
14 Vector Autoregressions

Text: pp 312-331.
We are going to talk about unrestricted vector autoregressions. This is the multivariate
(or vector) generalization of the univariate autoregressive model we covered earlier. Here, we can
look at the interaction between variables and response of one variable (e.g., energy stock returns)
to shocks in other variables (e.g., the Federal funds rate).

14.1 Specification

• Consider two zero-mean (or in deviations from the mean) covariance-stationary time series,
y1,t and y2,t

Example: y1,t GDP growth, y2,t the market excess return. Same explanatory variables in
each equation. For notational simplicity, suppress the constant.

y1,t = a11,1y1,t�1 + a12,1y2,t�1 + ✏1,t

y2,t = a21,1y1,t�1 + a22,1y2,t�1 + ✏2,t

• Write this system of equations in vector/matrix form. Since there is only one lag of each
variable, the system is called a VAR(1).
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• This is called the reduced form model.

14.2 Estimation

• Estimate each equation separately by least squares.

• Estimate error-covariance matrix ⌃ with sample counterparts from the regression residuals.
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• Select lag length with information criteria (AIC, BIC, etc).

• k is total number of regression coefficients (the aij,r coefficients in system. In bivariate
VAR(1) k = 6 including constants.

• For VAR(p),

AIC = 2 ln |⌃̂p|+
2k

T
.

BIC = 2 ln |⌃̂p|+
k lnT

T
.

• |⌃| is the determinant of the covariance matrix.

14.3 Impulse Response Analysis

• Remember MA(1) representation of AR(1) and impulse response?

yt = ⇢yt�1 + ✏t

= ✏t + ⇢✏t�1 + ⇢
2
✏t�2 + ⇢

3
✏t�3 + · · ·

Impulse responses

y0 = ✏0 = 1

y1 = ⇢

y2 = ⇢
2

y3 = ⇢
3

Do the same repeated substitution for VAR(1) to get the VMA(1) (vector moving average)

yt = Ayt�1 + ✏t

= ✏t +A✏t�1 +A
2
✏t�2 +A

3
✏t�3 + · · ·

A
2 = AA,A

3 = AAA etc.

– We have moving-average representation. Next, employ impulse response analysis to
evaluate the dynamic effect of shocks in each variable on (y1t, y2t).

– Two new issues (decisions). We want to simulate dynamic response of y1t and y2t to a
shock to ✏1t
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1. How big should the shock be? This is an issue because you want to compare the
response of y1t across different shocks. We must normalize the size of the shocks.
Usually, people set size of shock to be one standard deviation in size.

Divide each shock by its standard deviation. (Eviews does this automatically)

2. Need shocks that are unambiguously attributed to y1t and to y2t. If ✏1t and ✏2t are
correlated, you can’t just shock ✏1t and hold ✏2t constant. We need to make the
shocks uncorrelated. (Orthogonalizing the shocks).

• Orthogonalizing Correlated Variables. Here is the idea behind orthogonalizing (decor-
relating) correlated variables. Not covering the actual way VARs are orthogonalized, just
the concepts.

– Show how to build up correlated random variables from independent random variables.

– Run the process in reverse to orthogonalize

– Creating Bi-variate Normal Random Variables

∗ Let z1 and z2 be independent standard normal random variables. Build the random
variables ✏1 and ✏2 as linear combinations of z1 and z2.

✏1 = �1z1 + µ1

✏2 = �2

⇣
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∗ ✏1 and ✏2 are normally distributed. That’s because they are linear combinations of
normals.

∗ See the overlap of z1 in both ✏1 and ✏2? That means they are correlated.
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∗ We built the ✏
0
s from the z

0
s, so given the ✏

0
s, we should be able to unpack the z

0
s.

∗ The ✏1 and ✏2 are like the reduced form errors in the VAR. The z
0
s are like what

we call structural shocks.
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– Reverse Engineer–Recover the z
0
s

z1 =
1

�1
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z2 =
�1 (✏2 � µ2)� ⇢�2 (✏1 � µ1)
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p
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VAR method uses something called the Choleski (or Choleski) decomposition of the
error covariance matrix, ⌃, to do this.

– Orthogonalized (uncorrelated) shocks. Write in matrix form
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substitute into vector MA(1) representation.

yt = ✏t +A✏t�1 +A
2
✏t�2 + · · ·

= ⇤zt +A⇤zt�1 +A
2⇤zt�2 + · · ·

Now we can shock z2 without disturbing z1.

– The ordering of the variables can matter, because of the triangular structure of ⇤. A
time-t shock z1t affects y1t and y2t today. A time-t shock z2t affects y2t today, but y1t

with a one-period lag. Let’s write out a couple terms:
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• Some Examples in Eviews. VAR_example.wf1 in Eviews folder
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15 Local Projections

15.1 Pitfalls of VARs

Some pitfalls of VARs have been discovered.

• VAR is optimally designed for one-period ahead forecasting.

• An impulse response, is a function of forecasts at increasingly distant horizons. Therefore
misspecification errors are compounded with the forecast horizon.

• It might be better to use a collection of projections local to each forecast horizon instead.
This is called a local projection.

15.2 Local Projection instead of VAR(1)

The first equation in the VAR is

y1t+1 = a1y1t + b1y2t + ✏t+1,1

Run these regressions. (Look at the dependent variable–is shifted ahead k periods). These are
predictive regressions.

y1t+2 = a2y1t + b2y2t + ✏t+2,2

y1,t+3 = a3y1t + b3y2t + ✏t+3,3

...

y1,t+k = aky1t + bky2t + ✏t+k,k

• The impulse response of y1 to a shock to iself is a1,a2, ..., ak.

• The impulse response of y1 to a shock to y2 is b1, b2, ..., bk.

• Òscar Jordà worked out the math to prove, if the true DGP is the VAR, the impulse responses
from Local Projections and the VAR are identical (asymptotically).

• Construct confidence bands with Newey-West standard errors (the estimate divided by the
t-ratio).

15.3 The Bottom Line

Generalizing to beyond a VAR(1). If we want to do local projection to get impulse responses
instead of a VAR(p), you regress y1,t+k on a constant, the current value and p lags of y1,t and y2,t.
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The impulse response of y1 to a shock in itself is again, the sequence of slope estimates for y1,t

and the response to a shock in y2,t is the sequence of slope estimates on y2,t.
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