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US Sea Level Data: Time Trends and Persistence 
 
 

Abstract 
 
This paper analyses US sea level data using long memory and fractional integration methods. All 
series appear to exhibit orders of integration in the range (0, 1), which  implies long-range 
dependence; further, significant positive time trends are found in the case of 29 stations located 
on the East Coast and the Gulf of Mexico, and negative ones in the case 4 stations on the North 
West Coast, but none for the remaining 8 on the West Coast. The highest degree of persistence is 
found for the West Coast and the lowest for the East Coast. 
JEL-Codes: C210, Q540. 
Keywords: sea level, time trends, fractional integration. 
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1. Introduction 

In the last few decades, considerable efforts have been made to gain a deeper 

understanding of the effects of global climatic variations on the sea level, which is 

essential to prevent potential coastal flood hazards and mitigate their socio-economic 

and environmental consequences. Of particular interest are the Assessment Reports of 

the Intergovernmental Panel on Climate Change (IPCC). The empirical evidence from 

the First Assessment Report (FAR) published in 1990 to the most recent IPCC work 

(Oppenheimer, 2019) indicates that there has been a global mean sea level (GMSL) rise 

of 1.0–2.0 mm year–1 during the 20th century, which is much larger than in the previous 

two centuries (Warrick and Oerlemans, 1990), and in the last two millennia as a whole 

(IPCC, 2014: 4). In particular, the GMSL rise estimated from tide gauge data is of 1.5 

[1.1–1.9] mm year–1, with an acceleration range of [-0.002–0.019] over the period 

1902–2010, while the revised estimate from satellite altimetry data is 3.16 [2.79–3.53] 

mm year–1, with an acceleration of 0.084 [0.059–0.090] mm year–1 over 1993–2015 (see 

Church et al., 2013; WCRP Global Sea Level Budget Group, 2018; Oppenheimer et al., 

2019). 

However, this increase has not been uniform around the world.  In particular, in 

the case of the US there are important differences between the Eastern and Western 

coastline. The National Oceanic and Atmospheric Administration (NOAA), in its 

technical report NOS CO-OPS 053 (Zervas, 2009) examined the linear mean sea level 

trends in 128 stations located on the US Atlantic and Pacific coasts, Alaska and the Gulf 

of Mexico, among other areas. According to this report, the upward trend in the regional 

sea level for the majority of the East coast stations implies a rate of increase above the 

20th century GMSL rise of 1.7 mm year–1, the highest value (6.05 mm year–1) being 

estimated for the Chesapeake Bay Bridge Tunnel station. By contrast, in the case of the 
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West coast the increase is around or below the GMSL rise of 1.7 mm year–1. The 

highest regional sea levels increases have been observed in Louisiana, Eastern Texas 

and the stretch from Virginia to New Jersey, which can be explained by Gulf Stream 

variations, land subsidence and tectonic movements (Zervas, 2009; Sweet et al., 2017). 

Future scenarios for the sea level rise are based on emissions and the associated 

risks. It is expected that GMSL will continue increasing during the 21st century with 

mean values of 0.43 [0.29–0.59], 0.55 [0.39–0.72] and 0.84 [0.61–1.10] for the 

Representative Concentration Pathway models (RCP)2.6, RCP4.5 and RCP8.5, 

respectively. Sweet et al. (2017) updated the future scenarios for the GMSL rise 

presented in Parris et al. (2012), and specified six possible 2100 scenarios ranging from 

0.3m (Low) to 2.5m (Extreme). More specifically, in the Intermediate-High (1.5-m 

GMSL rise) scenario the (high-low) increase would be 0.4–0.7 m (higher than the 

GMSL rise) for the US East Coast and 0.2–0.3 m (higher than the GMSL rise) for the 

West Coast.  

All the available empirical evidence suggests a continuing upward trend in the 

sea level despite possible future reductions of anthropogenic emissions, which since 

1970 have been the key factor determining ocean warming (Church et al., 2001; 

Oppenheimer et al., 2019). Hence, it is vital to gain further insights into this issue that 

can contribute to an effective decision-making and design of government policies. For 

this purpose, given the long-memory property characterising most geophysical and 

climatological time series - see, e.g., Percival et al., 2001; Gil-Alana, 2006, 2015, 2017; 

Ercan et al., 2013; Bunde 2017; Yuan et al., 2013, 2019), this paper applies a fractional 

integration approach to obtain new findings on sea level trends for different tide gauge 

stations on the US coastline. The layout of the paper is the following: Section 2 

provides a brief review of the relevant literature; Section 3 describes the data and the 
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methodology; Section 4 presents the empirical results; Section 5 offers some concluding 

remarks. 

 

2. Literature Review 

The analysis of sea level trends provides useful information about its variability in the 

past, present and future. Multiple factors can drive global and regional sea level changes 

such as atmospheric and ocean warming, tectonic dynamics or anthropogenic forces. In 

particular, recent studies point to ocean-thermal expansion, glaciers and the Greenland 

and Antarctic ice sheets and terrestrial water store, as the main factors behind the 

GMSL rise during the 20th century and in the present (Warrick and Oerlemans, 1990; 

Church et al., 2013; Church and Gregory, 2019; Oppenheimer et al., 2019). There is an 

ongoing debate about the possible ‘acceleration-deceleration’ (Church and White, 2006; 

Woodworth et al., 2009; Houston and Dean, 2011; Boon, 2012; Jevrejeva et al., 2014; 

Visser et al., 2015; Boon and Mitchell, 2015; Watson, 2016; etc.) or the 

'intrinsic/natural-anthropogenic’ nature of sea level changes (Jevrejeva et al.,, 2009; 

Lennartz and Bunde, 2012; Becker et al., 2014; Dangendorf et al., 2014, 2015; Slangen 

et al., 2016; Marcos et al., 2016; etc.); on the whole, it appears that anthropogenic 

factors have been the main cause of the sea level rise since 1970 (Oppenheimer et al., 

2019). 

Sea level variability is a complex issue that should be analysed carefully given 

the limitations of tide gauge and satellite altimetry data and the variety of applicable 

statistical techniques. The most common approach is trend analysis. Comprehensive 

surveys are provided by Mudelsee (2010), Chandler and Scott (2011) and Visser et al. 

(2015), who classify existing studies as using parametric, nonparametric or stochastic 

trend models respectively. Regarding this last approach, stochastic long-memory 
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processes appear to be the most appropriate for geophysical/climate time series, since 

these tend to exhibit long-run dependence (LRD) or temporal correlations (Beran, 1994; 

Percival et al., 2001; Gil-Alana, 2006; Ercan et al., 2013; Graves et al., 2017). Such 

models range from those proposed by Hurst (1951) in hydrology, and later by 

Mandelbrot (1967) and Mandelbrot and Van Ness (1968) for self-similarity and the 

fractal dimension, to the AutoRegressive Fractionally Integrated Moving Average 

(ARFIMA) model of Granger and Joyeux (1980), and its subsequent extensions. 

Long-memory models have been widely used for climate variables such as 

temperature (Bloomfield, 1992; Caballero et al., 2002; Franzke, 2012; Gil-Alana, 2005, 

2008, 2018), but less for sea level data. In particular, there is very limited evidence 

concerning US tide gauge records. Jiang and Plotnick (1998) were the first to carry out 

fractal analysis using US coastline data with a continental dimension; applying the 

divider method (Mandelbrot, 1982), they found more complexity in terms of the fractal 

dimension for the Atlantic coast, and also a significant correlation with latitudes, less 

complexity characterising lower latitudes. The fractal dimension ranges for Atlantic and 

Pacific shorelines are  [1.0-1.70] and [1.0-1.27], respectively; in particular, Chesapeake 

Bay, the St. Johns River of Florida, and the Florida Keys, in the Atlantic coast, exhibit 

most complexity. Barbosa et al. (2008) considered 16 North Atlantic stations; 

employing three statistical approaches (parametric stationary tests, wavelet analysis and 

Generalized Least Squares (GLS)), they found LRD in all cases except Newlyn; in 

particular, they detected high persistence for Portland, Boston, Newport and New York 

that might reflect local/regional differences, as in the case of Chesapeake Bay 

(Kiptopeke, Hampton), which is characterised by subsidence and tectonic movements. 

However, according to Koop (2013), the rate of US mid-Atlantic sea level rise is within 

its historical variability. 
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In another recent study, Dangendorf et al. (2014) investigated sea level changes 

using 60 monthly average tide gauge records around the world. Their results from the 

Detrended Fluctuation Analysis -DFA2- (Kantelhardt et al., 2001) show, for all records, 

a LRD up to 35 years, which suggests the importance of the internal behaviour to 

understand sea level changes. By contrast, Becker et al. (2014) concluded that global 

and regional sea level changes are strongly driven by anthropogenic forces, in particular 

in the case of New York, Baltimore and San Diego. Finally, Royston et al. (2018) 

addressed the issue of residual noise when estimating linear trends, and showed that it is 

coloured but non-AR(1) in the majority of cases, the AR(1) model being more 

appropriate for shorter series (Bos et al., 2014). The inclusion of climate indices in the 

regression does not affect the choice of noise model: for San Francisco and Seattle, the 

preferred noise models are ARFIMA specifications, with a trend coefficient (including 

climate indices) of 2.37 and 2.71, respectively, while for Honolulu, the preferred model 

is the Generalized Gauss Markov (GGM) noise model, with an estimated trend 

coefficient of 1.29. The study by Royston et al. (2018) is the closest to ours, since we 

also consider long-range dependence models based on fractional integration and 

estimate the time trend coefficients allowing the errors to be fractionally integrated. 

   

3. Data and Methodology 

The data examined concern 41 US stations covering most of the US coast. Table 1 

reports the names of the stations and the percentage of coverage; we only consider 

series with a maximum of 10% missing data, and compute them as a simple arithmetic 

mean of the previous and following monthly value in the series. The data are available 

at  https://www.psmsl.org/data/obtaining/. 

TABLE 1 HERE 
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 The fractional integration approach we use is more general than others such as 

ARMA/ARIMA models since it does not restrict the difference parameter to take an 

integer value. The standard approach estimates a linear time trend in the following 

regression model: 

,tt xty ++= βα     (1) 

where a significant slope coefficient β implies the presence of a trend (positive or 

negative, depending on the sign of the coefficient). However, this set-up implicitly 

assumes that the error term, xt is integrated of order 0 or I(0). This implies not only that 

it must be covariance-stationary, but also that the infinite sum of its autocovariances 

must be finite. This property is satisfied by the classical ARMA-type of models. If it is 

not, for example if the data display a high degree of persistence, first differences are 

then taken, on the assumption that xt is integrated of order 1 or I(1). Thus, xt is specified 

such that (1 – B)xt = ut, where B is the backshift operator (Bxt = xt-1) and ut is I(0). 

However, as already mentioned in Section 2, it is well known that many time series, 

especially climatological ones, are neither I(0) nor I(1) but I(d) where d is a fractional 

value. This is approach taken in the present study. 

 Specifically, we estimate the time trend coefficient β and the fractional 

differencing parameter d (along with the other parameters) in the following regression 

model: 

.,)1(, 12 ttttt
d

tt uuuxBxty ερβα +==−++= − (2) 

where yt is the observed time series; α and β are unknown coefficients, namely the 

intercept (constant) and the linear time trend coefficient; xt stands for the regression 

errors, assumed to be I(d), which implies that ut is I(0); moreover, given the possible 

seasonality of the monthly data analysed, a seasonal (monthly) AR(1) process is 

assumed for the I(0) disturbances ut, where ρ is the seasonality indicator.  

Electronic copy available at: https://ssrn.com/abstract=3598759



8 
 

 For the estimation, we use a Whittle function in the frequency domain following 

the testing approach of Robinson (1994), thus allowing for any real value d, including 

values in the non-stationary range (i.e., d ≥ 0.5 - see Gil-Alana and Robinson (1997) for 

a description of the version of the tests of Robinson (1994) used in this application). 

 

4. Empirical Results 

Table 2 displays the estimated values of d from equation (2) under three different 

assumptions: 

i) no deterministic components, i.e., imposing α = β = 0  

ii) a constant only, i.e., with  β = 0  

iii) a constant and a linear time trend 

Along with the estimated values of d, which are a measure of persistence, we also 

report their 95% confidence bands, which correspond exactly to the band of non-

rejection values calculated as in Robinson (1994); the coefficients in bold are those 

from our preferred specification, which has been selected on the basis of the statistical 

significance of the deterministic terms; these are also reported in Table 3 together with 

the estimated α (constant), β (time trend coefficient) and ρ (seasonality). 

TABLES 2 AND 3 HERE 

 It can be seen from Table 2 that significant time trends are found in 29 cases out 

of 41; of those, only in four cases (Neah Bay, Juneau, Sitka and Yakutat) the trend is 

negative, being otherwise positive, with the estimated coefficient ranging from 0.158 

(Portland Maine) to 0.745 (Grand Isle). The four stations with a negative trend are 

located on the North West coast, whilst those with a positive trend (25) are located on 

the East coast and the Gulf of Mexico; the 12 stations with an insignificant trend are all 

on the West coast (see Table 4 and Figure 1). 
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TABLE 4 AND FIGURE 1 HERE 

All the estimated values of d are in the interval (0, 1) and range between 0.29 

(Annapolis, Naval Academy) and 0.75 (La Jolla, Scripps Piers), which confirms that the 

series are fractionally integrated. The series can be divided into three categories 

according to their degree of persistence: those with values of d in the range (0, 0,5), that 

is, covariance-stationary series; those with values around 0.5, on the boundary between 

stationarity and non-stationarity; a third group with values in the interval [0.5, 1), which 

implies non-stationary mean-reverting behaviour (see Table 5 and Figure 2) 

TABLE 5 AND FIGURE 2 HERE 

 It can be seen that 22 stations are in the first category with a low degree of 

persistence, and virtually all of them are located on the East coast; for 12 stations the 

estimated value of d implies that they belong to the intermediate category, and these are 

all located on the Gulf of Mexico or the West coast; 7 stations are in the non-stationary 

range (d ≥ 0.5), all them on the West coast, and since the estimated value of d is 

significantly below 1 mean-reversion occurs, with the effects of shocks dying away in 

the long run.   

 

5. Conclusions 

This paper examines US sea level data for a set of 41 stations chosen on the basis of 

data availability and covering most of the US coastline. A fractional integration 

framework is applied to test for the presence of trends and the degree of persistence. 

The results indicate that all series are fractionally integrated, since their differencing 

parameter is estimated to lie in the interval (0, 1). More specifically, there is evidence of 

long-memory stationarity (i.e., 0 < d < 0.5) for 22 stations, most of them located on the 

East coast; for 12 stations the order of integration is around 0.5, and for 7 (all located on 
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the West coast) there is evidence of non-stationary mean-reverting patterns (0.5 ≤ d < 

1).  

There are significant time trends in 29 out of the 41 cases examined (positive in 

25 cases and negative in 4). The stations with a positive trend are located on the East 

coast and the Gulf of Mexico, while the four with a negative trend (Neah Bay, Juneau, 

Sitka and Yakutat) are located on the North West coast. These findings imply that there 

is a clear rise in the US sea level only in the case the East coast and the Gulf of Mexico, 

and therefore the authorities should focus on those to address the issue of an increasing 

sea level. This conclusion is also corroborated by the estimated degree of persistence, 

which is higher for the East coast stations, suggesting that the effects of shocks will be 

more long-lived in their case.  
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Table 1: Time series examined and abbreviations 

Series Name % of observed 
data 

10_SF 10_SAN FRANCISCO 100.00% 
12_NY 12_NEW YORK (THE BATTERY) 98.79% 
112_FEB 112_FERNANDINA BEACH 96.13% 
127_STT 127_SEATLE 99.87% 
135_PHI 135_PHILADELPHIA (PIER 9N) 97.46% 
148_BAL 148_BALTIMORE 99.63% 
155_HON 155_HONOLULU 100.00% 
158_SDG 158_SAN DIEGO (QUARANTINE STATION) 98.065 
180_ATL 180_ATLANTIC CITY 92.14% 
183_POR 183_PORTLAND (MAINE) 99.63% 
188_KW 188_KEY WEST 98.79% 
225_KET 225_KETCHIKAN 98.42% 
234_CHA 234_CHARLESTON I 100.00% 
235_BOS 235_BOSTON 98.67% 
245_LA 245_LOS ANGELES 98.67% 
246_PEN 246_PENSACOLA 98.06% 
256_JOL 256_LA JOLLA (SCRIPPS PIER) 97.34% 
265_AST 265_ASTORIA (TONGUE POINT) 100.00% 
311_ANN 311_ANNAPOLIS (NAVAL ACADEMY) 95.04% 
332_EAST 332_EASTPORT 91.66% 
351_NEW 351_NEWPORT 98.55% 
360_WAS 360_WASHINGTON DC 97.82% 
366_SAN 366_SANDY HOOK 97.82% 
367_WOO 367_WOODS HOLE (OCEAN. INST.) 93.23% 
378_CRES 378_CRESCENT CITY 98.43% 
384_FRI 384_FRIDAY HARBOR (OCEAN. LABS.) 97.82% 
385_NEA 385_NEAH BAY 97.34% 
395_FOR 395_FORT PULASKI 98.55% 
396_WIL 396_WILMINGTON 98.18% 
405_JUN 405_JUNEAU 100.00% 
412_SOL 412_SOLOMONS ISLAND (BIOL. LAB.) 95.29% 
426_SIT 426_SITKA 99.39% 
428_CED 428_CEDAR KEY II 94.44% 
429_NL 429_NEW LONDON 95.89% 
437_ALA 437_ALAMEDA (NAVAL AIR STATION) 99.27% 
445_YAK 445_YAKUTAT 95.89% 
497_ISA 497_PORT ISABEL 96.01% 
508_LUIS 508_PORT SAN LUIS 94.20% 
519_MON 519_MONTAUK 91.42% 
520_PET 520_ST. PETERSBURG 99.87% 
526_GRA 526_GRAND ISLE 95.41% 

 

 

Electronic copy available at: https://ssrn.com/abstract=3598759



17 
 

Table 2: Estimates of d in the model given by equation (*) 

Series No deterministic 
terms An intercept An intercept and a 

linear time trend 
10_SF 0.99   (0.94,  1.04) 0.58   (0.51,  0.66) 0.58   (0.51,  0.66) 
12_NY 0.98   (0.93,  1.03) 0.40   (0.34,  0.47) 0.38   (0.31,  0.47) 
112_FEB 0.96   (0.91,  1.02) 0.33   (0.26,  0.41) 0.32   (0.24,  0.42) 
127_STT 0.97   (0.93,  1.03) 0.42   (0.35,  0.52) 0.42   (0.34,  0.52) 
135_PHI 0.97   (0.92,  1.03) 0.39   (0.32,  0.46) 0.37   (0.30,  0.46) 
148_BAL 0.97   (0.92,  1.03) 0.32   (0.26,  0.40) 0.30   (0.22,  0.38) 
155_HON 0.99   (0.94,  1.04) 0.74   (0.66,  0.83) 0.74   (0.66,  0.83) 
158_SDG 1.00   (0.95,  1.05) 0.73   (0.66,  0.83) 0.73   (0.66,  0.83) 
180_ATL 0.98   (0.93,  1.03) 0.37   (0.33,  0.43) 0.33   (0.26,  0.41) 
183_POR 0.99   (0.94,  1.04) 0.39   (0.34,  0.45) 0.38   (0.33,  0.45) 
188_KW 0.99   (0.94,  1.04) 0.39   (0.32,  0.49) 0.39   (0.29,  0.49) 
225_KET 0.99   (0.94,  1.05) 0.40   (0.30,  0.50) 0.40   (0.30,  0.50) 
234_CHA 0.98   (0.93,  1.04) 0.37   (0.30,  0.45) 0.36   (0.28,  0.46) 
235_BOS 0.98   (0.94,  1.04) 0.38   (0.33,  0.43) 0.34   (0.28,  0.41) 
245_LA 1.00   (0.95,  1.05) 0.69   (0.60,  0.78) 0.69   (0.60,  0.78) 
246_PEN 0.97   (0.92,  1.02) 0.47   (0.39,  0.56) 0.47   (0.39,  0.56) 
256_JOL 1.00   (0.95,  1.05) 0.75   (0.66,  0.85) 0.75   (0.66,  0.85) 
265_AST 0.96   (0.91,  1.02) 0.44   (0.35,  0.53) 0.44   (0.35,  0.53) 
311_ANN 0.97   (0.92,  1.03) 0.33   (0.27,  0.40) 0.29   (0.22,  0.38) 
332_EAST 0.99   (0.95,  1.04) 0.34   (0.31,  0.38) 0.30   (0.27,  0.35) 
351_NEW 0.99   (0.94,  1.03) 0.39   (0.34,  0.46) 0.36   (0.29,  0.45) 
360_WAS 0.96   (0.92,  1.02) 0.37   (0.31,  0.44) 0.36   (0.27,  0.44) 
366_SAN 0.98   (0.93,  1.03) 0.38   (0.33,  0.44) 0.34   (0.27,  0.42) 
367_WOO 0.98   (0.94,  1.04) 0.39   (0.34,  0.46) 0.36   (0.29,  0.44) 
378_CRES 0.97   (0.93,  1.03) 0.45   (0.37,  0.54) 0.45   (0.37,  0.54) 
384_FRI 0.97   (0.93,  1.03) 0.43   (0.35,  0.53) 0.43   (0.35,  0.53) 
385_NEA 0.97   (0.92,  1.03) 0.37   (0.28,  0.47) 0.36   (0.26,  0.47) 
395_FOR 0.98   (0.93,  1.04) 0.37   (0.30,  0.45) 0.36   (0.28,  0.46) 
396_WIL 0.98   (0.93,  1.04) 0.42   (0.36,  0.51) 0.42   (0.35,  0.52) 
405_JUN 0.99   (0.94,  1.05) 0.54   (0.49,  0.61) 0.47   (0.39,  0.57) 
412_SOL 0.97   (0.93,  1.03) 0.33   (0.28,  0.39) 0.28   (0.22,  0.37) 
426_SIT 1.00   (0.95,  1.06) 0.43   (0.35,  0.54) 0.41   (0.32,  0.53) 
428_CED 0.97   (0.92,  1.03) 0.38   (0.31,  0.46) 0.36   (0.29,  0.46) 
429_NL 0.98   (0.94,  1.04) 0.37   (0.32,  0.43) 0.33   (0.27,  0.41) 
437_ALA 0.99   (0.94,  1.04) 0.60   (0.53,  0.68) 0.60   (0.53,  0.68) 
445_YAK 0.99   (0.94,  1.05) 0.46   (0.40,  0.54) 0.40   (0.32,  0.50) 
497_ISA 0.96   (0.91,  1.02) 0.40   (0.34,  0.48) 0.39   (0.32,  0.47) 
508_LUIS 0.99   (0.95,  1.05) 0.64   (0.56,  0.72) 0.64   (0.56,  0.72) 
519_MON 0.98   (0.93,  1.03) 0.38   (0.33,  0.44) 0.33   (0.27,  0.41) 
520_PET 0.98   (0.93,  1.03) 0.41   (0.33,  0.50) 0.40   (0.32,  0.50) 
526_GRA 0.96   (0.91,  1.02) 0.49   (0.44,  0.56) 0.46   (0.39,  0.55) 

The values in parenthesis are the 95% confidence band of the non-rejection values of d; those in  
bold are the estimates for the preferred model specification.  
 

Electronic copy available at: https://ssrn.com/abstract=3598759



18 
 

Table 3: Estimated coefficients for the selected models 
Series d β0 β1 Month AR1 
10_SF 0.58   (0.51,  0.66) 6968.52  (180.66) --- 0.299 
12_NY 0.38   (0.31,  0.47) 6912.04  (229.39) 0.295  (4.50) 0.401 
112_FEB 0.32   (0.24,  0.42) 7120.09  (196.89) 0.232  (3.09) 0.631 
127_STT 0.42   (0.34,  0.52) 7054.24  (187.79) --- 0.321 
135_PHI 0.37   (0.30,  0.46) 6834.76  (186.85) 0.312  (3.96) 0.421 
148_BAL 0.30   (0.22,  0.38) 6958.76  (249.17) 0.281  (4.92) 0.648 
155_HON 0.74   (0.66,  0.83) 6994.76  (190.57) --- 0.263 
158_SDG 0.73   (0.66,  0.83) 6930.84  (168.67) --- 0.544 
180_ATL 0.33   (0.26,  0.41) 6898.44  (273.34) 0.396  (7.54) 0.430 
183_POR 0.38   (0.33,  0.45) 7036.76  (360.68) 0.158  (3.72) 0.126 
188_KW 0.39   (0.29,  0.49) 7071.00  (235.41) 0.235  (3.55) 0.645 
225_KET 0.40   (0.30,  0.50) 7043.24  (208.50) --- 0.399 
234_CHA 0.36   (0.28,  0.46) 6948.46  (192.78) 0.301  (3.92) 0.565 
235_BOS 0.34   (0.28,  0.41) 7011.35  (387.37) 0.241  (6.33) 0.147 
245_LA 0.69   (0.60,  0.78) 6964.45  (177.70) --- 0.522 
246_PEN 0.47   (0.39,  0.56) 6985.20  (158.20) 0.230  (2.07) 0.615 
256_JOL 0.75   (0.66,  0.85) 6903.54  (163.29) --- 0.525 
265_AST 0.44   (0.35,  0.53) 6968.30  (152.90) --- 0.399 
311_ANN 0.29   (0.22,  0.38) 6885.08  (268.55) 0.325  (6.21) 0.663 
332_EAST 0.30   (0.27,  0.35) 6957.11  (581.35) 0.180  (7.37) 0.112 
351_NEW 0.36   (0.29,  0.45) 6998.48  (345.11) 0.259  (5.99) 0.365 
360_WAS 0.36   (0.27,  0.44) 6829.83  (180.31) 0.327  (4.05) 0.415 
366_SAN 0.34   (0.27,  0.42) 6940.46  (273.27) 0.365  (6.84) 0.407 
367_WOO 0.36   (0.29,  0.44) 6917.40  (355.40) 0.278  (6.70) 0.360 
378_CRES 0.45   (0.37,  0.54) 7087.58  (199.54) --- 0.353 
384_FRI 0.43   (0.35,  0.53) 7030.04  (213.89) --- 0.316 
385_NEA 0.36   (0.26,  0.47) 7073.09  (170.64) -0.175  (-1.98) 0.472 
395_FOR 0.36   (0.28,  0.46) 6990.50  (180.06) 0.318  (3.84) 0.586 
396_WIL 0.42   (0.35,  0.52) 6988.23  (186.49) 0.297  (3.45) 0.313 
405_JUN 0.47   (0.39,  0.57) 7132.96  (137.97) -1.027  (-7.88) 0.224 
412_SOL 0.28   (0.22,  0.37) 6978.77  (306.59) 0.348  (7.53) 0.612 
426_SIT 0.41   (0.32,  0.53) 7037.94  (159.46) -0.172  (-1.72) 0.436 
428_CED 0.36   (0.29,  0.46) 6934.56  (230.15) 0.212  (3.29) 0.700 
429_NL 0.33   (0.27,  0.41) 6949.22  (356.43) 0.254  (6.26) 0.394 
437_ALA 0.60   (0.53,  0.68) 7001.56  (178.94) --- 0.273 
445_YAK 0.40   (0.32,  0.50) 7025.33  (152.11) -0.684  (-6.63) 0.447 
497_ISA 0.39   (0.32,  0.47) 6934.30  (185.98) 0.354  (4.31) 0.616 
508_LUIS 0.64   (0.56,  0.72) 6969.98  (180.63) --- 0.506 
519_MON 0.33   (0.27,  0.41) 6992.81  (365.32) 0.302  (7.61) 0.380 
520_PET 0.40   (0.32,  0.50) 7005.62  (228.36) 0.256  (3.75) 0.667 
526_GRA 0.46   (0.39,  0.55) 6735.09  (155.02) 0.745  (6.95) 0.620 

The values in parenthesis in the third and fourth columns refer to the corresponding t-values; values 
higher than 1.64 indicate significance of the estimated coefficients. 
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Table 4: Classification based on the time trend coefficient 

Significant negative   
time trend 

Insignificant  
time trend 

Significant positive   
time trend 

405_JUN (-1.027) 10_SF 183_POR (0.158) 
445_YAK (-0.684) 127_STT 332_EAST (0.180) 
385_NEA (-0.175) 155_HON 428_CED (0.212) 
426_SIT (-0.172) 158_SDG 246_PEN (0.230) 
    225_KET 112_FEB (0.232) 
    245_LA 188_KW (0.235) 
    256_JOL 235_BOS (0.241) 
    265_AST 429_NL (0.254) 
    378_CRES 520_PET (0.256) 
    384_FRI 351_NEW (0.259) 
    437_ALA 367_WOO (0.278) 
    508_LUIS 148_BAL (0.281) 
      12_NY (0.295) 
      396_WIL (0.297) 
      234_CHA (0.301) 
      519_MON (0.302) 
      135_PHI (0.312) 
      395_FOR (0.318) 
      311_ANN (0.325) 
      360_WAS (0.327) 
      412_SOL (0.348) 
      497_ISA (0.354) 
      366_SAN (0.365) 
      180_ATL (0.396) 
      526_GRA (0.745) 
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Table 5: Classification based on persistence 

0   <   d  <  0.5 
Stationarity 0   <   d  <  1 0.5  ≤  d  <  1 

Non-stationarity 

412_SOL (0.28) 225_KET (0.40) 10_SF (0.58) 
311_ANN (0.29) 445_YAK (0.40) 437_ALA (0.60) 
148_BAL (0.30) 520_PET (0.40) 508_LUIS (0.64) 
332_EAST (0.30) 426_SIT (0.41) 245_LA (0.69) 
112_FEB (0.32) 127_STT (0.42) 158_SDG (0.73) 
180_ATL (0.33) 396_WIL (0.42) 155_HON (0.74) 
429_NL (0.33) 384_FRI (0.43) 256_JOL (0.75) 
519_MON (0.33) 265_AST (0.44)     
366_SAN (0.34) 378_CRES (0.45)     
235_BOS (0.34) 526_GRA (0.46)     
385_NEA (0.36) 246_PEN (0.47)     
360_WAS (0.36) 405_JUN (0.47)     
234_CHA (0.36)        
395_FOR (0.36)        
367_WOO (0.36)        
351_NEW (0.36)        
428_CED (0.36)        
135_PHI (0.37)        
12_NY (0.38)        
183_POR (0.38)        
188_KW (0.39)        
497_ISA (0.39)         
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Figure 1: Time trend coefficients. Summary of data extracted from Table 4. 

 
 Significant positive time trend;     Insignificant time trend;   Significant negative time trend. 

 

 

Figure 2: Degree of persistence. Summary of data extracted from Table 5. 

 
 𝑑𝑑 <  0.4;     0.40 ≤  𝑑𝑑 <  0.5;       𝑑𝑑 >  0.5. 
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