
1.4 Time-Series

1.4.1 What do we mean by a ‘model’?

1. We are referrring to the structural part of how we study financial returns.

2. Usually, we mean mathematical or statistical models, as opposed to an economic model.

3. Here’s a really simple one: Each day, we take a draw from the same normal distribution.
Observations are serially independent–independent and identically distributed (i.i.d.). We
call these shocks.

4. The basic building block of stochastic modeling. Stochastic means random. Observations
are unforecastable. Handed down from God.

yt ⇠ N(0,�2)

Create a workfile called Demo_01, with interger date size 100. Generate a series of standard
normal draws and plot.

wfcreate(wf=Demo_01) u 1 100

series y = nrnd

show y

5. Series with dependence over time.

series x = y + y(-1) + y(-2) +y(-3)

6. Moments: A bit of review.

• First moment is the mean. µ = E(yt). Note the date t. Refering to distribution that
yt is drawn from. Ditto down below.

• Second moment: E(y2t )

• Third moment: E(y3t )

• Second central moment is variance: �
2 = E(yt � µ)2

• First-order autocovariance: �1 = E(yt � µ)(yt�1 � µ) measures strength of serial de-
pendence.

Second-order autocovariance: �2 = E(yt � µ)(yt�2 � µ)

Notice, we’ve assumed E(yt) = E(yt�1). We’ve assumed the series is strictly station-
ary.

7. Properties of the normal distribution (The benchmark or default distribution).
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• Standard normal. For �1  y  1 <

f (y) =
1p
2⇡

e
�y2 (3)

• (General) Normal

f (y) =
1

�
p
2⇡

e
�( y�µ

� )2 (4)

• Distribution is symmetric around µ (mean, location) Dispersion regulated by �

(scale). How is � a measure of scale? If y is household income in dollars, then 100y is
household income in cents.

p
Var (100y) = 100

p
Var (y) = 100sd(y) (5)

• In finance, standard deviation , volatility

• Tail probabilities converge to 0 at a well defined rate. Loosely speaking normal tail
probabilities converge to 0 quickly (even though it’s possible to have realizations that
are arbitraily large or small).

• Conclusion: Assessments of normality involve checking for distributional symmetry
and appropriate tail thickness. How do we do that? Through examination of sample
moments.

8. Higher-ordered moments:

(a) The k-th theoretical moment of a distribution (the k-th theoretical moment of a random
variable y) is

E

⇣
y
k
⌘

The k-th central moment is
E (y � µ)k

where µ is the first moment, µ = E (y) .

Sample moments are the sample counterparts. Let {yt}Tt=1 be a sequence of time-series
observations (e.g., returns).

Third moment for symmetry/asymmetry. Skewness measure

E (yt � µ)3

�3
; skT =

1
T�1

PT
t=1 (yt � µ̂)3

�̂3

For normal distribution, skewness measure is 0. It is 0 for all symmetric distributions.
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Figure 2: Distributions with differing kurtosis

Figure 1: Skewed Left Skewed Right

Fourth moment measures tail thickness. The theoretical measure is kurtosis

E (Yt � µ)4

�4
; kurtT =

1
T�1

PT
t=1 (yt � µ̂)4

�̂4

For normal distribution, kurtosis is 3.

Distribution has excess kurtosis if the measure exceeds 3. These are fat-tailed dis-
tributions and peaked. There is a higher probability of extreme events than predicted
by the normal. Called leptokurtotic.

(b) In applications, pay attention to whether the software computes kurtosis or excess
kurtosis. Excess kurtosis subtracts 3 from the kurtosis measure. Eviews reports raw
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kurtosis.

9. Strict stationarity means each observation drawn from the same distribution. Weak
stationarity means the mean, variance, and autocovariance is invariant over time.

At this moment, think of stationarity as no trend.

Here’s how to generate a nonstationary series.

series z = 0.35*@trend + @cumsum(y)

What is the meaning of E(yt)? Pick a t. This is the mean at time t. If stationary, is
also the mean at t + k. But yt is a single data point. A single observation. So what does
the mean mean?

for !k = 1 to 10

series u{!k} = nrnd

next

group aa

for !k = 1 to 10

aa.add u{!k}

next

show aa

10. Ergodicity–is the technical condition that allows us to estimate the cross-sectional mean
µ = E(yt) with the time-series mean,

µ̂ =
1

T

TX

t=1

yt
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