotted on a graph, look like Fig. 5.11a. Perhaps they come from an experiment in the lab, for instance. The overall shape of the curve is clear from the figure, but there is some noise in the data, so the curve is not completely smooth.

Now suppose we want to calculate the first derivative of this curve. So we write a program to calculate, say, the forward difference at each point and plot the values we get. The result is shown in Fig. 5.11b. As you can see, taking the derivative has made our noise problem much worse. Now it’s almost impossible to see the shape of the curve. This is a common problem with numerical derivatives—if there’s any noise in the curve you’re differentiating, then it can be greatly exaggerated by taking the derivative, perhaps to the point where the results are useless.

The reason for the problem is easy to see if you zoom in on a small portion of the original data, as shown in Fig. 5.12. In this figure the solid line represents the actual data, and the dotted line is a sketch of what the underlying curve, without the noise, probably looks like. (We don’t usually know the underlying curve, so this is just a guess.) When viewed close-up like this, we can see that, because of the noise, the slope of the noisy line is very steep in some places, and completely different from the slope of the underlying curve. Although the noisy curve follows the underlying one reasonably closely, its derivative does not. So now, when we calculate the derivative, we generate spurious large values where there should be none.

Unfortunately, this kind of issue is common with physics data, and this is one of the reasons why numerical derivatives are used less than numerical integrals. There are, however, some things we can do to mitigate the problem, although they all also decrease the accuracy of our results:

1. The simplest thing we can do is increase the value of \(h \). We can treat
Figure 5.11: Derivative of noisy data. (a) An example of a noisy data set. The data plotted in this graph have a clear underlying form, but contain some random noise or experimental error as well. (b) The derivative of the same data calculated using a forward difference. The action of taking the derivative amplifies the noise and makes the underlying form of the result difficult to discern.
the noise in the same way that we treat rounding error and calculate an optimum value for h that balances the error from the noise against the error in our approximation of the derivative. The end result is a formula similar to Eq. (5.89) for the forward difference or Eq. (5.96) for the central difference, but with the error constant C replaced by the fractional error introduced into the data by the noise (which is the inverse of the so-called signal-to-noise ratio).

2. Another approach is to fit a curve to a portion of the data near the point where we want the derivative, then differentiate the curve. For instance, we might fit a quadratic or a cubic, then differentiate that. We do not, however, fit a quadratic to just three sample points or a cubic to just four, as we did in Section 5.9.4. Instead we do a least-squares fit to find the curve that best approximates a larger number of points, even though it will not typically pass exactly through all those points. In effect, we are trying to find an approximation to the underlying smooth curve depicted in Fig. 5.12. The derivative of this curve then gives an estimate of the true derivative of the data without noise.

3. A third approach is to smooth the data in some other fashion before differentiating, which can be done, for instance, using Fourier transforms, which we will study in Chapter 7. (See Exercise 7.3 for an example
5.10 INTERPOLATION

We will tackle one more topic briefly in this chapter, the topic of interpolation, which is not directly related to integrals and derivatives, but uses similar mathematical methods, making this a good moment to look into it.

Suppose you are given the value of a function \(f(x) \) at just two points \(x = a, b \) and you want to know the value of the function at another point \(x \) in between. What do you do? There are a number of possibilities, of which the simplest is linear interpolation, which is illustrated in Fig. 5.14. We assume our function follows a straight line from \(f(a) \) to \(f(b) \), which in most cases is an approximation—likely the function follows a curve between the two points, as sketched in the figure. But if we make this assumption then we can calculate \(f(x) \) with some elementary geometry.

The slope of the straight-line approximation is

\[
m = \frac{f(b) - f(a)}{b - a},
\]

(5.115)
and the distance marked y on the figure is given in terms of this slope by $y = m(x-a)$. The distance marked z is equal to $f(a)$, so

$$f(x) \approx y + z = \frac{f(b) - f(a)}{b-a} (x-a) + f(a)$$

$$= \frac{(b-x)f(a) + (x-a)f(b)}{b-a}.$$ \tag{5.116}$$

This is the fundamental formula of linear interpolation. In fact, this same formula can also be used to extrapolate the function to points outside the interval from a to b, although one should not extrapolate too far. The further you go, the less likely it is that the extrapolation will be accurate.

How accurate is the linear interpolation formula? The calculation of the error is similar to that for derivatives, making use of two Taylor expansions:

$$f(a) = f(x) + (a-x)f'(x) + \frac{1}{2}(a-x)^2 f''(x) + \ldots \tag{5.117}$$

$$f(b) = f(x) + (b-x)f'(x) + \frac{1}{2}(b-x)^2 f''(x) + \ldots \tag{5.118}$$

Substituting these into Eq. (5.116), the terms in $f'(x)$ cancel and, after rearranging a little, we find that

$$f(x) = \frac{(b-x)f(a) + (x-a)f(b)}{b-a} + (a-x)(b-x) f''(x) + \ldots \tag{5.119}$$

The first term on the right-hand side is our linear interpolation formula; the remainder of the terms are the error. Note that the leading-order error term
vanishes as \(x \) tends to either \(a \) or \(b \), so that either \(b - x \) or \(a - x \) becomes small. And assuming \(f''(x) \) varies slowly, the error will be largest in the middle of the interval. If we denote the width of the interval by \(b - a = h \), then when we are in the middle we have \(x - a = b - x = \frac{1}{2}h \) and the magnitude of the leading-order error is \(\frac{1}{4}h^2 |f''(x)| \). Thus, like the central difference formula for a first derivative, the worst-case error on a linear interpolation is \(O(h^2) \), and we can make the interpolation more accurate by making \(h \) smaller.

By contrast with the case of derivatives, however, we do not need to be particularly careful about rounding error when using linear interpolation. The interpolation formula, Eq. (5.116), involves the sum of values of \(f(x) \) at two closely spaced points, not the difference, so we don’t normally run into the accuracy problems that plague calculations (like calculations of derivatives) that are based on subtractions.

Can we do better than linear interpolation? Not if we know the value of the function \(f(x) \) at only two points—there is no better approximation in that case. If we know the function at more than two points there are several ways to improve on linear interpolation. The most obvious is to interpolate using higher-order polynomials. If we have three points, for instance, we can fit a quadratic through them, which will usually give a better match to the underlying curve. Fitting quadratics or higher polynomials leads to a set of higher-order methods known as Lagrange interpolation methods.

When the number of points becomes large, however, this approach breaks down. If we have a large number \(N \) of points then you might think the best thing to do would be to fit an \((N - 1) \)th order polynomial through them, but it turns out this doesn’t work because very high order polynomials tend to have a lot of wiggles in them and can deviate from the fitted points badly in the intervals between points. It’s better in this case to fit many lower-order polynomials such as quadratics or cubics to smaller sets of adjacent points. Unfortunately, the naive implementation of such a scheme gives rather uneven interpolations because the slope of the interpolation changes at the join-points between polynomials. A more satisfactory approach is to fit polynomials to the measured points plus the derivatives at their ends, so that one gets a function that goes through the points and has a smooth slope everywhere. Such interpolations are called splines. The most widely used type are cubic splines. We won’t go into these methods further, however. For our purposes, linear interpolation will be good enough.
FURTHER EXERCISES

5.1 The gamma function: A commonly occurring function in physics calculations is the gamma function \(\Gamma(a) \), which is defined by the integral

\[
\Gamma(a) = \int_0^\infty x^{a-1}e^{-x} \, dx.
\]

There is no closed-form expression for the gamma function, but one can calculate its value for given \(a \) by performing the integral above numerically. You have to be careful how you do it, however, if you wish to get an accurate answer.

a) Write a program to make a graph of the value of the integrand \(x^{a-1}e^{-x} \) as a function of \(x \) from \(x = 0 \) to \(x = 5 \), with three separate curves for \(a = 2, 3, \) and \(4 \), all on the same axes. You should find that the integrand starts at zero, rises to a maximum, and then decays again for each curve.

b) Show analytically that the maximum falls at \(x = a - 1 \).

c) Most of the area under the integrand falls near the maximum, so to get an accurate value of the gamma function we need to do a good job of this part of the integral. We can change the integral from \(0 \) to \(\infty \) to one over a finite range from \(0 \) to \(1 \) using the change of variables in Eq. (5.63), but this tends to squash the peak towards the edge of the \([0, 1]\) range and does a poor job of evaluating the integral accurately. We can do a better job by making a different change of variables that puts the peak in the middle of the integration range, around \(\frac{1}{2} \). We will use the change of variables given in Eq. (5.65), which we repeat here for convenience:

\[
z = \frac{x}{c + x}.
\]

For what value of \(x \) does this change of variables give \(z = \frac{1}{2} \)? Hence what is the appropriate choice of the parameter \(c \) that puts the peak of the integrand for the gamma function at \(z = \frac{1}{2} \)?

d) Before we can calculate the gamma function, there is another detail we need to attend to. The integrand \(x^{a-1}e^{-x} \) can be difficult to evaluate because the factor \(x^{a-1} \) can become very large and the factor \(e^{-x} \) very small, causing numerical overflow or underflow, or both, for some values of \(x \). Write \(x^{a-1} = e^{(a-1)\ln x} \) to derive an alternative expression for the integrand that does not suffer from these problems (or at least not so much). Explain why your new expression is better than the old one.

e) Now, using the change of variables above and the value of \(c \) you have chosen, write a user-defined function \texttt{gamma(a)} to calculate the gamma function for arbitrary argument \(a \). Use whatever integration method you feel is appropriate. Test your function by using it to calculate and print the value of \(\Gamma(\frac{3}{2}) \), which is known to be equal to \(\frac{1}{2}\sqrt{\pi} \approx 0.886 \).

f) For integer values of \(a \) it can be shown that \(\Gamma(a) \) is equal to the factorial of \(a - 1 \). Use your Python function to calculate \(\Gamma(3) \), \(\Gamma(6) \), and \(\Gamma(10) \). You should get answers closely equal to \(2! = 2, 5! = 120, \) and \(9! = 362,880 \).
5.2 Diffraction gratings: Light with wavelength λ is incident on a diffraction grating of total width w, gets diffracted, is focused with a lens of focal length f, and falls on a screen:

Theory tells us that the intensity of the diffraction pattern on the screen, a distance x from the central axis of the system, is given by

$$I(x) = \left| \int_{-w/2}^{w/2} \sqrt{q(u)} e^{i2\pi xu/\lambda f} \, du \right|^2,$$

where $q(u)$ is the intensity transmission function of the diffraction grating at a distance u from the central axis.

a) Consider a grating with transmission function $q(u) = \sin^2 \alpha u$. What is the separation of the “slits” in this grating, expressed in terms of α?

b) Write a Python function $q(u)$ that returns the transmission function $q(u) = \sin^2 \alpha u$ as above at position u for a grating whose slits have separation 20 μm.

c) Use your function in a program to calculate and graph the intensity of the diffraction pattern produced by such a grating having ten slits in total, if the incident light has wavelength $\lambda = 500$ nm. Assume the lens has a focal length of 1 meter and the screen is 10 cm wide. You can use whatever method you think appropriate for doing the integral. Once you’ve made your choice you’ll also need to decide the number of sample points you’ll use. What criteria play into this decision? Notice that the integrand in the equation for $I(x)$ is complex, so you will have to use complex variables in your program. As mentioned in Section 2.2.5, there is a version of the math package for use with complex variables called cmath. In particular you may find the exp function from cmath useful because it can calculate the exponentials of complex arguments.

d) Create a visualization of how the diffraction pattern would look on the screen using a density plot (see Section 3.3). Your plot should look something like this:
5.3 Electric field of a charge distribution: We have a distribution of charges and we want to calculate the resulting electric field. One way to do this is to first calculate the electric potential ϕ and then take its gradient. For a point charge q at the origin, the electric potential at a distance r from the origin is $\phi = q / 4\pi\varepsilon_0 r$ and the electric field is $E = -\nabla\phi$.

a) You have two charges, of ± 1 C, 10 cm apart. Calculate the resulting electric potential on a $1\,\text{m} \times 1\,\text{m}$ square plane surrounding the charges and passing through them. Calculate the potential at 1 cm spaced points in a grid and make a visualization on the screen of the potential using a density plot.

b) Now calculate the partial derivatives of the potential with respect to x and y and hence find the electric field in the xy plane. Make a visualization of the field also. This is a little trickier than visualizing the potential, because the electric field has both magnitude and direction. One way to do it might be to make two density plots, one for the magnitude, and one for the direction, the latter using the “hsv” color scheme in `pylab`, which is a rainbow scheme that passes through all the colors but starts and ends with the same shade of red, which makes it suitable for representing things like directions or angles that go around the full circle and end up where they started. A more sophisticated visualization might use the arrow object from the `visual` package, drawing a grid of arrows with direction and length chosen to represent the field.

c) Now suppose you have a continuous distribution of charge over an $L \times L$ square. The charge density in Cm^{-2} is

$$\rho(x, y) = q_0 \sin \frac{2\pi x}{L} \sin \frac{2\pi y}{L}.$$

Calculate and visualize the resulting electric field at 1 cm-spaced points in 1 square meter of the xy plane for the case where $L = 10$ cm, the charge distribution is centered in the middle of the visualized area, and $q_0 = 100\,\text{Cm}^{-2}$. You will have to perform a double integral over x and y, then differentiate the potential with respect to position to get the electric field. Choose whatever integration method seems appropriate for the integrals.

5.4 Differentiating by integrating: If you are familiar with the calculus of complex variables, you may find the following technique useful and interesting.
Suppose we have a function $f(z)$ whose value we know not only on the real line but also for complex values of its argument. Then we can calculate derivatives of that function at any point z_0 by performing a contour integral, using the Cauchy derivative formula:

$$\left(\frac{d^m f}{dz^m} \right)_{z=z_0} = \frac{m!}{2\pi i} \oint \frac{f(z)}{(z-z_0)^{m+1}} \, dz,$$

where the integral is performed counterclockwise around any contour in the complex plane that surrounds the point z_0 but contains no poles in $f(z)$. Since numerical integration is significantly easier and more accurate than numerical differentiation, this formula provides us with a method for calculating derivatives—and especially multiple derivatives—accurately by turning them into integrals.

Suppose, for example, that we want to calculate derivatives of $f(z)$ at $z = 0$. Let us apply the Cauchy formula above using the trapezoidal rule to calculate the integral along a circular contour centered on the origin with radius 1. The trapezoidal rule will be slightly different from the version we are used to because the value of the interval h is now a complex number, and moreover is not constant from one slice of the integral to the next—it stays constant in modulus, but its argument changes from one slice to another.

We will divide our contour integral into N slices with sample points z_k distributed uniformly around the circular contour at the positions $z_k = e^{2\pi i k/N}$ for $k = 0 \ldots N$. Then the distance between consecutive sample points is

$$h_k = z_{k+1} - z_k = e^{2\pi i (k+1)/N} - e^{2\pi i k/N},$$

and, introducing the shorthand $g(z) = f(z)/z^{m+1}$ for the integrand, the trapezoidal rule approximation to the integral is

$$\oint g(z) \, dz \simeq \frac{1}{2} \left[\sum_{k=0}^{N-1} [g(z_{k+1}) + g(z_k)] \left[e^{2\pi i (k+1)/N} - e^{2\pi i k/N} \right]
\right.$$

$$\left. - \sum_{k=0}^{N-1} g(z_{k+1}) e^{2\pi i k/N} + \sum_{k=0}^{N-1} g(z_k) e^{2\pi i (k+1)/N} \right].$$

Noting that $z_N = z_0$, the first two sums inside the brackets cancel each other in their entirety, and the remaining two sums are equal except for trivial phase factors, so the entire expression simplifies to

$$\oint g(z) \, dz \simeq \frac{1}{2} \left[e^{2\pi i /N} - e^{-2\pi i /N} \right] \sum_{k=0}^{N-1} g(z_k) e^{2\pi i k/N}$$

$$\simeq \frac{2\pi i}{N} \sum_{k=0}^{N-1} f(z_k) e^{-i2\pi km/N},$$
where we have used the definition of \(g(z) \) again. Combining this result with the Cauchy formula, we then have

\[
\left(\frac{d^m f}{dz^m} \right)_{z=0} \simeq \frac{m!}{N} \sum_{k=0}^{N-1} f(z_k) e^{-i2\pi km/N}.
\]

Write a program to calculate the first twenty derivatives of \(f(z) = e^{2z} \) at \(z = 0 \) using this formula with \(N = 10000 \). You will need to use the version of the \texttt{exp} function from the \texttt{cmath} package, which can handle complex arguments. You may also find the function \texttt{factorial} from the \texttt{math} package useful; it calculates factorials of integer arguments.

The correct value for the \(n \)th derivative in this case is easily shown to be \(2^n \), so it should be straightforward to tell if your program is working—the results should be powers of two, 2, 4, 8, 16, 32, etc. You should find that it is possible to get reasonably accurate results for all twenty derivatives rapidly using this technique. If you use standard difference formulas for the derivatives, on the other hand, you will find that you can calculate only the first three or four derivatives accurately before the numerical errors become so large that the results are useless. In this case, therefore, the Cauchy formula gives the better results.

The sum \(\sum_k f(z_k) e^{2\pi km/N} \) that appears in the formula above is known as the \textit{discrete Fourier transform} of the complex samples \(f(z_k) \). There exists an elegant technique for evaluating the Fourier transform for many values of \(m \) simultaneously, known as the \textit{fast Fourier transform}, which could be useful in cases where the direct evaluation of the formula is slow. We will study the fast Fourier transform in detail in Chapter 7.

5.5 \textbf{Image processing and the STM}: When light strikes a surface, the amount falling per unit area depends not only on the intensity of the light, but also on the angle of incidence. If the light makes an angle \(\theta \) to the normal, it only "sees" \(\cos \theta \) of area per unit of actual area on the surface:

So the intensity of illumination is \(a \cos \theta \), if \(a \) is the raw intensity of the light. This simple physical law is a central element of 3D computer graphics. It allows us to calculate how light falls on three-dimensional objects and hence how they will look when illuminated from various angles.

Suppose, for instance, that we are looking down on the Earth from above and we see mountains. We know the height of the mountains \(w(x, y) \) as a function of position in
the plane, so the equation for the Earth’s surface is simply \(z = w(x, y) \), or equivalently \(w(x, y) - z = 0 \), and the normal vector \(\mathbf{v} \) to the surface is given by the gradient of \(w(x, y) - z \) thus:

\[
\mathbf{v} = \nabla[w(x, y) - z] = \begin{pmatrix} \frac{\partial w}{\partial x} \\ \frac{\partial w}{\partial y} \\ -1 \end{pmatrix}.
\]

Now suppose we have light coming in represented by a vector \(\mathbf{a} \) with magnitude equal to the intensity of the light. Then the dot product of the vectors \(\mathbf{a} \) and \(\mathbf{v} \) is

\[
\mathbf{a} \cdot \mathbf{v} = |\mathbf{a}| |\mathbf{v}| \cos \theta,
\]

where \(\theta \) is the angle between the vectors. Thus the intensity of illumination of the surface of the mountains is

\[
I = |\mathbf{a}| \cos \theta = \frac{\mathbf{a} \cdot \mathbf{v}}{|\mathbf{v}|} = \frac{a_x(\partial w/\partial x) + a_y(\partial w/\partial y) - a_z}{\sqrt{(\partial w/\partial x)^2 + (\partial w/\partial y)^2 + 1}}.
\]

Let’s take a simple case where the light is shining horizontally with unit intensity, along a line an angle \(\phi \) counter-clockwise from the east-west axis, so that \(\mathbf{a} = (\cos \phi, \sin \phi, 0) \). Then our intensity of illumination simplifies to

\[
I = \frac{\cos \phi (\partial w/\partial x) + \sin \phi (\partial w/\partial y)}{\sqrt{(\partial w/\partial x)^2 + (\partial w/\partial y)^2 + 1}}.
\]

If we can calculate the derivatives of the height \(w(x, y) \) and we know \(\phi \) we can calculate the intensity at any point.

a) In the on-line resources you’ll find a file called altitude.dat, which contains the altitude \(w(x, y) \) in meters above sea level (or depth below sea level) of the surface of the Earth, measured on a grid of points \((x, y)\). Write a program that reads this file and stores the data in an array. Then calculate the derivatives \(\partial w/\partial x \) and \(\partial w/\partial y \) at each grid point. Explain what method you used to calculate them and why. (Hint: You’ll probably have to use more than one method to get every grid point, because awkward things happen at the edges of the grid.) To calculate the derivatives you’ll need to know the value of \(h \), the distance in meters between grid points, which is about 30 000 m in this case.\(^{7}\)

b) Now using your values for the derivatives calculate the intensity for each grid point, with \(\phi = 45^\circ \), and make a density plot of the resulting values in which the brightness of each dot depends on the corresponding intensity value. If you get it working right, the plot should look like a relief map of the world—you should be able to see the continents and mountain ranges in 3D. (Common problems

\[^{7}\text{It’s actually not precisely constant because we are representing the spherical Earth on a flat map, but } h = 30 000 \text{ m will give reasonable results.}\]
include a map that is upside-down or sideways, or a relief map that is “inside-out,” meaning the high regions look low and vice versa. Work with the details of your program until you get a map that looks right to you.)

c) There is another file in the on-line resources called stm.dat, which contains a grid of values from scanning tunneling microscope measurements of the (111) surface of silicon. A scanning tunneling microscope (STM) is a device that measures the shape of surfaces at the atomic level by tracking a sharp tip over the surface and measuring quantum tunneling current as a function of position. The end result is a grid of values that represent the height of the surface as a function of position and the data in the file stm.dat contain just such a grid of values. Modify the program you just wrote to visualize the STM data and hence create a 3D picture of what the silicon surface looks like. The value of \(h \) for the derivatives in this case is around \(h = 2.5 \) (in arbitrary units).