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ABSTRACT

Despite the prevalence of high-stakes assessments—and the growing

likelihood of heat exposure during such assessments—the effect of

temperature on performance has not yet been studied in such settings. Using

student-level administrative data for the largest public school district in the

United States, I provide the first estimates of temperature’s impact on high-

stakes exam performance and subsequent educational attainment. Hot

temperature reduces performance by up to 13 percent of a standard deviation

and leads to persistent impacts on high school graduation status, despite

compensatory responses by teachers, who selectively upward manipulate

grades after hotter exams.
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I. Introduction

Cognitively intensive assessments such as college entrance exams or

job interviews have become a routine fixture of modern economies, due in large part to

the increasing importance of cognitive skills in the workplace.1 Such assessments often

take place in high-stakes environments, where performance over a relatively short win-

dow can have lasting educational and economic consequences and where resche-

duling may be costly due to coordination costs or other frictions.2 Given potential

welfare consequences, it is important to understand whether the physical conditions

under which such assessments take place can affect realized performance. This is

especially true if the playing field may not be level or may be changing over time.

Temperature stress may pose a particular concern for such assessments—and cogni-

tively intensive tasks generally—given well-documented correlations between national

income and historical climate (Dell, Jones, and Olken 2012), personal income and air-

conditioning (Biddle 2008; Gertler et al. 2016), and income and the predicted increase in

warming due to the global climate externality (Carleton et al. 2019). Within the United

States, individuals face vastly different risk of heat exposure, and such risk appears to

be changing differently over time. For instance, prior to 1990, LosAngeles, Houston, and

Minneapolis averaged 36, 105, and 7 days per year above 90°F, respectively. While Los

Angeles and Houston have each added approximately 10–15 days per year above 90°F

since 1990, Minneapolis has actually cooled slightly during that period.3

Evidence from the lab suggests that temperature may affect realized human per-

formance on both cognitive and physical tasks (Seppanen, Fisk, and Lei 2006). How-

ever, it is unclear to what extent these effects generalize to economically meaningful

environments, in part because disutility of effort and concentration are likely increasing

in temperature stress and because the stakes in existing studies are relatively low.4On the

one hand, existing findings could be indicative of significant impacts on performance

even in settings where individuals have an incentive to minimize realized impacts of

temperature through behavioral responses. On the other hand, it is possible that observed

effects are largely due to diminished attention or effort, given artificial environments that

bear little resemblance to more welfare-relevant settings. If the latter is the case, simply

1. For reviews of the literature on the returns to cognitive skill in the workplace, see Goldin and Katz (2009),

Acemoglu and Autor (2011), and Hanushek and Woessmann (2012).

2. The list of standardized exams that determine degree eligibility or impose hurdles to further schooling is long

and includes the SAT, ACT, LSAT, MCAT, GRE in the United States, the GCSE in the United Kingdom, the

NCEE in China, and the CSAT in South Korea, among others. In many countries, students who perform worse

than expected on their college entrance exams must wait up to an entire year to take them again, potentially

creating high opportunity or stigma costs of having to retake the exam. Similarly, job interviews or athletics

trials are often conducted over the course of several hours in one day, or at most several days, and often involve a

high degree of coordination that makes rescheduling costly.

3. Climate models predict substantially different rates of warming across regions over the coming decades,

both within the United States and internationally, potentially widening existing differences in test-taking

conditions (Chambwera et al. 2014).

4. This is true even in the few studies that assess cognitive performance outside of experimental settings. For

instance, Graff Zivin, Hsiang, and Neidell (2018) use data from ten-minute voluntary survey assessments

conducted as part of the NLSY in the United States. Garg, Jagnani, and Taraz (2017) uses data from a similarly

low-stakes survey measure in India. Work on temperature in schools, such as Durán-Narucki (2008), is often

cross-sectional or case study based, making causal attribution difficult.
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extrapolating existing dose–response relationships to real-world policy environments

may mischaracterize welfare and policy implications.

In seminal work, Ebenstein, Lavy, and Roth (2016) study the effect of a different

environmental hazard—air pollution—on student outcomes in Israel and demonstrate

that the effects on exam performance and subsequent labor market outcomes can be

substantial. However, because of their setting—namely, a unique institutional environ-

ment that mandated all test centers in Israel to have air-conditioning—they are unable to

document effects of temperature. It seems highly unlikely that all high-stakes assess-

ments globally take place in similarly climate-controlled environments.5 Temperature

and air quality effects may entail distinct policy responses, due to, for instance, differ-

ences in the scale of the externality that causes them (local versus global) or differences

in potential adaptive responses (feasibility of rescheduling based on forecasts, avail-

ability and cost of adaptive technologies). Moreover, to the extent that cognitively

demanding activities extend beyond formal assessments, understanding the influence

of temperature on realized human performance may be important for understanding

the potential magnitude of the climate externality.

To circumvent these difficulties, this study combines local daily weather data with test

scores of onemillionU.S. students taking synchronizedhigh-stakes examsover the course

of several days each year. These student-level exam records are linked to data on sub-

sequent educational attainment in the form of high school graduation and diploma status.

Drawing on administrative records from the largest public school district in the United

States (NewYorkCity), this represents tomy knowledge themost comprehensive data set

assembled to date aimed at assessing the effect of temperature on student performance.6

Student fixed-effects regressions identify the causal impact of hotter temperature on

exam performance and eventual educational attainment by exploiting quasi-random

variation in temperature for an individual across multiple exams. Causal identification

therefore rests on the premise that within-student variations in day-to-day temperature

are not correlated with unobserved determinants of educational performance.

To fix ideas, I present a simple model that captures students’ marginal disutility of

effort as well as the returns to performance as a function of temperature, nesting the two

potential drivers of a decline in performance. The key implication is that, as the stakes of

a given assessment are raised, it becomes less likely that observed associations between

performance and temperature are driven solely by reductions in effort, suggesting that

hotter temperature may affect realized performance even in highly welfare-relevant

contexts. The high-stakes empirical setting studied here effectively shuts down the

extensive margin response (that is, absenteeism), limiting potential selection bias, and

makes it far more likely than previous studies that the observed effect is not simply a

function of reduced effort or concentration.

5. Even in the United States, air-conditioning is far from complete, particularly in schools, where classroom

air-conditioning penetration can be below 50 percent in some districts (Park et al. 2020). In poorer developing

countries such as India, the rate of air-conditioning penetration can be below 10 percent (Davis and Gertler

2015). Numerous media reports suggest test centers can lack air-conditioning. For instance, see https://www

.theatlantic.com/education/archive/2016/02/who-benefits-from-the-new-summer-sat/459972/ (accessed Au-

gust 18, 2021).

6. Unlike Ebenstein, Lavy, and Roth (2016), I document that air-conditioning is far from complete in this

setting. Based on available building-level engineering audits, I estimate that fewer than 70 percent of NYC

public schools had working air-conditioning during the study period (1998–2012).
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The first main finding is that hot temperature reduces student performance substan-

tially. Students take a series of mandatory exams in June, which are spread over the

course of two weeks and feature harmonized timing and predetermined testing sites.

Because I am able to link multiple exam records for each student and school location,

and I can match these records to local ambient temperature on the day of each subject

exam, the analyses presented here likely identify the causal impact of hot temperature

on student performance. A one standard deviation increase in exam-time temperature

(+6.2°F) reduces performance by approximately 5.5 percent of a standard deviation.

This implies that taking an exam when outdoor temperatures are 90°F reduces perfor-

mance by approximately 13 percent of a standard deviation relative to a temperature

of 75°F.

Second, I find that hot temperature during an exam can lead to persistent impacts on

educational attainment. Consistent with inflexible exam administration (no reschedul-

ing) and high opportunity or stigma costs of retaking, I find that hot temperature during

a test reduces a student’s likelihood of graduating from high school. For the average

student, taking an exam on a 90°F day results in a roughly 10 percent lower likelihood of

passing a particular subject (for example, Algebra), which in turn reduces the proba-

bility of graduation. A one standard deviation increase in average exam-time temper-

ature (+4.4°F) reduces a student’s likelihood of graduating on time by approximately

three percentage points, or 4.5 percent relative to a mean on-time graduation rate of

68 percent.

Consistent with these persistent consequences, I find evidence of compensatory re-

sponses by teachers who appear to selectively manipulate grades upward for students

who experienced hot exams. Using a bunching estimator at pass–fail cutoffs adapted

from previous work (Dee et al. 2019), I show that grade manipulation is significantly

more frequent for exams taken under hot conditions. The amount of excess bunching is

beyond what would result from mechanical correlation between temperature—which

shifts more scores toward the manipulable zone—and the proportion of manipulable

scores that are actually manipulated, suggesting that, consciously or not, teachers are

responding to hot exam-day temperatures. These patterns are consistent with the high-

stakes setting; they are also consistent with benevolently motivated teachers who at-

tempt to compensate for the suboptimal adaptation investment by engaging in second-

best responses.

This work is the first to examine the contemporaneous impact of hot temperature

on exam performance in a setting where the stakes are economically meaningful. It

builds on a growing literature that examines the causal impact of temperature on

economic outcomes, such as health and labor supply (Deschênes and Greenstone

2011; Graff Zivin and Neidell 2014; Barreca et al. 2016), and a smaller literature

on temperature and student outcomes (Garg, Jagnani, and Taraz 2017; Graff Zivin,

Hsiang, and Neidell 2018).7 Such findings provide more compelling evidence than

previous studies that the effects of temperature on human performance are not driven

by reductions in effort or concentration and that the net welfare impacts of elevated

7. For reviews of the economic literature on weather fluctuations on economic activity and heat exposure on

labor-related outcomes, see Dell, Jones, and Olken (2014) and Heal and Park (2016), respectively. In a related

paper, Park et al. (2020) explore the effect of cumulative heat exposure during the school year (that is, hotter

weekdays during the school year) on realized learning, as opposed to the effects of temperature on test scores.
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temperature may be substantial. It is also the first to document persistent impacts of

heat exposure in school settings on longer-term educational outcomes and among

the first to document ex post adaptation responses to temperature shocks.8

Potential implications for welfare and policy are discussed in greater detail in the

conclusion. In brief, the findings suggest that students taking standardized exams across

varying climates may not be on an equal playing field. Given well-documented corre-

lations between climate and income, it is possible that lower-income students may be

subtly but systematically penalized on standardized assessments, such as the SAT or

ACT. Such equity concerns are likely of heightened policy relevance given the addi-

tional correlation between expected extreme heat events and income or race.9 While it

may be possible for the timing of exams to be adjusted in response to climatic condi-

tions, administering standardized exams separately may involve nontrivial adminis-

trative costs, due to, for instance, concerns over cheating. An alternative possibility may

be that providing uniformly climate-controlled test centers represents a relatively low-

cost means of further reducing longstanding achievement gaps across race and income.

The rest of this paper is organized as follows. Section II presents relevant stylized

facts and a simple conceptual framework that guides the empirical analysis. Section III

describes the data and institutional context and presents key summary statistics. Section

IV presents the results for short-run exam performance and sensitivity analyses. Section

V presents results on longer-run educational attainment, and Section VI presents

evidence consistent with compensatory investments by teachers. Section VII discusses

implications and concludes.

II. Background and Conceptual Framework

A. Temperature and Human Welfare

That individuals experience direct disutility from extreme temperature is well docu-

mented in market transactions, such as housing or energy demand (Auffhammer and

Mansur 2014; Albouy et al. 2016). It is alsowell known that physical activity andmental

exertion both raise metabolic rates, implying that marginal disutility of effort is likely

rising in ambient temperature (Lim, Byrne, and Lee 2008). Consistent with this phe-

nomenon, time-use decisions are sensitive to temperature, with evidence from theUnited

States suggesting that workers reduce time spent working outdoors when temperatures

reach above 80°F, with imprecisely estimated impacts of cold temperature (Graff Zivin

and Neidell 2014). Importantly, estimates from the hedonic literature suggest that the

revealed preference optimal temperature is between 65°F and 75°F (Albouy et al. 2016).

8. There are two studies that document longer-run consequences of heat exposure on human capital-related

outcomes. Isen, Rossin-Slater, and Walker (2017) looks at heat shocks in utero and finds negative impacts on

wages later in life, and Cho (2017) explores the effect of summertime heat exposure on exam performance in

November. The finding that transitory environmental conditions during exams can have persistent educational

and economic consequences echoes findings fromEbenstein, Lavy, and Roth (2016), who study air pollution in

Israel. This study, however, is the first to link short-run heat exposure during exams to educational attainment,

which has distinct implications for optimal carbon policy and education policy.

9. Lower-income individuals and racial minorities are less likely to have air-conditioning at home or at school

(Biddle 2008; Park et al. 2020) and are more likely to live in areas with fewer environmental amenities, such as

urban greenspace, which reduce heat island effects, for instance due to residential sorting (Tiebout 1956;

Christensen and Timmins 2018).
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Existing studies of the effect of temperature on cognitively demanding tasks fall

broadly into two categories. They consist either of observational (cross-sectional) an-

alyses and case studies, where causal attribution is difficult (Durán-Narucki 2008), or

take place in low-stakes (quasi-)experimental settings, where external validity of ob-

served dose–response relationships is unclear (Mackworth 1946; Seppanen, Fisk, and

Lei 2006).10For instance, Graff Zivin, Hsiang, andNeidell (2018) study in-home survey

data for children in roughly 8,000 U.S. households who took part in the NLSY. While

they find that hot temperature on the day of the survey reduces math (but not reading)

performance, these short assessments carry little if anyweight, making it difficult to know

whether the effects generalize to more economically meaningful environments, such as

the classroom or the workplace. Garg, Jagnani, and Taraz (2017) study the effect of

temperature on similarly low-stakes cognitive assessments administered to Indian pri-

mary and secondary school students. In their setting, it is likely that both effort reduction

and poor nutritionmay be contributingmechanisms, a possibility that is bolstered by the

finding that heat’s effects are most pronounced during the growing season.11

Empirical evidence of persistent impacts of transitory temperature shocks on edu-

cational attainment in school settings—where policy responses may be more directly

applicable—is limited, despite suggestive evidence from studies of in-utero exposure

(Currie and Hyson 1999; Isen, Rossin-Slater, and Walker 2017).

B. Conceptual Framework

To motivate the empirical analysis, consider a simple model of effort and cognition

under temperature stress. Denote the stock of human capital as h. This may represent

general ability or specific skills. Suppose that the application of human capital to a

particular task—whether answering questions on an exam or performing skill-intensive

assignments on the job—depends on the level of effort expended e ˛ [0,1], as well as

on ambient temperature a ˛ [0,1]. In the case of e, 1 denotes maximal effort. For a, 1

denotes a physically uninhabitable ambient temperature, and 0 denotes the ideal tem-

perature. There is evidence that both extreme heat and extreme cold can have adverse

physiological impacts. Conceptually, a can be thought of as representing absolute devi-

ations from thermoregulatory optimum. As discussed above, it seems likely that disutility

of effort is increasing with hot temperature but not cold.

10. Previous research has documented effects of temperature on other related outcomes, including on mor-

tality, morbidity, and labor productivity (Hsiang 2010;Deschênes andGreenstone 2011; Deryugina andHsiang

2014; Somanathan et al. 2018). Existing studies exploring the effect of temperature extremes on productivity in

the workplace are unable to assess whether the realized impacts are driven by responses on the effort margin.

Moreover, most of these studies asses physical occupations (for example, manufacturing) or low-skilled

cognitive tasks (for example, call center operation), which may or may not provide applicable insights for

understanding the effect of environmental conditions on knowledge-intensive cognitive tasks.

11. In addition to the potential for selective sorting based on unobservable student characteristics, survey-based

analyses, such as Graff Zivin, Hsiang, andNeidell (2018) or Garg, Jagnani, and Taraz (2017), face an additional

challenge due to the fact that hot temperature may lead to systematic biases in reporting. For instance, a

substantial proportion of NLSY surveys are missing cognitive (PIAT) assessments or show incomplete reports,

which may be due to heat-fatigued surveyors selectively skipping sections of the assessment. See https://www

.nlsinfo.org/content/cohorts/nlsy97/topical-guide/education/piat-math-test (accessed August 18, 2021). While

they attempt to measure effort by looking at time to survey completion, it is possible for respondents to vary

intensity of exertion—which is far more difficult to measure—without varying time to survey completion.
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Performance on cognitively demanding tasks can be expressed as y(e;a,h), such that

effort and ambient environmental conditions jointly determine the realized performance

for a given stock of human capital. Let us define y(e;a,h) so that vy/ve > 0 and:

(1) lim
e!1
a! 0

y(e; a‚ h) = h

In other words, maximal effort and ideal thermal conditions are required to perform at

one’s peak capacity h.

Individuals derive utility U(x,p) from consuming some composite good x, and they

experience disutility from physical discomfort p : Ux>0 and Up>0. Importantly, sup-

pose that physical discomfort p is increasing in effort e and increasing in thermal stress a.

The representative individual’s utility maximization problem is:

(2) max
e

U[x‚ p(e‚ a)] 3 x =w[y(e; a‚ h)]

where w denotes wage income. Wages depend on realized performance, either because

they represent the return to human capital in the labor market (where y is used as a signal

of h) or becauseworkers are paid a piece rate depending onmarginal product of labor. In

the context of formal assessments, w is always increasing in y—a good test score helps

labor market returns. But different assessments have differentw functions depending on

the stakes involved; dw/dy may be steeper for a college entrance exam compared to a

short quiz. This implies that the marginal disutility of effort is increasing in environ-

mental stress.12

For simplicity, I abstract away from investments that may reduce experienced tem-

perature (for example, air-conditioning) and take ambient environmental conditions

during a given assessment as beyond the individual’s control. This seems to correspond

to most high-stakes exam or job interview settings. While presented as a static frame-

work for simplicity, the intuition of the model extends naturally to settings where in-

cremental changes in performance in one period can have persistent ramifications for

wages in many subsequent periods.

Let e* be the level of effort that maximizes U. Substituting w[y(e;a,h)] for x and

setting dU/de = 0 yields the following first-order condition:

(3)
dU

de�
=Ux

dw

dy

qy

qe�
+Up

qp

qe�
= 0

The individual chooses effort to balance the trade-off between marginal utility of re-

alized performance, which operates through the labor market, and marginal disutility of

physical discomfort—subject to the economic stakes involved (dw/dy).

Equation 3 implicitly defines optimal effort e* as a function of environmental con-

ditions and other parameters. We can also express the total derivative of performance

with respect to ambient environmental conditions as:

(4)
dy

da
=

qy

qe�
de�

da
+
qy

qa

12. The medical literature provides strong support for this assumption. For instance, core body temperature,

which is the most commonly used metric of thermal stress, depends on the product of metabolic rate (an

indicator of exertion) and ambient temperature (Hocking et al. 2001; Lim, Byrne, and Lee 2008).
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The realized change in performance is thus a combination of two terms: vy/va, which

describes the direct effect of elevated temperature on cognitive performance, and qy
qe�

de�

da
,

which is the change in performance due to changes in effort. Equation 4 suggests that

empirical estimates of dy/da, even when utilizing exogenous variation in ambient tem-

perature a, will be a combination of these two effects. Because it is often very difficult to

measure qy
qe�

de�

da
and vy/va separately, it is important to understand how the empirically

identifiable object dy/da may depend on the setting in which it is estimated.

Rearranging Equation 3, we get:

(5)
qy

qe�
=

-Up

qp

qe�

Ux

dw

dy

which is positive, since all terms on the right-hand side are positive except Up. Sub-

stituting Equation 5 into Equation 4, we can see that:

(6)
dy

da
=

-Up

qp

qe�

Ux

dw

dy

de�

da
+
qy

qa

Equation 6 suggests that the empirically observed reduced form variation in test

performance, dy/da, will depend on the marginal returns to effort, which are a function

of the economic stakes. All else equal, dy/da will be weakly higher (less negative) in

high-stakes settings. Formally we can show that d dy
da
=d dw

dy
> 0 as long as (i) de*/da < 0 or

(ii) de*/da < 0 and de*/da is increasing elastically in dw/dy.13As the stakes of any given

assessment are raised, the effect of ambient temperature on realized performance will

likely be less negative, as long as the stakes are high enough to override the direct

disutility cost of extra effort.

C. Implications for Empirical Analyses

One implication of themodel is that, from the perspective ofwelfare and policy analysis,

it is important to estimate the responsiveness to temperature in settings where indi-

viduals face meaningful economic incentives. Uncovering dy/da in a setting where the

13. The first condition refers to situations where the net effort response to hotter temperature is negative and

suggests that raising the stakes will lead to less effort reduction. The second condition alternatively refers to

situations where the stakes are already high enough that effort responses to increased temperature are positive

and states that d
dy

da
=d dw

dy
> 0 as long as the net effect of higher stakes on effort is not offset by myopic sensitivity

to increasing disutility of effort under hotter temperatures. Both conditions seem plausible in most settings.

Consider, for instance, a college entrance exam. If adverse test-taking conditions can nudge a student on the

margin of qualifying to a top-tier university to a second-tier group, and if employers use university rankings as a

signal of worker ability, the result may be a reduction in expected wages for many future periods. Even if the

student is able to retake the exam, the time/opportunity costs of preparing for and taking the exam again, as well

as potential stigma in the eyes of future employers, will weigh on the student’s effort decision. Unless the

individual is highly myopic, one would expect that the individual’s tradeoff between future consumption and

current disutility at the margin would not be declining in the importance of the exam, at least for the duration of

the assessment.
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stakes are similar to or higher than the median school or workplace setting would likely

provide a conservative estimate of the average net-of-effort-reallocation effect and pro-

vide the policymaker with more confidence that the underlying impacts are welfare

relevant. Moreover, if an empirical analysis of high-stakes settings finds dy/da < 0, this

might imply physical limits to the capacity of students or workers in compensating for

exogenous (particularly unexpected) deterioration in environmental conditions, even

at levels that are not life-threatening.14Of course, there may be important institutional

differences in the relative costs of and constraints to defensive investments, which

would ideally be taken into account, but for which there is as yet limited research.

III. Institutional Setting, Data, and Summary Statistics

A. New York City High Schools: High-Stakes Exams

The New York City public school system is the largest in the United States, with more

than one million students as of 2012. Each June, these students take a series of high-

stakes exams called “Regents Exams,” which are standardized subject assessments

administered by the New York State Education Department (NYSED).

Regents Exams can carry important consequences. Students are required to meet

minimal proficiency status—usually a scale score of 65 out of 100—in five “core” subject

areas to graduate from high school. The core subject areas are English, Mathematics,

Science, U.S. History and Government, and Global History and Geography. In addition,

local universities including City University of New York (CUNY), use strict Regents

score cutoffs in the admissions process—for instance, requiring that students score above

75 onEnglish andMath simply to apply. These exams are therefore pivotal for themedian

student in determining high school diploma eligibility and college admissions.

The average four-year graduation rate, at 68 percent, is comparable to other large

urban public school districts and suggests that standardized high school exit exams are

a binding constraint for a large number of students. System-wide averages mask con-

siderable discrepancies in achievement across neighborhoods. Schools in predominantly

Black or Hispanic subdistricts have four-year graduation rates as low as 35 percent per

year (Figure 1).

The vast majority of students take their Regents Exams during a prespecified two-

week window at the end of June. The dates, times, and locations for each of these exams

are fixed more than a year in advance by the state education authority (NYSED) and

synchronized across schools in the New York City (NYC) public school system to

prevent cheating. Each assessment is approximately three hours long, and exams are

administered either in themorning at 9:15 a.m. or in the afternoon beginning at 1:15 p.m.

All exams are taken at the student’s home school unless they require special accom-

modations. Students who fail their exams are required to attend summer school, which

occurs in July and August. Figure 2 provides a sample exam schedule and cover sheet.

14. Most of the literature on physical limits to heat exposure in the workplace has focused on very extreme

temperatures: for instance, wet-bulb globe temperatures (WBGT) of 32°C (89.6°F) or above (Kjellstrom and

Crowe 2011). One implication of this paper’s findings is that elevated temperature has an effect on cognition

even at levels well below such life-threatening extremes.
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B. Student Data

I obtain individual exam-level information from administrative data provided by the New

York City Department of Education (NYCDOE). These include records for the universe

ofNYCpublic high school students eligible to takeRegents Exams over the period 1999–

2011. Information on exam dates comes from a web scrape of archived exam sched-

ules, which provide date and time information for each subject by year and month of

administration. Graduation status by student is available in a separate file, which can be

linked to exam records using unique ten-digit student identifiers. These records include

cohort and school information, as well as graduation and diploma status.

All exams are written by the same state-administered entity and scored on a 0–100

scale, with scaling determined by subject-specific rubrics provided by the NYSED in

advance of the exams each year. All scores are therefore comparable across schools and

students within years, and the scaling is designed in such a way that is not intended to

generate a curve based on realized scores. I use standardized performance across all June

Regents Exams as the primary measure of exam performance in this study, though the

results are robust to using scale scores, or scores standardized by subject and year.While

centrally administered, exams were locally graded by committees of teachers from the

students’ home schools, usually on the evening of the associated subject exam.

C. Weather Data

Weather data come from the National Oceanic and Atmospheric Administration’s Daily

Global Historical Climatology Network, which provides daily temperature, precipita-

tion, and dew point information from a national network of weather stations over the

period 1950–2014. I take daily minimum and maximum temperature as well as daily

average precipitation and dew point readings from the five official weather stations in

the NYC area that provide daily data for the entirety of the sample period (1998–2011).

While the true explanatory variable of interest is the classroom temperature expe-

rienced by students during an exam, what is recorded in the station data are ambient

outdoor temperatures at weather stations that can in some cases be a few miles away.

Given potential variation in urban microclimates (Rosenzweig, Solecki, and Slosberg

2006), there may be substantial measurement error in temperature. If classical, such

measurement error would attenuate the coefficient estimates toward zero.

In an attempt to reduce measurement error, I perform two spatial and temporal im-

putation procedures. First, I impute test-time temperature—for instance, average outdoor

temperature between 9:15 a.m. and 12:15 p.m. for morning exams—by fitting a fourth-

order polynomial in hourly temperature, using diurnal temperature gradients implied

by nighttime minimum and daytime maximum temperatures on consecutive days. This

allows exams taken in the afternoon to receive a different temperature treatment from

those taken in the morning.

Second, I match schools to the nearest weather station (one for each of the five bor-

oughs) and use satellite reanalysis data to assign spatial correction factors by school. The

latter procedure allows a school in the heart of Hell’s Kitchen, which likely experiences

additional urban heat island effects due to the density of structures and paved surfaces, to

receive a different temperature treatment from schools in the same borough (Manhattan)

that border large bodies of water, such as the Hudson river, or green-space, such as Central
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Park. The direction and overall magnitude of the results reported below are not sensitive to

either of these corrections, though the corrections appear to reduce standard errors slightly.

Given existing evidence on the impact on air quality on student performance, I also include

controls for PM2.5 and ozone, taken from EPA monitoring data from Manhattan.

D. Summary Statistics

The final working data set consists of 4,509,102 exam records for 999,582 students. It

includes data from 91 different exam sessions pertaining to the core Regents subjects

over the 13-year period spanning the 1998–1999 to 2010–2011 school years.

Table 1 presents summary statistics for the key outcome variables that form the basis

of this analysis. The student body is 40 percent Latino, 31 percent AfricanAmerican, 14

percent Asian, and 13 percent white, with approximately 78 percent of students quali-

fying for federally subsidized school lunch.On average, students take seven JuneRegents

Exams over the course of their high school careers and are observed in the Regents data

set for roughly two years, though some underachieving students are observed for more

than four years, as they continue to retake exams upon failing.

Fewer than 0.2 percent of students are marked as having been absent on the day of the

exam, corroborating the high-stakes, compulsory nature of these exams. The median

Table 1

Summary Statistics

Score Pass Proficiency Previous z-Score

Asian 74.73 0.78 0.57 0.98

(16.80) (0.41) (0.49) (1.54)

Black 61.21 0.50 0.23 -0.18

(17.05) (0.50) (0.42) (1.34)

Hispanic 61.49 0.51 0.24 -0.16

(17.23) (0.50) (0.42) (1.32)

Multiracial 69.65 0.69 0.44 0.34

(17.44) (0.46) (0.50) (1.26)

Native American 61.96 0.51 0.26 -0.22

(18.08) (0.50) (0.44) (1.45)

White 72.92 0.75 0.52 1.02

(16.78) (0.43) (0.50) (1.56)

Total 64.86 0.57 0.32 0.16

(17.92) (0.49) (0.47) (1.42)

Notes: Table 1 presents summary statistics for student performance variables. Standard deviations are in

parentheses. Pass and Proficiency denote the fraction of scores above passing and college proficiency

thresholds. Previous ability is measured as average z-scores from standardized math and verbal assessments in

Grades 3–8.
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Figure 3

Temperature Variation

Notes: This figure illustrates the source of identifying variation in exam-time temperature. The first panel

presents realized temperatures for two consecutive days within an exam period—Thursday, June 24, 2010, and

Friday, June 25, 2010—inclusive of spatial and temporal temperature corrections, weighted by the number of

observations. The second panel presents the distribution of all exam-time temperatures within the study sample

(1998–2011), weighted by the number of observations.
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student scores just around the passing cutoff, with a score of 66 (SD = 17.9), though

there is considerable heterogeneity by neighborhood and demographic group.

Figure 3 illustrates the source of identifying variation for short-run temperature

impacts, with temperatures weighted by exam observation and school location. Outdoor

temperature during exams ranges from a low of 60°F to a high of 98°F. Day-to-day

variation within the June exam period can be considerable, as suggested by the top

panel of Figure 3, which shows the variation in outdoor temperature by school and

exam-take across two consecutive test dates within the sample period.

IV. Effect of Temperature on High-Stakes

Exam Performance

A. Empirical Specification

Figure 4 presents a visual depiction of performance and temperature that motivates the

analysis that follows. It shows a binned scatterplot of standardized exam score by per-

centile of observed exam-day temperature, plotting residual variation after controlling for

school and year fixed effects. Each dot represents approximately 40,000 observations.

Exams taken on hot days clearly exhibit lower scores.

To further isolate the causal impact of short-run temperature fluctuations on student

performance, I exploit quasi-random variation in day-to-day temperature across exams

within student–month–year cells. While it is unlikely that temperature is endogenous to

student behavior, nor is it likely that students select into different temperature treatments

given the rigidity of exam schedules, time-varying unobservablesmay still be correlated

with weather realizations. For instance, if certain subjects tend to be scheduled more

often in the afternoon when students are relatively fatigued (as in Sievertsen, Gino, and

Piovesan 2016) or toward the end of the exam period (Thursday as opposed toMonday),

one might expect mechanical correlation between temperature and test scores that is

unrelated to the causal effect of temperature on student cognition. This motivates a

baseline specification that includes year, time-of-day, and day-of-week fixed effects:

(7) Yijsty = ciy +gs + b1Tjsty +Xjstyb2 + b3Timesty +DOWstyb4 + eijsty

Here, Yijsty denotes standardized exam performance for student i taking an exam in

subject s in school j on date t in year y. The terms giy and Zs denote student-by-year

and subject fixed effects, respectively. Tjsty is the outdoor temperature in the vicinity of

school j during the exam (subject s on date t, year y). Xjsty is a school- and date-specific

vector of weather and air quality controls, which include precipitation, dew point, and

ozone. Timesty represents a dummy for time of day (morning versus afternoon, where

Time= 1 denotes an afternoon exam), andDOWsty represents a vector of fixed effects for

each day of the week in which exams were taken.

Student-by-year fixed effects ensure that I am comparing the performance of the

same student across exams within the same testing window, where some examsmay be

taken on hot days and others not, leveraging the fact that the average student takes

seven June Regents Exams over the course of their high school career (roughly three to

four per year). Subject fixed effects control for persistent differences in average difficulty

across subjects and the possibility that some subjects tend to be scheduled during earlier
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or later dates during the two-week window. Year fixed effects control for possible spu-

rious correlation between secular performance improvements and likelihood of hotter

exam days due to climate change.

To the extent that temperature variation within student–month–year cells is uncor-

related with unobserved factors influencing test performance, the coefficient b1 repre-

sents the causal impact of temperature on exam performance, subject to potential

downward attenuation bias due to measurement error in weather variables.

B. Primary Results

Table 2 presents the results from running variations of Equation 4 for the subset of

students who take at least two exams. As suggested by the first column, exam-time heat

stress exerts a significant causal impact on student performance. The estimates are robust

to allowing for arbitrary autocorrelation of error terms at the level of school and date,

though as described below, this result is robust to alternative clustering, including at the

level of weather station (borough) and year (Online Appendix Table A.1).

Taking an exam under hotter conditions reduces performance by -0.009 standard

deviations (SE= 0.003) per degree Fahrenheit. This amounts to -5.5 percent of a

Figure 4

Temperature and High-Stakes Exam Performance

Notes: This figure presents a binned scatterplot of exam performance by quantile of the exam-time temperature

distribution, controlling for school and year fixed effects in addition to controls for student demographic

characteristics (gender, ethnicity, and subsidized school lunch status). Each dot represents approximately

40,000 exam observations.
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standard deviation in performance per standard deviation increase in exam-time

temperature (+6.2°F), or -13 percent of a standard deviation if a student takes an exam

when it is 90°F outside as opposed to a more optimal 75°F.15

This effect is roughly equivalent in magnitude to the impacts on mathematical rea-

soning foundbyGraff Zivin,Hsiang, andNeidell (2018),who find a daywith temperature

between 86°F and 89.6°F reduces NLSY math scores by approximately 11 percent of

a standard deviation compared to a day with temperatures in the 70–78°F range, and

smaller than the test-day impacts of 30 percent of a standard deviation documented

byGarg, Jagnani, andTaraz (2017) in India for a 90°F day. They are similar inmagnitude

to effects from laboratory experiments (Seppanen, Fisk, and Lei 2006), which generally

find effects on the order of 1 to 2 percent decline per degree Fahrenheit increase in

temperature above the optimum of 70–74°F. These results provide strong evidence that

temperature can affect cognition even in economically meaningful settings where

effort reduction is unlikely to be the only mechanism.

Table 2

Temperature and High-Stakes Exam Performance

(1) (2) (3) (4)

Temperature (°F) -0.009*** -0.007** -0.010*** -0.011***

(0.003) (0.003) (0.004) (0.004)

Afternoon -0.030* -0.033* -0.018 -0.016

(0.018) (0.017) (0.022) (0.020)

N 3,581,934 3,581,934 3,581,934 3,581,934

Fixed effects

Student · year X

Subject X X X X

Day of week X X X X

Student X

Year X X

School X

School · year X

Notes: Robust standard errors clustered by school and date in parentheses (*p< 0.10, **p< 0.05, ***p< 0.01).

Coefficients in each column and panel come from a regression of Regents z-scores on the variables shown. The

sample comprises all students in the NewYork City public high school systemwho took Regents Exams during

the years 1998–2011. All regressions include controls for daily dew point, precipitation, ozone, and PM2.5.

15. Precipitation has a slightly positive effect, and ozone has a negative but insignificant effect, with a one

standard deviation increase in ozone corresponding to a point estimate roughly one-fifth the size of a one

standard deviation temperature effect. Despite previous literature documenting adverse impacts of PM2.5 in

Israel (Ebenstein, Lavy, and Roth 2016), I find little evidence for that here, perhaps because average con-

centrations of PM2.5 are much lower in NYC than in Israel, as well as the fact that the performance impacts

documented by Ebenstein, Lavy, and Roth (2016) are highly nonlinear, driven mostly by heavily polluted days

with PM2.5 above 100 micrograms per cubic meter.
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C. Robustness Checks

A series of robustness checks are presented in Columns 2–4 of Table 2 and in Online

Appendix Tables A.1 and A.2. For instance, running models that replace student-by-

year fixed effects with student and year or school-by-year fixed effects are presented in

Columns 2 and 3 of Table 2 and suggest significantly negative point estimates across

specifications. As shown in Table A.1, the main effect does not appear to be sensitive to

alternative clustering of standard errors, including by school, or by weather sensor and

year.

Building on previous work that finds evidence for differences in temperature ef-

fects across math and reading subjects (Graff Zivin, Hsiang, and Neidell 2018), I

assess the effect of temperature on quantitative (for example, algebra, physics) and

verbal (for example, English language and arts, world history) subjects separately.

The results are presented in Online Appendix Table A.2. While the point estimate on

quantitative subjects is more negative, and the coefficient on verbal is statistically in-

distinguishable from zero, the effects on quantitative and verbal subjects are not sig-

nificantly different from each other. The standard errors are larger in both cases due to the

fact that most of the identifying variation is coming from day-to-day variation across

examswithin a more limited number of subjects. Unlike Graff Zivin, Hsiang, and Neidell

(2018), I do not find evidence that temperature has significantly different impacts on

mathematical versus verbal reasoning. While it is possible that temperature affects vari-

ous parts of the brain differently, given previouswork that finds simpleverbal assessments

to be noisier measures of student achievement (Kraft, Blazar, and Hogan 2018; Kraft

2019), an alternative explanationmay be that the lackof impact on reading performance in

Graff Zivin, Hsiang, and Neidell (2018) is driven in part by measurement error and the

type of verbal assessment used in the NLSY.

D. Linear versus Nonlinear Impacts

To assess the potential for nonlinear effects, Online Appendix Table A.3 presents

results that specify temperature as a series of indicator variables corresponding to several

5 or 10°F bins, where coefficients can be interpreted as impacts of exams with tempera-

tures in a given bin relative to an optimal omitted bin (70–80°F). Online Appendix Table

A.4 presents quadratic specifications in exam-time outdoor temperature. In both cases,

the coefficients provide little evidence for nonlinear impacts in extreme heat. For instance,

focusing on Column 2 of Table A.3, the coefficients for temperature in the 80–90°F range

appear to be significantly different from those in the 70–80°F range (F = 7.57, p = 0.007),

but I cannot reject the null that days with temperature above 90°F are significantly

different from days in the 70s or 80s (p = 0.47 and p = 0.36, respectively).

Several explanations seem plausible. First, this could be due to the fact that, within the

study sample, extremely hot temperatures are relatively rare, and thus effects at the higher

temperature range are downward attenuated due to measurement error given the fixed

effects (for instance, as in Ashenfelter and Krueger 1994). If there are relatively few days

in the 90°F and hotter bins, even small amounts of measurement error could downward-

bias the coefficient. In the data, exams with temperatures above 90°F are 1/15th as likely

as exams with temperatures between 80 and 90°F. Second, it is possible that, due to

compensatory responses by teachers, the most extreme performance impacts are being
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partially muted in this setting, particularly if the disruptive influences of heat are more

salient on extremely hot days. Finally, it is possible that the effects of temperature on

performance are in fact roughly linear in this range of outdoor temperatures (70–95°F).

E. Temperature and Pass/Proficiency Status

Running versions of Equation 7 that replace standardized exam scores with a dummy

variable for whether or not students scored a passing grade, I find that hot temperature

substantially reduces the likelihood of passing any given subject exam. A one standard

deviation (6.2°F) increase in temperature results in a 2.4 percent lower probability of

passing (SE= 0.13, Column 1 of Table 3). This amounts to a 0.7 percentage point decline

per degree Fahrenheit, relative to a mean likelihood of 57 percent—in other words,

taking an examwhen it is 90°F outside results in a 10 percent lower chance of passing

a given exam relative to a 75°F day. These results are presented in Table 3. Columns

2–4 probe the robustness of this finding to alternative specifications and show simi-

lar point estimates across models that replace student-by-year fixed effects with school

and year or school-by-year fixed effects.

OnlineAppendix TableA.5 provides a similar analysis for “mastery” or “proficiency”

status, which occurs at a threshold score of 75 or 85 depending on the subject and year.

This merit is useful for some college-bound students, since it is often used in college

Table 3

Temperature and Likelihood of Passing Exam

(1) (2) (3) (4)

Temperature (°F) -0.004** -0.003** -0.005***��� -0.005***

(0.001) (0.001) (0.002) (0.002)

Afternoon -0.013* -0.014* -0.007 -0.006

(0.008) (0.008) (0.009) (0.009)

N 3,581,934 3,581,934 3,581,934 3,581,934

Fixed effects

Student · year X

Subject X X X X

Day of week X X X X

Student X

Year X X

School X

School · year X

Notes: Robust standard errors clustered by school and date in parentheses (*p< 0.10, **p< 0.05, ***p< 0.01).

Coefficients in each column and panel come from a regression of a dummy variable for passing an exam on the

variables shown. The sample comprises all students in the New York City public high school system who took

Regents Exams during the years 1998–2011. All regressions include controls for daily dew point, precipitation,

ozone, and PM2.5.
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admissions decisions. Similarly to pass rates, I find that elevated temperature reduces the

likelihood of achievingmastery status (Columns 1–4 of Table A.5). Both results suggest

that short-run environmental conditions may affect longer-run outcomes, including

educational attainment.

V. Persistent Impacts on Educational Attainment

While the evidence presented above suggests that hotter temperature can

reduce realized performance, these short-run shocks presumably do not reduce the stock

of human capital. If the stakes are high enough, however, one might expect even transient

temperature shocks to affect longer-term educational attainment. Specifically, if the

opportunity or stigma costs associated with retaking exams are high, or if there are

dynamic complementarities in the education production function whereby students,

parents, and/or teachers use test scores as signals of ability or potential, then even

transitory shocks might generate persistent consequences in future periods. In this

section, I use linked administrative data on student-level graduation status to assess

whether short-run temperature shocks during high-stakes cognitive assessments may

result in persistent consequences.

A. Empirical Specification

Figure 5 plots variation in four-year graduation status against average exam-time

temperature, and provides suggestive evidence of such persistent impacts. Students

who experienced hotter temperatures during exams on average tend to be less likely

to graduate high school.

To account for the possibility that the temperature experienced by a student during

exams may be mechanically correlated with the number of exams taken (due to mean-

reversion in daily temperatures), I compare the difference in graduation likelihood be-

tween students who experience different amounts of heat during exams, conditioning on

the number of draws from the climate distribution. Specifically, I collapse the data at

the student level and estimate variations of the following model:

(8) gijcn = a0 +a1Tij +Xija2 + vj + hc +Zia3 + examsna4 + eijc

Here, gijcn is a dummy denoting whether student i in school j and entering cohort c who

takes n June Regents Exams over the course of their high school career has graduated

four years after matriculation. Tij denotes the average temperature experienced by stu-

dent iwhile taking June Regents Exams in school j, up through their senior year. Xij is a

vector of weather controls averaged at the student-by-school level. wj denotes school fixed

effects, and yc denotes cohort fixed effects. Zi is a vector of student-level controls

including race, gender, and federally subsidized school lunch eligibility. The vector

examsn includes fixed effects for the total number of June exams taken.

The parameter of interest is a1, which captures the impact of an additional degree of

heat exposure during all June exams on the likelihood of graduating on time. School fixed

effects account for potential omitted variable bias due to correlation between unobserved

determinants of graduation rates and higher average temperature in the cross-section (for

example, if urban heat island effects are stronger in poorer neighborhoods). Cohort fixed
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effects allow for the possibility that heat exposure and graduation rates are correlated due

to secular trends in both variables, though warming trends and average improvements in

NYC schools would suggest this effect to lead to downward rather than upward bias in

the estimate of a1.

B. Primary Results

Table 4 presents the results from running variations of Equation 8 with and without

school and cohort fixed effects, as well as flexible controls for the number of exams.

Standard errors are clustered at the school level to allow for arbitrary correlation of error

termswithin a given school, though the results appear to be robust to alternative levels of

clustering (Online Appendix Table A.6).

Columns 1–3 suggest that a 1°F increase in average exam-time temperatures is

associated with a 0.7 (SE= 0.1) to 0.8 (SE= 0.1) percentage point decline in the like-

lihood of graduating on time. A one standard deviation in average exam-time temper-

ature (+4.4°F) leads to approximately three percentage points lower likelihood of on-

time graduation, or a 4.5 percent decline relative to a mean on-time graduation rate of

Figure 5

Persistent Impacts on Educational Attainment (High School Graduation)

Notes: This figure presents a binned scatterplot of four-year graduation status by ventile of the exam-time

temperature distribution. Temperatures are averaged by student for June exam sessions up through their senior

year. Residual variation after controlling for school and number of exam fixed effects, student-level observable

characteristics, andweather and air quality controls. Included in the analysis are all June Regents Exams in core

subjects between 1998 and 2011. Each dot represents approximately 30,000 students.
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68 percent. These effects do not appear to be sensitive to how one controls for the

possible mechanical correlation between average exam-time temperature and the

number of exams taken.

These effects are economically significant. Over the period 1998–2011, upwards of

510,000 exams that otherwisewould have passed likely received failing grades due to hot

exam conditions, affecting the on-time graduation prospects of at least 90,000 students.

This is consistent with the high-stakes nature of these exams, suggesting nontrivial eco-

nomic and psychic costs of hot temperature during inflexibly administered high-stakes

exams. The number of students affected would likely have been larger in the absence of

compensatory teacher responses, as described in greater detail below.

To the extent that temperature during exams affects terminal degree status or sub-

sequent human capital investment decisions, the associated lifetime earnings impacts

may be substantial. Evidence suggests that the sheepskin effects of having a high school

diploma alone may confer earnings advantages of up to 18 percent (Jaeger and Page

1996). While data limitations inhibit an assessment of later-life impacts on earnings or

other labor market outcomes, quasi-experimental analyses such as Ebenstein, Lavy, and

Roth (2016) find positive returns to high school exit exam performance. These results

should be interpreted in light of such findings.

Table 4

Persistent Impacts of Temperature on Educational Attainment

(High School Graduation)

(1) (2) (3)

Mean temperature (°F) -0.007*** -0.008*** -0.007***

(0.001) (0.001) (0.001)

Number of takes 0.193***

(0.007)

Number of takes2 -0.015***

(0.001)

Number of takes3 0.000***

(0.000)

N 515,199 515,199 515,199

Fixed effects

School X X X

Number of takes X X

Cohort X X

Notes: Robust standard errors clustered by school in parentheses (*p< 0.10, **p< 0.05, ***p< 0.01).

Coefficients in each column come from a regression of a dummy for graduation status on the variables shown.

Temperature is measured with average exam-time temperature experienced by a student (at the school level)

during exams preceding senior year of high school. All regressions include controls for observable demographic

characteristics including ethnicity, subsidized school lunch status, and English language learner status. The

sample comprises all students in the New York City public high school system who took Regents Exams during

the years 1998–2011. All regressions include controls for daily dew point, precipitation, ozone, and PM2.5.
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VI. Adaptive Responses

Given the importance of these exams, we might expect responses by

those who have a stake in the outcomes.16 For instance, if students are aware of these

effects and allowed to engage in avoidance behaviors, they might choose to reschedule

their exams for a milder day or choose testing centers that are well cooled. The insti-

tutional rigidity of this setting means that such margins of adaptation are closed off to

students. Teachers and administrators, however, may in some instances have additional

discretion. If teachers—as agents in the principal–agent relationship between students

and educators—hold a view that idiosyncratic shocks to cognitive performance outside

students’ control are somehow inefficient or unfair, theymight exercise this discretion in

ways that act as a form of buffer. While it appears that teachers could not adjust the

timing or location of these particular (highly standardized and coordinated) state exams,

they do seem to have had some discretion in grading. The unique institutional features of

NYC public schools during the study period allow an indirect assessment of teacher

responses and provide some of the first available evidence of ex post compensation in

response to environmental shocks.

A. Teacher Responses

Previous work has documented grade manipulation by teachers (Diamond and Persson

2016;Angrist, Battistin, andVuri 2017;Dee et al. 2019), including, in the case ofDee et al.

(2019), teachers inNYCpublic schools. In the human capital literature, suchmanipulation

has been used to document persistent human capital consequences of exam performance.

For NYC, Dee et al. (2019) suggest that grade manipulation was motivated primarily by

teachers who wanted to prevent students from suffering long-term adverse consequences

of having experienced, as the authors put it, “a bad test day.” They assess the potential

impacts of teacher incentive programs and rule out grade manipulation as a means of

cheating test-based NCLB accountability standards or teacher incentives, though they

do not assess the possible contribution of environmental factors.17

Here, I explore the possibility that compensatory grade manipulation functioned as

a partial buffer between adverse test-taking conditions and persistent educational con-

sequences. A hot test daymay beviewed as a bad test day, particularly if air-conditioning

is inadequately provided. While classroom-level air-conditioning data are not publicly

available, an analysis of archived building condition assessment reports for 644 middle

and high schools in the study sample suggests that, of these schools, only 62 percent

were reported as having air-conditioning as of 2012, and among the schools with air-

conditioning, nearly 40 percent had some form of defective components, consistent

with highly incomplete air-conditioning penetration. Given such constraints, it seems

possible for discretionary grademanipulation to have beenmotivated in part by exam-

time temperature conditions.

Teachers may be able to observe the disruptive impacts of elevated temperatures on

test day, especially since exams are taken in students’ home schools and graded by a

16. Such compensatory investments have been shown to be important determinants of overall welfare impacts,

in particular in the context of the health impacts of air pollution (Deschenes, Greenstone, and Shapiro 2017).

17. See Dee et al. (2019, p. 25–27) for details.

424 The Journal of Human Resources



committee of teachers from that school. If benevolently motivated, they may engage in

more grade manipulation precisely for those exams that took place under unusually hot

conditions. Numerous media reports suggest that teachers are often aware of the effect

of environmental conditions on student behavior and performance and that various

institutional factors constrain their set of possible responses.18 Even if teachers do not

consciously identify temperature as a determinant of student performance, their at-

tempts at “correcting” for deviations between what they perceive to be a given student’s

true ability and realized exam score may have the realized effect of blunting some of

the longer-term consequences.

B. Estimating Teacher Grade Manipulation

Figure 6 provides a histogram of Regents Exam results in all core subjects prior to 2011.

As is clearly visible in the graph, there is substantial bunching at the passing thresholds,

especially at scores of 65 and 55, suggesting upward grade manipulation. The primary

method by which teachers manipulated grades appears to have been through selective

and coordinated leniency in the amount of partial credit granted to certain free-response

questions (Dee et al. 2019).

To assess the presence and magnitude of “compensatory grading,” I estimate a

bunching estimator by school, subject, month, and year—in effect, the level of exam-

time temperature variation. Calculating the fraction of observations in each one-point

score bin from 0 to 100 by core Regents subject, I fit a polynomial to these fractions

by subject, excluding data near the proficiency cutoffs with a set of indicator vari-

ables, using the following regression:

(9) Fks =S
q
i= 0wismyj

_(Score)i +Si2 -Mcs‚ +Mcs
kismyj _1[Score= i] + eksmyj

Here Fks denotes the fraction of observations with score k for subject s (for example,

ELA). q is the order of the polynomial, and –Mcs,+Mcs represent manipulable ranges

below and above the passing thresholds. The subscripts m, y, and j denote month, year,

and school, respectively.

Following Dee et al. (2019), I define a score as manipulable to the left of each cutoff

if it is between 50–54 and 60–64 and manipulable to the right if it is between 55–57 and

65–67, as a conservative approximation of their subject-and-year-specific scale score–

based rubric. I use a fourth-order polynomial (q = 4) interacted with exam subject s, but

constant across years for the same exam subject. Realized bunching estimates are not

sensitive to changes in the polynomial order or whether one allows the polynomial to

vary by year or subject.19

18. For instance, “[There are] several months where the heat just saps the energy from the kids and even the

teacher. If it’s really hot certainly [student] engagement goes down.” (Barnum 2017). In addition, teacher’s

unions have frequently petitioned for classroom air-conditioning. The New York Times quotes the president of

the United Federation of Teachers as follows: “It’s inhumane to subject kids and adults to schooling in this kind

of heat.. If this doesn’t convince people that we need to air-condition schools, then I don’t know what will.”

19. I also estimate a linear approximation of the above estimator by generating predicted fractions using a

linear spline between boundary points along the distribution that are known to be outside themanipulable range

by subject. I then generate an estimate of the extent of bunching by school–subject–month–year cell, taking the

absolute value of the distance between observed and predicted fractions by Regents scale score. The results are

similar using this simplified measure of bunching.
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This generates a set of predicted fractions by score and subject. The average amount of

bunching observed in my data (5.8 percent) is similar to that documented by Dee et al.

(2019), who find that approximately 6 percent of Regents Exams between 2003 and 2011

exhibited upward grade manipulation. I calculate observed fractions for each score from

0 to 100 by school, month, year, and subject and generate a measure of bunching that

integrates the differences between observed and predicted fractions, that is, the excess

mass of test results that are located to the right of the cutoff (above the predicted curve)

and the gaps between predicted and observed fractions of test results to the left of the

cutoff (below the predicted curve). The bunching estimator can be written as:

(10) fsmyj =
1
2
Si2 +Mck

Fks - F̂ksmyj
� �

+
1
2
jSi2-Mck

Fks - F̂ksmyj
� �

j

where zsmyj denotes the degree of bunching at the passing cutoff for subject s, monthm,

year y, and school j.

This bunching estimate is likely measured with error. To account for the possibility

that this may bias the implied precision of subsequent analyses that use zsmyj and

functions of zsmyj as the dependent variable, I replicate the above procedure 100 times

using bootstrap resampling. The original data are cluster-bootstrap resampled at the

Figure 6

Evidence for Grade Manipulation by Teachers

Notes: This figure presents a histogram of exam scores for all students in the study sample (June 1998–June

2011). A large number of observations bunch at the pass–fail cutoffs, scores of 55 and 65 for local and Regents

diploma requirements, respectively. See Section III for a discussion of the different cutoffs for subgroups of

students and exams.
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level of school and date, and all of the ensuing analyses are replicated for each resample.

In these cases, the standard deviation of the resulting coefficient estimate are reported

instead of estimated standard errors.

Using this measure, I find that the extent of manipulation varies significantly across

schools, years, and subjects. For some schools in some years, particularly those schools

where most students are near the pass–fail margin, up to 20 percent of all exams in a

particular subject may have exhibited some form of upward grade manipulation. Figure

7 suggests that themagnitude of suchmanipulationmay vary systematically with exam-

time temperature.

C. Exam-Time Temperature and Grade Manipulation

We are interested in how the extent of manipulationmay or may not have been related to

temperature during the test. To assess the magnitude of this relationship controlling for

school-, subject-, and/or year-level differences in the degree of manipulation that are

unrelated to temperature, I run a series of regressions with ln(zsmyj) as the dependent

variable:

Figure 7

Exam-Time Temperature and Frequency of Grade Manipulation

Notes: This figure presents a binned scatterplot of the natural log of the fraction of all exams that exhibit upward

grademanipulation by quantile of the exam-time temperature distribution, net of subject, year, and school fixed

effects, as well as daily weather and air quality controls. Manipulation is estimated within school–subject–date

cells using a cutoff rule described in Section VI. Included in the analysis are all June Regents Exams in core

subjects between 1998 and 2011.
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(11) ln(fsmyj) = d0 + d1Tsmyj + Xsmyjd2 + vj +gs +DOWstyd3 + esmyj

Here, Tsmyj denotes temperature, and Xsmyj denotes a vector of other environmental

factors (precipitation, ozone, PM2.5).wj,Zs, and yy denote school, subject, and year fixed

effects, respectively, andDOWsty is a vector of fixed effects for each day of theweek. The

parameter of interest is d1, which, given the log transformation represents the approx-

imate percentage change in grade manipulation due to exam-time temperature. Simi-

larly to the analysis in Section IV, the effect of temperature on grademanipulation d1 can

be interpreted as causal as long as variation in weather is uncorrelated with unobserved

determinants of grade manipulation. While the identifying assumption for causal im-

pacts is similar, the assumptions required for interpreting this coefficient as compen-

sating behavior is slightly more restrictive, requiring temperature to affect bunching

only through student performance rather than directly through teacher cognition.20

As shown in Table 5, the amount of bunching increases by approximately 0.015 log

points (Column 1, SD= 0.0025) per degree Fahrenheit hotter exam-time temperature,

again reporting standard deviations of the bootstrapped resampling distribution. This

suggests that teachers manipulated grades significantly more frequently for exams that

were taken under hot conditions. Columns 2–4 assess the robustness of this finding

to alternative specifications, including regressions that replace school and year fixed

effects with school-by-year fixed effects. Column 5 assesses the sensitivity to poten-

tial outliers in the form of a handful of particularly hot exam days. The point estimates

appear to be remarkably stable and suggest a significant positive relationship between

temperature during exams and the extent of upward grade manipulation.21

The implied magnitudes are nontrivial. The difference in overall share of exams

manipulated between a 90°F and a 75°F exam session averages approximately 22 per-

cent and can be as much as 40 percent, suggesting temperature fluctuations represent a

large component of the variation in extent of grade manipulation throughout the period.

D. Robustness to Mechanical Increase in Manipulable Scores

One important factor to consider in this analysis is the possibility for mechanical cor-

relation between temperature and the number ofmanipulable exams (scores in the 50–54

and 60–64 range), due to the properties of the score distribution. Because the modal

score often lies above passing thresholds, hotter temperature maymechanically increase

the number of exams in the manipulable zones. While, from a realized welfare stand-

point, it may matter little whether teachers were consciously responding to hotter tem-

peratures or not, since the achieved effect on hot days may be similar regardless of

motive, we may want to go a step further to assess whether teachers are more likely to

exercise their discretion when temperatures were unusually hot during exams.

20. It seems unlikely though not impossible that teachers would engage in more grade manipulation (which, in

this context, requires substantial coordination across multiple graders and thus more effort) when they them-

selves are heat stressed, especially given that most grading occurred either in the evening following an exam or

at a later date.

21. Online Appendix Figure A.5 provides the full sampling distributions of the estimates of d1 across the

various specifications of Equation 11 (corresponding to Columns 1–4 of Table 5) over the 100 cluster boot-

straps.
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To explore this possibility, for each exam-take and school I compute the fraction of

manipulable examsmanipulated, as opposed to the raw amount of excessmass as above.

By this measure, it appears that approximately 38 percent of manipulable exams were

upward manipulated in this way, with a median of 27 percent and standard deviation of

34 percent. That is, if 100 exams had a score between 50–54 or 60–64, approximately 38

of these were upward manipulated on average.

Online Appendix Figure A.3 presents a binned scatterplot of this alternate bunching

estimator and exam-time temperature by school–subject–year cell. It suggests a clear

positive relationship between the degree of grade manipulation and the ambient tem-

perature during the exam being graded. Online Appendix Figure A.4 presents the same

figure, dropping observations with temperatures above 90°F to probe robustness to

outliers.

Online Appendix Table A.7 presents results from running Equation 11 with the

adjusted measure of grade manipulation as the dependent variable. The results suggest

that the frequency of teacher grade manipulation increased by approximately 0.017 log

points (SD= 0.003) per degree Fahrenheit increase in exam-time temperature. Column 5

provides results omitting potential outlier observations with temperatures above 90°F.

Online Appendix Figure A.6 provides the full sampling distributions of the estimates of

d1 across the various specifications of Equation 11 (corresponding to Columns 1–4 of

Online Appendix Table A.7) over the 100 cluster bootstraps. The estimates suggest that

Table 5

Temperature and Teacher Grade Manipulation: Bunching Estimate

(1) (2) (3) (4) (5)

Temperature (°F) 0.015 0.015 0.016 0.015 0.015

Bootstrapped SDs 0.00235 0.00256 0.00259 0.00256 0.00261

Observations 3,676,927 3,676,927 3,676,719 3,676,927 3,517,453

Fixed effects

Subject X X X X X

School X X X X

Year X X X X

Day of week X X X X

School · year X

Demographic controls X X

Dropping outliers X

Notes: Standard deviations of the associated sampling distributions of beta are based on replications of the

regressions across 100 cluster bootstrap resamples, clustered by school and date. Coefficients in each column

come from a regression of the bunching estimator—which is the natural log of the excess mass above the

passing threshold by school and exam-take—on the variables shown. Temperature is measured at the school

level by exam date and time. All regressions include controls for daily precipitation, dew point, ozone, and

PM2.5. The sample comprises all students in the New York City public high school system who took Regents

Exams during the years 1998–2011. Column 5 reports results after dropping observations with temperature

readings above 90°F.
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hotter temperature during exams appears to increase the amount of upward grade ma-

nipulation above and beyondwhat would be expected due to amechanical increase in the

number of scores that could potentially be manipulated. While it is impossible to infer

intentions on the basis of this analysis, it appears that the realized effect of teacher

discretion in this setting was to blunt some of the adverse consequences of “bad test

days,” particularly those brought about by hotter temperatures.

In summary, I find evidence of ex post compensatory investment by teachers, which

acts as a form of buffer between idiosyncratic exam conditions and educational at-

tainment. These results are consistent with anecdotal evidence and media reports that

suggest that teachers are often aware of the effect of environmental conditions on

student performance, as well as the institutional barriers to optimal temperature

control. Irrespective of whether teachers are cognizant of the effect of temperature on

exam performance, their grading behavior had the realized effect of mitigating the

adverse consequences of hot temperature.

VII. Discussion and Conclusion

This work explores the impact of temperature on high-stakes per-

formance. Using administrative data from the largest public school district in the United

States, I find that hotter temperatures exert a causal and economicallymeaningful impact

on student achievement. The research design exploits quasi-random, within-student

variation in test-taking conditions to identify the impact of hot temperature on real-

ized performance. These short-run impacts—which presumably do not reduce the stock

of human capital—nevertheless result in persistent impacts on educational attainment

as measured by high school graduation status. Consistent with these persistent conse-

quences, I also document what appears to be ex post compensatory behavior by teachers,

who upward manipulate borderline scores for exams taken under hot conditions.

A key advantage of the study setting is that the analysis takes place in a testing

environment where the outcome is likely to be economically meaningful, making the

resulting estimates more relevant for policy. Taking an exam when the temperature is

90°F results in 13 percent of a standard deviation lower exam performance relative to a

more optimal 75°F, controlling for student ability. For the median New York City high

school student, this results in a 10 percent lower probability of passing a subject and a

significantly lower likelihood of graduating on time. Roughly 18 percent of the students

in the study sample experience at least one exam with ambient temperatures exceeding

90°F, and far more experience damaging temperatures in the upper 80s. I estimate that,

for the period 1998–2011, upwards of 510,000 exams that otherwisewould have passed

received failing grades due to hot temperature, affecting at least 90,000 students—

possibly many more.

Teachers seem to have responded to suboptimal test-taking conditions by selectively

boosting grades of students just below pass–fail thresholds. I find a pattern of upward

grade manipulation that intensifies as exam day temperatures increase, and this pattern

persists even when controlling for potential mechanical correlation between tempera-

ture and the fraction of manipulable scores. One plausible interpretation is that teachers

are aware of adverse test-taking conditions and view transitory shocks to cognition as not

reflecting underlying human capital. It appears they may have used their limited dis-

cretion to offset a portion of the long-term impacts of such shocks. A possible unintended
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consequence of eliminating teacher discretion in New York City public schools in 2011

may have been to exposemore low-performing students to climate-related human capital

impacts, eliminating a protection that applied predominantly to low-achievingBlack and

Hispanic students.

The findings presented of this study have several implications. First, they suggest

that ambient environmental conditions including temperature may be important var-

iables to consider when designing education or human resource policies. For instance,

in determining how to administer high-stakes exams or interviews, administrators could

account for the potential impact of environmental conditions such as temperature ahead

of time. This might mean rescheduling to cooler months when possible or making

sure that such assessments take place in air-conditioned buildings if scheduled during

summer months. Similarly, in assessing various policy options aimed at reducing

achievement gaps, improving school facilities might offer greater improvements than

previously suggested (Coleman 1968; Hanushek 2006), consistent with emerging

quasi-experimental findings (Jackson, Johnson, and Persico 2015; Lafortune, Rothstein,

and Schanzenbach 2018). The magnitude of these effects imply that standardized exams

provide noisier indicators of underlying human capital particularly for lower-income

and underserved students, which has implications for efficiency in labor market sorting,

as in Ebenstein, Lavy, and Roth (2016).

These results also suggest that students taking standardized exams across varying

climates may not be on a level environmental playing field. Such concerns may be

especially important for nationally and sometimes internationally harmonized ex-

aminations, such as the International Baccalaureate (IB), ACT, SAT, or LSAT. Given

the present geographic distribution of students by race, the average Black or Hispanic

student faces a 28 percent chance that their June SAT exam is taken on a day where

outdoor temperatures are above 90°F. The corresponding likelihood for white and

Asian students is approximately 18 percent.22This suggests that a small but nontrivial

component—using the point estimates from this study, approximately 3–4 percent—

of average racial achievement gaps in performance on that exam could be attributable

to differences in the likelihood of adverse temperature conditions.23

As the span of geographies covered by a standardized exams widens, the potential for

differences in test-day temperature increases. The SAT, for instance, is taken more or

less simultaneously across the 50United States and across countries as diverse as Brazil,

India, NewZealand, SouthKorea, and theUkraine. Adjusting the scaling of scores based

on geography could help, but may not be sufficient if test-taking conditions vary within

a given region. Recent nationwide school air-conditioning estimates from the United

States suggest that racial minorities and lower-income students are substantially less

likely to have classroom air-conditioning even within a given local climate (Park et al.

2020), consistent with evidence of highly localized disparities in funding for school

facilities and maintenance (Filardo 2016).24 The consequences for educational

22. Alternatively, the difference in expected average June temperature between these two groups is 3°F (mean

monthly temperature of 82.4 and 79.4, respectively).

23. Black–white and Hispanic–white achievement gaps in the SAT were approximately 0.8 to 1 standard

deviations, respectively, in 2015.

24. Air-conditioning penetration is relatively low in many developing economies. Available evidence suggests

a strong relationship between income and air-conditioning ownership at the household level (Biddle 2008;

Davis and Gertler 2015) and binding liquidity constraints in the context of energy-intensive appliance demand

in developing countries (Gertler et al. 2016)
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attainment may be magnified if lower-income and racial minority students face

higher barriers—financial or otherwise—to retaking high-stakes exams. For in-

stance, Goodman, Gurantz, and Smith (2018) find that underrepresented groups are 9

percent less likely to retake the SAT than white students, despite clear benefits of

retaking in terms of performance and eventual college quality. Such factors may be

relevant for researchers interested in exploring the persistence of achievement gaps

within and across countries or the distributional implications of climate change.
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