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C limate scientists have spent billions of dollars and eons of supercom-
puter time studying how increased concentrations of greenhouse gases 
and changes in the reflectivity of the earth’s surface affect dimensions 

of the climate system relevant to human society: surface temperature, precipita-
tion, humidity, and sea levels. Recent incarnations of physical climate models have 
become sophisticated enough to be able to simulate intensities and frequencies 
of some extreme events, like tropical storms, under different warming scenarios. 
The current consensus estimates from what may be the most heavily peer-reviewed 
scientific publication in human history, the 5th Assessment Report of the Inter-
governmental Panel on Climate Change, are that the average global surface 
temperature has increased by 0.85° Celsius (1.5° F) since the industrial revolution. 
Estimates of future warming by the end of the current century range from 0.9 to 
5.4°C (1.6 - 9.7°F) (IPCC 2013; Hsiang and Kopp in this issue of the journal).

In a stark juxtaposition, the efforts involved in and the public resources targeted 
at understanding how these physical changes translate into economic impacts are 
disproportionately smaller, with most of the major models being developed and 
maintained with little to no public funding support. This is concerning, because 
optimal policy design in the context of addressing the biggest environmental market 
failure in human history requires an understanding of the external cost imposed 

Quantifying Economic Damages from 
Climate Change

■ Maximilian Auffhammer is the George Pardee Jr. Professor of International Sustain-
able Development, University of California, Berkeley, California, and Research Associate, 
National Bureau of Economic Research, Cambridge, Massachusetts. His email address is 
auffhammer@berkeley.edu.
† For supplementary materials such as appendices, datasets, and author disclosure statements, see the 
article page at
https://doi.org/10.1257/jep.32.4.33	 doi=10.1257/jep.32.4.33

Maximilian Auffhammer

mailto:auffhammer@berkeley.edu


34     Journal of Economic Perspectives

by additional emissions of greenhouse gases. Estimating this number is far from 
straightforward for two main reasons: First, climate change is a global phenomenon 
and hence local emissions result in global damages, the quantification of which 
is challenging as damages vary across space and time. Second, greenhouse gases 
are long-lived, which means that today’s emissions affect generations hundreds of 
years from now. Hence if one would like to calculate the external cost of one more 
ton of CO2 equivalent emitted—which is about what you would emit if you drove 
a Ford Mustang GT from San Francisco to Chicago—you would need to calculate 
the discounted stream of global damages from that additional ton over the next 300 
years or so relative to a baseline with one less ton of CO2.

The goal of this paper is first to shed light on how (mostly) economists have 
gone about calculating this “social cost of carbon” for regulatory purposes and to 
provide an overview of the past and currently used estimates. In the second part, I 
will focus on where in this literature empirical economists may have the highest value 
added: specifically, the calibration and estimation of economic damage functions, 
which map weather patterns transformed by climate change into economic benefits 
and damages. A broad variety of econometric methods have recently been used 
to parameterize the dose (climate) response (economic outcome) functions. The 
paper seeks to provide both an accessible and comprehensive overview of how econ-
omists think about parameterizing damage functions and quantifying the economic 
damages of climate change. There are a number of more technical surveys, which I 
invite the interested reader to consult (useful starting points include Carleton and 
Hsiang 2016; Dell, Jones, and Olken 2014; Diaz and Moore 2017). 

The Social Cost of Carbon

The social cost of carbon is an estimate of the discounted present value of 
damages from one additional ton of CO2 equivalent emitted at a certain point in 
time. This social cost of carbon is increasing over time, as later emissions result in 
larger damages due to the elevated stock of greenhouse gases in the atmosphere,  
and because GDP grows over time and some damage categories are modeled as 
proportional to GDP (EPA 2016). Calculations of the social cost of carbon are 
obtained through so-called Integrated Assessment Models. The most well-known 
of these models are DICE (Dynamic Integrated Climate–Economy model by 2018 
Nobel Laureate William Nordhaus), FUND (Climate Framework for Uncertainty, 
Negotiation and Distribution model by David Anthoff and Richard Tol), and PAGE 
(Policy Analysis of the Greenhouse Effect model by Chris Hope), although there are 
a number of more recent and ambitious modeling efforts. These models “integrate” 
simple socioeconomic scenarios that produce future emissions trajectories, which 
are fed into a simple climate model that translates emissions paths into concentra-
tions and produces scenarios for future temperatures, precipitation, and sea levels. 
These climatic outcomes are then fed into a set of damage functions, which map the 
climate model output into economic damages at the regional or global level. The 
discounted difference in damages between a baseline future and a future with one 



Maximilian Auffhammer     35

more ton of emissions then becomes the social cost of carbon—essentially the 
external cost of one ton of additional CO2 emissions at a point in time. There is a 
nascent literature calculating social costs of other greenhouse gases (for example, 
methane is a more potent greenhouse gas, but with a shorter atmospheric lifetime). 

A tremendous number of modeling assumptions need to be made to calculate 
the social cost of carbon for use in rulemaking. The modeler needs to decide on 
the time horizon to be considered, the approach to discounting and the rate to be 
used, the reflection of uncertainties, the changes to risks, which impacts can be 
included, the choice of reference conditions, whether one should equity weight 
across countries, and what recent literature should be incorporated (Rose 2012). 
Among these, the three factors of possibly biggest consequence are the choice of 
discount rate, which sectors are omitted (for example, ecosystem services), and 
whether one should consider only domestic or global damages. The latter decision 
is really a legal question, as the externality is global and hence, from an economic 
point of view, the global number is the correct estimate of the externality. Figure 1 
shows the evolution of the social cost of carbon for a ton emitted in 2010 (measured 
in 2007 US dollars) in federal rulemaking for a sample of rules.

Figure 1 
Sample of Social Cost of Carbon Estimates Used in Federal Rulemakings

Sources: Rose (2012); Rose et al. (2014); IWG (2016); EPA (2018). 
Note: Estimates for the social cost of carbon are for emissions of a ton of CO2  in 2010 in 2007 dollars. 
NHTSA is National Highway Traffic Safety Administration; IWG is Interagency Working Group; EPA 
is Environmental Protection Agency; DOE is Department of Energy. The black diamond indicates the 
“central estimate,” if one was identified. The grey bars indicate selected upper and lower bounds used 
in regulatory analyses. 
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The first official estimates of the social cost of carbon in 2008 were made under 
the Bush administration. The 2008 National Highway and Traffic Safety Adminis-
tration (NHTSA) number was an estimate of global damages used for setting fuel 
economy standards. The 2008 Department of Energy (DOE) number was a global 
social cost of carbon used for setting air conditioner equipment and gas range stan-
dards. The 2008 Environmental Protection Agency (EPA) estimates were used in 
the proposed rulemaking for regulating greenhouse gas emissions under the Clean 
Air Act. The bar here indicates the distribution of the central number used. The 
actual analysis also considered an additional range from −$7 to $781. It is note-
worthy that this first round of proposed rulemaking under the Bush administration 
stated that CO2 is a global pollutant and that “economic principles suggest that 
the full costs to society of emissions should be considered in order to identify the 
policy that maximizes the net benefits to society, i.e., achieves an efficient outcome 
(Nordhaus, 2006).” The document further acknowledges that “domestic estimates 
omit potential impacts on the United States (for example, economic or national 
security impacts) resulting from climate change impacts in other countries” (US 
EPA 2008). 

President Obama convened an Interagency Working Group, which was charged 
with calculating an official social cost of carbon to be used across the board in 
federal rulemaking (Greenstone, Kopits, and Wolverton 2013). Three prominent 
Integrated Assessment Models—Nordhaus’s DICE model,1 Anthoff and Tol’s FUND 
model,2 and Hope’s proprietary PAGE model—were used to calculate a distribution 
of the social cost of carbon across time and scenarios for a set of common socioeco-
nomic assumptions, discount rates, and uncertainty over a number of parameters. 
The central and often-cited estimate of the social cost of carbon, which is the mean 
number across 50,000 simulations for each model at a 3 percent discount rate, 
is $42 (in 2007 dollars) for one ton of emissions made in the year 2020.3 If one 
uses a 5 percent discount rate, this value drops to $12; if one uses a 2.5 percent 
discount rate, it increases to $62. The Interagency Working Group also ran a 
so-called “high-impact scenario,” which is the 95th percentile number at a 3 percent 
discount rate and valued at $123. The central estimate of the social cost of carbon 
was projected to rise to $50/ton in 2030 and $69 in 2050. 

The Obama administration later commissioned the National Academies of 
Sciences to assess the Interagency Working Group modeling exercise and suggest 
improvements. The National Academies of Sciences (2017) recommended substan-
tial revisions to the way the social cost of carbon is estimated. President Trump, 
however, disbanded the Interagency Working Group, which could have imple-
mented these changes. Two current proposed rulemakings under the Trump 
administration use a social cost of carbon that only considers domestic damages and 
discount rates of 3 percent and 7 percent. 

1 The DICE model is at https://sites.google.com/site/williamdnordhaus/dice-rice.
2 The FUND model is at http://www.fund-model.org.
3 Of course, 42 is also the Answer to the Ultimate Question of Life, the Universe, and Everything, 
according to the The Hitchkiker’s Guide to the Galaxy.

https://sites.google.com/site/williamdnordhaus/�dice-rice
http://www.­fund-model.org
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The top bar in Figure 1 indicates the range of the domestic social cost of 
carbon using the 3 percent and 7 percent discount rates currently proposed by the 
National Highway Traffic Safety Administration for the “revision” of the Corporate 
Average Fuel Economy (CAFE) standards for fuel economy of cars and light trucks, 
which clearly represent a drastic decrease in the estimated externality to between $1 
and $7 for a ton emitted in 2020. 

The estimates also do not incorporate any of the major updates suggested by 
the National Academies of Sciences (2017) report, which implies that the 2018 
estimates do not represent best available science. For example, the National Acad-
emies of Sciences made suggestions relating to how one constructs a baseline future 
economy out to the year 2300, assumptions made in the climate modeling, and the 
discounting approach taken. Maybe most importantly for the purposes of this paper, 
the National Academies of Sciences report points a stern finger at the damage func-
tions used in all three Integrated Assessment Models. 

The damage functions in the Integrated Assessment Models, which are used to 
calculate the social cost of carbon, are outdated. Greenstone (2016) points out that 
the most recent studies in the FUND model stem from 2009, with the majority of the 
literature cited stemming from the early and mid-1990s. For example, the damage 
function for agriculture in the FUND model implies that warming up to roughly 5°C 
produces benefits for the sector (Rose et al. 2014). This is not consistent with the 
recent literature on agricultural impacts, which for example, points at the signifi-
cant negative impact of extreme heat days. Moore, Baldos, Hertel, and Diaz (2017) 
updated the FUND damage function by incorporating the most recent empirical 
estimates for agriculture and find a doubling of the social cost of carbon by simply 
updating this sector alone. The literature underlying the DICE damage function also 
mostly comes from studies conducted in the 1990s. None of the cites for the PAGE 
model are from after 2010. As Greenstone (2016) shows, this ignores more than 100 
studies published since 2010—which use more up-to-date econometric techniques 
and exploit the explosion in data availability. 

Damage Functions, Weather, and Climate 

In the context of climate change studies, a “damage function” refers to a 
mapping of climate into economic outcomes—essentially what is broadly called 
a “dose response function.” One question arises immediately: What is “climate”? 
When we leave our homes in the morning, weather is what we encounter. Weather 
outcomes are draws from an underlying distribution. For the purposes of this paper, 
I consider the moments of this distribution the climate. This approach is consistent 
with the often-used definition that climate is a 30-year average of (for example) 
surface temperature, although thinking about climate as a set of statistical moments 
is broader than just an average. Climate change is hence a slow shift in some moments 
of the weather distribution over time. The changes could be variance-preserving 
mean shifts or higher-order changes to the distribution. It is important to remember 
that even the simple case of a variance-preserving rise in mean temperature—think 
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of a bell-shaped curve of daily temperature outcomes shifting upward—will lead to a 
higher frequency of “extreme events”—the incidence of what would have been 95th 
or 99th percentile temperature outcomes under the old climate regime. 

To estimate economic effects of such changes, we need to take into account 
how economic actors respond to weather generated by a new climate regime. For 
example, individuals in San Francisco have historically recognized that extreme 
warm-weather outcomes were rare, and so almost no one had air conditioners 
installed in their homes. However, if San Franciscans learn that climate is changing 
and their summers will resemble Fresno’s much hotter summers in most future 
years, many will go ahead and install room air conditioners or central air units in 
new construction. Hence, a hotter climate will result in higher electricity consump-
tion due to the presence of more air conditioners, which consumers incurred costs 
to install. In terms familiar to the economist, there is an extensive margin response 
in many sectors (the installation of air conditioning, irrigation equipment, sea 
walls) as well as an intensive margin response (the more frequent operation of air 
conditioners and irrigation equipment). 

In order to provide estimates of damages from climate change, one needs to 
estimate damage functions that take both extensive and intensive margin adapta-
tion into account—and to do this for all climate-sensitive sectors across the globe  
for a number of dimensions of climate. Some key climate-related changes would 
include changes in temperature, humidity, precipitation, sea level, and the occur-
rence of extreme events like storms. 

With this perspective in mind, what are the properties that damage functions 
used in policy analysis of the economic impacts of climate change should posses? 
First, we would like to parameterize damage functions between the distribution of 
pre- and post-climate-change weather and economic outcomes of interest. Second, 
we would like these functions to identify and estimate parameters that carry a plau-
sibly causal interpretation. Third, we would like the damage function to account 
for adaptation and measure the full costs of adaptation. Fourth, we would like the 
damage function to allow an estimation of economic welfare impacts. 

This sounds as difficult as it is in practice. Figure 2 helps to explain why. The 
top left panel shows the weather pattern of temperature generated in two climate 
regimes. The light gray time series depicts a pre-climate-change world and the dark 
series shows a post-climate-change world, displaying higher mean and variance of 
the temperature series. The top right panel displays two damage functions (the 
parabolas) which map weather into an outcome, in this case temperature into house-
hold electricity consumption (measured in kilowatt-hours). The damage function, 
as has been confirmed in many empirical settings, is highly nonlinear. When it is 
cold outside and temperatures rise, electricity consumption falls, as people heat 
less. When it is hot outside and temperatures rise, electricity consumption increases 
as people air condition the indoor environment. In the pre-climate-change San 
Francisco, this response is relatively shallow, as few people have air conditioners 
as indicated by the solid damage function. If climate changes and produces the 
warmer more variable weather, we assume that people eventually will adapt by 
buying and operating air conditioners, which changes the damage function to the 
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dotted parabola (labeled “With adaptation”). The response, especially at higher 
temperatures, is now steeper—resulting in stronger post-adaptation increases in 
electricity consumption on a one-degree warmer day when it is hot outside. 

The effect can be seen in the bottom panel. If climate changes and we use the 
flatter (and wrong) pre-climate-change response function, which ignores the exten-
sive margin adaptation, projected electricity consumption is the black solid line. 
This is clearly incorrect, as one is using the right weather but the wrong damage 
response function. The correct response function is the dotted parabola, which 
results in the dotted time series of electricity consumption in the bottom panel. It is 
much higher and much more variable compared to the no adaptation prediction. 
In the literature, this distinction is often referred to as the “weather versus climate 
response.” I think it a better way to phrase this is “the impacts of weather simulated 
with versus without an extensive margin adaptation response.” In a world changed 
by climate, we will still face weather when we walk out of our front door. As I will 

Figure 2 
Mapping Weather into Impacts—The Importance of Accounting for Adaptation

Source: Author. 
Note: The top left panel shows the weather pattern of temperature generated in two climate regimes. The 
light gray time series depicts a pre-climate-change world and the dark series shows a post-climate-change 
world, with a temperature series displaying higher mean and variance. The top right panel displays two 
damage functions (the parabolas) which map weather into an outcome, in this case temperature into 
household electricity consumption (measured in kilowatt-hours). The effect can be seen in the bottom 
panel. 
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discuss below, a rapidly growing empirical literature uses weather variation to iden-
tify response functions that partially or fully allow for adaptation. 

So how does one go about calibrating these damage functions and using them 
to project damages? The question asked of any empirical economist these days is 
“what would the perfect counterfactual be?” In this context, a researcher actually 
needs to be concerned about two counterfactuals: 1) the counterfactual future 
climate; and 2) the counterfactual for identifying the appropriate damage function. 

The first counterfactual, the climatic one, asks the question: What level of climate 
change will occur? Given our metaphysical inability to experiment by randomly 
imposing different levels of greenhouse gases on a large sample of otherwise iden-
tical Planet Earths, researchers instead resort to computational counterfactuals of the 
climate system, which are referred to as “global circulation models” (GCMs). These 
models use different scenarios of greenhouse gas emissions and physical represen-
tations of the climate system to predict changes in the climate system (IPCC 2013; 
Auffhammer, Hsiang, Schlenker, and Sobel 2013). They provide projections of, for 
example, surface temperatures, precipitation, and sea-level rise at a reasonable level of 
disaggregation and make these freely available through public depositories (Climate 
Impact Lab 2018; NASA 2018). A companion paper in this symposium by Hsiang and 
Kopp discusses these models and their limitations in more detail. 

For the second counterfactual, we need to identify how agents in a given loca-
tion respond to weather generated from a different climate regime. As a thought 
experiment, what is the right counterfactual for climate change in the United 
States by end of century? The US average historical (1986–2005) June/July/August 
temperature is 74°F. By end of century (under the aggressive RCP8.5 scenario), this 
temperature is projected to be 84° (Climate Impact Lab 2018). 

One could contemplate a number of counterfactuals that might be used. If one 
has a set of units that are similar on observables and unobservables, but with different 
weather due to different local climate regimes, one might use a cross-sectional 
comparison. If one has long time series over a period of time where climate has 
changed, one might exploit time-series variation, possibly across units, to get econo-
metric identification. But these approaches become questionable when we are 
comparing places that are far apart in characteristics space. Neighboring counties 
in California might possibly serve as counterfactuals for each other. However, using 
the economies of Pakistan, India, Mali, and Thailand as “hotter counterfactuals” 
for the United States or Europe, on the grounds that current mean temperatures in 
these countries are close to 84 degrees, is a stretch. 

The econometric approaches discussed below all suffer from this issue of a 
fundamental lack of comparability, and I am afraid that there is no perfect way to 
overcome it. Indeed, the problem is even more severe than thinking about counter-
factuals based on geographic and time-series variation would suggest. Comparing 
any current day or preindustrial society to a climate-changed world 100 years from 
now will be an imperfect comparison. 

Many of the econometric studies I will describe below, including ones I have 
authored, use a counterfactual where we impose end-of-century climate on today’s 
economy, which is a suboptimal way to circumvent the challenge of characterizing 
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an end-of-century economy as attempted by the Integrated Assessment Models 
used to calculate the social cost of carbon. As I will discuss below, the current 
state of knowledge predicts that climate change will affect economic growth, the 
distribution of population and wealth across space, and also significantly affect tech-
nology—both through mitigation and adaptation channels. An ideal counterfactual 
for several decades into the future would need to compare how these demographic 
and economic factors would change in the absence and presence of climate change 
as well. 

Estimating Economic Damages from Climate Change

One of the first known reflections on an association between human/economic 
activity and climate goes back to Parmenides, a disciple of Pythagoras writing in the 
fifth century BCE, who divided the world into five zones: one torrid, two temperate, 
and two frigid (Sanderson 1999). The torrid zones (which we call the tropics today) 
he thought were too hot and the frigid zones too cold for human habitation. Aris-
totle later agreed with this view. He believed that the only areas on earth habitable 
by humans were located between the tropics and the Arctic and Antarctic circles—
the area where he lived. 

The emergence of climate change as field of study in the physical sciences 
in the late 1970s led social scientists to think about estimating the possible conse-
quences of a changing climate on economic sectors such as agriculture (D’Arge 1975; 
Kokoski and Smith 1987; Adams, McCarl, Dudek, and Glyer 1988; Adams 1989). 

Ricardian Cross-Sectional Approaches
Thousands of econometric papers control for weather in regressions, but 

Mendelsohn, Nordhaus, and Shaw (1994) offered the first attempt at estimating 
a damage function econometrically with the purpose of simulating the impacts of 
climate change on an important economic sector. They proposed a cross-sectional 
Ricardian framework, which is maybe the most widely used approach in climate 
impact estimation to this day. The intuition underlying this approach is that in a 
stationary climate, farmers optimize their production technology and crop choice 
according to the environment they face. This includes soil quality, slope of the 
land, agro-ecological zone, and of course climate, as captured by a set of statis-
tical moments of the weather distribution over a substantial period of time. If land 
markets function perfectly, the land value should reflect the discounted present 
value of expected profits for a given parcel of land. In a regression framework, one 
can then decompose land values into their different components, one of which 
is long-run (for example, 30-year) averages of weather. In standard practice, one 
regresses farmer self-reported land values on polynomials of climate, which are 
often broken out by season. The marginal effects on the climate variables then indi-
cate the marginal value of a one-unit change in a measure of climate. 

Figure 3 helps cement the economic intuition behind this approach. Imagine 
a single farmer, who is currently growing crop 1 and earning profits corresponding 
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to the y value at point A. If faced with a significantly hotter climate, the farmer 
becomes indifferent between growing crop 1 and crop 2 at point B. If climate warms 
further still, the farmer would be much better off at point C, that is, switching to 
crop 2, rather than at point D where the farmer continues to grow crop 1. Because 
the cross-sectional regression observes optimizing farmers across the climate spec-
trum, this approach estimates the envelope of the individual crop-specific payoff 
functions and allows for climate adaptation. As a result, this approach both esti-
mates a response that allows for adaptation to climate change and relies on data that 
are readily available in many regions in both the developed and developing world. 
It uses hotter locations as a counterfactual for the response of cooler location to 
climate change. 

Three main criticisms of this method have been raised. First, this cross-sectional 
approach to damage function estimation is vulnerable to omitted variables bias, 
hence putting in question whether the estimates are plausibly causal. Any drivers 
of land values (or net profits) that are correlated with the climate indicators and 
outcome and are excluded from the model will confound the estimates of the 
marginal value of climate. As one vivid illustration, Schlenker, Hanemann, and 
Fisher (2005) reexamined the analysis of Mendelsohn, Nordhaus, and Shaw (1994), 
and point out that irrigation is an important driver of farm profits. This was omitted 
from the original regression model. When correcting for this by limiting the anal-
ysis to agricultural land east of the 100th meridian (the 100th meridian runs down 
through the middle of North and South Dakota and down through the middle 
of Texas) where agriculture is mostly non-irrigated, the marginal value of climate 
changed significantly. The estimated impacts of climate change went from being 
slightly beneficial to robustly negative. 

Second, this Ricardian approach essentially assumes costless adaptation to 
climate change. But switching crops is not costless (Quiggin and Horowitz 1999). 
The fixed costs to switching from growing one crop to another may include invest-
ment in new harvesting equipment, irrigation infrastructure, and the acquisition of 
technical know-how. If these costs are big enough, it may be optimal for the farmer 
to delay or avoid change—in Figure 3, to continue farming crop 1 at point D rather 
than changing to crop 2 at point C. Hence, this method may provide biased esti-
mates of the effect of climate change depending on how costly it is for farmers to 
switch from one crop to the next. 

Third, this framework is applied retrospectively under the assumption that only 
historical climate matters. This assumption may no longer be tenable, as the climate 
has been changing since the 1960s. If agents know this, they should base their actions 
on expected rather than historical climate. Severen, Costello, and Deschenes (2016) 
provide an interesting extension of the Ricardian method by incorporating climate 
expectations. They show evidence that farmers already incorporate this information, 
suggesting that failing to incorporate expectations leads to a significant underesti-
mation of projected impacts of climate change. 

This cross-sectional framework has been applied in a number of other sectors. 
For example, Albouy, Graff, Kellogg, and Wolff (2016) back out the marginal value 
of climate in a cross-sectional study looking at residential home values. Mansur, 
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Mendelsohn, and Morrison (2008) use this approach to study the effects of 
impacts of climate change on energy consumption, where the adaptation is not 
crop-switching, but rather fuel-switching. 

Panel Data Approaches
Motivated by concern over the possibility of omitted variables in the Ricardian 

approach, Auffhammer, Ramanathan, and Vincent (2006) and Deschênes and 
Greenstone (2007) proposed using year-to-year variation in agricultural outcomes, 
temperature, and precipitation to estimate damage functions. Observing longitu-
dinal panels of India’s state-level rice output and US corn/soy and wheat yields, 
respectively, these papers can control for unit-specific and time-period fixed effects, 
which does away with some of the concerns over omitted variables bias. The regres-
sion equation in this approach regresses outcomes of interest (say, crop yields) on 
measures of contemporaneous weather (instead of the long-run averages of histor-
ical weather). If the right-hand-side weather variable enters the regression linearly, 
the estimated response has often been characterized as a short-run/weather/no-
adaptation response—which is of course different from the weather response after 
a future persistent change in climate which accounts for adaptation. In this simplest 
version of the framework, econometric identification arises from within-unit 
year-to-year fluctuations in weather and the outcome of interest. 

Figure 3 
Crop Choice and Profits in the Long and Short Run  

Source: Figure inspired by Mendelsohn, Nordhaus, and Shaw (1994).
Note: Imagine a single farmer, who is currently growing crop 1 and earning profits corresponding to the 
y value at point A. If faced with a significantly hotter climate, the farmer becomes indifferent between 
growing crop 1 and crop 2 at point B. If climate warms further still, the farmer would be much better off 
at point C (switching to crop 2) rather than at point D (continuing to grow crop 1).
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From the standpoint of analyzing the economic effects of climate change, 
an obvious concern with this approach is that it may capture short-run (intensive 
margin) adaptation to weather fluctuations, but not long-run (extensive margin) 
adaptation. For example, this approach captures farmer responses to bad weather 
draws in the short-run (like lower fertilizer application in a drier year) rather than 
in the long-run (like installation of irrigation infrastructure). 

 It is generally true that agents have more adaptation choices in the long run, 
especially along the extensive margin, and thus estimates that do not take this adap-
tation into account may overstate impacts. For example, farmers in the long run 
can switch crops, change the cropping calendar, or move their operations north, all 
of which would dampen the estimated impacts of climate change. However, there 
are also examples of adaptation options that are available in the short run and not 
in the long run. One example is a farmer with very limited groundwater resources 
and a slow refilling aquifer, who can smooth bad rainfall outcomes in the short run, 
yet continued water withdrawals would deplete the aquifer. As a result, this kind 
of adaptation would be only available in the short run, not the long run. Hence 
the bias may work in either direction depending on the nature of the adaptation 
options available to economic agents. 

The critique that it is difficult to infer long-run adaptations based on short-run 
changes has some validity, but as I discuss later, several methods have been proposed 
for deriving long-run adaptation to climate change from panel data. Moreover, while 
the criticism of the lack of long-run adaptation in this approach may seem intuitive, 
it does not apply to all panel studies using weather as a right-hand-side variable. 
McIntosh and Schlenker (2006) consider the case in which the weather variable 
on the right-hand-side enters as a second-degree polynomial. Because the response 
function is calibrated by two parameters, the coefficient on the higher-order term 
uses both variation from within units as well as across units. Econometric identifi-
cation arises from both within-unit time series variation as well as cross-sectional 
variation across units. Hence, it has been argued, that studies using this nonlinear 
specification allow for plausibly causal estimates that incorporate adaptation. 

 The papers leaning on this approach most strongly are panel studies of GDP 
growth rates across countries as a function of annual temperature fluctuations (Dell, 
Jones, and Olken 2012; Burke, Hsiang, and Miguel 2015a). The most recent of these 
papers find impacts of climate change on global GDP around 20 percent by end of 
the century, which is an order of magnitude larger than what is found by most Inte-
grated Assessment Models. There is broad enthusiasm for this approach, especially 
in the interdisciplinary climate literature. Aside from the fact that the choice of 
growth rate as the dependent variable implies that temperature shocks have persis-
tent effects on economic growth, it is important to remember that this approach 
introduces cross-sectional variation and all that comes with it in the identification 
of the higher-order term.

Another critique of the panel data approach is that if weather is measured 
with error, then as more fixed effects are included in the regression, concerns over 
measurement error loom larger (Fisher, Hanemann, Roberts, and Schlenker 2012). 
In the vast majority of locations, weather is measured with error, and the bigger 
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the distance between weather stations, the bigger measurement error concerns 
become. The United States and Europe have tens of thousands of weather stations, 
but many locations in in sub-Saharan Africa do not have a weather station within 
hundreds of miles. If the measurement error is classical, this is likely to attenuate 
the response towards zero. 

Long Difference Estimation 
Motivated by omitted variables bias issues in Ricardian models and the possible 

issues relating to capturing long-run adaptation in panel data models, Burke and 
Emerick (2016) proposed an alternate approach, which seeks to provide plausibly 
causal estimates of damages that fully account for observable adaptation. Climate has 
already changed in the United States over the previous half-century; in particular, 
they show that warming and precipitation trends are quite heterogeneous across US 
counties east of the 100th meridian. Hence, one can use differential climate trends as 
a source of econometric identification. The beauty of this approach is that the distri-
bution of observed trends includes changes similar in magnitude to those expected 
over the next century, which creates some overlap between the temperature and 
precipitation variation used for identification and out-of-sample projection. 

In their estimation, they use the difference between five-year moving averages 
of crop yields two decades apart and regress these on five-year moving averages 
of weather also two decades apart for all agricultural counties east of the 100th 
meridian. The differencing is equivalent to the inclusion of county fixed effects 
and the variation used to identify a climate effect incorporates adaptation. The 
marginal effects from this estimation show that the long-run estimates are at best 
half of those estimated from panel data models using short-run variation in weather. 
However, given the range of statistical significance, one cannot rule out that the 
two are equivalent. The authors interpret this finding as evidence of only limited 
long-run adaptation, which is one interpretation. Those working with panel data 
approaches might argue that the comparison here is flawed, because the baseline 
used for comparison incorporates some degree of adaptation. 

This long difference approach is appealing because it provides plausibly causal 
estimates of climate impacts that account for adaptation. However, the data require-
ments are significant. One needs broad spatial coverage of data over long periods 
of time. The other application where this long difference approach has been 
applied is in measuring the impacts of climate change on aggregate GDP across 
countries (Dell, Jones, and Olken 2012). However, other than in the cross-country 
sense, there are no applications of this estimator in nonagricultural sectors or in the 
developing country context. There should be more applications of this method in 
settings where data are sufficient. 

Ricardo Meets Panels: Climate Adaptive Response Estimation
A small but rapidly expanding literature attempts to estimate how the dose 

response function between weather and outcomes of interest changes as a function 
of a changing climate. There are two approaches. The first is similar to a “split sample 
approach,” where one splits a long panel of observable outcomes and weather 
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into two periods and estimates the response function separately. One can then use 
statistical tests to search for evidence of adaptation between the two periods. For 
example, Barreca, Clay, Dechenes, Greenstone, and Shapiro (2016) examine the 
mortality response to weather over time in the United States and show a massive 
decrease in the effect of a hot day on mortality over time, which is due to the signifi-
cant rollout of air conditioning in the hot and often humid areas of the United 
States. One example of this approach is Roberts and Schlenker (2011). 

A second approach along these lines represents a marriage of the panel data esti-
mation approach using short-run weather fluctuations and the Ricardian approach. 
The concept here is that if one observes a large number of units (like counties, house-
holds, or firms) over a significant number of periods covering a spatial area with large 
heterogeneity in climate, one can estimate separate response functions for subgroups 
of the individual units using observed short-run weather fluctuations (for example, 
use within-household variation to identify a short-run response function by zip code). 
By controlling for unit- and time-fixed-effects, it is possible to obtain plausibly causal 
estimates of local short-run dose response functions. One can then either in a second 
step regress the slopes of the dose response on climate (for example, long run average 
summer temperature) across subgroups, or, through an interaction term in a single 
regression, estimate how the slope of the dose response function varies across areas 
with different climates, incomes, and other observables that vary across space. Sight-
ings of this approach include Bigano, Hamilton, and Tol (2007), Auffhammer and 
Aroonruengsawat (2012), Hsiang and Narita (2012), Butler and Huybers (2013), Davis 
and Gertler (2015); Heutel, Miller, and Molitor (2017), and Carleton et al. (2018). 

This approach offers two important forward steps beyond the panel studies 
discussed above. First, it explicitly models climate adaptation by exploiting 
cross-sectional differences in the slopes of dose response functions. Second, it allows 
us to model explicitly the effects of income and population on the damage functions.

While this approach has significant appeal, it does not overcome some of the 
shortfalls of the Ricardian and panel methods. The econometrician is always limited 
by using historical observations in order to parameterize equations. The best we can 
do is simulate how income, population, and climate have affected short-run dose 
response functions historically and to assume that this relationship remains stable. 
We can approximate a future San Francisco with the climate of Fresno by assigning 
the appropriate climate, income, and population, but none of these approaches 
properly address the fact that Fresno may be structurally very different from a future 
San Francisco—even if we assign the right income and population. We simply lack 
the crystal ball that lets us look to 2100 and beyond. But this issue has plagued social 
science broadly, because predicting what the world looks like 100 years out is, well, 
rather difficult. 

Room for Expert Elicitation?

This literature on estimating the economic damages of climate change has 
been criticized on four grounds, which have been well-enunciated in Pindyck 
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(2013, 2016, 2017). Ultimately, these criticisms raise the possibility that for studying 
climate change, conventional econometric studies may need to be supplemented 
with a healthy dose of “expert elicitation.”

Pindyck’s first criticism is that in Integrated Assessment Models, the functional 
form of relationships and their parameterization—including those in damage 
functions—are “arbitrary.” Second, he expresses concern that many of the studies 
cited above “are limited to short time periods and small fluctuations in tempera-
ture and other weather variables,” which is effectively the same as pointing out that 
econometricians rely on observed data and technology to parameterize their dose 
response functions. In whichever way one phrases this concern, the bottom line is 
that existing studies may not account well for long-term adaptation and in partic-
ular for the possibility of very significant changes in technology. Third, the biggest 
impacts of climate change may result from extreme and catastrophic events, which 
can be thought of as low-probability events with possibly massive economic conse-
quences. Examples would include the shutdown of the Thermohaline Circulation 
that gives Europe its lovely climate, the melting of the West Antarctic ice sheet, and 
the possible rapid release of significant amounts of methane from the tundra. We 
have (fortunately!) not observed these events in the measured historical record and 
hence econometric estimation cannot provide estimates of the economic damages 
from such events. A final concern is that there is little agreement over the correct 
approach to discounting and which discount rate to apply in placing a value on 
future damages from climate change.

In response to these concerns, Pindyck has strongly argued for “expert elicita-
tion.” For example, in response to estimating the risks and costs of extreme climate 
events, one can imagine that teams of scientists with an understanding of the phys-
ical and economic consequences might be able to provide coarse estimates of the 
damages resulting from such large events. There are well-established procedures for 
such expert elicitation, and this may be a fruitful avenue forward to make progress 
on this topic. However, experts in this arena have to rely on “process understanding,” 
as there are no data here to help. Similarly, one can imagine a group of experts 
who might tackle the question of what discount rate is most appropriate to use, 
which is what Drupp, Freeman, Groom, and Nesje (forthcoming) did. The median 
answer for the risk-free social discount rate is 2 percent in their study, which is quite 
different from the 3 percent and 7 percent rates applied in the most recently used 
social cost of carbon in proposed US government rulemakings for automotive fuel 
economy (CAFE) standards. 

However, expert elicitation seems less useful in coming up with better esti-
mates of damages in order to overcome the first two of Pindyck’s critiques. I 
would argue that the recent literature has made significant headway in esti-
mating plausibly causal damage functions incorporating adaptive response from 
partially cross-sectional variation. The formulations doubtless can be critiqued 
and questioned, but they are not arbitrary. I question whether experts would 
come up with “better” estimates than the cutting-edge papers in this literature. 
Maybe more fundamentally, a group of experts called upon to participate in an 
expert elicitation exercise concerning the functional form of damage models and 
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extrapolations to larger climate changes or time periods would begin with—of 
course—a review of the existing recent models in this area, which brings us back 
to the importance of better econometric models.

What We Know and What We Don’t 

Cline (1992) put forth a list of important sectors for which we require a better 
understanding of their climate sensitivity. Table 1 below replicates his table and I 
have subjectively filled in where this literature currently stands in terms of published 
and ongoing efforts. A glance shows that there is a lot of work to do. 

Yet it is clear that the literature on the econometric estimation of damage func-
tions of climate change is rapidly expanding—both in terms of methods as well as 
sectoral and spatial coverage. The previously stagnant state of affairs where most 
of the damage functions in Integrated Assessment Models had not been updated 
significantly in over a decade has changed dramatically. Economists need to push 
forward in improving sectoral and spatial coverage of the damage functions provided 
to modelers, using methods that allow us to parameterize plausibly causal damage 
functions, which account for adaptation and allow us to estimate welfare impacts of 
climate change. The current frontier is probably best described by work using the 
“Ricardo meets panel data” approach. 

Moore et al. (2017) is one published attempt to incorporate the most recent 
estimates of damage functions for the agricultural sector into an Integrated Assess-
ment Model (the FUND model) and this one-sector exercise doubles the social cost 
of carbon (SCC), which underlines the importance of these efforts.

Those interested in this area will want to keep an eye on two major efforts that 
involve ambitious ongoing collaborations between climate scientists and economists. 
The Climate Impacts Lab, managed jointly by researchers at the University of Chicago, 
UC Berkeley, Rutgers University, and the Rhodium Group, produces damage func-
tions for mortality, migration, energy consumption, agricultural yields, and conflict 
which satisfy the characteristics laid out above and have global coverage. At the same 
time, a group at Resources for the Future has undertaken the task of implementing 
the changes suggested by the National Academies of Sciences in the modeling of the 
social cost of carbon. The governments of Mexico and Canada have pledged their 
support of these efforts, as all US federal government development of the modeling 
behind the social cost of carbon has been halted—a fact which is deeply concerning.

As these and other researchers dig deeper, three key areas require especially 
deep thinking. First, we need to improve how we incorporate damages from cata-
strophic events, which may well require abandoning the econometric toolkit and 
relying on cross-disciplinary expert solicitation. Second, we need to think about 
general equilibrium effects across space and spillover effects across sectors in our 
models. Collaborations between trade and climate economists (Dingel, Meng, and 
Hsiang 2018), as well as academics working on supply chains (for example, Seetharam 
2018), will likely yield fruitful insights. Finally, it is shocking how little work has been 
done on the effects of climate change on nonmarket goods other than mortality. It is 
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paramount that we begin developing approaches that will allow us to quantify damages 
from species loss, ecosystem services—as well as effects on human morbidity—and 
incorporate these into the models that estimate costs of climate change. 

■ I thank the Berkeley Climate Economics Lunch group, the members of the National Academy 
of Sciences panel on the Social Cost of Carbon, David Anthoff, Lint Barrage, Marshall Burke, 
Tamma Carleton, Chris Costello, Olivier Deschênes, Tony Fisher, Michael Greenstone, Michael 
Hanemann, Sol Hsiang, David Lobell, Rob Mendelsohn, Pierre Mérel, Frances Moore, Michael 
Roberts, Wolfram Schlenker, Joe Shapiro, Andy Solow, Richard Tol, Fiona Wilkes, Gary Yohe, 
and many others for numerous conversations that have informed my thinking on the topics 
discussed in this survey over the years. All misguided thinking is solely mine. 

Table 1 
Coverage of the Damage Function Literature

Sector

Plausibly 
causal 

estimates
Adaptation 
addressed

Global 
coverage Examples

Agriculture Yes Yes Yes Schlenker and Roberts (2009); Moore, 
Baldos, Hertel, and Diaz (2017)

Forestry No No No

Species loss No No No

Sea-level rise Yes Yes No Houser, Hsiang, Kopp, and Larsen (2015)

Energy Yes Yes No Auffhammer (2018)

Human amenity Yes ~ Yes No Albouy, Graf, Kellogg, and Wolff (2016); 
Baylis (2015)

Morbidity and mortality Yes Yes Yes Deschênes and Greenstone (2011); 
Carleton et al. (2018)

Migration Yes No No Bohra-Mishra, Oppenheimer, Hsiang 
(2014); Missiran and Schlenker (2017)

Crime and conflict Yes No Maybe Burke, Hsiang, and Miguel (2015b)

Productivity Yes No No Peng, Deschênes, Meng, and Zhang (2018)

Water consumption No No No

Pollution Yes Maybe No Bento, Mookerjee, and Severenini (2017)

Storms Yes Yes No Hsiang and Narita (2012); Deryugina, 
Kawano, and Levitt (2018)

Source: Cline (1992) put forth a list of important sectors for which we require a better understanding 
of their climate sensitivity. Table 1 below replicates this list and I have subjectively filled in where this 
literature currently stands in terms of published and ongoing efforts. 
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