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Abstract

We explore heat-related labor impacts both for their own interest and to understand

the role of adaptation in responding to climate change. Focusing on non-agricultural

sectors in the United States, we find that hot temperatures exert a causal negative

impact on county-level payroll – reducing payroll by several percentage points in a 2◦C

hotter year – with larger impacts in highly exposed industries such as construction

and manufacturing. We assess differences in implied adaptation investments across

regions with varying incentives for long-run adaptation, and find evidence consistent

with hotter climates being better adapted to heat.
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1 Introduction

Will economic agents adapt to future climate change, reducing the realized economic costs

of a hotter world? Or will adaptation to climate change be slow, costly, and constrained

by practical limits? The central objective of this paper is to shed light on the potential

for future adaptation by studying historical responses of workers and firms across locations

with different incentives for adaptation investment.

Motivated in part by a desire to inform economic policy aimed at reducing the welfare

impacts of climate change, many recent studies use short-run weather-economy estimates

to project potential climate impacts.1 Due to the gradual and long-term nature of climate

change, however, it is unclear to what extent such estimates can be used to inform policy.

In particular, incorporating the potential for adaptation over time is a critical factor that

may substantially affect social cost of carbon estimates and thus the implied optimality of

various policies aimed at reducing greenhouse gas emissions. Given the extent of warming

over the next thirty years that is ‘locked-in’ due to past emissions, understanding the

process of adaptation is also important in its own right – irrespective of its implications

for present or future climate mitigation policy.

So far, evidence for long-run adaptation to changes in climate are mixed, with some

analyses suggesting substantial scope for effective adaptation (Mendelsohn et al., 1994; But-

ler and Huybers, 2013; Barreca et al., 2016; Bleakley and Hong, 2017) and others finding

the opposite (Annan and Schlenker, 2015; Burke and Emerick, 2016). The existing litera-

ture on adaptation has focused primarily on agriculture and human health. This despite

the fact that, as a proportion of total climate damages, labor productivity impacts may be

considerable (Burke et al., 2015; Heal and Park, 2016). This paper focuses on labor-related

production impacts of hot days and potential investments in adaptive capital that may

reduce these impacts in the long run. In contrast to much of the existing literature, which

simulates adaptation costs based on engineering estimates of particular technologies or

case studies of specific communities, our approach utilizes a revealed preference approach,

and does so in a setting where liquidity and income constraints are relatively less likely to

bind.2

We examine a historical panel of weather, payroll, and air conditioning data from the

United States (1986-2011) to assess differences in adaptation investments across regions

1A wave of recent empirical work documents a casual relationship between short-run fluctuations in tem-
perature and production-related outcomes, including labor supply, labor productivity, and local economic
output. See Dell et al. (2014) and Heal and Park (2016) for reviews. A non-exhaustive set of examples
include Cachon et al. (2012), Graff Zivin and Neidell (2014), Sudarshan and Tewari (2013), Deryugina and
Hsiang (2014), Burke et al. (2015). These studies find statistically significant and economically meaningful
short-run impacts of hot temperature in both developed and developing economy settings, consistent with
the earlier physiological and ergonomic literature (Seppanen et al., 2006).

2See Kahn (2016) for a review of the economic literature on the adaptation to climate change. See
Gertler et al. (2016) for an illustration of potential liquidity constraints to adaptation uptake in developing
countries. Unlike engineering estimates such as Kjellstrom and Crowe (2011), we estimate the extent of
potential future adaptation using observed economic data which reflect real economic incentives and are
net of avoidance behaviors (Graff Zivin and Neidell, 2013).

2



with varying incentives for long-run adaptation. By comparing the marginal impact of

short-run (annual) heat exposure across regions that have experienced different long-term

(decadal) climates, we generate a revealed preference estimate of the potential for long-

run adaptation to heat exposure: given current adaptation costs and vis-a-vis the suite of

adaptation options for which benefits are privately internalized.

Leveraging quasi-random variation in the number of hot days within a given county

over many years, we find evidence consistent with hotter climates being better adapted to

hot weather. Counties that expect more hot days (e.g. days with maximum temperatures

above 95◦F) on average experience reduced labor-related production impacts per hot day

compared to their cooler counterparts. However, we also find that hot days reduce payroll

even in some of the hottest regions of the United States, suggesting potential limits to

adaptation without further innovation.

The empirical analysis proceeds in four steps. First, we estimate the causal impact of

extreme heat on local non-agricultural production.3 Using panel estimation models that

control for county population trends and correlated output shocks at the state and national

level, we find that the average U.S. county experiences a -0.04% reduction in payroll per

capita during a year with one additional day with maximum temperatures above 95◦F. The

estimation strategy relies on the assumption that year-to-year fluctuations in the number

of hot days are uncorrelated with unobserved determinants of per capita payroll.

Second, to further isolate production impacts of heat exposure – that is, impacts op-

erating through supply-side labor inputs as opposed to demand-side factors or correlated

ecological shocks – we study the impacts in sectors where production is more or less likely

to be exposed to the elements. Industries classified by the National Institute for Occupa-

tional Safety and Health (NIOSH) as highly exposed – namely, construction, transporta-

tion, utilities, manufacturing, and mining – experience markedly higher impacts compared

to relatively insulated ones such as education or financial services. The impacts are roughly

9 times as large in exposed sectors and suggest that, on any given workday, temperatures

above 95◦F reduce the corresponding day’s labor product by roughly 50% in exposed sec-

tors, consistent with both time-use and task productivity studies (Graff Zivin and Neidell,

2014; Seppanen et al., 2006).

Third, we compare the marginal impact of an additional hot (95◦F+) day on output

across counties with different average climates to estimate the scope for long-run adap-

tation. The intuition here is as follows. To the extent that producers have an incentive

to protect labor inputs from heat-related production impacts – or that laborers and the

self-employed are able to protect themselves – we would expect investment in long-run

adaptive capital (e.g. air conditioning, workplace norms) to occur to the point where the

expected payoffs over time equal the net present costs of investment.4 In this case, the re-

3Unless otherwise specified for the remainder of the paper payroll refers to local non-agricultural payroll.
4As discussed in section 2, and suggested by some recent studies (Annan and Schlenker, 2015; Park,

2016), there may be important market or institutional failures that drive a wedge between the socially
efficient adaptation frontier and realized – privately optimal – adaptations. Behavioral failures are also
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alized marginal impact of an additional hot day in a place like Houston, which experiences

23 days above 95◦F per year on average, would be different from the marginal impact in

a place like Boston, which experiences only 1 such day per year: due to the fact that the

expected benefits of air conditioning or other fixed cost adaptive investments in Boston are

lower on average. Since Bostonians and Houstonians have faced different private incentives

regarding adaptation to their historical climates but likely have access to a similar suite

of adaptation technologies, one might obtain valuable information regarding the poten-

tial scope for adaptation to future climate change by studying the differences in marginal

impacts between them.

We find that very hot places (e.g. Houston, Orlando, Phoenix) seem to be significantly

better adapted to heat stress than cooler areas (e.g. Boston, Minneapolis, Seattle). Regions

in the 1st and 4th quartile of the 95◦F+ day distribution – which on average feature 1 and

30 such days per year – experience short-run impacts of -0.208 percentage points and -

0.05 percentage points per 95◦F+ day respectively. The short run impact of an additional

hot day falls monotonically as one moves to hotter regions within the U.S., suggesting

that optimizing agents do in fact respond to persistent temperature extremes, and that

adaptation can reduce realized production impacts of hot temperatures, though likely at

some non-trivial cost.

Fourth, we explore the role of air conditioning in mitigating these adverse impacts using

a newly constructed panel of residential AC penetration at the county-year level.5 We find

that a significant proportion of the differences in marginal impacts can be explained by the

spread of air conditioning, consistent with recent findings in the context of adaptation to

heat-related health impacts (Barecca et al, 2016). Because changes in AC penetration are

not experimental, we cannot rule out the possibility that the effects documented here are

driven by correlated changes in other unobserved variables. Indeed, our analyses suggest

that other non-AC adaptations may be important in reducing labor-related production

impacts as well, including, for instance, increased flexibility in work hours.

Finally, we use down-scaled climate change projections to provide a preliminary as-

sessment of the potential biases arising from omitting adaptation when estimating future

climate damages. We use the CMIP5 multi-model ensemble to project the number of days

over 95◦F that each US county in our sample is expected to experience annually between

2040 and 2050. We compare estimates of lost payroll implied by the above regression

possible, if agents are myopic or there are salience effects in recognizing the extent of heat-related produc-
tivity impacts. These would further increase the size of the wedge between observed adaptive investments
and socially efficient adaptation. For the purposes of this analysis, we make the simplifying assumption
that the size of this wedge is not systematically different across climate zones within the U.S. Testing this
assumption – and exploring such market and institutional failures – remains an important area for future
research.

5Given the focus on production impacts, commercial and/or industrial AC data may be a more suitable
measure. High quality, spatially dis-aggregated data on commercial AC was not to our knowledge publicly
available. In results available upon request, we attempt to replicate the residential AC analysis with
EIA CBECs data. However, the data that is available shows a tight correlation between residential and
commercial AC penetration across regions, suggesting that residential AC penetration may provide a good
proxy for average AC penetration in production-related sectors for a given region.
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models under various stylized adaptation scenarios. For instance, lost payroll under a “no

adaptation” scenario, where local economies fail to adapt to new, hotter climates, is at

least 50% higher in 2040-2050 compared a scenario in which local economies adapt to their

new (hotter) climates in a way that is similar to the adaptation undertaken by those ex-

periencing those climates today. Any endogenous technical change – which our method

does not capture – will likely raise this figure considerably, as would extending the projec-

tions beyond 2050. Conversely, to the extent that individuals and firms are already sorted

based on heterogeneous preferences or production characteristics relevant to determining

heat-sensitivity of output, realized future adaptation may be lower than these estimates

suggest.

These findings contribute to a growing literature on adaptation to environmental change

(Mendelsohn et al., 1994; Hornbeck, 2012; Burke and Emerick, 2016). The method explored

here – of leveraging the spatial gradient in temperature sensitivity and the degree of cli-

mate adaptation that this implies – builds upon work by Butler and Huybers (2013) in

agriculture, Barreca et al. (2016) in health, and Auffhammer (2017) in energy use. One ob-

jective of these studies has been to allow researchers to eventually link the econometrically

well-identified studies of weather-driven output shocks to the historically more simulation-

based estimates of the social costs of carbon (Nordhaus and Yang, 1996; Hope, 2006; Stern,

2007), an objective that this paper shares. It is to our knowledge the first study to explore

adaptation in labor-related settings using observed as opposed to simulated economic data.

Our results also build on a growing empirical literature on the economic impacts of

climate change, reviewed by Tol (2009), as well as the growing literature on the welfare im-

pacts of climate change arising from direct heat exposure (Dell et al., 2014; Heal and Park,

2016). The estimates of temperature-driven economic impacts are broadly consistent with

prior results, including Hsiang et al. (2013), Dell et al. (2012), and Deryugina and Hsiang

(2014), though this paper focuses more explicitly on the various adjustments relevant to

the labor dimension. Our findings also imply that even the world’s wealthiest economies

are subject to non-trivial heat-related output losses – impacts which may be exacerbated

by future climate change. The magnitude of these losses may be larger in the developing

world, given the higher density of workers in highly exposed sectors as well as lower rates

of electrification and air conditioning.

The results reported here, while suggestive, also highlight the many gaps that remain

in the literature. More careful research is needed to determine the extent to which realized

welfare impacts are a function of local labor market structure and existing public policies.

For instance, the magnitude of production impacts may depend on whether laborers are

paid their true marginal product, or by some proxy contractual arrangement such as by

the hour or on a salaried basis. Whether or not public policies such as minimum wages

(Graff-Zivin and Neidell, 2012) or temperature-dependent compensation programs – e.g.

Chinese high temperature subsidies (Zhao et al., 2016)– increase or decrease the distance
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between realized and socially optimal adaptation is an important unresolved question.6

More generally, while much of the existing literature has abstracted away from market

failures in adaptation investment, such market imperfections may be important both for

estimating the extent of future (privately optimal) adaptation as well as for assessing

the case for public intervention in local adaptation investment. This may be particularly

important in light of the distributional impacts of increased warming from climate change

(Park et al., 2015; Hsiang et al., 2017).

The rest of the paper is organized as follows. Section 2 summarizes the related em-

pirical literature and presents a simple conceptual framework that guides the empirical

analysis. Section 3 describes the data and summary statistics. Section 4 presents the em-

pirical strategy and Section 5 presents the main empirical findings. Section 6 discusses and

concludes.

2 Background and Conceptual Framework

2.1 The Welfare Impacts of Heat Exposure

Recent empirical studies find strong evidence for a causal impact of short-run heat expo-

sure on economically relevant outcomes. These include impacts on human health, labor

productivity, labor supply, and human capital. In seminal work, (Deschênes and Green-

stone, 2011) find that an additional day with mean temperatures above 90◦F leads to a

0.11% increase in annual mortality in the United States, controlling for location-specific

characteristics and the potential for harvesting. Graff Zivin and Neidell (2014) document

substantial contractions in labor supply on hot days in those U.S. industries with high

exposure to extreme temperature and weather shocks. They find that, for highly exposed

occupations (e.g. construction), days with temperature above 100◦F (37◦C) lead to 23%

lower labor supply than temperatures between 77◦-80◦F (25◦-27◦C).7 These studies – and

the longstanding experimental literature on temperature and task productivity (Seppanen

et al., 2006) – form the basis for exploring adaptation to heat stress in the context of

non-agricultural production activities.

6The welfare incidence of hot temperature – between owners of capital and owners or labor, or across
segments of the income distribution – is a largely unexplored area that may have important implications
for designing economic policy.

7In the context of labor productivity, Cachon et al. (2012) document significant negative impacts of
extreme heat on automobile plant output, controlling for plant-specific productivity and seasonality in
production. They find that a week with six or more days with maximum temperatures above 90◦F reduces
output that week by 8% on average. Sudarshan and Tewari (2013) find similar plant-level productivity
declines among Indian manufacturers, even when controlling for region, firm, and individual-specific factors.
Deryugina and Hsiang (2014) find substantial impacts of hot days on county-level income in the United
States.
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2.2 Adaptation and Economic Policy

How quickly and effectively economic agents can adjust to changes in their environment is

a question of central relevance for economic theory as well as economic policy (Samuelson,

1948; Mendelsohn et al., 1994; Davis and Weinstein, 2002; Kahn, 2005; Burke and Emerick,

2016).8 Despite a rapidly evolving literature using weather variation to identify causal

impacts, it remains unclear whether these short-run weather-sensitivity parameters are

reflective of long-run climate sensitivity of economic activity, much less social welfare,

mainly due to the possibility of adaptation.

How might estimating adaptation be important for climate policy? Generally speaking,

one can imagine four stylized possibilities. First, adaptive investments may be effective at

reducing climate impacts and occur quickly at low cost, in which case using short-run

weather sensitivities to estimate long-run climate damages would overstate the urgency

of public policy in addressing climate change. Alternatively, adaptive investments may

occur slowly, prove to be prohibitively costly, or exhibit market failures such as collective

action or principal-agent problems. In this world, economic damages under climate change

would likely be large and persistent, implying a more substantial role for public policy in

addressing future climate threats. A third possibility is that, regardless of the potential

effectiveness of some adaptive investments, the set of affordable adaptation options actually

shrinks in the long run, due to the depletion of finite resource stocks such as fossil aquifers

or ecological buffer capacity, or because of general equilibrium effects which amplify the

aggregate welfare costs of impacts in any given sector. Finally, induced innovation might

lead to an expansion of the set of feasible adaptive technologies over time, increasing the

potential for adaptation and reducing the realized damages of climate change, but with

significant lags in timing of uptake.

Many recent weather-economy studies combine historical short-run damage coefficients

with climate model projections to estimate the expected costs of long-run future climate

change. These approaches, while providing valuable information to integrated assessment

models aimed at estimating the social cost of carbon, are subject to important limitations.

Suppose the temperature-output response functions with and without long-run adaptation

are as depicted in Figure 1a. If what one is interested in from a policy standpoint is the

true long-run social costs of climate change, (V0 − V1), then estimating this using short

run panel impacts, (V0−V2), might overstate damages by (V1−V2), which is the extent of

adaptation that occurs over the long run.

More generally, the realized welfare costs of climate change will be highly sensitive to

the potential (1) magnitude, (2) mechanisms (and associated market/behavioral failures),

and (3) adjustment costs of adaptation in the long-run. This paper attempts to shed

light on the first two of these policy-relevant parameters, for which there are few empirical

8At the most general level, economists have debated this issue theoretically since at least Samuelson
(1948), who suggested the LeChatelier principle: that longer time horizons will allow for greater margins
of adjustment to any given shock or change in the economic environment.
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estimates currently available.

2.3 Evidence for Adaptation

The economic literature on adaptation to climate change has to date focused primarily on

agricultural yield (Mendelsohn et al., 1994, 2000; Schlenker et al., 2006; Butler and Huybers,

2013; Burke and Emerick, 2016), human health (Barreca et al., 2016), and energy demand

(Auffhammer, 2017). The evidence is mixed, with some studies suggesting substantial

scope for adaptation to hot temperature, and others finding weak or inconclusive evidence

that individuals adapt to changes in climate.

Barreca et al. (2016) find evidence for adaptation in the context of health responses

to temperature shocks. They find that the mortality impacts of heat stress in the United

States, which are most acute when daily mean temperatures reach above 90◦F, declined

rapidly over the twentieth century: by roughly 75 percent, most of it occurring after 1960.

Using state-level air conditioning penetration data, they find that the vast majority of this

decline can be explained by adoption of air conditioning as opposed to electrification or

the number of physicians in the state. In contrast, Burke and Emerick (2016) find little

evidence for adaptation to heat exposure over time by American farmers. Similarly, Burke

et al. (2015) suggest that both rich and poor economies have exhibited little to no changes

in the heat-sensitivity of output over the past several decades.

This paper addresses the prospect of privately optimal adaptation to the impacts of heat

stress on labor inputs. The intention is to include all economic sectors that are subject to

temperature-related production impacts arising from thermal stress of the human body —

including labor supply, task productivity, and direct disutility — but that are not directly

affected by the well-documented relationship between temperature and agricultural yield.

2.4 Adaptation to Heat-Related Labor Impacts

Adaptation to heat exposure in labor-related settings may involve a wide range of mecha-

nisms, depending in large part on the approbriability of the benefits of investment as well

as the relevant time-frame (Table 1b provides a non-exhaustive heuristic of adaptation

mechanisms by type). For instance, in the short run, workers may adjust labor supply, ei-

ther on the intensive margin – choosing to work fewer hours overall, during a different time

of day, or on a different day of the week – or on the extensive margin, choosing to exit the

labor force temporarily (e.g. dropping out of seasonal construction labor markets during

a very hot year). Individuals may also adjust exertion levels (labor effort) – especially if

remuneration is by the hour or effort is imperfectly observable – or engage in other forms

of defensive behavior such as wearing lighter clothing.

In the longer run, persistent temperature shocks may lead workers to change occupa-

tions, migrate to a more hospitable climate, or exit the labor force completely. Similarly,

flow expenditures on heating and cooling may in most cases be easily adjusted in the short
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run, but changes in the stock of heating and cooling equipment – for instance, upgrading

an air conditioner from window unit to central AC, or retrofitting a home with better

insulation – may require longer time horizons.

An important assumption made by some climate adaptation studies has been that

adaptation, unlike mitigation, does not exhibit obvious market failures, leading to the im-

plication that observed adaptation patterns identify the outer envelope of potential adap-

tation to climate (Deryugina and Hsiang, 2014). It is possible however that adaptation

to heat exposure involves non-trivial market imperfections, particularly in labor or human

capital-related settings. For instance, there may be important principal-agent problems in

the context of workplace temperature amenities if it is unclear to the principal whether

thermal comfort comprises a consumption or a production amenity. Similarly, it is possible

that, in the context of imperfectly competitive local labor markets, firms have an incentive

to maximize profit at the cost of worker health – if part of the benefits of air conditioning

or other adaptive investments consist of health benefits to workers.9 It is also possible

that weak or corrupt institutions drive an additional wedge between observed levels of

adaptation and the optimal adaptation frontier, as is suggested by studies in the context

of natural disasters (Kahn, 2005), agriculture (Annan and Schlenker, 2015), and human

capital (Park, 2016).10

Any combination of these market imperfections would imply that observed levels of

adaptation do not represent the efficient adaptation frontier, even in contexts where liq-

uidity constraints – as in Gertler et al. (2016) – do not bind. Applied microeconomic

research on these topics represent important areas for future research. For the purposes of

our analysis, and given the lack of empirical evidence to date, we make what we believe

to be a conservative assumption that there is some set of privately optimal adaptation

technologies and that the set of technologies available does not differ systematically across

regions within the United States according to long-run climate.

The empirical strategy employed in this paper thus takes a revealed preference approach

to inferring the extent of adaptation to climate stress. Specifically, comparing the realized

impacts of temperature stress on output net of short run adaptations within each region

with the impacts of temperature stress given different levels of long run adaptation across

regions allows an analysis of the potential for adaptation in the long run, subject to the

assumptions noted above.

9If the health effects of heat exposure are imperfectly observable (to both employer and employee) or
show up with sufficiently long lags, even competitive labor markets may under-provide workplace cooling.

10Induced innovation may also be an important component of adaptation: for instance, R&D in low-
cost, energy efficient cooling devices may have the potential to substantially reduce the production costs
associated with hotter climates. If there are R&D spillovers which are not completely internalized by any
given firm, the market may under-provide investment in new adaptation technologies.
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2.5 Production Impacts of Heat Stress

To motivate the empirical strategy, we outline a partial equilibrium model of local adaptive

investment in response to the production impacts of heat stress.

Define production-relevant temperature stress, TE , as a measure of extreme heat. For

instance, this could be the number of hot days per year, or a cumulative measure such as

the concept of killing degree days in the agricultural literature. TE is a random variable,

the historical distribution of which reflects average climate in that area.

Consider the production function Y (A,L), which take as inputs labor productivity

A, and effective labor supply L, where labor supply includes both dimensions of hours

and effort. Recent empirical work suggests that both A and L depend on experienced

temperature. While the focus here is on labor, it is worth noting that a possible adaptive

response to heat stress may be to adjust capital-labor ratios of production, depending on

which factor is more temperature sensitive. Let us make the simplifying assumption that

extreme heat does not significantly affect the productivity of non-labor inputs (e.g. the

productivity of capital).11 We will also assume for the time being that the price of output is

not affected by temperature in the short run, though it is certainly possible for demand-side

responses to affect prices in some sectors, as discussed in greater detail below.

Allowing labor supply and productivity to depend on temperature means that output

is a function of experienced temperature:

Y (A,L) = Y (A(TE), L(TE))

We abstract away from principal-agent problems or labor market frictions, such that the

revenue impact of a productivity shock is completely internalized. One way to conceptualize

this is to assume that laborers are proportional shareholders in the firm. Workers maximize

utility, U(Y, L, TE), which is increasing in total output (i.e. income, which we assume is

spent on a composite consumption good) and decreasing in labor supply, labor effort, and

temperature stress, which causes direct disutility ( ∂U
∂TE

≤ 0). Any such market frictions

would mean that our estimates understate the potential for socially-optimal adaptation.

The task productivity literature suggests that physical and cognitive task productivity

falls with extreme temperature — both heat and cold. Here, we focus on the hot end

of the temperature-task productivity relationship, such that ∂A
∂TE

≤ 0.12 Existing studies

also suggest that labor supply, defined here as a combination of labor hours and labor

effort, reacts negatively to extreme temperature, in part due to direct disutility, in part

due to lower productivity: ∂L
∂TE

≤ 0. While we have abstracted away from the labor-

leisure tradeoff, it is possible to show that, absent strong income effects, temperature

11It is possible that the effectiveness of physical capital may be sensitive to extreme heat. For instance,
heat rates at power plant are affected by ambient temperature, and electronics are known to malfunction
at high temperatures. Whether extreme heat has a first-order effect on capital product is a question that
remains yet unresolved.

12The empirical analysis presented below suggests that the labor productivity impacts of extreme cold
are relatively small, at least in developed economies such as the United States.
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deviations from the thermoregulatory optimum will affect labor hours and labor effort in

the same direction (Heal and Park, 2013), such that heat shocks will reduce effective labor

product, net of optimizing responses of workers who may reallocate labor effort and hours

accordingly.

Provided that ∂A
∂TE
≤ 0 and/or ∂L

∂TE
≤ 0, extreme heat will have a non-positive impact

on total output:
dY (A(TE), L(TE))

dTE
≤ 0

Importantly, given utility-maximizing workers who have some flexibility in their choice

of work hours or effort, realized output fluctuations in response to temperature shocks will

be net of adjustments on the labor supply and labor effort margins.

2.5.1 Long-Run Adaptive investments

Suppose firms can undertake structural adaptive investments, α, which can mitigate the

negative impact of extreme heat stress by reducing the temperature sensitivity of workers’

task productivity, ∂2A
∂TE∂α

> 0, and/or reducing the temperature sensitivity of labor supply:
∂2L

∂TE∂α
> 0.

In principle, firms might be able to engage in adaptive investments in either the short

or long run, as discussed above. Here, we focus on the decision to invest in long-run

adaptive capital, which may take the form of structural investments such as centralized

cooling systems or cultural capital in the form of procedural norms.13

Firms will choose to invest in adaptive capital such that the expected marginal benefit

associated with additional adaptive investment (in terms of heat-related damages avoided)

is equal to the marginal cost.14 In a stable climate, one would expect such long-run

investments to be a function of the expected (historical) climate, αt(E(TE)). A proxy for

expected benefits would be provided by the average historical incidence of heat events that

affect production adversely, E(TEt ) ≡ TEt ≈
∑t−1
τ=1 T

E
τ

(t−1)−τ .15 For the time being, we abstract

away from forward-looking investments by firms who anticipate the production impacts of

a shifting climate distribution.16

13In effect, we are defining α such that it corresponds to a fixed cost investment in time t that reduces
the future stream of variables costs associated with cooling in periods t+1 and beyond. In other words, we
assume that these adaptive investments are sufficiently lump sum so as not to be adjustable in response to
acute heat stress (a few hot days or an unusually hot summer), but rather have been chosen prior to the
realization of current extreme heat TEt .

14Absent market failures, one would expect firms and workers to engage in the most cost-effective
adaptation technologies first, moving up the “adaptation cost curve” as the marginal benefit (in terms of
avoided production impacts) increases, either due to intensification of warming or higher marginal value of
production.

15We use τ = 1 to denote the starting date when determining the average number of temperature events
to recognize that expectations over climate need not consider all of history but might reflect something like
a 20-year moving average.

16This is not a trivial assumption. As Severen et al. (2016) and Lemoine (2017) suggest, firms that
anticipate future warming will respond not only to past realizations of weather, but also to future climate
projections. Given the historical nature of our empirical analysis, which uses data from 1986 to 2011, we
abstract away from this forward-looking dimension.
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The production function can be written as:

Yt(A,L) = Yt(A(TEt , αt(T
E
t )), L(TEt , αt(T

E
t ))),

where
∂A

∂TE
< 0,

∂2A

∂TE∂α
> 0;

∂A

∂TE
(TE , α)

and
∂L

∂TE
< 0,

∂2L

∂TE∂α
> 0;

∂L

∂TE
(TE , α).

Output is a function of labor productivity, labor supply, and adaptive capital. Labor

productivity and supply at any given point in time will depend not only on the contem-

poraneous temperature, Tt, but also the history of temperature shocks in that location –

TEt , that is, the local climate – due to the fact that adaptive capital stock will have been

chosen to maximize profits subject to the conditions mentioned above.

2.5.2 Application to empirical strategy

The overall effect of adaptive investments will be to reduce the short-run temperature-

sensitivity of total output (Y ): ∂2Yt
∂Tt∂α

≥ 0. To the extent that workers are paid their

marginal product, and given our assumptions regarding the (lack of) temperature-sensitivity

of capital above, this would be reflected in a similar reduction in the short-run temperature

sensitivity of payroll per worker (y): ∂2yt
∂Tt∂α

≥ 0.

Thus, in the long run, one would expect firms in hotter climates (H) to exhibit higher

levels of adaptive investment than cooler ones (C), αH > αC , provided that TEH > TEC .

This paper aims to estimate the production impacts of extreme heat, ∂yt
∂TEt

, in addition

to the expected extent of long run adaptation, αH − αC , by using differences in realized

production impacts across various climate regions, ∂yC
∂TEC
− ∂yH

∂TEH
, as well as across regions

with different levels of air conditioning penetration, which may be one component of α.

3 Data and Summary Statistics

3.1 County-Level Payroll Data

We use payroll data from the County Business Patterns database from 1986-2011, which

records annual and 1st quarter payroll for roughly 3,000 US counties by two-digit NAICS

classification. Payroll includes all forms of compensation, including salaries, wages, com-

missions, dismissal pay, bonuses, vacation allowances, sick-leave pay, and employee contri-

butions to qualified pension plans paid during the year to all employees.17

17For corporations, payroll includes amounts paid to officers and executives; for unincorporated busi-
nesses, it does not include profit or other compensation of proprietors or partners. Payroll is reported before
deductions for social security, income tax, insurance, union dues, etc.
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The choice of payroll as the dependent variable of interest – rather than, for instance,

total profits or total income – is motivated by two factors. First, changes in per capita

payroll provide close proxies to changes in total and marginal labor product, separately

from changes in capital expenditures. Importantly, payroll is less likely to include capital

income or direct expenditure on heating and cooling, which may be the case for total

income. This means that one is in principle able to more closely approximate labor impacts,

and to estimate the implied marginal benefits of adaptation separately from the short-run

marginal costs.18 Second, payroll data from the CBP allows us to isolate production

impacts in non-agricultural sectors, as well as to distinguish between sectors that are likely

to be more or less exposed to temperature stress.

3.2 Daily Weather Data

County-level payroll data is matched with daily weather data from the PRISM model, which

provides temperature and precipitation readings for a 2km x 2km grid of the contiguous

United States. Daily max, min, and average temperatures as well as daily precipitation

are area-weighted to the county level, and variables containing the number of days with

daily maximum temperatures in a series of 10◦F bins are constructed by county and year.

Past literature has documented a persistent, non-linear relationship between tem-

perature and economic outcomes, particularly in the context of extreme heat exposure

(Schlenker et al., 2006; Hsiang, 2010; Deschênes and Greenstone, 2011; Burke et al., 2015;

Barreca et al., 2016). Where data has been available, this relationship has been captured

using the concept of temperature days: for instance, growing or killing degree days in

the case of agriculture, which measure the amount of time a crop is exposed to temper-

atures between a given lower and upper bound, with daily exposures summed over the

growing season to ascertain annual growing degree days. We use a flexible, degree-day

binning approach that estimates the marginal impact of additional days at any part of the

temperature-day distribution, compared to an omitted optimal category.

3.3 Air Conditioning Data

Air conditioning penetration by county and year is constructed using county level resi-

dential AC information from the 1980 decennial census combined with data on changes in

residential AC penetration over time by census region from the Energy Information Agen-

cies Residential Energy Consumption (REC) surveys. We use the reported penetration

rates in 1980 as a basis and then extrapolate based on the region-level growth rate of cen-

18For instance, if firms pay wages as a function of hours worked and units of production, fluctuations in
payroll arising from temperature shocks would reflect changes in labor supply and labor productivity. If,
in addition, firms respond by running existing air conditioning equipment at a higher utilization rate, this
added cost would be reflected in lower profits or net income, thus conflating some portion of realized output
shocks with short-run flow expenditures on adaptive capital. Payroll, which more closely approximates
marginal product of labor than capital, is thus more likely to provide information on differences in long-run
adaptation, absent data on technology-specific adaptation costs.
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tral, window and total AC penetration recorded by RECS, which provide penetration rates

by region from 1980 to 2009 with a two or three-year frequency. We linearly interpolate

growth rates for the missing years and assign counties their corresponding regional growth

rate. Using this growth rate and the observed penetration rate in 1980 we create a measure

of penetration in every county in each year from 1980 to 2011. We top-code penetration at

100%. Our primary specification uses the penetration rate of total AC but we conduct the

same exercise for central and window AC and estimate all models with all three measures

of AC penetration. The results across all three measures are qualitatively similar.

Given the focus on production impacts operating through labor inputs, the ideal mea-

sure of AC would include commercial and/or industrial AC penetration. Such data was

not available. However, available evidence suggests that commercial and residential AC

penetration rates are highly correlated within regions. For instance, according to the EIA,

74% of commercial buildings in the Northeast region had some form of AC as of 2009,

while approximately 80% of residential buildings did. In the East-South-Central region,

the commercial and residential penetration rates were 90% and 95% respectively. Based on

this observation, and the assumption that local determinants of residential and commercial

AC are likely to have shared components (Biddle, 2008), we take residential AC as a proxy

for total AC at the county level.

3.4 Summary Statistics

Over the period 1986 to 2011, a county in the middle of the United States climate distribu-

tion experienced an average annual temperature of 54.6◦F and approximately 5 days with

temperatures above 95◦F per year. This masks tremendous variation across regions. Much

of the Northeast and coastal regions of the West seldom experience more than a few days

above 95◦F. Seattle and San Francisco experienced fewer than one such day per year on

average over the period. In contrast, parts of the South and Southwest regularly get more

than 30 such days per year.19 Figure 2 depicts the average incidence of 95◦F+ days and

mean daily temperature across the country by county. Figures 3a and 3b depict changes

in 95◦F days year-to-year for a few representative counties, illustrating the primary source

of identifying variation.20

19Running simple OLS regressions in the cross-section suggests a strong correlation between productivity
and average climate. Pooling all years in the sample, a region with one more heat day (95◦F and above) per
year on average features 0.01% lower non-agricultural payroll per capita, controlling for precipitation. This
is consistent with the cross-sectional gradient documented by Acemoglu and Dell (2010), who find a within-
country slope of roughly -1% per degree F increase in average annual temperature across municipalities
in North and South America. While this relationship may be driven by climate per se, it may also be
driven by unobserved omitted variables such as institutional quality or human capital, motivating the panel
estimation strategy described below.

20It is important to note that realized temperatures can vary considerably even within small geographic
locales (e.g. counties) depending on elevation, distance to bodies of water, vegetation, and surface albedo.
For instance, within Los Angeles County, the temperature on a given summer day may be 30◦F lower in
Santa Monica, which is on the coast, than it is in Pasadena, which is farther inland. To the extent that
our measures of local temperature are measured with (classical) error, we would expect the estimates of
the impact of heat exposure on production to be downward attenuated.
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Figures 4 and 5 depict imputed average AC penetration rates across the country in

the years 1990, 2000, and 2010 respectively, excluding Alaska and Hawaii. As of 1986, the

average residential AC penetration rate across all counties was 58%. By 2010, it had risen

to 75%. Once again, there is considerable variation across regions, both in initial levels of

AC penetration and rates of uptake over time. For instance, AC penetration in New York

City rose rapidly during the period 1986 to 2011, increasing from 55% to 89%. In Marin

County, CA, AC uptake was much slower, from 12% to 21% over the same period (Figure

6a). Houston, TX, on the other hand, had close to universal AC since 1986.

4 Empirical Strategy

4.1 Regression Framework

The analyses presented below are based on estimating variants of the following equation:

ln(yist) = ΣkβkTMAXitk + π1PRECit + γi + ηt + fi,s(Y EARt) + εist (1)

where yist is annual payroll per capita in county i, state s, and year t. PRECit represents

average daily precipitation in each county, measured in tenths of an inch per day. The

variables γi and ηt denote county- and year-fixed effects respectively. γi controls for

time-invariant unobserved factors that may determine the relative productivity of county

i (e.g. human capital). ηt accounts for correlated shocks that are common across the

United States (e.g. recession years). fi,s(Y EARt) represents non-linear time trends that

are allowed to vary by county or state, and control for smooth changes in payroll over

time as well as the potential for correlation between secular regional productivity trends

not accounted for by annual population and year fixed effects.

The variables TMAXitk represent our measures of temperature, which are constructed

to capture exposure to the full distribution of temperatures in a given year. The TMAXitk

variables are defined as the number of days in a county-year in which the daily maximum

temperature is in the kth of 9 temperature bins ranging from 0◦-10◦F to 95◦F and above.

In practice, the 70◦F-79◦F bin is the excluded group, so the coefficients on the other bins

are interpreted as the effect of exchanging a day in the 70◦F-79◦F range with a day in other

bins. The primary functional form restriction imposed by this model is that the impact of

the daily max temperature on annual payroll is constant within 10◦F bin intervals.

We use the number of days above 95◦F as the primary indicator of extreme heat.

This is motivated by previous studies, which find strong impacts of heat stress on human

behavior and task productivity beginning around 85◦F, as well as the observation that most

productive activity occurs during the daytime, motivating a choice of daily max as opposed

to min or mean temperature as the primary measure (Deschênes and Greenstone, 2011;
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Graff Zivin and Neidell, 2014; Barreca et al., 2016).21 Not specifying additional bins above

or below this threshold represents an effort to remain as non-parametric as possible while

also obtaining estimates that are precise enough to permit meaningful interpretation.22 In

all versions of equation 1, the βk parameters are identified from inter-annual variation in

temperature realizations.

4.2 Estimating Labor-Related Temperature Impacts

To isolate the impact of temperature on non-agricultural sectors, we subtract agricultural

payroll from total annual payroll for each county-year, and run a version of equation 1 that

uses log non-agricultural payroll as the dependent variable.

To further isolate the impact on labor inputs, we examine impacts by sector, where j

denotes NAICS sector classification:

ln(yijst) = ΣkβkTMAXitk + π1PRECit + γi + ηt + fij,sj(Y EARt) + εijst (2)

Determining ex ante which industries are more or less susceptible to temperature stress

in an empirically executable way is not an exact science, in part because CBP payroll

data is categorized by two-digit NAICS parent codes as opposed to specific occupations.

Each parent category (e.g. Construction, Retail, Transportation) includes many specific

occupations that may feature vastly different working environments. For instance “Trans-

portation” includes “Rail-Track Laying and Maintenance Equipment Operators”, who are

likely to work outdoors, as well as “Air Traffic Controllers” who are less likely to work

outdoors.

As a conservative categorization scheme, we follow the National Institute for Occupa-

tional Safety and Health’s (NIOSH) classification of “highly exposed” industries: namely,

construction, manufacturing, utilities, transportation and mining.23 We classify the rest –

retail, wholesale, health, education, and finance-insurance-real estate – as “not exposed”.24

It is worth noting that it is possible for demand-side factors to affect our estimation. For

instance, hot days may induce greater demand for certain products that are complementary

21The kink point is lower in lab studies (Seppanen et al., 2006). This could be due to the fact that
most lab experiments impose something akin to a no-adaptation constraint, since participants are required
to concentrate on challenging tasks under temperature stress without the ability to rest between sessions,
adjust physical surroundings, or adapt production techniques.

22In analyses available upon request, we use alternative measures of temperature shocks, including days
with daily max temperatures above 90 and 100◦F. By and large, the results are consistent across different
measures of temperature, though they are sharpest using the 95◦F maximum temperature threshold.

23“Highly exposed” industries include industries where the work is primarily performed outdoors —
agriculture, forestry, fishing, and hunting; construction; mining; and transportation and utilities — as well
as manufacturing, where facilities are typically not climate-controlled and the production process often
generates considerable heat.

24To the extent that the comparison of interest is between highly exposed and non-exposed occupations
and this classification only crudely approximates the true subset of exposed occupations, we would expect
the analysis to provide an underestimate of the difference, as we would be measuring impacts for air traffic
controllers alongside railway repair workers within the same “highly exposed” category, and similarly for
occupations that may be more likely to work outdoors in the “non-exposed” category.
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to consumption activities during warm weather (e.g. ice cream). They may also lead to

avoidance behavior or adverse health outcomes that directly affect demand for services and

thus annual payroll (e.g. emergency room visits to hospitals). If sector-specific product

demand is affected positively by temperature, our estimates are likely to be downward

biased. If demand is negatively affected, they may be upward biased. We attempt to

account for some of these factors by examining specific sectors that are likely to be more or

less affected by intra-annual demand-side factors. To our knowledge, there is as yet little

empirical work exploring demand-side responses to short-run temperature fluctuations,

which will be important to consider in performing full welfare accounting.

4.3 Estimating Adaptation

To measure adaptation, we first classify counties according to their average historical cli-

mate. The relevant definition of average climate will depend, in part, on the aspects of the

climate distribution that affect the relevant investment decisions noted in section 2. To the

extent that output impacts are driven by extreme heat – as opposed to impacts from shifts

in average annual temperatures, which may reflect warmer winters – one might expect the

relevant metric to be the expected number of extreme heat days over time.

In practice, we use various moments of the long-run climate distribution to define

“climate”. The preferred specification categorizes counties by the average number of days

with maximum temperatures above 95◦F, though the results are qualitatively similar in

specifications that use a lower temperature threshold (e.g. 80◦F, 90◦F) or average annual

temperatures. All specifications use averages over the period 1986-2011 for consistency.

We measure the extent of potential long-run adaptation in two ways. First, we run

equation 2 separately by quartile of the historical climate distribution. Second, we aug-

ment equation 2 by adding interactions of the temperature variables with county-specific

measures of long-run climate:

ln(yistj) = ΣkβkTMAXitk + Σkθ
CL
k TMAXitk × ¯TMAXi,k=9 + ω ¯TMAXi,k=9

+ π1PRECit + γi + ηt + fs,i(Y EARt) + εistj (3)

The coefficients θCLk on the interaction term measure whether the effect of an additional

day in a given temperature range is affected by the average historical incidence of hot

days, relative to the effect of the average historical incidence on a day in the omitted bin.

According to the model presented in section 2, we would expect places that experience

greater heat exposure on average to be better adapted to heat stress, and thus experience

lower marginal impacts per hot day. This would result in a positive interaction term for

days above 95◦F. We also present results from running equation 2 separately by climate

bin.
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4.4 Exploring the Role of Air Conditioning

To assess the role of air conditioning in reducing the impact of extreme heat on production,

we augment equation 2 with measures of air conditioning penetration. We interact interpo-

lated AC penetration at the county-year level with the temperature variables to estimate

the role that AC may have played as a modifier on the effect of hot days on production:25

ln(yistj) = ΣkβkTMAXitk + Σkθ
AC
k TMAXitk ×ACit + λACit

+ π1PRECit + γi + ηt + fs,i(Y EARt) + εistj (4)

The interaction term measures whether the effect of an additional day in a given tem-

perature range is affected by the average AC penetration rate in that county-year, relative

to the effect of the average historical incidence on a day in the omitted bin. The hypothesis

is that the coefficients on the interaction terms (θACk ) will be positive for hot days (k=9),

suggesting that investment in AC mitigates the marginal impact of hot days on production.

The interpretation assumption being made in using residential AC is that the determinants

of a total AC both across and within counties are similar to the determinants of residential

AC over the period 1986-2011.

5 Results

5.1 The Production Impacts of Heat Exposure

Figure 6b provides a binned scatterplot that motivates the analyses that follow. It shows

the relationship between log payroll per capita and the number of hot days by percentile

of the hot day distribution, controlling for average differences across counties and years,

as well as the other weather controls and time trends noted in equation 1. It suggests a

strong negative relationship between hot days during the year and payroll that year.

Table 1 presents the results from running versions of equation 1 with state- and county-

specific time trends. The dependent variable in this case is non-agricultural payroll per

capita. Robust standard errors are clustered at the state by year level to allow for spatial

correlation of error terms within a given state and year. The estimates suggest that an

additional hot day causes a -0.04% (se=0.002) decline in payroll per capita on average.

This means that a year with 10 more hot days results in approximately -0.4% lower payroll

per capita for the mean U.S. county, or that, in any given year, hot days (of which there are

on average 10) reduce total per capita payroll by approximately -0.4% from what would

otherwise have been the case if not county experienced a day with temperatures above

95◦F.

25We also do the same for average AC for the entire period (1986-2012), as a check against results being
driven by the AC interpolation scheme.
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5.2 Exposed versus Non-Exposed Industries

Figures 7a and 7b illustrate the relationship between residualized payroll and hot days for

highly exposed and non-exposed industries respectively. They suggest more acute impacts

in sectors where workers are exposed to the elements. An additional hot day causes a

statistically significant -0.23% (se=0.006) decline in payroll per capita in highly exposed

industries, as opposed to an insignificant -0.011% (se=0.002) decline in non-exposed indus-

tries. This corresponds to a more than 5-fold difference between exposed and non-exposed

sectors. The magnitude in exposed sectors is large: a year with 10 additional 95◦F+ days

reduces labor product by approximately 2%. Including the impact of hot days below this

threshold (e.g. including days with max temperatures between 80◦F and 95◦F), the impli-

cation is that, for a county in the middle of the summer temperature distribution, a +2◦C

(+3.6◦F) hotter year results in a -10.4% decline in payroll in these sectors.26

These results are consistent with a story of reduced labor product due to reductions in

cognitive capacity and physical functioning from thermal stress of the human body, as well

as shocks arising from reduced concentration and increased mistakes, reduced labor effort,

and reduced labor supply.27

Figures 8a, 8b, 9a, and 9b present analagous binned scatterplots for construction,

transportation, education, and healthcare sectors respectively. As might be expected,

construction payroll declines in years with more hot days. This may be driven by the effects

of hot temperature on labor supply, labor effort, or labor productivity (e.g. higher error

rates on hot days). Unless construction demand is higher when there are more extremely

hot days (controlling for cold days and precipitation), it seems unlikely that the observed

effect is being driven by demand-side factors. The extent to which the observed effects on

payroll are a function of reductions in hours, effort, or productivity will depend in part

on the prevailing contractual structure, as suggested by Heal and Park (2016) and Kahn

(2016), and documented in the context of air pollution and agricultural workers (Graff-

Zivin and Neidell, 2012). Transportation payroll also shows substantial declines in years

with more hot days. Here, it is less clear whether the effect is due to reduced transportation

demand (e.g. fewer cab or train trips demanded) or reduced productivity/supply of labor

inputs (e.g. productivity of road and railway maintenance workers).

Payroll in the education sector is unaffected by hot temperature, which is consistent

with a higher concentration of unionized and salaried workers. Healthcare payroll seems to

increase slightly during years with more hot days, consistent with – though by no means

26For a county in the 3rd (middle) quintile of the US extreme heat day distribution, a +1◦F warmer
year corresponds to 5 additional days between 80◦F and 90◦F, and 13 additional days above 90◦F.

27Note that while there may be some bias due to selection in the location of highly exposed industries
in the cross section (industries that are highly exposed may choose to locate in locations that are typically
colder) our panel approach mitigates this bias. To the extent that some highly exposed industries produce
non-traded goods (e.g. construction), work must take place in places that are both hot and cold. While
construction workers in hot places may choose to work differently than those in colder places – earlier in
the morning for example – it is as yet unfeasible for construction to be completely out-sourced to cooler
locations.
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definitive proof of – increased demand for healthcare services due to more hospitalizations

and emergency room visits (Schwartz et al., 2004). In results available upon request, we

find that agricultural payroll is slightly positively related to the number of hot days as

well, which may be due to Federal Crop Insurance payments (Annan and Schlenker, 2015)

or demand-side factors.

5.3 Evidence for Long-Run Adaptation: Comparing Across Climatic Re-

gions

Results from running equation 2 by quartile of the average hot day distribution are reported

in Table 3. A county in the bottom quartile of the extreme heat day distribution (e.g.

San Francisco, Seattle) exhibits a short-run weather sensitivity of approximately -0.21

percentage points (se = 0.0010) per extreme heat day (95◦F+). A relatively hot county

at the top quartile of the US average temperature distribution (e.g. Houston, Orlando)

has a short-run weather sensitivity of -0.052 percentage points (se = 0.0188) per extreme

heat day: roughly a quarter the impact. As columns (1) through (4) suggest, the marginal

impact of a hot day seems to decline monotonically as one moves to climates that experience

more hot days on average. For highly exposed sectors (bottom panel), the effect sizes are

larger in all climate bins, but show a similar pattern of declining marginal impacts as one

moves to hotter parts of the country.

The impact of an additional hot day is roughly 75% smaller in counties in the top

quartile of historical extreme heat incidence, compared to counties in the bottom quartile,

suggesting substantial scope for adaptation given appropriate investments.28 Whether

because of AC or other adaptations, private or public, the same 95◦F+ day seems to have

a very different short run impact in Houston than it might in Boston. While the reduction

in temperature sensitivity associated with moving from less to more heat-prone areas is

large, it is worth noting that, even in these presumably very well-adapted areas, extreme

heat days have statistically significant and economically meaningful impacts on output.

These estimates suggest that, at least for highly exposed industries such as manufacturing,

construction, or transportation, even those counties in the top quartile of extreme heat

exposure suffer routine heat-related output impacts of up to -5.2% per year, given the high

incidence of hot days. This is despite near universal air conditioning in many parts of the

US South and Southwest.

5.4 The Role of Residential Air Conditioning

Nearly all households in Houston had AC as of 2009, of which 80% were central AC units.

In contrast, only 20% of Massachusetts households had central AC, and 21% did not have

air conditioning units altogether. For average Texas households, 18% of total energy usage

is devoted to cooling, compared to 1% for Massachusetts households. Such differences in

28Running the analysis by quintiles yields similar results. Both specifications suggest monotonically
declining temperature sensitivities as one moves to regions with greater degrees of perennial heat stress.
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AC represent but one of a potentially very large number of adaptations that local workers,

consumers, and firms have evolved over the years in response to different climates. It

is worth noting that, while average AC penetration and incidence of hot days is highly

positively correlated, the relationship is far from uniform, especially in hotter regions.

This is consistent with some hot but poor regions such as Grady, GA having experienced

slow AC uptake relative to what climatic averages might suggest. It is also worth noting

that, aside from a few recent examples noted above (Davis and Gertler, 2015; Barreca

et al., 2016), air conditioning as an adaptation strategy has received limited attention in

both the academic and policy literature.29

Table 4 presents the results from running augmented versions of equation 2 that interact

temperature and AC penetration rates. Columns (1) and (2) present interaction terms

between hot temperature and AC penetration by county. The coefficients on the interaction

terms between hot temperature and AC penetration are positive, suggesting that having

more AC helps protect against the production impacts of hot days. The interaction term

between AC and cold days is not significant, further suggesting that the effect is operating

through the protecting impact of air conditioning against heat. Because AC penetration is

not experimental, however, it is impossible to infer from these estimates that adaptation

is a function of AC per se. Further, Column (3) provides results of a regression with

interactions of 95◦F+ days with both AC penetration and the average number of hot days

in that county. Both interaction terms are significant and positive, suggesting that, even

controlling for AC penetration, the marginal effect of a 95◦F+ day is lower in areas that, on

average, experience more days above 95◦F. That suggests that there are adaptive strategies,

or technologies, being employed above and beyond adoption of AC. We take these results as

consistent with a model of firm and worker behavior in which some combination of average

climate, changes in production technologies, and changes in worker tastes over time leads

to differential uptake of AC and other fixed cost adaptation investments, all of which have

the realized effect of reducing the short-run production impacts of hot weather.

6 Future Projections

Here we provide an illustration of the important role that adaptation can play in assessing

optimal climate policy. Our goal is to demonstrate the sensitivity of long-run damage pro-

jections to adaptation assumptions, rather than to generate specific parameter estimates.30

Our projections of future temperatures come from the CMIP5 multi-model ensemble

projections of future climate change. We download data from the Downscaled CMIP3 and

CMIP5 Climate and Hydrology Projections (USDOI, 2013). We model temperatures on

29For instance, chapter 17 of the 5th IPCC report, which summarizes the economics of adaptation, does
not mention air conditioning as an adaptation strategy.

30It is impossible to claim that the estimates that we provide can be thought of either as upper or lower
bounds. Induced innovation and future technical change would mean that using such approaches might
understate potential adaptation, while market and behavioral failures in local adaptation investment might
suggest the opposite.
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the Representative Concentration Pathway (RCP) 4.5 emissions path. The RCP 4.5 path

assumes that emissions will peak around 2040, which requires carbon policies similar or

slightly more aggressive than those outlined in the Paris agreement, and results in a global

mean temperature increase of 1.4◦C by 2065. We use a downscaled model of climate and

hydrology at the scale of the continental United States.

Using these climate projections, we construct the same set of climatic variables for each

county that we use in the historical analysis. This provides us with a count of the days

in each temperature bin, including the number of days above 95◦F, and the total annual

precipitation in the county. To construct projected payroll, we take a county-specific linear

projection of historic payroll out to 2050. This linear projection is based on observed

payroll in our data from 1986 to 2011 and accounts for the existing trend in the number

of days above 95◦F in a given county over the period from 1986 to 2011. In addition

to the linear projection we take logarithmic and quadratic projections. The results are

qualitatively similar.

Based on our projected temperature data, in 2050 the median county in the U.S. is

expected to experience 66 days with maximum temperature above 95◦F (compared to 5

over 1986-2011). The average annual temperature in that median county is projected at

60.1◦F (compared to 54.6◦F in our sample). This corresponds to shifting the distribution

of countries across the 1986-2011 climate quartiles from a uniform distribution to one with

86% of counties in the warmest quartile and just under 2% in the coldest.

6.1 Naive Impacts

We estimate future damages from climate change, without adaptation, relative to a counter-

factual in which counties continue to experience the same average number of 95◦F+ days

they do from 1986-2011.

We calculate this relative loss by county as:

RelativeLossit = β95 × ( ̂DaysAbove95it −DaysAbove95i) (5)

where i and t again indicate county and years. Here ̂DaysAbove95 indicates the projected

number of days over 95◦F from our projected climate data and DaysAbove95 indicates

the average number of days over 95◦F in a given county from 1986 to 2011. In both

calculations β95 is the estimated impact of a day above 95◦F from equation 1. We calcu-

late monetary losses in each year by multiplying our projected payroll by the product of

estimated percentage loss in payroll and number of hot days.

6.2 Adaption Inclusive Impacts

To estimate potential adaptation we recalculate equations 5 replacing β95 with β95j where

j indicates the climate quartile specific impact estimated in the quartile specific versions of

equation 2. We assign counties to a quartile based on the average number of days they will
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experience over 95◦F between 2040 and 2050. As in the naive case we use our adaptation

inclusive estimates to calculate annual monetary losses as the product of our estimated

impact, frequency of hot days and projected payrolls.

We find that not accounting for adaptation leads to estimates of the damages of ex-

tremely hot days from 2040 to 2050 that are roughly 50% higher on average. The 50%

difference we find in the impact when accounting for adaptation translates to an overesti-

mate of the annual average monetary impacts of productivity losses of $18 billion (in 2015

dollars) from 2040 to 2050, though the absolute damages are sensitive to secular payroll

projection assumptions as well as whether one includes impacts from days between 80◦F

and 95◦F, which are more numerous.

7 Discussion and Conclusion

This paper uses county-level payroll and daily weather data to identify the impact of hot

temperature on labor and the potential for adaptive investments by workers and firms

in the long run. We find substantial causal impacts of hot days on payroll, with larger

impacts in exposed sectors such as construction, transportation, and manufacturing. For

the US as a whole, an additional day with daily max temperatures above 95◦F results in

a -0.22% reduction in the level of per capita payroll in exposed sectors that year. Given

well-documented short-run wage rigidities, it seems likely that these effects are related to

reductions in labor supply, effort, and productivity.

These effects are non-trivially large, especially in exposed industries such as construc-

tion and manufacturing. To illustrate: a year in which annual temperatures are +3.6◦F

(+2◦C) warmer than average is associated with 25 additional days above 95◦ for the median

U.S. county, implying a -4.56% reduction in per capita payroll for highly exposed sectors.

We estimate that approximately 25-40 million individuals work in highly exposed indus-

tries in the United States. This figure is likely much larger for the world as a whole, given

the size of the exposed workforce in many large developing economies including China and

India. The construction sector alone accounts for over 13% of world GDP. This study thus

lends evidence in support of adding labor productivity impacts into integrated assessment

models of climate change, which typically assume total damages on the order of a few

percentage points of GDP by 2100.

We characterize implied climate adaptation by comparing estimates of the short-run

heat-shock sensitivity of local output across regions that experience varying amounts of hot

days in expectation. We find substantial geographic variation in these short-run impacts,

suggesting that adaptation depends in part on the incentives that firms and individuals face

for making fixed cost adaptation investments. For instance, a county in the hottest quartile

of the US climate distribution (measured by historical incidence of 95◦F days) experiences

75% smaller payroll impacts per hot day than a county in the coldest quartile. While there

are as yet many policy relevant unknowns that require further research (e.g. the potential
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for induced innovation or market failures in adaptation uptake), these estimates illustrate

the importance of taking potential adaptation into account, especially when projecting

damages far into the future. At the same time, it is important to note that adaptation may

come at substantial costs, which are not captured by this method. Better understanding

the magnitude of adaptation costs as well as the extent of potential market and behavioral

failures is an important and policy-relevant area for future research.

The central methodological message of this paper is that it may be possible to extract

policy-relevant information regarding the potential extent of future adaptation by com-

paring short run temperature-sensitivities of local economies that have already adapted

to varying levels of average heat exposure. Cross-sectional gradients in realized output

sensitivities should reflect net-of-private-adaptation values across different climates, an in-

tuition that parallels work by Mendelsohn et al. (1994) and others using the Ricardian

method in agricultural contexts, but also addresses critiques regarding causal inference of-

ten associated with cross-sectional approaches. Unlike simulation studies which trace the

hypothetical costs and benefits of adaptation strategies through particular mechanisms,

this analysis empirically estimates the temperature sensitivity of local output and how this

sensitivity varies with average local climate using revealed economic behavior.

This paper raises important questions for future research. For instance, how rational or

forward-looking are agents in making adaptive investments? In choosing the HVAC system

for a manufacturing plant in Boston, a fully rational investor might make her decision

based on some weighted average of existing climate projections published by the IPCC.

Given limited bandwidth or lack of information, she may alternatively make a decision

based on an intuitive sense of historical climate averages. Depending on the geographic

mobility of labor inputs and firms, it is possible that worker- and firm-location decisions

may increasingly reflect future climate expectations. Whether and to what extent such

decisions vary systematically based on education or income may be relevant in assessing

the distributional consequences of climate mitigation policy, as well as the potential for

welfare-enhancing climate adaptation interventions.

Another set of policy-relevant questions involves the welfare economics of adaptation

investment. How much of the relevant adaptive investments will be in the form of private

goods, such as home air conditioning, versus local or global public goods, such as workplace

norms, electric infrastructure (e.g. peak grid capacity), or new cooling technologies? As-

sessing these and other potential market failures in the context of labor market responses

to climate shocks presents an important area of future research.

The production impacts documented here imply that it may be possible to uncover

adaptation cost functions using observed – as opposed to simulated – data, with some

assumptions about production technologies. Though the present analysis does not allow

for detailed estimation of the costs associated with such long run adaptations, similar

analyses using richer data and/or structural estimation techniques may be able to estimate

the implied adaptation costs which rationalize observed gradients in short-run weather
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impacts.

Finally, it is unclear whether the heat-related impacts and scope for adaptation doc-

umented here are reflective of what one might expect in other countries, particularly in

the developing world. The substantial heterogeneity in temperature sensitivities within

the United States, combined with previous (larger) estimates of labor productivity, mor-

tality, and agricultural output declines due to heat stress in developing countries (Burgess

et al., 2014; Sudarshan and Tewari, 2013) suggests that the long-run impacts of climate

change may be more severe for the developing world than previously estimated. It is well-

documented that rates of air-conditioning have historically tended to follow income growth

quite closely, and have neared saturation in warmer parts of the US (Biddle, 2008; Gertler

et al., 2016). Given much lower AC penetration in much of the developing world as well

as parts of Europe and East Asia, these estimates suggest substantial labor productivity

impacts from climate change in the medium to long run, even with rapid uptake of AC.
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Table 1: Measuring the Impact of Short-Run Heat Exposure on Annual Payroll.

(1) (2) (3)

Above 95◦F -0.000419∗ -0.000505∗∗ -0.000418∗

(0.000248) (0.000245) (0.000247)

90◦ to 95◦F -0.000410∗∗∗ -0.000575∗∗∗ -0.000405∗∗∗

(0.000150) (0.000152) (0.000150)

80◦ to 90◦F -0.000120 -0.000205∗ -0.000119
(0.000128) (0.000114) (0.000128)

60◦ to 70◦F -0.000169 -0.000143 -0.000167
(0.000150) (0.000138) (0.000149)

50◦ to 60◦F 0.0000862 0.000000205 0.0000881
(0.000166) (0.000157) (0.000166)

40◦ to 50◦F -0.000146 -0.0000413 -0.000143
(0.000207) (0.000201) (0.000207)

30◦ to 40◦F 0.0000605 -0.0000810 0.0000621
(0.000229) (0.000218) (0.000228)

20◦ to 30◦F -0.000153 -0.0000548 -0.000147
(0.000275) (0.000268) (0.000275)

10◦ to 20◦F 0.000623 0.000417 0.000623
(0.000401) (0.000376) (0.000401)

0◦ to 10◦F 0.000118 -0.000294 0.000115
(0.000666) (0.000626) (0.000666)

Avg Precip -0.00314 -0.00498∗∗ -0.00313
(0.00236) (0.00226) (0.00236)

N 79907 79907 79907
r2 0.991 0.995 0.991

Fixed Effects

County X X X
Year X X X
State-specific linear trends X
County-specific linear trends X
State-specific cubic trends X

Robust standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The dependent variable is log non-agricultural payroll per capita. Robust standard
errors are clustered at the state-by-year level. The number of days with temperatures in
the 70◦ to 79◦ bin is the omitted category. All other temperature bins are suppressed in
output.
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Table 2: Measuring the Impact of Short-Run Heat Exposure on Annual Payroll in Highly
Exposed Industries.

(1) (2) (3)

Above 95◦F -0.00233∗∗∗ -0.00209∗∗∗ -0.00233∗∗∗

(0.000614) (0.000624) (0.000613)

90◦ to 95◦F -0.00189∗∗∗ -0.00182∗∗∗ -0.00188∗∗∗

(0.000387) (0.000394) (0.000387)

80◦ to 90◦F -0.000756∗∗∗ -0.000664∗∗ -0.000756∗∗∗

(0.000289) (0.000287) (0.000289)

60◦ to 70◦F -0.000658∗ -0.000639∗ -0.000654∗

(0.000347) (0.000341) (0.000347)

50◦ to 60◦F -0.000624 -0.000586 -0.000621
(0.000408) (0.000390) (0.000407)

40◦ to 50◦F -0.00135∗∗∗ -0.00121∗∗ -0.00134∗∗∗

(0.000479) (0.000477) (0.000478)

30◦ to 40◦F -0.000946∗ -0.00106∗∗ -0.000940∗

(0.000546) (0.000529) (0.000546)

20◦ to 30◦F -0.00122∗ -0.00132∗∗ -0.00121∗

(0.000682) (0.000647) (0.000682)

10◦ to 20◦F -0.000206 -0.000737 -0.000203
(0.000942) (0.000909) (0.000943)

0◦ to 10◦F 0.00137 0.000412 0.00136
(0.00174) (0.00171) (0.00174)

Avg Precip -0.0178∗∗∗ -0.0162∗∗∗ -0.0178∗∗∗

(0.00608) (0.00601) (0.00608)

N 78035 78035 78035
r2 0.853 0.899 0.853

Fixed Effects

County X X X
Year X X X
State-specific linear trends X
County-specific trends X
State-specific cubic trends X

Robust standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The dependent variable is log non-agricultural payroll per capita. Robust standard
errors are clustered at the state-by-year level. The number of days with temperatures in
the 70◦ to 79◦ bin is the omitted category. All other temperature bins are suppressed in
output.
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(a) Stylized representation of the potential bias in estimating climate damages without
taking future adaptation into account, assuming that adaptation can reduce impacts in
the longer term.

(b) Possible adaptation mechanisms in response to temperature stress

Figure 1: Adaptation intuition and mechanisms
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(a) Average Incidence of hot days (95◦F+) per year

(b) Average daily mean temperature (◦F)

Figure 2: Average long-run temperatures by county.
Notes: Top panel shows number of days with daily max temperature above 95◦F over the
period 1986-2011. Bottom panel shows average daily mean temperatures over the same
period.
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(a) Hot days per year in Suffolk County, MA.

(b) Hot days per year in Bandera County, TX.

Figure 3: Main identifying temperature variation
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Figure 4: AC penetration in 1990

Notes: Imputed residential AC penetration rates (in percentage of households) by county.
Includes residential window and central AC units.

Figure 5: AC penetration in 2010

Notes: Imputed residential AC penetration rates (in percentage of households) by county.
Includes residential window and central AC units.
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(a) Imputed AC penetration over time

(b) Payroll and Temperature

Notes: Panel a shows residential AC penetration in Grady County, GA, and New York
County, NY, 1986-2011. County-level base values are taken from 1980 census and annual
rates of change taken at the census region level from RECS (2012), and includes window
units and central AC for residential dwellings. Panel b plots residualized variation
including county and year fixed effects, state-specific cubic time trends and
non-parametric controls for all other degree days. Days with maximum temperature
between 70-79◦F is the omitted category.
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(a) Payroll and Temperature in Highly Exposed Sectors.

(b) Payroll and Temperature in Non-Exposed Sectors.

Figure 7: Temperature and Payroll by NIOSH Classification

Notes: Residualized variation including county and year fixed effects, and state-specific
cubic time trends and non-parametric controls for all other degree days. Days with
maximum temperature between 70-79◦F represent the omitted category.
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(a) Payroll and Temperature in the Construction Sector

(b) Payroll and Temperature in the Transportation Sector

Figure 8: Temperature and Payroll in Highly Exposed Sectors
Notes: Residualized variation including county and year fixed effects, and state-specific cu-
bic time trends and non-parametric controls for all other degree days. Days with maximum
temperature between 70-79◦F represent the omitted category.
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(a) Payroll and Temperature in the Education Sector

(b) Payroll and Temperature in the Healthcare Sector

Figure 9: Temperature and Payroll in Non-Exposed Sectors
Notes: Residualized variation including county and year fixed effects, and state-specific cu-
bic time trends and non-parametric controls for all other degree days. Days with maximum
temperature between 70-79◦F represent the omitted category.
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