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Concepts to cover

Euler equation approach
Stories about the interest rate
What is risk? Covariance is risk!
Finance beta-risk approach
The Arrow-Debreu approach
Risk-neutral probabilities
Incomplete markets
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All Asset Pricing Follows from the Euler Equation
Begin with concrete assumptions

Utility is time-separable and defined on consumption, u(ct ), is
twice-differentiable with positive but declining marginal utility.
0 < β < 1 is subjective discount factor.
Let pt ,i be the price of traded asset i = 1, . . . ,n with next period
payoff xt+1,i .

Equity: xt+1 = pt+1 + dt
Discount bond: xt+1 = 1
Foreign exchange: xt+1 = pt+1

Euler equation (rule of rational life)

pt ,iu′(ct ) = βE
(
u′(ct+1)xt+1,i |It

)
(1)

where It is the currently observable publically available information
set. Will abbreviate E(Yt+k |It ) ≡ Et (Yt+k )
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Divide both sides by u′(ct )

pt ,i = E
(

β
u′(ct+1)

u′(ct )
xt+1,i |It

)
(2)

Price is discounted value of future payoff.
(Stochastic) discount factor is

mt+1 = β
u′(ct+1)

u′(ct )
(3)

Now,

pt ,i = Et (mt+1xt+1,i) (4)

1 = Et

(
mt+1

xt+1,i

pt ,i

)
(5)

= Et (mt+1Rt+1,i) (6)

where Rt+1,i = 1 + rt+1,i is the gross return, and r is the rate of
return.
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(6) holds for every traded asset, including the risk-free asset

pt ,f = 1/Rt ,f = 1/(1 + rt ,f ) (7)
= Et (mt+1) (8)

1 = Et (mt+1Rt ,f ) (9)

Define the excess return as

Re
t+1,i = Rt+1,i −Rt ,f = re

t+1,i = rt+1,i − rt ,f (10)

Subtract (9) from (6)

0 = Et
(
mt+1re

t+1,i
)

(11)

This is a statement about risk, not about time. The interest rate is
about time and consumption and saving. This is about paying an
excess return to compensate for risk-bearing. What is the risk?
That is what we want to understand.
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Stories about the (risk-free) interest rate

pt ,f =
1

1 + rt ,f
= Et (mt+1) (12)

↑ mt+1 ⇒↓ rt ,f
↑ mt+1 ⇒ future becomes more important. You want to provide more for the
future. Why? Future becomes important because consumption will be scarce.

Provide for future by saving. Lots of saving drives up pt ,f and drives down rt ,f
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Stories about the (risk-free) interest rate

Let utility be CRRA, where −1 < γ < ∞.

u(c) =
c1−γ

1− γ

Also, let subjective rate of time preference be δ and write the
discount factor as

β = e−δ

Let’s write Rt ,f ' e−rt ,f .From (7) and (8),

e−rt ,f = Et

[
e−δ

(
ct+1

ct

)−γ
]

(13)
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Assume a deterministic world, take logs of both sides, multiply by -1,

rf ,t = δ + γ∆ ln (ct+1) (14)

γ is the coefficient of relative risk aversion, but also the inverse of
the intertemporal elasticity of substitution (IES).

IES =
d ln (ct+1/ct )

drf ,t
=

1
γ

Impatient (high δ)⇒ high rf ,t

Low ct (maybe saving), high ct+1 ⇒ high rf ,t

High ct (maybe borrowing), low ct+1 ⇒ low rf ,t
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Interest Rates in Stochastic Log-Normal World

Property of log-normal variates If ln(Y ) ∼ N
(
µ, σ2), then

E (Y ) = eµ+ σ2
2 (15)

Assume

∆ ln ct+1 ∼ Nt (Et ∆ln (ct+1) ,Vart (∆ ln ct+1))

(Nt is notation for conditionally normally distributed) Then

−γ∆ ln ct+1 ∼ Nt

(
−γEt ∆ln (ct+1) ,γ2Vart (∆ ln ct+1)

)
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From the Euler equation,

e−rt ,f = e−δEt

(
ct+1

ct

)−γ

(16)

= e−δe−γEt ∆ln(ct+1)+
γ2Var t (∆ ln ct+1)

2 (17)

Take logs of both sides, multiply by -1.

rt ,f = δ + γEt ∆ ln ct+1 −
γ2Var t (∆ ln ct+1)

2
(18)

The second moment matters now.
The more volatile the economy, the lower is the interest rate.
Story: People like smooth consumption. A volatile economy is full
of risk. This generates a stronger precautionary saving motive.
Everybody saves, drives up the price of bonds and drives down the
interest rate.
The less intertemporally substitutable people are (higher γ) the
more this matters.
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Time-Series Regression, in Population
Let yt and xt be stationary random variables, expressed as deviations
from their means.
Consider the regression

yt = βxt + εt (19)

Multiply through by xt , take expectations

ytxt = βx2
t + εtxt (20)

E (ytxt ) = βE
(

x2
t

)
+ E (εtxt ) (21)

Solve for β,

β =
Cov(xt , yt )

Var (xt )
(22)
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Covariance is Risk

Exposure to risk is the covariation between an excess return and
something people care about.
In economics, we assume people care about consumption.
Finance bros sometimes assume people care about other things
(wealth, excess returns on other assets)
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Covariance Risk

Start with the Euler equation,

0 = Et
(
mt+1Re

t+1,i
)

(23)

Decomposition of covariance,

Cov(X ,Y ) = E(XY )− E(X )E(Y ) (24)

Let X = mt+1,Y = Re
t+1,i , then

0 = Cov
(
mt+1,Re

t+1,i
)
+ Et (mt+1)Et

(
Re

t+1,i
)

(25)

Rearrange

EtRe
t+1,i = −

Cov
(

mt+1,Re
t+1,i

)
Et (mt+1)

(26)
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Recall Et (mt+1) = 1/Rt ,f . Substitute in

EtRe
t+1,i = −Rt ,f Covt

(
mt+1,Re

t+1,i
)

(27)
EtRt+1,i = Rt ,f −Rt ,f Covt

(
mt+1,Re

t+1,i
)

(28)

This is an explanation about the cross-section of returns.
Those assets whose excess returns covary more negatively with
mt+1 have higher average excess returns. They pay higher
premiums.
This is risk because mt+1 is negatively correlated with
consumption growth ∆ ln (ct+1), so those returns covary positively
with consumption growth.
The risk is if you hold this asset, the excess return is low when
consumption is low (which is exactly when you need it to be high).
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The Beta-Risk Representation

Finance bros talk about ‘betas’. The beta is the slope coefficient in
regression of the return (excess return) on a ‘risk factor’.
Our treatment thus far says the risk factor is the SDF, mt+1.
There can be more than one risk factor. For now, we stick to the
SDF.
If you’ve correctly identified the risk factor(s), average excess
returns vary proportionately to their exposure to the risk factor
(i.e., they vary proportionately to their betas).
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Beta-Risk Representation
Look at (27). Condition down to unconditional moments, because we
are interested in average returns over long-periods of time

ERe
t+1,i = −Rt ,f Cov

(
mt+1,Re

t+1,i
)

(29)

= −Rt ,f Var (mt+1)
Cov

(
mt+1,Re

t+1,i

)
Var (mt+1)

(30)

= λβi (31)

λ is called the ‘price of risk’

βi , the beta, is the asset’s
exposure to the risk factor

This is what finance bros call
the ‘consumption CAPM’
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3. Estimates:

(a) �̂> �̂ : OLS time-series regression.

Uhl
w = �l + �0liw + %lw w = 1> 2===W for each l.

(b) �̂ : Mean of the factor,

�̂ =
1

W

WX

w=1

iw = ī =

(c) Stop and admire. We are here to estimate the cross-sectional relationship between H(Uhl)

and �l. We don’t actually run any cross sectional regressions. We estimate the slope
of the cross-sectional relationship by finding the mean of the factor. We estimate the
cross-sectional error � as the time-series intercept.

4. Standard errors:

(a) Reminder of the standard error question: There are true parameters �> �> � which we
don’t know. In our sample, we produce estimates �̂> �̂> �̂. Due to good or bad luck,
these will be different from true values. If we could rewind and run history over and

over again, we’d get different values of �̂> �̂> �̂. How much would these vary across the
different samples? If we thought � = 0, how likely is it that the �̂ we see is just due to

luck? To answer these questions we need to know what � (�̂) > �
³
�̂
´
> �
³
�̂
´
are. Watch

it — this is how much the estimates would vary across “alternate universes”. These

quantities are called standard errors.

(b) Suppose %lw are independent over time. For each asset, H(%
l
w%
l
w+v) = 0. I do not assume

H(%lw%
m
w ) = 0 — that would be a big mistake — returns are correlated with each other at a

point in time!

(c) ⇒(statistics) Then you can use OLS standard errors �̂l> �̂l.

212
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Finance Generalizations
Finance bros don’t like the consumption-based model.

Empirically, it doesn’t work well
Consumption observed quarterly. Asset returns observed (nearly)
continuously.
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Hypothesize that the SDF has the factor representation,

mt = 1− bft + m0
t (32)

ft is called the ‘common risk factor’, and m0
t is an error term. The

part of mt not explained by the factor. We’ll assume that m0
t is i.i.d.

What is the factor? In the ‘market model’ or the CAPM, ft is the
excess return on the market portfolio.
b > 0 says market return is high when consumption is high (when
m is low). This happens to be true
The famous Fama-French work uses 3 factors

mt = 1− b1ft ,1 − b2ft ,2 − b3ft ,3 + m0
t

where the factors are the market excess return, the high minus
low book to market portfolio returns and the small minus big firm
portfolio returns. More on this later.
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Substitute the single-factor for mt in (29),

E
(
Re

t ,i
)

= −Rt−1,f Cov
(
mt+1,Re

t ,i
)

(33)

= −Rt−1,f Cov
(

1− bft −m0
t ,R

e
t ,i

)
(34)

= (bVar (ft )Rt−1,f )
Cov(ft ,Re

t ,i)

Var (ft )
(35)

Now the beta is the covariance between the asset’s excess return and
the risk factor.
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Existence and Uniqueness of the SDF
This next result justifies the previous analysis

Result:If the market is complete and the law of one price (no arbitrage
condition) holds, a positive stochastic discount factor exists and it is
unique.

s = {1,2} states of nature. π(s) is probability of state s

pc(s) : price of a state-s Arrow contingent claim security. It pays 1 unit (of
consumption) if state s occurs.

p(x) is the price of some asset x , which pays off x(s) in state s

The no-arbitrage condition, aka the law of one price is,

p(x) = pc(1)x(1) + pc(2)x(2) (36)

Cochrane calls this the Happy Meal assumption.

Value of any asset representable as bundles of Arrow securities.

Price of the bundle is the value of sum of individual parts.
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Existence

p(x) = pc(1)x(1) + pc(2)x(2) (37)

= π(1)
pc(1)
π(1)

x(1) + π(2)
pc(2)
π(2)

x(2) (38)

= π(1)m(1)x(1) + π(2)m(2)x(2) (39)
= E (mx) (40)

where

m(s) =
pc(s)
π(s)

. (41)

This is existence and it gives back the Euler equation. Note that we’ve
done this without any explicit assumptions about preferences or
distributions about asset returns.

21 / 33



Uniqueness
From (41), take the price of the s = 1 Arrow security

pc(1) = π(1)m(1)

This has to be true for any SDF. Suppose there is another SDF, m∗(1)

pc(1) = π(1)m∗(1)

Then it must be the case that

m(1) = m∗(1)

This has to be true for all states s.
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Risk-Neutral Probabilities

Econ bros like to value assets using the Arrow-Debreu approach.
An equivalent approach is the risk-neutral probability approach.

π(s) ≥ 0, where ∑s π(s) = 1, are the actual (physical) probabilities
that state s occurs.
We going to call π∗(s) the risk-neutral probabilities.
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Let p (x) be price of asset. pc (s) is contingent claims price of Arrow
security that pays off x (s) in state (s) . Start with (37),

p (x) = ∑
s

pc (s) x (s) = ∑
s

π (s)
(

pc (s)
π (s)

)
︸ ︷︷ ︸

m(s)

x (s)

= ∑
s

π (s)m (s) x (s) = E (mx) =
1

Rf ∑
s

(
π (s)m (s)Rf

)
︸ ︷︷ ︸

π∗(s)

x (s)

=
1

Rf ∑ π∗ (s) x (s)

Hence,

π∗ (s) = π (s)m (s)Rf =
m (s)
E (m)

π (s) (42)

is called the risk-neutral probability.
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What’s the point?

Think of asset pricing as if agents are risk neutral and use π∗ in
place of π. The π∗ give more weight to states with higher than
average m, which are states of low consumption.
Risk aversion is like paying more attention to bad states relative to
physical probabilities.
Finance bros like the risk-neutral approach. Econ bros like the
Arrow-Debreu approach, but as you can see, they are equivalent.
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How to find risk-neutral probabilities

Say you have s = 1, . . . ,S states and i = 1, . . . n assets.
Collect the n + 1 equations

p(xi) =
1

Rt ,f
∑
s

π∗(s)xi(s) (43)

∑
s

π∗(s) = 1 (44)

and solve for the π∗(s) subject to the conditions that for
s = 1, . . . ,S

π∗(s) ≥ 0
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An example I stole
Notes from a corporation (call it Delta Airlines) today, due in 3 years
trade at $71.50. A zero-coupon Treasury Strip, due in 3 years sells at
$90.625. Use these prices to infer the risk-neutral probability of
bankruptcy. Two assets (bonds). pD = $71.50 is the current price of
the delta bond. s = 1 is non-bankruptcy state and bond pays off x (1) .
s = 2 is the bankruptcy state and bond pays x (2) . pT is the price of
the Treasury Strip. It pays off y (1) = y (2) = $100 in either state of
the world. It is claimed that the historical default frequency of
junk-rated bonds is 42 percent.
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pD = x (1)
π∗ (1)

Rf + x (2)
π∗ (2)

Rf

pT = y (1)
π∗ (1)

Rf + y (2)
π∗ (2)

Rf

Or, in matrix form,(
pD
pT

)
=

(
x (1) x (2)
y (1) y (2)

)( π∗(1)
Rf

π∗(2)
Rf

)

Solve, (
π∗(1)

Rf
π∗(2)

Rf

)
=

(
x (1) x (2)
y (1) y (2)

)−1 ( pD
pT

)
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Put some numbers to it.

Rf =
100

90.625
= 1.103 4

Suppose in bankrupcy, x (2) = 0

(
π∗(1)

Rf
π∗(2)

Rf

)
=

(
130 0
100 100

)−1 ( 71.5
90.625

)
=

(
0.55

0.356 25

)
Then (

π∗ (1)
π∗ (2)

)
=

(
1.103 4

0.55
0.356 25

)
=

(
0.606 87
0.393 09

)
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Less conservative calculation: Moody’s says senior unsecured debt is
worth about half the face value in the event of bankruptcy. So let’s say
x (2) = 65.(

π∗ (1)
π∗ (2)

)
= 1.103 4

(
130 65
100 100

)−1 ( 71.5
90.625

)
=

(
0.213 78
0.786 17

)
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Incomplete Markets
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The LOOP again

The LOOP (no arbitrage) in this environment, is again, Cochrane’s
happy meal theorem.
Let x1, x2 ∈ X . These are two payoffs in X . Then we can scale x1
by a and x2 by b such that ax1 + bx2 ∈ X .
Let p(x1) be the price of the payoff x1 and p(x2) be the price of
the payoff x2. The LOOP is

p(ax1 + bx2) = ap(x1) + bp(x2)
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Incomplete Markets
Result: If the LOOP holds, there exists a positive SDF, x∗ such that

p(x) = E(x∗x).

But it may not be unique

Proof. Define x∗ = p(x) x
E(x2)

. Then by construction,

E(x∗x) = E
(

p(x)
x2

E(x2)

)
= p(x)

Another SDF? Let ε be a random variable such that E(εx) = 0. Then
x∗ + ε is another SDF, because

p(x) = E [(x∗ + ε)x ] = E(x∗x)
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