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Entia non sunt multiplicanda praeter necessitatem
William of Ockham, 1285(?)–1347

1 Introduction
This paper provides a critical assessment of the 2016 DICE (Dynamic Inte-
grated model of Climate and the Economy) model originally developed by
Nordhaus (1992), but since then continuously updated and altered (Nord-
haus, 2018b). Integrated assessment models (IAMs) are being used exten-
sively for the analysis of climate change policy and DICE has played an im-
portant part in projecting greenhouse gas emissions and temperature under
various social and economic scenarios.

The assumptions and functional forms used in DICE have been under con-
siderable scrutiny and criticism. Among others, Pindyck (2013, 2017) and
Gerlagh and Liski (2018a, 2018b) argue that IAMs should be made simpler
and more transparent, and an editorial in Nature Climate Change (Edito-
rial, 2015) also emphasizes this view. DICE is complex, because it employs
an equation for radiative forcing, two equations (a two-box model) for the
climate system, and a three-reservoir model for the carbon cycle. Some of
the other IAMs (for example, the FUND and PAGE models) are simpler, as
they employ a single-equation climate model (Calel and Stainforth, 2017).

DICE includes a complex geophysical system, perhaps too complex. The
purpose of this paper is to show that the temperature and CO2 equations
are needlessly complicated and can be much simplified. The reason why
this simplification is possible lies in the fact that the two dynamic equa-
tions describing temperature in the DICE model have one approximate unit
eigenvalue, and that the three equations describing CO2 have one exact and
one approximate unit eigenvalue. We derive the exact counterparts after
differencing out the auxiliary variables and we provide simplifications.

In response to criticism that IAMs give the impression of being ‘black
boxes’ (Editorial, 2015), some studies propose a simpler IAM in which an
analytical formula for the optimal carbon price can be derived; see Golosov
et al. (2014), Traeger (2015), Rezai and Van der Ploeg (2016), Van den Bi-
jgaart et al. (2016), Dietz and Venmans (2018), and Van der Ploeg (2018).
Among studies employing closed-form IAMs, the specifications of the climate
system and the carbon cycle vary. Golosov et al. (2014) specify a two-and-a-
half-box carbon system consisting of a permanent component (about 20% of
carbon) and a transient component. The climate system is omitted. Under
assumptions such as logarithmic utility, Cobb-Douglas technology, constant
saving rate, and full depreciation of capital, they derive the optimal-tax for-
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mula analytically. Rezai and Van der Ploeg (2016) employ a similar two-box
carbon system. They allow for a lag between temperature and atmospheric
carbon in addition to more general functional forms than those assumed by
Golosov et al. (2014), and they derive a simple rule for the optimal carbon
price.

The omission of the climate system in Golosov et al. (2014) is justified
by recent findings in climate science that the climate response to a CO2
emission is nearly instantaneous and remains almost constant over time; see
Roe and Bauman (2013) and Ricke and Caldeira (2014). Based on the same
findings, Dietz and Venmans (2018) assume that the global mean tempera-
ture is linearly proportional to cumulative CO2 emissions, in contrast to the
large thermal inertia of the climate system assumed in DICE and Lemoine
and Rudik (2017). These differences may lead to different optimal transition
paths of temperature. Thus, the optimal carbon price follows Hotelling’s rule
in Dietz and Venmans (2018), whereas it grows more slowly in Lemoine and
Rudik (2017).

Our purpose is to stay as close as possible to Nordhaus’ DICE model, but
to simplify it using Ockham’s razor quoted above (‘more things should not be
used than are necessary’), also in the spirit of Einstein’s dictum: ‘as simple
as possible but not simpler’. A complex model is not necessarily a better
model than a simple model. Leaving things out is arguably more difficult
and more important than putting things in. Many statisticians believe that a
more complex model will reduce the bias and increase the variance, but this
is only half true. A more complex model does indeed increase the variance,
but it does not necessarily reduce the bias (De Luca et al., 2018). Hence,
simplicity matters given the large uncertainties in the exogenous variables
(such as population and technical knowledge) and the parameters.

The purpose of this paper is therefore not to propose a completely dif-
ferent climate system nor to examine climate sensitivity in the DICE model.
Our purpose is more modest. We show that the temperature and CO2 equa-
tions in the DICE model are needlessly complicated and that they can be
much simplified. We also argue that the specification of the damage function
can be altered in such a way that it lends itself to experiments involving
extreme risk. Finally, we briefly discuss the assumption in DICE that the
abatement fraction for CO2 is allowed to become larger than one, which
implies that emissions can become negative.

In Section 2 we present the Nordhaus DICE 2016R model. In Sections 3
and 4 we discuss and simplify the DICE equations for temperature and CO2
concentration. In Section 5 we provide an alternative to the DICE damage
function. Section 6 presents the SICE (simplified DICE) model and con-
cludes.
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2 Nordhaus’ DICE 2016R model
The following equations are the equations from the beta version of DICE-
2016R (Nordhaus, 2017, 2018a), a version with the identification DICE-
2016R-091916ap.gms. A number of equations are redundant and have been
deleted. A new variable ωt has been introduced, some equations have been
combined, and the equations have been reordered; see Ikefuji et al. (2019)
for the details. Still, this is precisely the same model as Nordhaus’ 2016R
model.

Everybody works. In period t, the labor force Lt together with the capital
stock Kt generate GDP Yt through a Cobb-Douglas production function

Yt = AtK
γ
t L

1−γ
t (0 < γ < 1), (1)

where At represents technological efficiency and γ is the elasticity of capital.
Capital is accumulated through

Kt+1 = (1− δ)Kt + It (0 < δ < 1), (2)

where It denotes investment and δ is the depreciation rate of capital.
Carbon dioxide (CO2) emissions consist of industrial emissions and non-

industrial (‘land-use’) emissions. We denote the latter type by E0
t and con-

sider it to be exogenous to our model. Total CO2 emissions Et are then given
by

Et = σt(1− µt)Yt + E0
t , (3)

where σt denotes the emissions-to-output ratio for CO2 and µt is the abate-
ment fraction for CO2. The associated CO2 concentration increase Mt in the
atmosphere (GtC from 1750) accumulates through

Mt+1 = (1− b0)Mt + b1X1,t + Et, (4a)
X1,t+1 = b0Mt + (1− b1 − b3)X1,t + b2X2,t, (4b)
X2,t+1 = b3X1,t + (1− b2)X2,t, (4c)

where X1,t and X2,t are auxiliary variables representing CO2 concentration
increases in shallow and lower oceans, respectively, also measured in GtC
from 1750.

Temperature increase Ht (degrees Celsius from 1900) develops according
to

Ht+1 = (1− a0)Ht + a1 log(Mt+1) + a2 Zt + Ft+1, (5a)
Zt+1 = (1− a3)Zt + a3Ht, (5b)
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where Zt is an auxiliary variable representing the temperature increase of
the lower oceans, also measured in degrees Celsius from 1900, and Ft+1 is
exogenous radiative forcing.

In each period t, the fraction of GDP not spent on abatement or ‘damage’
is either consumed (Ct) or invested (It) along the budget constraint(

1− ωt − ξH2
t

)
Yt = Ct + It. (6)

A fraction ωt of Yt is spent on abatement, and we specify the abatement cost
fraction as

ωt = ψtµ
θ
t (θ > 1). (7)

When µt increases then so does ωt, and a larger fraction of GDP will be spent
on abatement.

Damage is represented by a fraction ξH2
t of Yt and it depends only on

temperature. The optimal temperature is Ht = 0, the temperature in 1900.
Deviations from the optimal temperature cause damage. For very high and
very low temperatures the fraction becomes large, but (given the value of ξ)
it will still be a fraction between zero and one, unless in truly catastrophic
cases.

As in Nordhaus (2017, 2018a) one period is five years. Period 1 refers
to the time interval 2015–2019, period 2 to 2020–2024, and so on. Stock
variables are measured at the beginning of the period; for example, K1 de-
notes capital in the year 2015. We choose the exogenous variables such that
Lt > 0, At > 0, E0

t > 0, σt > 0, and 0 < ψt < 1. The policy variables must
satisfy

Ct ≥ 0, It ≥ 0, µt ≥ 0. (8)
Nordhaus (2018a, 2018b) allows ‘negative-emission technologies’ by setting
an upper bound on µt of 1.2 (rather than 1.0) from period 30 onwards (year
2160), which implies that emissions can become negative by (3), and in fact
this upper bound is reached in the DICE output from period 46 onwards
(year 2240). The idea of negative emissions is controversial. Anderson and
Peters (2016) state that negative-emission technologies are unjust and a high-
stake gamble, while a recent editorial in Nature (Editorial, 2018) discusses
the enormous effort required to carry out such technologies — an effort which
would lead to a deterioration of the environment.

Given a utility function U we define welfare in period t as
Wt = Lt U(Ct/Lt). (9)

The policy maker has a finite horizon and maximizes total discounted welfare

W =
T∑
t=1

Wt

(1 + ρ)t
(0 < ρ < 1), (10)
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where ρ denotes the discount rate and T = 100 (500 years). Letting x denote
per capita consumption, the utility function U(x) is assumed to be defined
and strictly concave for all x > 0. There are many such functions, but a
popular choice is

U(x) =
x1−α − 1

1− α
(α > 0), (11)

where α denotes the elasticity of marginal utility of consumption. This is
the so-called power function. Many authors, including Nordhaus, select this
function. In earlier versions of the DICE model, Nordhaus (2008) chooses
α = 2 in which case U(x) = 1 − 1/x. Also popular is α = 1; see Kelly and
Kolstad (1999) and Stern (2007). In the 2016 version of the DICE model
α = 1.45.

3 Temperature
The DICE model thus consists of the seven equations (1)–(7). Four of these,
equations (1)–(3) and (7), are not controversial. In the next three sections
we shall discuss the CO2 equation (4), the temperature equation (5), and the
budget constraint (6).

We start with the temperature equations in (5), which we now write in
matrix form as

xt+1 = Axt + at+1, (12)
where

xt =

(
Ht

Zt

)
, A =

(
1− a0 a2
a3 1− a3

)
, at =

(
a1 log(Mt) + Ft

0

)
.

The matrix A has two eigenvalues given by

1− 1− η1
2

± 1

2

√
(1− η1)2 − 4η2,

where η1 = 1 − a0 − a3 = 0.8468 and η2 = (a0 − a2)a3 = 0.0030, so that
the eigenvalues are 0.9771 and 0.8697, respectively. The largest eigenvalue is
thus close to one and it would be equal to one if (and only if) η2 = 0.

We can ‘difference out’ the auxiliary variable Z and this gives

Ht+1 = (1 + η1)Ht − (η1 + η2)Ht−1

+ η3 log(Mt+1)− (η3 − η4) log(Mt) + η0t, (13)

where η3 = a1 = 0.5338, η4 = a1a3 = 0.0133, and η0t = Ft+1 − (1 − a3)Ft.
Equation (13) does not contain Z but, compared to (5a), it contains an
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additional lag in both H and log(M). Note that (13) is not invariant to
scaling in M .

Letting ∆ be the (backward) difference operator defined by ∆xt+1 =
xt+1 − xt, we can write (13) alternatively as

∆Ht+1 = η1∆Ht + η3∆ log(Mt+1) + η∗0t,

where η∗0t = −η2Ht−1+η4 log(Mt)+η0t. This equation in first differences can
also be written as

Ht+1 = η0 + η1Ht + η3 log(Mt+1) +
t∑

j=1

η∗0j, (14)

where η0 = −3.3291 is an integration constant. Notice that Ht+1 in (14)
depends on Ht but that the effect of Ht−1 is negligible, which is another way
of saying that the largest eigenvalue of the matrix A in (12) is close to one.
Both are caused by the fact that η2 is small. We emphasize that (12), (13),
and (14) are equivalent descriptions of the DICE temperature equations. No
approximation has yet taken place.

Given the DICE parameter values, in particular the fact that η2 and η4
are small, the partial sums

∑
j η

∗
0j are well approximated by a linear trend

with slope 0.025. This implies that if we run a regression on the equation

Ht+1 = η∗0 + η∗1Ht + η∗2 log(Mt+1) + η∗3t (15)

we will get a good fit. If we leave out the linear trend, then the estimate of
η∗1 increases somewhat and the estimate of η∗2 decreases somewhat.

Table 1: Simplified temperature equations

constant Ht log(Mt+1) trend/10 s max |Qt|
(a) −3.6772 0.8707 0.5826 0.0064 0.0032 0.43%

(0.0511) (0.0014) (0.0076) (0.0003)
(b) −2.8672 0.8954 0.4622 — 0.0068 1.70%

(0.0561) (0.0012) (0.0082)

More precisely, we obtain the results in Table 1, where we note that in all
regressions, figures, and numerical experiments that follow, Ht (and similarly
Mt and other variables) take the optimal values as obtained from the DICE
gams routine, which optimizes welfare in (10).

Under (a) we report the estimated coefficients and standard errors from a
regression of Ht+1 on a constant, Ht, log(Mt+1), and a time trend, as in (15).
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The fit is very good. In particular, letting e denote the vector of residuals and
Ĥt the predicted value of Ht from the regression, and defining the regression
variance s2 and the relative deviations Qt as

s2 = e′e/(n− k), Qt = 100(Ĥt −Ht)/Ht,

we find that s = 0.0032 and maxt |Qt| = 0.43 with n = 99 and k = 4. This
shows that for a temperature increase of, say, 3 degrees Celsius the maximum
error will be 0.013 degrees.
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Figure 1: Temperature — time path for DICE 2016R and two simplified
models
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Figure 2: Temperature — Deviations (%) of two simplified models relative
to DICE 2016R

If we leave out the linear trend we obtain (b) which is almost as good,
except that the error in the first few periods is somewhat higher. This is
illustrated in Figures 1 and 2. In Figure 1 the time paths of temperature
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of DICE and the two models (a) and (b) are indistinguishable, reaching a
maximum of 7.2 in 2270. The relative deviations Qt are graphed in Figure 2.
They are all below 0.5% except the first four periods in Model (b). Even
though the estimated coefficient on the time trend is ‘significant’ it is not
important, and the fit is essentially the same.

Summarizing, the simplified equation (15) provides a good approximation
because (a) the coefficients in (13) correspond approximately to a first-order
difference equation; and (b) the omitted variable is essentially constant. The
second approximation (without trend) is almost as good as the approximation
in (15), and suffices for practical applications.

4 CO2 concentration
Next we consider the CO2 equations in (4), which we also write in matrix
form as

xt+1 = Axt + at, (16)
where now

xt =

Mt

X1,t

X2,t

 , A =

1− b0 b1 0
b0 1− b1 − b3 b2
0 b3 1− b2

 , at =

Et

0
0

 .

One of the three eigenvalues of A equals one, and the remaining eigenvalues
are given by

1− 1− ϕ1

2
± 1

2

√
(1− ϕ1)2 − 4ϕ2,

where ϕ1 = 1 − b0 − b1 − b2 − b3 = 0.675535 and ϕ2 = b0b2 + b0b3 + b1b2 =
0.001303, so that the two remaining eigenvalues take the values 0.995933
and 0.679602, respectively. The largest eigenvalue is thus equal to one and
the next eigenvalue is close to one; it would be equal to one if (and only if)
ϕ2 = 0. This suggests that we should difference not once (as in the previous
section) but twice, and this is precisely what we shall do.

As in the previous section we can ‘difference out’ the auxiliary variables
X1 and X2, and this gives

Mt+1 = (ϕ1 + 2)Mt − (1 + 2ϕ1 + ϕ2)Mt−1 + (ϕ1 + ϕ2)Mt−2 + E∗
t , (17)

where
E∗

t = Et − (1 + λ1)Et−1 + (λ1 + λ2)Et−2.
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This equation does not contain X1 and X2 but it contains two additional
lags in both M and E. We can write (17) alternatively as

∆Mt+1 = (ϕ1 + 1)∆Mt − (ϕ1 + ϕ2)∆Mt−1 + E∗
t ,

where we notice that there is no remainder term in Mt−2 because the largest
eigenvalue of A equals one exactly given the DICE parameters. This leads
to

Mt+1 = ϕ0 + (ϕ1 + 1)Mt − (ϕ1 + ϕ2)Mt−1 + E∗∗
t , (18)

where E∗∗
t =

∑t
j=1E

∗
j and ϕ0 = 0.8761 is an integration constant. This, in

turn, can be written as

∆Mt+1 = ϕ0 + ϕ1∆Mt − ϕ2Mt−1 + E∗∗
t ,

so that

Mt+1 = ϕ00 + ϕ0t+ ϕ1Mt − ϕ2

t−1∑
j=1

Mj +
t∑

j=1

wtjEj, (19)

where ϕ00 = 263.2837 is an integration constant and
t∑

j=1

wtjEj =
t∑

j=1

E∗∗
j =

t∑
j=1

j∑
i=1

E∗
i =

t∑
j=1

(t− j + 1)E∗
j

= Et + (1− λ1)
t−1∑
j=1

Ej + λ2

t−2∑
j=1

(t− j − 1)Ej,

so that

wtt = 1, wtj = 1− λ1 + (t− j − 1)λ2 (j = 1, . . . , t− 1).

The DICE weights wtj are thus slightly increasing rather than decreasing,
which is a little awkward. Notice that equations (16)–(19) are equivalent
descriptions of the DICE CO2 equations. No approximation has yet taken
place.

Since ϕ2 = 0.0013 and λ2 = 0.0003 are close to zero, (19) will be well
approximated by

Mt+1 ≈ ϕ00 + ϕ0t+ ϕ1Mt + Et +
t−1∑
j=1

(1− λ1)Ej.

In fact we will run regressions on the equation

Mt+1 = ϕ∗
0 + ϕ∗

1Mt + ϕ∗
2Et + ϕ∗

3t (20)
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Table 2: Simplified CO2 equations

constant Mt Et trend s max |Qt|
(a) 16.27 0.9900 0.6166 0.0317 1.52 0.35%

(1.08) (0.0004) (0.0067) (0.0098)
(b) 17.94 0.9902 0.6001 — 1.59 0.39%

(0.99) (0.0004) (0.0046)
(c) — 0.9975 0.6549 — 3.33 0.92%

(0.0002) (0.0073)
(d) — 0.9942 1.0000 — 16.35 1.66%

(0.0007) (—)

and simplifications thereof.
This leads to the results in Table 2. Under (a) we regress Mt+1 on all

four variables, under (b) we delete the trend, under (c) we also delete the
constant term, and under (d) we restrict the coefficient of Et to be one. The
last model is the simplest and mirrors capital accumulation in (2). The fit is
very good in all cases, as can be seen from the values of s and max |Qt|, and
also from Figures 3 and 4.

In Figure 3 the time paths of CO2 of DICE and the four models (a)–(d)
are indistinguishable, reaching a maximum of 2707 in 2230. The relative
deviations Qt are graphed in Figure 4. In Models (a) and (b) the relative
deviations are all below 0.4% in absolute value. In Model (c) the relative
deviations are all below 0.6% in absolute value, except in the first three
periods. In Model (d) the relative deviations are larger than 0.6% up to
period 36 (year 2190) and smaller than 0.6% afterwards, with a maximum
of 1.7% in period 12 (year 2070) where Mt = 1402 (the DICE output) and
M̂t = 1425 (the predicted value of Mt from the regression).

The simplified equation (20) thus provides an excellent approximation to
the DICE results because the coefficients in (17) correspond approximately
to a second-order difference equation. Model (b) is possibly the preferred
approximation although the simplest Model (d) will suffice for most practical
applications.

5 Damage and abatement
The damage-abatement function is DICE specifies two fractions, ωt (abate-
ment) and ξH2

t (damage), of Yt which reduce Yt so that less money is available
for investment and consumption along the budget constraint. In DICE this
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Figure 3: CO2 concentration — time path for DICE 2016R and four simplified
models
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Figure 4: CO2 concentration — Deviations (%) of four simplified models
relative to DICE 2016R

fraction is specified as
1− ωt − ξH2

t .

For very high and very low temperatures the fraction becomes large, but
(given the value of ξ) it will still be a fraction between zero and one, unless
in truly catastrophic cases when Ht > 20.58, that is, when the temperature
in period t is more than 20 degrees Celsius higher than in 1900. Of course,
other forms of the damage function are possible; see Stern (2007), Weitzman
(2009), Ackerman et al. (2010), and Nordhaus (2013). Howard and Sterner
(2017) emphasize the importance of the damage function in accurately esti-
mating coefficient and standard error bias.

In Figure 5 the graph labeled DICE 2016R contains the time path of this
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Figure 5: Damage-abatement functions

fraction. Models (a) and (b) use an alternative specification, namely

1− ωt

1 + ξH2
t

,

based on the fact that the difference

Dt = 1− ωt − ξH2
t −

1− ωt

1 + ξH2
t

=
−(ωt + ξH2

t )(ξH
2
t )

1 + ξH2
t

is small, about 1% in relative terms.
The alternative specification is of interest because we may wish to ran-

domize ξ, as in Ikefuji et al. (2019). This is difficult under the DICE spec-
ification because 1 − ωt − ξH2

t could become negative (under extreme cir-
cumstances), while the alternative specification is always positive provided
ξ > 0.

In Model (a) we use the same value for ξ as in the DICE model, while
in Model (b) we use an ‘optimal’ value ξ∗ = 0.00265 which brings the lines
closer together; in fact, DICE and Model (b) are indistinguishable in the
figure. The value ξ∗ is obtained by minimizing the sum of squares

T∑
t=1

(
1− ωt − ξH2

t −
1− ωt

1 + ξ∗H2
t

)2

.

with respect to ξ∗. In summary, for a suitable choice of ξ we obtain an al-
ternative for the DICE damage function which lends itself better to studying
situations of uncertainty or catastrophe.
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6 The SICE model
We summarize our proposed SICE (simplified DICE) model with the relevant
parameters. The SICE model is the DICE model, but with the temperature
equation replaced by the new (simplest) temperature equation

Ht+1 = η∗0 + η∗1Ht + η∗2 log(Mt+1) (21)

with
η∗0 = −2.8672, η∗1 = 0.8954, η∗2 = 0.4622,

and the CO2 equation replaced by

Mt+1 = ϕ∗
1Mt + Et, ϕ∗

1 = 0.9942. (22)

For the damage equation we propose

1− ωt

1 + ξ∗H2
t

, ξ∗ = 0.00265, (23)

instead of the DICE specification

1− ωt − ξH2
t , ξ = 0.00236.

In addition, one may wish to set µ ≤ 1.0 instead of the upper bound µ ≤ 1.2
as used in DICE.

We conclude that, within the philosophy of Nordhaus’ DICE model, sig-
nificant simplifications can be made which make the model more transparent,
more robust, and easier to apply.
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Appendix
In this Appendix we present three tables which together contain all variable
and parameter definitions required to compute the optimum in DICE (the
Nordhaus model) and SICE (our simplified version of DICE): the variables
employed in SICE and DICE and their relationship (Table 3), the initial val-
ues of the six state variables of DICE (Table 4), and the parameters employed
in SICE and DICE and their relationship (Table 5).

Table 3: Variables in SICE and DICE
SICE DICE
State variables
Ht TATM(t)
Kt K(t)
Mt MAT(t)
Policy variables
It tstep × I(t)
µt MIU(t)
Ct tstep × C(t)
Exogenous variables
At tstep × AL(t)
E0

t tstep × ETREE(t)/3.666
Ft −a1 log(588) + 0.1005× FORCOTH(t)
Lt L(t)/1000
ψt COST1(t)
σt SIGMA(t)/3.666
Auxiliary variables
Et tstep × E(t)/3.666
Yt tstep × YGROSS(t)
ωt defined in (7)
X1,t MU(t)
X2,t ML(t)
Zt TOCEAN(t)

Table 4: Initial values of state variables in SICE and DICE
H1 K1 M1 X1,1 X2,1 Z1

0.85 223 851 460 1740 0.0068
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Table 5: Parameters in SICE and DICE
SICE DICE Value Description
Basic parameters

a1 0
ξ a2 0.00236

a3 2
tstep 5
dk 0.1

δ 0.40951 1− δ = (1− dk)tstep

prstp 0.015
ρ 0.077284 1 + ρ = (1 + prstp)tstep

θ expcost2 2.6
γ gama 0.3
α elasmu 1.45
a0 0.128189 a0 = (c1)(fco22x)/(t2xco2) + (c1)(c3)
a1 0.533755 a1 = (c1)(fco22x)/ log 2
a2 c1 × c3 0.008844
a3 c4 0.025
b0 b12 0.12
b1 b21 0.196
b2 b32 0.001465
b3 b23 0.007

Additional parameters
η0 −3.329093
η1 0.846811 η1 = 1− a0 − a3
η2 0.002984 η2 = (a0 − a2)a3
η3 0.533755 η3 = a1
η4 0.013344 η4 = a1a3
ϕ0 0.876134
ϕ00 263.283680
ϕ1 0.675535 ϕ1 = 1− b0 − b1 − b2 − b3
ϕ2 0.001303 ϕ2 = b0b2 + b0b3 + b1b2
λ1 0.795535 λ1 = 1− b1 − b2 − b3
λ2 0.000287 λ2 = b1b2
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