
4 Exploratory Data Analysis on Returns

Text: pages 41-62.

4.1 What to do

1. Plot your data. Look for

(a) Outliers? Mistakes?

(b) Does it trend? How to make it stationary?

(c) Structual break?

(d) Volatility clustering?

2. Ask if observations are normal.

3. Graph the kernel density against the implied normal denstity.

4. Relation between sample moments and theoretical moments

5. Jarque-Bera test for normality

(a) The Jarque-Bera statistic measures the difference between skewness and kurtosis in the
data and the normal distribution.

(b) Let skT be sample skewness, and kurtT be sample kurtosis. Jarque and Bera showed
that their statistic JB
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T
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under the null hypothesis of normality.

(c) Eviews produces JB test and p-values when asking for descriptive statistics.
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5 Autoregressive Moving Average (ARMA) models. Specification

and Estimation

Text: pp. 246-276.
Overview. These are simple parametric models of univariate time-series. They are purely sta-
tistical models with no economic content, to model simple types of observational dependence over
time. We use the dependence to forecast future values.

Motivate with graphs of STicky price CPI from FRED and graph of stock returns. Illustrates
different types of dependence over time.

Weak Stationarity. The time series {yt}Tt=1 is weakly stationary if the mean, variance, and
autocovariances of the process are constant.

E (yt) = µy

E (yt � µy)
2 = �

2

E (yt � µy) (yt�k � µy) = �k

Important result: Conditional expectation is minimum mean-square error predictor.
Let It be the observable information set. This can include current and past values of yt and other
variables. If we ask, what function minimizes the mean square prediction error,

E [yt+1 � P (yt+1|It)]2

answer is
E (yt+1|It) =

Z
yt+1f (yt+1|It) dyt+1

where f (yt+1|It) is conditional pdf of yt+1.

• Think of fitted value of regression as conditional expectation. Systematic part of regres-
sion also called projection.

• Notational Convention Et(yt+k) ⌘ E(yt+k|It)

5.1 The white noise process

The white noise process is the basic building block of all time series

yt = ✏t, ✏t
iid⇠ (0,�2

✏ )
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1. It reflects the stochastic (random) nature of the world. View these as exogenous shocks.
These shocks are random and have no dependence over time, representing purely unpre-
dictable events. It’s a model of news.

2. Notice we didn’t say they are normally distributed. In time-series, it doesn’t matter because
all inference is asymptotic

3. By itself, it is uninteresting, because there is no dependence over time.

5.2 The Moving Average (MA) Model

The moving averge model strings together a finite (usually small) number of current and past
white noise shocks.

An MA(k) process. yt is correlated with yt�k and possibly those observations in between,
yt�1, ..., yt�k+1. k is the ‘order’ of the moving average process.

1. MA(1). Example might be daily returns with slow moving capital. News occurs today. High
frequency traders pounce, institutional investors, move later in the day. Retail investors
don’t know until they see the nightly Bloomberg report.

5.2.1 MA(1) model

1. Let yt be the stock return.
yt = µ+ ✏t + ✓✏t�1

where ✏t is white noise with mean 0 and variance �
2
✏ . Now see, if we shift time index back

one period,
yt�1 = µ+ ✏t�1 + ✓✏t�2

Since ✏t�1 is common to both yt and yt�1, they are correlated.

2. Calculate the interesting moments (mean, variance, autocovariance, autocorrelation).

E (yt) = E (µ+ ✏t + ✓✏t�1) = µy

V ar (yt) = E (yt � µy)
2 = E (ỹt) = �

2
y =

�
1 + ✓

2
�
�
2
✏

Cov (yt, yt�1) = �1 = E (ỹt, ỹt�1) = E (✏t + ✓✏t�1) (✏t�1 + ✓✏t�2) = ✓�
2
✏

Corr (yt, yt�1) =
�1

(1 + ✓2)�2
✏
=

✓

(1 + ✓2)

and for any k > 1,

Cov (yt, yt�k) = 0.
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3. Forecasting formula. Conditional expectation is projection, is fitted value of model (re-
gression), is the optimal forecast. Forecast formula is the conditional expectation. Hence,
find the conditional expectation.

Let’s forecast deviation from mean since mean is constant. Let ỹt ⌘ yt � µy

Et (ỹt+1) = Et (✏t+1 + ✓✏t) = ✓✏t

Et (ỹt+2) = 0

And for any k � 2

Et(ỹt+k) = 0

4. Impulse response function. How does yt respond to a one-time shock? MA(1) model has
memory of only one period. Hence there is only a one period response.

Set all ✏t�s = 0 for s 6= 0, ✏t = �✏, which we’ll assume is �✏ = 1.

ỹt�1 = 0

ỹt = 1

ỹt+1 = ✓1

ỹt+2 = 0

5. Wait! How do you estimate an MA(1) model? There are no independent variables, so
you can’t run least squares regression. We do something called maximum likelihood
estimation.

• The ✏t are random variables. Let’s assume they are drawn from a normal distribution,
N
�
0,�2

✏

�
. The marginal probability density function (pdf) for ✏t is

f1 (✏t) =
1

�✏

p
2⇡

e
� ✏2t

2�2
✏

The joint pdf for ✏1, ✏2, ..., ✏t, ✏t+1, ..., ✏T is the product of the f1 () , because the ✏
0
s are

independent.

f (✏T , ✏T�1, ..., ✏1) = f1 (✏1) f1 (✏2) · · · f1 (✏T ) =
✓

2

�✏

p
2⇡

◆T

e
� 1

2�2
✏

PT
t=1 ✏

2
t

• Notice that ✏t = yt�µ� ✓✏t�1, ✏t�1 = yt�1�µ� ✓✏t�2, ✏t�2 = yt�2�µ� ✓✏t�3, ... This
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