
11. Exact normal distribution theory. We assumed the random draws are from the normal
(Gaussian) distribution. Hence, if yt

iid⇠ N(µ,�2), then µ̂ is also normal.

(Why? Because sums of normals are normal). The estimator (sample mean) has sample
variation. (Why? Because different realizations have different time-series means.)

The sample mean is an unbiased estimator,

E(µ̂) = µ

with variance
Var(µ̂) =

1

T 2
(T�2) =

�
2

T
! 0 as T ! 1

We can say, the sample mean is normally distributed with mean µ and variance �
2
/T .

We write it as,
µ̂ ⇠ N(µ,�2

/T )

As T ! 1 sample mean becomes more precise (the randomness vanishes). The distribu-
tion becomes degenerate.

Another way to write this is in the standardized nondegenerate or asymptotic form,

p
T
(µ̂� µ)

�
⇠ N(0, 1) (6)

Test the hypothesis that the true mean is µ with the t-ratio (z-statistic).

First, we need to estimate �
2 (to simplify, we ignore degrees of freedom correction.)

�̂
2 =

1

T

TX

t=1

(yt � µ̂)2

which itself is a random variable and has a �
2(T � 1) distribution. (Why? because it’s a

function of the yt which are random variables. Also, the square of a normal is chi-squared.)

Hence, when we substitute �̂
2 into (6), the distribution is not normal (we have a ratio of a

normal random variable to the square-root of a chi-square variable). William Gosset did the
math and showed this ratio to have the t-distribution with T � 1 degrees of freedom.

z =
p
T
(µ̂� µ)

�̂
⇠ tT�1

Call
�̂p
T

= se(µ̂)
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the standard error of µ̂. So we can also write,

z =
(µ̂� µ)

se(µ̂)
⇠ tT�1

These are exact results. That means for any T , we can look up the results in a table. The
t-distribution applies exactly for any sample size T .

The story behind the student t distribution: In the 1890s, William Gosset was study-
ing chemical properties of barley with small samples, for the Guinness company (yes, that
Guinness). He showed his results to the great statistician Karl Pearson at University College
London, who mentored him.

Gossett published his work in the journal Biometrika, using the pseudonym Student, because
he would have gotten in trouble at Guinness if he used his real name.

Hypothesis testing method (statistical inference)

(a) Assume the null hypothesis is true. (e.g., � = 0)

(b) Determine the sampling distribution of your test statistic under the null hypothesis.
(e.g., the t-statistic, follows a student-t for small samples, and N (0, 1) for larger sam-
ples).

(c) Ask if the observed test statistic, computed using data, could reasonably be drawn from
the null distribution.
If answer is yes, data are consistent with the null. You cannot reject the null hypothesis
If answer is no, then you can reject the null. The classical hypothesis testing method-
ology is due to R.A. Fisher.

Figure 3: t-test Review: Two-sided Test
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Figure 4: t-test Review: One-sided Test

12. Convergence (large sample or asymptotic theory). With time-series, we don’t like to
assume the underlying shocks are normally distributed. We don’t like to be so specific as
to name any one particular distribution. In fact, a pretty strong assumption that we often
make is simply that the shock sequence is i.i.d. (no distribution named) with mean µ and
variance �

2.

If you don’t assume a distribution, then how can you do a t-test?

• Law of large numbers. Under certain regularity conditions, as T ! 1

µ̂
a.s.! µ

• Central limit theorem. Under certain regularity conditions,

(µ̂� µ)

se(µ̂)
D! N(0, 1)

The second result is amazing, right? Philosophically, it’s saying something about the uni-
versality of the normal distribution.

What these two results say is, under certain regularity conditions (e.g., the time-series is
stationary and ergodic), if we had a large sample (T = 1), the z-statistic has the standard
normal distribution. The way econometricians say it is “z is asymptotically normal.”

In applications, for finite T , we use these asymptotic results even though we never have
T = 1, and hope that the excact but unknown distribution of z is well approximated by
the asymptotically normal distribution.

15



2 Regression Review

Text: Chapter 3.

2.1 Regression In Population

1. Think about regressing yt on xt. Both variables are time-series, both are stationary and
ergodic.

yt = ↵+ �xt + ✏t (7)

The error term ✏t is i.i.d. The systematic part of regression is also referred to as projection.
The ✏t is projection error.

2. Here is how I want you to think of regression. The right side is conditional expectation

E (yt|xt) = ↵+ �xt

because E (✏t|xt) = 0. The conditional expectation is the best linear predictor (forecast) of
yt, conditional on the information xt.

3. Next, take the mean,

E (yt) = ↵+ �E (xt)

↵ = µy � �µx

Substitute to eliminate the constant. Right now, we’re not interested in the constant (we
will be later in the course when we study alpha).

yt � µy = � (xt � µx) + ✏t

This is regression stated in deviations from the mean form. � is a function of moments from
the joint (or bivariate) distribution between xt and yt.

Multiply both sides by xt � µx,then take expectations, solve for �

(yt � µy) (xt � µx) = � (xt � µx)
2 + ✏t (xt � µx)

E [(yt � µy) (xt � µx)]| {z }
Cov(xt,yt)

= �E (xt � µx)
2

| {z }
Var(xt)

+ E [✏t (xt � µx)]| {z }
0

� =
Cov (xt, yt)

Var (xt)
=

Cov (xt, yt)
sd (xt) sd (yt)

sd (yt)

sd (xt)
= ⇢ (xt,yt,)

� (yt)

� (xt)

This what we are estimating when we run regression. In finance, covariance is risk.
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4. In financial econometrics, yt is an asset return and xt is a risk-factor. We use regression to
compute the betas, which is exposure of this asset to the risk factor.

We are less concerned about instrumental variables and establishing cause and effect.

We are more concerned about understanding reduced form correlations and in understanding
the statistical dependence across time series, and dependence of observations across time.

Want to know why it’s called regression? Darwin’s cousin, Galton, was studying heights.
xi is average height of parents, yi is height of kid. He’s running the regression

yi = ↵+ �xi + ✏i

Height distribution doesn’t change across generations:

E(yi) = E(xi) = µ

Var(yi) = Var(xi) = �
2

which implies

� = ⇢ (xi,yi)
� (yi)

� (xi)
= ⇢

↵ = µy � �µx = µ(1� �) = µ(1� ⇢)

Hence,
E(yi|xi) = ↵+ �xi = (1� ⇢)µ+ ⇢xi

Expected height of child is weighted average of parent and population height. Child not expected
to be has tall as parents. Hence, regression to the mean.

2.2 Least squares estimation of �

1. Just like we did with the sample mean and sample variance, compute the sample counterparts
to the population moments. The least squares estimator of � is,

�̂ =
1
T

PT
t=1 (yt � µ̂y) (xt � µ̂x)
1
T

PT
t=1 (xt � µ̂x)

2

=
1
T

PT
t=1 (�xt + ✏t � �µ̂x � µ̂✏) (xt � µ̂x)

1
T

PT
t=1 (xt � µ̂x)

2

= � +

PT
t=1 ✏t (xt � µ̂x)PT
t=1 (xt � µ̂x)

2

where we get the last equation because 1
T

P
µ✏ (xt � µ̂x) = µ̂✏

1
T

P
(xt � µ̂x) = 0.
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In the last line, �̂ is a linear combination of the regression errors ✏t, which are random
variables. Therefore �̂ is a random variable and has a distribution.

2.3 Normal regression theory with nonstochastic regressors. (Inference)

Here, mimic what we did with the sample mean.

1. Find the mean of the estimator

2. Find the variance of the estimator

3. Use the above to get the standard error of the estimator

4. Form the t-ratio

• In your basic econometrics course, you assumed the x
0
s are exogenous constants (not ran-

dom variables). We interpret them as something under control of the experimenter. The
expermment is something like x is food and y is some sort of test outcome like cholesterol.
✏ is random variation unrelated to diet. We assume the ✏t are i.i.d. normal with mean 0 and
variance �

2
✏ .

First, �̂ is unbiased. Take expectations,

E

⇣
�̂

⌘
= � +

1
PT

t=1 (xt � µ̂x)
2
E

 
TX

t=1

✏t (xt � µ̂x)

!

| {z }
0 b/c x’s treated as constant

= � (8)

Compute variance

E

⇣
�̂ � �

⌘2
=

 
1

PT
t=1 (xt � µ̂x)

2

!2

E

 
TX

t=1

✏t (xt � µ̂x)

!2

=

 
1

PT
t=1 (xt � µ̂x)

2

!2 TX

t=1

(xt � µ̂x)
2

!
�
2
✏

=
�
2
✏PT

t=1 (xt � µ̂x)
2
= V

⇣
�̂

⌘

Hence, if we assume normality (of the ✏t), we get normality of the estimator,

�̂ � � s N

⇣
0, V

⇣
�̂

⌘⌘
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• To do the t-test, we need to estimate �
2
✏ . The regression residual is ✏̂t,

�̂
2
✏ =

1

T

TX

t=1

✏̂
2
t

The standard error of �̂ is

se

⇣
�̂

⌘
=

r
V̂

⇣
�̂

⌘
=

�̂✏qPT
t=1 (xt � µ̂x)

2

and the z statistic has the tT�2 distribution (lose 2 degrees of freedom due to constant and
slope).

z =
�̂ � �

se

⇣
�̂

⌘ s tT�2

2.4 Time-series regression theory with stochastic regressors

1. Two assumptions we cannot make when dealing with time series in financial econometrics
are (1) the regressors are non-stochastic and (2) the regression errors are normal.

2. When we relax these assumptions, we lose the exact distributional features of least squares
(i.e., the ratio of the least squares estimator to the standard error is no longer student t with
T � 2 degrees of freedom.

3. If we assume yt and xt are weakly stationary and ergodic time-series,

1

T

TX

t=1

(xt � µ̂x)
2 a.s.! Q

�̂
2
✏ =

1

T

TX

t=1

✏̂
2
t
a.s.! �

2

where Q is a constant, then using the same large-sample asymptotic logic we above to
show it is possible to show (actually with a lot of tedius and high-level math) using the law
of large numbers and the central limit theorem,

p
T

⇣
�̂ � �

⌘
! N

✓
0,�2

✏
1

TQ

◆
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which in practical terms means

p
T

⇣
�̂ � �

⌘

�̂✏q
1
T

P
(xt�µ̂x)

2

! N (0, 1) (9)

where

�̂
2
✏ =

1

T

TX

t=1

✏̂
2
t

Let
se

⇣
�̂

⌘
=

�̂✏qPT
t=1 (xt � µ̂x)

2

Cancel out the
p
T in (9) and hope that the t-ratio (or the z-statistic)

z =

⇣
�̂ � �

⌘

se
⇣
�̂

⌘ s N (0, 1)

is a good approximation to the unknowable exact distribution.

4. In this course, we are interested in t-ratios. We are not interested in F-statistics. Nobody’s
opinion ever was changed by having a significant F-stat and insignifcant t-ratios.

5. But we are also interested in R
2, the measure of goodness of fit.

R
2 =

SSR

SST
=

P
ỹ
2
tP

x̃
2
t

= 1�
P

✏̂
2
tP
x̃
2
t

= 1� SSE

SST

2.5 Frisch-Waugh theorem

What does ‘controlling for z mean in multiple regression?

• Suppose we looking at the regression (ignore constants)

yt = �xt + �zt + ✏t (10)

� is the coefficient of interest, but endogeneity of xt makes us want to ‘control’ for zt.

• Regress yt on zt and xt on zt, save the residuals y
o
t and x

o
t

yt = azt + y
o
t

xt = bzt + x
o
t
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• Now regress y
o
t on x

o
t

y
o
t = �x

o
t + ✏t (11)

It is not a typo that the slope is � in both (10) and (11). They are identical. This is called
the Frisch-Waugh theorem.

When we control for zt, it means we are looking at the relationship between yt and xt after
removing any influence zt has on both yt and xt.
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