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Abstract
Climate change is likely to affect economies not only through warming, but also via an increase in
prolonged extreme events like heat waves. However, the impacts of heat waves on economic output
are not well captured by standard empirical approaches that ignore when hot days occur. Using a
global dataset spanning 1979–2016, we show agricultural losses from past heat waves are up to an
order of magnitude larger than suggested by standard approaches. Combining these estimates with a
suite of climate models implies that by the end of the century, climate damages in agriculture may be
5–10 times larger than is predicted by a focus on mean temperature shifts alone. These findings have
important implications for targeting and evaluating climate adaptation efforts. (JEL: Q54,Q51,O13)

1. Introduction

The costs and consequences of climate change are likely to extend well beyond the
effects of gradual warming of average temperatures. In particular, tail events such as
severe heat waves can prove fatal, reduce labor productivity and increase absenteeism,
devastate crops, and strain power systems (Wahid et al. 2007; Kovats and Hajat 2008;
Rocklöv and Forsberg 2008; Somanathan et al. 2015). The 2003 heat wave in France
led to an estimated 11,000 deaths, the 2010 wave in Russia reduced grain yields by
25% ($15 billion), and widespread power outages and hospitalizations followed 2018
events in California, Japan, and Pakistan. Concerningly, heat waves are expected to
become more common in the future (Meehl and Tebaldi 2004; Cowan et al. 2014;
Russo et al. 2014; Mann et al. 2018; Coumou et al. 2018). Those projections match
recent trends in which the incidence of prolonged exposure to heat is rising much faster
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FIGURE 1. Trends in heat-wave incidence. Global average measures of exposure to heat relative to
2000 levels for example heat-wave metrics (in color) and counts of days in hot temperature bins
(grayscale). Different colors reflect counts of days at or above different minimum exposure levels for
the binary heat accumulation model (See Section 2.3 for details). Heat-wave measures are based on
consecutive days of more than 1.5 standard deviations above average for a grid cell and time of year.
Measures are aggregated to the country level using cropland and pasture weighting, then averaged
across countries. Points represent actual global averages, while lines are quadratic trends fit to each
series.

than gradual shifts in the temperature distribution would suggest (Figure 1). Together,
large damages from and rising frequency of heat waves suggest a full accounting of
climate impacts requires more careful attention to prolonged exposure to heat.1

Despite their apparently large impacts, heat waves have received insufficient
attention from economists. A large and growing related literature examines the impacts
of temperature on a range of outcomes, often linking the results to implications
of climate change (see Auffhammer and Mansur 2014; Dell et al. 2014; Carleton
and Hsiang 2016; Hsiang 2016, for summaries). Many of these studies examine
the marginal effects of exposure to a single day of high temperatures, either on
contemporaneous outcomes (e.g., Graff Zivin and Neidell 2014) or on outcomes for
a month or year in which the hot day occurred (e.g. Schlenker et al. 2006; Schlenker
and Roberts 2009; Barreca et al. 2016). Other researchers instead examine the impacts
of shifts in monthly or annual mean temperatures (e.g. Burke et al. 2015). Most
integrated assessment models used to generate social cost of carbon (SCC) estimates
share this focus on averages, considering only damages that arise from shift in mean
temperatures (National Academies of Sciences and Medicine 2017). While valuable,
neither approach isolates the multi-day exposure to abnormal heat which characterizes
a wave. Instead, both approaches collapse a sequence of temperatures into one or a
handful of summary statistics, discarding the time structure of heat exposure.

1. In crops as in humans, the impact of heat depends on both temperature and duration of exposure
(Wahid et al. 2007). For instance, heat shock proteins produced by plants in response to high temperatures
can confer tolerance (Bita and Gerats 2013), but that tolerance decays with time (Charng et al. 2007); the
intensity and timing of heat exposure matters.
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In response, we propose new measures of prolonged exposure to heat, estimate
the impacts of past heat waves, and use those estimates to project future damages
under climate change. Our metrics are straightforward, tracking prolonged exposure to
temperatures that are abnormally high for a location and time of year and summarizing
the number of days in which resulting heat stress falls in particular ranges (Section 2).
Our core estimates, which come from a country-by-year panel spanning 1979-2016,
reveal strong negative effects of heat waves on agriculture. For example, an abnormally
hot day preceded by at least two others reduces agricultural output by approximately
0.3%. Higher levels of prolonged heat exposure are more damaging: after eight days
of abnormally high temperatures, each additional hot day reduces agricultural output
by 1.7%.2. Effects on non-agricultural and overall output are an order of magnitude
smaller in percentage point terms, but because average output outside of agriculture
is substantially larger (by a factor of 44 in our sample), those effects may still be
economically significant. Taken together, our estimates imply that three high-profile
heat waves (France 2003, Russia 2010, United States 2012) led to total losses of $52
billion.

Looking ahead, our estimates raise concerns about potential impacts of climate
change, particularly for agriculture. Applied to a suite of climate models for
Representative Concentration Pathway (RCP) 4.5, our estimates suggest that without
further adaptation, potential additional agricultural output losses due to heat waves
could surpass 10% per year by the end of the century (Section 6.1.2). As a result, SCC
estimates, which typically ignore damages from extremes, are likely to be too low.
Adaptation could, of course, dampen impacts from heat waves and mitigate bias in
SCC estimates. If the temperature thresholds underlying our heat wave measure change
at historical rates, reflecting gradual adaptation to new temperature regimes, projected
agricultural damages from heat waves fall to a country-level average of 4.5% per
year. While smaller, those losses remain substantially larger than the projected 0.9%
losses arising from mean temperature shifts. Moreover, a retrospective assessment of
adaptation paints a less encouraging picture: we find no evidence that impacts of heat
waves have declined through time in agriculture (Section 6.3.2 and Table A.8). The
rarity of major heat waves poses challenges for selecting optimal levels of adaptation
(see Section 7), even if adaptation to heat waves and gradual warming entail similar
types of protective investment.

The importance of explicitly considering prolonged exposure to heat is made
clear by comparing our metrics and associated estimates to existing approaches.
Comparisons of our approach with standard measures of temperature exposure (e.g.
annual mean, counts of days in fixed temperature bins) reveal low to modest correlations
(Table A.1), suggesting our heat-wave measures provide new information not present
in standard measures of heat exposure. The new measures also successfully pinpoint
major heat-wave events, such as those in France in 2003 and Russia in 2010 (Figure 4),

2. Estimates reflect heat waves of consecutive days with temperatures at least 1.5 standard deviations
above the local average during the historically hottest 90 days of the year.
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while conventional measures do not (Figure A.6). More importantly, we find the effects
of heat waves to be substantially larger than what is implied by binned temperature
measures. For example, our point estimates suggest the 2003 heat wave in France led to
$3.1 billion in lost agricultural output–10 times larger than estimates using a standard
approach counting days in ten-degree temperature bins (Table 5). A hybrid approach
using our location-specific threshold for abnormal heat but ignoring whether or not hot
days occur in a row still yields estimates less than one third the size of our approach
(Table 6). More generally, total estimated damages from the three high-profile heat
waves we consider are substantially smaller when using a standard temperature-bin
approach ($13 billion vs $52 billion). In short, accounting for prolonged exposure
to high temperatures during heat waves yields meaningful quantitative differences in
estimated damages. The fact that our estimates are meaningfully larger than those
suggested by existing approaches may be attributable to the non-additive effects of
prolonged exposure to heat: we document statistically different effects of a hot day
at the start of versus later in a heat wave (Table 7). Moreover, we find the effect of
heat waves is distinct from that of average temperature; both general exposure to and
persistence of heat matter.

To be clear, some existing economic studies do allow for interactive effects of
temperature across days; however, most focus on much longer time scales than those
relevant for the heat waves with which we are concerned. Models with quadratic effects
of annual mean temperature (e.g., Burke et al. 2015) allow the effects of a hot day
to depend on prior exposure, but impose equal dependency regardless of when the
earlier high temperatures occurred. Others implicitly or explicitly allow the effects of
heat to depend on prior temperatures, but only in a very general sense. For example,
some researchers allow for heterogeneity based on whether heat occurs early or late
in a typically hot season (Graff Zivin and Neidell 2014; Schlenker and Roberts 2009)
or in a historically hot location (Carleton 2017). We complement and build on these
efforts in two ways. First, we consider interactions at much shorter time scales, asking
whether the effects of extreme heat depend on temperatures in the preceding several
days, rather than earlier in the year or in prior years. Second, we account for the
interactions investigated in those prior studies. Our thresholds for what constitutes
abnormal heat (Section 2.3) allow for both within-season acclimatization and long-
run adaptation via day and location specificity, respectively. In addition, we test for
evidence of both long-run adaptation and medium-term interaction between heat waves
and overall temperatures within the same year (Section 6.3.2).

We also formalize, extend, and complement prior studies that do focus explicitly
on heat waves, most of which fall outside of economics. Some indirectly capture
prolonged exposure through multi-day temperature averages (e.g., Nairn and Fawcett
2014; Somanathan et al. 2015). However, many temperature sequences could produce
the same average but have different implications. To account for sequencing, other
researchers count uninterrupted stretches of days that lie above a heat threshold (e.g.,
Meehl and Tebaldi 2004; Gasparrini and Armstrong 2011; Massetti and Mendelsohn
2015). We define a family of heat-wave metrics that encompasses and generalizes that
approach in several ways. First, we motivate our metrics using a simple theoretical
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framework linking production and the accumulation of heat exposure. Second,
our empirical results emphasize two specific accumulation models: one in which
heat accumulation depends only on temperature surpassing a threshold (“binary”
accumulation), and one in which the intensity of the heat above that threshold also plays
a role (“intensity-based” accumulation). The novel “intensity-based” accumulation
model allows for both duration and intensity to contribute to heat stress.3 Finally,
the accumulation models underlying our metrics reveal opportunities for formal
comparison among measures of temperature exposure (Section 6.2).

While we focus on heat waves, our general approach may prove useful for
examining prolonged exposure to other environmental stressors. Studies of economic
impacts of pollutants (Graff Zivin and Neidell 2012; Heyes et al. 2016) often allow
for lagged effects but rarely consider potentially non-additive effects of prolonged
exposure. Accounting for prolonged exposure may matter less for some pollutants
(e.g. ozone), but merits investigation when physical recovery from exposure can span
multiple days (e.g. PM2.5).

The remainder of this paper is organized as follows. We first motivate the potential
importance of heat waves in a simple analytical framework. Next, we describe the
weather and economic data we use. We then detail our proposal for the measurement
of heat waves and compare our proposed family of metrics to common measures
of heat exposure used in the economics literature. After establishing differences in
the information captured by these metrics, we examine the effects of heat waves on
overall, non-agricultural, and agricultural economic output. The final section provides
a discussion and concluding remarks.

2. Quantifying Exposure to Heat Waves

2.1. Background

Heat waves are often characterized by two defining features: abnormally warm
conditions and prolonged exposure. The first feature of heat waves, abnormally high
temperatures, hints that identical absolute temperatures may have different effects if
they occur in different locations or at different times of year. A week of ninety-degree
weather early in a growing season may have a different effect than a week of the
same temperature when crops are mature. Similarly, a ninety-degree week in Dubai
is likely to have a different effect than an identical week in Vancouver. While many
economic studies use absolute temperature measures that do not directly reflect the
notion of abnormality, standard modeling techniques can account for heterogeneity
in both levels and effects of temperature. Location dummies can account for static
differences in local climate, while interaction terms between short term temperature
exposure with local climate variables can get at differential effects of exposure to

3. In Section 6.3.4 we also let cooler days provide incomplete relief from heat stress.
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the same absolute temperature. While most studies allow for static differences across
locations, many do not allow for the effects of heat to vary, which is defensible if the
study is of limited geographic scope. For global analyses like ours, however, differences
in local climate must be taken into account.

The second feature of heat waves, prolonged exposure, distinguishes a heat wave
from hot days that occur apart. Cumulative exposure of people, crops, or some
engineered systems to heat over several consecutive days may have detrimental
effects on health and labor, survival and growth, or performance of infrastructure.
Put differently, seven hot days spread throughout a summer may have very different
effects than a week of uninterrupted heat.

Most temperature-exposure metrics used in economic studies do not directly
measure prolonged exposure. Figure 2 illustrates this issue, displaying daily maximum
temperatures in the grid cell containing Paris in 2003 (top panel) and 2015 (middle
panel), as well as Tehran in 2003 (bottom panel). For context, Paris and much of Western
Europe experienced a major heat wave during the summer of 2003, but not 2015. The
left plots show the raw temperature series in each year, together with a dashed line
indicating the annual mean. The right plots illustrate the typical binning approach
described above, counting days that fall in various ten-degree bins. Using mean
temperature discards both the within-year distribution of temperatures and the temporal
structure of heat exposure. The binning approach retains variation by constructing an
approximation to the within-year distribution of temperature, but still discards the
temporal structure.4 The sustained heat during the major European heat wave in the
late summer of 2003 stands out in the time series, but is obscured when examining
distributions and is entirely absent when examining annual average temperatures (note
the mean for 2015 is higher than that for 2003). In addition, comparing temperatures in
Paris and Tehran in 2003 highlights the importance of locally appropriate definitions
of abnormal heat. Temperatures in 2003 were regularly hotter in Tehran than in Paris,
but due in part to adaptation, that year made no headlines for widespread health or
other damages in Tehran.

Outside of economics, a number of heat-wave metrics have been introduced
to directly incorporate the notion of prolonged exposure. Some simply average
temperatures over shorter time scales, e.g., a three-day period (Meehl and Tebaldi
2004). Those multi-day averages can also be compared to longer-term averages as a
way of incorporating the notion of abnormality (Nairn and Fawcett 2014) directly in a
heat-wave index. More complex metrics combine multiple, quantile-based thresholds
with minimum numbers of days that minimum temperature, maximum temperature,
or both must exceed those thresholds (Das and Smith 2012; Meehl and Tebaldi 2004).

Such alternative measures more closely match the popular understanding of heat
waves as prolonged exposure to abnormally hot temperatures, but are not without
their own limitations. Potential concerns with average-based metrics, even over short

4. The loss of temporal structure via averaging or binning likely matters less if considering a shorter
period, e.g., a week rather than a year.
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FIGURE 2. Existing and new temperature metrics. Temperature series (left), and bin-based
approximation to the temperature distribution (right) for the grid cell containing Paris in 2003
(top), Paris in 2015 (middle), and Tehran in 2003 (bottom). Temperature series plots include daily
cell temperature (black), long-run average per day (gray), and 1.5 standard deviations above average
per day (red). Light red bands indicate heat waves using the simplest measure falling in our family of
metrics: 3 or more consecutive days with temperature at least 1.5 standard deviations above average.
Numeric annotations mark the duration of each heat wave in days.

periods, were described above. The threshold-based metrics in Meehl and Tebaldi
(2004) avoid those concerns; however, simply counting days above thresholds ignores
potentially valuable information about how far above the threshold the temperature
rises. In what follows, we propose a flexible family of heat-wave metrics to address
these issues, incorporating both intensity and prolonged exposure.
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2.2. Analytical Framework

To motivate our proposed measurement of heat waves and their effect on economic
growth, we use a simple theoretical framework that builds upon Deryugina and Hsiang
(2014) and Burke et al. (2015). Our stylized model embeds two key features: both
current and past temperatures can affect economic output on a given day, and those
effects may interact. As a result, a serially correlated sequence of hot days may have a
very different effect than the same number of hot days spread throughout a season or
year. Further, the effects of a recent hot day on current output may depend on whether
the intervening days were also hot.

We begin with a temperature-dependent Cobb-Douglas model of output Yyd in
an industry and location on day d of year y. For simplicity, we assume as in
Burke et al. (2015) that temperature only affects total factor productivity5 (TFP);
capital Kyd, labor Lyd, prices p, and output elasticity of capital α do not respond.
Letting the temperature on day d be Tyd and the sequence of temperatures up to and
including day d be Tyd ≡ [Ty0, . . . , Tyd], we write TFP as f(Tyd, d) and output
as Yyd = pf(Tyd, d)K

α
ydL

1−α
yd .6 While the vector representation for Tyd does not

directly measure heat waves, it does pave the way for introducing heat waves below by
capturing serial correlation among the elements of Tyd. Further, letting TFP depend
on the day d permits heat waves to have different effects at different times of year. For
example, a heat wave is likely to matter much more for agriculture if it occurs during
a growing season.

For context, we briefly note what assumptions common empirical analyses make
about f(Tyd, d). Many standard models assume that past temperatures do not matter
for current production (f(Tyd, d) = f̃(Tyd, d)), and hence serial correlation in
exposure to heat is irrelevant. This is true of models in which daily or longer-
term average temperature enters linearly, as well as models using counts of days
in various temperature bins to approximate a temperature distribution. Distributed
lags of temperatures permit a role for serial correlation, but imply the effects of
heat are additively separable across days, i.e., f(Tyd, d) =

∑d

d′=0 f̃d−d′(Tyd′ , d
′).

Conversely, other specifications allow for non-separability, but again preclude effects
of serial correlation. Adding quadratic or other nonlinear functions of mean temperature
requires any interdependency in temperature impacts to be the same whether two hot
days occur back to back or several months apart. We find these restrictions to conflict
with intuition about how prolonged exposure to heat is likely to operate.

To address these limitations, we assume TFP depends upon temperature as follows:

f(Tyd, d) ≡fh(Eyd, d) + f c(Tyd, d) (1)

Eyd ≡E(Tyd)

5. In the appendix (Section A.6), we relax this assumption by building upon Dell et al. (2012).

6. Implicit in this framework is the assumption that productivity depends only on temperatures in that
location and not temperatures elsewhere.
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This formulation embeds two key assumptions. The first is that TFP can be decomposed
into two terms: one (fh) that depends upon the history of temperatures through day d,
and a second (f c) that depends only on the current temperature. The first term is the
focus of our analysis, as it captures potential effects of prolonged exposure to heat. Our
second key assumption in equation (1) is that effects of prolonged heat exposure on
production operate through a scalar-valued summary function E. The resulting scalar
is denoted byEyd, and we refer to it as our prolonged heat-exposure index. In the next
section, we discuss the particular functional form of E we adopt for our empirical
application.

Our summary of prolonged heat-exposure using a model-based scalar is of course
not the only option. A natural extension of the standard temperature-bin approach
would slot the temperatures on the most recent D days into one of B bins, and define
Eyd to be the length-D sequence of those bin identifiers. For example, if B = 2
and D = 6, a sequence 000111 might indicate that the most recent three days were
abnormally hot (1), while the three before that were not (0). Because there are BD

such sequences, that approach grows empirically unwieldy beyond modest values of
B and D. Still, in Section 6.3.4, we use this approach with B = 2 and D = 6 to
provide evidence that temperature sequencing matters for output. We also show how
our scalar model for Eyd is a special case of this approach, with the advantages of
greatly reduced collinearity and improved interpretability.

To arrive at total output in a country and year we must aggregate production across
days, locations, and industries. If TFP takes the form in equation (1) and production
is exchangeable across time and space as in Burke et al. (2015), we can write total
production in a year as follows:

Yy =

∫ ∞
−∞

gE(Ẽ)fh(Ẽ)dẼ +

∫ ∞
−∞

gT (T −T y)f
c(T )dT. (2)

Here gE and gT are densities describing exposure to specified levels of prolonged heat
exposure and temperature, respectively. The second term in (2) is the subject of Burke
et al. (2015), which studies the nonlinear effects of average temperature on production.

The first term in equation (2) is the focus of our paper. It says that annual output is
impacted by temperatures in a way that is not fully captured by the mean. Specifically,
it allows for prolonged exposure to heat to influence output. The effect is simply a
weighted sum of the components of TFP pertaining to prolonged heat exposure, with
weights determined by the incidence of different levels of prolonged heat exposure.
Importantly, we allow fh to be negative. Many high-profile damages from heat waves
result from the destruction of accumulated output (e.g., crops). In our model, this
is captured by fh(Eyd) turning negative for sufficiently large Eyd. During the brief
periods when Eyd does grow that large, prolonged exposure to heat may not only
temporarily prevent positive contributions to annual output, but may also more than
offset productivity on other, cooler days.

If the incidence of prolonged exposure to heat (gE) could be measured, Equation
(2) could be estimated to learn about the component fh of TFP. Operationalizing these
ideas requires defining cumulative exposure Eyd, which we turn to next.
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2.3. Measuring Prolonged Exposure to Heat

If prolonged exposure to heat does impact productivity, how should that exposure be
measured? A metric could be constructed using knowledge from other fields about the
way in which biological or engineered systems experience prolonged exposure to heat,
potentially embedding many nonlinearities. However, since people, crops, and power
systems are likely to respond to and accumulate heat in substantively different ways,
designing a metric to reflect any one system may obscure relationships of interest for
others. We thus seek a system-agnostic definition of prolonged exposure for the study
of aggregate outcomes and for comparison of output across different economic sectors.
We derive our measure based on a simple model of heat accumulation.

We define prolonged heat exposure Elyd for a given day d in year y at location
l as an evolving index with intentionally simple dynamics: it goes up on days hotter
than a location- and day-specific threshold chosen to reflect “abnormal” heat, and it
declines on other days, subject to censorship at zero. Events that most people would
recognize as a heat wave, with several abnormally hot days in a row, will thus drive the
index above zero for several days in a row. The index should reach its highest levels
during those waves. In contrast, during periods of normal or abnormally cool weather
the index will remain at zero, while sporadic hot days will push the index only briefly
and moderately above zero.

Specifically, we define a family of indices Elyd as follows:

Ely0 = 0 (3)

Elyd = max
{
0, Elyd−1 + 1(Tlyd ≥ T ld)h+(Tlyd,T ld)

− 1(Tlyd < T ld)h−(Tlyd,T ld)
}

Heat exposure accumulates via a function h+ when temperatures rise above the
“abnormally warm” threshold T ld, and relief is provided via a function h− when
temperatures fall below T ld. We return to the choice of T ld later.

Here we focus on two specific choices for the dynamics in equation 3. To facilitate
both exposition and comparison with prior work (Section 6.2), our main results use
a “binary” accumulation model. In that model, all that matters is whether or not the
temperature is above a critical threshold, and a single day below provides complete
relief from any heat experienced recently (h+(Tlyd,T ld) = 1 andh−(Tlyd,T ld) =∞).
In this case, the exposure index simply tracks the number of consecutive days the
temperature has been above the threshold as of day d, which is either zero or the
duration of an ongoing heat wave. The binary model thus underlies the common
understanding of a heat wave as a stretch of uninterrupted hot days measured by its
duration.

We also present complementary results (Section 6.3.1) using a novel “intensity-
based” model, in which the accumulation of heat stress also depends on how far above
the “abnormally hot” threshold a day’s temperature is. As a result, a heat wave with
days 30F above normal will yield higher exposure indices Elyd than an equally long
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wave with days 20F above normal. In particular, we allow the accumulation of heat
to follow a linear process: h+(Tlyd,T ld) = Tlyd − T ld.7 Conversely, a single day
below the threshold provides complete relief from heat stress (h−(Tlyd,T ld) = ∞),
though we relax that assumption in Section 6.3.4. In sum, the intensity-based index
Elyd allows both prolonged exposure and severity of temperatures to substitute in the
production of heat stress.

A key innovation we offer is in how we summarize a chosen exposure index for a
period (e.g., year) and region (e.g., country) of interest. Based on equation (2), and by
direct analogy to the common practice of counting days for which temperature falls
in particular bins, we propose to count days during which Elyd falls in distinct bins.
Spatially weighting the resulting histograms based on the density of relevant economic
activity (as measured by, e.g., population density or the fraction of a location devoted
to agriculture) yields a step function approximation to the sum of gEi across industries.
Formally, define the lower and upper thresholds for prolonged heat exposure bin b as
E>
b and E≤b , respectively. Then our measure of interest at the country and year level

is a vector Wcy defined as follows:

Wcy ≡
∑
l∈c

ωlcWly, (4)

whereωlc are spatial weights with
∑

l∈c ωlc = 1 andWly ≡ [Wly1, . . . ,Wlyb, . . . ,WlyB]
is a vector with bth element

Wlyb =
∑
d∈D

1
(
E>
b < Elyd ≤ E≤b

)
. (5)

In a regression of output onWcy, the coefficient associated with the bth element of
Wcy provides an estimate of the differential effect on output of an additional day falling
in prolonged heat-exposure bin b instead of a reference bin. Defining the reference
bin to contain only E = 0 provides a clean comparison to a day with no abnormal
heat exposure. These coefficients can still be used to quantify impacts of particular
heat-wave events. A counterfactual in which a wave did not occur implies a different
time series of exposure indices for each location. The effect of the wave is simply a
linear combination of the coefficients weighted by the changes in the number of days
in each prolonged heat-exposure bin. We use this approach to understand the effects of
three historical heat waves (Section 6.1.1) as well as projected damages under climate
change (Section 6.1.2).

We illustrate the intuition and benefits of this approach in Figure 3 using our binary
accumulation model and two hypothetical temperature series. The standard practice
of counting days in temperature bins (top row) does not distinguish between a serially
correlated temperature series with a heat wave (left group of plots) and the same set
of temperatures in a re-randomized order (right group of plots). In contrast, both the

7. As we detail later, while the dynamics of the index are linear, its effects are allowed to be nonlinear
(equation 5).
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FIGURE 3. Illustration of heat accumulation models. Illustration of heat accumulation models as
derived from temperature exposure. Line plots depict time series of temperatures (black) in standard
deviations from the mean (grey), along with a +1.5 standard deviation abnormal heat threshold (red)
(top plots), and the associated exposure index Elyd through time (bottom plots). Histograms reflect
counts of days for which temperatures (top) or the prolonged heat-exposure index (bottom) fall in
different ranges, using the time series immediately to the left of that histogram. The left group of
plots reflect an autocorrelated temperature series in which a heat wave occurs. The right set of plots
use the same set of temperatures but in randomized order, so that no autocorrelation occurs.

time series and bin-based summary of our exposure index (bottom row) successfully
differentiate between the two temperature series. The exposure index rises steadily
when temperatures remain above T ld (red line) for a prolonged period of time, giving
rise to different distributions of Elyd used to define our metric.

With this broad measurement framework in place, we return to the key threshold
T ld. We would like T ld to identify days that are both abnormally hot for a location and
time of year and hot in some intuitive sense. To this end, we require the temperature to
be at least 1.5 standard deviations above average for a location and day and for average
historical temperatures on that day to be among the 90 hottest for that location.8

Using location-specific thresholds acknowledges that long-run adaptation to average

8. Specifically, we adopt a piecewise form for T ld:

T ld =

{
µTld + 1.5σT

ld if rank(µTld) ≤ 90

∞ otherwise
(6)

where rank(µTld) = #{µTld′ : µ
T
ld′ ≥µ

T
ld}

This threshold is in the spirit of some prior work, but our innovation is to compute averages and
standard deviations using a window from 15 days before to 15 days after focal day d using data across all
years in the sample. Massetti and Mendelsohn (2015) define climatology based on calendar months.
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climatic conditions is likely to influence the effects of a given temperature. Similarly,
permitting the threshold to vary by day allows for seasonal acclimatization to hotter
weather. We focus on the 90 hottest days because an abnormally warm day may have
very different effects on output if the temperature is 50F (e.g., during winter) than if it
is 100F (e.g., during summer), even if both are at least 1.5 standard deviations above
average. Consistent with this approach, our intensity-based accumulation models use
temperatures measured in standard deviations, so that the accumulation indexElyd has
units of (temperature) standard deviation days (SD-days). We also examine a range of
alternatives for robustness (Table A.3), with the most important comparison to absolute
temperature thresholds illustrating the importance of location specificity.9

To summarize, measuring prolonged exposure to heat in our framework requires
three choices: a model of heat-stress dynamics, a summary of prolonged heat exposure
across a period and region of interest, and a threshold for what constitutes an abnormally
hot day. We emphasize results based on 1) the binary accumulation model, 2) the bin-
based summary of exposure defined in (4) and (5), and 3) thresholds of 1.5 standard
deviations above average for a location and day.

Before turning to our empirical application, we briefly note how our approach
connects to prominent existing measures of heat waves or accumulated heat exposure.
First, some prior work counts heat waves, defined as stretches of abnormally hot days
longer than some minimum duration. Such a count is equal to the number of days
with Elyd exactly equal to that minimum duration under our binary accumulation
model. For example, during each heat wave that lasts at least a week, Elyd will
equal 7 exactly once: on the 7th day of the wave. Second, a count of growing-degree
days or cooling-degree days arises from a variant of our intensity-based model with
h+(Tlyd,T ld) = max(0, Tlyd − T ld), h−(Tlyd,T ld) = 0, and exposure summarized
by the maximum value of Elyd during the year. Third, the variant of our approach in
whichElyd is a length-D sequence of bin identifiers generalizes the standard approach
of counting days in temperature bins (See Sections 2.2 and 6.3). We discuss other
measures and their relation to our approach in Appendix Section A.10.

3. Data

The focal dataset for this study is a global panel of daily temperature maxima from
1979-2016, gridded to 0.5 degree latitude and longitude cells. The data, compiled by
the Climate Prediction Center (CPC), are based on raw observations from the Global
Telecommunications System (GTS) and are interpolated to the grid using the Shepard
algorithm. Gridding of the data uses anomalies from monthly climatology; the latter
is added back after to derive the final observations. For our main results, we exclude
countries in Sub-Saharan Africa due to concerns over the spatial coverage, reporting

9. The distinction between location-specific and absolute (spatially-invariant) thresholds should be less
important for analyses with smaller spatial extent.
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Miller et al. Heat Waves, Climate Change, and Economic Output 14

frequency, and reliability of the stations on which the CPC dataset is based (see Online-
only Appendix for details). Including those countries does not change our qualitative
results (Table 4), but we have greater confidence in the filtered dataset.

For the second part of the paper, in which we examine relationships between
heat waves and measures of economic output, we combine this temperature data
with the data in Burke et al. (2015). The primary control from Burke et al. (2015)
is annual precipitation (Matsuura and Willmott 2012). We also adjust for average
annual temperature as in Burke et al. (2015), but for internal consistency we derive
average annual temperature from the CPC dataset rather than from Matsuura and
Willmott (2012). The outcome of interest is growth in per-capita GDP (in constant
2010 U.S. dollars per person) as provided in the World Bank’s World Development
Indicators. When examining differential impacts on agriculture and non-agricultural
sectors, we use growth in value added per capita in those sectors, again from the
World Bank. Studying output statistics of course has limitations; for example, heat
waves may affect more than market-based activity, such as through the destruction of
natural capital, which typically falls outside of national accounts. Further, some coping
behaviors, e.g., increasing electricity usage to power air conditioners, will show up
as positive contributions to output, while the net welfare effects of those choices are
unclear (e.g. due to increased pollution from electricity generation). Still, output serves
as a useful outcome of interest for comparison with prior work.

To partly address the limitations of output statistics, we also introduce growth in
the Food and Agriculture Organization Crop Production Index (CPI) as an alternate
outcome. Examining a quantity-focused index allows us to examine the impacts of
heat waves more completely. For example, if a major heat wave leads to large crop
losses, price increases may follow, dampening effects of the heat wave on value added.
While net effects on value are important for producers, reduced quantities may pose
food security concerns.

As discussed in the preceding section, we summarize heat wave exposure at a
country level by spatially averaging the per-location histograms of our exposure
index. We do so in two ways, depending on the economic outcome of interest.
When examining impacts of weather on overall or non-agricultural output growth,
we weight exposure by year 2000 population density per grid cell from version 4 of
the Gridded Population of the World dataset (CIESIN 2016). When examining growth
in agricultural value added or quantities, we aggregate based on the proportion of each
cell devoted to crops or pasture in that same year. Fractions of 5 arcminute cells devoted
to crops or pasture (Ramankutty et al. 2008) were obtained from EARTHSTAT and
aggregated to the half-degree grid at which weather data are available. Precipitation
and other temperature-based metrics use the same spatial aggregation scheme.

4. The Incidence of Heat Waves

Before studying the effects of heat waves on economic growth, we first illustrate how
our heat-wave measures contain new information not present in previous measures of
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TABLE 1. Heat wave summary statistics.

Crop/pasture-weighted Population-weighted

Duration Mean Median SD Max Mean Median SD Max

Heat waves: 1.5SD threshold
Days E ≥ 6 0.21 0.00 0.71 10.09 0.20 0.00 0.80 19.17
Days E ≥ 9 0.05 0.00 0.29 7.50 0.05 0.00 0.38 11.38
Days E ≥ 12 0.01 0.00 0.15 5.65 0.01 0.00 0.24 8.98

Heat waves: 90F threshold
Days E ≥ 6 16.90 6.48 22.65 85.00 14.21 4.05 21.41 85.00
Days E ≥ 9 13.86 3.22 20.92 82.00 11.54 1.72 19.71 82.00
Days E ≥ 12 11.86 1.62 19.49 79.00 9.80 0.79 18.33 79.00

Heat waves: 100F threshold
Days E ≥ 6 4.28 0.00 13.44 85.00 3.63 0.00 13.43 85.00
Days E ≥ 9 3.56 0.00 12.16 82.00 3.07 0.00 12.27 82.00
Days E ≥ 12 3.08 0.00 11.15 79.00 2.70 0.00 11.32 79.00

Abnormal heat thresholds (cell-level, unweighted)
Mean + 1.5SD (F) 86 89 18 126

Notes: Summary statistics for spatially averaged counts of days falling in the specified prolonged exposure bin during
the historically hottest 90 days for a particular cell. Rows correspond to different minimum prolonged exposure levels.
Columns provide mean, standard deviation, and maximum. Row groups use different thresholds defining abnormally
hot days: our primary threshold of 1.5 standard deviations above average for a cell and day of the year, as well as 90F
and 100F for comparison.

averages or counts of days in ‘hot’ temperature bins. We do this by describing certain
patterns of heat wave occurrence using our metrics and compare them with existing
metrics.

We first describe some basic trends in heat-wave incidence across the globe (Figure
1). First, the incidence of days with high levels of prolonged heat exposure is increasing
through time. Moreover, the incidence of higher exposure levels (9+, 12+) has increased
at a faster rate. Because we define the threshold for what constitutes a hot day to be time-
invariant for a location, this increasing incidence may reflect increasing variability,
gradual warming that shifts the distribution of temperatures higher, or more clustering
of hot days in time. However, the relative incidence of days between 90-100F and over
100F has not increased nearly as rapidly as that for heat waves, suggesting the growth
in heat waves is not due to overall warming alone.

Despite these increasing trends, we note that long heat waves are relatively rare
events, with countries experiencing much less than one such heat wave a year (Table
1). That low number reflects a combination of rarity and spatial extent: waves may
often affect small parts of countries and country-scale waves may occur infrequently.
The limited variation in heat wave exposure motivates our use of parsimonious
specifications: we use a three-bin measure of heat-wave exposure in most models.
Table 1 also highlights the important role of our relative thresholds: using fixed 90F or
100F thresholds identifies far more common events, with some countries surpassing
those thresholds for the entire 90-day window on which we focus. When these rare
heat waves do occur, Figure 3 also suggests that the El Niño Southern Oscillation
(ENSO) may play a role. Average incidence is dramatically higher in the same year as
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FIGURE 4. Metric performance for well-known heat-wave events. Measures of prolonged heat
exposure in 2003 and 2010, during which major heat waves occurred in Western Europe (2003)
and Russia (2010). Numbers represent crop- and pasture-weighted average number of days in which
an individual in a country experienced prolonged heat exposure of at least nine (using the binary heat
accumulation model). Darker regions represent greater prolonged exposure to heat. Accumulation
uses a hot-day threshold of 1.5 standard deviations above normal.

or year after devastating El Niño events (e.g., 1982-83, 1997-98, 2002-03, 2009-2010,
2014-2016). We discuss the potential value of this link in Section 7 and examine it in
the Appendix (Section A.11).

An example baseline measure using our binary accumulation model corroborates
geographic patterns of well-known heat-wave events (Figure 4). In 2003, Western
Europe experienced a deadly heat wave, especially in France, while 2010 entailed a
massive heat wave in Russia. The darker regions in Figure 4 show that the example
heat-wave metric (days with E ≥ 9 using binary accumulation) isolates these events
reasonably well. These patterns of exposure to heat waves would not necessarily
be revealed by measures of temperature exposure used more commonly in applied
econometric work (Figure A.6). More generally, the spatial patterns of heat-wave
incidence using our metrics suggest a greater incidence of heat waves in countries that
are wealthier10 and at temperate latitudes.

We illustrate the new information in our metrics using the same example as above:
population density-averaged counts of days with E ≥ 9. Correlations between this
metric and both mean temperature and counts of days in hotter temperature bins (80-
90F, 90-100F, >100F) are low. This is true whether we look at overall correlations
(-0.04 to -0.01) or within-country correlations after removing static cross-country
differences (-0.04 to 0.13). The latter is more relevant for the empirical application
later, which employs per-country fixed effects. This suggests our approach captures
new information not present in measures of heat exposure used in many economic

10. Wealthier countries are those with above-median 1980 GDP per capita (purchasing power parity).

Journal of the European Economic Association
Preprint prepared using jeea.cls v1.0.

D
ow

nloaded from
 https://academ

ic.oup.com
/jeea/advance-article/doi/10.1093/jeea/jvab009/6146091 by Kresge Law

 Library user on 24 February 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Miller et al. Heat Waves, Climate Change, and Economic Output 17

analyses. In turn, the effects of heat waves may not be adequately captured by existing
metrics.

The differences between our metric and counts of days in fixed temperature bins
stem in part from the day- and location-specific nature of our thresholds. Our primary
threshold defining abnormal heat (1.5 SD above average) has a cell-level median (mean)
of 89 (86) degrees Fahrenheit–not far from a typical reference point of 90F. However,
the standard deviation of our threshold is roughly 18F, and the interquartile range is
76F-98F. There is substantial variation across both space and time in what is considered
abnormal, which is ignored in approaches using fixed temperature thresholds.

Given that our framework is general enough to admit a variety of metrics, we
briefly summarize how several specific choices relate to one another (Table A.1). In
short, correlations among metrics are affected strongly by the severity of the hot-day
threshold (1, 1.3, 1.5, or 1.8 standard deviations above average) and by cutoffs for
minimum prolonged exposure. Thus, two defining features of heat waves, abnormal
heat and prolonged exposure, each play an important role in our constructed metrics.
The contributions of both hot-day thresholds and sequencing are clarified by comparing
heat-wave metrics with simple counts of hot days (ignoring sequencing) using identical
hot-day thresholds. Counts of days with prolonged heat-exposure index of at least 3
are highly correlated (0.88) with the simple hot day counts, but days with exposure
of at least 12 days exhibit much weaker correlation (0.27) (see Appendix Table A.2).
Thus, the required sequencing of hot days imparts new information in those metrics. In
contrast, using different samples (moving windows vs. calendar months) to determine
thresholds or using different spatial aggregation schemes has more minor effects, as
evidenced by high correlations across the metrics. The use of season restrictions (e.g.
waves must occur during the historically hottest m days) has moderate effects on the
final metrics from 90 to 150 days.

5. Effects of Heat Waves on Economic Output

5.1. Empirical Framework

Building on an emergent climate-economy literature analyzing the impact of rising
temperatures and extreme weather events (Dell et al. 2014), we estimate the effect
of heat waves on growth rates of real GDP per capita (DY) using the following
econometric model:

DYcy = β′Wcy + α1T cy + α2T
2

cy + α3Pcy

+ α4P
2
cy + µc + ηy + ηc1y + ηc2y

2 + εcy. (7)

Here Wcy is a (potentially vector-valued) measure of heat-wave incidence in country
c during year y, and the parameter vector β measures the effects of marginal increases
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in each element of the heat-wave vector Wcy.11 When Wcy is a vector of counts of
days for which our prolonged heat-exposure index Elyd lies in different bins, each
element captures the effect of an additional day with that exposure index compared to
one with an exposure index in an omitted reference bin. Estimating the effect of an
entire heat wave entails a linear combination of the elements of β that depends on the
wave characteristics. In Section 6.1.1, we provide several examples of the impacts of
heat waves in specific countries and years.

Our baseline specification conditions on the country’s annual mean temperature
(T cy) and total rainfall (Pcy), which are likely correlated with the occurrence of
heat-wave events within the year. The inclusion of squared environmental variables
captures potential nonlinearities in the relationship between temperature and growth
(Burke et al. 2015). Conditioning on mean temperature implies that the estimated heat-
wave impact is net of idiosyncratic fluctuations in local average annual temperatures.
While the two are related, a warmer year overall need not be tied to the occurrence of
heat waves if extreme temperatures are not clustered consecutively or if they fall within
relative (e.g. day- and area-specific) degree thresholds. Similarly, higher incidence of
heat waves need not result in higher overall mean temperatures if temperatures are
cooler in other parts of the year. Controlling for the mean temperature ensures that the
estimated effect of the heat wave arises from the prolonged exposure of a minimum
duration to warm days and not from a general warming or cooling overall.

In addition, the baseline includes country fixed effects (µc) and year fixed effects
(ηy) whereby the former accounts for time-invariant country-specific characteristics
that influence its rate of growth such as history, culture, and geography, while the
latter captures year-specific worldwide shocks to output growth. We also allow for
each country to exhibit its own level and quadratic trends in growth by the presence of
linear and quadratic country time trends (ηc1y + ηc2y

2). They permit country growth
rates to evolve non-linearly over time due to underlying features of the country’s
economy, such as demographic transitions, institutional changes, and long-run income
convergence. Using both country fixed effects and country-specific trends allow the
trajectory of income levels in each country to exhibit a country-specific intercept,
slope, and curvature (Hsiang and Jina 2014).

Given this framework, we identify the impact of heatwaves on output using within-
country deviations from output trends. Identification rests on the frequency, duration,
and intensity of heatwaves being exogenous conditional on our observed variables,
fixed effects, and country-specific trends. Additionally, our model explicitly omits
several covariates that determine growth, such as demographic or political variables,
as they are themselves likely affected by climatic events and hence “bad controls”
(Angrist and Pischke 2008). For inference, we allow the error terms (εcy) to exhibit
heteroskedasticity and autocorrelation of unspecified form. The former may arise from
differences in measurement precision by country while the latter may stem from any

11. We also allow for lagged heat wave effects in Section 6.3.3.
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TABLE 2. Average demeaned growth rates with and without heat waves.

No waves Waves

Min. Exposure Mean (SD) N Mean (SD) N Diff.

Overall
E ≥ 6 0.0002 (0.0645) 2407 −0.0003 (0.0542) 1764 −0.0005
E ≥ 9 0.0005 (0.0628) 3394 −0.0021 (0.0483) 777 −0.0026
E ≥ 12 0.0003 (0.0617) 3861 −0.0036 (0.0413) 310 −0.0039

Non-Agriculture
E ≥ 6 −0.0007 (0.0558) 1897 0.0009 (0.0533) 1536 0.0016
E ≥ 9 −0.0001 (0.0572) 2743 0.0003 (0.0434) 690 0.0003
E ≥ 12 0.0002 (0.0557) 3160 −0.0028 (0.0414) 273 −0.0031

Agriculture
E ≥ 6 0.0033 (0.0818) 1808 −0.0041 (0.0881) 1469 −0.0075 **
E ≥ 9 0.0021 (0.0845) 2636 −0.0087 (0.0852) 641 −0.0109 **
E ≥ 12 0.0011 (0.0848) 3027 −0.0132 (0.0829) 250 −0.0143 **

Notes: Within-country demeaned overall, non-agriculture, and agriculture growth rates for country-year observations with no heat waves
versus those with heat waves, as well as differences in demeaned growth rates between those two groups. Row groups correspond to different
types of growth, and individual rows reflect different minimum prolonged exposure levels (using the binary accumulation model) that must
be reached to count as a heat wave. Stars indicate significant differences in demeaned growth for countries with and without heat waves.
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

residual correlation in the outcome across time even after first differencing. We account
for this by clustering standard errors at the country level.

Finally, while equation (7) reflects our baseline specification, we later employ
minor variants to compare with prior work (Section 6.2) and to allow for longer-run
effects and heterogeneity (Section 6.3). For the latter, we allow the impacts of heat
waves to depend upon (a proxy for) development, whether a heat wave occurred earlier
or later in the sample, and the average temperature in a year.

5.2. Differences in Growth When Heat Waves Occur

Examining simple differences in growth rates provides suggestive evidence that heat
waves may impact growth, particularly in the agricultural sector (Table 2). We first
demean annual growth rates within each country, then compare differences in those
demeaned growth rates in countries and years with any heat waves and those without.
Observations are included in the heat-wave group if at least one location in that
country experiences at least one day during the year at or above the specified minimum
exposure using the binary accumulation model. The (demeaned) average agricultural
GDP growth rates in countries experiencing heat waves are significantly lower for two
of three wave definitions, while there is little compelling evidence of a comparable
difference in other sectors. To more carefully examine whether these differences are
indeed due to waves, we turn to our regression results.

6. Results

We first offer a brief roadmap to the results to follow. We begin by illustrating the effect
of an additional day of prolonged heat exposure on output (Section 6.1). We then ask
whether our results hold under alternate sets of assumptions, estimating models that
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vary the controls used, the sample, and our ‘abnormal heat’ threshold. After establishing
the robustness of our results, we quantify damages from heat waves in two ways. First,
we use historical and constructed counterfactual temperature profiles to estimate the
damages from three high-profile heat waves that occur in our dataset (Section 6.1.1).
Second, we use a suite of 21 climate models offering daily projections to examine
potential impacts of heat waves from 2020–2100 (Section 6.1.2).

We then directly compare our findings to those which arise if using existing
measures of heat exposure (Section 6.2). We do so first for the common practice of
counting days which fall in fixed temperature bins, ignoring accumulation (Section
6.2.1). Second, we compare our findings to those from counting stretches of consecutive
hot days, a more common practice outside of economics (Section 6.2.2).

Our final set of results (Section 6.3) examines extensions to our approach, studying
whether prolonged exposure to heat impacts economies in ways that are not captured
by the motivating model in Section 2.2. Specifically, we estimate models that allow
for heat waves to have longer-run effects, to alter more than just TFP, and to have
impacts that may vary with development, average temperature, and time. Finally, we
examine whether sequences of heat exposure other than uninterrupted stretches are
still damaging.

6.1. Main Findings: Heat Waves Reduce Output

We find strong evidence that heat waves occurring during the hottest parts of the year
depress economic output in the agricultural sector, with more modest evidence of an
impact in other areas of the economy (Figure 5).12 Our most concerning estimates
suggest that an abnormally hot day preceded by at least eight others reduces per-capita
agricultural value added by approximately 1.7%. The effect of prolonged exposure
to heat on a quantity measure of output in agriculture is stronger. Specifically, an
abnormally hot day preceded by at least eight others reduces the FAO crop production
index by almost 3%. The stronger effect on quantities is consistent with supply shocks
inducing price increases, such that the effect on value added is dampened. Results
using intensity-based accumulation of heat follow similar patterns; we briefly review
those results in Section 6.3.1.

These results reflect a heat wave effect conditional upon—i.e., not captured by—
mean temperature.13 As illustrated for our binary accumulation model (Table 3), our
estimates of the effect of mean temperature and its square are also consistent with
Burke et al. (2015); that concordance corroborates our earlier claim, based on variable
correlations alone, that our heat-wave measures introduce genuinely new information.

12. In the appendix, we reproduce our main results but use standard errors that allow for cross-country
spatial correlation per Conley (1999) and within-country autocorrelation. Inference is largely unchanged;
see Figure A.1 and the accompanying caption.

13. Annual mean temperature is, strictly speaking, a ‘bad control’. We include mean temperature because
1) the effect of a heat wave on the annual mean should be small, and 2) we aim to isolate an effect that is
distinct from that documented in Burke et al. (2015), even if our partial effect differs from the total effect.
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FIGURE 5. Effects of prolonged exposure to heat. Effects of an additional day during with prolonged
heat-exposure index in the specified bin during the historically hottest 90 days of the year. Each
location on the horizontal axis represents a different specification. Each specification uses three bins
to measure prolonged heat exposure: an omitted bottom reference bin with E = 0, a middle bin
with 1 ≤ E < C for C equal to the location on the horizontal axis, and a top bin with E ≥ C. All
estimates use an abnormal heat threshold of ≥ 1.5 SD above the local average temperature during the
historically hottest 90 days for a location. Panels depict different outcomes. 90% confidence intervals
shown are based on standard errors clustered at the country level.

In sum, we find evidence that both heat waves and warming appear to matter for
economic growth; our results complement rather than challenge prior work.

The effects of prolonged heat exposure remain stable across a suite of robustness
checks, summarized in Table 4. We first consider three alternate samples: 1) countries
having more than 20 years of data to ensure adequate data for per-country trends, 2)
including Sub-Saharan Africa despite our data concerns, and 3) countries for which
the threshold defining abnormally hot days (averaged across days and grid cells in a
country) is at least 80F . We also consider modified specifications, first using only linear
per-country trends, then no such trends, including a control for lagged growth, and
adjusting for numbers of days in different 10 degree (F) temperature bins rather than
mean temperature and its square. These exercises present no evidence that contradicts
our baseline findings. Agricultural growth remains negatively affected by heat waves,
and we continue to find weaker evidence of an effect of heat waves on non-agricultural
and overall GDP growth.

As a complement to these sample-based robustness checks, we also conduct
falsification tests based on randomization (Figure A.3). We first randomize average
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TABLE 3. Example effects of other covariates on growth

Coefficient Overall Non-Agriculture Agriculture

Days 1 ≤ E ≤ 8 0.00001 0.00035 −0.00198∗∗∗
(0.00031) (0.00025) (0.00071)

Days E ≥ 9 −0.00377∗ −0.00448∗∗∗ −0.01691∗∗
(0.00195) (0.00165) (0.00702)

Mean Temp. 0.01190∗∗∗ 0.00875 0.02524∗∗∗

(0.00372) (0.00610) (0.00677)

Mean Temp.2 −0.00033∗∗∗ −0.00032∗ −0.00078∗∗∗
(0.00011) (0.00018) (0.00023)

Precip. −0.00350 −0.01819 0.02981
(0.01361) (0.01207) (0.03254)

Precip.2 −0.00084 0.00330 −0.01286
(0.00282) (0.00247) (0.00776)

N 4171 3433 3277

Notes: Estimated relationships between covariates and growth for a baseline model counting the
number of days in which the prolonged heat-exposure index (E) falls in the ranges [1, 8] or [9,∞)
using the binary accumulation model and a +1.5 SD threshold. All specifications include country fixed
effects, year fixed effects, and quadratic country time trends, which are not reported. Temperature
is measured in degrees Celsius and precipitation in meters. Numbers of observations differ due to
availability of both sector-level outcomes and data underlying different spatial weighting schemes.
Standard errors are clustered at the country level. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

TABLE 4. Robustness to alternate samples and specifications

Baseline >20yr With SSA Tld ≥80F Lin. trend No trend Lag growth T bins ctrl

Overall GDP growth
Days with 1 ≤ E ≤8 0.0000 0.0001 0.0002 −0.0001 −0.0001 0.0000 0.0000 0.0001
Days with E ≥9 −0.0038∗ −0.0043∗∗∗ −0.0032 −0.0038∗ −0.0024 −0.0022 −0.0041∗∗ −0.0041∗

Non-Agriculture GDP growth
Days with 1 ≤ E ≤8 0.0003 0.0003 0.0003 0.0003 0.0002 0.0004 0.0005∗ 0.0003
Days with E ≥9 −0.0045∗∗∗ −0.0044∗∗∗ −0.0038∗∗ −0.0047∗∗∗ −0.0028 −0.0027 −0.0044∗∗ −0.0054∗∗∗

Agriculture GDP growth
Days with 1 ≤ E ≤8 −0.0020∗∗∗ −0.0019∗∗ −0.0020∗∗∗ −0.0026∗∗∗ −0.0020∗∗∗ −0.0019∗∗∗ −0.0025∗∗∗ −0.0010
Days with E ≥9 −0.0169∗∗ −0.0170∗∗ −0.0101 −0.0180∗∗ −0.0165∗∗ −0.0154∗∗ −0.0123∗∗ −0.0158∗∗

# observations
Overall 4171 3348 5757 3835 4171 4171 4122 4171
Non-Agriculture 3433 3083 4749 3154 3433 3433 3365 3433
Agriculture 3277 3083 4490 2890 3277 3277 3212 3277

Notes: Each estimate is from a separate regression. Except where noted, all specifications include country fixed effects, year fixed effects, and quadratic country time trends. All specifications
include controls for mean temperature, temperature squared, precipitation and precipitation squared. Temperature is measured in degrees Celsius and precipitation in meters. Standard errors are
clustered at the country level. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

temperature to examine whether our heat-wave estimates actually reflect average
temperature effects for which we inadequately control. Our estimates change little,
suggesting that is not the case (panel a). We next randomize our heat-wave measures,
which should yield null results, which it does (panel b). Repeating that exercise 1000
times shows our actual estimates fall well outside the range of estimates that arise if the
link between heat waves and output is broken (panel c). In sum, these randomization
tests do not contradict our main findings, lending credibility to our results.

Finally, we also examine robustness to how we define an ‘abnormally hot’ day in a
location. The results of these exercises, summarized in Table A.3, reveal three sensible
patterns.14 First, our use of location- and day-specific thresholds is critical: we see

14. Table A.3 uses the binary accumulation model to facilitate comparisons with absolute and quantile
temperature thresholds. For those thresholds, exceedance of the threshold would be naturally measured
in degrees rather than standard deviations used in our primary 1.5sd threshold. The binary accumulation
model offers a more consistent comparison.
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TABLE 5. Estimated lost output from heat waves ($B)

Temp. Bins # Hot days Prolonged heat exposure

Heat Wave Ag Non-Ag Ag Non-Ag Ag Non-Ag

France 2003 -0.3 -0.5 -1.1 3.3 -3.1 -31.9
(-0.4, -0.2) (-5, 4) (-1.6, -0.6) (-6.9, 13.6) (-5.2, -1) (-58.6, -5.2)

Russia 2010 -0.8 0.1 -3.1 4.2 -3.6 -18
(-1.1, -0.4) (-5.5, 5.7) (-4.4, -1.7) (-8.8, 17.3) (-6, -1.2) (-34.3, -1.6)

USA 2012 -0.4 -11.4 -4.8 22.5 -0.8 5
(-0.7, -0.1) (-28.7, 5.9) (-6.9, -2.6) (-46.9, 92) (-1.3, -0.3) (-11.7, 21.7)

Notes: Estimated reductions in output (in billions of 2010 USD) from heat waves for three years in which
high-profile heat waves occurred. Numbers in parentheses represent 90% confidence intervals for the
estimate above. The first two result columns come from a model using a standard count of days in ten-
degree temperature bins, while the third and fourth columns come from a hybrid approach counting days
at least 1.5 standard deviations above the long-run average for a location and day of the year. The fifth and
sixth result columns reflect our measure of prolonged heat exposure based on binary accumulation of heat,
wherein a day that is not abnormally hot provides complete relief from prior heat exposure (γ =∞).

only limited effects of waves when defining abnormally hot days based on absolute
thresholds (90F or 100F). Second, stricter requirements for a hot day, in the form
of higher multiples of standard deviation or shorter season restrictions (e.g. hottest
90 vs. hottest 120 days), intuitively lead to stronger estimated effects of heat waves.
Finally, our baseline results are robust to how ‘abnormal’ is defined, whether we use
months rather than moving windows or day-specific quantiles rather than standard
deviation-based thresholds.

6.1.1. Estimated Lost Output: Historical Estimates. To put our estimates in context,
we quantify lost output from three high-profile heat waves: 2003 in France, 2010 in
Russia, and 2012 in the United States. In each case, we construct a counterfactual
temperature history for the country and year in which abnormally hot days (≥ 1.5
SD above average) instead had average temperature. Comparing the actual and
counterfactual temperature histories yields differences in our heat-wave measure and
temperature measures, which we combine with marginal effects (Figure 5) to yield
overall damage estimates.

Our primary heat-wave measure implies per-wave reductions in output ranging
from $0.8-3.1 billion for agriculture and up to $31.9 billion in other sectors (Table 5).15

To help interpret these estimates, we narrow in on France in 2003. Actual agricultural
output in France declined $6.2 billion (15.2 percentage points) from 2002 to 2003,
$3.1 billion (7.6 percentage points) of which we attribute to the summer heat wave.
In contrast, a model using absolute temperature bins (see Section 6.2) indicates losses
of $318 million (0.77 percentage points), while simple counts of hot days with no

15. For reference, the National Oceanic and Atmospheric Administration puts overall damages from
the 2012 heat wave in the US at $34.2 billion (https://www.ncdc.noaa.gov/billions/events). Our binary
accumulation heat wave specification suggests a loss of $0.8 billion in agriculture and an impact in other
sectors that is not significantly different from zero.
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explicit treatment of heat waves implies a $1.1 billion loss (2.7 percentage points). The
contrast is equally stark when we estimate total lost output from the three heat waves we
consider: our primary heat wave specification suggests $52 billion, while a standard
temperature-bin approach implies losses of only $13.3 billion. Our approach thus
suggests damages from heat waves may be several times larger than might otherwise
be suggested by more conventional estimation techniques. We more formally compare
these approaches in Section 6.2.

6.1.2. Estimated Lost Output: Climate Model Projections. As climate change is
likely to alter the incidence of heat waves (Meehl and Tebaldi 2004; Cowan et al.
2014), we also pair our results with a set of projections from climate models to quantify
potential future impacts from heat waves. We focus our attention on future agricultural
impacts for two reasons. First, that sector is more heavily affected by heat waves.
Second, we find little evidence that agricultural impacts of heat waves have changed
during our sample (Section 6.3.2 and Table A.8), lending some credibility to the
projection exercise. Even so, because further adaptation could cause future agricultural
impacts to diverge from those in the past (see Section 6.3.2 for a discussion), we
compute projections under two contrasting assumptions about adaptation, as explained
below.

To assess future heat-wave impacts, we use 21 models from the Coupled Model
Intercomparison Project Phase 5 for which daily, downscaled temperature predictions
have been made available in the NASA Earth Exchange Global Daily Downscaled
Projections dataset (Thrasher et al. 2012). For each model, we compute our heat-wave
metrics using the binary accumulation model from 2020-2100 for Representative
Concentration Pathway (RCP) 4.5.16 To quantify the change in a country’s heat-wave
incidence due to climate change, we compare the modeled incidence in a year to
average incidence in that country in the first five years of the projections. Pairing
that difference with corresponding estimates underlying Figure 5 yields our estimated
climate impacts.17 For comparison, we undertake analogous steps to estimate the
effects of mean temperature shifts.

We conduct this exercise under two contrasting assumptions about future
adaptation. First, we assume no adaptation, using the same estimates and thresholds
defining what constitutes abnormal heat for a location and time of year. This assumption
is consistent with the absence of significant evidence of changing impacts of heat
waves on agriculture thus far (Section 6.3.2 and Table A.8),18 but may not adequately

16. RCP8.5 produces heat-wave incidence that is far outside what is observed in our data, exacerbating
concerns over the linear and reduced-form nature of our econometric model. For example, RCP8.5 can
yield more than 100% losses for some climate models. For these reasons, we focus on RCP4.5.

17. As described in Section 6.3.3, we find only evidence of level effects, not growth effects. As such we
do not incorporate other growth projections in these estimates.

18. Limited effectiveness of past agricultural adaptation to heat has also been noted elsewhere (e.g.,
Auffhammer and Schlenker 2014; Burke and Emerick 2016).
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reflect future adaptation efforts. To that end, our second set of projections assumes
that the impact of a stretch of abnormally hot days will remain unchanged, but that
thresholds defining abnormal heat will change gradually in the future. Specifically,
for each location and day of the year, we allow the mean and standard deviation of
temperature to evolve at the annual rates they have in historical data. In many locations,
this assumption means days will have to be increasingly hot in order to contribute to a
heat wave in the future. This is not the only way to model adaptation, but it is a logical
extension of our heat wave definition.

FIGURE 6. Projected agricultural output losses from heat waves. Point estimates for agricultural
output losses (in %) per year. Colors indicate damages for heat waves under a fixed threshold for
abnormal heat (red) and one that shifts based on historical trends (orange), as well as damages due
to warming (gray). Shifting thresholds for abnormal heat approximate changes in damages if society
adapts to changing temperature regimes. Top panel: ensemble mean losses as a function of time,
with solid lines depicting global means and dotted lines depicting the interquartile range of ensemble
mean losses across countries. Cross-country distributions and means of losses in the final decade
(2091-2100) are depicted to the right. Bottom panels: ensemble means (solid lines) and cross-model
interquartile range (dotted lines) of projected agricultural losses for each country examined in Table
5.

Results of these projections are depicted in Figure 6. Using model ensemble
mean projections, average per-country losses reach 10.3% of agricultural output
per year by 2091-2100 without adaptation, and 4.5% with adaptation. Thus, should
future adaptation alter thresholds for abnormal heat in the manner described above,
adaptation could reduce end-of-century heat wave damages by approximately 56%,
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though potential losses remain concerning. In contrast, the mean effect of warming
by that time is only 0.9%, with many initially cooler countries (e.g., Russia) even
experiencing small gains. Heterogeneity is also evident in the projected impacts of
heat waves, both in the country-specific profiles and in the long tail in ensemble
prediction density. In short, the impact of climate change on agriculture through heat
waves is potentially quite large and likely to vary substantially across countries.

As with any projections of climate damage, our estimates have limitations. In
addition to the challenges inherent in the climate models on which we rely, the extent
and efficacy of future adaptation are difficult to predict. The increasing incidence of heat
waves (Figure 1) should raise expected returns to adaptation. However, as discussed
in Section 7, adapting to rare events like heat waves poses distinct challenges.

6.2. Comparison With Other Approaches

We next contrast our approach with other ways to study the effects of temperature.
As discussed in Section 6.1 and depicted in Table 3, our findings complement prior
evidence of a relationship between mean temperatures and output. Here we turn to
other common practices for studying the effects of temperature: counting days that fall
in temperature bins and counting continuous stretches of hot temperatures longer than
a minimum duration.

6.2.1. Counting Days in Temperature Bins. Our main estimates imply heat-wave
effects that are much larger than would be obtained using conventional approaches
based on temperature bins. We base this claim on two types of evidence. First, we
estimate models that count days in discrete temperature bins without regard for when
those days occur.19 One model employs commonly used ten-degree Fahrenheit bins,
with 60-70F as an omitted reference bin. Because using fixed temperature bins ignores
location- and season-specific climatology, our second model includes counts of days
in one of two bins split by our “abnormally hot” temperature threshold of 1.5 standard
deviations above average. Still, both approaches ignore the time structure of exposure
to heat, focusing only on the number of days considered hot by either absolute or
locally-defined thresholds.

Counting hot days without regard for when they occur suggests that heat waves
have much smaller effects than our main estimates indicate (Table 6). The top group
of results suggest limited negative effects of an additional day in 80-90F or >90F
temperature bins on agricultural output, with much smaller and even positive effects of
those hotter days on other sectors (colder bins are omitted for brevity but are available
in Table A.12). Each day above 90F reduces agricultural output by 0.14 percentage
points compared to a day of 60-70F weather. Even after defining heat thresholds based
on local climate, the bottom set of results suggest that a day more than 1.5 standard

19. These models exclude mean temperature and its square, since temperature bins are frequently used
as an alternative to estimated moments of temperature distributions.
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TABLE 6. Effects of hot days, ignoring sequencing

Bin Overall Non-Agriculture Agriculture

Conventional Temperature Bins
70-80 0.0001 0.0003∗∗ −0.0005

(0.0002) (0.0001) (0.0004)
80-90 0.0003 0.0004∗∗ −0.0011∗∗∗

(0.0002) (0.0002) (0.0004)
>90 0.0001 0.0003∗ −0.0014∗∗∗

(0.0002) (0.0002) (0.0004)

# Hot Days (Local and Seasonal 1.5SD Threshold)
# Hot Days −0.0002 0.0001 −0.0026∗∗∗

(0.0003) (0.0003) (0.0007)

Notes: Two sets of models examining the role of hot days separately from the effect of
heat waves. Top: effects of a day in the specified temperature bin relative to a day in the
60-70F bin. Colder bins are omitted for brevity; full results are reported in Table A.12.
Bottom: effects of a day above our location- and day-specific temperature threshold of 1.5
SD above average. Numbers of observations by outcome are as in Table 3. Standard errors
are clustered at the country level. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

deviations above average reduces agricultural GDP growth by 0.26 percentage points.
Both results contrast sharply with the estimates from our main models that account for
heat accumulation (Figure 5). For example, using the binary accumulation model, each
day with prolonged heat-exposure index at or above nine reduces agricultural output
by roughly 1.7%—several times larger than the biggest effect reported in Table 6.

To more formally test whether prolonged exposure to heat matters, we use our
binary accumulation model to ask whether the effect of an abnormally hot day depends
on whether that day is preceded by other abnormally hot days. Specifically, we divide
prolonged heat exposure into four bins: [0, 1), [1, 2), [2, 9), and [9, 90). By defining the
[1, 2) bin to be the omitted reference bin, all estimates in the model can be interpreted
as the effect of an additional day in the specified prolonged heat exposure bin as
compared to a day in the [1, 2) bin. For the chosen accumulation model, a day in the
[1, 2) reference bin is an abnormally hot day not preceded by other hot days, so that
coefficients associated with other bins indicate whether there are non-additive effects
of prolonged exposure to heat. The top bin of [9, 366) is chosen for continuity in our
running interpretation of a nine-day wave.

The results of this exercise indicate that abnormally hot days toward the end of
long heat waves have a significantly different effect than those at the start of such
waves (Table 7). Specifically, an abnormally hot day preceded by at least 8 other such
days (i.e., the ninth or greater day of a heat wave) reduces agricultural GDP growth
by approximately 1.5 percentage points more than an abnormally hot day preceded
by at least one cooler day.20 Differences for other sectors of the economy remain
significant, but are substantially smaller, consistent with earlier results. Finally, the

20. Redefining the top bin as cumulative exposure of 8 (10) or more days yields similar results: an
estimated reduction in agricultural growth by 1.1 (1.4) percentage points.
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TABLE 7. Differential effects of hot days preceded by other hot days

Exposure level Overall Non-Agriculture Agriculture

E = 0 hot days 0.0003 0.0001 0.0031∗

(0.0009) (0.0010) (0.0016)
E = 2 to 8 hot days 0.0006 0.0008 0.0018

(0.0015) (0.0016) (0.0029)
E ≥ 9 hot days −0.0038∗ −0.0049∗∗∗ −0.0151∗∗

(0.0021) (0.0017) (0.0072)

Notes: Effect of a day in the specified prolonged heat exposure bin on output growth overall (column
1) or in particular sectors (columns 2-3). The omitted reference bin represents a day in the [1, 2)
bin which, for the binary accumulation model, is an abnormally hot day preceded by at least one
day below the 1.5 SD threshold. Numbers of observations by outcome are as in Table 3. Standard
errors are clustered at the country level. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

TABLE 8. Effects of wave duration beyond minimum thresholds

Overall Non-Agriculture Agriculture

6+ day wave
Per wave 0.0093 0.0090 0.0044

(0.0069) (0.0059) (0.0245)
Per day above threshold −0.0034∗ −0.0031∗ −0.0132∗∗

(0.0018) (0.0016) (0.0062)

9+ day wave
Per wave 0.0080 0.0088 −0.1221∗∗

(0.0105) (0.0091) (0.0570)
Per day above threshold −0.0052∗ −0.0049∗∗ 0.0013

(0.0027) (0.0024) (0.0117)

Notes: Tests of damage caused by additional days above a specified heat accumulation
threshold as compared to simple counts of the number of heat waves. Numbers of
observations by outcome are as in Table 3. Standard errors are clustered at the country
level. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

positive estimates in the top row of Table 7 indicate that cooler days (in prolonged
heat exposure bin [0, 1) are better for growth than isolated hot days, with magnitudes
consistent with the analogous comparison in the final row of Table 6.

Altogether, we interpret this evidence to mean that abnormally hot days are bad
for growth—particularly agricultural growth—but hot days preceded by many other
hot days are far worse. Further, the relationship between prolonged exposureE and its
effect on growth is nonlinear: a few hot days in a row (E ∈ [2, 8]) are not significantly
better or worse for growth than an isolated hot day (E = 1). Only after much more
prolonged exposure do effects on growth intensify. In short, heat waves matter.

6.2.2. Counting Heat Waves Longer Than a Minimum Duration. We next compare
our approach, based on heat accumulation models, to the practice of counting waves of
some minimum duration. Specifically, we estimate variants of our main specification
that include both a count of waves at least D days long and the number of days with
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E ≥ D under our binary accumulation model. The coefficient on our prolonged heat-
exposure index then reflects the damage of an additional day in a heat wave, holding
the number of waves fixed.

This exercise illustrates that duration provides additional information relevant to
output not captured in simple counts of heat waves, especially outside of agriculture
(Table 8). As intuition would suggest, all statistically significant effects of increasing
a wave’s duration are negative. These results are also consistent with the findings in
Table 7, but allow for more direct comparison with the simple approach of counting
waves.

6.3. Extensions

6.3.1. Intensity-Based Accumulation. Our intensity-based accumulation model,
which incorporates the severity of heat alongside the duration of a heat wave, yields
qualitatively similar results to the binary accumulation model we’ve emphasized thus
far (Figure A.2). Output declines when a year contains periods of heat that are longer or
more intense, and losses are larger in agriculture than in other sectors of the economy. In
the extensions we investigate in the following sections, our findings remain insensitive
to the choice of accumulation model. We continue to focus our discussion on the binary
accumulation results for brevity, but present results for the intensity-based model where
relevant (Online-only Appendix, Tables A.4-A.10)

6.3.2. Heterogeneity. In addition to the average effects estimated above, we briefly
examined three ways in which the impacts of heat waves vary through the use of
interactions. Specifically, we examined whether the effects of heat waves depend upon
(1) a country’s level of development as proxied by start-of-sample GDP per capita,
(2) the year in which a heat wave occurred (via a linear trend in impacts) (3) whether
the year in which a wave occurred was hotter than normal for the country in question.
These investigations have several motivations. First, certain economies may be better
equipped to handle heat waves than others, and our analytical framework permitted the
relationship between prolonged heat exposure and TFP (fil) to be location-specific.
Second, while heat waves are projected to become more common, adaptation over time
could dampen their effects. Third, while our analytical framework used an assumption
of additive separability to simplify the motivation for our approach (equation 1), if
that assumption does not hold, heat waves could have different effects in years that are
warmer overall.

Across these dimensions we find evidence consistent with intuition, albeit of mixed
strength. The strongest evidence of non-constant effects of heat waves arises outside of
the agricultural sector: we find that waves are more damaging (1) in poorer countries
(2) in earlier years, and (3) in years that are hot compared to a country’s long-run
average temperature (Online-only Appendix, Tables A.6-A.8). The first two findings
are consistent with but not necessarily causal evidence of adaptation. Individuals and
firms in wealthier countries may have access to technology and capital to cope with
waves (e.g. air conditioners), and investment in such capital may have increased in
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response to heat waves in earlier years. The smaller impact of more recent heat waves
is also broadly consistent with evidence that the effects of heat waves on mortality in
the United States have declined over time (Barreca et al. 2016).

We find little comparable evidence of heterogeneity in the agricultural sector. The
few significant interactions echo our findings in other sectors that heat waves are
more damaging in years that are warm overall. In contrast, we find no evidence that
the impact of heat waves on agriculture has changed through time. The absence of
a discernable trend should be interpreted with caution, as it could arise for several
reasons. First, farmers may have chosen not to adapt if costs outweighed benefits
after adjusting for assessment of probabilities and risk preferences. Second, while
Figure 1 indicates increasing wave incidence and a potential link to ENSO, waves in
particular locations and years remain difficult to predict well in advance. That could
hinder formation of expectations and hence assessment of the benefits of adaptation.
Third, farmers may have adapted, but those efforts may have been offset by what would
otherwise be increasingly damaging heat waves. Fourth, our empirical approach, which
examines linear trends in impact using fixed effects models, could miss some forms of
adaptation. Adaptation could result in nonlinear changes in heat wave impacts, or some
of the benefits of adaptation could be subsumed by year effects and per-country trends.
Each of these possible channels leaves room for more successful future adaptation:
costs could decline with new technologies, benefits could rise if waves become more
damaging, or forecasts of heat waves could become more reliable at longer lead times.
It is for these reasons that we conduct alternate climate projections in Section 6.1.2 in
which criteria for what constitutes a heat wave changes through time.21

6.3.3. Longer-Run Effects. While our main estimates in Section 6.1 show clearly
that heat waves can reduce output, they focus only on short-run, contemporaneous
impacts. We also examine longer-run effects of heat waves using both finite distributed
lag (FDL) and autoregressive distributed lag (ARDL) models. Both allow for heat
waves and other environmental variables in past years to affect current growth, with
the ARDL model also allowing for dynamics in output growth. Combinations of
estimates from each model can be used to test whether heat waves have persistent
impacts on growth or simply short-run level effects.

As indicated in Tables A.4 and A.5, we find little evidence that heat waves
have significant longer-run impacts on growth using either ARDL or FDL models.
Most estimated long-run effects are near zero and imprecisely estimated. This is true
regardless of which output we consider and whether or not our heat-accumulation
model depends on intensity. The lack of long-run effects is perhaps unsurprising,
especially for agriculture. Farmers experiencing crop loss from a heat wave in one

21. We thank an anonymous reviewer for suggesting this exercise.
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year can simply replant the next, causing a rebound in output and hence growth
rates.22

6.3.4. Effects of Other Sequences of Temperature Exposure. The accumulation
models on which we focus assume a single cooler day provides complete relief from
prolonged exposure to heat. While this assumption matches colloquial understanding
of what constitutes a heat wave (consecutive hot days), we briefly extend our approach
in two ways to study the impacts of other patterns of exposure to abnormal heat.

First, we note our framework is general enough to allow for cooler days to
provide only partial relief from prolonged heat exposure. Specifically, the function
h−(Tlyd,T ld) may be smaller in magnitude than Elyd−1, such that a cooler
day provides only partial relief from recent heat. For example, we might define
h−(Tlyd,T ld) = γ(T ld − Tlyd), with γ scaling the relief provided by a cooler day. In
this framework, our main estimates arise from a model in which γ = ∞. However,
models in which cooler days provide only partial relief from prolonged heat exposure
(e.g., γ ∈ {1, 3, 7}) are useful for at least two reasons. First, estimates from models
with partial relief offer an informal falsification test for our main findings. When γ
is smaller, our index E can reach a given level with hot and cold days interspersed,
so that our estimates reflect events that are intuitively less severe. If we are indeed
measuring the effects of temperature and not some omitted driver of output, we should
expect effect sizes to be smaller in magnitude for a fixed value ofE when γ is smaller.
Second, if we are interested in prediction rather than inference, selecting a ‘best’ value
of γ that most closely reflects physical processes of heat stress may be of interest.

Estimates from models in which cooler days provide partial relief follow sensible
patterns. When cooler days provide only partial relief, the effects of a day with E
greater than a given threshold are indeed smaller in magnitude (Table A.9). More formal
comparison reveals differences in estimated effects between γ = 1 and γ = 366 are
statistically significant in agriculture (Table A.10). Turning to the question of which γ
has the best predictive performance, both AIC and BIC select γ = 366 for agriculture
but γ = 1 for other sectors (for our primary three bin model with E = 0, E ∈ [1, 8],
and E ≥ 9). Those results are consistent with the much larger effect sizes we find
in agriculture: properly accounting for heat waves (in a strict sense with γ = 366) is
more important in that sector.

Second, we consider an extension of the standard practice of counting days in which
the temperature falls into different bins. That practice could be extended to examine the
effects of different sequences of exposure to temperatures, e.g., counting the number
of times during a year that a day between 90-100F was preceded by two days between
80-90F. To allow for full flexibility, for B temperature bins and D-day sequences,
we would need to estimate effects of BD − 1 different sequences (after omitting a

22. This is no different from other dramatic events, such as hurricanes. Growth is likely to pick up in a
subsequent year due both to rebuilding efforts and a depressed starting point. This does not imply such
events are not damaging. However, it does mean that, almost mechanically, output losses are unlikely to
translate into a sustained negative growth effect.
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reference sequence), which quickly becomes intractable. Further interpretation in such
models is challenging, as changing a single day’s temperature affects many adjacent
sequences simultaneously (see Appendix A.8).

Still, we use this sequence-based approach in two ways. First, we use the low-
dimensional case of B = 2 and D = 6 to test whether the effects of heat are non-
additive across days. Specifically, we count six-day sequences defined by whether the
temperature on each day is above or below our 1.5SD threshold (e.g., 000001 is a
hot day preceded by five cooler days). We then compute the annual aggregates of
distributed lags (i.e., we count days for which the dth lag (d ∈ [0, 5]) was abnormally
hot). Including those quantities on the right side of equation (7) means the sequence
coefficients represent interactive effects of heat, holding the overall incidence of hot
days fixed. For all output measures, we are able to reject the joint null hypothesis
(p < 10−11) that all sequence coefficients are zero, implying that the sequencing of
exposure to heat matters.

We can also interpret our binary accumulation model as a special case of this bin-
based sequence approach. Our binary accumulation model uses B = 2 for time-
and location-specific bin definitions and various values of D. It imposes further
assumptions, requiring that only the sequence with D days in the abnormally-hot
temperature bin (i.e., sequence 111111 for D = 6) has a nonzero coefficient. The
“partial relief” model described above with finite γ imposes a different restriction
on the sequence coefficients, effectively grouping different sequences into a single
“treated” set (e.g., sequences 11101 and 11011 are assumed to have the same effect).
Other groupings are of course possible, and simply impose other coefficient restrictions
to ask different questions. See Appendix A.8 for an example.

7. Discussion and Conclusion

Heat waves have attracted substantial attention in the popular press, often in the form of
blame for mortality and health effects, damage to crops, and strain on energy systems.
However, heat waves have received surprisingly little direct attention in the economics
literature, which instead tends to focus on the effects of days or long periods of time
that are hot on average. With this paper, we aim to fill that gap, focusing on both the
measurement of heat waves and their impact on economic output at the country level.

We find that heat waves depress per-capita economic output in the agricultural
sector, with long or severe waves also impacting non-agricultural and overall output.
In light of past and projected increases in heat wave frequency and severity, these
findings suggest that damages from climate change may be larger than are suggested
by standard empirical approaches and integrated assessment models. In turn, current
estimates of the social cost of carbon, which focus on damages from shifts in mean
temperatures, are quite likely too low. In sum, we take these results to imply that
temperature may impact economic activity in ways that have not been adequately
captured until now.
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To the extent that climate-induced shifts in heat wave occurrence and intensity
spur changes in anticipated risks, adaptation could mitigate the effects of future heat
waves. Further, adaptation to expected climate-induced warming could also affect the
impact of heat waves through, e.g., purchase of air conditioners. Those adaptations are
likely to mitigate the effects of waves by reducing exposure to high heat, but could
plausibly also have perverse effects as well (e.g., if electrical grids fail under the load
from additional air conditioning use during a heat wave).

Adapting to heat waves poses distinct challenges. First, heat waves are rare, and
while overall rates of incidence are projected to increase, specific events are often
difficult to predict more than 1-2 weeks in advance. Expectations based on such short-
term forecasts can certainly inform minor adjustments (e.g. purchasing a fan, going out
of town for a few days, or slightly shifting a production schedule). However, costlier
changes that must be undertaken farther in advance, such as planting more heat-tolerant
crops, upgrading building insulation, or relocating, carry highly uncertain benefits.
Given difficulties many individuals have with assessing the probability of and making
decisions about rare events (Kahneman and Tversky 1979), adaptation to heat waves is
likely to be far from optimal. Evidence on adaptation to other rare weather phenomena
(e.g. hurricanes, floods) is consistent with this claim: protective investment is often
inefficiently low and strongly tied to recency of exposure (Kunreuther and Slovic 1978;
Meyer 2012). In contrast, adaptation to more predictable temperature changes, such as
gradual warming trends, is not plagued by these rarity-induced challenges.

While specific heat waves are difficult to anticipate far in advance, Figure 1
suggests that El Niño events may provide useful information about increased overall
likelihood (Appendix Section A.11).23 Specifically, in our sample, the incidence of
heat waves is significantly higher in the year following an El Niño event, especially for
countries in which average temperature is strongly linked to ENSO (“teleconnected”
countries; see, e.g., Hsiang et al. (2011)). These patterns are consistent with prior
work suggesting a link between ENSO and heat wave formation (e.g., Keellings and
Waylen 2015; Luo and Lau 2019). Because advance prediction of El Niño events
is improving, established ENSO indices could be useful when making heat wave
adaptation decisions. Investigating how best to leverage ENSO information in adapting
to heat waves—and whether individuals or businesses already successfully do so—
appears a promising area for future work.

While we focus on aggregate economic output for our empirical exercise, our
approach to measuring heat waves may be relevant in a variety of other empirical
settings. In particular, we demonstrate that our heat-wave metrics generally display
low correlation with standard bin-based or moment-based measures of temperature,
implying they carry new information. That new information may be an important
determinant of micro-level outcomes and could potentially be tied to more specific
mechanisms (e.g., heat-related stress) through which heat waves impact economic
activity. Similarly, while we find no evidence of long-run effects of heat waves at the

23. We thank an anonymous reviewer for highlighting this connection.
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scale of national economies, micro-level data could reveal different patterns if, e.g., heat
waves have lasting, irreversible impacts on human health or infrastructure. Because
a number of studies suggest heat-wave incidence is likely to rise in the future, the
importance of understanding those effects and mechanisms is only likely to increase.
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