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Abstract: The most widely used integrated assessment model for studying the economics of
climate change is the Dynamic Integrated model of Climate and Economy (DICE). DICE is
a nonlinear, time-varying discrete-time system whereby important quantities are calculated by
solving an associated optimal control problem. Here, we describe an open-source Matlab imple-
mentation of the DICE model which uses Model Predictive Control (MPC) to approximately

solve the DICE optimal control problem.
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1. INTRODUCTION

Studies in the economics of climate change have been
dominated by three independent integrated assessment
models: DICE (Dynamic Integrated model of Climate and
Economy) (Nordhaus, 1992), PAGE (Policy Analysis of
the Greenhouse Effect) (Hope, 2015), and FUND (Climate
Framework for Uncertainty, Negotiation, and Distribu-
tion) (Anthoff and Tol, 2013). In part, the importance of
these three models stems from their use by policy makers
and stakeholders to derive estimates of the social cost of
carbon of carbon diozide (SC-CO4 — sometimes also called
the social cost of carbon), see (Interagency Working Group
on Social Cost of Carbon, U.S. Government, 2013)

Moreover, a recent extensive study (National Academies of
Sciences, Engineering, and Medicine, 2017) discusses the
need of revising the models used in estimating the SC-
COs5. While this report contains many detailed recommen-
dations, it identified three overarching themes required of
future integrated assessment models: (i) incorporation of
uncertainty, (ii)modularity, and (iii) transparency.

In this context, the DICE model provides a useful starting
point. Indeed, an open-source implementation of the model
(in the GAMS language) has long been available online
with a user manual (Nordhaus, 2013, 2016; Nordhaus and
Sztorc, 2013). Furthermore, the DICE model is modular in
nature, consisting of clearly defined climate, carbon, and
socioeconomic submodels. Incorporating uncertainty into
the DICE model is the subject of ongoing work.

The DICE model was originally proposed in (Nordhaus,
1992), with updates in (Nordhaus, 2008), (Nordhaus,
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2014), and (Nordhaus, 2017). The model consists of a
nonlinear, time-varying discrete-time dynamical system
with two inputs. The inputs are usually calculated by
solving a finite-horizon discounted Optimal Control Prob-
lem (OCP); i.e., an optimal control problem involving a
discounted cost function.

While the available (GAMS) implementation (Nordhaus,
2013) specifies a finite-horizon OCP, conceptually an
infinite-horizon OCP is easier to justify. In particular,
depending on the parameters used in the model, important
system behavior may not be observed within the specified
finite-horizon. However, solving the infinite-horizon OCP
analytically appears to be intractable.

Similar economic problems were solved in (Griine et al.,
2015) using Model Predictive Control (MPC) (also called
receding horizon control) primarily as an approximation
technique for the underlying infinite-horizon OCP. Fur-
thermore, in (Griine, 2016) it was demonstrated that, un-
der certain assumptions, solution trajectories constructed
using MPC provide quantifiable approximations to the
solution of the infinite-horizon OCP.

An MPC implementation of the DICE model was first
proposed in (Weller et al., 2015) and subsequently used in
(Hafeez et al., 2017). However, the MPC implementation
of (Weller et al., 2015) and (Hafeez et al., 2017) made use of
the available GAMS code (Nordhaus, 2013) to solve each
finite-horizon OCP and then used a Matlab wrapper to
advance time and piece together the solution trajectories.

Recently, we provided a native Matlab implementation of
the DICE model with a finite-horizon OCP (Faulwasser
et al., 2016). The work reported here extends the work
of (Faulwasser et al., 2016) with an MPC implementation
fully in Matlab, which we term MPC-DICE.
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The paper is organized as follows. Section 2 provides a
detailed description of the DICE model and associated
OCP. (Default model parameters are contained in an
Appendix.) Section 3 describes how to reformulate the
DICE model to facilitate the MPC implementation and,
in particular, the computation of the social cost of carbon.
Section 4 provides details on the software requirements for
using MPC-DICE, describes the various files making up
MPC-DICE, and highlights some of the important options.
As we make some minor modifications to the original
DICE model, some comparative results are provided in
Section 5. The MPC-DICE code is available for download
at (Faulwasser et al., 2018).

2. MODEL AND OPTIMAL CONTROL PROBLEM

The MPC-DICE model operates on five year time steps
beginning from 2015. To formalize this, let t; = 2015,
A =5 and i = 1,2,3,... be the discrete time index.®
Then

t=to+A-(i—1) (1)
yields ¢ = 2015,2020, 2025. . .

The MPC-DICE model has eleven state variables: two
variables to model the global climate in the form of atmo-
spheric and oceanic temperature anomalies (Tat and 11,0,
respectively, in units of °C); three variables to model the
global carbon cycle in the form of carbon concentrations
in the atmosphere, upper ocean, and lower ocean (Mar,
Myp, and Mo, respectively, in units of GtC); and one
state for global capital (K, in units of trillions 2010USD).
Additional state variables describe the global population
(L in millions of people), total factor productivity (A),
the emissions intensity of economic activity (o in units
of GtCOgy per trillions of 2010USD), emissions due to
land use changes (Epang in units of GtCOs), and ra-
diative forcings due to non-COy greenhouse gases (Fgx
in units Wm~2). Decision variables or control inputs are
the dimensionless emissions mitigation rate (u) and the
dimensionless savings rate (s) where the latter is the ratio
of investment to net economic output.

as desired.

To facilitate a compact representation, define the state
vectors

T =[Tar TLo]', M =
and the matrices

= | P11 P12 - &
(I)T{%l(ﬁzz}’ BT[O]’

Ci1 Gz O &
Ppr = | Co1 Co2 Cos |, By=1]0].
0 (32 (33 0
We will also use two intermediate quantities given by 2

[Mar Myp Mio]',

1 Note that tg is coded as a parameter so that it is straightforward
to replicate results from DICE2013 where tg = 2010.

2 In (Nordhaus, 2013, 2016), 6 is called cost1. Furthermore, as
the implementation of (7) in (Nordhaus, 2013, 2016) contains minor
errors, we here explicitly mention nomenclature used in (Nordhaus,
2013) and the economics literature. The damages fraction is given
by

a2 Tar(3)%3

DAMFRAC(4) = T o T @5

01(0) = 1500 g5 (1= 00 ), (3)
v (i) = A6 (H5) ()
The full DICE dynamics are given by:
T(i+1)=drT(7)
+ Br (77 log, <m> + FEX(Z)> (5)
M(i+1) = ®pM(i) + BuE(i) (6)

K(i+1) = (1 0x)K(i)

0 ({2 ) v, @

o(i+1) = o) exp (~go (1= 3,)20DA),  (8)

Ly
L(i+1) = L) (LL(‘;)> , (9)

. - A(i)
A = T Al - 1)) )
ELand(i + 1) = ELO . (1 - 6EL)Z (11)
FEX(i+1):f0+min{(f1 ffo) , fl_fO} (12)

where emissions (F in units of GtCOz), driving (6), are
also an intermediate quantity given by

E(i) = A(o(@)(1 = u(i)Y (i) + Evana(i)) -

Consumption (C) can be viewed as an output of the model
and is given by

0(2'):A(

(13)

1 — 01 (i)p(i)"

14
1+as TAT(i)a3 ( )

)Y =i

Note that, in the economics literature, (5)—(7) are usually
referred to as “endogenous variables”, while (9)—(12) are
usually referred to as “exogenous variables”. This is due to
the fact that each of the latter set of states is independent
of any other state.

Finally, for the purposes of defining an optimization prob-
lem, utility is given by

1000C (i) ) tra 1
()

U(C(#), L(i)) = L(3) (

= a (15)

Optimal pathways are derived by maximizing the social
welfare; i.e., by solving the following OCP

o~ U(C(i), L(7)

max A - scalel - ; A1 p)heD ~ scale2 (16a)
subject to (5 —12)
n(1) = po
0<pu(i) <1, Vi (16b)
0<s(i) <1, Vi

and the damages component of (7) (i.e., the fraction of output
remaining after climate damages) is then written as (1 —DAMFRAC(%)).
Similarly, the mitigation or abatement fraction is given by

ABATEFRAC(i) = 601 (i) p(4)%? (2)

and the cost of abatement in (7) (i.e., the fraction of output remain-
ing after spending on abatement) is written as (1 — ABATEFRAC(7)).
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Note that the constraint p(l) = po is imposed since
(1) corresponds to the mitigation rate in the year to;
something we can reasonably estimate.

The SC-CO4 is given by the ratio of the marginal welfare
with respect to emissions and with respect to consumption
(Newbold et al., 2013):

OW/OE(i)

SCC(i) = —1000 - T

(17)

3. RECEDING HORIZON SPECIFIC
REFORMULATION OF THE OCP

To solve the DICE OCP in a receding horizon manner, we
use an equivalent reformulation. We begin by defining the
augmented state vector Note that the augmented vector
Z(i) € R'? collects the state variables of (5-12) plus the
time index i. As we show later including the time as a
state variable will allow rewriting the dynamics underlying
the original DICE OCP (16) with a time-invariant state
transition map. The vector Zuu.(i) € R® collects the
emissions (13), consumption (14), inputs u(i) and s(i) at
time ¢, and the extra state
J(0) = Z U(C (), L)
AG-1)°
= (L+p)aU=Y

which is used to define the objective (social welfare).

Moreover, using
(i) = [i(Z)T xaur(i)w
and the shifted input variables
w(i) = [u@i+1) s+ 1),

we can rewrite the dynamics underlying the original DICE
OCP (16) as follows:

z(i+1) = f(x(@),w()), =z(1)=w. (18)

The first component of the righthand-side function f :
R x R2 = R f=[f1,..., fir] " is given by

fi(z,w) =z + 1,

and the components k = 2,...,12 are given by (5-12). For
k = 13 we obtain from (13) and (4)

E(i+1) = fi3(x(i), w(i))

=A (U(Z —+ ].)(]. — ,U,(Z -+ ].))Y(Z -+ ].) +ELand(i —+ 1))

T

=A (fs(z(i),w(i)) ~(L=wi(2)) - froz(i), w(i))
. . z(7),w(e 1=y
 frlw(i) (i) - (Llfhetl)
+Ero- (11— 5EL)i) . (19)
In other words, we can rewrite the emissions explicitly as

a state using (7)—(10) to expand f7, fs, fo, and f1g9. Imme-
diately from the above, we obtain the initial emissions

E(1)=A (3;8(1)(1 —15(1))z10(1)28(1)7 (ﬁ%%%))H

. E) . (20)

Similarly, we may rewrite the consumption as a state
equation as

Cli+1) = fra(x(i), w(i))
- 1—61(i+ V(i +1)%
=4 ( 1 +Cl2TAT(i + 1)“3
_ 1— 02(i + Dwi (i)™ . z(4), w(i
S Sy ez ) RECORT0)

J‘s»(a?(Z')m}(Z'))>1_7

)Y(i+l)(l—s(i+l))

fotali) iy - (2

(1 = wa (i) (21)
with initial condition given by
1-— 01(1)%15(1)02
1)=A . 1) -zg(1)”
o =a (AR ) (1) (1)
xrg 1_’Y
(BH) A —as). (22)
The final three states are given by
$15(i + 1) = wl(i), $15(1) = V15 (23)
ﬂflﬁ(i + 1) = w2(i), %16(1) = V16 (24)
, o Ul@i2(2), wo (i)
z17(i+ 1) = z17(i) + U+ p)AGD z17(1) = 0.
(25)

Observe that the initial condition z14(1) = C(1) depends
on the (unshifted) inputs at time ¢ = 1; i.e. it depends
on u(l) = x15(1) and s(1) = z16(1). Likewise the initial
condition z15(1) = E(1) depends on u(1) = x15(1).

To handle this dependence in the optimization, we in-
troduce the auxiliary decision variable v € R'7 and the
additional constraint

z(1) = .
Now, we can summarize the equivalent (finite-horizon)

reformulation of the DICE-OCP (16) based on the aug-
mented (18) as follows

max 217(N) (26a)
subject to

I(j+1):f(x(])7w(]))7 j=1,....N-1 (26b)

z(1l)=wv (26¢)

v = xk(l), ke {1,...,17}\ {15,16}  (26d)

v €10, 1], k=15,16 (26¢e)

w(j) €1[0,1] x[0,1], j=1,...,N. (261)

In order to obtain a receding horizon variant of the original
DICE-OCP, we define a second optimization problem as
follows:

max x17(N) (27a)
subject to

(j+1) = fz@(),w(j), j=i....N-1 (27b)

(1) = z(3) (27¢)

w(j) €[0,1] x[0,1], j=1,...,N, (27d)

which differs from OCP (26) in that the initial condition
x(1) is available from the previous optimization via the
variable x (7). Consequently, the extra decision variable v
is not required to capture the dependence of z13(1) = E(1)
and x14(1) = C(1) on the decision variables at the same
time; i.e., p(1) and s(1). Solving either OCP (26) or OCP
(27), we obtain the following data:
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e The optimal state trajectory z*(j),j = 1,...,N,
which contains the savings rate and the mitigation
rate as

w(G) = xi5(5) s"(j7) = x16(J)-

e The optimal adjoint variables AZ(j) and A (j) which
are given by the Lagrange multipliers associated to
the equality constraints implied by the dynamics of
E(j) = 213(j) and C(j) = z14(j)-

Hence, the SC-COs at time j is obtained by
OW/OE(j)
oW/9C ()

and

No()

A& ()

Now, we can state the receding horizon approximation of
the DICE-OCP (16) as follows:

= —1000 -

SCC(j) = —1000 -

Algorithm 1 MPC-DICE
1: Define computation horizon Ng;,, and prediction hori-

zon N,
2: if i =1 then
3: Solve OCP (26)
4: Set (1) = 2*(1), Ag(1) = A5(1), Ac(1) = A& (1).
5: for i =2,..., Ngp, do
6: Solve OCP (27) for the initial condition zy = x(i—
1).
7: Set (i) = 2*(1), A (i) = A5(1), Ac(4) = AL(1).
8: Return z(j), Ag(j) and Ac(4),7 =0,..., Ngim.

4. DESCRIPTION OF CODE

The implementation of MPC-DICE makes use of the
CasADi framework for algorithmic differentiation and nu-
merical optimization (Andersson and Gillis, 2016) in con-
junction with Matlab. The resulting nonlinear programs
are solved via IPOPT (Wéchter and Biegler, 2005) for
which an executable is provided with CasADi. Version
3.2.1 of CasADi is used and, hence, Matlab 2014a or later
is generally required. Appropriate binaries® of CasADi
v.3.2.1 are available at (Andersson and Gillis, 2016).

Similar to CasADi, MPC-DICE is distributed under the
GNU Lesser General Public License (LGPL), and hence
the code can be used royalty-free even in commercial
applications.

The implementation of MPC-DICE is organized in five
files with an additional test file provided. These files are
as follows:

e MPCDICE_mc.m is the top-level file and calls the sub-
sequent five files. This file executes Algorithm 1 and
also includes code allowing the solution of a single-
shot finite-horizon optimal control problem.

e assign_parameters.m is a function file that returns
the parameters of the MPC-DICE model and optimal
control problem. The code available at (Faulwasser
et al., 2018) provides three such files:

- assign_parameters_v2013.m and

- assign_parameters_v2016.m
contain the parameter sets for DICE2013R and
DICE2016R, respectively. We do not recommend

3 After downloading an appropriate binary, be sure to add CasADi
to your Matlab path as described at (Andersson and Gillis, 2016).

editing these parameters since, in some sense, they
provide a base case for comparison. Hence, we also
explicitly provide assign_parameters_template.m.

e Construct_NLP.m is a function that constructs sym-
bolic CasADi formulations of OCP (26) and OCP
(27). To speed-up the receding horizon computations,
OCP (27) considers the initial condition z(1) = z; as
a free parameter which is passed during run-time to
the corresponding function call.

e dice_dynamics.m implements the discrete-time dy-
namical system given by (18). While not directly
called by MPCDICE_mc.m, this function is called by
Construct_NLP.m.

e set_initial_conditions.m calculates and returns
the initial conditions for all states of (18) from
data given in assign_parameters.m. This function
is called by MPCDICE_mc.m and by Construct_NLP.m.
Importantly, in the former call the initial conditions
are returned as standard Matlab variables, whereas
in the latter call the initial conditions are returned as
CasADi variables.

e MPCDICE_test.m is a function used to test the
CasADi installation.

There are two particular types of variation likely to be
of interest: parametric changes and structural changes.
Changes to parameters are preferably limited to the file
assign_parameters.m. Structural changes require editing
both dice_dynamics.m and set_initial_conditions.m.
This latter requirement stems from the fact that a subset
of the initial conditions of (18) are calculated based on the
equations of the system dynamics.

4.1 Single OCP versus Receding Horizon OCP

In the top-level file MPCDICE_mc.m, it is possible to switch
between different operation modes of MPC-DICE. The
important section of this file (starting right after the
initial comment and some workspace housekeeping) is
listed below. Due to space limitations, only selected code
comments are printed.

T
% Define data of the DICE MPG-loop & construct NLP
%

% Set parameters using an appropriate function
Params = assign__parameters_v2016;

Data.N = Params.N; % Prediction horizon

Data.step = 1; % 1 =— 1—step MPC strategy
Data.t0 = 1; % initial simulation time; >=1
Data.tf = 10; % final simulation time
Data.nx = 14+6+9+1; % total # of states: time;

% 6 ”endogenous” states;

% 9 auxilliary states including
% 5 ”exogenous” states,
% consumption, emissions, and
% shifted inputs; objective
Data.nu = 2; % # of inputs
Params.x0 = set_initial conditions(Data.t0,Params);

MPC-DICE allows the following computations:
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e Solving a single DICE OCP.
e Solving the DICE problem in a receding horizon
fashion to approximate the infinite horizon solution.

With Params.N = 30 in the “assign parameters” function,
using the following setting
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Data.step =

1; % 1 = 1—step MPC strategy
Data.t0 = 1; % initial simulation time; >=1
Data.tf = 1; % final simulation time

will solve a single DICE OCP over a fixed horizon of
N = 30 time steps (which corresponds to a time horizon
of 150 years with the default A = 5).

Solving the DICE problem in a receding horizon fashion to
approximate the infinite horizon solution is accomplished
with

Data.step =

1; % 1 = 1—step MPC strategy
Data.t0 = 1; % initial simulation time; >=1
Data.tf = 60; % final simulation time

This considers an overall horizon of Ng;,, = tf = 60 and
will solve a sequence of 60 DICE OCPs in receding horizon
fashion, whereby each OCP considers an optimization
horizon of N = 30 time steps and from each of these OCPs
only the first step of the control action is considered for
the output data.

5. COMPARATIVE RESULTS

As previously mentioned, the GAMS implementation of
the DICE model in (Nordhaus, 2013, 2016) (and hence,
deliberately, the code of Faulwasser et al. (2016)) contains
minor errors. Therefore, we here present results using the
default values for DICE 2016R and MPC-DICE.

In particular, (Nordhaus, 2016) computes the damages
component of (7) as

1 — asTar (i)™ — 01(3)u(i)?,

which, depending on the parameters chosen, can lead to
an inappropriate sign change. Additionally, in (Nordhaus,
2016), the radiative forcing term in (5) is dependent on
the mass of atmospheric carbon at the current time step
rather than the previous time step; i.e., (5) is dependent
on Mar(i+1).

Correcting these two inconsistencies does not lead to
significant quantitative differences in important outputs
when using the default parameters. In Table 1 we show
the peak warming (i.e., highest value attained of the
atmospheric temperature) and the social cost of carbon
values for the years 2015, 2025, and 2050 as calculated
using the single-shot DICE 2016R OCP Faulwasser et al.
(2016) and the receding horizon version of MPC-DICE
Faulwasser et al. (2018).

DICE 2016R | MPC-DICE
Peak Warming 4.15 °C 4.21 °C
SC-CO2(2015) US$ 30.75 US$ 29.26
SC-C0O2(2025) US$ 43.62 US$ 41.34
SC-C0O2(2050) US$ 91.32 US$ 85.47

Table 1. Selection of key outputs from DICE
2016R and MPC-DICE. Note that currency is
2010 US dollars.

6. CONCLUSIONS AND FUTURE WORK

In this paper we described an open-source Matlab im-
plementation of the DICE TAM with its associated op-
timal control problem solved in a receding horizon fash-
ion. Importantly, this implementation corrects two long-
standing errors in previously available DICE implementa-
tions. While these errors do not have a significant impact
on the predictions of the model using the the nominal
parameters, alternate parameter sets can result in large
differences. Additionally, the MPC implementation allows
approximate solution of the infinite-horizon optimal con-
trol problem, avoiding the turnpike-like effects that result
from solving a finite-horizon optimal control problem. Fi-
nally, with the code publicly and freely available and na-
tively in Matlab, will make the DICE IAM more accessible
to the systems and control community.

APPENDIX A: DEFAULT INITTAL CONDITIONS

Tat(0) | TLo(0) | K(0)
2013R 0.8 0.0068 | 135
2016R | 0.85 0.0068 | 223
Mar(0) | Myp(0) | MLo(0)
2013R 830.4 1527 10010
2016R 851 460 1740
The parameters for calculating oy = m:
€0 do Ho
2013R | 33.61 | 63.69 | 0.039
2016R | 35.85 | 105.5 | 0.03

APPENDIX B: DEFAULT PARAMETER VALUES

In the table below, a blank entry indicates that the
parameter was not changed in the 2016R version of the
model.
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Parameter Value Value
DICE2013R | DICE2016R.
A 5
to 2010 2015
N 60 100
140 0.039 0.03
Climate diffusion parameters
011 0.8630 0.8718
P12 0.0086 0.0088
021 0.025 0.025
D22 0.975 0.975
Carbon cycle diffusion parameters
(11 0.912 0.88
C12 0.03833 0.196
(21 0.088 0.12
(a2 0.9592 0.797
Ca3 0.0003375 0.001465
(32 0.00250 0.007
(33 0.9996625 0.99853488
Other geophysical parameters
n 3.8 3.6813
& 0.098 0.1005
3 3/11
MaT 1750 588
Erg 3.3 2.6
0pL 0.2 0.115
fo 0.25 0.5
f1 0.70 1.0
tr 18 17
Socioeconomic parameters
% 0.3
02 2.8 2.6
as 0.00267 0.00236
as 2
Sk 0.1
@ 1.45
p 0.015
Ly 6838 7403
L, 10500 11500
Ly 0.134
Ag 3.80 5.115
Ja 0.079 0.076
oA 0.006 0.005
Db 344 550
Opb 0.025
0o 0.5491 0.3503
9o 0.01 0.0152
0o 0.001
scalel 0.016408662 | 0.030245527
scale2 3855.106895 | 10993.704
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