10 Time-Varying Volatility

Text: Chapter 9

10.1 Motivation

Financial returns are not normally distributed. They exhibit
1. Leptokurtosis (fat tails relative to the normal)

2. Volatility clusters

3. The unconditional distribution of short-horizon returns aren’t normal. But their condi-
tional distributions could be normal.
Why we might care
1. Suppose we want to estimate the value of market risk. (Sharpe ratios).

E ("”p - "”f)
Op

Sharpe =

where E(r, — ry) is portfolio excess return and o, is portfolio volatility. Sharpe ratio is the

average portfolio return per unit of volatility (a risk concept).

2. Volatility is a key parameter for pricing financial derivatives. All modern option pricing

techniques rely on a volatility parameter for price evaluation.

3. Volatility is used for risk management assessment and in general portfolio management.

Financial institutions want to know the current value of the volatility of the managed assets.

4. They also want to predict their future values. Volatility forecasting is important for institu-

tions involved in options trading and portfolio management.

5. Volatility changes over time, which makes these pricing examples conditional on the current
environment (high, low volatility). We want to model how volatility changes and what it

depends on.

Dependent Variable: ERRTSQ
Method: Least Squares
Sample (adjusted): 7/02/1926 9/30/2019

Included observations: 24578 after adjustments
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Figure 5: Market excess return
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Let 77, be the market excess return. Suppose we have only one observation. How would you form
the sample variance? The sample standard deviation?

Figure 6: Square root of squared daily market excess returns
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Does staring at this picture make you want to regress it on lags of itself?
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Dependent Variable: ERRTSQ
Sample (adjusted): 7/13/1926 9/30/2019
Included observations: 24571 after adjustments

10.2 The ARCH/GARCH class of models

e Popular way to model is with ARCH (autoregressive conditional heteroskedasticity) and
GARCH (generalized ARCH).

e ARCH was invented by Robert Engle. The Nobel committee gave him the economics prize
in part for this.

e GARCH was invented by Tim Bollerslev, who was Engle’s student at UCSD.

e There’s also,

EGARCH (exponential GARCH)

IGARCH (integrated GARCH)

STARCH (smooth-transition ARCH)
TARCH (threshold ARCH)

— FIGARCH (fractionally integrated GARCH)
— SWARCH (switching ARCH).

e Return on some asset

re =a+ bxy + €

e ~N (O, O'tz)

Notice t subscript on variance. o7 is the conditional variance of ¢;. Conditional on past

observations of ¢
0l =F [(et — B (et))2 ler—1,€—2, . . } = Var (e|€;—1, €1—2, .. .)

This says the conditional variance changes over time. It is time-varying. It moves around

over time. ARCH is a parametric model of the conditional variance.
e Intuition: remember how we want to think of conditional expectation as regression?

e Estimation done by maximum likelihood
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Figure 7: Robert Engle Nobel Laureat and Heck of a Nice Guy

Nobel Prize citation: “for methods of analyzing economic time series with time- varying volatility
(ARCH)”

Figure 8: Robert Engle Does Ice Dancing!
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10.3 ARCH class of models

ARCH(1)
Ut2 = o+ ()416,52_1
ARCH(2)
0 = g+ on€f| + qoep o
ARCH(q)

2 2 2 2
Op =00+ 161 + Q6o+ g€,

Test for ARCH effects

e Run the main regression

Ty = a+ Bay + Uy
save the residuals

e Regress the squared residuals 4 on ¢ lags of itself (to test for ARCH(q)).
@7 =bo + b1y, + - bgliy_, + vy

where v; is the error term. You can do an F—test on the coefficients.

e You can also do a Lagrange multiplier (LM) test. Get the R? from this regression.
TR? ~ Xg

e What does the F-test and LM test test?

The alternative is Hy : NOT Hy.

o Test for and Estimate ARCH model in EViews, use f-f_research_data_factors_daily.wfl
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Equation Estimation
Specification

Mean equation

Options

Dependent followed by regressors & ARMA terms OR explicit equation:

Imkt_rf ¢ mkt_rf(-1

Variance and distribution specification

Model: GARCH/TARCH

Order:
ARCH: |1

GARCH: 0

Restrictions:

Threshold order: 0

None

Estimation settings

Method: ARCH - Autoregressive Conditional Heteroskedasticity

Sample: |7/01/1926 8/30/2019

Variance regressors:

Error distribution:

Normal (Gaussian)

ARCH-M:
None v

Cancel

Dependent Variable: MKT_RF

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)
Date: 11/18/19 Time: 15:12

Sample (adjusted): 7/02/1926 8/30/2019

Included observations: 24558 after adjustments

Convergence achieved after 11 iterations

Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)
GARCH = C(3) + C(4)*RESID(-1)"2

Variable Coefficient ~ Std. Error  z-Statistic Prob.
Cc 0.028996  0.004540  6.386850  0.0000
MKT_RF(-1) 0.246425  0.002153 114.4349  0.0000
Variance Equation

Cc 0.656324  0.003491 188.0134  0.0000

RESID(-1)*2 0.473991 0.008016  59.13110  0.0000

R-squared -0.028109  Mean dependent var 0.029196

Adjusted R-squared -0.028151  S.D. dependent var 1.062371

S.E. of regression 1.077221  Akaike info criterion 2.768679

Sum squared resid 28494.91  Schwarz criterion 2.770000

Log likelihood -33992.61 Hannan-Quinn criter. 2.769107
Durbin-Watson stat 2.323311

[Z]Equation: EQ02  Workfile: VOLATILITY:Untitled\

= | =

.

View Proc'Ob'ectIPnntvName FreezelEstimate Forecast Stats Resids_

Dependent Variable: MKT_RF
Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)
Date: 11/18/19 Time: 15:13
Sample (adjusted): 7/02/1926 8/30/2019
Included observations: 24558 after adjustments
Convergence achieved after 23 iterations
Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)
GARCH = C(3) + C(4)*RESID(-1)"2 + C(5)*RESID(-2)"2 + C(6)*RESID(
-3)"2 + C(7)*RESID(-4)"2 + C(8)*RESID(-5)2 + C(9)*RESID(-6)*2
+ C(10)*RESID(-7)"2 + C(11)*RESID(-8)*2 + C(12)*RESID(-9)"2

Variable Coefficient ~ Std. Error  z-Statistic ~ Prob.
C 0.053366 0.004332 12.31774 0.0000
MKT_RF(-1) 0.127875  0.006636 19.27105  0.0000
Variance Equation
C 0.160815 0.002808 57.26586 0.0000
RESID(-1)"2 0.122085 0.004743 25.74071 0.0000
RESID(-2)*2 0.113064  0.004983  22.69077  0.0000
RESID(-3)"2 0.110880 0.006016 18.43183 0.0000
RESID(-4)"2 0.120884 0.005092 23.74082 0.0000
RESID(-5)"2 0.094493  0.005543 17.04883  0.0000
RESID(-6)"2 0.095819 0.005632 17.01452 0.0000
RESID(-7)"2 0.057432 0.004902 11.71529 0.0000
RESID(-8)"2 0.091738  0.004974 18.44226  0.0000
RESID(-9)"2 0.078895 0.004899 16.10544 0.0000
R-squared -0.000094 Mean dependent var 0.029196
S
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Oy! Too many parameters!
10.4 The GARCH class of models
GARCH(1,1)

Tt:a+,8$t+€t
eth(O,atZ)

of = ag + a6,y + o}y
The (1,1) refers to number of lags of €2 and o2, and where

0<p<1

(class: why do we need this?)
GARCH(1,1) is constrained infinite ordered ARCH. Observe,

2 2 2
O-tfl = Qp + a1€t72 + ,BO't72

2 2 2
Oig = o+ a1€,_3+ Boi_3
substitute this into previous

o2 =ag+ae |+ B(ao + e o+ 50'1;2—2)

J/

C
ag (1+ 8) + ar6_y + a1fe;_» + o7,
a0 (1+B) + o1 (61 + Bei ) + 52 (a0 + a1€f_3 + foi_3)
ag (1+ B+ B%) + a1 (61 + Bet_o + B;_3) + B0} 3

Keep going. ¥ =0 as k — oo.

o
2 Qo ai i 2
of = +— > Ble s
t 1—,8 ,8]2221 ]

GARCH(2,1)

of = ag+ ane;_y + aze;_y + foi_

GARCH(1,2)

2 2 2 2
of = ap+ai€e;_ + B1oy_ 1 + B0y
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Usually, GARCH(1,1) does the job.
@Equationz EQO02 Workfile: VOLATILITY:Untitled\

[View [ Proc ] Objectll Print| Name ] Freeze ll Estimate ] Forecast] Stats ] Resids ﬁ

Dependent Variable: MKT_RF

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)
Date: 11/18/19 Time: 15:25

Sample (adjusted): 7/02/1926 8/30/2019

Included observations: 24558 after adjustments

Convergence achieved after 26 iterations

Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)

GARCH = C(3) + C(4)*RESID(-1)*2 + C(5)*GARCH(-1)

Variable Coefficient ~ Std. Error  z-Statistic Prob.
C 0.047571 0.004436 10.72388  0.0000
MKT_RF(-1) 0.126446  0.006698 18.87856  0.0000

Variance Equation

C 0.012641 0.000497 25.43512 0.0000
RESID(-1)"2 0.103414  0.002076  49.82175  0.0000
GARCH(-1) 0.886041 0.002373  373.4385  0.0000

R-squared 0.000338 Mean dependent var 0.029196
Adjusted R-squared 0.000298 S.D. dependent var 1.062371
S.E. of regression 1.062213  Akaike info criterion 2.428462
Sum squared resid 27706.47  Schwarz criterion 2.430113
Log likelihood -29814.08  Hannan-Quinn criter. 2.428997

Durbin-Watson stat 2.107261

Recover the GARCH series, makes the conditional variance series
eqno.makegarch cvar where cvar is the series name

series csd = cvar’h

10.5 ARCH-M, GARCH-M (in the mean)

You might be interested in whether higher volatility associated with higher or lower returns? Here
is a GARCH-M example.

i =a+boy + €
6t~N(0,Ut2)

2 2 2
o; = o+ ai€6_q + foi_4

Use volatility as ‘regressor’ to preserve units.

b > 0, high volatility, r° expected to be large. b < 0, high volatility, r¢ expected to be small.

Estimation is by maximum likelihood.

To implement, choose the option in EViews
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Equation Estimation
Spedification  Options

Mean equation
Dependent followed by regressors & ARMA terms OR explicit equation:

mkt_rf ¢ mkt_rf(-1)

Variance and distribution specification
Variance regressors:

Model: [GARCH/T ARCH V‘
Order:
ARCH: F Threshold order: W
GARCH:F Error distribution:
Restrictions: [None V‘ [Norrnal (Gaussian) v
Estimation settings
Method: | ARCH - Autoregressive Conditional Heteroskedasticity v
Sample: | 7/01/1926 8/30/2019

(=] Equation: EQD2 Workfile: VOLATILITY::Untitled\

()
[Viewl ProcI Objutl Printl Namel Freeze l Estimate] Forecastl StatsI Resids -

Dependent Variable: MKT_RF ~
Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 11/19/19 Time: 11:09

Sample (adjusted): 7/02/1926 8/30/2019

Included observations: 24558 after adjustments

Convergence achieved after 25 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

GARCH = C(4) + C(5)*RESID(-1)"2 + C(6)*GARCH(-1)

Variable Coefficient Std. Error  z-Statistic Prob.

@SQRT(GARCH) 0.096047  0.016573 5.795300 0.0000
C -0.016379 0.011622  -1.409401 0.1587
MKT_RF(-1) 0.126616 0.006788 18.65283 0.0000

Variance Equation

[ 0.012760 0.000527 2419541 0.0000
RESID(-1)'2 0.104404 0.002114 4938275 0.0000
GARCH(-1) 0.884931 0.002414 366.6144 0.0000
R-squared -0.002482 Mean dependentvar 0.029196
Adjusted R-squared -0.002564 S.D. dependentvar 1.062371
S.E. of regression 1.063733 Akaike info criterion 2.427369
Sum squared resid 27784.64 Schwarz criterion 2.429350
Loa likelihood -29799.66 Hannan-Quinn criter. 2428011 Vv
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