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Abstract	
	

The	economics	of	climate	change	involves	a	vast	array	of	uncertainties,	
complicating	both	the	analysis	and	development	of	climate	policy.	This	
study	presents	the	results	of	the	first	comprehensive	study	of	
uncertainty	in	climate	change	using	multiple	integrated	assessment	
models.	The	study	looks	at	model	and	parametric	uncertainties	for	
population,	total	factor	productivity,	and	climate	sensitivity.	It	estimates	
the	pdfs	of	key	output	variables,	including	CO2	concentrations,	
temperature,	damages,	and	the	social	cost	of	carbon	(SCC).	One	key	
finding	is	that	parametric	uncertainty	is	more	important	than	
uncertainty	in	model	structure.	Our	resulting	pdfs	also	provide	insights	
on	tail	events.		
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I. Introduction	
	

A	central	issue	in	the	economics	of	climate	change	is	understanding	and	
dealing	with	the	vast	array	of	uncertainties.	These	range	from	those	regarding	
economic	and	population	growth,	emissions	intensities	and	new	technologies,	to	the	
carbon	cycle,	climate	response,	and	damages,	and	cascade	to	the	costs	and	benefits	
of	different	policy	objectives.		

This	paper	presents	the	first	comprehensive	study	of	uncertainty	of	major	
outcomes	for	climate	change	using	multiple	integrated	assessment	models	(IAMs).	
The	six	models	used	in	the	study	are	representative	of	the	models	used	in	the	IPCC	
Fifth	Assessment	Report	(IPCC	2014)	and	in	the	U.S.	government	Interagency	
Working	Group	Report	on	the	Social	Cost	of	Carbon	or	SCC	(US	Interagency	Working	
Group	2013).	We	focus	our	efforts	in	this	study	on	three	key	uncertain	parameters:	
population	growth,	total	factor	productivity	growth,	and	equilibrium	climate	
sensitivity.	For	the	estimated	uncertainty	in	these	three	parameters,	we	develop	
estimates	of	the	uncertainty	to	2100	for	major	variables,	such	as	emissions,	
concentrations,	temperature,	per	capita	consumption,	output,	damages,	and	the	
social	cost	of	carbon.	

Our	approach	is	a	two‐track	methodology	that	permits	reliable	quantification	
of	uncertainty	for	models	of	different	size	and	complexity.	The	first	track	involves	
performing	model	runs	over	a	set	of	grid	points	and	fitting	a	surface	response	
function	to	the	model	results;	this	approach	provides	a	quick	and	accurate	way	to	
emulate	running	the	models.	The	second	track	develops	probability	density	
functions	for	the	chosen	input	parameters	(i.e.,	the	parameter	pdfs)	using	the	best	
available	evidence.	We	then	combine	both	tracks	by	performing	Monte	Carlo	
simulations	using	the	parameter	pdfs	and	the	surface	response	functions.	

This	methodology	provides	a	transparent	approach	to	addressing	uncertainty	
across	multiple	parameters	and	models	and	can	easily	be	applied	to	additional	
models	and	uncertain	parameters.	An	important	aspect	of	this	methodology,	unlike	
virtually	all	other	model	comparison	exercises,	is	its	replicability.	The	approach	is	
easily	validated	because	the	data	from	the	calibration	exercises	are	relatively	
compact	and	are	compiled	in	a	compatible	format,	the	surface	responses	can	be	
estimated	independently,	and	the	Monte	Carlo	simulations	can	be	easily	run	in	
multiple	existing	software	packages.		

This	paper	is	structured	as	follows.	The	next	section	discusses	the	statistical	
considerations	underpinning	our	study	of	uncertainty	in	climate	change.	Section	III	
presents	our	methodology	for	the	two‐track	approach,	while	the	next	section	
discusses	selection	of	calibration	runs.	Section	V	gives	the	derivation	of	the	
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probability	distributions.	Section	VI	gives	the	results	of	the	model	calculations	and	
the	surface	response	functions,	and	section	VII	presents	the	results	of	the	Monte	
Carlo	estimates	of	uncertainties.	We	conclude	with	a	summary	of	the	major	findings	
in	section	VIII.	The	Appendices	provide	further	background	information.	

	

II. Statistical	Considerations	
	

A. Background	on	Uncertainty	in	Climate	Change	
	

Climate	change	science	and	policy	have	focused	largely	on	projecting	the	
central	tendencies	of	major	variables	and	impacts.	While	central	tendencies	are	
clearly	important	for	a	first‐level	understanding,	attention	is	increasingly	on	the	
uncertainties	in	the	projections.	Uncertainties	take	on	great	significance	because	of	
the	possibility	of	non‐linearities	in	responses,	particularly	the	potential	for	
triggering	thresholds	in	earth	systems,	in	ecosystem,	or	in	economic	outcomes.	To	
be	sure,	uncertainties	have	been	explored	in	major	reports,	such	as	the	IPCC	
Scientific	Assessment	Reports	from	the	first	to	the	fifth.	However,	these	have	mainly	
examined	differences	among	models	as	a	tool	for	assessing	uncertainties	about	
future	projections.	As	we	indicate	below,	our	results	suggest	that	parametric	
uncertainty	is	quantitatively	more	important	than	differences	across	models	for	
most	variables.	

In	recent	reviews	of	climate	change,	there	is	an	increasing	focus	on	improving	
our	understanding	of	the	uncertainties.	For	example,	in	2010	the	Inter‐Academy	
Review	of	the	IPCC,	the	primary	recommendation	for	improving	the	usefulness	of	
the	report	was	about	uncertainty:	

	
The	evolving	nature	of	climate	science,	the	long	time	scales	involved,	

and	the	difficulties	of	predicting	human	impacts	on	and	responses	to	climate	
change	mean	that	many	of	the	results	presented	in	IPCC	assessment	reports	
have	inherently	uncertain	components.	To	inform	policy	decisions	properly,	it	
is	important	for	uncertainties	to	be	characterized	and	communicated	clearly	
and	coherently.	(InterAcademy	Council	2010)	
	

In	a	recent	report,	the	U.S.	Congressional	Budget	Office	also	voiced	its	
concerns	about	uncertainty:	
	

In	assessing	the	potential	risks	from	climate	change	and	the	costs	of	
averting	it,	however,	researchers	and	policymakers	encounter	
pervasive	uncertainty.	That	uncertainty	contributes	to	great	
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differences	of	opinion	as	to	the	appropriate	policy	response,	with	some	
experts	seeing	little	or	no	threat	and	others	finding	cause	for	
immediate,	extensive	action.	Policymakers	are	thus	confronted	with	a	
wide	range	of	recommendations	about	how	to	address	the	risks	posed	
by	a	changing	climate—in	particular,	whether,	how,	and	how	much	to	
limit	emissions	of	greenhouse	gases.	(CBO	2005)	

	

The	focus	on	uncertainty	has	taken	on	increased	urgency	because	of	the	great	
attention	given	by	scientists	to	tipping	elements	in	the	earth	system.	An	influential	
study	by	Lenton	et	al.	(2008)	discussed	important	tipping	elements	such	as	the	large	
ice	sheets,	large‐scale	ocean	circulation,	and	tropical	rain	forests.	Some	
climatologists	have	argued	that	global	warming	beyond	2	°C	will	lead	to	an	
irreversible	melting	of	the	Greenland	ice	sheet	(Robinson	et	al.	2012).	Once	
uncertainties	are	fully	included,	policies	will	need	to	account	for	the	probability	that	
paths	may	lead	across	tipping	points,	with	particular	concern	for	ones	that	have	
irreversible	elements.		

A	further	set	of	questions	involves	the	potential	for	fat	tails	in	the	distribution	
of	parameters,	of	outcomes,	and	of	the	risk	of	catastrophic	climate	change.	(A	fat‐	or	
thick‐tailed	distribution	is	one	where	the	probability	of	extreme	events	declines	
slowly,	so	the	tail	of	the	distribution	is	thick.	An	important	example	is	the	power‐law	
or	Pareto	distribution,	in	which	the	variance	of	the	process	is	unbounded	for	certain	
parameter	values.)		

The	issue	arises	because	of	the	combination	of	outcomes	that	are	potentially	
catastrophic	in	nature	and	probability	distributions	with	fat	tails.	The	combination	
of	these	two	factors	may	lead	to	situations	in	which	focusing	on	central	tendencies	is	
completely	misleading	for	policy	analysis.	In	a	series	of	papers,	Martin	Weitzman	
(see	especially	Weitzman	2009)	has	proposed	a	dramatically	different	conclusion	
from	standard	analysis	in	what	he	has	called	the	Dismal	Theorem.	In	the	extreme	
case,	the	combination	of	fat	tails,	unlimited	exposure,	and	high	risk	aversion	implies	
that	the	expected	loss	from	certain	risks	such	as	climate	change	is	unbounded	and	
we	therefore	cannot	perform	standard	optimization	calculations	or	cost‐benefit	
analyses.	

There	are	to	date	many	studies	of	the	implications	of	uncertainty	for	climate	
change	and	climate‐change	policy	or	of	uncertainty	in	one	or	many	parameters	
using	a	single	model.	Some	notable	examples	include	Reilly	et	al.	(1987),	Peck	and	
Teisberg	(1993),	Nordhaus	and	Popp	(1997),	Pizer	(1999),	Webster	(2002),	Baker	
(2005),	Hope	(2006),	Nordhaus	(2008),	Webster	et	al.	(2012),	Anthoff	and	Tol	
(2013),	and	Lemoine	and	McJeon	(2013).	
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To	date,	however,	the	only	published	study	that	aims	to	quantify	uncertainty	
in	climate	change	for	multiple	models	is	the	U.S.	government	Interagency	Working	
Group	report	on	the	social	cost	of	carbon,	which	is	published	in	Greenstone	et	al.	
(2013)	and	more	extensively	described	in	IAWG	(2010).	This	study	used	three	
models,	two	of	which	are	included	in	this	study,	to	estimate	the	social	cost	of	carbon	
for	U.S.	government	purposes.	However,	while	it	did	examine	uncertainty,	the	cross‐
model	comparison	focused	on	a	single	uncertain	parameter	(equilibrium	climate	
sensitivity)	for	its	formal	uncertainty	analysis;	all	other	uncertain	parameters	in	the	
models	were	left	uncertain	with	the	modelers’	pdfs.	Even	with	this	single	uncertain	
parameter,	the	estimated	social	cost	of	carbon	varies	greatly.	The	2015	social	cost	of	
carbon	in	the	updated	IAWG	(2013)	is	$38	per	ton	of	CO2	using	the	median	estimate	
versus	$109	per	ton	of	CO2	using	the	95	percentile	(both	in	2007	dollars	and	using	a	
3%	discount	rate),	which	would	imply	very	different	levels	of	policy	stringency.		The	
IAWG	analysis	also	used	combinations	of	model	inputs	and	outputs	that	were	not	
always	internally	consistent.	Comparison	of	the	uncertainties	in	a	consistent	
manner	in	different	models	is	clearly	an	important	missing	area	of	study.	

	

B. Central	approach	of	this	study	
	

This	project	aims	to	quantify	the	uncertainties	of	key	model	outcomes	
induced	by	uncertainty	in	important	parameters.	We	hope	to	learn	the	degree	to	
which	there	is	precision	in	the	point	estimates	of	major	variables	that	are	used	in	
major	integrated	assessment	models.	Put	differently,	the	research	question	we	aim	
to	answer	from	this	study	is:	How	do	major	parameter	uncertainties	affect	the	
distribution	of	possible	outcomes	of	major	outcomes;	and	what	is	the	level	of	
uncertainty	of	major	outcome	variables?	

We	call	this	question	one	of	“classical	statistical	forecast	uncertainty.”	The	
study	of	forecasting	uncertainty	and	error	has	a	long	history	in	statistics	and	
econometrics.	See	for	example	Clements	and	Hendry	(1998,	1999)	and	Ericsson	
(2001).	The	standard	tools	of	forecasting	uncertainty	have	virtually	never	been	
applied	to	models	in	the	energy‐climate‐economy	areas	because	of	the	complexity	of	
the	models	and	the	non‐probabilistic	nature	of	both	inputs	and	structural	
relationships.	

Key	uncertainties	that	we	will	examine	include	both	projections	and	policy	
outcomes.	For	example,	what	are	the	uncertainties	of	emissions,	concentrations,	
temperature	increases,	and	damages	in	a	baseline	projection?	What	is	the	
uncertainty	in	the	social	cost	of	carbon?	How	do	uncertainties	across	models	
compare	with	the	uncertainties	within	models	generated	by	parameter	uncertainty?	
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One	of	the	key	contributions	of	this	work	is	that	it	has	the	potential	to	highlight	
areas	where	reducing	uncertainty	will	have	a	high	payoff.		
	

C. Uncertainty	in	a	broader	context	
	

There	are	several	uncertainties	in	climate	change	that	face	both	natural	and	
social	scientists	and	decision	makers.	Among	the	important	ones	are:	(1)	parametric	
uncertainty,	such	as	uncertainty	about	climate	sensitivity	or	output	growth;	(2)	
model	or	specification	uncertainty,	such	as	the	specification	of	the	aggregate	
production	function;	(3)	measurement	error,	such	as	the	level	and	trend	of	global	
temperatures;	(4)	algorithmic	errors,	such	as	ones	that	find	the	incorrect	solution	to	
a	model;	(5)	random	error	in	structural	equations,	such	as	those	due	to	weather	
shocks;	(6)	coding	errors	in	writing	the	program	for	the	model;	and	(7)	scientific	
uncertainty	or	error,	such	as	when	a	model	contains	an	erroneous	theory.	
	 This	study	focuses	primarily	on	the	first	of	these,	parametric	uncertainty,	and	
to	a	limited	extent	on	the	second,	model	uncertainty.	We	focus	on	the	first	because	
there	are	major	uncertainties	about	several	parameters,	because	this	has	been	a	key	
area	for	study	in	earlier	approaches,	and	because	it	is	a	type	of	uncertainty	that	
lends	itself	most	readily	to	model	comparisons.	In	addition,	since	we	employ	six	
models,	the	results	provide	some	information	about	the	role	of	model	uncertainty,	
although	we	do	not	develop	a	formal	approach	to	model	uncertainty.	We	recognize	
that	parameter	and	model	uncertainties	are	but	two	of	the	important	questions	that	
arise,	but	a	rigorous	approach	to	measuring	the	contribution	of	these	uncertainties	
will	make	a	major	contribution	to	understanding	the	overall	uncertainty	of	climate	
change.	
	 From	a	theoretical	point	of	view,	the	measures	of	uncertainty	can	be	viewed	
as	applying	the	principles	of	judgmental	or	subjective	probability,	or	“degree	of	
belief,”	to	measuring	future	uncertainties.	This	approach,	which	has	its	roots	in	the	
works	of	Ramsey	(1931),	de	Finetti	(1937),	and	Savage	(1954),	recognizes	that	it	is	
not	possible	to	obtain	frequentist	or	actuarial	probability	distributions	for	the	major	
parameters	in	integrated	assessment	models	or	in	the	structures	of	the	models.	The	
theory	of	subjective	probability	views	the	probabilities	as	akin	to	the	odds	that	
informed	scientists	would	take	when	wagering	on	the	outcome	of	an	uncertain	
event.	For	example,	suppose	the	event	was	population	growth	from	2000	to	2050.	
The	subjective	probability	might	be	that	the	interquartile	range	(25%,	75%)	was	
between	0.5%	and	2.0%	per	year.	In	making	the	assessment,	the	scientist	would	in	
effect	say	that	it	is	a	matter	of	indifference	whether	to	bet	that	the	outcome	when	
known	would	be	inside	or	outside	that	range.	While	it	is	not	contemplated	that	a	bet	
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would	actually	occur	(although	that	is	not	unprecedented),	the	wager	approach	
helps	frame	the	probability	calculation.	
	

III. Methodology	
	

A. Overview	of	our	two	track	approach	
	

In	undertaking	an	uncertainty	analysis,	the	project	contemplated	two	
potential	approaches.	In	one	approach,	each	model	would	do	a	Monte	Carlo	
simulation	in	which	it	would	do	many	runs	where	the	chosen	uncertain	parameters	
are	drawn	from	a	joint	pdf.	While	potentially	feasible	for	some	models,	such	an	
approach	is	excessively	burdensome	and	likely	infeasible	at	the	scale	necessary	to	
have	reliable	estimates.	

We	therefore	developed	a	second	approach	which	we	call	the	“two‐track	
Monte	Carlo.”	This	approach	separates	the	model	calibration	runs	from	generation	
of	the	parameter	pdfs	and	the	Monte	Carlo	estimates.	At	the	core	of	the	approach	are	
two	parallel	tracks,	which	are	then	combined	to	produce	the	final	results.	The	first	
track	uses	model	runs	from	six	participating	economic	climate	change	integrated	
assessment	models	to	develop	surface	response	functions;	these	runs	provide	the	
relationship	between	our	uncertain	input	parameters	and	key	output	variables.	The	
second	track	develops	probability	density	functions	characterizing	the	uncertainty	
for	each	analyzed	uncertain	input	parameter.	We	combine	the	results	of	the	two	
tracks	using	a	Monte	Carlo	simulation	to	characterize	statistical	uncertainty	in	the	
output	variables.	
	

B. The	approach	in	equations	
	

It	will	be	helpful	to	show	the	structure	of	the	approach	analytically.	We	can	
represent	a	model	as	a	mapping	from	exogenous	and	policy	variables	and	
parameters	to	endogenous	outcomes.	The	models	can	be	written	symbolically	as	
follows:	

(1)	 	 ( , , )m mY H z u 	

In	this	schema,	Ym	is	a	vector	of	model	outputs	for	model	m;	z	is	a	vector	of	
exogenous	and	policy	variables; is	a	vector	of	model	parameters;	u	is	a	vector	of	
uncertain	parameters	to	be	investigated;	and	Hm	represents	the	model	structure.	We	
emphasize	that	models	have	different	structures,	model	parameters,	and	choice	of	
input	variables.	However,	we	can	represent	the	arguments	of	H	without	reference	to	
models	by	assuming	some	are	omitted.	
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	 The	first	step	in	the	project	is	to	select	the	uncertain	parameters	for	analysis.	
Once	the	parameters	are	selected,	each	model	then	does	selected	calibration	runs.	
The	calibration	runs	take	as	a	central	set	of	parameters	the	base	or	reference	case	
for	each	of	the	models.	It	then	makes	several	runs	that	add	or	subtract	specified	
increments	from	each	of	the	base	values	of	the	uncertain	parameters.	This	produces	
a	set	of	input	and	outputs	for	each	model.	

More	precisely,	here	is	the	procedure	for	the	first	track	of	the	approach.	Each	
model	has	a	baseline	run	with	base	values	for	each	of	the	uncertain	parameters.	

Denote	the	base	parameter	values	as	 ,1 ,2 ,3( , , ).b b b
m m mu u u 	The	next	step	determines	a	grid	

of	deviation	values	of	the	uncertain	parameters	that	each	model	adds	or	subtracts	
from	the	base	values	of	the	uncertain	parameters.	Denote	these	deviation	values	as	

1,1,1 1,1,2 5,5,5( , ,..., ).G     	The	 G 	vector	represents	125	=	5	x	5	x	5	deviations	from	

the	modelers’	base	parameter	values.	So,	for	example,	the	vector 1,1,1 	would	

represent	one	of	the	125	grid	vectors	that	takes	the	first	value	for	each	uncertain	
parameter.	Suppose	that	 1,1,1 ( 0.014, .02, 2).     	Then	that	calibration	run	would	

calculate	the	outcomes	for	 ,1 ,2 ,3( , , .014, .02, 2)m m b b b
m m mY H z u u u    ,	where	again	 ,

b
m ku is	

the	base	value	for	uncertain	parameter	k	for	model	m.	Similarly,	 3,3,3 (0,0,0).  	For	

that	deviation	value,	the	calibration	run	would	calculate	the	outcomes	for	

,1 ,2 ,3( , , , , ),m m b b b
m m mY H z u u u 	which	is	the	model	baseline	run.	

	 The	third	step	is	to	estimate	surface	response	functions	(SRFs)	for	each	model	
and	variable	outcome.	Symbolically,	these	are	the	following	functions:	

(2)	 	 1 ,1 2 ,2 3 ,3 ,1 ,2 ,3( , , ) ( , , )m m b b b m
m m m m m mY R u u u u u u R u u u     	

	

The	SRFs	are	fit	over	the	observations	of	the	 ,m ku 	from	the	calibration	exercises	

(125	each	for	the	baseline	and	for	the	carbon‐tax	cases).	The	SRFs	are	linear‐
quadratic‐interaction	equations	as	described	below.	

	 The	second	track	of	the	project	provides	us	with	probability	density	functions	

for	each	of	our	uncertain	parameters, ( )k
kf u .	These	are	developed	on	the	basis	of	

external	information	as	described	below.	

	 The	final	step	is	to	estimate	the	cumulative	distribution	of	the	output	
variables,	 ( ).m mG Y 	These	are	the	distributions	of	the	outcome	variables	 mY 	for	
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model	m,	where	we	note	that	the	distributions	will	differ	by	model.	The	
distributions	are	calculated	by	Monte	Carlo	methods,	for	a	sample	size	of	N:	 	

(3)	 ,1 ,2 ,3
1

( ) 1 if ( , , ) ,  otherwise = 0 /
N

m m m n n n m
m m m

n

G Y H u u u Y N


    	

	 The	notation	here	is	that	 ,
n

m ku 	is	the	nth	draw	of	random	variable	 ku 	in	the	

Monte	Carlo	experiment.	This	unintuitive	equation	simply	states	that	the	cumulative	
distribution	is	equal	to	the	fraction	of	outcomes	in	the	Monte	Carlo	simulation	
where	the	SRF	yields	a	value	of	the	outcome	variable	that	is	less	than	 .mY 	The	
distribution	of	outcomes	for	each	variable	and	model	is	conditional	on	the	model	
structure	and	on	the	harmonized	uncertainty	of	the	uncertain	parameters.	For	a	
classic	study	of	Monte	Carlo	methods,	see	Hammersley	and	Handscomb	(1964).	
	

C. Integrated	Assessment	Models		
	

The	challenge	of	analysis	and	policies	for	global	warming	is	particularly	
difficult	because	it	spans	many	disciplines	and	parts	of	society.	This	many‐faceted	
nature	also	poses	a	challenge	to	natural	and	social	scientists,	who	must	incorporate	
a	wide	variety	of	geophysical,	economic,	and	political	disciplines	into	their	
diagnoses	and	prescriptions.	The	task	of	integrated	assessment	models	(IAMs)	is	to	
pull	together	the	different	aspects	of	a	problem	so	that	projections,	analyses,	and	
decisions	can	consider	simultaneously	all	important	endogenous	variables.	IAMs	
generally	do	not	pretend	to	have	the	most	detailed	and	complete	representation	of	
each	included	system.	Rather,	they	aspire	to	have,	at	a	first	level	of	approximation,	
models	that	operate	all	the	modules	simultaneously	and	with	reasonable	accuracy.	

The	study	design	was	presented	at	a	meeting	where	many	of	the	established	
modelers	who	build	and	operate	IAMs	were	present.	All	were	invited	to	participate.	
After	some	preliminary	investigations	and	trial	runs,	six	models	were	able	to	
incorporate	the	major	uncertain	parameters	into	their	models	and	to	provide	most	
of	the	outputs	that	were	necessary	for	model	comparisons.	The	following	is	a	brief	
description	of	each	of	the	six	models.	Table	A5	in	the	appendix	provides	further	
details	on	each	model.	

The	DICE	(Dynamic	Integrated	model	of	Climate	and	the	Economy)	was	first	
developed	around	1990	and	has	gone	through	several	extensions	and	revisions.	The	
latest	published	version	is	Nordhaus	(2014)	with	a	detailed	description	in	Nordhaus	
and	Sztorc	(2014).	The	DICE	model	is	a	globally	aggregated	model	that	views	the	
economics	of	climate	change	from	the	perspective	of	neoclassical	economic	growth	
theory.	In	this	approach,	economies	make	investments	in	capital	and	in	emissions	
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reductions,	reducing	consumption	today,	in	order	to	lower	climate	damages	and	
increase	consumption	in	the	future.	The	special	feature	of	the	model	is	the	inclusion	
of	all	major	elements	in	a	highly	aggregated	fashion.	The	model	contains	about	25	
dynamic	equations	and	identities,	including	those	for	global	output,	CO2	emissions	
and	concentrations,	global	mean	temperature,	and	damages.	The	version	for	this	
project	runs	for	60	five‐year	periods.	It	can	be	run	in	either	an	Excel	version	or	in	
the	preferred	GAMS	version.	The	version	used	for	this	study	dates	from	December	
2013	and	adds	loops	to	calculate	the	outcomes	for	different	uncertain	parameters.	
The	runs	were	implemented	by	William	Nordhaus	and	Paul	Sztorc.	

The	FUND	model	(Climate	Framework	for	Uncertainty,	Negotiation,	and	
Distribution)	was	developed	primarily	to	assess	the	impacts	of	climate	policies	in	an	
integrated	framework.	It	is	a	recursive	model	that	takes	exogenous	scenarios	of	
major	economic	variables	as	inputs	and	then	perturbs	these	with	estimates	of	the	
cost	of	climate	policy	and	the	impacts	of	climate	change.	The	model	has	16	regions	
and	contains	explicit	representation	of	five	greenhouse	gases.	Climate	change	
impacts	are	monetized	and	include	agriculture,	forestry,	sea‐level	rise,	health	
impacts,	energy	consumption,	water	resources,	unmanaged	ecosystems,	and	storm	
impacts.	Each	impact	sector	has	a	different	functional	form	and	is	calculated	
separately	for	each	of	the	16	regions.	The	model	runs	from	1950	to	3000	in	time	
steps	of	1	year.	The	source	code,	data,	and	a	technical	description	of	the	model	are	
public	(www.fund‐model.org),	and	the	model	has	been	used	by	other	modeling	
teams	(e.g.,	Revesz	et	al.	(2014)).	FUND	was	originally	created	by	Richard	Tol	(Tol,	
1997)	and	is	now	jointly	developed	by	David	Anthoff	and	Richard	Tol.	The	runs	
were	implemented	by	David	Anthoff.	

The	GCAM	(Global	Change	Assessment	Model)	is	a	global	integrated	
assessment	model	of	energy,	economy,	land‐use,	and	climate.	GCAM	is	a	long‐term	
global	model	based	on	the	Edmonds	and	Reilly	model	(Edmonds	and	Reilly	1983a,	b,	
c).	GCAM	integrates	representations	of	the	global	economy,	energy	systems,	
agriculture	and	land	use,	with	representations	of	terrestrial	and	ocean	carbon	
cycles,	and	a	suite	of	coupled	gas‐cycle	and	climate	models.	The	climate	and	physical	
atmosphere	in	GCAM	is	based	on	the	Model	for	the	Assessment	of	Greenhouse‐Gas	
Induced	Climate	Change	(MAGICC)	(Meinshausen	et	al.	2011).		The	global	economy	
in	GCAM	is	represented	in	14	geopolitical	regions,	explicitly	linked	through	
international	trade	in	energy	commodities,	agricultural	and	forest	products,	and	
other	goods	such	as	emissions	permits.	The	scale	of	economic	activity	in	each	region	
is	driven	by	population	size,	age,	and	gender	as	well	as	labor	productivity.	The	
model	is	dynamic‐recursively	solved	for	a	set	of	market‐clearing	equilibrium	prices	
in	all	energy	and	agricultural	good	markets	every	5	years	over	2005‐2095.	The	full	
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documentation	of	the	model	is	available	at	a	GCAM	wiki	(Calvin	and	et	al.	2011).	
GCAM	is	open‐source,	but	is	primarily	developed	and	maintained	by	the	Joint	Global	
Change	Research	Institute.	The	model	runs	were	performed	by	Haewon	McJeon.	

The	MERGE	model	(Model	for	Evaluating	Regional	and	Global	Effects	of	
greenhouse	gas	reduction	policies)	is	an	integrated	assessment	model	describing	
global	energy‐economy‐climate	interactions	with	regional	detail.	It	was	introduced	
by	Manne	et	al.	(1999)	and	has	been	continually	developed	since;	a	recently	
published	description	is	in	Blanford	et	al.	(2014).	MERGE	is	formulated	as	a	multi‐
region	dynamic	general	equilibrium	model	with	a	process	model	of	the	energy	
system	and	a	reduced‐form	representation	of	the	climate.	It	is	solved	in	GAMS	via	
sequential	joint	non‐linear	optimization	with	Negishi	weights	to	balance	inter‐
regional	trade	flows.	The	economy	is	represented	as	a	top‐down	Ramsey	model	in	
which	electric	and	non‐electric	energy	inputs	are	traded	off	against	capital	and	labor	
and	production	is	allocated	between	consumption	and	investment.	The	energy	
system	includes	explicit	technologies	for	electricity	generation	and	non‐electric	
energy	supply,	with	a	resource	extraction	model	for	fossil	fuels	and	uranium.	The	
climate	model	includes	a	five‐box	carbon	cycle	and	tracks	all	major	non‐CO2	
greenhouse	gases	and	non‐CO2	forcing	agents	explicitly.	Temperature	evolves	as	a	
two‐box	lag	process,	where	uncertainty	about	climate	sensitivity	is	considered	
jointly	with	uncertainty	about	the	response	time	and	aerosol	forcing.	The	version	
used	for	study	includes	10	model	regions	and	runs	through	2100,	with	climate	
variables	projected	for	an	additional	century.	The	runs	were	implemented	by	
Geoffrey	Blanford.	

The	MIT	IGSM	(Integrated	Global	Systems	Model)	was	developed	in	the	early	
1990’s	and	has	been	continually	updated.	It	includes	a	general	circulation	model	of	
the	atmosphere	and	its	interactions	with	oceans,	atmospheric	chemistry,	terrestrial	
vegetation,	and	the	land	surface.	Its	economic	component	represents	the	economy	
and	anthropogenic	emissions.	The	full	IGSM	is	described	in	Sokolov	et	al.	(2009)	and	
Webster	et	al.	(2012).	The	version	of	the	economic	component	applied	here	is	
described	in	Chen	et	al.	(2015).	The	earth	system	component	is	a	simplified	general	
circulation	model	resolved	in	46	latitude	bands	and	11	vertical	layers	in	the	
atmosphere	with	an	11	layer	ocean	model.	The	land	system	includes	17	vegetation	
types.	The	economic	component	is	a	multi‐sector,	multi‐region	applied	general	
equilibrium	model,	an	empirical	implementation	consistent	with	neo‐classical	
economic	theory.	For	the	current	project,	the	model	operates	in	a	recursive	fashion	
in	which	the	economy	drives	the	earth	system	model	but	without	feedbacks	of	
climate	impacts	on	the	economic	system.	The	economic	component	is	solved	for	5	
year	time	steps	in	GAMS‐MPSGE	and	for	this	exercise	was	run	through	2100.	The	
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earth	system	component	solves	on	10	minute	time	steps	(the	vegetation	model	on	
monthly	time	steps).	The	simulations	for	this	exercise	were	conducted	by	Y.‐H.	
Henry	Chen,	Andrei	Sokolov,	and	John	Reilly.		

The	WITCH	(World	Induced	Technical	Change	Hybrid)	model	was	developed	
in	2006	(Bosetti	et	al.	2006)	and	has	been	developed	and	extended	since	then.	The	
latest	version	is	fully	described	in	Bosetti	et	al.	(2014).	The	model	divides	the	world	
into	13	major	regions.	The	economy	of	each	region	is	described	by	a	Ramsey‐type	
neoclassical	optimal	growth	model,	where	forward‐looking	central	planners	
maximize	the	present	discounted	value	of	utility	of	each	region.	These	optimizations	
take	account	of	other	regions'	intertemporal	strategies.	The	optimal	investment	
strategy	includes	a	detailed	appraisal	of	energy	sector	investments	in	power‐
generation	technologies	and	innovation,	and	the	direct	consumption	of	fuels,	as	well	
as	abatement	of	other	gases	and	land‐use	emissions.	Greenhouse‐gas	emissions	and	
concentrations	are	then	used	as	inputs	in	a	climate	model	of	reduced	complexity	
(Meinshausen	et	al.	2011).	The	version	used	for	this	project	runs	for	30	five‐year	
periods	and	contains	35	state	variables	for	each	of	the	13	regions,	running	on	the	
GAMS	platform.	The	runs	were	implemented	by	Valentina	Bosetti	and	Giacomo	
Marangoni.	
	

IV. 	Choice	of	uncertain	parameters	and	grid	design	
	

A. Choice	of	uncertain	parameters	
	

One	of	the	key	decisions	in	this	study	was	to	select	the	uncertain	parameters.	
The	criteria	for	selection	were	(at	least	after	the	fact)	clear.	First,	each	parameter	
must	be	important	for	influencing	uncertainty.	Second,	parameters	should	be	ones	
that	can	be	varied	in	each	of	the	models	without	excessive	burden	and	without	
violating	the	spirit	of	the	model	structure.	Third,	the	parameters	should	be	ones	that	
can	be	represented	by	a	probability	distribution,	either	on	the	basis	of	prior	
research	or	feasible	within	the	scope	of	this	project.		
	 At	an	initial	meeting,	an	experiment	was	undertaken	in	which	each	of	the	
models	was	given	six	uncertain	parameters	or	shocks	to	test	for	feasibility.	At	the	
end	of	this	initial	test	experiment,	two	of	the	modeling	teams	decided	not	to	
participate	because	the	initial	parameters	could	not	be	easily	incorporated	in	the	
model	design	or	because	of	time	constraints.	Three	of	the	parameters	fulfilled	the	
above‐mentioned	criteria,	and	these	were	the	ones	that	were	incorporated	in	the	
final	set	of	experiments.	
	 The	final	list	of	uncertain	parameters	were	the	following:	(1)	The	rate	of	
growth	of	productivity,	or	per	capita	output;	(2)	the	rate	of	growth	of	population;	
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and	(3)	the	equilibrium	climate	sensitivity	(equilibrium	change	in	global	mean	
surface	temperature	from	a	doubling	of	atmospheric	CO2	concentrations).	

Additionally,	it	was	decided	to	do	two	alternative	policy	scenarios.	One	was	a	
“Base”	run	in	which	no	climate	policies	were	introduced;	and	the	second,	labelled	
“Carbon	Tax”	(and	sometimes	“Ampere”)	introduced	a	rapidly	rising	global	carbon	
tax.2	A	run	based	on	carbon	prices	was	selected	(instead	of	quantitative	limits)	
because	many	models	had	undertaken	similar	runs	in	other	model	comparison	
projects,	so	they	were	relatively	easy	to	implement.	

Several	other	parameters	were	carefully	considered	but	rejected.	A	pulse	of	
emissions	was	rejected	because	it	had	essentially	no	impact.	A	global	recession	was	
rejected	for	the	same	reason.	It	was	hoped	to	add	uncertainties	for	technology	(such	
as	those	concerning	the	rate	of	decarbonization,	the	cost	of	backstop	technologies,	
or	the	cost	of	advanced	carbon‐free	technologies),	but	it	proved	impossible	to	find	
one	that	was	both	sufficiently	comprehensive	and	could	be	incorporated	in	all	the	
models.	Uncertainty	about	climate	damages	was	excluded	because	half	the	models	
did	not	contain	damages.	A	final	possibility	was	to	analyze	policy	runs	that	had	
quantitative	limits	rather	than	carbon	prices.	For	example,	some	models	had	
participated	in	model	comparisons	in	which	radiative	forcings	were	limited.	This	
approach	was	rejected	because	the	carbon	tax	proved	easier	to	define	and	
implement.	Additionally,	earlier	experiments	indicated	that	quantitative	limits	were	
often	found	infeasible,	and	this	would	cloud	the	interpretation	of	the	results.3	

	

                                                            
2	The	Carbon	Tax	run	was	selected	from	the	AMPERE	model	comparisons	to	reduce	the	
burden	on	many	of	the	modelers	and	so	that	the	results	from	this	study	can	be	compared	to	
those	from	the	AMPERE	inter‐model	comparison	study	(Kriegler	et	al.	2015).	The	specific	
scenario	chosen	is	known	in	the	AMPERE	study	as	"CarbonTax$12.50‐increasing.”	The	full	
AMPERE	scenario	database	can	be	found	online	at	https://secure.iiasa.ac.at/web‐
apps/ene/AMPEREDB.	
	
3	See	particularly	the	results	for	Energy	Modeling	Forum	22	reported	in	a	special	issue	in	
Energy	Economics	(e.g.,	see	Clarke	and	Weyant	(2009)).	Many	models	found	that	tight	
constraints	were	infeasible	for	their	base	runs.	A	quantitative	limit	would	almost	surely	
have	found	that	large	numbers	of	the	125	scenarios	were	infeasible	for	any	tight	limit	on	
temperature	or	radiative	forcings.	
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B. Description	of	uncertain	parameters	
	

We	next	describe	the	three	uncertain	parameters	contained	in	the	study.	It	
turned	out	that	harmonizing	these	across	models	was	more	complicated	than	was	
originally	anticipated,	as	described	below.	

	

(1) The	rate	of	growth	of	population.	Uncertainty	about	the	rate	of	growth	
of	population	was	straightforward.	For	global	models,	there	was	no	ambiguity	about	
the	adjustment.	The	uncertainty	was	specified	as	plus	or	minus	a	uniform	
percentage	growth	rate	each	year	over	the	period	2010‐2100.	For	regional	models,	
the	adjustment	was	left	to	the	modeler.	Most	models	assumed	a	uniform	change	in	
the	growth	rate	in	each	region.	

	

	(2)	The	rate	of	growth	of	productivity,	or	per	capita	output.	The	original	
design	had	been	to	include	a	variable	that	represented	the	uncertainty	about	overall	
technological	change	in	the	global	economy	(or	averaged	across	regions).	The	
results	of	the	initial	experiment	indicated	that	the	specifications	of	technological	
change	differed	greatly	across	models,	and	it	was	infeasible	to	specify	a	comparable	
technological	variable	that	could	apply	for	all	models.	For	example,	some	models	
had	a	single	production	function,	while	others	had	multiple	sectors.	

Rather	than	attempt	to	find	a	comparable	parameter,	it	was	decided	to	
harmonize	on	the	uncertainty	of	global	output	per	capita	growth	from	2010	to	2100.	
Each	modeler	was	asked	to	introduce	a	grid	of	changes	in	its	model‐specific	
technological	parameter	that	would	lead	to	a	change	in	per	capita	output	of	plus	or	
minus	a	given	amount	(to	be	described	in	the	next	section).	The	modelers	were	then	
instructed	to	adjust	that	change	so	that	the	range	of	growth	rates	in	per	capita	GDP	
from	2010	to	2100	in	the	calibration	exercise	would	be	equal	to	the	desired	range.	

	

(3)	The	climate	sensitivity.	Modeling	uncertainty	about	climate	sensitivity	
proved	to	be	one	of	the	most	difficult	issues	of	harmonization	across	the	different	
models.	While	all	models	have	modules	to	trace	through	the	temperature	
implications	of	changing	concentrations	of	GHGs,	they	differ	in	detail	and	
specification.	The	major	problem	was	that	adjusting	the	equilibrium	climate	
sensitivity	generally	required	adjusting	other	parameters	in	the	model	that	
determine	the	speed	of	adjustment	to	the	equilibrium;	the	adjustment	speed	is	
sometimes	represented	by	the	transient	climate	sensitivity.	This	problem	was	
identified	late	in	the	process,	after	the	second‐round	runs	had	been	completed,	and	
modelers	were	asked	to	make	the	adjustments	that	they	thought	appropriate.	Some	
models	made	adjustments	in	parameters	to	reflect	differences	in	large	climate	
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models.	Others	constrained	the	parameters	so	that	the	model	would	fit	the	historical	
temperature	record.	The	differing	approaches	led	to	differing	structural	responses	
to	the	climate	sensitivity	uncertainty,	as	will	be	seen	below.	
	

C. Grid	design	
	

In	the	first	track,	the	modeling	teams	provide	a	small	number	of	calibration	
runs	that	include	a	full	set	of	outputs	for	a	three‐dimensional	grid	of	values	of	the	
uncertain	parameters.	For	each	of	the	uncertain	parameters,	we	selected	five	values	
centered	on	the	model’s	baseline	values.	Therefore,	for	3	uncertain	parameters,	
there	were	125	runs	each	for	the	Base	and	the	Carbon	Tax	policy	scenarios.	

On	the	basis	of	these	calibration	runs,	the	next	step	involved	estimating	
surface‐response	functions	(SRFs)	in	which	the	model	outcomes	are	estimated	as	
functions	of	the	uncertain	parameters.	The	hope	was	that	if	the	SRFs	could	
approximate	the	models	accurately,	then	they	could	be	used	to	simulate	the	
probability	distributions	of	the	outcome	variables	accurately.	An	initial	test	
suggested	that	the	SRFs	were	well	approximated	by	quadratic	functions.	We	
therefore	set	the	range	of	the	grid	so	that	it	would	span	most	of	the	space	that	would	
be	covered	by	the	distribution	of	the	uncertain	parameters,	yet	not	go	so	far	as	to	
push	the	models	into	parts	of	the	parameter	space	where	the	results	would	be	
unreliable.		

As	an	example,	take	the	grid	for	population	growth.	The	central	case	is	the	
model’s	base	case	for	population	growth.	Each	model	then	uses	four	additional	
assumptions	for	the	grid	for	population	growth:	the	base	case	plus	and	minus	0.5%	
per	year	and	plus	and	minus	1.0%	per	year.	These	would	cover	the	period	2010	to	
2100.	For	example,	assume	that	the	model	had	a	base	case	with	a	constant	
population	growth	rate	of	0.7%	per	year	from	2010	to	2100.	Then	the	five	grid	
points	for	population	growth	would	be	constant	growth	rates	of	‐0.3%,	0.2%,	0.7%,	
1.2%,	and	1.7%	per	year.	Population	after	2100	would	have	the	same	growth	rate	as	
in	the	modeler’s	base	case.	These	assumptions	mean	that	population	in	2100	would	
be	(0.99)90,	(0.995)90,	1,	(1.005)90,	and	(1.01)90	times	the	base	case	population	for	
2100.		

For	productivity	growth,	the	grid	was	similarly	constructed,	but	adjusted	so	
that	the	growth	in	per	capita	output	for	2100	added	‐1%,	‐0.5%,	0%,	0.5%,	and	1%	
to	the	growth	rate	in	each	year	for	the	period	2010‐2100.	

For	the	climate	sensitivity,	the	modelers	were	to	add	to	the	baseline	
equilibrium	climate	sensitivity	‐3°C,	‐1.5°C,	0	°C,	1.5°C,	and	3°C.	It	turned	out	that	
the	lower	end	of	this	range	caused	difficulties	for	some	models,	and	for	these	the	
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modelers	reported	results	only	for	the	four	higher	points	in	the	grid	or	substituted	
another	low	value.	

In	principle,	then,	for	track	I	each	model	reported	5	x	5	x	5	model	results	for	
both	the	Base	case	and	the	Carbon	Tax	policy	assumptions.	

	

V. Approach	for	developing	probability	density	functions	
	

A. General	considerations	
	

The	three	uncertain	parameters	have	been	the	subject	of	uncertainty	analysis	
in	earlier	studies.	For	each	parameter,	we	reviewed	earlier	studies	to	determine	
whether	there	was	an	existing	set	of	methods	or	distributions	that	could	be	drawn	
upon.	The	desirable	features	of	the	distributions	is	that	they	should	reflect	best	
practice,	that	they	should	be	acceptable	to	the	modeling	groups,	and	that	they	be	
replicable.	It	turned	out	that	the	three	parameters	used	three	different	approaches,	
as	will	be	described	below.	

	

B. Population		
	

Population	growth	has	been	the	subject	of	projections	for	many	years,	and	
numerous	groups	have	undertaken	uncertainty	analyses	for	both	countries	and	at	
the	global	level.	Our	review	found	only	one	research	group	that	had	made	long‐term	
global	projections	of	uncertainty	for	several	years,	which	was	the	population	group	
at	the	International	Institute	for	Applied	Systems	Analysis	(IIASA)	in	Austria.	(For	a	
discussion,	see	O'Neill	et	al.	(2001)).	The	IIASA	demography	group	is	under	the	
direction	of	demographer	Wolfgang	Lutz.	

The	IIASA	stochastic	projections	were	developed	over	a	period	of	more	than	a	
decade	and	are	widely	used	by	demographers.	The	methodology	is	summarized	as	
follows:	“IIASA’s	projections…are	based	explicitly	on	the	results	of	discussions	of	a	
group	of	experts	on	fertility,	mortality,	and	migration	that	is	convened	for	the	
purpose	of	producing	scenarios	for	these	vital	rates”	(See	
http://www.demographic‐research.org/volumes/vol4/8/4‐8.pdf)	The	latest	
projections	from	2013	(Lutz	et	al.	2014)	are	an	update	to	the	previous	projections	
from	2007	and	2001	(Lutz	et	al.	2008),	2001).	The	methodology	is	described	as	
follows:	

The	forecasts	are	carried	out	for	13	world	regions.	The	forecasts	presented	here	
are	not	alternative	scenarios	or	variants,	but	the	distribution	of	the	results	of	
2,000	different	cohort	component	projections.	For	these	stochastic	simulations	
the	fertility,	mortality	and	migration	paths	underlying	the	individual	projection	
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runs	were	derived	randomly	from	the	described	uncertainty	distribution	for	
fertility,	mortality	and	migration	in	the	different	world	regions.	(Lutz,	Sanderson,	
and	Scherbov	2008)	

The	background	methods	are	described	as	follows	on	page	219	of	O'Neill	et	al.	
(2001):		

The	IIASA	methodology	is	based	on	asking	a	group	of	interacting	experts	to	
give	a	likely	range	for	future	vital	rates,	where	"likely"	is	defined	to	be	a	
confidence	interval	of	roughly	90%	(Lutz	1996,	Lutz	et	al.	1998).	Combining	
subjective	probability	distributions	from	a	number	of	experts	guards	against	
individual	bias,	and	IIASA	demographers	argue	that	a	strength	of	the	method	is	
that	it	may	be	possible	to	capture	structural	change	and	unexpected	events	that	
other	approaches	might	miss.	In	addition,	in	areas	where	data	on	historical	
trends	are	sparse,	there	may	be	no	better	alternative	to	producing	probabilistic	
projections.	

For	this	study,	we	are	aiming	for	a	parsimonious	parameterization	of	population	
uncertainty.	This	is	necessary	because	of	the	large	differences	in	model	structure.	
We	therefore	selected	the	uncertainty	about	global	population	growth	for	the	period	
2010‐2100	as	the	single	parameter	of	interest.	We	fitted	the	growth‐rate	quantiles	
from	the	IIASA	projections	to	several	distributions,	with	normal,	log‐normal,	and	
gamma	being	the	most	satisfactory.	The	normal	distribution	performed	better	than	
any	of	the	others	on	five	of	the	six	quantitative	tests	of	fit	for	distributions.	Based	on	
these	results,	we	therefore	decided	to	recommend	the	normal	distribution	for	the	
pdf	of	population	growth	over	the	period.	

In	addition,	we	did	several	alternative	tests	to	determine	whether	the	
projections	were	consistent	with	other	methodologies.	One	set	of	tests	examines	the	
projection	errors	that	would	have	been	generated	using	historical	data.	A	second	
test	looks	at	the	standard	deviation	of	100‐year	growth	rates	of	population	for	the	
last	millennium.	A	third	test	examines	projections	from	a	report	of	the	National	
Research	Council	that	estimated	the	forecast	errors	for	global	population	over	a	50‐
year	horizon	(see	NRC	(2000),	Appendix	F,	p.	344).	While	these	all	gave	slightly	
different	uncertainty	ranges,	they	were	similar	to	the	uncertainties	estimated	in	the	
IIASA	study.	

On	the	basis	of	this	review,	we	decided	to	use	a	normal	distribution	for	the	
growth	rate	of	population	based	on	the	IIASA	study	that	has	a	standard	deviation	of	
the	average	annual	growth	rate	of	0.22	percentage	points	per	year	over	the	period	
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2010‐2100.	More	details	with	a	background	memorandum	on	the	results	are	
available	from	the	authors.	

C. Climate	Sensitivity		
	

An	important	parameter	in	climate	science	is	the	equilibrium	or	long‐run	
response	in	the	global	mean	surface	temperature	to	a	doubling	of	atmospheric	
carbon	dioxide.	In	the	climate	science	community,	this	is	called	the	equilibrium	
climate	sensitivity.	With	reference	to	climate	models,	this	is	calculated	as	the	
increase	in	average	surface	temperature	with	a	doubled	CO2	concentration	relative	
to	a	path	with	the	pre‐industrial	CO2	concentration.	This	parameter	also	plays	a	key	
role	in	the	geophysical	components	in	the	IAMs	used	in	this	study.	In	the	remainder	
of	this	paper,	we	will	follow	the	convention	in	the	geosciences	and	call	it	the	
equilibrium	climate	sensitivity	(ECS).	

Given	the	importance	of	the	ECS	in	climate	science,	there	is	an	extensive	
literature	estimating	probability	density	functions.	These	pdfs	are	generally	based	
on	climate	models,	the	instrumental	records	over	the	last	century	or	so,	
paleoclimatic	data	such	as	estimated	temperature	and	radiative	forcings	over	ice‐
age	intervals,	and	the	results	of	volcanic	eruptions.	Much	of	the	literature	estimates	
a	probability	density	function	using	a	single	line	of	evidence,	but	a	few	papers	
synthesize	different	studies	or	different	kinds	of	evidence.	

We	focus	on	the	studies	drawing	upon	multiple	lines	of	evidence.	The	IPCC	
Fifth	Assessment	report	(AR5)	reviewed	the	literature	quantifying	uncertainty	in	
the	ECS	and	highlighted	five	recent	papers	using	multiple	lines	of	evidence	(IPCC	
2014).	Each	paper	used	a	Bayesian	approach	to	update	a	prior	distribution	based	on	
previous	evidence	(the	prior	evidence	usually	drawn	from	instrumental	records	or	a	
climate	model)	to	calculate	the	posterior	probability	density	function.	Since	each	
distribution	was	developed	using	multiple	lines	of	evidence,	and	in	some	cases	the	
same	evidence,	it	would	be	inconsistent	to	assume	that	they	were	independent	and	
simply	to	combine	them.	Further,	since	we	could	not	reliably	estimate	the	degree	of	
dependence	of	the	different	studies,	we	could	not	synthesize	them	by	taking	into	
account	the	dependence.	We	therefore	chose	the	probability	density	function	from	a	
single	study	and	performed	robustness	checks	to	using	the	results	from	alternative	
studies	cited	in	the	IPCC	AR5.	

The	chosen	study	for	our	primary	estimates	is	Olsen	et	al.	(2012).	This	study	
is	representative	of	the	literature	in	using	a	Bayesian	approach,	with	a	prior	based	
on	previous	studies	and	a	likelihood	based	on	observational	or	modeled	data,	such	
as	global	average	surface	temperatures	or	global	total	heat	content.	The	prior	in	
Olsen	et	al.	(2012)	is	primarily	based	on	Knutti	and	Hegerl	(2008).	That	prior	is	then	
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combined	with	output	variables	from	the	University	of	Victoria	ESCM	climate	model	
(Weaver	et	al.	2001)	to	determine	the	final	or	posterior	distribution.		

Olsen	et	al.	(2012)	was	chosen	for	the	following	reasons.	First,	it	was	
recommended	to	us	in	personal	communications	with	several	climate	scientists.	
Second,	it	was	representative	of	the	other	four	studies	we	examined	and	falls	into	
the	middle	range	of	the	different	estimates.4	Third,	sensitivity	analyses	of	the	effect	
on	aggregate	uncertainty	of	changing	the	standard	deviation	of	the	Olsen	et	al.	
(2012)	results	found	that	the	sensitivity	was	small	(see	the	section	below	on	
sensitivity	analyses).	Appendix	1	provides	more	details	on	Olsen	et	al.	(2012)	and	
also	presents	a	figure	comparing	this	study	to	the	other	studies	in	the	IPCC	AR5.		

Note	that	the	US	government	used	a	version	of	the	Roe	and	Baker	distribution	
calibrated	to	three	constraints	from	the	IPCC	for	its	uncertainty	estimates	(IAWG	
2010).	Specifically,	the	IAWG	Report	modified	the	original	Roe	and	Baker	
distribution	to	assume	that	the	median	value	is	3.0	°C,	the	probability	of	being	
between	2	and	4.5	°C	is	two‐thirds,	and	there	is	no	mass	below	zero	or	above	10	°C.	
The	modified	Roe	and	Baker	distribution	has	a	higher	mean	ECS	than	any	of	the	
models	(3.5	°C)	and	a	much	higher	dispersion	(1.6	°C	as	compared	to	0.84	°C	from	
Olsen	et	al.	2012).	

The	estimated	pdf	for	Olsen	et	al.	(2012)	was	derived	as	follows.	We	first	
obtained	the	pdf	from	the	authors.	This	pdf	was	provided	as	a	set	of	equilibrium	
temperature	values	and	corresponding	probabilities.	We	then	explored	families	of	
distributions	that	best	approximated	the	numerical	pdf	provided.	We	found	that	a	
log‐normal	pdf	fits	the	posterior	distributions	extremely	well.	

To	find	the	parameters	of	the	fitted	log‐normal	pdf,	we	minimize	the	squared	
difference	between	the	posterior	density	function	from	Olsen	et	al.	and	the	log‐
normal	pdf	over	the	support	of	the	distribution	(the	L2	or	Euclidian	norm).	In	other	
words,	we	minimize	the	sum	of	the	square	of	the	vertical	differences	between	the	
posterior	pdf	and	a	log‐normal	pdf	over	all	grid	points	values	in	the	Olsen	et	al.	
(2012)	distribution.5	Figure	1	shows	the	Olsen	et	al.	(2012)	pdf,	along	with	the	fitted	
log‐normal	density	function.	The	fit	is	extremely	close,	with	the	log‐normal	
distribution	always	within	0.14%	of	the	Olsen	et	al.	(2012)	pdf	for	any	grid	point	
value.	

                                                            
4	In	tests,	we	found	that	the	Olsen	et	al.	(2012)	distribution	is	similar	to	a	simple	mixture	
distribution	of	all	five	distributions.	We	calculate	this	mixture	distribution	by	taking	the	
average	probability	over	all	distributions	at	each	temperature	increase.		
	
5	More	precisely	we	minimize	over	the	range	of	the	Olsen	et	al.	distribution,	[1.509,	7.4876]	
°C,	with	a	grid	point	spacing	of	0.1508	°C.		
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D. Total	Factor	Productivity	
	

	Uncertainty	in	the	growth	of	productivity	(or	output	per	capita)	is	known	to	be	a	
critical	parameter	in	determining	all	elements	of	climate	change,	from	emissions	to	
temperature	change	to	damages	(Nordhaus	2008).	Climate	models	generally	draw	
their	estimates	of	emissions	trajectories	from	background	models	of	economic	
growth	such	as	scenarios	prepared	for	the	IPCC	or	studies	of	the	Energy	Modeling	
Forum.	No	major	studies,	however,	rely	on	statistically‐based	estimates	of	emissions	
and	economic	growth.	

Forecasts	of	long‐run	productivity	growth	involve	active	debates	on	issues	such	
as	the	role	of	new	technologies	and	inventions	(Brynjolfsson	and	McAfee	2012,	
Gordon	2012),	potential	increases	in	the	research	intensity	and	educational	
attainment	in	emerging	economies	(Fernald	and	Jones	2014,	Freeman	2010),	and	
institutional	reform	and	political	stability	(Acemoglu	et	al.	2005).	While	the	
empirical	literature	on	economic	growth	has	provided	evidence	in	support	of	
various	underlying	models,	no	existing	study	contains	sufficient	information	to	
derive	a	probability	distribution	for	long‐run	growth	rates.		

 

 
	

Figure	1.	The	Olsen	et	al.	(2012)	probability	density	function	along	with	the	fitted	
log‐normal	distribution	used	in	our	analysis.		
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The	historical	record	provides	a	useful	background	for	estimating	future	trends.	
However,	it	is	clear	from	both	theoretical	and	empirical	perspectives	that	the	
processes	driving	productivity	growth	are	non‐stationary.	For	example,	estimates	of	
the	growth	of	global	output	per	capita	for	the	18th,	19th,	and	20th	century	are	0.6,	1.9,	
and	3.7	percent	per	year	(DeLong	2015	in	
http://holtz.org/Library/Social%20Science/Economics/Estimating%20World%20
GDP%20by%20DeLong/Estimating%20World%20GDP.htm).	To	the	extent	that	
experts	on	economic	growth	possess	valid	insights	about	the	likelihood	and	possible	
determinants	of	long‐run	growth	patterns,	then	information	drawn	from	experts	
can	add	value	to	forecasts	based	purely	on	historical	observations	or	drawn	from	a	
single	model.	Combining	expert	estimates	has	been	shown	to	reduce	error	in	short‐
run	forecasts	of	economic	growth	(Batchelor	and	Dua	1995).	However,	there	are	
few	expert	studies	on	long‐run	growth	(see	Appendix	2	for	discussion)	and,	to	our	
knowledge,	there	has	been	no	systematic	and	detailed	published	study	of	
uncertainty	in	long‐run	future	growth	rates.	

To	develop	estimates	of	uncertainties,	the	project	team,	led	by	Peter	Christensen,	
undertook	a	survey	of	experts	on	economic	growth	to	determine	both	the	central	
tendency	and	the	uncertainty	about	long‐run	growth	trends.	Our	survey	utilized	
information	drawn	from	a	panel	of	experts	to	characterize	uncertainty	in	estimates	
of	global	output	for	the	periods	2010‐2050	and	2010‐2100.	We	defined	growth	as	
the	average	annual	rate	of	real	per	capita	GDP,	measured	in	purchasing	power	
parity	(PPP)	terms.	We	asked	experts	to	provide	estimates	of	the	average	annual	
growth	rates	at	10th,	25th,	50th,	75th,	90th	percentiles.		

Beginning	in	the	summer	of	2014,	we	sent	out	surveys	to	a	panel	of	25	economic	
growth	experts.	As	of	June	2015,	we	collected	11	complete	results	with	full	
uncertainty	analysis	for	the	period	2010‐2100.	A	summary	of	the	procedure	is	
provided	in	Appendix	2,	and	a	complete	report	will	be	prepared	separately.	

There	are	many	different	approaches	to	combining	expert	forecasts	(Armstrong	
2001)	and	aggregating	probability	distributions	(Clemen	and	Winkler	1999).	We	
assume	that	experts	have	information	about	the	likely	distribution	of	long‐run	
growth	rates.	Their	information	sets	are	defined	by	estimates	for	5	different	
percentiles.	We	begin	by	assuming	that	the	estimates	are	independent	across	
experts	and	then	examined	the	distributions	that	best	fit	the	percentiles	for	each	
expert	and	for	the	combined	estimates	(average	of	percentiles)	across	experts.				

We	found	it	useful	for	this	project	to	characterize	the	expert	pdfs	with	commonly	
used	distributions	so	that	the	Monte	Carlo	estimates	could	be	easily	implemented.	In	
testing	the	distributions	for	each	expert,	we	found	that	most	experts’	estimates	can	
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be	closely	fitted	by	a	normal	distribution;	similarly,	the	combined	distribution	is	
well	fitted	by	a	normal	distribution.	Details	are	provided	in	Appendix	2.	

The	resulting	combined	normal	distribution	has	a	mean	growth	rate	of	2.29%	
per	year	and	a	standard	deviation	of	the	growth	rate	of	1.15%	per	year	over	the	
period	2010‐2100.	(The	mean	growth	rate	of	per	capita	GDP	in	the	base	runs	of	the	
six	models	is	slightly	lower	at	1.9%	per	year	over	this	period.)	We	test	different	
approaches	for	combining	the	expert	responses	and	find	little	sensitivity	to	the	
choice	of	aggregation	method.	Figure	2	shows	the	fitted	individual	and	combined	
normal	pdfs	(explained	in	Appendix	2).	In	the	Monte	Carlo	estimates	below,	we	
chose	a	standard	deviation	of	the	growth	rate	of	per	capita	output	of	1.12%	per	year	
(based	on	the	first	11	responses).	This	value	is	used	in	this	draft,	but	will	be	updated	
with	the	addition	of	further	responses.	

	

 

Figure	2.	Individual	and	combined	pdfs	for	annual	growth	rates	of	output	per	capita,	
2010	–	2100	(average	annual	percent	per	year)	
	
For	the	methods,	see	Appendix	2.	
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It	is	useful	to	compare	the	survey	results	with	historical	data.	If	we	take	the	long‐
term	estimates	from	Maddison	(2003),	the	100‐year	variability	of	growth	over	the	
ten	centuries	from	1000	to	2000	was	1.5%	per	year,	with	a	range	of	‐0.1%	to	3.7%	
per	year.	The	variability	in	these	century‐step	data	is	higher	than	the	experts’	
estimate	of	1.15%	per	year.	

Global	growth	rates	based	on	detailed	national	data	are	available	since	1900.	The	
standard	deviation	of	annual	growth	rates	over	this	period	was	2.9%	per	year,	while	
the	standard	deviation	of	25‐year	growth	rates	was	1.2	or	1.4%	per	year	depending	
upon	the	source.	The	variability	of	growth	in	recent	years	was	lower	than	for	the	
entire	period	since	1900.	The	standard	deviation	in	the	annual	growth	rate	during	
the	period	1975‐2000	was	1.1%	per	year.	We	cannot	easily	translate	historical	
variabilities	into	century‐long	variabilities	without	assuming	a	specific	stochastic	
structure	of	growth	rates.		

	

VI. Results	of	Modeling	Studies	
	

A. Model	results	and	lattice	diagrams	
	

We	begin	by	providing	results	on	the	calibration	runs	and	the	surface	response	
functions.	For	each	model,	there	is	a	voluminous	set	of	inputs	and	output	variables	
from	2010	to	2100.	The	full	set	(consisting	of	46,150	x	22	elements)	clearly	cannot	
be	fully	presented.	We	restrict	our	focus	here	to	some	of	the	most	important	results,	
and	consign	further	results	to	Appendix	3,	with	the	full	results	available	online	at	
time	of	publication.		

To	help	visualize	the	results,	we	have	developed	lattice	diagrams	to	show	how	
the	results	vary	across	uncertain	variables	and	models.	Figure	3	is	a	lattice	diagram	
for	the	increase	in	global	mean	surface	temperature	in	2100.	Within	each	of	the	nine	
panels,	the	y‐axis	is	the	global	mean	surface	temperature	increase	in	2100	relative	
to	1900.	The	x‐axis	is	the	value	of	the	equilibrium	temperature	sensitivity.	Going	
across	panels	on	the	horizontal	axis,	the	first	column	uses	the	grid	value	of	the	first	
of	the	five	population	scenarios	(which	is	the	lowest	growth	rate);	the	middle	
column	shows	the	results	for	the	modeler’s	baseline	population;	and	the	third	
column	shows	the	results	for	the	population	associated	with	the	highest	population	
grid	(or	highest	growth	rate).		

Going	down	panels	on	the	vertical	axis,	the	first	row	uses	the	highest	growth	rate	
for	TFP	(or	the	fifth	TFP	grid	point);	the	middle	row	shows	TFP	growth	for	the	
modelers’	baselines;	and	the	bottom	row	shows	the	results	for	the	slowest	grid	
point	for	the	growth	rate	of	TFP.	Note	that	in	all	cases,	the	modelers’	baseline	values	
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generally	differ,	but	the	differences	in	parameter	values	across	rows	or	columns	are	
identical.	

To	understand	this	lattice	graph,	begin	in	the	center	panel.	This	panel	uses	the	
modeler’s	baseline	population	and	TFP	growth.	It	indicates	how	temperature	in	
2100	across	models	varies	with	the	ECS,	with	the	differences	being	1.5	°C	between	
the	ECS	grid	points.	A	first	observation	is	that	the	models	all	assume	that	the	ECS	is	
close	to	3	°C	in	the	baseline.	Next,	is	that	the	resulting	baseline	temperature	
increases	for	2100	are	closely	bunched	between	3.75	and	4.25	°C.	All	curves	are	
upward	sloping,	indicating	a	greater	2100	temperature	change	is	associated	with	a	
higher	ECS.	

As	the	ECS	varies	from	the	baseline	values,	the	model	differences	are	distinct.	
These	can	be	seen	in	the	slopes	of	the	different	model	curves	in	the	middle	panel	of	
Figure	3.	We	will	see	below	that	the	impact	of	a	1	°C	change	in	ECS	on	2100	
temperature	varies	by	a	factor	of	2½	across	models.	For	example,	DICE,	MERGE,	and	
GCAM	have	relatively	responsive	climate	modules,	while	IGSM	and	FUND	climate	
modules	are	much	less	responsive	to	ECS	differences.	The	difference	across	models	
becomes	larger	as	we	move	from	the	bottom‐left	to	the	upper	right‐hand	panel,	
corresponding	to	increasing	population	and	TFP	growth	from	bottom	left	to	top	
right.	This	result	highlights	key	differences	in	both	the	economic	and	climate	
components	of	the	different	models.	
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Another	important	relationship	to	examine	is	how	different	models	react	to	
the	carbon	prices.	Figure	4	shows	the	percentage	reduction	in	CO2	emissions	in	the	
Carbon	Tax	scenario	v.	the	Base	run.	The	horizontal	axis	shows	the	magnitude	of	the	
carbon	tax.	One	key	feature	of	all	models	is	that	attaining	zero	emissions	would	
require	extremely	high	carbon	prices.	

	

	 	

 

 

 

 

Figure	3.	Lattice	diagram	for	2100	temperature	increase		
This	lattice	diagram	shows	the	differences	in	model	results	for	2100	global	mean	
surface	temperature	across	population,	total	factor	productivity	and	temperature	
sensitivity	parameters.	The	central	box	uses	the	modelers’	baseline	parameters	and	
the	Base	policy.	
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There	are	many	other	results	of	the	modeling	exercise.	Appendix	3	contains	
further	lattice	diagrams,	including	those	for	per	capita	consumption,	emissions,	and	
damages,	as	well	as	additional	tables	of	results.	However,	the	primary	purpose	of	
the	present	study	is	to	determine	the	impact	of	uncertainties,	so	we	leave	the	model	
comparisons	of	major	outputs	aside	at	this	point.	

	

B. Results	of	the	estimates	of	the	surface	response	functions	
	

Recall	that	track	I	provides	the	model	outcomes	(such	as	output,	emissions,	
and	temperature)	for	each	grid‐point	of	a	5	x	5	x	5	x	2	grid	of	the	values	of	the	
uncertain	parameters	and	policies.	The	next	step	in	the	analysis	is	to	fit	surface	
response	functions	(SRFs)	to	each	of	the	model	outputs.	These	SRFs	then	will	be	
used,	when	combined	with	the	Track	II	probability	distributions	just	discussed,	to	
provide	probability	distributions	of	the	outcome	variables	for	each	model.	

	

 

 
 

Figure	4.	Carbon	tax	and	emissions	reductions	by	model	
Models	show	differing	response	to	higher	carbon	prices.	Note	that	the	carbon	prices	
are	all	associated	with	given	dates	and	are	common	for	all	models.	The	points	to	the	
far	left	are	for	2010,	while	the	ones	at	the	far	right	are	for	2100.	These	estimates	are	
for	the	modelers’	baseline	parameters.		
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We	undertook	extensive	analysis	of	different	approaches	to	estimating	the	
SRFs.	The	initial	and	eventually	preferred	approach	was	a	linear‐quadratic‐
interactions	(LQI)	specification.	This	took	the	following	form:	

3 3

0
1 1 1

j

i i ij i j
i j i

Y u u u  
  

    		

In	this	specification,	  and i ju u 	are	the	uncertain	parameters.	The	Y	are	the	

outcome	variables	for	different	models	and	different	years	(e.g.,	temperature	for	the	
FUND	model	for	2100	in	the	Base	run	for	different	values	of	the	3	uncertain	
parameters).	The	parameters	 0 ,  , and i i j   are	the	estimates	from	the	SRF	

regression	equations.	We	suppress	the	subscript	for	the	model,	year,	policy,	and	
variable.		

Table	1	shows	a	comparison	of	the	results	for	temperature	and	log	of	output	
for	the	linear	(L)	and	LQI	specifications	for	the	six	models.	All	specifications	show	
marked	improvement	of	the	equation	fit	in	the	LQI	relative	to	the	L	version.	Looking	
at	the	log	output	specification	(the	last	column	in	the	bottom	set	of	numbers),	the	
residual	variance	in	the	LQI	specification	is	essentially	zero	for	all	models.	For	the	
temperature	SRF,	more	than	99.5%	of	the	variance	is	explained	by	the	LQI	
specification.	The	standard	errors	of	equations	for	2100	temperature	range	from	
0.05	to	0.18	°C	for	different	models	in	the	LQI	version.	
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The	equations	are	fit	as	deviations	from	the	central	case,	so	coefficients	are	
linearized	at	the	central	point,	which	is	the	modelers’	baseline	set	of	parameters.	
Looking	at	the	LQI	coefficients	for	temperature,	note	that	the	effect	of	the	ECS	on	
2100	temperature	varies	substantially	among	the	models.	At	the	high	end,	there	is	
close	to	a	unit	coefficient,	while	at	the	low	end	the	variation	is	about	0.4	°C	per	°C	in	

 

 
 

 

Table	1.	Linear	parameters	in	of	SRF	for	temperature	and	log	output	for	linear	(L)	
and	liner‐quadratic‐interactions	(LQI)	specifications	
	

The	linear	parameters	are	the	coefficients	on	the	linear	term	in	the	SRF	regressions.	
Because	the	data	are	decentered	(remove	the	medians),	the	linear	terms	in	the	
higher‐order	polynomials	are	the	derivatives	or	linear	terms	at	the	median	values	of	
the	uncertain	parameters.		
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ECS	change.	For	TFP,	the	impacts	are	relatively	similar	except	for	the	WITCH	model,	
which	is	much	lower.	This	is	likely	due	to	implementation	of	the	TFP	changes	as	
input‐neutral	technical	change	(rather	than	changes	in	labor	productivity,	as	in	
several	other	models).	For	population,	the	LQI	coefficients	vary	by	a	factor	of	three.		

For	log	of	output,	several	models	have	no	feedback	from	ECS	to	output	and	
thus	show	a	0.000	value.	The	impact	of	TFP	is	almost	uniform	by	design.	Similarly,	
the	impact	of	population	on	output	is	very	similar.	

We	tested	seven	different	specifications	for	the	SRF:	Linear	(L),	Linear	with	
interactions	(LI),	Linear	quadratic	(LQ),	Linear,	quadratic,	linear	interactions	(LQI)	
as	shown	above,	3rd	degree	polynomial	with	linear	interactions	(P3I),	4th	degree	
polynomials	with	second	degree	interactions	(P4I2),	and	fourth	degree	polynomial	
with	fourth	degree	interactions	and	polynomial	three‐way	interactions	(P4I4S3).	
For	virtually	all	models	and	specifications,	the	accuracy	increased	sharply	as	far	as	
the	LQI	specification.	However,	as	is	shown	in	Figure	5,	very	little	further	
improvement	was	found	for	the	more	exotic	polynomials.	In	addition	to	the	
polynomial	interpolations,	we	investigated	several	alternative	techniques,	including	
Chebyshev	polynomials	and	basis‐splines.	We	found	no	improvement	from	these	
other	approaches.	

	
 

 
 

Figure	5.	Residual	variance	for	all	variables,	models,	and	specifications	indicates	that	
for	nearly	all	models,	there	is	little	to	be	gained	adding	further	polynomial	terms	beyond	
LQI. 
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	 In	summary,	we	found	that	the	linear‐quadratic‐interaction	(LQI)	
specification	of	the	surface	response	function	performed	extremely	well	in	fitting	
the	data	in	our	tests.	The	reason	is	that	the	models,	while	highly	non‐linear	overall,	
are	generally	close	to	quadratic	in	the	three	uncertain	parameters.	We	are	therefore	
confident	that	they	are	a	reliable	basis	for	the	Monte	Carlo	simulations.	
	

C.	Reliability	of	the	MUP	procedures	with	extrapolation	
	

One	issue	that	arises	in	estimating	the	distributions	of	outcome	variables	is	
the	extent	to	which	the	calibration	runs	in	track	I	adequately	cover	the	range	of	the	
pdfs	from	track	II.	For	both	population	and	the	equilibrium	temperature	sensitivity,	
the	calibration	runs	cover	at	least	99.9	%	of	the	range	of	the	pdfs.	However,	when	
setting	the	calibration	range	for	TFP	based	on	earlier	informal	estimates,	we	
underestimated	the	variability	of	the	final	pdfs.	As	a	result,	the	calibration	runs	only	
extend	as	far	as	the	83	percentile	at	the	upper	end,	requiring	us	to	extrapolate	
beyond	the	range	of	the	calibration	runs.	

Since	it	was	not	possible	to	repeat	the	calibration	runs	with	an	expanded	grid,	
we	tested	the	reliability	of	the	extrapolation	and	the	two	track	approach	with	two	
models.	We	first	examined	the	reliability	for	TFP	with	the	base	case	in	the	DICE	
model.	This	was	done	by	making	runs	with	increments	of	TFP	growth	up	to	3	
estimated	standard	deviations	(i.e.,	up	to	a	global	output	growth	rate	of	6.1%	per	
year	to	2100).	These	runs	cover	99.7%	of	the	distribution.	We	then	estimated	a	
surface	response	function	for	2100	temperature	over	the	same	interval	as	for	the	
calibration	exercises	and	extrapolated	outside	the	range.	The	results	showed	high	
reliability	of	the	estimated	SRF	for	temperature	increase	up	to	about	2	standard	
deviations	above	the	baseline	TFP	growth	rate.	Beyond	that,	the	SRF	tended	to	
overestimate	the	2100	temperature.	(Similar	results	were	found	for	CO2	
concentrations	and	the	damage‐output	ratio	in	the	DICE	model.)	The	reason	for	the	
overestimate	is	that	carbon	fuels	become	exhausted	at	high	growth	rates,	so	raising	
the	growth	rate	further	above	the	already‐high	rate	has	a	relatively	small	effects	on	
emissions,	concentrations,	2100	temperature,	and	the	damage	ratio.	Note	that	this	
implies	that	the	far	upper	tail	of	the	temperature	distribution	using	the	corrected	
SRF	will	show	a	thinner	tail	than	the	one	generated	by	the	SRF	estimated	over	the	
calibration	runs.	

We	also	performed	a	more	comprehensive	comparison	of	the	MUP	
procedures	with	a	full	Monte	Carlo	using	the	FUND	model.	For	this,	we	took	the	pdfs	
for	the	three	uncertain	variables	and	ran	a	Monte	Carlo	for	the	full	FUND	model	with	
1	million	draws.	We	then	compared	the	means	and	standard	deviations	of	different	
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variables	for	the	two	approaches.	We	tested	four	different	specifications	of	the	SRFs	
to	determine	whether	these	would	produce	markedly	different	outcomes.	The	
results	indicated	that	the	MUP	procedure	provided	reliable	estimates	of	the	means	
and	standard	deviations	of	all	variables	that	we	tested	except	FUND	damages.	
Excepting	damages,	for	the	preferred	LQI	estimate,	the	absolute	average	error	of	the	
mean	for	the	MUP	procedure	relative	to	the	FUND	Monte	Carlo	was	0.3%,	while	the	
absolute	average	error	for	the	standard	deviation	was	1.2%.	For	damages,	the	
errors	were	7%	and	44%,	respectively.	Additionally,	the	percentile	estimates	for	the	
MUP	procedure	(again	except	for	damages)	were	accurate	up	to	the	90th	percentile.	
And,	as	will	be	noted	below,	the	estimates	for	the	parameters	of	the	tails	of	the	
distributions	were	accurate	for	all	variables	except	damages.	A	note	providing	
further	details	on	the	comparisons	is	available	from	the	authors.	
	

VII. Results	of	the	Monte	Carlo	simulations	
	

A. Distributions	for	major	variables	
	

	 For	the	Monte	Carlo	simulations,	we	took	the	SRFs	for	each	
parameter/model/year/policy	and	made	1,000,000	draws	from	each	pdf	for	the	
three	uncertain	parameters.	We	then	examined	the	resulting	distributions.	This	
sample	size	was	chosen	because	the	results	were	reliable	at	that	level.	The	bootstrap	
standard	errors	of	the	means	and	the	standard	deviations	were	generally	less	than	
0.1%	of	the	mean	or	standard	deviation.	The	exception	was	for	damages,	where	the	
bootstrap	standard	error	of	the	estimated	standard	deviations	was	about	0.2%	of	
the	value	for	the	FUND	model.	We	treat	each	pdf	independently,	but	recognize	that	
there	may	be	some	correlation	between	realizations	of	population	and	GDP.	
However,	explorations	into	this	revealed	that	it	did	not	substantially	influence	our	
findings.	

Table	2	shows	statistics	of	the	distribution	of	the	draws	for	each	of	the	major	
outcome	variables,	with	averages	taken	across	all	six	models.	We	also	show	the	
estimates	for	the	linear	and	LQI	versions	to	illustrate	the	sensitivity	of	the	results	to	
the	SRF	specification.	The	last	column	shows	the	coefficient	of	variation	for	each	
variable.	Note	that	these	estimates	are	within‐model	(parametric	uncertainty)	
results	and	do	not	include	across‐model	variability.	The	results	highlight	that	
emissions,	economic	output,	and	damages	have	the	highest	coefficient	of	variation,	
underscoring	that	the	uncertainty	in	these	output	variables	is	greater	than	for	other	
variables,	such	as	CO2	concentrations	and	temperature.	This	is	the	result	of	both	the	
underlying	pdfs	used	and	the	models	themselves.	
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Table	3	shows	the	percentile	distribution	for	all	major	variables	for	all	models	
with	results	for	the	base	case.	The	detailed	results	by	models	are	provided	in	the	
appendix.	A	key	result	is	the	distribution	of	temperature	increase	for	2100.	The	
median	increase	across	all	models	is	3.79	°C	above	1900	levels.	The	95th	percentile	
of	the	increase	is	5.46	°C.	Given	the	size	of	the	interquartile	range,	these	results	
definitely	indicate	that	there	are	substantial	uncertainties	in	all	aspects	of	future	
climate	change	and	its	impacts	in	all	the	models	investigated	here.	

	

	

 

 

 

Table	2.	Results	of	Monte	Carlo	simulations	for	averages	of	all	models	
The	table	shows	the	values	of	all	variables	for	2100,	except	for	the	social	cost	of	
carbon,	which	is	for	2020.	Damages	and	SCC	are	for	three	models.	
 

 

 

Table	3.	Distribution	of	all	major	variables,	average	of	six	models	
The	date	for	all	variables	is	2100	except	for	the	SCC,	which	is	2020.	Damages	and	
SCC	are	for	three	models.	
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Table	4	shows	the	distribution	for	global	temperature	increase	in	2100	by	
model.	The	temperature	distributions	of	the	six	models	are	on	the	whole	reasonably	
close.	The	median	ranges	from	3.6	to	4.2°C,	with	IGSM	being	the	lowest	and	MERGE	
being	the	highest.	The	interquartile	range	varies	from	0.99	°C	(FUND)	to	1.39	°C	
(DICE).	The	10‐90%	ranges	from	1.91	°C	(WITCH)	to	2.65	°C	(DICE).	Since	the	
variability	in	the	random	parameters	is	the	same,	the	differences	are	due	to	model	
structures.	
	 One	interesting	feature	is	the	temperature	distribution	in	the	tails.	The	99th	
percentile	ranges	from	5.6	(WITCH)	to	7.1	°C	(MERGE),	while	the	far	tail	of	the	
99.9th	percentile	ranges	from	6.2	(WITCH)	to	8.5	°C	(MERGE).	
	

	

	 Table	5	shows	the	distribution	of	the	SCC	for	the	three	models	that	provide	
these	estimates.	These	are	the	estimates	of	the	present	value	of	the	flow	of	future	
marginal	damages	of	emissions	in	2020.	Two	of	the	models	(WITCH	and	DICE)	use	
similar	quadratic	damage	functions	and	are	roughly	comparable	in	the	middle	of	the	
distribution,	but	the	range	is	much	smaller	in	WITCH.	6	The	FUND	model	has	much	
lower	damages	(due	to	a	different	damage	function),	and	the	SCC	distribution	is	an	
order	of	magnitude	lower	than	the	other	two	models.	Note	that	the	central	estimate	
of	the	SCC	here	is	$13.30	per	ton	of	CO2.	This	is	much	lower	than	the	preferred	
estimate	of	the	US	government	for	2020,	which	is	$46	per	ton	in	2011$	with	a	3%	
annual	discount	rate.	However,	the	base	case	discount	rates	in	the	MUP	runs	for	the	
models	that	report	average	4½%	per	year	to	2050.	The	IAWG	estimate	at	a	5%	
discount	rate	is	$13	per	ton	and	therefore	consistent	with	the	estimates	presented	
here.		
	 	

                                                            
6	In	WITCH	multiple	regions	are	modeled,	hence	the	global	SCC	is	the	result	of	the	
aggregation	of	regional	SCC.		

 

 

Table	4.	Distribution	of	temperature	change	in	the	Base	case,	2100,	°C 
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	 Figure	6	shows	the	results	for	the	temperature	distributions	for	the	models	
on	a	percentile	scale.	The	shapes	of	the	distributions	are	similar,	although	they	differ	
by	as	much	as	1	°C	in	scale	across	most	of	the	distribution.		
	

	

	 An	important	question	that	this	study	can	address	is	whether,	based	on	the	
current	model	structures	and	the	assumptions	about	uncertain	parameters,	the	
distributions	of	outcomes	are	thin	or	fat	tailed.	For	these	tests,	we	define	a	fat	tailed	
distribution	as	one	that	has	an	infinite‐variance	Pareto	or	power‐law	distribution	in	
the	tails	(based	on	the	discussion	in	Schuster	1984).	Variables	with	a	Pareto	
distribution	have	infinite	variance	when	the	shape	parameter	is	below	2,	and	they	
have	an	infinite	mean	with	a	parameter	equal	to	or	less	than	one.	As	an	informal	
test,	we	can	examine	the	ratio	of	the	values	of	the	output	variables	at	the	99th	and	

 

 

Table	5.	Distribution	of	social	cost	of	carbon,	2020	(2005$	per	ton	CO2) 

 

 
 

Figure	6.	Percentiles	of	the	change	in	temperature	in	2100	across	the	six	models.	
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99.9th	percentile.	For	a	normal	distribution,	the	ratio	of	these	is	1.33.	For	Pareto	
distributions	with	slope	values	of	2.0,	1.8,	and	1.5,	the	ratios	are	3.7,	3.9,	and	5.2.	If	
we	examine	the	Monte	Carlo	estimates,	the	maximum	ratio	is	1.56,	which	occurs	for	
damages	in	the	DICE	and	FUND	models.	While	this	suggests	a	tail	that	is	slightly	
fatter	than	the	normal	distribution,	it	falls	far	short	of	the	slope	associated	with	an	
infinite‐variance	Pareto	process.	

Before	presenting	the	results,	we	reiterate	the	concern	that	the	calibration	
runs	do	not	extend	far	into	the	tails	for	TFP.	This	implies	that	the	results	on	tails	
reported	here	rely	on	extrapolations	of	the	SRF	outside	the	sample	range.	We	
comment	below	on	our	replication	of	the	tail	estimates	with	the	FUND	model,	which	
are	generally	accurate.	We	also	emphasize	that	the	estimates	of	the	tails	are	derived	
from	the	interaction	of	the	models	with	the	assumed	pdfs.	To	the	extent	that	the	
models	omit	discontinuities	or	sharp	non‐linearities,	or	that	our	assumed	pdfs	are	
too	thin‐tailed,	then	we	may	underestimate	the	thickness	of	the	tails.		

We	can	also	use	a	formal	test	of	the	Pareto	shape	parameter,	although	this	is	
more	complicated	because	it	requires	assumptions	about	the	minimum	of	the	
Pareto	region	(statistical	techniques	are	from	Rytgaard	1990).	Examining	the	top	
10%	of	the	damage	distribution	for	the	DICE	model	(the	most	skewed	of	the	
variables),	we	find	that	the	parameter	of	the	Pareto	distribution	above	the	1%	right	
tail	is	estimated	to	be	4.7	(	+	0.047),	which	is	well	below	the	infinite‐variance	
threshold	of	2.	The	Pareto	parameter	estimate	for	the	0.1%	tail	is	7.03	(	+	0.22).	
These	tests	reject	the	hypothesis	that	the	distributions	are	fat‐tailed	in	the	sense	of	
belonging	to	an	infinite‐variance	Pareto	distribution.	The	results	are	due	to	both	the	
structures	of	the	models	and	the	nature	of	the	shocks.	Nothing	in	the	models	
prevents	the	generation	of	fat	tails	in	this	situation,	but	they	may	miss	critical	non‐
linearities,	so	the	tests	are	not	by	any	means	conclusive.	

We	examined	the	validity	of	the	results	for	the	tails	using	the	full	Monte	Carlo	
estimate	of	the	FUND	model	discussed	above.	For	these,	we	compared	the	informal	
tests	(ratio	of	the	variables	at	the	99.9%ile	to	the	99%ile).	The	MUP	calculations	
were	very	accurate	for	all	variables	except	damages,	whereas	for	damages	the	MUP	
calculations	underestimated	the	skewness	(overestimated	the	Pareto	tail).	We	also	
examined	the	Pareto	parameter	in	the	full	FUND	Monte	Carlo	and	found	that	the	
estimate	was	significantly	above	the	threshold	of	an	infinite	variance	process.	

The	results	can	also	be	seen	in	box	plots.	Figure	7	shows	the	box	plot	for	
temperature	increase	to	2100.	Figure	8	shows	the	box	plot	for	the	CO2	
concentrations	for	2100.	Both	of	these	underscore	that	while	there	are	differences	
between	the	models	in	the	way	that	they	are	run	for	this	study,	they	are	perhaps	
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smaller	than	one	might	have	expected	–	and	are	much	smaller	than	the	within‐
model	variation.	We	show	this	formally	in	the	next	section.	
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Figure	7.	Box	plot	for	the	increase	in	temperature	across	models	in	2100.		
Note	on	boxplots:	Dot	is	mean.	Horizontal	line	is	median.	Shaded	area	around	line	is	
95%	confidence	interval	of	median	(usually	too	small	to	see).	Box	contains	
interquartile	range	(IQR	or	25	%ile	to	75	%ile).	The	upper	staple	(horizontal	bar)	is	
set	at	the	median	plus	2	times	the	IQR,	while	lower	staple	is	set	at	the	median	minus	
2	times	the	IQR.	The	upper	stable	is	approximately	the	95%ile	for	most	variables.	
Because	of	skewness	of	the	variables,	the	lower	staple	represents	far	outliers,	and	is	
generally	around	the	0.1%ile.	
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B. Model	uncertainty	v.	parametric	uncertainty	
	

	 In	examining	the	uncertainties	of	climate	change	and	other	issues,	a	common	
approach	has	been	to	look	at	the	differences	among	forecasts,	models,	or	
approaches	(“ensembles”)	and	to	assume	that	these	are	a	reasonable	proxy	for	the	
uncertainties	about	the	end	result	or	endogenous	variables.	In	the	area	of	climate	
models,	for	example,	researchers	have	often	looked	at	the	equilibrium	climate	
sensitivities	in	different	climate	models	and	assumed	that	the	dispersion	would	be	
an	accurate	measure	of	the	actual	uncertainty	of	the	ECS.	

It	is	conceptually	clear	that	the	ensemble	approach	is	an	inappropriate	
measure	of	uncertainty	of	outcomes.	The	difference	among	models	represents	a	
measure	of	structural	uncertainty.	For	example,	alternative	climate	models	might	
have	different	ways	of	including	cloud	feedbacks.	Taking	all	the	differences	among	
the	models	would	indicate	how	state‐of‐the‐art	models	differ	on	the	processes	and	
variables	that	they	include.	Even	here,	however,	existing	models	are	likely	to	have	
an	incomplete	understanding	and	will	therefore	underestimate	structural	
uncertainty.	However,	from	a	conceptual	vantage	point,	they	generally	do	not	
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Figure	8.	Box	plot	for	CO2	concentrations,	2100.		
For	explanation	of	boxplots,	see	Figure	7.	
 



      38 

explicitly	model	and	consider	parametric	uncertainty.	In	IAMs,	to	come	closer	to	
home,	differences	in	models	reflect	differences	in	assumptions	about	growth	rates,	
production	functions,	energy	systems,	and	the	like.	But	few	models	explicitly	include	
parametric	uncertainty	about	these	variables.	Differences	in	population	growth,	for	
example,	are	very	small	relative	to	measures	of	uncertainty	based	on	statistical	
techniques	because	many	models	use	the	same	estimates	of	long‐run	population	
trends.	

We	can	use	the	results	of	the	Monte	Carlo	simulations	to	estimate	the	relative	
importance	of	parametric	uncertainty	and	model	uncertainty.	We	can	write	the	
results	of	the	Monte	Carlo	simulations	schematically	as	follows.	Assume	that	the	

model	outcome	for	variable	i	and	model	m	is	 m
iY and	that	the	uncertain	parameters	

are	  and i ju u :	

3 3

,
1 1 1

j
m m m m

i i i i i j i j
i j i

Y u u u  
  

    	

For	a	given	distribution	of	each	of	the	uncertain	parameters,	the	variance	of	 iY

including	model	variation	is:	

3 3
2 2 2 2 2 2 2

,
1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
j

m m
i i i i i j i j

i j i

Y u u u       
  

    	

The	first	term	on	the	right	hand	side	is	the	variance	due	to	model	differences	(or	
structural	uncertainty),	while	the	second	and	third	terms	are	the	variance	due	to	
parameter	uncertainty.	For	this	purpose,	we	include	the	interaction	of	the	model	

coefficients	 ,(  and )m m
i i j  	and	the	parameter	uncertainties	 2[ ( )]iu 	as	parametric	

uncertainty	because	they	would	not	be	included	in	ensemble	uncertainty.	The	other	
terms	vanish	because	we	assume	that	the	parametric	uncertainties	are	independent.	
While	dependence	will	add	further	terms	on	the	right‐hand	side	of	the	equation	for	
the	variance,	it	will	not	affect	the	fraction	due	to	structural	differences	due	to	the	
first	term.	

	 We	can	easily	estimate	the	total	uncertainty	and	the	structural	uncertainty	for	
different	variables.	The	results	are	shown	in	Table	6.	For	most	variables,	virtually	all	
the	variance	is	explained	by	parametric	uncertainty.	For	example,	94%	of	the	
variance	of	the	2100	temperature	increase	in	all	the	models	is	explained	by	
parametric	uncertainty,	and	only	6%	is	explained	by	differences	in	model	means.	
This	fact	is	easily	seen	in	the	box	charts	in	Figures	7	and	8.	The	only	variable	for	



      39 

which	model	uncertainty	is	important	is	the	social	cost	of	carbon,	for	which	four‐
fifths	of	the	total	variance	is	due	to	model	differences.		

	 We	can	put	these	results	in	terms	of	the	variabilities	due	to	different	factors.	
If	we	take	the	calculated	temperature	increase	to	2100,	the	overall	standard	
deviation	is	0.84	°C	including	both	model	and	parametric	uncertainty.	The	standard	
deviation	of	the	model	means	alone	is	0.21	°C.	So	the	variability	measured	in	terms	
of	standard	deviations	of	the	temperature	increase	is	underestimated	by	a	factor	of	
four	using	the	ensemble	technique.		

	 The	net	effect	of	these	results	is	sobering.	They	indicate	that	the	technique	of	
relying	upon	ensembles	as	a	technique	for	determining	the	uncertainty	of	future	
outcomes	is	(at	least	for	the	major	climate	change	variables)	highly	deficient.	
Ensemble	uncertainty	tends	to	underestimate	overall	uncertainty	by	a	significant	
amount.	

	
C. Sensitivity	of	the	results	to	parameter	variability		

	

	 An	important	question	is	the	extent	to	which	the	results	are	sensitive	to	the	
individual	pdfs	for	the	uncertain	parameters.	To	test	for	sensitivity,	we	performed	
an	experiment	where	we	increased	the	standard	deviation	of	each	of	the	pdfs	by	a	
factor	of	2,	both	one	at	a	time	and	together.	For	a	doubling	of	the	standard	deviation	
of	all	parameters,	the	increase	in	the	standard	deviation	of	2100	temperature	was	a	

 

 
 

Table	6.	Fraction	of	uncertainty	(variance)	explained	by	model	differences.	
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factor	of	1.83	for	all	models	together.	We	believe	that	this	is	less	than	two	because	
the	short‐run	temperature	impact	is	not	proportional	to	the	ECS.	

Table	7	shows	the	results	changing	the	uncertainty	by	a	factor	of	two	one	
parameter	at	a	time	for	the	average	of	the	6	models	for	all	variables	which	are	
produced	by	the	six	models.	The	number	shows	the	ratio	of	the	standard	deviation	
of	the	2100	value	of	the	variable	in	the	sensitivity	case	relative	to	the	case	with	
assumed	pdfs.	Doubling	all	uncertainties	produces	close	to	a	doubling	of	the	output	
uncertainty,	with	some	deviations	because	of	non‐linearities.		

Doubling	population	uncertainty	has	a	small	effect	on	all	variables	except	
population.	Doubling	equilibrium	temperature	uncertainty	raises	the	uncertainty	of	
2100	temperature	by	40%	but	has	no	significant	effect	on	other	uncertainties.	The	
major	sensitivity	is	TFP	uncertainty.	Doubling	this	uncertainty	leads	to	close	to	
doubling	of	the	uncertainty	of	other	major	economic	variables,	and	to	an	increase	of	
62	percent	in	the	uncertainty	of	2100	temperature.	This	result	is	similar	to	a	result	
in	van	Vuuren	et	al.	(2008),	which	suggests	that	uncertainty	in	GDP	growth	
dominates	the	uncertainty	in	emissions.	

	

	

	 The	summary	on	sensitivity	of	the	results	to	the	pdfs	shows	an	important	and	
surprising	result.	On	the	whole,	the	results	are	insensitive	to	changes	in	the	
population	growth	pdf;	are	moderately	sensitive	to	the	uncertainty	about	

 

 
 

Table	7.	Sensitivity	of	outcomes	for	changes	in	standard	deviation	of	each	uncertain	
parameter	by	factor	of	2	
	
The	figure	gives	the	ratio	of	the	standard	deviation	of	the	variable	at	the	top	of	the	
column	to	the	standard	deviation	in	the	base	run.	For	example,	doubling	the	
standard	deviation	of	population	increased	the	standard	deviation	of	2100	
temperature	by	6%.	
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equilibrium	temperature	sensitivity	on	temperature	(as	well	as	to	damages	and	the	
social	cost	of	carbon,	not	shown);	and	are	extremely	sensitive	to	the	uncertainty	
about	the	rate	of	growth	of	productivity.	While	long‐run	productivity	growth	has	the	
greatest	impact	on	uncertainty,	it	is	also	the	least	carefully	studied	of	any	of	the	
parameters	we	have	examined.	This	result	suggests	that	much	greater	attention	
should	be	given	to	developing	reliable	estimates	of	the	trend	and	uncertainties	
about	long‐run	productivity.	

	

VIII. Conclusions	
	

	 This	study	is	the	first	multi‐model	analysis	of	parametric	uncertainty	in	
economic	climate‐change	modeling.	The	approach	is	based	on	estimating	classic	
statistical	forecast	uncertainty.	The	central	methodology	consists	of	two	tracks.	
Track	I	involves	doing	a	set	of	model	calibration	runs	for	the	six	models	and	three	
uncertain	parameters	and	estimating	a	surface	response	function	for	the	results	of	
those	runs.	Track	II	involves	developing	pdfs	for	key	uncertain	parameters.	The	two	
tracks	are	brought	together	through	a	set	of	Monte	Carlo	simulations	to	estimate	the	
output	distributions	of	multiple	output	variables	that	are	important	for	climate	
change	and	climate‐change	policy.	This	approach	is	replicable	and	transparent,	and	
overcomes	several	obstacles	for	examining	uncertainty	in	climate	change.		

Here	are	the	key	results.	First,	the	central	projections	of	the	integrated	
assessment	models	(IAMs)	are	remarkably	similar	at	the	modeler’s	baseline	
parameters.	This	result	is	probably	due	to	the	fact	that	models	have	been	used	in	
model	comparisons	and	may	have	been	revised	to	yield	similar	baseline	results.	
However,	the	projections	diverge	sharply	when	alternative	assumptions	about	the	
key	uncertain	parameters	are	used,	especially	at	high	levels	of	population	growth,	
productivity	growth,	and	equilibrium	climate	sensitivity.		

Second,	despite	these	differences	across	models	for	alternative	parameters,	
the	distributions	of	the	key	output	variables	are	remarkably	similar	across	models	
with	different	structures	and	levels	of	complexity.	To	take	year	2100	temperature	as	
an	example,	the	quantiles	of	the	distributions	of	the	models	differ	by	less	than	½	°C	
for	the	entire	distribution	up	to	the	95th	percentile.		

Third,	we	find	that	the	climate‐related	variables	are	characterized	by	low	
uncertainty	relative	to	those	relating	to	most	economic	variables.	For	this	
comparison,	we	look	at	the	coefficient	of	variation	(CV)	of	the	Monte	Carlo	
simulations.	As	shown	in	Table	2,	CO2	concentrations,	radiative	forcings,	and	
temperature	(all	for	2100)	have	relatively	low	CV.	Output	and	damages	have	
relatively	high	CV.	As	examples,	the	model‐average	coefficient	of	variation	for	
carbon	dioxide	concentrations	in	2100	is	0.28,	while	the	coefficient	of	variation	for	
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climate‐change	damages	is	1.29.	The	social	cost	of	carbon	has	an	intermediate	CV	
within	models,	but	when	model	variation	is	included	the	CV	is	close	to	that	of	output	
and	damages.	These	results	highlight	the	importance	of	further	research	on	
economic	variables	and	damage	functions	for	reducing	uncertainty	and	improving	
policymaking	(e.g.,	see	Pizer	et	al.	2014	and	Drouet	et	al.	2015).	

Fourth,	we	find	much	greater	parametric	uncertainty	than	structural	(across	
model)	uncertainty	for	all	output	variables	except	the	social	cost	of	carbon.	For	
example,	in	examining	the	uncertainty	in	2100	temperature	increase,	the	difference	
of	model	means	(or	the	ensemble	uncertainty)	is	approximately	one‐quarter	of	the	
total	uncertainty,	with	the	rest	driven	by	parametric	uncertainty.	While	looking	
across	six	models	by	no	means	spans	the	space	of	methods,	the	six	models	examined	
here	are	representative	of	the	differences	in	size,	structure,	and	complexity	of	IAMs.	
This	result	is	important	because	of	the	widespread	use	of	ensemble	uncertainty	as	a	
proxy	for	overall	uncertainty	and	highlights	the	need	for	a	re‐orientation	of	research	
towards	examining	parametric	uncertainty	across	models.	

A	fifth	interesting	finding	of	this	analysis	is	the	lack	of	evidence	in	support	of	
fat	tails	in	the	distributions	of	emissions,	global	mean	surface	temperature,	or	
damages.	Population	growth,	total	factor	productivity	growth,	and	climate	
sensitivity	are	very	likely	to	be	three	of	the	key	uncertain	parameters	in	climate	
change.	Yet,	based	on	both	informal	and	formal	tests,	the	models	as	currently	
constructed	find	that	the	tails	are	relatively	thin.	The	decline	in	probabilities	
associated	with	a	change	in	any	of	the	variables	is	much	larger	than	would	be	
associated	with	an	infinite‐variance	Pareto	process.	As	discussed	above,	we	
emphasize	that	these	findings	should	be	interpreted	in	the	context	of	the	current	
group	of	models	and	the	assumed	pdfs.	The	results	do	not	rule	out	fat	tails,	but	they	
do	provide	empirical	evidence	against	fat	tails	in	outcomes	investigated	in	this	study	
for	the	current	set	of	models	and	the	distributions	of	the	three	uncertain	variables	
considered	here.	These	results	tend	to	support	the	use	of	expected	benefit‐cost	
analysis	for	climate	change	policy,	in	contrast	to	suggestions	by	some	authors	that	
neglect	of	fat	tail	events	may	vitiate	standard	analyses	(Weitzman	2009).	

Sixth,	we	find	that	within	a	wide	range	of	uncertainty,	changes	in	dispersion	
of	two	of	the	uncertain	parameters	taken	singly	have	a	relatively	small	effect	on	the	
uncertainty	of	the	output	variables,	these	being	population	growth	and	equilibrium	
temperature	sensitivity.	However,	uncertainty	about	productivity	growth	has	a	
major	impact	on	the	uncertainty	of	all	the	major	output	variables.	The	reason	for	
this	is	that	the	uncertainty	of	productivity	growth	from	the	expert	survey	
compounds	greatly	over	the	21st	century	and	induces	an	extremely	large	uncertainty	
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about	output,	emissions,	concentrations,	temperature	change,	and	damages	by	the	
end	of	the	century.	
	 As	in	any	study,	this	analysis	is	intentionally	sharply	focused.	By	analyzing	
parametric	uncertainty	in	three	key	parameters,	we	do	not	claim	to	be	capturing	all	
uncertainties	in	climate	change.	As	we	describe	above,	there	are	many	uncertainties	
that	cannot	be	captured	using	the	statistical	framework	developed	here.	But	by	
providing	detailed	estimates	of	uncertainty	across	a	range	of	IAMs	that	are	currently	
being	used	in	the	policy	process,	we	believe	that	we	have	significantly	improved	the	
understanding	of	uncertainty	in	climate	change.	Moreover,	our	new	two‐track	
methodology	is	well‐suited	for	expansion	to	additional	parameters	and	models,	and	
can	be	readily	used	to	explore	additional	concerns,	such	as	the	interaction	between	
carbon	policies	and	uncertainty.		
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Appendix	1.	Further	Details	on	the	Choice	of	ECS	Distribution	
	

This	appendix	explains	the	procedure	for	developing	the	pdf	for	climate	
sensitivity.	The	study	began	by	reviewing	the	five	probability	density	functions	for	
equilibrium	climate	sensitivity	(ECS)	used	in	the	IPCC	AR5	that	draw	upon	multiple	
lines	of	evidence.	These	are	Aldrin	et	al.	(2012),	Libardoni	and	Forest	(2013),	Olsen	
et	al.	(2012),	Annan	and	Hargreaves	(2006),	and	Hegerl	et	al.	(2006).	Figure	A1	
illustrates	the	log‐normal	fits	to	each	of	these	distributions	(fits	by	the	present	
authors).	

	
	

	

Our	chosen	study,	Olsen	et	al.	(2012),	is	representative	of	the	studies	in	both	
its	methodology	and	results.	It	uses	a	Bayesian	approach.	The	prior	distribution	was	
constructed	to	fit	the	“most	likely”	values	and	“likely”	ranges	in	Figure	3	in	Knutti	
and	Hegerl	(2008)	based	on	the	summary	statistics	of	the	“current	mean	climate	
state”	and	“Last	Glacial	Maximum	models.”	Olsen	et	al.	assume	an	inverse	Gaussian	
(Wald)	distribution	and	obtain	this	prior	by	assuming	independence	between	the	

 

 
 

Figure	A1.	Log‐normal	distributions	fit	to	the	probability	density	functions	cited	in	
the	IPCC	AR5.	The	distribution	shown	here	is	from	the	updated	Libardoni	&	Forest	
(2013)	figures.	
 



      45 

current	mean	climate	state	and	the	last	glacial	maximum	models,	and	then	
computing	the	mixture	distribution.	
	

The	posterior	distribution	is	then	calculated	by	using	a	Markov	Chain	Monte	
Carlo	simulation	to	update	the	prior	with	a	likelihood	function.	The	likelihood	is	
based	on	several	different	tracers,	such	as	global	average	atmospheric	
surface/ocean	surface	temperatures	and	global	total	heat	content.	These	tracers	
come	from	the	University	of	Victoria	ESCM	climate	model,	which	consists	of	a	three‐
dimensional	ocean	general	circulation	model	coupled	with	a	
thermodynamic/dynamic	sea‐ice	model.	The	authors	assume	independence,	so	that	
the	likelihood	of	both	observations	is	equal	to	the	product	of	the	likelihoods.	

	

The	parameters	of	the	log‐normal	distribution	fit	to	Olsen	et	al.	are	μ	=	
1.10704	and	σ	=	0.264.	The	major	summary	statistics	of	the	reference	distribution	in	
the	study	are	the	following:	mean	=	3.13,	median	=	3.03,	standard	deviation	=	0.843,	
skewness	=	0.824,	and	kurtosis	=	4.23.	In	implementing	the	Monte	Carlo	for	each	
model,	we	retained	the	mean	ECS	for	that	model.	We	then	imposed	a	log‐normal	
distribution	that	retained	the	arithmetic	standard	deviation	of	the	ECS	(i.e.,	a	
standard	deviation	of	0.843)	based	on	the	Olsen	et	al.	(2012)	distribution.		
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Appendix	2.	Expert	Survey	on	Total	Factor	Productivity		
	

	 A	key	component	of	the	project	was	determining	the	uncertainty	in	
productivity	(or,	as	operationally	defined,	output	per	capita).	A	review	of	existing	
studies	indicated	that	there	were	no	detailed	studies	of	future	output	uncertainties	
out	to	2100	that	we	could	rely	on.	We	therefore	decided	to	undertake	an	expert	
elicitation.	The	detailed	results	of	the	survey	will	be	shortly	available	separately	as	a	
working	paper.	This	appendix	sketches	the	methods	and	summarizes	the	
preliminary	results.	Note	that	the	current	results	include	only	11	of	the	respondents,	
and	the	complete	survey	results	will	be	used	for	the	final	publication.	
	

2.1 Survey	Design	
	

In	determining	the	probability	distribution	of	future	productivity	growth,	a	
major	difficulty	is	the	non‐stationarity	of	this	variable.	It	is	clearly	non‐stationary	if	
one	examines	historical	data.	From	a	theoretical	point	of	view,	we	would	expect	
non‐stationarity	because	the	major	determinants	of	long‐run	growth	–	invention	
and	technological	change	–	involve	new	and	different	processes	rather	than	
replication	of	some	underlying	process.	For	this	reason,	it	is	important	to	overlay	
any	empirical	study	with	expert	views.	

Expert	opinion	has	been	used	systematically	in	a	very	limited	number	of	
studies	of	economic	growth.	For	example,	Webster	et	al.	(2002)	analyze	uncertainty	
in	the	GDP	growth	rate	out	to	2100	(as	a	proxy	for	changes	in	labor	productivity)	
using	estimates	collected	from	an	elicitation	of	5	experts	from	a	single	institution.	
This	seemed	too	thin	a	base	for	the	present	study.	

In	this	study,	we	conducted	a	survey	of	expert	predictions	about	uncertainty	
in	global	annual	growth	rates	for	the	period	2010‐2100.	Experts	provided	responses	
using	an	online	survey	(see	Figure	A2	for	the	response	format).	The	panel	of	experts	
was	selected	through	a	process	of	nomination	by	leading	economists.	

We	asked	experts	about	growth	rates	in	high‐,	medium‐,	and	low‐income	
countries,	as	well	as	about	global	aggregate	rates.	As	part	of	the	survey,	we	alerted	
experts	to	problems	of	overconfidence	and	include	a	warm‐up	section	that	was	
designed	to	increase	awareness	of	their	personal	overconfidence.	In	addition,	we	
asked	experts	about	any	ambiguities	that	they	experienced	in	the	survey	and	
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provided	them	with	historical	data	on	growth	rates	for	the	period	1900‐2000	from	
Barro‐Ursua	(2010)	and	Maddison	(2003).	7	

	

	

The	survey	was	comprised	of	4	sets	of	questions	about	growth	rates:	(1)	
central	estimates	(50th	percentile)	for	growth	rates	for	2010‐2050	and	2010‐2100,	
(2)	estimates	of	uncertainty	based	on	providing	the	10th,	25th,	75th,	and	90th	
percentiles	of	the	growth	rates,	(3)	the	projected	magnitude	of	effects	of	positive	
and	negative	shocks	to	the	economy,	and	(4)	near‐term	predictions	(for	the	
following	year).	We	asked	each	expert	to	describe	the	rationale	for	their	response	as	
well	as	an	explanation	of	major	positive	and	negative	shocks.	The	survey	also	asked	
experts	to	identify	outside	sources	of	information	that	were	used	to	generate	
forecasts	and	to	rank	their	own	expertise	overall	and	for	particular	regions.	

	
2.2 Combining	Expert	Distributions	

	
We	use	two	methods	to	estimate	the	mean	and	standard	deviation	for	the	

best‐fitting	combined	normal	distribution	of	growth	rates	for	the	period	2010‐2100.		
	

The	first	method	assumes	that	experts	have	estimates	of	quantiles	of	the	
distribution	of	long‐run	growth	rates.	The	combined	pdf	is	then	the	distribution	that	
minimizes	the	sum	of	squared	differences	between	the	combined	normal	

                                                            
7	Barro‐Ursua	Macroeconomic	Data	available	at:	rbarro.com/data‐sets/.	Maddison	is	from	
Angus	Maddison	(2003).	Available	at:	http://www.theworldeconomy.org/statistics.htm.	

 

 
 

Figure	A2.	Response	Format	for	Expert	Survey	
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distribution	at	each	quantile	and	the	average	of	the	quantile	estimates	of	the	
experts.	The	second	method	begins	with	estimates	of	the	parameters	of	the	best‐
fitting	normal	distribution	for	each	expert;	and	then	takes	the	sample	means	of	the	
parameters	of	the	experts	for	the	combined	normal	distribution.		

We	find	very	little	difference	between	the	two	methods.	For	the	preliminary	
sample,	the	mean	growth	rates	of	per	capita	output	for	the	two	methods	are	2.29	
and	2.30,	respectively	for	methods	1	and	2.	The	combined	standard	deviations	are	
1.15	and	1.17,	respectively.	

The	combined	pdfs	along	with	11	preliminary	responses	are	shown	in	Figure	
2	in	the	main	text.	The	current	procedure	uses	the	sample	mean	of	the	standard	
deviation	for	the	Monte	Carlo	estimates,	but	we	are	considering	using	a	robust	
estimator	for	the	final	report.	
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Appendix	3.	Additional	Lattice	Diagrams	
	

We	include	here	further	lattice	diagrams.	The	structure	is	as	described	in	the	
text.	The	only	difference	is	the	output	variable,	which	is	shown	at	the	top	of	the	
graph.	
	

Note	that	the	first	group	of	diagrams	is	for	the	base	runs,	while	the	second	
group	is	for	the	runs	with	carbon	taxes	(Carbon	Tax	or	Ampere	runs).	
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Appendix	4.	Additional	Tables	and	Graphs	
	

Table	A1.	Overview	of	global	integrated	assessment	models	included	in	this	study.	

	
	

Model	 Number	
of	

Economic	
Regions	

Time	
Horiz
on	

Variables	
Included	

Key	Characteristics	 Selected	
Reference

s	

DICE	 1	 2010‐
2300	

1,2,3,5,6	 Optimal	growth	model,	
endogenous	GDP	and	
temperature,	exogenous	
population,	SWF	is	CES	
with	respect	to	
consumption.	

(Nordhaus	
and	Sztorc	
2014)	

FUND	 16	 1950‐
3000	

1,2,3,4,5,6,
7	

Multi‐region,	multi‐gas,	
detailed	damage	functions,	
exogenous	scenarios	
perturbed	by	model		

(Anthoff	
and	Tol	
2010,	
2013)	

GCAM	 14	 2005‐
2095	

1,2,3,4,5,7	 Integrated	energy‐land‐
climate	model	with	
technology	detail;	
exogenous	population	and	
GDP;	endogenous	energy	
resources,	agriculture,	and	
temperature;	economic	
costs	are	calculated	for	
producer	and	consumer	
surplus	change	

(Calvin	and	
et	al.	2011)	

IGSM	 16	
	

2100	 1,2,3,4,5,7	 Full	general	circulation	
model	linked	to	a	multi	
sector‐multi	region	
general	equilibrium	model	
of	the	economy	with	
explicit	advanced	
technology	options	

(Chen	et	al.	
2015,	
Sokolov	et	
al.	2009,	
Webster	et	
al.	2012)	

MERGE	 10	 2100	 1,2,3,4,5,7	 Ramsey	model	coupled	 (Blanford	



      56 

with	energy	process	
model,	multiple	regions,	
endogenous	GDP	and	
temperature,	exogenous	
population	

et	al.	2014)	

WITCH	 	13	 	2150	 	1,2,3,4,5,6
,7	

Optimal	growth	model,	
endogenous	GDP	and	
temperature,	exogenous	
population,	SWF	is	CES	
with	respect	to	
consumption.	

(Bosetti	et	
al.	2006)	
	

Notes:	SWF	=	social	welfare	function,	CES	=	constant	elasticity	of	substitution.	For	
variables	included	the	key	is:	
1	=	GDP,	population	
2	=	CO2	emissions,	CO2	concentrations	
3	=	global	temperature	
4	=	multiple	regions	
5	=	mitigation	
6	=	damages	
7	=	non‐CO2	GHGs	
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Results	of	Monte	Carlo	simulations	for	models	and	major	variables	
[All	variables	are	2100	except	SCC,	which	is	2020]	
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Figure	for	box	plots	for	CO2	emissions,	2100.	For	discussion	of	box	plots,	see	Figure	
7.	
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	 	 	 	 	 DICE								FUND				WITCH	

	

Figure	for	box	plots	for	social	cost	of	carbon,	2020.	For	discussion	of	box	plots,	see	
Figure	7.	
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Estimates	from	surface	response	functions	by	variable	and	model.	
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Goodness	of	fit	of	worst	fitting	LQI	variable	by	model.	

Table	shows	the	residual	variance	(1‐R2)	for	the	worst	fitting	of	the	
equations.	For	example,	in	the	LQI	specification,	the	worst	SRF	for	the	DICE	model	is	
the	equation	for	population,	which	has	a	residual	variance	of	0.00706.	For	the	
MERGE	model,	the	worst	equation	is	for	CO2	emissions.	Note	as	well	that	the	only	
two	models	for	which	the	worst	equation	has	a	significant	reduction	in	residual	
variation	from	LQI	to	LQI++	are	the	IGSM	and	WITCH	models.	
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