
16 Statistical Factor Analysis with Principal Components

Text: pp. 175-179.

• This is about modeling the cross-sectional correlation across asset returns without an eco-
nomic theory.

• Useful for determining the number of common factors

• Market only rewards for bearing systematic risk

16.1 Factor models versus factor analysis

• A one-factor model: A common latent (unobserved) factor drives all returns

r
e
t,i = ↵i + �ift + ✏it

The �i are factor loadings, and can differ across assets. ft is the common latent factor ✏it

are idiosyncratic components.

• A two-factor model.
r
e
t,i = ↵i + �1ift,1 + �2ift,2 + ✏t,i

• Factor analysis is a statistical method to describe variability among observed, correlated
variables in terms of a smaller number of unobserved (latent) variables called factors. The
observed variables are modelled as linear combinations of the potential factors, plus "error"
terms.

• Statistical Factor analysis is related to principal component analysis (PCA). They are
almost the same thing, but not exactly

• Statistical factor analysis represents a observations r1, r2, ..., rn in terms of a small number
of common factors plus an idiosyncratic component. The common factors are unobserved
and sometimes referred to as latent factors.

• This analysis uses concepts of eigenvalues and eigenvectors from linear algebra. The text by
Brooks has a nice review of these concepts.

• If successful in statistically modeling the factor structure, then try to identify those factors
in the data.

• Economic factors: Build a theory about why asset returns on all sorts of assets r1, r2, ..., rn
are driven (dependent) on a small set of common factors. These can be quantities (eco-
nomics) or asset returns (finance).
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– Consumption growth, GDP growth

– The market return (CAPM)

– Portfolios of returns sorted from small to big on firm size and sorted on book-value to
market-value. (Fama-French factors).

• Statistical factor analysis useful in studying the term-structure of interest rates.

• Was popular for study of stock returns, forms the basis of Arbitrage Pricing Theory.
After discovery of the Fama-French factors, it fell out of favor for stock returns. Recently,
became useful for studying exchange rates.

16.2 The method of Principal Components

• To estimate the factors (which are unobserved) must make identifying assumptions (im-
pose identifying restrictions).

• Common to assume common factors are mutually orthogonal (uncorrelated) and are stan-
dardized (zero mean, variance 1).

• Several empirical techniques. Principal components is the one I teach you.Is oldest and
most robust, and very popular.

• Two Factor Structure. For i = 1, ..., n

rt,i = �1,ift,1 + �2,ift,2 + r
0
t,i

That is,

rt,1 = �1,1ft,1 + �2,1ft,2 + r
0
t,1

rt,2 = �1,2ft,1 + �2,2ft,2 + r
0
t,2

... =

rt,n = �1,nft,1 + �2,nft,2 + r
0
t,n

• Factors ft,1, ft,2 are common to each return. r
0
t,i is idiosyncratic component of returns.

• � coefficients are called factor loadings.

rt,i = �1,ift,1 + �2,ift,2 + r
0
t,i

• Procedure chooses PCs sequentially.
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– The first PC f1,t and the �1,1, ..., �1,n are chosen to minimize the sum of squared devi-
ations for every return rt,i. Now take each return and control for the first PC.

– The second PC f2,t and the loadings �2,1, . . . , �2,n are chosen to minimize the sum of
squared deviations for every one of these deviations from the first PC.

– If you have n assets, there will be n principal components, but the analysis is only
useful if a small set of them explains the data.

• Require factors to be mutually orthogonal. Then, sum of squares of the factor loadings
tells us the proportion of variance explained by the common factors.

�
2
1,i + �

2
2,i

• Sum of squares of factor 1 loadings tells us the proportion of variance of all returns explained
by the first factor

�
2
1,1 + �

2
1,2 + . . .+ �

2
1,n

• PCs are linear combinations of the data that explain the evolution of the data.

• r is the T ⇥ n matrix containing your data [rt,i], t = 1, ..., T, i = 1, ..., n.

• PC describes each individual i by a linear combination of a small number of the other
variables.

Start with the first PC. It is the T ⇥ 1 vector f (is a time-series) where

0

BBBB@

r1,1 · · · r1,n

r2,1 · · · r2,n
...

...
rT,1 · · · rT,n

1

CCCCA
=

0

BBBB@

f1�1,1 · · · f1�1,n

f2�1,1 · · · f2�1,n
...

...
fT �1,1 · · · fT �1,n

1

CCCCA

In matrix algebra,

r =

0

BBBB@

f1

f2
...
fT

1

CCCCA

⇣
�1,1 �1,2 . . . �1,n

⌘
= f�

0

• The PC is not unique because we can write

r = f�
0 = (fc)(�0/c)

for any scalar c. So we normalize the observations.
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• Sum of squares of every element of (r � f�
0) is

Tr(r � f�
0)0(r � f�

0)

We want to choose f to minimize it. Okay, look. Suppose n = 2 and T = 3, and we want
a single (first) factor. Let

r̃ = (r � f�)

r̃
0
r̃ =

 
r̃11 r̃21 r̃31

r̃12 r̃22 r̃32

!0

B@
r̃11 r̃12

r̃21 r̃22

r̃31 r̃32

1

CA

=

 
r̃
2
11 + r̃

2
21 + r̃

2
31 r̃11r̃12 + r̃21r̃22 + r̃31r̃32

r̃11r̃12 + r̃21r̃22 + r̃31r̃32 r̃
2
12 + r̃

2
22 + r̃

2
32

!

Trace of matrix X, Tr(X), is sum of diagonal elements,

(r11 � f1�1)
2 + (r21 � f2�1)

2 + (r31 � f3�1)
2+

(r12 � f2�2)
2 + (r22 � f2�2) + (r32 � f3�2)

2

Principal components wants to choose ft and �i to minimize this thing.

Is like minimizing the residual variance.

The solution is first principal component. Label it f1. It is T ⇥ 1 vector.

• To get the second PC, control for f1. Given f1, choose f2 to minimize

Tr(r � f1�
0
1 � f2�

0
2)

0(r � f1�
0
1 � f2�

0
2)

Solution, is the eigen vector associated with the largest eigen value of (r � f1�
0
1)(r � f1�

0
1)

0

is the second PC, which we call f2.

• There are n principal components. We can keep going on this way all the way to n, but the
point of this is to have a low dimension collection of variables to describe the behavior of
returns, so in finance, it doesn’t make any sense to compute beyond 3 or item.

• PC in Eviews. Note PC only works if T > n. We interpret the PCs as the factors. Eviews
calls the PCs ‘scores’.

• Dow30.wf1. Converted to returns on sheet 2 (r02 through r26)

– Open the returns as a group
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– Click Proc, then click Make Principal Components

– Give score series names: pc1 pc2.

– Give loadings matrix name: loadings

– That is all. Now inspect the loadings and the PCs

16.3 Application to Term Structure of Interest Rates with McCulloch Data

• People like PC for studying the term structure of interest rates. We find 3 PCs. They have
an interpretation of level, slope, and curvature.

• McCulloch’s Yield Curve: Hu McCulloch was my colleague at Ohio State. He did something
like non-linear least squares (cubic splines) to approximate a continuous yield curve.

• Open Mcculoch_TS.wf1. First page

– Look at graph of i_01. This is time series of the 0-time to maturity bond

This is close to the rate the Fed controls

• Look at graph of i_482. This is time series of the 482-month to maturity bond.

– This is the rate that we think is important for investment. Think about mortgage rates.

• Look at graph of both i_01 and i_482.

– This is the term premium.

– Distance between curves is the yield curve slope

• Open second workfile page (Transposed)

– Plot date_90 (February 2004). This is the yield curve on Feb. 2004.

∗ Is upward sloping. Normal state is economic growth

– Plot date_44 (August 2000).

∗ Is downward sloping.

∗ Recession dates (FRED): https://fred.stlouisfed.org/series/JHDUSRGDPBR

• PC in EViews. Go back to the first sheet. Create group. Write a little program
that says

’ Group.prg

group all_TS
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for !j = 1 to 9

all_TS.add i_0{!j}

next

for !j = 10 to 482

all_TS.add i_{!j}

next

• Open the group all_TS

• Click on Proc

• Make 3 principal components

• Choose option to normalize scores

• Score series, give names f_1, f_2, f_3 (stand for factors).

• Loadings matrix. Call it Lambda

ii,t = �i,1f1,t + �i,2f2,t + �i,3f3,t + i
o
i,t

• Look at elements of lambda.

• Take i_12.

• In Eviews, series fit_12=lambda(12,1)*f_1+lambda(12,2)*f_2+lambda(12,3)*f_3

• Plot fit_12 with i_12

• Regress i_12 on fit_12

• Take row 12 of Lambda. Write to Excel, transpose to get column. Square the elements. 98
percent of i_12 variation is explained by the first 3 principal components.

95


	Concept Review and Preliminaries
	Warm-Up
	What is Financial Econometrics?
	Returns
	Time-Series
	What do we mean by a `model'?


	Regression Review
	Regression In Population
	Least squares estimation of 
	Normal regression theory with nonstochastic regressors. (Inference)
	Time-series regression theory with stochastic regressors
	Frisch-Waugh theorem

	Eviews Tutorial
	Exploratory Data Analysis on Returns
	What to do

	Autoregressive Moving Average (ARMA) models. Specification and Estimation
	The white noise process
	The Moving Average (MA) Model
	MA(1) model
	MA(2) model

	Autoregressive models
	Specification of the AR(1) model

	AR(2) model
	Extensions
	How to select model?

	Information Criteria for Model Selection: AIC, BIC, HPIC
	A Little Background on Information Criteria
	AIC, BIC, HPIC
	The Random Walk model

	Predictive Regression and Why We Use Newey-West
	How Testing the Efficient Markets Hypothesis Led to an Amazing Discovery
	Overlapping observations and serial correlation in error
	Dividend yield as predictor of future return

	Some Necessary Matrix Algebra
	Definitions
	Matrix Operations
	Why Matrix Algebra?

	The Event Study Method
	What are Event Studies Good For?
	Assumptions
	Procedure
	More Advanced Material

	Time-Varying Volatility
	Motivation
	The ARCH/GARCH class of models
	ARCH class of models
	The GARCH class of models
	ARCH-M, GARCH-M (in the mean)

	The Beta-Risk Model
	The Market Model and the CAPM
	The Beta-Risk Model
	Estimate and Test the CAPM with the Time-Series Method

	The Fama-MacBeth Method
	Background
	Apply the Method to the CAPM

	Fama and French's Three Factor Model
	Studying Portfolios
	Overview of the Framework
	Fama and French's 3-Factor Strategy
	Forming the Portfolios
	Test of the model

	Vector Autoregressions
	Specification
	Estimation
	Impulse Response Analysis

	Local Projections
	Pitfalls of VARs
	Local Projection instead of VAR(1)
	The Bottom Line

	Statistical Factor Analysis with Principal Components
	Factor models versus factor analysis
	The method of Principal Components
	Application to Term Structure of Interest Rates with McCulloch Data

	Forecasting and Forecast Evaluation
	Forecasts (conditional expectation) and forecast errors
	Forecasting Volatility

	Value at Risk (VaR)
	Motivation
	The Conditionally Normal VaR

	More on Unit-root processes
	Remember the Random Walk with Drift?
	The Spurious Regression Problem
	Dickey-Fuller Tests for Unit Root
	The ADF (Augmented Dickey-Fuller) test
	Newey and West standard errors (t-ratios)
	Serial correlation induced by time-averaging a random walk


