
means

✏1 = y1 � µ

✏2 = y2 � µ� ✓ (y1 � µ)

✏3 = y3 � µ� ✓ (y2 � µ� ✓ (y1 � µ))

✏4 = y4 � µ� ✓ (y3 � µ� ✓ (y2 � µ� ✓ (y1 � µ)))

...

✏T = yT � µ� ✓ (· · · )

• Substitute these back into the joint pdf. The joint pdf is now a function of the y
0
ts. (At

this point, write in general functional form):

f
�
yT , yT�1, ..., y1|µ, ✓,�2

✏

�

Here, we stop interpreting the function f () as the joint pdf because it is now a function
of the data. Instead, we call it the likelihood function. PDFs are for random vari-
ables. Likelihood functions are for data. The µ, ✓,�

2
✏ are parameters of the likelihood.

• Maximum likelihood estimation is done by asking the computer to search and those
µ, ✓,�

2
✏ that maximizes f () . We reduce the nonlinearity of the likelihood function by

taking logs to get the log likelihood. Values that maximize the log-likelihood also
maximize the likelihood.

• Log likelihood:

L
�
yT , yT�1, ..., y1|µ, ✓,�2

✏

�
= ln

�
f
�
yT , yT�1, ..., y1|µ, ✓,�2

✏

��

• Let’s look deeper. Let’s take the logarithm of the joint pdf.

ln (f (·)) = �T ln
h�
�
2
✏

� 1
2

i
� T ln

h
(2⇡)

1
2

i
� 1

2�2
✏

TX

t=1

✏
2
t

When we write the ✏
0
ts in terms of the model, they become functions of the data yt,and

the logarithm of the joint pdf becomes the log likelihood function. Let’s divide by T .
Two things happen.

ln (f (·))
T

= � ln
h�
�̂
2
✏

� 1
2

i
� ln

h
(2⇡)

1
2

i
� 1

2�̂2
✏

1

T

TX

t=1

✏̂
2
t

| {z }
�̂2
✏
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First, �2
✏ becomes �̂2

✏ , and second, ✏t becomes ✏̂t, (because ✏t can move around when we
move the process parameters around), and third 1

T

PT
t=1 ✏̂

2
t = �̂

2
✏ . After cancellations,

log likelihood becomes,

LL

T
= � ln

h�
�̂
2
✏

� 1
2

i
� ln

h
(2⇡)

1
2

i
� 1

2�̂2
✏
�̂
2
✏

= �1

2
� ln

h
(2⇡)

1
2

i

| {z }
constant

� ln
h�
�̂
2
✏

� 1
2

i

The constant terms don’t matter when we are trying to maximize the function so it is
common to write the log likelihood as

LL

T
= � ln

h�
�̂
2
✏

� 1
2

i
(12)

So we choose ✓, µ to minimize �̂
2
✏ .

6. Let’s apply MA(1) to daily stock returns.

EviewsExamples/ARIMA_Models.wf1

Code: equation eqma1.ls(optmethod=opg) djiaret c ma(1)

5.2.2 MA(2) model

1. Observations correlated with at most 2 lags of itself.

yt = µy + ✏t + ✓1✏t�1 + ✓2✏t�2

Next, you can verify that

E (yt) = µy,

V ar (yt) =
�
1 + ✓

2
1 + ✓

2
2

�
�
2
✏ ,

Cov (yt, yt�1) = (✓1 + ✓1✓2)�
2
✏ ,

⇢1 =
(✓1 + ✓1✓2)�2

✏�
1 + ✓

2
1 + ✓

2
2

�
�2
✏

=
(✓1 + ✓1✓2)�
1 + ✓

2
1 + ✓

2
2

�

Cov (yt, yt�2) = ✓2�
2
✏ ,

⇢2 =
✓2�

2
✏�

1 + ✓
2
1 + ✓

2
2

�
�2
✏

=
✓2�

1 + ✓
2
1 + ✓

2
2

�
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and
Cov (yt, yt�k) = 0,

for k > 2.

2. Forecasting formula. Forecast deviation from mean.

Et (ỹt+1) = Et (✏t+1 + ✓1✏t + ✓2✏t�1)

= ✓1✏t + ✓2✏t�1

Et (ỹt+2) = Et (✏t+2 + ✓1✏t+1 + ✓2✏t) = ✓2✏t

Et(ỹt+3) = 0

Hence for any k � 3Et(ỹt+k) = 0.

3. Impulse response function. Set all ✏t�s = 0 for s 6= 0, ✏t = �✏, which we’ll assume is
�✏ = 1.

ỹt�1 = 0

ỹt = 1

ỹt+1 = ✓1

ỹt+2 = ✓2

ỹt+3 = 0

5.3 Autoregressive models

These are models of more durable or persistent dependence over time. Pure AR models can be
estimated by least squares (actually, least squares and maximum likelihood are the same for AR
models). Combined AR and MA models (ARMA) need to be estimated by maximum likelihood.
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