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1. Introduction

The social cost of carbon is the incremental impact of emitting an
additional tonne of carbon dioxide, or the benefit of slightly reducing
emissions. When evaluated along an optimal emissions trajectory, it
is the Pigou (1920) tax—the carbon tax needed to restore efficiency.
Greenhouse gases mix uniformly in the atmosphere. Emissions are
global externalities. The social cost of carbon is the tax a global planner
would impose. National planners may disagree. This paper therefore
presents estimates of the social cost of carbon for every nation.

There have been a number of reviews of the social cost of carbon
(Guivarch et al., 2016; Metcalf and Stock, 2017; Pindyck, 2017a,b;
Pizer et al., 2014; Revesz et al., 2017) and its application (Greenstone
et al,, 2013; Hahn and Ritz, 2015; Heyes et al., 2013; Rose, 2012;
Sunstein, 2014), as well as meta-analyses (Havranek et al., 2015;
Tol, 2005, 2009, 2011, 2013, 2018; Wang et al., 2018). These papers
focus on the global social cost of carbon (see Cai and Lontzek, 2019;
Nordhaus, 1982, and many other papers published in between), and
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largely ignore the regional composition. That is exactly what this
paper is about.

The models used to estimate the global social cost of carbon,
and the studies on which they are calibrated, often have regional
or even national estimates. The national social costs of carbon are
rarely spelled out, and hardly ever discussed. That is perhaps as it
should be: Carbon dioxide is a global externality after all (Gayer and
Viscusi, 2016). However, besides the academic interest in knowing
the regional composition of the social cost of carbon, the Trump
Administration has decided that its climate impacts on the rest of the
world are irrelevant for US policy while the Nationally Determined
Intended Contributions of the Paris Agreement also suggest that
climate policy is a non-cooperative game, in which cross-border
externalities are ignored.

This is the second paper to estimate the social cost of carbon
per country. Ricke et al. (2018) base their estimates on the work
by Burke et al. (2015) and Dell et al. (2012), who regress economic
growth on temperature (see also Burke et al., 2018; Lemoine and
Kapnick, 2015; Pretis et al., 2018). Weather is, from an economic
perspective, random. The impact of weather is arguably identified.
However, the impact of a weather shock is not the same as the impact
of climate change (Dell et al., 2014). Climate is what you expect,
weather is what you get. Adaptation to weather shocks is therefore
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limited to immediate responses—put up an umbrella when it rains,
close the flood doors when it pours. Adaptation to climate change
extends to changes in the capital stock—buy an umbrella, invest in
flood gates—as well as adjusted expectations and re-directed tech-
nological progress. In other words, weather studies estimate the
short-run elasticity, whereas the interest is in the long-run elasticity.
See Deryugina and Hsiang (2017) and Lemoine (2018) for the, rather
strict, conditions under which weather variability is informative
about climate change.

Ricke et al. (2018) find little difference between the social cost
carbon based on the impact functions of Burke et al. (2015) and Dell
et al. (2012). However, Burke’s impact estimates are much higher
than Dell’s. There are three reasons for Ricke’s remarkable result.
Firstly, Dell finds that rich countries are not affected by weather
shocks. In the base specification, Burke makes no such differentia-
tion; in an alternative specification, the impact of weather shocks
is lower in richer countries, but not zero. Ricke initially put the
threshold between rich and poor at $20,715 per person per year,
referring to this as the “median income” in 1980. Using the same data
source, the World Bank, I find that the country-weighted median
was $1566/p/yr, the population-weighted median $275/p/yr in 1980.
Ricke’s inexplicably high threshold overestimates the impact accord-
ing to Dell. Kate Ricke (personal communication, 2019) has acknowl-
edged this mistake, and a correction has been published: The original
estimates were adjusted downwards. Secondly, Burke argues that
the growth effect depends on the level of the temperature,! whereas
Dell argues it depends on the change in temperature. This implies
that, in a scenario without climate change, Burke would see dif-
ferent growth rates in hot and cold countries, but Dell would not.
Ricke does not recalibrate the growth scenarios when switching from
Burke to Dell. Thirdly, Burke and Dell estimate their impact func-
tions on past weather, which is stochastic. Ricke uses GCM output,
but removes the annual variability. This does not matter for the Dell
impact function, which is linear, but it does for the quadratic impact
function of Burke. Let’s assume that the annual temperature is nor-
mally distributed T; ~ N(t, 0%). If the impact function is Iy = aAT;
(Dell’s) then EI; = aAp. Setting o = 0 is immaterial for the esti-
mate of the expected impact. However, if [y = BT; + yT? (Burke’s)
then El; = Py + y(0? + u?). Setting 0 = 0—that is, removing
the stochasticity—underestimates the expected impact. Within each
run of their Monte Carlo analysis, Ricke estimates the mode rather
than the mean. Incongruously, Ricke’s central estimate is the average
mode. I did not replicate Ricke’s estimates with these three errors
corrected, so I do not know which of the three explains most of the
lack of divergence between Burke and Dell.

Ricke et al. (2018) further assume that climate change affects eco-
nomic growth, rather than the level of economic activity (Fankhauser
and Tol, 2005; Piontek et al., 2018). This is known to substantially
increase estimates of the social cost of carbon (Dietz and Stern, 2015;
Moore and Diaz, 2015; Moyer et al., 2014). The empirical evidence
suggests that the growth effect of weather is small (Letta and Tol,
2018). Newell et al. use cross-validation tests to show that weather
shocks affect the level of economic activity, rather than its growth
rate.

1 The econometrics of Burke et al. (2015) do not stand up to scrutiny. They regress
the difference of the log of per capita income, a stationary variable, on temperature,
a non-stationary variable, and year dummies. As a non-stationary variable cannot
explain a stationary one, Burke’s year dummies must have de facto detrended temper-
ature. This is indeed the case, as confirmed by their replication package. To the best of
my knowledge, the statistical properties of regressing a stationary variable on a coin-
tegrating vector are not known. However, that cointegration vector is measured with
error. Errors-in-variables induce bias, of unknown sign in non-linear models (Griliches
and Ringstad, 1970). Burke’s unusual procedure works fine in-sample, but goes off the
rails out-of-sample (Newell et al.) as the year dummies cannot be predicted.

Therefore, this paper is based on estimates of the impact of climate
change, rather than weather shocks, on the level of economic activity,
rather than on the growth rate of the economy. It follows from the
above discussion that the estimates here are very different from, and
arguably much better than those by Ricke et al. (2018).

The paper proceeds as follows. Section 2 discusses the total
impact of climate change. Section 3 defines the social cost of carbon,
and details its calculation. Section 4 presents the estimates of the
national social costs of carbon. Section 5 concludes.

2. The total impact of climate change

Fig. 1 shows the 27 published estimates of the total economic
impact of climate change. See also Howard and Sterner (2017) and
Nordhaus and Moffat (2017). The change in the global annual mean
surface air temperature since pre-industrial times is on the horizon-
tal axis as an indicator for the extent of climate change. The welfare
equivalent income change is on the horizontal one. A global warm-
ing of 2.5° would make the average person feel as if she had lost 1.3%
of her income.

2.1. Methods

Impacts were estimated using a variety of methods. Most studies
use the enumerative method to estimate the direct cost (Berz; d’Arge,
1979; Fankhauser, 1995; Hope, 2006; Nordhaus, 1982, 1991, 1994b,
2008; Nordhaus and Boyer, 2000; Nordhaus and Yang, 1996; Plam-
beck and Hope, 1996; Tol, 1995, 2002), a poor approximation of the
change in welfare. Other studies shock a computable general equi-
librium model (Bosello et al., 2012; Roson and van der Mensbrugghe,
2012), using a proper welfare measuring and including interactions
between countries and sectors, but limiting the analysis to what is
in the national accounts. Other estimates are based on regressions of
economic indicators on climate (Mendelsohn et al., 2000, Nordhaus,
2006, Maddison, 2003, Rehdanz and Maddison, 2005, Maddison and
Rehdanz, 2011, Mendelsohn et al., 2000). These studies use actual
(rather than modelled) behaviour, but assumed that a relationship
observed over space holds over time. Nordhaus (1994a) elicited the
views of supposed experts.

2.2. Combining estimates

Besides the primary estimates, Fig. 1 also shows a curve—the
impact of climate change as a function of global warming since pre-
industrial times. Seven alternative impact functions, suggested in the
literature, were fitted to the data shown in Fig. 1. See Table 1. Assum-
ing normality of the residuals, the loglikelihood was computed for
each model. The curve shown is the Bayesian average of the seven
models. A piecewise linear model is the best fit to the data, and the
average curve indeed looks like that. The near-linearity of the impact
function is driven by the two moderate estimates for high warming.

As show in Table 1, most analysts argue that the impact of climate
change is non-linear, and intuition indeed suggests that 4° warm-
ing is more than twice as bad as 2° warming. Section 4.9 finds that
the piecewise linear function is particularly sensitive to the details
of calibration and imputation, while Section 4.4 finds that the spa-
tial pattern for the piecewise linear function is similar to that for the
parabolic function. I will therefore use the latter as the default choice.

Only 7 of the 27 estimates have a reported standard deviation, or
an upper and lower bound. [ imputed upper and lower bounds from
twice the reported standard deviations. I assume that the upper and
lower bounds are linear functions of the temperature, with slopes
0.92%GDP/° and 2.33%GDP/° on the cold and hot side, respectively.
This is roughly a 90% confidence interval.
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Fig. 1. The global total annual impact of climate change.

2.3. Results

Fig. 1 contains many messages, but these are based on only 27
estimates. The 11 estimates for 2.5° show that researchers disagree
on the sign of the net impact but agree on the order of magnitude.
A century of climate change may be about as bad as losing a year of
economic growth.

Initial warming may be net positive, while further warming
would lead to net damages. The incremental impacts turn negative
around 1.1° global warming, a point we may have reached already.

The uncertainty is rather large, and probably an underestimate of
the true uncertainty, as experts tend to be overconfident and as the
27 estimates were derived by a group of researchers who know each
other and each other’s work well. The uncertainty is right-skewed.
Negative surprises are more likely than positive surprises of similar
magnitude. In that light, the above conclusion needs to be rephrased:
A century of climate change is no worse than losing a decade of
economic growth.

2.4. Distribution of impacts

Thirteen of the twenty-two studies referred to above include
estimates of the regional impacts of climate change—see
Appendix A—or, in the studies involving David Maddison, national
impact estimates. Regressing the estimated regional impact for 2.5°

warming on per capita income and average annual temperature,
with dummies for the studies, I find that

I o 1.68(0.80) Iny. — 0.45(0.14)T, (1)

where I; is the impact in country c (in %GDP), y. is its average income
(in 2010 market exchange dollars per person per year), and T, is the
average annual temperature (in degrees Celsius). Hotter countries
have more negative impacts. Richer countries have more positive
impacts. Eq. (1) does not capture the special vulnerability of delta
and island nations. I use this equation to impute national impacts,
making sure that the regional or global totals match those in the
original estimates.

Fig. 1 shows the world average impact for 27 studies. Fig. 2
shows results for individual countries for 2.5° warming. Countries
are ranked from low to high per capita income and low to high tem-
perature. In Fig. 1, the world total impact is roughly zero. In Fig. 2, the
majority of countries show a negative impact. However, the world
economy is concentrated in a few, rich countries. The world average
in Fig. 1 counts dollars, rather than countries, let alone people.

Fig. 2 suggests that poorer countries are more vulnerable to
climate change than are richer countries. There are a few exceptions
to this—such as Mongolia, which is poor but so cold that warming
would bring benefits, and Singapore, which is rich but a low-lying

Table 1

Alternative models of the total impact of climate change.
Name Function Weight e
Golosov —4.16+10717> (e"r - 0.0% $0.00/tC
Ploeg -0.02 (e" - 1) 0.0% $3.87/tC
Hope —0.71T 0.2% $28.10/tC
Nordhaus —0.19T? 8.7% $22.59/tC
Tol (parabolic) —0.12T-0.16T? 10.2% $24.02/tC
Weitzman (7) —0.21T%-5.79+10-6T’ 13.6% $25.77/tC
Weitzman (6) —0.221%-3.71-10-5T° 14.2% $25.65/tC
Tol (piecewise linear) 0.74Tlr<101 + (2.17 — 1.41 D)1= 101 53.2% $145.26/tC
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Fig. 2. The economic impact of climate change for a 2.5° warming for all countries as a function of their 2005 income (top panel) and temperature (bottom panel).

island on the equator—but by and large the negative impacts of
climate change are concentrated in the developing economies.

There are three reasons for this. Poorer countries are more
exposed, having a larger share of their economic activities in
agriculture. Poorer countries tend to be in hotter places, so that
ecosystems are closer to their biophysical upper limits, and so that
there are no analogues for human behaviour and technology. Poorer
countries also typically have a limited adaptive capacity (Adger, 2006;
Yohe and Tol, 2002).

3. The social cost of carbon
3.1. Definition

The social cost of carbon is defined as the monetary value of the
first partial derivative of global, net present welfare to current carbon
dioxide emissions. It is sometimes calculated as a true marginal along
a welfare-optimizing emissions trajectory, and so equals the Pigou
(1920) tax on carbon dioxide. More often, the social cost of carbon

is approximated as a normalized increment along an arbitrary emis-
sions path. Essentially, you compute the impacts of climate change
for a particular scenario; you slightly increase emissions in 2018
and compute the slightly different impacts; you take the difference
between the two series of future impacts; discount them back to
today; and normalize the net present value of the difference with the
change in emissions.

Formally, if the utility function CRRA and inequity aversion zero,

Peo)" 0 1 Py (cct 1=
SCC=(-2) 7 D> v 2
=(&2) o5 Z ot () @

t

where SCC is the social cost of carbon at time 0, Ey denote emissions,
P population in country c at time ¢, and C.; consumption; p is a
parameter, the pure rate of time preference, and 7) is the rate of
relative risk aversion.

Carbon dioxide stays in the atmosphere for a long time, and the
climate is a dynamic system. Therefore, an additional tonne of carbon
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dioxide emitted today will have a long-lasting impact, that needs to
be discounted to today. This is the summation. Utility is discounted
at rate p, consumption at rate p + gp + ngc, where gp is the growth
rate of the population and g¢ is the growth rate of consumption.
The first partial derivative is welfare to emissions. The social cost of
carbon is expressed in dollar per tonne of carbon. The first element in
Eq. (2) normalizes the marginal impact on net present utility with
the marginal utility of consumption at the time of emission.

3.2. Model

I wrote Matlab code to combine the impact models in Table 1 with
the SRES (Nakicenovic and Swart, 2000) and SSP (Riahi et al., 2017)
scenarios of population, income and emissions, the Maier-Reimer
and Hasselmann (1987) carbon cycle model and the Schneider and
Thompson (1981) climate model. Readers are free to download, run,
manipulate and share the code.

3.3. Impacts of climate change

Eq. (1) is used to impute national impact estimates from global
and regional estimates. These are benchmark estimates. In the
default model, I combine the calibrated global impact function with
the estimated income elasticity in Eq. (1) to impute national impact
functions. As robustness checks, I use both income and temperature
to impute national impact functions; and I use the imputed national
impacts to calibrated national impact functions. As shown below,
these alternative procedures do not yield plausible results, as the
available evidence is overinterpreted.

3.4. Scenarios

The scenarios are build following the Kaya identity: population,
per capitaincome, energy intensity of the economy, and carbon inten-
sity of energy supply. The national scenarios extrapolate observed
trends (see below) and are rescaled to match the four core SRES
scenarios and the five SSP baseline scenarios, as defined by the model
averages from the IIASA database.

The national population growth rate is the weighted average of
the latest observed growth rate and the growth rate of the SRES
and SSP scenarios. The weight placed on the observations is near
one in the first scenario year, and falls linearly to almost zero in the
final scenario year. The size of the global population then does not
match the SRES and SSP scenarios. Therefore, each national popu-
lation is scaled, by the same factor, to make sure the scenarios are
aligned.

Economic output follows a Cobb-Douglas production function,
with a output elasticity of 0.8 with respect to labour. The labour force
is assumed proportional to population size. The capital stock depreci-
ates at 10% per year. The savings rate is 20%. Total factor productivity
grows by 5.9% per year minus 0.0048 times the natural logarithm of
per capita income. These numbers follow from regressing the change
in total factor productivity on per capita income, both taken from the
Penn World Tables. Total factor productivity growth is capped from
below at 1%. This implies income convergence. The size of the global
economy then does not match the SRES and SSP scenarios. Therefore,
each national economy is scaled, by the same factor, to make sure the
scenarios are aligned.

The energy intensity of the economy and the carbon intensity of
the energy sector follow from a log-log regression of intensity on per
capita income, with an income elasticity of —0.39 for energy inten-
sity and an income elasticity of —0.32 for carbon intensity. National
energy use and carbon dioxide emissions are scaled so that the global
totals match the SRES and SSP scenarios.

3.5. Uncertainties v sensitivities

There are a number of key parameters and assumptions in the
model, including the scenario, the climate sensitivity, the impact
function, the discount rate, the income elasticity, and the imputation
method. Below, I vary these one at a time and discuss the effect on
the global social cost of carbon and its spatial pattern.

Instead, I could have used an uncertainty analysis. However, that
sits awkwardly with methodological choices, such as the imputation
method, and ethical decisions, such as the pure rate of time prefer-
ence. Furthermore, some parameters, such as the climate sensitivity,
have a reasonably well-defined probability density function while
other parameters, such as the scenario used, do not. Besides, an uncer-
tainty analysis with many dimensions is not particularly informative
unless accompanied by a decomposition of the output uncertainty
into its constituent parts, the input uncertainties. Such a decompo-
sition shows the sensitivity of the output to the inputs—which can
also be shown, but without having to make assumptions about the
uncertainties, with a sensitivity analysis.

4. Results
4.1. Base

The base case uses the parabolic impact function, the SSP2 sce-
nario, a pure rate of time preference of 1%, and a rate of risk aversion
of 1. The global social cost of carbon is $24.02/tC. As the assumed
impact function is strictly negative, the social cost of carbon is strictly
positive. All national social costs of carbon are therefore a fraction of
the global social cost. Bigger countries have a larger national cost. The
national social cost of carbon is $5.74/tC for India, $3.07/tC for China,
$1.17/tC for Ethiopia, $1.13/tC for Bangladesh, $1.05/tC for Pakistan,
$0.85/tC for Indonesia, $0.33/tC for the EU, and $0.15/tC for the USA.
These eight countries? together make up 56% of the global social cost
of carbon.

Fig. 3 plots the national social cost of carbon per capita against per
capita income in 2015. The line is regular and smooth. A per capita
social cost is a meaningless indicator, but Fig. 3 reveals that popu-
lation size and per capita income explain almost all variation in the
social cost of carbon between countries.

Table 2 compares the estimates of the regional social cost of car-
bon to those reported by Nordhaus (2017). The key differences are
that, because of the high income elasticity, rich regions (including
fast-growing China) contribute much less to the global social cost of
carbon and poor regions much more. If the income elasticity is set to
zero, the regional pattern is more like that in other studies.

4.2. Discount rates

In the base specification, the pure rate of time preference is 1% per
year and the rate of risk aversion is 1. The global social cost of carbon
is $24.02/tC. This increases to $29.91/tC for a 0.1% pure rate of time
preference and falls to $11.65/tC for 5%. As has been seen in numer-
ous previous papers, the social cost of carbon is highly sensitive to
the pure rate of time preference.

The Ramsey (1928) Rule has that the consumption discount rate
equals the pure rate of time preference plus the rate of risk aversion
times the growth rate of consumption: r = p + ng. This implies
that the pure rate of time preference is more (less) important for
countries that grow more slowly (faster).

Because the per capita incomes as constructed strictly converge,
this can be illustrated with the richest and poorest country in the
sample. The global social cost of carbon is 2.57 times as big for a 0.1%

2 Climate policy is a matter for the European Union rather than its Member States.
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Fig. 3. The per capita social cost of carbon plotted against per capita income for an income semi-elasticity of —1.68 (blue dots) and —0.88 (orange triangles).

pure rate of time preference than for a 5% one; for Luxembourg, this
ratio is 3.47; for Afghanistan, it is 2.56. This highlights that the global
social cost of carbon is dominated by poor countries. Fig. 4 illustrates
this. The social cost of carbon of faster growing economies are less
sensitive to the pure rate of time preference.

The Ramsey Rule also implies that faster (slower) growing
economies are more (less) sensitive to the assumed rate of risk aver-
sion. If the rate of risk aversion is 0.5, rather than 1.0, the global social
cost of carbon rises to $38.67/tC; for a rate of risk aversion of 2.5, it is
$9.01/tC. The ratio is 4.31. This suggests that the social cost of carbon
is more sensitive to the rate of risk aversion than to the pure rate
of time preference, but it is hard to compare like with like for two
poorly constrained parameters.

For Afghanistan, the poorest and assumedly fastest growing coun-
try, the ratio is 4.30; for Luxembourg, the richest and assumedly
slowest growing country, the ratio is 4.13. Portugal is the most
sensitive country, with a ratio of 4.67. Fig. 4 illustrates that there
is a U-shaped relationship between the sensitivity of the national
social cost of carbon to the rate of risk aversion and the assumed
growth rate of the economy. The reason for this is as follows. If a
country grows faster, it discounts the future harder, and this is more

Table 2
Alternative estimates of the regional distribution of the social cost of carbon.
Source: Nordhaus (2017) except rightmost columns.

pronounced as the utility function is more curved. This explains the
upward slope for countries with an average income above $20,000
per person per year in 2015. However, countries that grow faster
also become less vulnerable to climate change more quickly, and
their impacts are concentrated in the nearer future. The discount
rate therefore becomes less important. This effect dominates for
countries with an income below $20,000. It explains the downward
slope.

4.3. Constant discount rate

The US government uses a constant consumption discount rate
(IAWGSCC, 2013), against the advice of experts (Arrow et al., 2013,
2014). A constant discount rate is inconsistent with theory, and
invariant between scenarios. It is also invariant between countries,
unless the international capital market is perfect (which it is not).
This in turn means that a constant discount rate introduces an
implicit penalty or premium on the impact in particular countries.

Fig. 5 illustrates this. It shows the ratio of the national social cost
of carbon for a pure rate of time preference of 1% per year to the
national social cost of carbon for a constant discount rate of 4.9%.

RICE FUND PAGE PNAS This study
-1.68 0
USA 10 17 7 15 0.6 26.1
EU 12 24 9 15 14 273
Japan 2 3 na 3 0.3 8.8
Russia 1 10 na 3 0.8 1.7
Eurasia 1 na na 5 24 0.7
China 16 8 11 21 12.8 7.6
India 12 5 22 9 239 2.5
Middle East 10 na na 7 2.6 4.0
Africa 11 6 26 3 30.4 2.6
Latin America 7 na 11 6 4.3 6.8
Other high income 4 na na 3 04 9.0
Other 12 -28 -16 8 20.2 2.7

Regional contributions are given in percentages. Two sets of results are shown for this study, one with the default income elasticity of impacts (—1.68) and one with a zero income

elasticity.
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For both nominator and denominator, I assume the parabolic impact
model and scenario SSP2. The constant discount rate equals 4.9% so
that the US social cost of carbon equals $0.15/tC, as above. Fig. 5 plots
this ratio against the assumed economic growth rate. A constant dis-
count rate overemphasizes (underemphasizes) the impact of climate
change in fast-growing (slow-growing) countries.

Fig. 6 shows the national social cost of carbon estimates. Only
the 30 countries with largest social cost of carbon are included. The
graph displays the results for the SSP2 scenario, the parabolic impact
model, and a Ramsey discount rate with a 1% pure rate of time pref-
erence and a risk aversion of one. It also shows results for a constant
discount rate. [ use two calibrations. In the first, the discount rate is
4.8% per year, so that the US social cost of carbon is $0.15/tC as above.

The global social cost of carbon is then $28.76/tC, higher than above.
In the second calibration, the discount rate is 5.7% so that the global
social costs of carbon is $24.02/tC as above. The US social cost of car-
bon then falls to $0.13/tC. In either calibration, a constant discount
rate as used in IAWGSCC (2013) puts a heavier weight on impacts in
countries that are projected to grow faster than the USA. In the global
calibration, US impacts are additionally suppressed.

4.4. Impact function

The default impact function is the parabolic one displayed in
Table 1. That table also shows the global social cost of carbon. The
Weitzman, Nordhaus and Hope models give similar results, with
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Fig. 5. The ratio of the social cost of carbon with a Ramsey discount rate to the social cost of carbon with a constant discount rate as a function of the assumed growth rate of the
economy.
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Fig. 6. The 30 largest national social costs of carbon with a Ramsey discount rate and two equivalent constant discount rates.

higher estimates for the more nonlinear specifications. This patterns
breaks with the highly non-linear models of Ploeg and Golosov. The
latter model has essentially zero damage below a threshold and infi-
nite damage above. The social cost of carbon is therefore zero unless
the extra tonne of carbon pushes the climate over the threshold. The
Ploeg impact model is a less extreme version of this. The national
pattern of social costs of carbon is very similar to the pattern from
the parabolic model.

The piecewise linear model has a global social cost of carbon of
$145.26/tC, 9.0 times as large as in the default. The pattern of national
social costs is indistinct. For each country, the social cost is between
7.6 and 9.1 times as large for the parabolic model. The global social
cost of carbon is so much higher because, when calibrated to the
same data, a linear impact function gives higher impacts for mod-
erate warming and lower impacts of substantial warming than a
non-linear impact function (Peck and Teisberg, 1994, were the first
to report this). The high income elasticity implies that later costs are
relatively small, and the discount rate further emphasizes the impact
of moderate warming in the short run.

4.5. Scenario dependence and convergence

There are two aspects to a scenario. First, how fast will climate
change, and thus how much damage will be done? Second, how
fast will incomes grow, and vulnerability to climate change fall? As
economic growth drives emissions growth, these two effects at least
partly offset each other. The separate effects are discussed below,
climate in Section 4.7, growth in Section 4.6.

The SSP2 scenario is the default scenario. All scenarios are
deemed equally unlikely. The default scenario is the median of the
newer SSP scenarios. Table 3 shows the global social cost of carbon
for all scenarios. Estimates range between $14.67/tC and $55.51/tC.
The default scenario is somewhere in the middle. The earlier SRES
scenarios are somewhat higher than the later SSP scenarios.

The national results scale with the global estimates. The social
cost of carbon of countries rich and poor vary in almost the same
way as the aggregate does. The pattern across countries is largely
independent from scenario choice.

In the default scenarios, poorer countries grow faster. This is
corroborated by some but not all data. Dropping this assumption, let-
ting all countries grow at the same rate, leads to a global social cost
of carbon of $28.57/tC, a slight increase. Fig. 7 plots the change in
the national social cost of carbon against per capita income in 2015.
Countries with an average income above (below) $28,000 per person
per year see their social cost of carbon fall (rise). Poorer countries
grow faster with convergence, and thus become less vulnerable and
discount the future harder. The effects are small, however, because
these effects become pronounced only in the more distant future.

4.6. Income elasticity

Table 4 shows the sensitivity of the global social cost of carbon
to the income elasticity of the impact of climate change. The social
cost of carbon falls is very sensitive to this parameter. If develop-
ment does not affect vulnerability, the global social cost of carbon is
$31.11/tC. The social cost of carbon initially falls, as society becomes
less vulnerable with economic growth. However, the social cost of
carbon starts rising for a higher income elasticity. This is because a
higher income elasticity implies greater climate impacts in poorer
countries in the near term. The social cost of carbon rises sharply as
the income elasticity increases.

Changes in the national social costs of carbon are different from
the changes in the global social cost. This is illustrated in Fig. 3.
For the default income elasticity of —1.68, richer countries have

Table 3
The global social cost of carbon for
nine alternative scenarios.

Scenario Social cost of carbon
SRES A1 $19.69/tC
SRES A2 $55.51/tC
SRES B1 $25.39/tC
SRES B2 $34.46/tC
SSP1 $17.78/tC
SSP2 $24.02/tC
SSP3 $42.02/tC
SSP4 $25.59/tC
SSP5 $14.67/tC
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Fig. 7. The ratio of the social cost of carbon with income convergence to the social cost of carbon without income convergence as a function of per capita income in 2015.

lower social costs of carbon. For an income elasticity of —0.88, richer
countries have higher social costs of carbon.

4.7. Climate sensitivity

Table 4 shows the sensitivity of the global social cost of carbon
to the climate sensitivity. The social cost of carbon rises steeply with
the assumed equilibrium warming due to a double of atmospheric
carbon dioxide.

National social costs of carbon go up and down with the global
estimate. The spatial pattern does not change. This follows from the
functional form; see Table 1. National impact models have different
parameters but the same specification at the global impact model,
and therefore respond in the same way to a change in temperature.

4.8. Weighted regression

In the default model, I assume that the primary impact estimates
shown in Fig. 1 are independent. They are not, but it is hard to
quantify how the estimates relate to one another. For instance, 11
of the estimates are by Nordhaus and co-authors. Some the later
estimates are updates of earlier ones, while other estimates use
different data and methods. Instead of trying of specify exactly how
different estimates relate to one another, I make an assumption that
is just as extreme as the assumption of now dependence whatsoever:
[ group all estimates by Nordhaus; by Mendelsohn; by Maddison;
by Bosello, Roson and Tol; and by Betz and Fankhauser; I assign a
weight equal to one over the number of group members to each

Table 4

estimate in that group; and re-estimate the parabolic model using
weighted least squares.

The results are hardly affected: The global social cost of carbon
falls to $21.70/tC. It falls because the weighted least squares
de-emphasizes the estimates by the relatively pessimistic Nordhaus.
The spatial pattern of the national social costs of carbon is not
affected.

4.9. Imputation and calibration

In the base specification, the parameters of the national impact
functions are derived from the global parameters, per capita income,
and the income elasticity. However, Eq. (1) has two elements, income
and temperature. | therefore recalibrate the national impact func-
tions using both. The problem with this procedure is that it changes
signs. Always negative impacts become always positive for 55 coun-
tries and 7 out of 8 impact function. The inverted-U-shape of the
piecewise linear impact function becomes a U-shape.

It is therefore no surprise that the global social cost of carbon
falls to $15.93/tC. India’s social cost of carbon falls from $5.74/tC to
$4.58/tC, because its high vulnerability is now explained by heat and
poverty rather than by poverty alone. The US social cost of carbon
falls from $0.15/tC to — $0.78/tC, a carbon subsidy.

In the base specification, the impact functions are calibrated on
the global impact estimates and national impact estimates imputed
from the global estimates, using the estimated income elasticity.
There is no obvious reason to do things in this order. I therefore use
the income elasticity to impute national impacts from the primary

The global social cost of carbon for alternative climate sensitivities and alternative income elasticities of impact.

Climate sensitivity Social cost of carbon

Income elasticity Social cost of carbon

0.5°/2xCO; $1.35/tC
1.5°/2xCO, $7.23/tC
2.5°/2xC0O; $17.36/tC
3.0°/2xCO; $24.02/tC
4.5°/2xCO; $50.35/tC
6.0°/2xCO;, $86.24/tC

0 $31.11/tC
—0.08 $23.90/tC
-0.88 $6.48/tC
-1.68 $24.02/tC
-248 $445.02/tC
-328 $21889.04/tC




564 R.SJ. Tol / Energy Economics 83 (2019) 555-566

estimates, making sure that the national numbers add up to the pri-
mary estimates for the regions, and calibrate the impact function to
the imputed national estimates.

The base specification has imputation after calibration, the alter-
native imputation before calibration. A pragmatic advantage of the
base specification is that sensitivity analysis on the income elasticity
(see above) is trivial. The alternative specification uses more infor-
mation from the primary impact studies, and may thus be seen as the
preferred order. However, the regional details in the primary stud-
ies are very uncertain, and this is carried over into the parameters of
the national impact functions. The base specification regularizes the
primary estimates and is thus less sensitive to outliers.

The global impact function has two negative parameters and is
thus always negative. So are the national impact functions imputed
from this. In contrast, only 31 of the calibrated national impact func-
tions are always negative. 35 have an inverted U-shape, with the
typical optimal temperature relatively close to today’s. The remain-
ing 123 countries’ impact functions are U-shaped, but with the worst
temperature much above today’s; that is, these countries see neg-
ative impacts of climate change, their impacts worsen with greater
warming, but the incremental impacts fall with greater warming.
This specification is strange. Under extreme warming (not considered
here) incremental impacts and, eventually, impacts will turn posi-
tive. Marginal impacts (the focus here) are sensitive to the curvature
of the impact function. I therefore prefer imputation after calibration.

As could be expected from the above, the estimates are quite
sensitive to the change in order. The global social cost of carbon is
$3.38/tC for imputation before calibration, instead of $24.02/tC for
imputation after calibration. Fig. 8 shows the national results. The
national cost of carbon falls by an order of magnitude for China and
India, the two top countries. For 34 countries, the sign flips: The
national cost of carbon is negative, calling for a carbon subsidy. These
carbon subsidies are small. The main effect is the sharp reduction in
the bigger countries.

The other impact functions show a sensitivity to the calibra-
tion procedure that is similar to that of the parabolic function.
The piecewise linear function shows a greater sensitivity: While
the default has a social cost of carbon of $145/tC, the calibration-
with-temperature has a social cost of carbon of $839/tC and the
imputation-before-calibration procedure leads to a social cost of
carbon of $4/tC.

5. Discussion and conclusion

This paper presents estimates of the national cost of carbon for
almost every country. Such estimates are relevant if governments
pursue “my country first” policies. I imputed national climate change
impact functions from global impact functions and the income elas-
ticity implied by regional estimates of the impact of climate change.
The national social cost of carbon is largest in poor countries with
large populations—India, China, Ethiopia, Bangladesh, Pakistan, and
Indonesia. The EU and the USA rank 7th and 8th. The national social
cost of carbon is less sensitive to the pure rate of time preference
in faster growing economies, and more sensitive to the rate of risk
aversion. The global social cost of carbon is sensitive to the assumed
impact function, climate sensitivity, and scenario, but the pattern of
national social costs is not. The assumption of income convergence
raises (lowers) the national social cost of carbon of poorer (richer)
countries. The assumed income elasticity of climate change impacts
is the key parameter, more important than the assumed discount
rate, for both the global social cost of carbon and the pattern of
national social costs.

Unfortunately, although there is near universal agreement that
poorer countries are more vulnerable to climate change, few have
estimated an income elasticity. A key parameter in the analysis is
thus poorly constrained by empirical evidence. This should be a high
priority in future research. Another priority is to replace the impact
function used here by impact functions. This is important because
different attributes of climate change—carbon dioxide fertilization,
ocean acidification, sea level rise, actual climate change—have differ-
ent dynamics and different net present marginals. Different compo-
nents of the impact function respond differently to development—air
conditioning rises faster than income, agriculture slower; air condi-
tioning is affected by the urban heat island effect, agriculture is not.
The estimates above ignore uncertainty, about emissions, climate
change, and impacts. Estimates ignore distributional issues within
countries, and empathy towards people from other countries. All that
is deferred to future research.

Two findings of this paper will withstand the refinements
of further research. National social costs of carbon are much
smaller than the global social costs of carbon. Large, poor countries
would impose the highest carbon taxes if acting in the national
self-interest.
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Fig. 8. The national cost of carbon for imputation after calibration against imputation before calibration.
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Appendix A. Regions in primary impact studies

Berz, Fankhauser (1995) European Union e USA e Other OECD e
former Soviet Union e China e Rest of the World

Tol (1995, 2002) OECD America e OECD Europe e OECD Pacific
o Eastern Europe and former Soviet Union e Middle East e Latin
America e South and South East Asia e East Asia e Africa

Hope (2006), Plambeck and Hope (1996) European Union e USA
o Other OECD e Eastern Europe and former Soviet Union e China e
South Asia e Africa and Middle East e Latin America

Nordhaus and Yang (1996) USA e Japan e European Union e
former Soviet Union e China e Rest of the World

Nordhaus and Boyer (2000) USA o Japan ¢ OECD Europe e High
Income OPEC o High Income o Eastern Europe e Russia e India e China
o Middle Income o Lower Middle Income e Africa ¢ Low Income

Bosello et al. (2012) USA e Mediterranean Europe e Northern
Europe e Eastern Europe o former Soviet Union e South Korea, South
Africa and Australia e Canada, Japan and New Zealand e North Africa
o Middle East e Sub-Saharan Africa e South Asia e China e Other Asia
o Latin America

Roson and van der Mensbrugghe (2012) China e Japan e Other
East Asia e India e Other South Asia e USA e Brazil e Russia e Other
Eastern Europe and Central Asia e Europe e Sub-Saharan Africa e
Middle East and North Africa e Other Annex I (Kyoto Protocol) e Other
High Income e Rest of the World
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