
The AR(2) model. Assume E(yt) = 0, and ignore constant

yt = ρ1yt−1 + ρ2yt−2 + εt

where εt iid (0,σ2
ε ). We can, but we won’t, compute the variance and auto-

covariances and autocorrelations by hand. But we will look at the forecasting
formula

E (yt+1|It) = E (ρ1yt + ρ2yt−1 + εt+1|It)
= ρ1yt + ρ2yt−1

E (yt+2|It) = E (ρ1yt+1 + ρ2yt + εt+2|It)
= ρ2E (yt+1|It) + ρ2yt

= ρ2 (ρ1yt + ρ2yt−1) + ρ2yt

= ρ2(1 + ρ1)yt + ρ2yt−1

So we build up forecasts at longer horizons recursively.
The AR(2) will be stationary if |ρ1 + ρ2| < 1.
We going to look at an AR(2) with ρ1 = 0.8, ρ2 = −0.8.The IR oscillates.
Let’s look at ρ1 = 0.8, ρ2 = 0.1

How do we know which model to estimate? ARMA(p,q). How do we choose
p and q? Remember a couple lectures ago, we met the log likelihood function?
And it looked a little like
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(I think it was labeled as eq.(12)), where σ̂2
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t (yt, yt−1, ..ε̂t−1, ε̂t−2, ...)where

ε̂2t (yt, yt−1, ..ε̂t−1, ε̂t−2, ...) means the form is model dependent. ML estimation
asks computer to choose parameters to maximize the LL. We cannot just com-
pute the log likelihood for each ARMA(p,q) and take the one with the highest
LL. Solution is to penalize yourself for adding parameters. Akaike was the first
to do this. It is called the AIC. IC stands for information criterion (basically
the LL), the A he says is the first alphabet. But we really know it stands for
Akaike.
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where k is the number of parameters (the p and q in ARMA). Search over the
various models and choose the one that minimizes AIC.

A bunch of people studied the properties of AIC and concluded that it often
overparameterizes the model. So Swartz came up with a different penalty.
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But sometimes BIC leads to an underparameterized model. So Hannan and
Quinn came up with
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which usually splits the difference between AIC and BIC.

A couple of words about the driftless random walk. This is when ρ = 1 in
the AR(1) model

yt = yt−1 + εt

with εt iid (0,σ2
ε ).

E (yt+1|It) = E (yt + εt+1|It) = yt

Think of yt as the (with dividend) log price of a security or portfolio.

rt = yt − yt−1

Stock returns are hard to predict, so as an approximation the log price may
follow a random walk.

E (yt+2|It) = E (yt+1 + εt+2|It)
= E (yt + εt+1|It)
= yt

What is

E (rt+1|It) = E (yt+1 − yt|It)
= 0

You might want to see if your ARMA(p,q) model forecasts better than the
random walk. Another feature of the random walk is that shocks are permanent.
To see this, get the MA representation

yt = yt−1 + εt

= yt−2 + εt−1 + εt

= yt−3 + εt−2 + εt−1 + εt

= y0 + ε1 + ε2 + · · · εt

Random walk with drift.

yt = d+ yt−1 + εt

E (yt − yt−1) = d

Movements in returns unpredictable although over long periods of time the
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return is d.Backward substitution

yt = d+ yt−1 + εt

= d+ d+ yt−2 + εt−1 + εt

= 2d+ d+ yt−3 + εt−2 + εt−1 + εt

= 3d+ yt−3 + εt−2 + εt−1 + εt

= td+ y0 + (ε1 + ε2 + · · · εt)︸ ︷︷ ︸
driftless random walk

If the truth is a random walk with drift, you might be tempted to ”detrend” it
by regressig yt on a constant and trend. But don’t! Because the error term is
a driftless random walk. You won’t get anything sensible. You have to work in
first differences of yt.

3


