
Let A be (1⇥ 2) and B be (2⇥ 1) . A is a row vector and B is a column vector. C = AB

Multiplication is to do element by element multiplication, then sum the result.

A =
⇣

a11 a12

⌘
, B =

 
b11

b21

!
,

C = AB =
⇣

a11 a12

⌘ 
b11

b21

!

= (a11b11 + a12b21) = C, (a scalar).

BA =

 
b11

b21

!⇣
a11 a12

⌘

=

 
b11a11 b11a12

b21a11 b21a12

!
= D (a matrix)

Next, let’s do it with actual matrices: Let

A =

0

B@
a11 a12

a21 a22

a31 a32

1

CA , B =

 
b11 b12

b21 b22

!
.

C = AB, is formed by cij =
P

aijbji. The i, j element of C is formed from multiplying row
i of A and column j of B.

C = AB =

0

B@
a11 a12

a21 a22

a31 a32

1

CA

 
b11 b12

b21 b22

!

=

0

B@
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

b11a31 + b21a32 a31b12 + a32b22

1

CA

note: Even if A and B are both square matrices, the order matters. AB 6= BA.

• Determinant of a (2⇥ 2) matrix. Subtract the product of the off-diagonal elements
from the product of the diagonal elements.

Let A =

 
a b

c d

!
. |A| =det(A) = ad� bc.
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Note: You can only get a determinant from square matrices. Calculating the determinant
by hand from anything bigger than a (2⇥ 2) is beyond the scope of this class. But that’s
okay because we’ll be doing it by computer.

• Matrix Inverse. The inverse can only be computed for square matrices. It is the matrix
when multiplied by itself gives the identity matrix. If A�1

A = AA
�1 = I, then A

�1 is the
inverse of A. To get the inverse of a (2⇥ 2) matrix A (defined above), switch positions of
the diagonal elements, multiply the off diagonal elements by �1, then divide everything by
the determinant of A.

A
�1 = 1

ad�bc

 
d �b

�c a

!
. Let’s check:

1

ad� bc

 
d �b

�c a

! 
a b

c d

!
=

 
ad

ad�bc �
bc

ad�bc 0

0 ad
ad�bc �

bc
ad�bc

!
= I

Again, computing the inverse of anything bigger than a (2 ⇥ 2) matrix by hand is beyond
the scope of this class. We just ask the computer to do it.

Sometimes the inverse doesn’t exist. This happens if there is a (linear) dependence across
rows or columns.If

A =

 
a 2a

b 2b

!

then
|A| = 2ab� 2ab = 0

and 1/|A| doesn’t exist.

8.3 Why Matrix Algebra?

Well, one thing is we can write regression in matrix form. Begin with

yt = ↵+ �xt + ✏t

stack the dependent variable observations in a column vector and independent variables Indepen-
dent variables: constant (a vector of 1s) and xt
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0

BBBB@

y1

y2
...
yT

1

CCCCA

| {z }
y

=

0

BBBB@

1 x1

1 x2
...

...
1 xT

1

CCCCA

| {z }
X

 
↵

�

!

| {z }
b

+

0

BBBB@

✏1

✏2
...
✏T

1

CCCCA

| {z }
✏

y = Xb+ ✏

Multiply through by X
0

X
0
y = X

0
Xb+X

0
✏

X
0
Xb = X

0 (y � ✏)

b =
�
X

0
X
��1

X
0
y �

�
X

0
X
��1

X
0
✏

Least squares forces the residuals ✏̂ to be uncorrelated with the regressors. X
0
✏̂ = 0. Hence, in

matrix form, the least squares formula is

b̂ =
�
X

0
X
��1

X
0
y
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