
MA(1)
yt = µ+ εt + θεt−1

Last time, we computed the mean E(yt) , Var(yt) and Corr (yt, yt−k) for k > 0.
The forecasting formula is the conditional expectation.

E (yt+1|yt, εt, εt−1) = E (µ+ εt+1 + θεt|yt, εt, εt−1)

= µ+ θεt

E (yt+2|yt, εt,εt−1) = E (µ+ εt+2 + θεt+1|yt, εt, εt−1) = µ

The impulse response function tells us how yt responds to a one-time shock.
Shock today’s ε and then shut them down forever. Trace out the response of
y.Let’s say the sequence is ...,εt−1 = 0, εt = 1, εt+1 = 0, ...

yt = µ+ 1

yt+1 = µ+ θ

yt+2 = µ

yt+3 = µ

How to estimate? We observe only the y′s. Can’t run a regression.

yt = µ+ εt + θεt−1

We do a think called maximum likelihood estimation. Assume a pdf for the ε′s.
Then express the ε′s in terms of the model (becomes a function of the y′s or
the data). This transforms the pdf into the likelihood function. Ask computer
to choose the parameters

(
µ, θ, σ2

ε

)
to maximize the likelihood function.

Assume ε′s are normal iid.

f1 (εt) =
1

σε
√

2π
e
− ε2t

2σ2ε

The joint distribution is the product of these f ′1s because of independence. The
joint pdf of the ε′s

f (εT , εT−1, ..., ε1) = f1 (εT ) f1 (εT−1) · · · f1 (ε1)

=

(
1

σε
√

2π

)T
e
− 1

2σ2ε

∑T
t=1 ε

2
t

Write the ε′s in terms of the y′s

εt = yt − µ− θεt−1
= yt − µ− θ [yt−1 − µ− θεt−2]

= yt − µ− θ [yt−1 − µ− θ (yt−2 − µ− θεt−3)]
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Maybe this is more clear

ε1 = y1 − µ
ε2 = y2 − µ− θ (y1 − µ)

ε3 = y3 − µ− θ (y2 − µ− θ (y1 − µ))

Substitute this back into the joint pdf

f
(
yT , yT−1, ..., y1|µ, θ, σ2

ε

)
Now it’s a function of the data and we call it the likelihood function. Computer
searches for µ, θ, σ2

ε to find the maximum. Well, not quite. The likelihood is
nonlinear.

f
(
yT , yT−1, ..., y1|µ, θ, σ2

ε

)
=

(
1

σε
√

2π

)T
e
− 1

2σ2ε

∑T
t=1 εt(yt,yt−1,...y1)
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Take the log of the likelihood. It’s called the log-likelihood function.

ln (f ()) = −T ln
[(
σ2
ε

) 1
2

]
− T ln

[
(2π)

1
2

]
− 1

2σ2
ε

T∑
t=1

εt (yt,yt−1, ...y1)
2

The choices of µ, θ, σ2
ε that maximize the log likelihood also maximize the like-

lihood. What if we divide the log likelihood by T? Also, put hats on the σ2′
ε s

to signify that they are functions of the data.

ln (f ())

T
= − ln

[(
σ̂2
ε

) 1
2

]
− ln

[
(2π)

1
2

]
− 1

2σ̂2
ε

[
1

T

T∑
t=1

εt (yt,yt−1, ...y1)
2

]

= − ln
[(
σ̂2
ε

) 1
2

]
− ln

[
(2π)

1
2

]
− 1

2︸ ︷︷ ︸
Irrelevant

Write the part of the Log likelihood function that matters as LL

LL

T
= − ln

[(
σ̂2
ε

) 1
2

]
MA(2) model

yt = µ+ εt + θ1εt−1 + θ2εt−2

I showed you how to get E (yt) ,Var(yt) ,corr(yt,yt−k) for MA(1). Mimic the
steps and you can do it for MA(2). But for now, I tell you a joke.
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