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Abstract
There is extensive research documenting the economic consequences of climate change, yet 
our understanding of climate impacts on nonmarket activities remains incomplete. Here, 
we investigate the effect of weather on recreation demand. Using data from 27 million 
bicycle trips in 16 North American cities, we estimate how outdoor recreation responds 
to daily weather fluctuations. We find empirically that cyclists dislike cold temperatures 
much more than hot temperatures, suggesting potential gains from warming. However, the 
overall response to extreme heat is mitigated, in part, by intraday adaptation towards recre-
ating during cooler times of day. Combining these estimates with time-use survey data and 
climate projections, our models suggest annual surplus gains of $894 million from climate-
induced cycling by mid-century.
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1  Introduction

Climate change will affect economic conditions globally, with wide-ranging implications 
for economic growth, productivity, public health, and ecological function. Recent work has 
shown that local climate affects the growth rate of national economies (e.g., Burke et al. 
2015; Dell et al. 2012), labor supply (e.g., Graff Zivin and Neidell 2014), agricultural pro-
duction (e.g., Deschênes and Greenstone 2007; Schlenker and Roberts 2009; Burke and 
Emerick 2016; Lechthaler and Vinogradova 2017), and natural systems (e.g., Walther et al. 
2002; Tol 2009). Extreme temperatures cause dramatic health consequences (Barreca et al. 
2016) and can even affect traffic and driving risks (Leard and Roth 2019), and evidence 
suggests that the value of climate amenities are capitalized into home purchase decisions 
(Albouy et al. 2016; Sinha et al. 2018).

Despite extensive research detailing the effects of climate change on economic produc-
tion, human health, and natural capital, we have relatively few causal estimates of climate 
change effects in other realms, especially for nonmarket activities. In 2016, outdoor recrea-
tion in the U.S. generated approximately $373.7 billion in economic activity (2.0% of U.S. 
GDP), although this number is a conservative estimate of the value of recreation because 
it fails to account for how much individuals value their time spent recreating.1 The point 
of this paper is to demonstrate that climate impacts on nonmarket activities can be large 
by quantifying the impacts for recreational cycling. We estimate outdoor cycling demand 
as a function of weather anomalies, and we use these estimates to predict future potential 
impacts from climate change. Our analysis highlights both short- and long-run implications 
and sheds light on the human role of adapting to climate change.

Although much of the extant literature finds that climate change will have deleterious 
effects on economic productivity, the implications for recreation demand are theoreti-
cally ambiguous. Global warming entails a rightward shift of the temperature distribu-
tion. Therefore, for most outdoor activities, we anticipate diminished recreation demand 
on the warmer end of the distribution, where increases in temperature will make hot days 
and regions more inhospitable for outdoor activity, holding rainfall constant. However, on 
the cold end of the distribution, climate change will beget milder conditions, potentially 
stimulating greater recreation demand. Identifying the net effect is an empirical question 
that depends on the distribution of weather and its interaction with preferences, popula-
tion, and wealth across the geography in question. Prior research has found positive aggre-
gate impacts on outdoor recreation due to fewer cold days each year (Mendelsohn and 
Markowski 1999; Loomis and Crespi 1999), but relies upon cross-sectional comparisons 
that may be confounded by local factors.

In this paper, we estimate the net impact of weather on leisure demand by analyzing a 
representative mode of urban recreation: riding bicycles.2 Cycling is attractive to study for 
two primary reasons: (1) it is prevalent throughout the world, undertaken in a wide range 
of climatological zones and by people from vastly different socioeconomic backgrounds, 
and (2) there are high-quality data sets on bicycle usage available from bicycle-sharing 

1  https​://www.bea.gov/outdo​or-recre​ation​/.
2  Here and throughout the paper, we use the term “leisure” interchangeably with warm-weather “outdoor 
recreation.”

https://www.bea.gov/outdoor-recreation/
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(bikeshare) programs at fine spatial and temporal resolutions. These programs exist in 
hundreds of cities worldwide, with tens of millions of trips recorded annually. We ana-
lyze temporally disaggregated data over multiple years for 16 similar bikeshare programs 
throughout North America, from Mexico City to San Francisco to Montreal. We use high-
frequency data that are recorded in real time, an advantage over traditional leisure studies 
that rely upon survey data. Our diverse set of programs and the fine data resolution pro-
vide distinct advantages, as we are able to compare, apples-to-apples, an urban recreational 
activity in climatologically distinct settings, something that is not possible for more geo-
graphically specific activities such as fishing, boating, or swimming.

Altogether, we observe more than 27 million weekend bicycle trips totaling more 
than 9 million hours of cycling time, one of the largest compilations of recreational trips 
used in the economics literature. We couple these highly detailed bikeshare data with 
disaggregated climatic variables, which allows us to parameterize the leisure-weather 
dose–response function for cycling. In particular, we exploit within-city deviations in 
weather each month to estimate a causal, nonlinear relationship between temperature and 
precipitation and resultant leisure demand.

Our empirical analysis has three primary results. First, we find that cycling demand pos-
sesses an inverted U-shaped relationship along the distribution of temperature. We see dra-
matic reductions in demand on the colder end of the temperature distribution, although 
demand on extremely hot days (with average daily temperatures greater than 80 ◦F ) is not 
statistically different than more moderate days. Second, we find evidence of behavioral 
adaptations on hot days in which individuals shift their trips towards morning and night 
time to avoid recreating at the hottest time of day. Third, in addition to adaptation, we also 
find evidence of acclimitization. We estimate distinct response functions by climate region 
and find that recreation demand in cold cities is less impacted by cold weather.

After establishing these relationships, we overlay an ensemble of climate projections 
from coupled atmosphere-ocean general circulation models onto our weather-response 
functions. From this, we project spatially explicit changes in cycling demand attributable to 
climate change, and we derive economic values for these changes. Importantly, the weather 
variation in our data subsumes the most likely range of temperatures and precipitation in 
midcentury climate projections, so that our final results do not rely upon large out-of-sam-
ple extrapolations. By analyzing recreation data from time-use surveys, we are able to scale 
our bikeshare estimates into nationally representative estimates for outdoor cycling. Our 
results suggest that climate change will generate net benefits from induced cycling demand 
around $894 million per year (2016 USD) by 2060. These estimates demonstrate that cli-
mate change impacts on nonmarket activities can be large under reasonable assumptions. 
Thus, future efforts to measure nonmarket impacts would produce valuable numbers for 
constructing optimal climate policy.

Of course, not all bicycle trips constitute leisure activity. Individuals may use bikeshare 
programs for work commutes, as well. To focus on recreation demand, we restrict our anal-
ysis to weekend trips, which strongly proxies for leisure activity. We demonstrate this fact 
with a series of additional analyses that strengthen the robustness of our main findings and 
provide deeper insight on the nature of recreation demand. First, we show striking similari-
ties between the weather responses in our weekend sample and weather responses for rec-
reational cycling demand from the nationally representative American Time Use Survey. 
The strong agreement between these two distinct data sets assures us that weekend bike-
share usage aligns well with recreational cycling, and it also helps assuage concerns about 
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sample selection, whereby bikeshare users may differ from the broader U.S. population.3 
Second, we take advantage of unique data on bikeshare memberships and find a virtually 
identical demand response to weather for a subsample of “casual” weekend cyclists—those 
who have short-term bikeshare memberships—that make up 27% of our sample. Third, we 
observe similar behavior in our weekend sample and a separate sample of federal holidays, 
both of which differ from weekday cycling demand. Fourth, the patterns of intraday substi-
tution that we observe are consistent with discretionary leisure activity, as individuals shift 
their rides to morning and evening on hot days, presumably to avoid the intense heat of the 
midday hours; no such substitution patterns are observed on weekdays.

Overall, our analysis provides empirical evidence that climate change may increase 
demand for warm-weather recreational activities. On net, we find that the beneficial effect 
of reducing cold days is greater than the deleterious effect of hot days, with the latter being 
dampened, in part, by behavioral adaptations in the timing of recreation activities. Our data 
set is unique amongst recreation studies as a long panel with very fine spatial and temporal 
resolution. These unique features allow us to make precise and highly robust estimates that 
control for an extensive range of potential confounders.

At the same time, there are important caveats to our analysis, which we catalog and 
discuss alongside our results. One important concern that is worth mentioning at the outset 
is activity substitution, as weather-induced cycling may affect participation in other out-
door recreation activities. To an extent, our welfare calculations implicitly embed the value 
of substitute activities by using consumer surplus measures, which are measured net of 
the opportunity cost of alternatives. Therefore, substitution at the margin should not affect 
our estimates in partial equilibrium. Chan and Wichman (2018) provide a more detailed 
treatment of this issue. However, these substitution effects could be significant in general 
equilibrium, and given the far-reaching effects of climate change, such general equilibrium 
effects are likely to be relevant—an important caveat to keep in mind when interpreting our 
results.

1.1 � Related Literature

Our work contributes to a growing body of literature that projects climate impacts on vari-
ous economic activities. We take a reduced-form approach, exploiting weather fluctuations 
to identify the effect of climate variables on leisure demand, and we couple these empiri-
cal estimates with climate model projections to predict how future leisure activity will be 
influenced by a changing climate. Similar approaches have been used to predict climate 
change consequences for economic growth, labor supply, human health, agricultural pro-
duction, and ecological systems (Walther et al. 2002; Deschênes and Greenstone 2007; Tol 
2009; Dell et al. 2012; Graff Zivin and Neidell 2014; Burke et al. 2015; Burke and Emerick 
2016).

3  Even so, we contend that our primary bikeshare estimates are much more precise than estimates based on 
time use surveys due to the unique nature of our data set and our estimand is more economically meaning-
ful for projecting future leisure demand under climate change.
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However, relatively little work has studied the causal relationship between climate and 
nonmarket recreation activity.4 Mendelsohn and Markowski (1999) conducted early work 
in this vein, using cross-sectional variation in weather patterns across the 48 contiguous 
states to estimate how demand for six summer recreation activities (boating, camping, fish-
ing, golfing, hunting, and wildlife viewing) vary with weather. They then use this empirical 
model to predict how the number of recreation days for each activity will change under 
nine hypothetical climate scenarios. In particular, they consider temperature increases of 
1.5, 2.5, and 5.0 ºC and precipitation increases of 0, 7, and 15%, and they multiply demand 
changes by values from the literature for (average) consumer surplus per day. Their central 
estimates indicate net gains in the neighborhood of $3–$4 billion by the year 2060 (in 1991 
USD).

Loomis and Crespi (1999) take a similar approach by estimating how visitation rates for 
various recreation activities vary with weather conditions. Coupling these estimates with 
Intergovernmental Panel on Climate Change climate projections and average consumer 
surplus values from the literature, they estimate overall benefits of $3 billion (in 1992 
USD). They predict gains for golf and water-based activities such as swimming, fishing, 
and boating and losses for skiing, hiking, and camping. However, the studies by Loomis 
and Crespi (1999) and Mendelsohn and Markowski (1999) use aggregate (e.g., state or 
regional) measures of participation, relying on cross-sectional variation across jurisdictions 
to pin down weather effects. The reliance on cross-sectional variation in both cases cre-
ates challenges for causal identification if local climates are correlated with recreational 
opportunities.

More recently, Dundas and von Haefen (2020) investigate how coastal recreational fish-
ing is affected by weather using a random utility discrete choice framework. They make use 
of site-level visitation data and account for time-varying site attributes, identifying weather 
effects using short-run variation in temperature and precipitation. Using these estimates, 
they simulate the impacts of climate change on fishing. They report potential declines in 
fishing participation and accompanying welfare losses to recreational anglers from climate 
change. They also provide evidence that recreational anglers may shift to nighttime fishing, 
an adaptation that mitigates potential losses from hotter days.

Further, Graff Zivin and Neidell (2014) use short-term temperature shocks to study how 
temperatures affect individuals’ allocation of time between labor and leisure, using data 
from the American Time Use Survey. They report that additional warming at high temper-
atures reduces labor hours, but that these impacts are primarily concentrated in industries 
exposed to climate. They also find that such warming encourages individuals to take part 
in indoor leisure activities in lieu of outdoor leisure. The leisure substitution works in the 
opposite direction when there is warming at the low end of the temperature distribution, 
as expected, and they find no appreciable response in labor time in such cases. They also 
provide evidence that individuals may acclimatize to higher temperatures or adapt through 
temporal substitution of activities. Their study relies upon repeated cross sections of ret-
rospective time use surveys. We take advantage of much higher resolution data, both in 

4  In complementary research, Leard and Roth (2019) estimate the welfare impact from fatal traffic acci-
dents induced by climate change. They find large costs associated with traffic fatalities by the end of the 
century. Further, they posit that “voluntary exposure benefits” from more pedestrians, cyclists, and motor-
cyclists on the roads with higher temperatures offset the costs of fatalities, thus mitigating the consequences 
of climate change on traffic accidents. This latter finding is in line with our estimates for cycling, although 
our data permit us to estimate the benefits from climate-induced recreational activities.
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terms of temporal frequency and geographic specificity, that is not subject to many com-
mon challenges with survey data (e.g., recall error), allowing for cleaner identification and 
estimation. Building upon their approach, we find similar patterns of adaptive behavior, 
thus demonstrating the generalizability of their results to new contexts.

Like our paper, Obradovich and Fowler (2017) also examine how climate change will 
influence physical activity patterns. They use data from 1.9 million respondents to the 
the Behavioral Risk Factor Surveillance Survey (BRFSS) and examine dose–responses to 
short term weather variation. They find large, pronounced effects at low temperatures and 
more modest effects at high temperatures, which is consistent with our findings; however, 
the magnitudes of their responses are more muted. We posit that this discrepancy arises 
because the BRFSS questions elicit binary responses about general physical activity for the 
30-day window prior to the interview (“During the past month, other than your regular job, 
did you participate in any physical activities or exercises such as running, calisthenics, golf, 
gardening, or walking for exercise?”), providing a coarse measure of the outcome variable 
of interest. Moreover, given the temporal scale of their survey data, they use month-long 
averages of explanatory variables like temperature and precipitation, which likely attenuate 
the estimated responses.5

In this paper, we add to the small but growing literature studying the future impacts of 
climate change on recreation. The basic arc of our research is similar to those discussed 
above, as we use short-run variation in weather in conjunction with climate projections to 
predict future outcomes. However, our work is unique, as it generates causal, panel esti-
mates of weather impacts on recreation using high resolution (both spatially and tempo-
rally) data. Thus, we distinguish our work from others in several key dimensions.

First, the papers above use cross-sectional data (or repeated cross-sections) to estimate 
leisure responses to weather, which is understandable given typical data constraints. By 
their nature, many recreational activities are infrequent, leaving researchers with relatively 
coarse data aggregated over large jurisdictions (e.g., state level), long temporal scales (e.g., 
months or seasons), or both. Such data limitations make it challenging to estimate precise 
effects and to identify causal relationships cleanly, especially because weather data must 
often be averaged over long time periods or large regions to mesh with the available rec-
reation data. The bikeshare data that we use, on the other hand, are extremely rich, with 
bike usage information discernible at timescales finer than a minute. As a virtue of these 
detailed data, we can control for a battery of fixed effects to remove confounding varia-
tion from location- or time-specific unobservables, thus giving us confidence in the causal 
interpretation of our estimates. Moreover, we can analyze the effects of climate change 
at the daily or intradaily level and across broad regions to estimate adaptation behavior 
directly.

Second, our application is unique, as we study short cycling trips made in bikeshare 
programs. Not only is this particular focal area unexplored, but it also differs in nature 
from the activities typically studied in the recreation demand literature. That is, more 

5  Further, using automatic bicycle-traffic receptors, Nosal and Miranda-Moreno (2014) explore a similar 
dose–response relationship between weather and cycling along 14 routes in Montreal, Ottawa, Vancou-
ver, and Portland, and Quebec over a span of 1-to-3 years. Their results are consistent with what we find, 
although we model our dose–response function more flexibly and include a wider variety of cities, over a 
longer timespan, with a broader set of controls and fixed effects, thus extending the validity of their results. 
In the present paper, we go several steps beyond Nosal and Miranda-Moreno (2014) to combine our esti-
mates with climate projections and an economic welfare framework to predict climate change impacts on a 
national scale.
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standard analyses examine activities such as boating, fishing, or camping—activities that 
often entail significant fixed costs and investments of time to undertake. Bikeshare trips, 
by contrast, constitute an everyday activity that individuals can engage in on a whim and 
that may take as little time as a few minutes. Such everyday activities have typically been 
overlooked by the recreation literature; this represents an important oversight because the 
value of cycling and other quotidian pursuits can be large, as we show. Although these 
activities may seem insignificant, their sheer participation rates and revealed demand lead 
to substantial welfare impacts that should not be ignored.6

This research has immediate policy implications and fills an important gap in the exist-
ing literature. This is one of the first studies, to our knowledge, to generate causal estimates 
of weather on recreation demand to provide insight on notoriously difficult-to-measure 
nonmarket climate damages. In doing so, our analysis complements existing work that 
examines market impacts, or values local climates, making it possible to construct a more 
comprehensive measure of climate damages and to unpack the underlying behavior that 
complements individuals’ willingness-to-pay for climate amenities.

2 � Empirical Framework

Our empirical goal is to relate recreation demand (Y) to weather (W). Specifically, we seek 
to establish a causal relationship between weather outcomes and usage of the bikeshare 
system. For each city, c, in our sample, we aggregate bicycle trip statistics to the daily 
level, d. We focus on two outcomes, Ycymd ∈ { Trips cymd, Duration cymd} , that capture both 
the aggregate number of trips taken in a given day and the aggregate number of minutes 
spent by all bikeshare users within the day for each city. Our outcome variables are indexed 
by city (c), year (y), month (m), and day (d). We specify the following baseline equation to 
link demand and weather, noting that we analyze a variety of control variables and fixed 
effects for robustness:

�ym and �d are time indicators capturing year-by-month and day-of-week fixed effects, 
respectively. �cm is a city-by-month-of-year fixed effect. tc is a (linear or quadratic) city-
specific time trend, which is important to capture the effect of different start dates, growth 
rates, and other time trends across sites. �cymd is the residual error, with serial correlation 
present within a city over time. And, finally, f (Wcymd|Θ) is a flexible function of prevailing 
weather conditions, parameterized by Θ.

To capture the relationship between weather and our dependent variable of interest, we 
specify the partially nonparametric functional form to f (⋅|Θ) in Eq. 1,

(1)lnYcymd = f (Wcymd|Θ) + �ym + �d + �cm + �1tc + �2t
2
c
+ �cymd.

(2)f (⋅|Θ) =
∑

s∈S

�s1[ T cymd = s] +
∑

r∈R

�r1[ P cymd = r] + �1[ Snow cymd]

6  We observe more than 3500 years of cumulative time spent on bicycles in our full 8-year sample.
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where the first term indicates a set of 10 ◦F temperature bins that equal one if the observed 
daily average temperature Tcymd falls within that range, and zero otherwise.7 The sec-
ond term is a set of 1

4
-in. precipitation bins that equal one if observed daily precipitation 

Pcymd falls within that range.8 1[ Snow cymd] is an indicator equal to one if any snowfall is 
observed that day.

The relationship captured empirically by the set of coefficients in f (⋅|Θ) provides a 
foundation to understand how bicycle users respond to deviations in weather outcomes in 
the short run. In our primary specifications, we control for (1) global day-of-week effects 
(e.g., Saturday), (2) idiosyncratic city-by-month-of-year effects (e.g., June in Chicago), 
and (3) global year-by-month effects, so the identifying power in our sample is driven by 
day-of-week-specific variation within each month-city combination in our sample. That is, 
identification arises by comparing an unusually warm Saturday in Chicago in June with a 
relatively more temperate Saturday in Chicago in June.

Our two outcome variables, Trips and Duration, provide insight into both the extensive 
and intensive margin of choice for cyclists. That is, how does weather affect the likeli-
hood of cycling, and conditional on choosing to bicycle, how much time is spent cycling in 
response to weather? By estimating the change in quantity of minutes demanded by cyclists 
in response to weather and employing existing estimates of consumer surplus per unit of 
time from prior work, we can directly estimate welfare changes in response to deviations in 
weather.

2.1 � Weather Versus Climate?

We follow recent empirical work that uses weather fluctuations to identify relationships 
between climate and economic outcomes (e.g., Schlenker and Roberts 2009; Dell et  al. 
2012, 2014; Burke et al. 2015; Barreca et al. 2016; Hsiang et al. 2017).9 Specifically, con-
sider two stylized climate distributions presented in the top panel of Fig. 1. These two dis-
tributions could represent geographic differences at a single point in time (e.g., comparing 
Boston with San Francisco) or these could represent hypothetical climates for one geog-
raphy at different points in time (e.g., Washington, DC, in 2015 and Washington, DC, in 
2050).

Now, consider realizations of temperature holding precipitation fixed. In our quasi-
experimental setting, we seek to identify the relationship between leisure demand and tem-
perature, represented in the lower panel by Y(T). By allowing nature to take random draws 
from the distributions C0 and C1 , which we observe as fluctuations in temperature, we are 
able to identify points along the dose–response function, Y(T). Our approach, then, derives 
an empirical relationship between leisure demand and weather conditional on climate.

An immediate conclusion from the hypothetical construction in Fig. 1 is that it is ambig-
uous whether a positive mean shift (e.g., moving from T0 to T1 ) will stimulate or dimin-
ish leisure demand. Assuming that there is some optimal temperature T∗ associated with 

7  Note that the daily average temperature is the simple mean of the high and low temperature for that day. 
Therefore, a day in the > 80

◦
F bin in our data may actually represent a very hot day with a high of 95 ◦

F 
and a low of 70 ◦

F.
8  Formally, the temperature bins, in degrees Fahrenheit, are (−∞, 30] , (30,  40], (40,  50], (50,  60], 
(70, 80], and (80,∞) , with the (60, 70] bin omitted. The precipitation bins, in inches per day, are (0, 0.25], 
(0.25, 0.50], (0.50, 0.75], (0.75, 1], and (1,∞) , with days with no precipitation omitted.
9  See Dell et al. (2014) and Carleton and Hsiang (2016) for broad reviews of this literature.
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leisure demand (holding precipitation and other factors fixed), any rightward shift in local 
mean temperatures for T0 < T∗ will result in increased in demand denoted by the region A, 
whereas rightward shifts for T0 > T∗ will negatively affect leisure demand, the region B. 
It stands to reason that there may be winners and losers with respect to climate-induced 
changes in leisure demand. The net value of this effect will be determined by geographi-
cally explicit climate effects and their interaction with preferences, population, and wealth 
across the area considered.

Of course, this conclusion is complicated by the fact that climate is multidimensional 
and represented by higher-order moments than its mean temperature, and that demand 
for leisure is potentially correlated with unobservable factors also associated with climate 
at the local level. Our rich set of weather variables, time controls, and geographic fixed 
effects, then, plays an important role in interpreting our results as causal.

Another concern is that long-run responses to climate may differ from short-run reac-
tions to weather because of factors such as adaptation or sorting, an important issue for 
studies that use dose–response functions to infer climate impacts. We provide some empiri-
cal insights into possible channels of adaptation, but this remains a challenge for our work 
as it is for prior work in this vein, so our conclusions should be interpreted with this caveat 
in mind.

3 � Data

3.1 � Bikeshare Data

Bikesharing is an urban transit system in which members can use bicycles from stations in 
public places and return them to other stations when their ride is complete. Modern sys-
tems require members to purchase a membership for a specified time (e.g., 24 h or 1 year). 
A member uses a key to unlock a bicycle at any station and can return it to an empty dock 
at a station near the end destination. Generally, the marginal cost of a trip completed within 
a given amount of time (typically 30 min) is zero; trips that last longer than that are priced 
according to an increasing tiered schedule.10

We compiled data from each bicycle-sharing program in the United States, Canada, and 
Mexico, and obtained publicly available trip history records for each program online. Our 
sample contains all publicly available bikesharing data for programs in North America as 
of the spring of 2017. Overall, we use data from 16 independent programs across North 
America as shown in Fig. 2. Each data set contains the start and end time and location of 
each bicycle trip. From this, we can calculate each trip’s elapsed duration. We aggregate 
individual trips to the daily level (i.e., the calendar date on which the trip began). Our pri-
mary outcomes of interest are (1) the total number of trips in a given day for a given city, 
and (2) the total duration (in minutes) of all trips taken during a given day in a given city. 
To isolate recreation demand (as opposed to commuting behavior), we analyze trips on 
Saturdays and Sundays only. Wichman and Cunningham (2017) find cycling behavior on 
weekends commensurate with lower values of time that are likely more representative of 

10  For more details on bikesharing programs, see Hamilton and Wichman (2018) and Wichman and Cun-
ningham (2017).
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leisurely rides than weekday commutes. In subsequent discussion, we provide several addi-
tional pieces of evidence to corroborate our claim that these are recreational trips.

We summarize the bikeshare data in Table 1. Our sample spans from February 2010 
through May 2017, although the time periods differ by data availability in each city’s bike-
share program. In our full sample, we observe more than 120 million bicycle trips totaling 
more than 32 million hours in elapsed duration. When restricting the sample to weekend 
observations, we observe 27 million trips totaling more than 9 million hours of recreation. 
The number and duration of trips scale with the size of the program and the length of its 
operation. New York has the largest program, averaging more than 24,000 trips per week-
end day. Los Angeles has the smallest program primarily because it has been in operation 
only since the summer of 2016. We have the longest panel of data in Washington, DC, 
spanning 654 daily weekend observations.

3.2 � Weather Data

We use daily weather data from the Global Historical Climate Network (GHCN-Daily). For 
each city in our sample, we gather four weather measurements from each weather station 

Fig. 1   Stylized depiction of leisure demand as a function of temperature
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within 100 km of the city’s centroid: maximum and minimum daily temperatures, precipi-
tation, and snowfall. We remove any weather station that has all values missing for any of 
these four measures.11 We weight observations by the station’s inverse distance squared 
from the city centroid. We also take a simple geographic average, giving each weather sta-
tion within 100 km equal weight, as a sensitivity check.

Our final weather data set is a balanced panel of daily observations for each city in our 
sample spanning the time period in which we observe bikeshare trips. As described before, 
we take a simple average of maximum and minimum daily temperatures to construct a 
daily average temperature; therefore, an 80 ◦F day may indeed be a very hot day, with a 
high temperature potentially exceeding 100 ◦F . Our primary weather variables are average 
daily temperature ( ◦F ) along with rainfall (inches) and snowfall (inches).

As shown in Fig. 3, our sample includes a wide variety of climates, including hot cities 
such as Austin, colder cities such as Minneapolis and Montreal, and temperate cities such 
as San Francisco. This figure illustrates the variation we use to trace out leisure demand 
across a diverse set of climates.

We also use a supplementary weather data set to test the robustness of our findings. 
We hand-select weather stations (one station for each city) from the Local Climatologi-
cal Data (LCD) Daily Summary. These data allow for daily observations of an additional 
suite of weather metrics for our US cities, including wind speed and direction, wet-bulb 
temperature, and pressure, among others. Because we use a parsimonious measure of daily 
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Fig. 2   Location of cities included in sample

11  Further, we interpolate seven observations total in Montreal, San Francisco, and Seattle for missing 
snowfall.
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Table 1   Summary statistics for bikeshare data

aMinneapolis’ and Montreal’s programs operate only between April 1 (15) and November 30 (15), respec-
tively

City First month Last month Full sample

Daily obs. No. trips Ave. trips Duration Ave. duration

(trips/day) (1000 h) (hours/day)

Austin 201,312 201,702 1104 550,420 499 263 238
Boston 201,107 201,612 1749 5,116,385 2925 1313 751
Chattanooga 201,207 201,512 1256 163,914 131 579 461
Chicago 201,306 201,612 1282 9,993,244 7795 2858 2229
Denver 201,004 201,612 2161 1,934,816 895 954 442
Hoboken 201,510 201,612 444 169,482 382 94 212
Los Angeles 201,607 201,612 178 98,641 554 40 227
Mexico City 201,002 201,607 2315 34,813,696 15,038 8194 3540
Minneapolisa 201,006 201,611 1450 2,240,726 1545 440 303

Montreala 201,404 201,705 692 11,366,431 16,425 2586 3738
New York 201,307 201,612 1276 36,902,024 28,920 9514 7456
Philadelphia 201,504 201,612 617 1,084,768 1758 441 715
Pittsburgh 201,505 201,612 581 138,884 239 127 218
San Francisco 201,308 201,508 733 669,959 914 206 281
Seattle 201,410 201,612 811 263,136 324 87 107
Washington, 

DC
201,009 201,612 2295 15,462,158 6737 4664 2032

Total 18,944 120,968,684 6386 32,360 1708

City First month Last month Weekends only

Daily obs. No. trips Ave. trips Duration Ave. duration

(trips/day) (1000 h) (hours/day)

Austin 315 220,399 700 125.0 397
Boston 499 1,216,145 2437 407.9 817
Chattanooga 358 72,314 202 487.6 1362
Chicago 367 2,853,608 7775 1038.1 2829
Denver 615 546,737 889 355.3 578
Hoboken 126 40,008 318 28.6 227
Los Angeles 51 26,436 518 15.1 296
Mexico City 662 5,204,986 7863 1434.2 2166
Minneapolisa 414 727,113 1756 145.1 350

Montreala 199 2,789,221 14,016 696.0 3497
New York 363 8,813,202 24,279 2675.3 7370
Philadelphia 175 279,172 1595 150.9 862
Pittsburgh 166 48,565 293 55.8 336
San Francisco 210 83,176 396 62.4 297
Seattle 231 65,326 283 32.5 141
Washington, 

DC
654 4,292,460 6563 1675.2 2561

Total 5405 27,278,868 5047 9384.7 1736
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(b)

(a)

Fig. 3   Distribution of daily average temperatures and precipitation by city. Note that these distributions dis-
play values only for weekends for which bikeshare data are available in each city. Because the Minneapolis 
and Montreal programs do not operate in the winter, winter weather in these cities is not reflected in their 
respective graphs
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temperature in our primary specification, we use these observations to assess whether 
alternative measures of weather influence our results.12

3.3 � Climate Projection Data

Together, the bikeshare and weather data allow us to identify how recreation demand is 
influenced by weather. We seek to project this relationship into the future to quantify cli-
mate impacts, which requires highly detailed weather projections. We obtain daily average 
temperature predictions and daily precipitation fluxes from models in the CMIP3 archive 
(Phase 3 of the Coupled Model Intercomparison Project). We select models that ran the 
A1B (“business-as-usual”) climate scenario and had projections for 2055–2060, giving us 
15 climate models in total. For this set of climate model outputs, we assign observations 
from each model’s grid point nearest to the city centroid in our sample.

For each of the 15 climate models, we calculate the percentage change in temperature 
and level change for precipitation between 2055–2060 and 1995–2000, the baseline climate 
period for this CMIP3 experiment, for each day in that period. That is, we compare weather 
projections for January 1, 1995, with those for January 1, 2055. We truncate precipitation 
changes from below at zero. We assume that temperature and precipitation changes trend 
linearly and we remove the fraction of the change prior to our 2011–2016 sample. Finally, 
for each climate model, we add these predicted changes in temperature and precipitation 
to our observed local weather from the GHCN-Daily data set to account for any location-
specific biases (Auffhammer et al. 2013). By retaining a large suite of climate models, we 
allow the disagreement across models to capture uncertainty in climate predictions (Burke 
et al. 2015). A more detailed exposition of this procedure is provided in the next section 
and the Online Appendix (Section A.1).

3.4 � Leisure Demand Data

Using the 2016 American Time Use Survey (ATUS), we construct a nationally representa-
tive data set of time spent engaged in outdoor cycling. Notably, ATUS explicitly catego-
rizes activities as recreational, so we need not restrict our analysis to the weekend sample 
in this case. We calculate the average number of minutes spent on cycling per day per 
ATUS respondent, averaged at the state level. For each state, we multiply this average 
cycling demand by its 2016 population (obtained from the US Census), which provides 
an approximation of the total time spent cycling outdoors per day for state residents. The 
ATUS data provide a means for extrapolating our bikeshare results to inform effects at a 
national scale.

12  Because the primary purpose of this exercise is to establish robustness, we do not correct or impute 
missing values.
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4 � Results

4.1 � A Precursory Note on Standard Errors

The identifying variation in our data arises from comparing outcomes within a city-month, 
which serves as an appropriate level to cluster standard errors (Bertrand et  al. 2004). In 
our primary results, we take a more conservative approach and cluster standard errors at 
the city level, which provides generally wider confidence bands. This conservatism comes 
at the price of biased standard errors with few cluster groups. In our case, a sample of 16 
cities is too few to trust asymptotic results from common adjustments for clustered stand-
ard errors (Cameron et al. 2008). In the Online Appendix (see Figure A.1), we present our 
primary city-level results alongside alternative standard error formulations with clustering 
at the city-season level, clustering at the city-month level, and using wild-cluster bootstrap 
standard errors (Cameron et al. 2008; Cameron and Miller 2015). Importantly, inference 
based on any of these clustering variations is similar: coefficients that are significant in our 
primary results remain so under the three alternative formulations, and coefficients that 
are insignificant are consistently so across all variations. In what follows, we use larger but 
potentially biased standard errors clustered at the city level for our primary results rather 
than clustering at the city-month level to avoid creating a sense of false precision in our 
estimated effects.

4.2 � Dose–Response Function

In Tables 2 and 3 we present marginal coefficients from our initial model specifications 
that regress the log quantity of trips and the log duration of trips on binned weather vari-
ables. Moving from left to right in both tables, we estimate the same model while adding 
a progressively richer set of controls. In column (1), the only included fixed effects are for 
day-of-week and month-of-year. In column (2), we add city fixed effects, which absorbs 
any time-invariant factors that may affect the propensity to use the bikeshare system (e.g., 
the bicycle-friendliness of an urban area) and increases the precision of our estimates sub-
stantially. The coefficient on the > 80◦F temperature bin in Table 3 column (2) is − 0.21 , 
which can be interpreted as the marginal effect of exchanging one day in the 60◦−70◦ bin 
for one additional (very warm) day in the > 80◦ bin conditional on day-of-week, month-of-
year, and city fixed effects. That is, one additional > 80◦ day results in a 0.21 reduction in 
the log duration of trips. Recall that our temperatures are defined as average daily tempera-
tures, so days that fall within the > 80◦ bin are very hot. By example, a day with a high of 
99◦F and a low of 60◦F would have an average daily temperature of 79.5◦F and would not 
fall in our most extreme temperature bin.

With the exception of our most naïve model excluding city fixed effects, the results 
within and across Tables 2 and 3 are in relatively strong agreement. Additional days below 
60◦ reduce the quantity and duration of bicycle trips, with colder days being incremen-
tally more detrimental, relative to the omitted temperature bin ( 60◦−70◦ ). Days above 80◦ 
have a marginal effect on demand that is statistically similar to zero in our richest specifi-
cation, which uses city-by-month fixed effects and quadratic time trends (column (6)).13 

13  Graff Zivin and Neidell (2014) find that individuals substitute from outdoor leisure to indoor leisure at 
very high temperatures. Although the shape of our dose–response function would suggest a similar trend for 
bikeshare users, our coefficient on the highest temperature bin is statistically insignificant. This discrepancy 
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Coefficients on precipitation bins and snowfall are also consistent: all results suggest that 
the quantity and duration of bicycle trips decrease with additional rain and snowfall.

To illustrate these effects, we present in Fig. 4 the percentage change in the quantity [in 
panel (a)] and duration [in panel (b)] of trips as a function of temperature and precipita-
tion bins. The quantities shown are transformed marginal effects from the final column, 
our richest specifications, of Tables 2 and 3.14 These figures highlight our primary results. 
Demand for bicycle trips increases as temperature increases, but this trend flattens out 
beyond average temperatures of 70◦ . Exchanging one 60◦−70◦ day with a < 30◦ day within 
a given month-city combination would reduce demand for and duration of bicycle trips by 
roughly 75%. Our failure to find a statistically significant reduction on the upper end of the 
temperature distribution suggests that bicyclists in North America dislike recreating in cold 
temperatures but are not averse to riding in warm temperatures. Rainfall reduces demand 
monotonically, with higher levels of precipitation displaying a more pronounced effect. In 
Figure A.1, we show that inference on these primary effects is unchanged when consider-
ing alternative methods of clustering to construct confidence intervals.

We also consider the interaction between temperature and rainfall. To do this, we inter-
act each temperature bin with a dummy variable indicating whether there was any rainfall 
that day. We present trends for each response function in the Fig. 5. Our results suggest that 
days with rainfall reduce demand for bicycle trips relative to days without rainfall across 
temperature bins. For the 60◦−70◦ bin, the magnitude of the additional effect of rainfall is 
roughly − 20 %. This effect is less pronounced in the tails of the temperature distribution, 
where the effects with and without precipitation are statistically similar. This observation 
could perhaps be explained by a selection effect between “committed” riders who are rela-
tively insensitive to weather and “fair-weather” riders who are sensitive to extreme tem-
peratures and precipitation. At moderate temperatures, fair-weather riders may be deterred 
by precipitation, leading to the drop in demand observed in the middle of the distribu-
tion. However, at the tails, only committed riders participate and fair-weather riders have 
already opted out because of inhospitable temperatures; thus, conditional on extreme tem-
perature, precipitation does little to change overall demand.

Having established average effects across our study sites, we now consider the question 
of heterogeneity. How do results vary across climatic zones? We segment our cities into 
climatic zones according to the classifications specified by the United States Department 
of Agriculture (USDA 2012). In Fig. 6, we plot zone-specific response functions for tem-
perature and precipitation moving from coldest (Zone 4) to warmest (Zone 10).15 Although 

Footnote 13 (continued)
may arise because we are studying different activities or because our top-coding of the highest temperature 
bin obscures the negative effect of more extreme temperatures. We discuss the latter in more detail below.
14  Because our outcome variables are natural logarithms and our variables of interest are dummy variables, 
we transform all marginal coefficients, as summarized by Wichman (2018), prior to interpreting our results 
as percentage effects. Specifically, percentage effects are calculated as

where 𝛽  is our estimated marginal effect and V̂(𝛽) is an estimate of its variance. Similarly, our measure of 
variance around percentage effects is calculated as

We present our primary results in log scale for comparison in Figure A.2 and in levels in Figure A.3.

ĝ = exp
(
𝛽 − 0.5V̂(𝛽)

)
− 1

Ṽ(ĝ) = exp(2ĝ)
[
exp

(
−V̂(𝛽)

)
− exp

(
−2V̂(𝛽)

)]
.

15  We present these same figures with confidence intervals in Figure A.4. We omit confidence intervals in 
the main text for clarity.



135Climate Change and Recreation: Evidence from North American…

1 3

there is more variation in the estimated parameters, the overall trend for each zone reflects 
that of the pooled model. For temperature, colder days reduce demand for every zone. 
An additional < 30 ◦ F day for warm southern cities (Zone 8) reduces duration of trips by 
roughly 85%. A similar metric for cold northern cities (Zone 4) is noticeably smaller, at 
roughly 50% for the same temperature bin. This effect, however, is much less pronounced 
when we analyze the log quantity of trips as our dependent variable. This heterogeneity 
across cities provides insight on the potential degree of adapation or acclimitization, as 
those living in colder climates are less deterred by bouts of cold temperatures.

On the warm end of the temperature distribution, the duration of trips is reduced in 
hotter cities much more than in cooler cities. At first glance, this result seems to under-
mine the notion of acclimatization. However, this regional heterogeneity is likely driven 
by the fact that the > 80◦ bin pools a wide variety of heat conditions, including moderate 

(a)

(b)

Fig. 4   Nonlinear relationship between cycling demand and daily weather
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heat near the 80◦ threshold as well as extreme heat exceeding 100◦.16 We suspect that the 
estimated effects for the > 80◦ bin include a larger preponderance of extreme-heat days in 
warm-weather cities than in cooler cities, leading to divergence in the estimates. In this 
light, the strong negative response for hotter cities makes sense, as they will experience an 

Table 2   Results for temperature and precipitation bins on log quantity of trips

Dependent variable is the natural log of the number of trips each day. City-specific time trends are included 
linearly (Lin.) and quadratically (Quad.). Robust standard errors clustered at the city level are presented in 
parentheses

Variables (1) (2) (3) (4) (5) (6)

Temp. bin: ≤ 30
◦ F − 1.12 − 1.76 − 1.72 − 1.74 − 1.43 − 1.35

(0.74) (0.18) (0.18) (0.18) (0.14) (0.15)
Temp. bin: 30◦–40◦ F − 0.82 − 1.07 − 1.02 − 1.03 − 0.84 − 0.80

(0.69) (0.13) (0.13) (0.14) (0.10) (0.10)
Temp. bin: 40◦–50◦ F − 0.63 − 0.58 − 0.53 − 0.53 − 0.43 − 0.41

(0.52) (0.07) (0.07) (0.07) (0.05) (0.06)
Temp. bin: 50◦–60◦ F − 0.60 − 0.25 − 0.20 − 0.18 − 0.17 − 0.15

(0.25) (0.06) (0.04) (0.04) (0.04) (0.04)
Temp. bin: 70◦–80◦ F − 0.25 0.05 0.05 0.05 0.04 0.05

(0.35) (0.04) (0.04) (0.04) (0.02) (0.02)
Temp. bin: > 80

◦ F − 0.55 − 0.20 − 0.25 − 0.24 − 0.08 − 0.04
(0.65) (0.07) (0.07) (0.07) (0.04) (0.04)

Precip. bin: 0.01–0.25 in. − 0.20 − 0.15 − 0.16 − 0.16 − 0.16 − 0.16
(0.18) (0.03) (0.02) (0.02) (0.02) (0.02)

Precip. bin: 0.26–0.50 in. − 0.46 − 0.50 − 0.53 − 0.53 − 0.50 − 0.50
(0.31) (0.06) (0.06) (0.06) (0.07) (0.07)

Precip. bin: 0.50–0.75 in. − 0.69 − 0.62 − 0.61 − 0.63 − 0.60 − 0.59
(0.30) (0.10) (0.09) (0.09) (0.09) (0.08)

Precip. bin: 0.75–1 in. − 0.82 − 0.68 − 0.68 − 0.70 − 0.66 − 0.64
(0.35) (0.10) (0.10) (0.09) (0.10) (0.09)

Precip. bin: >1 in. − 1.18 − 0.78 − 0.79 − 0.80 − 0.77 − 0.78
(0.38) (0.15) (0.15) (0.15) (0.15) (0.14)

�{Snowfall} − 0.59 − 0.33 − 0.32 − 0.32 − 0.30 − 0.31
(0.40) (0.05) (0.06) (0.05) (0.05) (0.06)

Observations 5405 5405 5405 5405 5405 5405
R-squared 0.15 0.86 0.90 0.91 0.93 0.94
City FE – Y Y Y – –
Month FE Y Y Y Y – –
Day-of-week FE Y Y Y Y Y Y
City-by-month FE – – – – Y Y
Year-by-month FE – – – – – Y
City-specific time trend – – Lin. Quad. Quad. Quad.

16  Unfortunately, there are not enough observations in this range to further partition the > 80
◦ bin. As 

described before, days with average temperatures in this range are actually very hot days, and they are rela-
tively infrequent in our data, particularly for higher latitude cities (see Fig. 3).
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increasing number of extremely hot days that dampen outdoor activity. At more moderate 
temperatures, there is little dispersion across cities. For the precipitation response, results 
are relatively consistent across zones, with precipitation reducing demand at all levels for 
all cities.17

Table 3   Results for temperature and precipitation bins on log duration of trips

Dependent variable is the natural log of the duration of trips each day. City-specific time trends are included 
linearly (Lin.) and quadratically (Quad.). Robust standard errors clustered at the city level are presented in 
parentheses

Variables (1) (2) (3) (4) (5) (6)

Temp. bin: ≤ 30
◦ F − 1.80 − 2.06 − 2.08 − 2.12 − 1.69 − 1.58

(0.61) (0.26) (0.23) (0.21) (0.15) (0.16)
Temp. bin: 30–40◦ F − 1.20 − 1.14 − 1.18 − 1.24 − 0.95 − 0.90

(0.53) (0.24) (0.18) (0.15) (0.11) (0.12)
Temp. bin: 40–50◦ F − 0.84 − 0.55 − 0.56 − 0.60 − 0.46 − 0.43

(0.42) (0.17) (0.12) (0.09) (0.09) (0.10)
Temp. bin: 50–60◦ F − 0.57 − 0.19 − 0.22 − 0.22 − 0.21 − 0.18

(0.17) (0.10) (0.06) (0.06) (0.06) (0.07)
Temp. bin: 70–80◦ F 0.03 0.18 0.09 0.08 0.07 0.08

(0.31) (0.12) (0.07) (0.06) (0.04) (0.04)
Temp. bin: > 80

◦ F − 0.13 − 0.21 − 0.33 − 0.31 − 0.12 − 0.05
(0.61) (0.11) (0.10) (0.10) (0.06) (0.07)

Precip. bin: 0.01–0.25 in. − 0.22 − 0.15 − 0.20 − 0.21 − 0.18 − 0.19
(0.13) (0.04) (0.03) (0.03) (0.02) (0.02)

Precip. bin: 0.26–0.50 in. − 0.56 − 0.60 − 0.69 − 0.68 − 0.61 − 0.62
(0.26) (0.09) (0.08) (0.07) (0.09) (0.08)

Precip. bin: 0.50–0.75 in. − 0.75 − 0.61 − 0.77 − 0.78 − 0.72 − 0.70
(0.30) (0.20) (0.12) (0.12) (0.13) (0.13)

Precip. bin: 0.75–1 in. − 1.01 − 0.79 − 0.85 − 0.90 − 0.80 − 0.79
(0.33) (0.17) (0.15) (0.13) (0.15) (0.14)

Precip. bin: >1 in. − 1.18 − 0.70 − 0.85 − 0.88 − 0.82 − 0.84
(0.31) (0.33) (0.24) (0.22) (0.24) (0.21)

�{Snowfall} − 0.45 − 0.45 − 0.41 − 0.41 − 0.41 − 0.40
(0.32) (0.07) (0.08) (0.08) (0.09) (0.09)

Observations 5405 5405 5405 5405 5405 5405
R-squared 0.15 0.70 0.80 0.84 0.86 0.87
City FE – Y Y Y – –
Month FE Y Y Y Y – –
Day-of-week FE Y Y Y Y Y Y
City-by-month FE – – – – Y Y
Year-by-month FE – – – – – Y
City-specific time trend – – Lin. Quad. Quad. Quad.

17  See Tables A.3 and A.4 in the Online Appendix for city-specific regression results.
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Overall, although there are different responses to extreme temperature across cities, 
our results paint a consistent picture. Colder, wetter days are much less pleasant for out-
door recreation than are hot days. All regions in our sample will benefit from a reduc-
tion in the number of cold days, while an increase in hot days will have spatially distinct 
effects. Still, on average, the negative effects from extreme hot temperatures are small, 
and these events are also low in frequency. We will show in the following section that 
warmer winters and “shoulder” months will have a larger role in shaping the recreation 
demand response to climate change.

Acclimatization is not the only form of adaptation that could be present in our data. 
Individuals may shift recreational trips away from the hottest times of day in favor of 
being outside during cooler mornings and nights. We exploit the temporal granularity 
of our data and estimate time-of-day effects, and we present results in Fig. 7. In panel 
(a) for number of trips, our results correspond with intraday substitution toward morn-
ings (5 AM–10 AM) and nights (8 PM–12 AM), as hypothesized, for warmer tempera-
tures. This effect is also sustained for changes in duration in panel (b). This result likely 
explains why we do not observe a drop in cycling demand on hot days in our prior 
estimates pooled across climate regions. On average, cyclists respond to hot days by 
altering the timing of their trips (morning and night instead of afternoon and evening) 
rather than reducing the number or duration of their trips. For colder temperatures, there 
is little variation in effects across time of day. The effect of precipitation also appears 
rather homogeneous across time of day, which is a sensible result for rain that falls at 
exogenous times throughout the day.

Together, these heterogeneous affects across regions and times of day provide evidence 
of both adaptation and acclimitization. These effects would be difficult to detect in typical 
studies of recreation behavior given data constraints, but the unique nature of our bikeshare 
data set provides a glimpse into how these nuances may dampen the observed effects of 
extreme weather.

Fig. 5   Percent change (and 95% 
CI) in quantity of trips due to 
changes in daily average tem-
peratures on days with/without 
precipitation
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4.2.1 � Bikeshare Usage as Leisure

Do our observed bike trips actually constitute leisure activity? We have restricted our 
analysis throughout to trips that take place on weekends, thus excluding commuting trips 
that take place during the workweek.18 However, weekend trips may be an imperfect proxy 

(a)

(b)

Fig. 6   Nonlinear relationship between cycling demand and daily weather by climate zone

18  In a model of transportation demand, Cutter and Neidell (2009) categorize trips in an analogous manner. 
They consider trips during rush hours to be commuting (work-related), while classifying trips at other times 
of day as discretionary (leisure). They also comment that dividing their data into weekday and weekend 
samples would help sharpen the distinction between discretionary and commuting trips.
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for leisure activity, so we examine this claim further by analyzing a subset of “casual” 
users. In our primary bikeshare data, we have information on the membership type for each 
trip.19 Memberships can be long term, such as annual subscriptions, or short term, such as 
day-long or week-long subscriptions; some users even purchase single trip passes at the 

(a)

(b)

Fig. 7   Nonlinear relationship between cycling demand and weather conditional on time of day. Morning is 
defined as 5 AM–10 AM; afternoon is 10 AM–3 PM; evening is 3 PM–8 PM; and night is 8 PM–12 AM. 
All times are local

19  We have membership designations for all cities except Hoboken, Mexico City, and Pittsburgh.
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bikeshare kiosk. We define “casual” users as individuals who have a membership of 7 days 
or less, and we observe 7,293,568 casual, weekend trips, which is approximately 27% of 
our full sample. We believe that bikeshare usage by casual users on weekends almost cer-
tainly constitutes leisure. In Figure A.5, in the Online Appendix, we present our primary 
results alongside the same models estimated on the subset of trips taken by casual users. 
The response function is virtually identical between the two samples, although our coef-
ficients are estimated less precisely for casual users presumably due to a loss of statisti-
cal power. We take this as very strong evidence that our primary dose–response function, 
which uses the full sample of all weekend trips, is reflective of leisure activity.

Our prior analysis of intraday effects also lends further support to the notion that week-
end cycling is indeed leisure. As we show in the Online Appendix (Figures A.6 and A.7), 
there is a virtually identical pattern of intraday substitution on weekend days (Fig. 7) and 
US federal holidays for both trips and duration. In all cases, intraday substitution takes 
place on hot days, with riders shifting their bike trips away from the afternoon and even-
ing in favor of trips during morning and night. This pattern of behavior is consistent with 
leisurely, discretionary trips as opposed to commuting trips that must take place during a 
certain window of time due to scheduling constraints (see, e.g., Bento et al. 2014). By con-
trast, we see the wedge between cooler times of day and warmer times of day shrink when 
we apply the same model to weekday observations in our sample; here, the reduction in 
intraday substitution is consistent with inelastic demand for nondiscretionary commuting 
trips.

In a final analysis, we match individual-level ATUS data from the 2003–2016 surveys 
with county-level weather to generate dose–response functions for cycling along with two 
aggregate measures of outdoor recreation. Our approach is nearly identical to that of Chan 
and Wichman (2018) and we refer readers to that paper for details on data processing. 
Overall, we model recreation participation decisions in a logit framework as a function of 
the same temperature and precipitation bins in Eq.  2, including household-demographic 
controls and climate-region, season, and year fixed effects. We focus on recreational 
cycling as our outcome. All ATUS estimates are weighted to account for the nationally 
representative survey design and standard errors are clustered at the climate-region-by-year 
level.

We present these results in Figure A.8. As shown, the temperature response function 
from our bikeshare outcome is statistically equivalent to the relationship we estimate 
from nationally representative participation in recreational cycling. For precipitation, the 
percentage changes are statistically similar as well, except for an anomaly in the ATUS 
response for 0.5–0.75-in. precipitation bin. These results give us further confidence that the 
weather-response relationships observed for bikesharing is representative of recreational 
cycling more broadly.20 Although the relationships here look similar, our outcome vari-
ables are different (number of bikeshare trips vs. propensity to recreate) and comparisons 
should be made cautiously. Further, the identifying variation in the ATUS data is much 
coarser and more likely subject to omitted-variables bias. As such, we place more faith in 
our bikeshare estimates.

20  We also find striking parallels between our cycling dose–response functions and those of Obradovich 
and Fowler (2017), who use survey data on a wide range of physical activity along with month-average 
weather observations; discrepancies in magnitude may arise because of measurement error from their use of 
coarser survey data.
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Lastly, we take additional comfort from the fact that we will tend to underestimate 
weather impacts on cycling if our sample is contaminated by nonleisure rides such as 
work-related commutes. By their nature, these commutes are obligatory and will be rela-
tively inelastic when compared with discretionary, recreational rides. As such, the pres-
ence of such trips in our data set will be attenuative, biasing our estimates toward zero. 
Thus, if anything, our measure of leisure demand will provide a conservative estimate of 
the response to weather.

4.2.2 � Robustness

Could our results be driven by the functional form of temperature and precipitation? Our 
binned approach restricts the nonlinear relationship between leisure demand and weather to 
be constant within each bin. This approach offers flexibility in allowing the data to inform 
the shape of the weather-response function. We can, however, represent this relationship in 
other ways. In Tables A.2 and A.3, we present results from alternative assumptions about 
the form of the weather-leisure demand function. In the first column, rather than six tem-
perature bins, we present coefficients for two bins: days with average temperatures less 
than or equal to 60◦ and days with temperatures greater than 80◦ . We also include precipita-
tion as a continuous variable. Results suggest a similar shape to the binned approach. For 
both dependent variables, we estimate a significantly negative coefficient for > 80◦ temper-
atures, but its effect is relatively small. Interacting these two temperature bins with precipi-
tation strengthens the negative effect for lower temperatures, while offsetting the negative 
effect for higher temperatures for log trips. Further, implementing a quadratic or cubic rela-
tionship between our weather variables and leisure demand suggests the same functional 
relationships as the primary specifications in Fig. 4. Cycling demand is a positive, concave 
function of temperature and a negative, convex function of precipitation. These sensitivity 
tests suggest that our primary results are robust to other functional impositions on the data.

Could our results be affected by alternative measures of relevant weather variables? We 
have simplified the recreation decision to simple summary statistics of weather—namely 
the mean of daily maximum and minimum temperatures. However, these instrument read-
ings may provide an imperfect proxy for actual rider comfort; a different measure, such as 
maximum temperature or humidity-adjusted temperature, may be a more proximate driver 
of cycling demand. Moreover, our interpolation between weather stations may introduce 
measurement error.

To explore how sensitive our results are to our temperature measure, we rerun our anal-
ysis with nine alternative temperature specifications. We present these results in Tables A.5 
and A.6.21 Across all models and specifications, there is strong agreement among signs, 
magnitudes, and statistical significance. For each pair-wise combination, using maximum 
wet-bulb temperature [column (2)], which accounts for humidity among other factors, 

21  Specifically, we construct our binned temperature variables with (1) average daily wet-bulb temperature, 
(2) maximum daily wet-bulb temperature, (3) average daily dry-bulb temperature, (4) maximum daily dry-
bulb temperature, (5) maximum daily temperature in which each weather station within 100 km is weighted 
equally, (6) maximum daily temperature in which each weather station within 100 km is weighted by its 
inverse distance squared, (7) minimum daily temperature in which each weather station within 100 km is 
weighted equally, (8) minimum daily temperature in which each weather station within 100 km is weighted 
by its inverse distance squared, and (9) average daily temperature in which each weather station within 
100 km is weighted equally. We derive the first four measures from the LCD weather data set, and the last 
five measures from the GHCN-Daily data set.
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returns statistically similar coefficients to the weighted average temperature [column (10)] 
used in our primary specifications. Using maximum (minimum) temperatures shifts the 
average response function sensibly rightward (leftward), but preserves its shape. Simple 
geographic weighting of weather stations has minimal impact on coefficient estimates. This 
agreement suggests that average daily temperature provides a sensible, robust, and relevant 
summary statistic of temperature factors that affect leisure demand.

Is our panel specification too restrictive? Does exploiting cross-sectional variation 
across cities reveal anything about adaptation to warmer temperatures? In Figure A.9 we 
show that the cross-sectional response functions for temperature and precipitation possess 
the same shape as that of the panel model. For all precipitation bins and for all temperature 
bins except the most extreme hot temperatures, the 95% confidence intervals overlap. The 
invariance of the response functions to this stratification suggests that there is little adapta-
tion that can be revealed from cross-sectional variation. Although there is a larger nega-
tive effect for hot temperatures in the cross-sectional model, we believe this to be an arti-
fact of unobserved city-level heterogeneity, rather than an adaptive effect with economic 
significance.

4.3 � Projections of Leisure Demand Under Future Climate Change

We now proceed to project climate change impacts on cycling demand. Climate impact pro-
jections are fraught with many uncertainties, but we believe our application offers several 
distinct advantages. The first is that our observed temperature and precipitation ranges—
from Mexico City to Montreal, from Boston to Seattle—cover the potential temperature-
precipitation combinations projected by climate models by midcentury. This broad support 
enables us to have minimal out-of-sample predictions. The second is that our data provide 
a representative analysis of demand behavior measured on very fine timescales. We meas-
ure the precise quantity and duration of trips at the daily level, giving us direct insight into 
demand responses at a frequency that is infeasible for other applications. Whereas other 
research infers climate exposure from longer-term weather trends at a coarse spatial scale, 
our work can help elucidate the climate-induced recreation benefits (costs) that affect indi-
viduals in their daily lives. The precise, causal estimates that we generate from our bike-
share data form the foundation for broader welfare implications.

We describe our framework to generate weather projections in detail in Section A.1 in 
the Online Appendix. Our projection relies on a multi-model ensemble from CMIP3 that 
provides geographically distinct daily measures of temperature and precipitation by mid-
century, which we use to predict changes in cycling. The aggregate distribution of our tem-
perature projection is summarized in Fig. 8.

4.3.1 � Projecting Changes in Cycling Demand

Upon projecting future temperatures for each bikeshare program, we infer changes in rid-
ing demand. Recall that we estimate the relationship between cycling duration and weather 
(in Eqs. 1 and 2, which is parameterized by the coefficients 𝛾̂ and 𝛽  , along with fixed effects 
and time trends. We use these estimated coefficients and parameterize the dose–response 
specification at 2011–2016 levels to obtain a baseline measure of log duration for each 
city. Then, we predict what log duration would be for each city under the temperature and 
precipitation projections for 2055–2060. We construct projections using nine pair-wise 
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combinations of temperature and precipitation at their 25th percentile, median, and 75th 
percentile values.

The difference in log duration between 2055–2060 and 2011–2016 is our projected cli-
mate impact:

which can be transformed into a percentage change.
We present these differences in log duration for the nine pair-wise temperature-precipi-

tation scenarios in panel (a) of Fig. 9. The median climate prediction for both temperature 
and precipitation will lead to a 5.8 log point increase in trip duration. Pairing the 75th 
percentile temperature projection with the median precipitation suggests a 13.1 log point 
increase. Similarly, the 25th percentile temperature projection with the median precipita-
tion projection suggests a 2.9 log point decrease. The log difference grows monotonically 
with temperature but shrinks with precipitation.22 In panel (b), we present the projected 
effect by month of year for the median temperature and precipitation projection. The 
results across months suggest very little change in demand in summer, but large increases 
in demand during the winters and “shoulder” months, such as March and November. This 
analysis suggests that our overall projected increase in recreation demand is driven by 
weather becoming milder in cold months of the year. Somewhat surprisingly, none of the 
monthly projections is negative, suggesting that any negative effect of increases in tem-
perature in summer months is countered by reductions in precipitation.

4.3.2 � Inferring Aggregate Effects from Bikeshare Projections

Having projected the effects of climate change on bikeshare utilization, we now seek to 
scale up these bikeshare-specific results to produce a nationally representative measure 
of recreational cycling. We do so at the state level to provide aggregate values for these 
changes and to demonstrate heterogeneity in the effects of climate change on leisure 
demand.

We use data from the 2016 wave of the American Time Use Survey (ATUS), which 
catalogs how much time Americans spend on a wide array of activities. We should note 
that the ATUS is nationally representative and not intended to provide representative state-
level information; however, analyzing the ATUS data at the state level provides a reason-
able approximation despite introducing potential measurement error (Aguiar et al. 2013).

We first calculate the annual per capita hours spent cycling for each state for our base-
line year, 2016. Following Aguiar et al. (2013), we compute

(3)Δ lnYc = ln Yc,t − ln Yc,t−44,

(4)D̄s =

Ns�

i=1

�
wis

∑Ns

i=1
wis

�
Dis

22  For context, the minimum temperature projection paired with the maximum precipitation projection (that 
is, roughly today’s temperature with rain nearly every day, a highly unlikely scenario), we see more than a 
60% reduction in duration of trips. This projection aligns with our dose–response function for precipitation, 
where additional days with a large quantity of rain reduce demand by roughly the same quantity as this pro-
jection. Notably, our estimates are positive for the interquartile range, centered at a 4–6% increase, giving 
us confidence that climate change will tend to stimulate outdoor recreation demand.
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where Dis is hours per year that individual i in state s spent cycling; Ns is the number of 
ATUS respondents in each state; and wis is the national ATUS sampling weight.23

In our sample, the average person spent 0.009  h per day or roughly 3.35  h per year 
cycling. The state-level cycling demand for 2016 is shown in panel (a) of Fig. 10.

Fig. 8   Distribution of temperatures on weekends in sample (blue) and projected temperatures for corre-
sponding days in 2055–2060 (black). Projected temperatures are percentage changes from observed base-
line for the median projection from 15 climate models in the CMIP3 ensemble reporting the A1B (“busi-
ness-as-usual”) climate scenario

(a) (b)

Fig. 9   Projected effects of temperature and precipitation on changes in the log duration of bicycle trips in 
2055–2060. Panel a projected temperatures are percentage changes from observed baseline for the 25th per-
centile, median, and 75th percentile projection from 15 climate models in the CMIP3 ensemble reporting 
the A1B (“business-as-usual”) climate scenario. Panel b median temperature and precipitation projection

23  For a small number of states, we did not observe positive time spent cycling, and we replaced those val-
ues with the national average.
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(a)

(b)

Fig. 10   Current levels and projected changes in cycling demand and its value by state. Values calculated 
from the American Time Use Survey and the median CMIP3 model projections for average daily tempera-
ture and precipitation during 2055–2060. Values are calculated as the number of hours spent cycling mul-
tiplied by national average consumer surplus estimates from the Recreation Use Values Database. The per-
centage changes are calculated by assuming common coefficients at their 2011–2016 levels and predicting 
changes in demand due to changes in the temperature and precipitation distribution
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4.3.3 � Valuing Climate‑Induced Changes in Cycling

Next, we project cycling demand for the year 2060. We follow the procedure used to pro-
ject city-level changes described above, except we adapt it to define a range of future cli-
mates in 2055–2060 at the state level. That is, we parameterize our measure of cycling 
demand at its 2016 level for each state, assuming the weather-leisure demand coefficients 
are homogeneous across states. Then, we take the average median temperature and precipi-
tation projection for 2055–2060 and predict cycling demand under the new climate. The 
difference between these two levels provides an estimate of the average climate-induced 
change in cycling demand per day. We present these results graphically in panel (b) of 
Fig. 10. As shown, the Northeast, Pacific Northwest, and some Mountain states will gain 
the most from fewer cold days. The Southeast states will see a reduction in demand.

To understand the economic implications, we also calculate cycling value. To do so, 
we multiply total demand (or changes thereof) by the national average of consumer sur-
plus derived from cycling, in line with the method used by Loomis and Crespi (1999) and 
Mendelsohn and Markowski (1999).24 We obtained consumer surplus values from the Rec-
reational Use Values Database (Oregon State University 2006).25 This approach embeds a 
benefits-transfer exercise over time, rather than the more standard application over space, 
and thus comes with the standard caveats of benefits transfer, which is described in more 
detail in Chan and Wichman (2018).

We summarize the annual value of climate-induced demand changes here, and present 
these results in Figure A.10 as well as state-by-state projections in Table A.7. California, 
Illinois, and Washington display the largest gains in welfare due to induced demand. For 
California, the change in the value of cycling demand exceeds $100 million per year (2016 
USD). The Northern Rockies, Great Plains, and Southeast states see very little change in 
the value of induced demand. In aggregate terms, our exercise suggests that cycling alone 
is valued at more than $29 billion (2016 USD) annually, and that this value stands to 
increase by $894 million by 2060 as a result of additional climate-induced demand. The 
magnitude of this gain is larger than, or comparable to, corresponding measures for other 
types of recreation, such as fishing, coastal and stream recreation, and golfing (Mendelsohn 
and Markowski 1999; Loomis and Crespi 1999). This fact is especially notable because 
standard analyses of recreation tend to overlook everyday activities like urban cycling.

Our baseline consumer surplus estimates are drawn from a comprehensive database on 
recreation use values, and the underlying studies may produce biased estimates for a num-
ber of reasons. A common alternative approximation to valuing the opportunity costs is 
to use the local wage rate (or a fraction of it) as an estimate of the marginal value of time 
(e.g., Becker 1965; Ashenfelter and Greenstone 2004; Deacon and Sonstelie 1985; Wolff 
2014; Wichman and Cunningham 2017). In fact, the US Department of Transportation 
recommends valuing bicyclists’ time at 100% of hourly income when calculating travel 
time savings induced by federal regulations (U.S. Department of Transportation 2014). 
We adopt this approach and scale our estimates by 100% of hourly wages (pre-tax median 

24  Chan and Wichman (2018) analyze this welfare approximation framework, finding that it will tend to 
provide conservative estimates of welfare changes.
25  The Recreational Use Values Database (Oregon State University 2006) reports a mean consumer surplus 
value of $47.52 per day (2016 USD) for leisure cycling from 17 primary studies. Our analysis of the pri-
mary studies suggests an average of 2-h cycling trips, so we divide the given value by 2 to scale consumer 
surplus into an hourly measurement of $23.76 per hour.



148	 N. W. Chan, C. J. Wichman 

1 3

household income/2080) at the state level to value the climate-induced opportunity cost of 
recreation in our sample.26 Using the wage rate, the climate-induced benefit for cycling in 
2060 is $1.075 billion per year (compared to our CS estimate of $894 million). We prefer 
our consumer surplus approach because it approximates a welfare statistic, although we 
take confidence from the fact that it is more conservative than the wage-rate approach rec-
ommended by the federal government.

4.4 � Interpretation and Caveats

As with any complex modeling exercise, there are numerous assumptions, uncertainties, 
and simplifications built into our analysis. Our state-level welfare estimates are illustra-
tive but should be interpreted with care. For one, we use the population-weighted centroid 
in assigning local variables such as temperature and precipitation to states. Although this 
may be reasonable for relatively small states like those in the Northeast, it will create inac-
curacies in our estimates for larger, more climatologically diverse states like California and 
Texas. We also assume that projected weather changes between 1995–2000 and 2055–2060 
can essentially be prorated to shorter time frames, even though climate change may in fact 
take place in a nonlinear fashion. Furthermore, we use a parsimonious measure of tempera-
ture and employ a particular method for assigning local weather variables from different 
weather stations, although the robustness checks shown above suggest that these choices 
do not unduly influence our results. Moreover, we apply a uniform value for cycling con-
sumer surplus, although individuals’ valuation of cycling is likely to vary from place to 
place. Lastly, one may be concerned that our recreation analysis ignores the value of sub-
stitute leisure activities, e.g., if more cycling demand entails less time spent on other lei-
sure pursuits. However, our benefits transfer exercise takes advantage of consumer surplus 
measures, which implicitly embed the value of substitute activities, as they are measured 
net of the opportunity cost of alternatives.27

In spite of these caveats, we think that these projections provide useful insights into 
the scale of climate change effects on leisure and how these effects are distributed across 
states. In particular, we show that climate will induce large, positive effects on leisure 
cycling and that benefits will accrue especially to states with large populations and high 
baseline leisure demand. Alternative assumptions, such as nonlinear progression of tem-
perature changes over time or different methods for assigning local variables to state-level 
calculations, can easily be incorporated into our projection framework and will affect 
results in predictable ways. Moreover, while such adjustments to our protocol may yield 
minor changes in the quantitative estimates, they are unlikely to alter the overall story and 
interpretation of our results.

That said, there remains one outstanding issue that does have an important bearing on 
our interpretation. In overlaying climate projections onto our dose–response function, we 

26  The average state-level annual hourly wage used in our analysis is $27.02 (2015 USD), obtained from 
the US Census, Table H-8, Historical Income Tables.
27  This issue is discussed in greater detail by Chan and Wichman (2018). They also show that much of 
the value accrues via inframarginal recreation activity that becomes more pleasant, and these inframarginal 
gains in welfare will not be affected by substitution at the margin. Yet, if there are lingering doubts about 
this approach, we can interpret our welfare estimates as applicable only to cycling while conceding that 
there may be compensating losses from reductions in other leisure activities. Moreover, our analysis using 
guidance from the US Department of Transportation helps corroborate the scale of our estimated effects.
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implicitly assume that the estimated weather-leisure relationship will remain stable over 
time. This essentially takes for granted that adaptation or sorting will not appreciably affect 
how leisure demand responds to weather, which could lead us to overestimate the leisure 
benefits from warming. For example, riders may “adapt” to warming by becoming less 
tolerant of frigid riding conditions. Although they will benefit from warmer temperatures 
overall, they will also have a larger demand response (and, therefore, welfare loss) on the 
days that cold temperatures do arise. This countervailing effect is ignored if adaptation is 
assumed away. Likewise, as individuals acclimate to higher temperatures, they may also 
begin to “take for granted” warmer days, thus muting the leisure benefits from warming.

However, we should note that this issue is not unique to our paper alone; this caveat 
applies to any paper that estimates a dose–response function and uses that relationship 
to project future climate impacts. In all such cases, the analyst allows the value of vari-
ables such as temperature and precipitation to change according to climate projections 
while assuming that the underlying structure of the dose–response relationship remains 
unchanged.

As a virtue of our high-quality data, we can shed some light on the magnitude of poten-
tial bias from adaptation. Returning to Fig. 6, panels A and B, we see that different regions 
respond somewhat differently to temperature changes. To the extent that the observed vari-
ation is attributable to acclimatization (e.g., residents of cold cities are less sensitive to 
cold temperature because of frequent exposure), we can get a sense for how influential this 
effect is. We see that there is little dispersion across cities at moderate temperatures, so our 
results will be unaffected if climate change primarily shifts the distribution of temperatures 
in this range. However, there is some dispersion at extreme cold and warm temperatures, 
with nearly a twofold difference in responsiveness for days below 30◦ . If residents of cold 
regions acclimatize to future climate by behaving like their warm-weather counterparts, 
then they will become more sensitive to cold riding conditions, thus reducing the overall 
leisure benefits from warming. As an additional dimension to consider, we also find evi-
dence of intraday substitution patterns. Our welfare values are based on daily-level esti-
mates, so they implicitly assume that such intraday substitution is costless. This, too, could 
lead us to overestimate the benefits from additional leisure opportunities, as we neglect the 
costs of adaptive substitution behavior. However, because these concerns are relevant for 
only a small subset of our data, we do not believe these adaptation pathways to be of first-
order importance.

We should also note that our analysis is partial equilibrium in nature. We have not 
accounted for the fact that increases in leisure will necessarily entail less time spent on 
other activities. Although such substitution effects do not affect valuation estimates at the 
margin, they could be significant in a general equilibrium framework. The gains in lei-
sure value from climate change could be negated, for example, by lower labor productiv-
ity. Such effects are important to keep in mind when interpreting our results, especially 
because of the scope and scale of climate change impacts.

5 � Discussion and Implications

Climate change will have far-reaching effects on all aspects of society, and there has been 
great scientific interest in characterizing its multifarious impacts on agriculture, industry, 
and ecosystems. In this paper, we obtain causal estimates of how weather influences out-
door recreation behavior by analyzing a unique and detailed data set on bicycling activity. 
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Drawing from tens of millions of bicycle trips, we estimate a dose–response relationship 
between weather and leisure, and we use these estimates in tandem with time-use surveys 
and an ensemble of global climate models to project future climate impacts. In doing so, 
we offer a fresh angle on the problem of climate change by quantifying its implications for 
a nonmarket recreational activity.

Our research is distinctive in part because it takes advantage of an exceptionally rich 
data set of cycling behavior. The quality of the data allows for a more precise and deeper 
understanding of how climate change will influence recreational demand and, ultimately, 
economic well-being. As a virtue of our rich data set, we are able to estimate the role of 
human adapation to extreme temperatures, a notoriously difficult-to-measure aspect of the 
overall costs of climate change.

Our work also examines an everyday recreation activity that is typically not accounted 
for in analyses of recreation and leisure (and certainly not in the climate impact litera-
ture). We demonstrate that such activities have a significant role to play in welfare and are 
critical to include when studying climate change impacts. Our results suggest that climate 
change will have a sizable, positive impact on leisure by midcentury, with economic gains 
of nearly $900 million per year for cycling alone. Although uncertainty is inevitable for 
projections of this sort, our analytical approach gives us confidence that the sign of our 
results is correct and that the overall welfare effect is, if anything, conservative. We run a 
battery of robustness checks—using different temperature specifications, functional forms, 
and weightings—all of which tell the same overall story.

This research adds to the broader literature on climate change impacts. Although cli-
mate change will indubitably bring about many costs for society, our work suggests that 
these losses may, at least in some small part, be offset by accompanying changes in recrea-
tional opportunities.
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