

EViews 10 Object Reference

EViews 10 Object Reference
Copyright © 1994–2017 IHS Global Inc.
All Rights Reserved

ISBN: 978-1-880411-46-9 (2nd Edition)

This software product, including program code and manual, is copyrighted, and all rights are
reserved by IHS Global Inc. The distribution and sale of this product are intended for the use of
the original purchaser only. Except as permitted under the United States Copyright Act of 1976,
no part of this product may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written permission of IHS Global Inc.

Disclaimer
The authors and IHS Global Inc. assume no responsibility for any errors that may appear in this
manual or the EViews program. The user assumes all responsibility for the selection of the pro-
gram to achieve intended results, and for the installation, use, and results obtained from the pro-
gram.

Trademarks
EViews® is a registered trademark of IHS Global Inc. Windows, Excel, PowerPoint, and Access
are registered trademarks of Microsoft Corporation. PostScript is a trademark of Adobe Corpora-
tion. Bloomberg is a trademark of Bloomberg Finance L.P. All other product names mentioned in
this manual may be trademarks or registered trademarks of their respective companies.

Third Party Licenses
This section contains third party notices or additional terms and conditions applicable to certain
software technologies which may be used in one or more EViews products and/or services.
Please be sure to consult the individual product files, about box, and/or install or manual docu-
mentation for specific copyright notices and author attributions. Notices on this page are current
for EViews products released on or after October 1, 2017.

diff template Library - Copyright © 2015 Tatsuhiko Kubo cubicdaiya@gmail.com. All rights
reserved.

GZipHelper - Copyright © 1995-2002 Gao Dasheng dsgao@hotmail.com.

jsonCPP Library - Copyright © 2007-2010 Baptiste Lepilleur and The JsonCPP Authors.

openssl Library - Copyright © 1998-2016 The OpenSSL Project. All rights reserved.

libcurl Library - Copyright © 1996-2013, Daniel Stenberg daniel@haxx.se.

libharu Library - Copyright © 2000-2006 Takeshi Kanno, Copyright © 2007-2009 Antony Dovgal et
all.

::—3

libssh2 Library - Copyright © 2004-2007 Sara Golemon sarag@libssh2.org, Copyright © 2005,2006
Mikhail Gusarov dottedmag@dottedmag.net, Copyright © 2006-2007 The Written Word, Inc.,
Copyright © 2007 Eli Fant elifantu@mail.ru, Copyright © 2009 Daniel Stenberg, Copyright © 2008,
2009 Simon Josefsson. All rights reserved.

ssleay License - Copyright © 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.

Tableau Data Extract API - Copyright © 2003-2017 Tableau and its licensors. All rights reserved.

Tramo/Seats - Copyright (c) 1996 Agustin Maravall and Victor Gomez. Windows version devel-
oped by G. Caporello and A. Maravall (Bank of Spain)

X11.2 and X12-ARIMA version 0.2.7 and X-13ARIMA-SEATS - Copyright (c) U.S. Census Bureau.

zlib Data Compression Library - Copyright © 1995-2017 Jean-loup Gailly and Mark Adler.

Notices, terms and conditions pertaining to third party software are located at http://
www.eviews.com/thirdparty and incorporated by reference herein.

IHS Global Inc.
4521 Campus Drive, #336
Irvine CA, 92612-2621
Telephone: (949) 856-3368
Fax: (949) 856-2044
e-mail: sales@eviews.com
web: www.eviews.com

October 16, 2017

http://www.eviews.com

INTRODUCTION . 1

CHAPTER 1. OBJECT VIEW AND PROCEDURE REFERENCE . 2
Alpha . 4

Coef . 18

Equation . 33

Factor .185

Graph .236

Group .290

Link .355

Logl .367

Matrix .384

Model .420

Pool .460

Rowvector .507

Sample .528

Scalar .535

Series .541

Sspace .643

Spool .672

String .695

Svector .702

Sym .709

System .741

Table .782

Text .814

Userobj .822

Valmap .831

Var .839

Vector .885

APPENDIX A. GRAPH CREATION COMMANDS .911
Graph Creation Command Summary .911

Graph Creation Object Summary .912

Optional Graph Components .982

APPENDIX B. OBJECT COMMAND SUMMARY .991

INDEX . 1005

Introduction

The three chapters of the EViews Object Reference consist of reference material for working
with views and procedures of objects in EViews.

• Chapter 1. “Object View and Procedure Reference,” on page 2 provides a cross-refer-
enced listing of the commands associated with each object, along with individual
entries describing the syntax of each object command.

• Appendix A. “Graph Creation Commands,” on page 911 documents specialized object
commands for producing graph views from various EViews data objects.

• Appendix B. “Object Command Summary,” on page 991 offers an alternative indexing
of the object views and procedures discussed in the first two chapters, pairing each
object command with a list of the objects to which it may be applied.

Chapter 1. Object View and Procedure Reference

This chapter contains a reference guide to the views, procedures, and data members for each
of the objects found in EViews, grouped by object:

In addition, there is a link object which, depending on its definition, may be used as an
alpha or numeric series (see Link (p. 355)).

To use these views, procedures, and data members, you should provide an optional action
(described below), then list the name of the object followed by a period, and then the name
of the method, view, procedure, or data member, along with any options or arguments:

object_name.method_name(options) arguments

object_name.view_name(options) arguments

object_name.proc_name(options) arguments

output_type_declaration output_name = object_name.data_member

The first three types of expressions are collectively referred to as object commands. An
object command is a command which displays a view of or performs a procedure using a
specific object. Object commands have two main parts: an action followed by a view or pro-

Alpha (p. 4) Pool (p. 460) Sym (p. 709)

Coef (p. 18) Rowvector (p. 507) System (p. 741)

Equation (p. 33) Sample (p. 528) Table (p. 782)

Factor (p. 185) Scalar (p. 535) Text (p. 814)

Graph (p. 236) Series (p. 541) Userobj (p. 822)

Group (p. 290) Spool (p. 672) Valmap (p. 831)

Logl (p. 367) Sspace (p. 643) Var (p. 839)

Matrix (p. 384) String (p. 695) Vector (p. 885)

Model (p. 420) Svector (p. 702)

::—3

cedure specification. The display action determines what is to be done with the output from
the view or procedure. The view or procedure specification may provide for options and
arguments to modify the default behavior.

The complete syntax for an object command has the form:

action(action_opt) object_name.view_or_proc(options_list) arg_list

where:
action....................is one of the four verb commands (do, freeze, print, show).
action_optan option that modifies the default behavior of the action.
object_namethe name of the object to be acted upon.
view_or_procthe object view or procedure to be performed.
options_listan option that modifies the default behavior of the view or proce-

dure.
arg_lista list of view or procedure arguments.

The four possible action commands behave as follows:

• show displays the object view in a window.

• do executes procedures without opening a window. If the object’s window is not cur-
rently displayed, no output is generated. If the objects window is already open, do is
equivalent to show.

• freeze creates a table or graph from the object view window.

• print prints the object view window.

In most cases, you need not specify an action explicitly. If no action is provided, the show
action is assumed for views and the do action is assumed for most procedures (though some
procedures will display newly created output in windows unless run in a batch program).

For example, to display the line graph view of the series object CONS, you can enter the
command:

cons.line

To perform a dynamic forecast using the estimates in the equation object EQ1, you may
enter:

eq1.forecast y_f

To save the coefficient covariance matrix from EQ1, you can enter:

sym cov1 = eq1.@coefcov

See Chapter 1. “Object and Command Basics,” on page 3 of the Command and Program-
ming Reference for additional discussion of using commands in EViews.

4—Chapter 1. Object Reference

Alpha

Alpha (alphanumeric) series. An EViews alpha series contains observations on a variable
containing string values.

Alpha Declaration
alpha.................... declare alpha series (p. 6).
frml...................... create alpha series object with a formula for auto-updating (p. 9).
genr create alpha or numeric series object (p. 10).

To declare an alpha series, use the keyword alpha, followed by a name, and optionally, by
an “=” sign and a valid series expression:

alpha y

alpha x = "initial strings"

If there is no assignment, the series will be initialized to contain empty (blank) values, “”.

Alpha Views
display display table, graph, or spool in object window (p. 7).
freq one-way tabulation (p. 8).
label..................... label information for the alpha (p. 11).
sheet spreadsheet view of the alpha (p. 15).

Alpha Procs
clearhist clear the contents of the history attribute (p. 7) .
displayname set display name (p. 8).
makemap create numeric classification series and valmap from alpha series

(p. 12).
map assign or remove value map setting (p. 12).
olepush push updates to OLE linked objects in open applications (p. 13).
setattr................... set the value of an object attribute (p. 13).
setindent set the indentation for the alpha series spreadsheet (p. 14).
setjust set the justification for the alpha series spreadsheet (p. 14).
sort change display order for the alpha series spreadsheet (p. 16).

Alpha Data Members
@attr(“arg”) string containing the value of the arg attribute, where the argument

is specified as a quoted string.
@description string containing the alpha object’s description (if available).
@detailedtype string describing the object type: “ALPHA”, if an ordinary alpha

series, or “LINK”, if defined by link.

Alpha::—5

@displaynamestring containing alpha object’s display name. If the Alpha has no
display name set, the name is returned.

@firststring containing the date or observation number of the first non-
blank observation of the alpha. In a panel workfile, the first date at
which any cross-section has a non-blank observation is returned.

@firstall................returns the same as @first, however in a panel workfile, the first
date at which all cross-sections have a non-blank observation is
returned.

@laststring containing the date or observation number of the last non-
blank observation of the alpha. In a panel workfile, the last date at
which any cross-section has a non-blank observation is returned.

@lastallreturns the same as @last, however in a panel workfile, the last
date at which all cross-sections have a non-blank observation is
returned.

@namestring containing the alpha object’s name.
@remarksstring containing the alpha object’s remarks (if available).
@source................string containing the alpha object’s source (if available).
@typestring describing the object type: “ALPHA”.
@units..................string containing the alpha object’s units description (if available).
@updatetimestring representation of the time and date at which the alpha was

last updated.
(i)i-th element of the alpha series from the beginning of the workfile

(when used on the left-hand side of an assignment, or when the ele-
ment appears in a table or string variable assignment).

Alpha Element Functions
@elem(ser, "j")function to access the j-th observation of the alpha series, where j

identifies the date or observation.

Alpha Examples
alpha val = "initial string"

initializes an alpha series VAL using a string literal.

If FIRST is an alpha series containing first names, and LAST is an alpha containing last
names, then:

alpha name = first + " " + last

creates an alpha series containing the full names.

6—Chapter 1. Object Reference

Alpha Entries

The following section provides an alphabetical listing of the commands associated with the
“Alpha” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Declare an alpha series object.

The alpha command creates and optionally initializes an alpha series, or modifies an exist-
ing series.

Syntax
alpha ser_name

alpha ser_name=formula

The alpha command should be followed by either the name of a new alpha series, or an
explicit or implicit expression for generating the series. If you create a series and do not ini-
tialize it, the series will be filled with the blank string “”.

Examples
alpha x = "initial value"

creates a series named X filled with the text “initial value.”

Once an alpha is declared, you need not include the alpha keyword prior to entering the
formula (optionally, you may use Alpha::genr (p. 10) with a previously created alpha
series). The following example generates an alpha series named VAL that takes value “Low”
if either INC is less than or equal to 5000 or EDU is less than 13, and “High” otherwise:

alpha val

val = @recode(inc<=5000 or edu<13, "High", "Low")

If FIRST and LAST are alpha series containing first and last names, respectively, the com-
mands:

alpha name = first + " " + last

genr name = name + " " + last

create an alpha series containing the full names.

Cross-references

See “Alpha Series” on page 208 of User’s Guide I for additional discussion.

See also Alpha::genr (p. 10).

alpha Alpha Declaration

Alpha::display—7

Clear the contents of the history attribute for equation objects.

Removes the alpha’s history attribute, as shown in the label view of the alpha.

Syntax
alpha_name.clearhist

Examples
a1.clearhist

a1.label

The first line removes the history from the alpha A, and the second line displays the label
view of A, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Alpha::label (p. 11).

Display table, graph, or spool output in the alpha object window.

Display the contents of a table, graph, or spool in the window of the alpha object.

Syntax
alpha_name.display object_name

Examples
alpha1.display tab1

Display the contents of the table TAB1 in the window of the object ALPHA1.

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

clearhist Alpha Procs

display Alpha Views

8—Chapter 1. Object Reference

Display name for an alpha object.

Attaches a display name to an alpha object. The display name may be used to label output
in tables and graphs in place of the standard alpha object name.

Syntax
alpha_name.displayname display_name

Display names are case-sensitive, and may contain various characters, such as spaces, that
are not allowed in alpha object names.

Examples
names.displayname Employee Name

names.label

The first line attaches a display name “Employee Name” to the alpha object NAMES, and
the second line displays the label view of NAMES, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names. See also Alpha::label (p. 11).

Compute frequency tables.

freq performs a one-way frequency tabulation. The options allow you to control binning
(grouping) of observations.

Syntax
alpha_name.freq(options)

Options

displayname Alpha Procs

freq Alpha Views

dropna (default) /
keepna

[Drop/Keep] NA as a category.

n, obs, count
(default)

Display frequency counts.

nocount Do not display frequency counts.

prompt Force the dialog to appear from within a program.

Alpha::frml—9

Examples
names.freq

tabulates each value of NAMES in ascending order with counts, percentages, and cumula-
tives.

Cross-references

See “One-Way Tabulation” on page 419 of User’s Guide I for a discussion of frequency tables.

Declare an alpha series object with a formula for auto-updating, or specify a formula for an
existing alpha series.

Syntax
frml alpha_name = alpha_expression

frml alpha_name = @clear

Follow the frml keyword with a name for the alpha series, and an assignment statement.
The special keyword “@CLEAR” is used to return the auto-updating series to an alpha
series.

Examples

To define an auto-updating alpha series, you must use the frml keyword prior to entering
an assignment statement. If FIRST_NAME and LAST_NAME are alpha series, then the for-
mula declaration:

frml full_name = first_name + " " + last_name

creates an auto-updating alpha series FULL_NAME.

You may apply a frml to an existing alpha series. The commands:

alpha state_info

frml state_info = state_name + state_id

p Print the table.

total (default) /
nototal

[Display / Do not display] totals.

pct (default) /
nopct

[Display / Do not display] percent frequencies.

cum (default) /
nocum

(Display/Do not) display cumulative frequency counts/per-
centages.

frml Alpha Declaration

10—Chapter 1. Object Reference

makes the previously created alpha series STATE_INFO an auto-updating series containing
the alpha series STATE_NAME and STATE_ID. Note that once an alpha series is defined to
be auto-updating, it may not be modified directly. Here, you may not edit STATE_INFO, nor
may you generate data into the alpha series.

Note that the commands:

alpha state_info

state_info = state_name + state_id

while similar, produce quite different results, since the absence of the frml keyword in the
second example means that EViews will generate fixed values in the alpha series instead of
defining a formula to generate the alpha series values. In this latter case, the values in the
alpha series STATE_INFO are fixed, and may be modified directly.

One particularly useful feature of auto-updating series is the ability to reference series in
databases. The command:

frml states = usdata::states

creates an alpha series called STATES that obtains its values from the alpha series STATES in
the database USDATA.

To turn off auto-updating for an alpha series, you should use the special expression
“@CLEAR” in your frml assignment. The command:

frml id = @clear

sets freezes the contents of the series at the current values.

Cross-references

See “Auto-Updating Series” on page 203 of User’s Guide I.

See also Link::link (p. 358).

Generate alpha series.

Syntax
genr alpha_name = expression

Examples
genr full_name = first_name + last_name

creates an alpha series formed by concatenating the alpha series FIRST_NAME and
LAST_NAME.

genr Alpha Declaration

Alpha::label—11

Cross-references

See Alpha::alpha (p. 6) for a discussion of the expressions allowed in genr.

Display or change the label view of an alpha series, including the last modified date and
display name (if any).

As a procedure, label changes the fields in the alpha series label.

Syntax
alpha_name.label

alpha_name.label(options) text

Options

To modify the label, you should specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared:

Examples

The following lines replace the remarks field of ALPHA1 with “Data from CPS 1988 March
File”:

alpha1.label(r)

alpha1.label(r) Data from CPS 1988 March File

To append additional remarks to ALPHA1, and then to print the label view:

alpha1.label(r) Hourly notes

alpha1.label(p)

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Alpha::displayname (p. 8).

label Alpha Views | Alpha Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

12—Chapter 1. Object Reference

Create a numeric classification series and valmap from alpha series.

Syntax
alpha_name.makemap(options) ser_name map_name

creates a classification series ser_name and an associated valmap map_name in the work-
file. The valmap will automatically be assigned to the series.

Options

Examples
stateabbrev.makemap statecodes statemap

creates a series STATECODES containing numeric coded values representing the states in
STATEABBREV, and an associated valmap STATEMAP.

Cross-references

See “Alpha Series” on page 208 of User’s Guide I for a discussion of alpha series. See “Value
Maps” on page 219 of User’s Guide I for a discussion of valmaps.

Assign or remove value map to alpha series.

Syntax
alpha_name.map [valmap_name]

If the optional valmap name is provided, the procedure will assign the specified value map
to the alpha series. If no name is provided, EViews will remove an existing valmap assign-
ment.

Examples
alpha1.map mymap

assigns the valmap object MYMAP to the alpha series ALPHA1.

alpha2.map

makemap Alpha Procs

prompt Force the dialog to appear from within a program.

nosort Do not alphabetically sort the alpha series values before
assigning the map (default is to sort).

map Alpha Procs

Alpha::setattr—13

removes an existing valmap assignment from ALPHA2.

Cross-references

See “Value Maps” on page 219 of User’s Guide I for a discussion of valmap objects in
EViews.

Push updates to OLE linked objects in open applications.

Syntax
alpha_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Set the object attribute.

Syntax
alpha_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

olepush Alpha Procs

setattr Alpha Procs

14—Chapter 1. Object Reference

Set the display indentation for cells in an alpha series spreadsheet view.

Syntax
alpha_name.setindent indent_arg

where indent_arg is an indent value specified in 1/5 of a width unit. The width unit is com-
puted from representative characters in the default font for the current spreadsheet (the
EViews spreadsheet default font at the time the spreadsheet was created), and corresponds
roughly to a single character. Indentation is only relevant for non-center justified cells.

The default indentation setttings are taken from the Global Defaults for spreadsheet views
(“Spreadsheet Data Display” on page 868 of User’s Guide I) at the time the spreadsheet was
created.

Examples

To set the justification for an alpha series object to 2/5 of a width unit:

alpha1.setindent 2

Cross-references

See Alpha::setjust (p. 14) for details on setting spreadsheet justification.

Set the display justification for cells in an alpha series spreadsheet view.

Syntax
alpha_name.setjust just_arg

where just_arg is a set of arguments used to specify justification settings.

The just_arg may be formed using the following:

The default justification setting is taken from the Global Defaults for spreadsheet views
(“Spreadsheet Data Display” on page 868 of User’s Guide I) at the time the spreadsheet was
created.

setindent Alpha Procs

setjust Alpha Procs

auto / left / cen-
ter / right

Horizontal justification setting. “auto” uses left justifica-
tion.

Alpha::sheet—15

Examples
a1.setjust left

sets the horizontal justification to left.

Cross-references

See also Alpha::setindent (p. 14) for details on setting spreadsheet indentation.

Spreadsheet view of an alpha series object.

Syntax
alpha_name.sheet(options)

Options

Examples
a1.sheet

displays the spreadsheet view of the alpha series A1.

a1.sheet(t)

displays the observations in A1 in the current sample in a wide spreadsheet.

a1.sheet(nl)

shows the series without labels.

a1.sheet(a)

shows all of the observations in the workfile.

Cross-references

See “Alpha Series,” beginning on page 208 of the User’s Guide I for a discussion of the
spreadsheet view of alpha series.

sheet Alpha Views

w Wide. In a panel this will switch to the unstacked form of
the panel (dates along the side, cross-sections along the
top).

t Transpose.

a All observations (ignore sample).

nl Do not display labels.

p Print the spreadsheet view.

16—Chapter 1. Object Reference

Change display order for an alpha series spreadsheet.

The sort command changes the sort order settings for spreadsheet display of the alpha
series.

Syntax
alpha_name.sort([opt])

By default, EViews will sort the alpha series alphabetically. For purposes of sorting, NAs are
considered to be smaller than any other value.

You may modify the default sort order by providing a sort option. If you provide the integer
“0”, or the keyword “obs”, EViews will sort using the original workfile observation order. To
sort in descending order, simply include the minus sign (“-”).

Examples
a1.sort

changes the display order for the alpha series A1 so that spreadsheet rows are ordered alpha-
betically.

a1.sort(-)

sorts in descending order.

a1.sort(obs)

returns the display order for alpha series A1 to the original (by observation).

Cross-references

See “Spreadsheet” on page 548 of User’s Guide II for additional discussion.

sort Alpha Procs

Alpha::sort—17

18—Chapter 1. Object Reference

Coef

Coefficient vector. Coefficients are used to represent the parameters of equations and sys-
tems.

Coef Declaration
coef declare coefficient vector (p. 20).

There are two ways to create a coef. First, enter the coef keyword, followed by a name to be
given to the coefficient vector. The dimension of the coef may be provided in parentheses
after the keyword:

coef alpha

coef(10) beta

If no dimension is provided, the resulting coef will contain a single element.

You may also combine a declaration with an assignment statement. If you do not provide an
explicit assignment statement, a new coef vector will be initialized to zero.

See also param (p. 463) in the Command and Programming Reference for information on ini-
tializing coefficients, and the entries for each of the estimation objects (Equation, Logl,
Pool, Sspace, System, and Var) for additional methods of accessing coefficients.

Coef Views
display display table, graph, or spool in object window (p. 21).
label..................... label view (p. 23).
sheet spreadsheet view of the coefficient (p. 30).
stats descriptive statistics (p. 30).

Coef Graph Views

Graph creation views are discussed in detail in “Graph Creation Command Summary” on
page 911.

area...................... area graph (p. 913).
bar bar graph (p. 918).
boxplot................. boxplot graph (p. 923).
distplot................. distribution graph (p. 926).
dot dot plot graph (p. 934).
line line graph (p. 941).
qqplot quantile-quantile graph (p. 950).
seasplot seasonal line graph (p. 965).
spike spike graph (p. 966).

Coef::—19

Coef Procs
clearhistclear the contents of the history attribute (p. 20).
displayname..........set display name (p. 22).
fill.........................fill the elements of the coefficient vector (p. 22).
olepushpush updates to OLE linked objects in open applications (p. 24).
readimport data into coefficient vector (p. 24).
setattrset the value of an object attribute (p. 26).
setformat...............set the display format for the coefficient vector spreadsheet (p. 27).
setindentset the indentation for the coefficient spreadsheet (p. 28).
setjustset the justification for the coefficient spreadsheet (p. 29).
setwidth................set the column width for the coefficient spreadsheet (p. 29).
writeexport data from coefficient vector (p. 31).

Coef Data Members
@attr(“arg”)..........string containing the value of the arg attribute, where the argument

is specified as a quoted string.
@description.........string containing the Coef object’s description (if available).
@detailedtypestring describing the object type: “COEF”.
@displaynamestring containing the Coef object’s display name. If the Coef has no

display name set, the name is returned.
@namestring containing the Coef object’s name.
@remarksstring containing the Coef object’s remarks (if available).
@typestring describing the object type: “COEF”.
@units..................string containing the Coef object’s units description (if available).
@updatetimestring representation of the time and date at which the Coef was

last updated.
(i)i-th element of the coefficient vector. Simply append “(i)” to the

coef name (without a “.”).

Coef Examples

The coefficient vector declaration:

coef(10) coef1=3

creates a 10 element coefficient vector COEF1, and initializes all values to 3.

Suppose MAT1 is a matrix, and VEC1 is a 20 element vector. Then:

coef mycoef1=coef1

coef mycoef2=mat1

coef mycoef3=vec1

create, size, and initialize the coefficient vectors MYCOEF1, MYCOEF2 and MYCOEF3.

10 1u

20—Chapter 1. Object Reference

Coefficient elements may be referred to by an explicit index. For example:

vector(10) mm=beta(10)

scalar shape=beta(7)

fills the vector MM with the value of the tenth element of BETA, and assigns the seventh
value of BETA to the scalar SHAPE.

Coef Entries

The following section provides an alphabetical listing of the commands associated with the
“Coef” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Clear the contents of the history attribute.

Removes the coef’s history attribute, as shown in the label view of the coef.

Syntax
coef_name.clearhist

Examples
c1.clearhist

c1.label

The first line removes the history from the coef C1, and the second line displays the label
view of C1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Coef::label (p. 23).

Declare a coefficient (column) vector.

Syntax
coef(n) coef_name

clearhist Coef Procs

coef Coef Declaration

Coef::display—21

Follow the coef keyword with the number of coefficients in parentheses, and a name for the
object. If you omit the number of coefficients, EViews will create a vector of length 1.

Examples
coef(2) slope

ls lwage = c(1)+slope(1)*edu+slope(2)*edu^2

The first line declares a coef object of length 2 named SLOPE. The second line estimates a
least squares regression and stores the estimated slope coefficients in SLOPE.

arch(2,2) sp500 c

coef beta = c

coef(6) beta

The first line estimates a GARCH(2,2) model using the default coef vector C (note that the
“C” in an equation specification refers to the constant term, a series of ones.) The second
line declares a coef object named BETA and copies the contents of C to BETA (the “C” in the
assignment statement refers to the default coef vector). The third line resizes BETA to “chop
off” all elements except the first six. Note that since EViews stores coefficients with equa-
tions for later use, you will generally not need to perform this operation to save your coeffi-
cient vectors.

Cross-references

See Vector::vector (p. 907).

Display table, graph, or spool output in the coef object window.

Display the contents of a table, graph, or spool in the window of the coef object.

Syntax
coef_name.display object_name

Examples
coef1.display tab1

Display the contents of the table TAB1 in the window of the object COEF1.

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

display Coef Views

22—Chapter 1. Object Reference

Display name for a coefficient vector.

Attaches a display name to a coef object which may be used to label output in tables and
graphs in place of the standard coef object name.

Syntax
coef_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in coef object names.

Examples
c1.displayname Hours Worked

c1.label

The first line attaches a display name “Hours Worked” to the coef object C1, and the second
line displays the label view of C1, including its display name.

c1.displayname Means by State

plot c1

The first line attaches a display name “Means by State” to the coef C1. The line graph view
of C1 will use the display name as the legend.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names. See also Coef::label (p. 23).

Fill a coef object with specified values.

Syntax
coef_name.fill(options) n1[, n2, n3 …]

Follow the keyword with a list of values to place in the specified object. Each value should
be separated by a comma.

Running out of values before the coef vector is completely filled is not an error; the remain-
ing cells or observations will not be modified unless the “l” option is specified. However, if

displayname Coef Procs

fill Coef Procs

Coef::label—23

you list more values than the coef vector can hold, EViews will not modify any observations
and will return an error message.

Options

Examples

The following example declares a four element coefficient vector MC, initially filled with
zeros. The second line fills MC with the specified values and the third line replaces from row
3 to the last row with –1.

coef(4) mc

mc.fill 0.1, 0.2, 0.5, 0.5

mc.fill(o=3,l) -1

Note that the last argument in the fill command above is the letter “l”.

Cross-references

See “Fill assignment” on page 263 of the Command and Programming Reference for further
discussion of the fill procedure.

Display or change the label view of the coefficient vector, including the last modified date
and display name (if any).

As a procedure, label changes the fields in the coef object label.

Syntax
coef_name.label

coef_name.label(options) text

Options

To modify the label, you should specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared:

l Loop repeatedly over the list of values as many times as it
takes to fill the coef vector.

o=integer
(default=1)

Fill the coef vector from the specified element. Default is
the first element.

label Coef Views | Coef Procs

24—Chapter 1. Object Reference

Examples

The following lines replace the remarks field of the coefficient vector C1 with “Results from
EQ3”:

c1.label(r)

c1.label(r) Results from EQ3

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Coef::displayname (p. 22).

Push updates to OLE linked objects in open applications.

Syntax
coef_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Import data from a foreign disk file into a coefficient vector.

May be used to import data into an existing workfile from a text, Excel, or Lotus file on disk.

Syntax
coef_name.read(options) [path\]file_name

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

olepush Coef Procs

read Coef Procs

Coef::read—25

You must supply the name of the source file. If you do not include the optional path specifi-
cation, EViews will look for the file in the default directory. Path specifications may point to
local or network drives. If the path specification contains a space, you should enclose the
entire expression in double quotation marks.

Options

File type options

If you do not specify the “t” option, EViews uses the file name extension to determine the
file type. If you specify the “t” option, the file name extension will not be used to determine
the file type.

Options for ASCII text files

prompt Force the dialog to appear from within a program.

t=dat, txt ASCII (plain text) files.

t=wk1, wk3 Lotus spreadsheet files.

t=xls Excel spreadsheet files.

na=text Specify text for NAs. Default is “NA”.

d=t Treat tab as delimiter (note: you may specify multiple
delimiter options). The default is “d=c” only.

d=c Treat comma as delimiter.

d=s Treat space as delimiter.

d=a Treat alpha numeric characters as delimiter.

custom =
symbol

Specify symbol/character to treat as delimiter.

mult Treat multiple delimiters as one.

rect (default) /
norect

[Treat / Do not treat] file layout as rectangular.

skipcol =
integer

Number of columns to skip. Must be used with the “rect”
option.

skiprow =
integer

Number of rows to skip. Must be used with the “rect”
option.

comment=
symbol

Specify character/symbol to treat as comment sign. Every-
thing to the right of the comment sign is ignored. Must be
used with the “rect” option.

singlequote Strings are in single quotes, not double quotes.

26—Chapter 1. Object Reference

Options for spreadsheet (Lotus, Excel) files

Examples
c1.read(t=dat,na=.) a:\mydat.raw

reads data into coefficient vector C1 from an ASCII file MYDAT.RAW in the A: drive. The
missing value NA is coded as a “.” (dot or period).

c1.read(s=sheet2) "\\network\dr 1\cps91.xls"

reads the Excel file CPS91 into coefficient vector C1 from the network drive specified in the
path.

Cross-references

See “Importing Data” on page 146 of User’s Guide I for a discussion and examples of import-
ing data from external files.

For powerful, easy-to-use tools for reading data into a new workfile, see “Creating a Workfile
by Reading from a Foreign Data Source” on page 47 of User’s Guide I and wfopen (p. 526) in
the Command and Programming Reference.

See also Coef::write (p. 31).

Set the object attribute.

Syntax
coef_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

dropstrings Do not treat strings as NA; simply drop them.

negparen Treat numbers in parentheses as negative numbers.

allowcomma Allow commas in numbers (note that using commas as a
delimiter takes precedence over this option).

letter_number
(default=“b2”)

Coordinate of the upper-left cell containing data.

s=sheet_name Sheet name for Excel 5–8 Workbooks.

setattr Coef Procs

Coef::setformat—27

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Set the display format for cells in coefficient vector spreadsheet views.

Syntax
coef_name.setformat format_arg

where format_arg is a set of arguments used to specify format settings. If necessary, you
should enclose the format_arg in double quotes.

For coefficient vectors, setformat operates on all of the cells in the vector.

You should use one of the following format specifications:

To specify a format that groups digits into thousands using a comma separator, place a “t”
after the format character. For example, to obtain a fixed number of decimal places with
commas used to separate thousands, use “ft[.precision]”.

To use the period character to separate thousands and commas to denote decimal places,
use “..” (two periods) when specifying the precision. For example, to obtain a fixed number
of characters with a period used to separate thousands, use “ct[..precision]”.

If you wish to display negative numbers surrounded by parentheses (i.e., display the num-
ber -37.2 as “(37.2)”), you should enclose the format string in “()” (e.g., “f(.8)”).

setformat Coef Procs

g[.precision] significant digits

f[.precision] fixed decimal places

c[.precision] fixed characters

e[.precision] scientific/float

p[.precision] percentage

r[.precision] fraction

28—Chapter 1. Object Reference

Examples

To set the format for all cells in the coefficient vector to fixed 5-digit precision, simply pro-
vide the format specification:

c1.setformat f.5

Other format specifications include:

c1.setformat f(.7)

c1.setformat e.5

Cross-references

See Coef::setwidth (p. 29), Coef::setindent (p. 28), and Coef::setjust (p. 29) for
details on setting spreadsheet widths, indentation and justification.

Set the display indentation for cells in coefficient vector spreadsheet views.

Syntax
coef_name.setindent indent_arg

where indent_arg is an indent value specified in 1/5 of a width unit. The width unit is com-
puted from representative characters in the default font for the current spreadsheet (the
EViews spreadsheet default font at the time the spreadsheet was created), and corresponds
roughly to a single character. Indentation is only relevant for non-center justified cells.

The default indentation setttings are taken from the Global Defaults for spreadsheet views
(“Spreadsheet Data Display” on page 868 of User’s Guide I) at the time the spreadsheet was
created.

Examples

To set the justification for a coef object to 2/5 of a width unit:

c1.setindent 2

Cross-references

See Coef::setwidth (p. 29) and Coef::setjust (p. 29) for details on setting spreadsheet
widths and justification.

setindent Coef Procs

Coef::setwidth—29

Set the display justification for cells in coefficient vector spreadsheet views.

Syntax
coef_name.setjust format_arg

where format_arg is a set of arguments used to specify format settings. You should enclose
the format_arg in double quotes if it contains any spaces or delimiters.

The format_arg may be formed using the following:

You may enter one or both of the justification settings. The default justification settings are
taken from the Global Defaults for spreadsheet views (“Spreadsheet Data Display” on
page 868 of User’s Guide I) at the time the spreadsheet was created.

Examples
c1.setjust middle

sets the vertical justification to the middle.

c1.setjust top left

sets the vertical justification to top and the horizontal justification to left.

Cross-references

See Coef::setwidth (p. 29) and Coef::setindent (p. 28) for details on setting spread-
sheet widths and indentation.

Set the column width in a coefficient object spreadsheet view.

Syntax
coef_name.setwidth width_arg

where width_arg specifies the width unit value. The width unit is computed from represen-
tative characters in the default font for the current spreadsheet (the EViews spreadsheet
default font at the time the spreadsheet was created), and corresponds roughly to a single

setjust Coef Procs

top / middle /
bottom]

Vertical justification setting.

auto / left / cen-
ter / right

Horizontal justification setting. “auto” uses left justification
for strings, and right for numbers.

setwidth Coef Procs

30—Chapter 1. Object Reference

character. width_arg values may be non-integer values with resolution up to 1/10 of a width
unit.

Examples
c1.setwidth 12

sets the width of the coef to 12 width units.

Cross-references

See Coef::setindent (p. 28) and Coef::setjust (p. 29) for details on setting indenta-
tion and justification.

Spreadsheet view of a coefficient vector.

Syntax
coef_name.sheet(options)

Options

Examples
c01.sheet

displays the spreadsheet view of C01.

Descriptive statistics.

Computes and displays a table of means, medians, maximum and minimum values, stan-
dard deviations, and other descriptive statistics for the data in the coef object.

Syntax
coef_name.stats(options)

Options

Examples
c1.stats(p)

sheet Coef Views

p Print the spreadsheet view.

stats Coef Views

p Print the stats table.

Coef::write—31

displays and prints the descriptive statistics view of the coefficient vector C1.

Cross-references

See “Descriptive Statistics & Tests” on page 402 and “Descriptive Statistics” on page 572 of
User’s Guide I for a discussion of descriptive statistics views.

Write EViews data to a text (ASCII), Excel, or Lotus file on disk.

Creates a foreign format disk file containing data in a coefficient vector object. May be used
to export EViews data to another program.

Syntax
coef_name.write(options) [path\filename]

Follow the name of the coef object by a period, the keyword, and the name for the output
file. The optional path name may be on the local machine, or may point to a network drive.
If the path name contains spaces, enclose the entire expression in double quotation marks.
The entire coef will be exported.

Note that EViews cannot, at present, write into an existing file. The file that you select will,
if it exists, be replaced.

Options

File type

If you omit the “t=” option, EViews will determine the type based on the file extension.
Unrecognized extensions will be treated as ASCII files. For Lotus and Excel spreadsheet files
specified without the “t=” option, EViews will automatically append the appropriate exten-
sion if it is not otherwise specified.

ASCII text files

write Coef Procs

prompt Force the dialog to appear from within a program.

t=dat, txt ASCII (plain text) files.

t=wk1, wk3 Lotus spreadsheet files.

t=xls Excel spreadsheet files.

na=string Specify text string for NAs. Default is “NA”.

d=arg Specify delimiter (default is tab): “s” (space), “c”
(comma).

32—Chapter 1. Object Reference

Spreadsheet (Lotus, Excel) files

Examples
c1.write(t=txt,na=.) a:\dat1.csv

writes the coefficient vector C1 into an ASCII file named “Dat1.CSV” on the A: drive. NAs
are coded as “.” (dot).

c1.write(t=txt,na=.) dat1.csv

writes the same file in the default directory.

c1.write(t=xls) "\\network\drive a\results"

saves the contents of C1 in an Excel file “Results.xls” in the specified directory.

Cross-references

See “Exporting to a Spreadsheet or Text File” on page 163 of User’s Guide I for a discussion.

See also Coef::read (p. 24).

letter_number Coordinate of the upper-left cell containing data.

Equation::—33

Equation

Equation object. Equations are used for single equation estimation, testing, and forecast-
ing.

Equation Declaration
equation................declare equation object (p. 87).

To declare an equation object, enter the keyword equation, followed by a name:

equation eq01

and an optional specification:

equation r4cst.ls r c r(-1) div

equation wcd.ls q=c(1)*n^c(2)*k^c(3)

Equation Methods
archautoregressive conditional heteroskedasticity (ARCH and GARCH)

(p. 42).
ardl.......................least squares with autoregressive distributed lags (p. 47).
binarybinary dependent variable models (includes probit, logit, gompit)

models (p. 51).
breakls.................. least squares with breakpoints and breakpoint determination

(p. 99).
censoredcensored and truncated regression (includes tobit) models (p. 61).
cointreg.................cointegrating regression using FMOLS, CCR, or DOLS, or panel

FMOLS or DOLS (p. 71).
countcount data modeling (includes poisson, negative binomial and

quasi-maximum likelihood count models) (p. 81).
glmestimate a Generalized Linear Model (GLM) (p. 94).
gmmestimate an equation using generalized method of moments (GMM)

(p. 99).
heckitestimate a selection equation using the Heckman ML or 2-step

method (p. 107).
liml.......................estimate an equation using Limited Information Maximum Likeli-

hood and K-class estimation (p. 115).
logitlogit (binary) estimation (p. 117).
lsestimation using least squares or nonlinear least squares(p. 117).
midas....................Mixed Data Sampling (MIDAS) regression (p. 134).
orderedordinal dependent variable models (includes ordered probit,

ordered logit, and ordered extreme value models) (p. 138).
probit....................probit (binary) estimation (p. 142).

34—Chapter 1. Object Reference

qreg estimate an equation using quantile regression (p. 143).
robustls robust regression (M-estimation, S-estimation and MM-estimation)

(p. 157).
stepls estimate an equation using stepwise regression (p. 160).
switchreg exogenous and Markov switching regression (p. 160).
threshold threshold least squares, including threshold autoregression

(p. 169).
tsls estimate an equation using two-stage least squares regression

(p. 174).

Equation Views
abtest test for serial correlation in a panel GMM equation using the Arel-

lano-Bond test (p. 41).
archtest LM test for the presence of ARCH in the residuals (p. 46).
arma Examine ARMA structure of estimated equation (p. 49).
auto Breusch-Godfrey serial correlation Lagrange Multiplier (LM) test

(p. 50).
boundstest............ perform the Pesaran, Shin and Smith (2001) bounds test of long-run

relationships from an ARDL estimated equation (p. 53).
breakspec display the breakpoint specification for an equation estimated by

least squares with breakpoints (p. 57).
breaktest perform breakpoint test for TSLS and GMM equations (p. 58).
cdtest test for the presence of cross-sectional dependence of errors in

panel equations (p. 58).
cellipse................. confidence ellipses for coefficient restrictions (p. 59).
chow Chow breakpoint and forecast tests for structural change (p. 62).
cinterval confidence interval for coefficients (p. 64).
coefcov................. coefficient covariance matrix (p. 65).
coefscale............... scaled coefficients (p. 66).
coint test for cointegration between series in an equation estimated using

cointreg (p. 66).
cointgraph view a graph of the estimated cointegrating relation form of an

ARDL estimated equation (p. 70).
cointrep................ view the estimated cointegration form and the long-run coefficients

table of an ARDL estimated equation (p. 79).
correl correlogram of the residuals (p. 79).
correlsq correlogram of the squared residuals (p. 80).
cvardecomp coefficient covariance decomposition table (p. 83).
depfreq................. display frequency and cumulative frequency table for the depen-

dent variable (p. 83).

Equation::—35

derivs....................derivatives of the equation specification (p. 84).
displaydisplay table, graph, or spool in object window (p. 85).
effectsdisplay table of estimated fixed and/or random effects (p. 86).
endogtestperform the regressor endogeneity test (p. 86).
facbreakfactor breakpoint test for stability (p. 88).
fixedtesttest significance of estimates of fixed effects for panel estimators

(p. 91).
garchconditional standard deviation graph (only for equations estimated

using ARCH) (p. 94).
grads.....................examine the gradients of the objective function (p. 106).
hettest...................test for heteroskedasticity (p. 108).
histhistogram and descriptive statistics of the residuals (p. 110).
icgraphdisplay a graph of the selection criteria for the top 20 models

observed as part of model selection during estimation (p. 110).
ictable...................display a table of the log-likelihood and selection criteria for the top

20 models observed as part of model selection during estimation
(p. 111).

infbetasscaled difference in estimated betas for influence statistics (p. 112).
infstatsinfluence statistics (p. 113).
instsum.................show a summary of the equation instruments (p. 114).
labellabel information for the equation (p. 114).
lvageplotleverage plot (p. 124).
meansdescriptive statistics by category of the dependent variable (only for

binary, ordered, censored and count equations) (p. 133).
multibreakperform multiple breakpoint testing for an equation specified by list

and estimated by least squares (p. 136).
orthogtest..............perform the instrument orthogonality test (p. 140).
output...................table of estimation results (p. 141).
predictprediction (fit) evaluation table (only for binary and ordered equa-

tions) (p. 142).
qrprocessdisplay table or graph of quantile process estimates (p. 145).
qrslope..................test of equality of slope coefficients across multiple quantile regres-

sion estimates (p. 147).
qrsymmtest of coefficients using symmetric quantiles (p. 149).
ranhaus.................Hausman test for correlation between random effects and regressors

(p. 151).
rcomptesttests for the presence of cross-sectional or time random components

in a panel equation. estimated using pooled least squares (p. 151).
representationstext showing specification of the equation (p. 152).

36—Chapter 1. Object Reference

reset Ramsey’s RESET test for functional form (p. 153).
resids display, in tabular form, the actual and fitted values for the depen-

dent variable, along with the residuals (p. 153).
results table of estimation results (p. 154).
rgmprobs.............. display the regime probabilities in a switching regression equation

(p. 155).
rls recursive residuals least squares (only for non-panel equations esti-

mated by ordinary least squares, without ARMA terms) (p. 156).
strconstant............ tests for constancy of the base specification coefficients against a

smoothly varying alternative in a smooth threshold regression
(p. 162).

strlinear compute tests for linearity of the base specification against the
smooth threshold alternative in a smooth threshold regression
(p. 162).

strnonlin compute various tests for additional additive or encapsulated non-
linearity in a smooth threshold regression (p. 162).

strwgts compute and display the transition weights in a smooth threshold
regression (p. 163).

testadd likelihood ratio test for adding variables to equation (p. 167).
testdrop likelihood ratio test for dropping variables from equation (p. 167).
testfit.................... performs Hosmer and Lemeshow and Andrews goodness-of-fit tests

(only for equations estimated using binary) (p. 168).
transprobs display the state transition probabilities in a switching regression

equation (p. 131).
ubreak.................. Andrews-Quandt test for unknown breakpoint (p. 179).
varinf display Variance Inflation Factors (VIFs) (p. 180).
wald..................... Wald test for coefficient restrictions (p. 181).
weakinst display the weak instruments summary (p. 182).
white White test for heteroskedasticity (p. 182).

Equation Procs
clearhist clear the contents of the history attribute (p. 64).
displayname set display name (p. 85).
fit......................... static forecast (p. 89).
forecast dynamic forecast (p. 92).
makecoint Create a series containing the estimated cointegrating relationship

from an ARDL estimated equation (p. 124).
makederivs........... make group containing derivatives of the equation specification

(p. 125).

Equation::—37

makegarchcreate conditional variance series (only for ARCH equations)
(p. 126).

makegradsmake group containing gradients of the objective function (p. 127).
makelimitscreate vector of estimated limit points (only for ordered models)

(p. 128).
makemodelcreate model from estimated equation (p. 128).
makeregsmake group containing the regressors (p. 129).
makergmprobssave the regime probabilities in a switching regression equation

(p. 130).
makeresidsmake series containing residuals from equation (p. 129).
makestrwgts..........save the smooth transition weights in a smooth threshold regression

(p. 131).
maketransprobs.....save the state transition probabilities in a switching regression

equation (p. 131).
olepushpush updates to OLE linked objects in open applications (p. 138).
setattrset the value of an object attribute (p. 159).
updatecoefsupdate coefficient vector(s) from equation (p. 180).

Equation Data Members
Scalar Values

@aicAkaike information criterion.
@bylistreturns 1 or 0 depending on whether the equation was estimated by

list.
@coefcov(i,j)covariance of coefficient estimates i and j.
@coefs(i)i-th coefficient value.
@deviancedeviance (for Generalized Linear Models)
@deviancestatdeviance statistic: deviance divided by degrees-of-freedom (for Gen-

eralized Linear Models).
@dfdegrees-of-freedom for equation.
@dispersionestimate of dispersion (for Generalized Linear Models)
@dw.....................Durbin-Watson statistic.
@fF-statistic.
@fixeddisp............indicator for whether the dispersion is a fixed value (for General-

ized Linear Models).
@fprobprobability value of the F-statistic.
@hacbwbandwidth for HAC estimation of GMM weighting matrix or long-

run covariance in cointegrating regression (if applicable).
@hqHannan-Quinn information criterion.
@instrankrank of instruments (if applicable).

38—Chapter 1. Object Reference

@jstat J-statistic — value of the GMM objective function (for GMM and
TSLS).

@jprob................. probability value of the J-statistic
@limlk................. estimate of LIML (if applicable).
@logl value of the log likelihood function.
@lrprob probability value of likelihood ratio statistic (if applicable).
@lrstat likelihood ratio statistic (if applicable).
@lrvar long-run variance estimate for cointegrating regression (if applica-

ble).
@meandep mean of the dependent variable.
@ncases............... number of cases.
@ncoef number of estimated coefficients.
@ncross number of cross-sections used in estimation (equal to 1 for non-

panel workfiles).
@npers number of workfile periods used in estimation (same as @regobs

for non-panel workfiles).
@nregimes number of regimes in a switching and breakpoint regression.
@objective quasi-likelihood objective function (if applicable).
@pearsonssr......... Pearson sum-of-squared residuals (for Generalized Linear Models).
@pearsonstat........ Pearson statistic: Pearson SSR divided by degrees-of-freedom (for

Generalized Linear Models).
@pval(i) i-th coefficient p-value
@qlrprob.............. probability value of quasi-likelihood ratio statistic (if applicable).
@qlrstat quasi-likelihood ratio statistic (if applicable).
@quantdep........... quantile of dependent variable (for quantile regression).
@r2 R-squared statistic.
@rbar2................. adjusted R-squared statistic.
@rdeviance restricted (constant only) deviance (for Generalized Linear Models).
@regobs............... number of observations in regression.
@rlogl.................. restricted (constant only) log-likelihood (if applicable).
@robf................... robust F-statistic (Wald-test form).
@robfprob............ robust F-statistic (Wald-test form) p-value.
@robjective restricted (constant only) quasi-likelihood objective function (if

applicable).
@schwarz Schwarz information criterion.
@sddep standard deviation of the dependent variable.
@se standard error of the regression.
@sparsity estimate of sparsity (for quantile regression).
@ssr sum of squared residuals.

k

Equation::—39

@stderrs(i)standard error for coefficient i.
@thresholds..........number of thresholds (for threshold regression).
@tstats(i)..............t-statistic or z-statistic value for coefficient i.
@wmeandepweighted mean of dependent variable (if applicable).
@wgtscalescaling factor for weights (if applicable).
c(i)i-th element of default coefficient vector for equation (if applica-

ble).

Vectors and Matrices

@ardlcointreturns a coef containing coefficients from the cointegrating rela-
tionship form of an ARDL estimation.

@ardllrcoefs..........returns a coef containing coefficients from the long run relationship
form of a non-panel ARDL estimation.

@ardlsrcoefsreturns a matrix where each row corresponds to an individual
cross-section’s short-run coefficients. Only applicable for PMG/
ARDL estimation.

@ardlsrsesreturns a matrix where each row corresponds to an individual
cross-section’s short-run coefficient standard errors. Only applicable
for PMG/ARDL estimation.

@coefcovcovariance matrix for coefficient estimates.
@coefs..................coefficient vector.
@cointcov.............symmetric matrix containing the contemporaneous covariance for

cointegrating regression equations.
@effects................vector of fixed and random effects estimates (if applicable).
@initprobsmatrix containing initial probabilities for switching regression equa-

tions.
@instwgtsymmetric matrix containing the final sample instrument weighting

matrix used during GMM or TSLS estimation (e.g., for
2SLS and for White weighting).

@lambda2covsymmetric matrix containing the portion of one-sided long run vari-
ances for cointegrating regression equations.

@pvalsvector containing the coefficient probability values.
@stderrsvector of standard errors for coefficients.
@thresholds..........vector of threshold values (for threshold estimation).
@tstatsvector of t-statistic or z-statistic values for coefficients.

String Values

@ardlcointsubstreturns string representation of the cointegration form of an ARDL
equation with substituted coefficients.

@attr(“arg”)..........string containing the value of the arg attribute, where the argument
is specified as a quoted string.

ŝ2 ZcZ� �
êt
2ZtZtc¦

40—Chapter 1. Object Reference

@breaks............... string containing the breakpoint dates.
@coeflabels coefficient labels used in regression output table.
@coeflist returns a string containing a space delimited list of the coefficients

used in estimation (e.g., “C(1) C(2) C(3)”). This function always
returns the list of actual coefficients used, irrespective of whether
the original equation was specified by list or by expression.

@command.......... full command line form of the estimation command. Note this is a
combination of @method, @options and @spec.

@description string containing the Equation object’s description (if available).
@detailedtype returns a string with the object type: “EQUATION”.
@displayname...... returns the equation’s display name. If the equation has no display

name set, the name is returned.
@esteq returns string representation of the estimation equation.
@extralist............. space delimited list of the equation's extra regressors. For equa-

tion's estimated by ARCH, @extralist contains the variance equa-
tion terms. For equations estimated by CENSORED, this contains
the error distribution terms. For all other equation methods it
returns an empty string.

@instlist............... space delimited list of the equation instruments (if applicable).
@method command line form of estimation method (“ARCH”, “LS”, etc....).
@name returns the name of the Equation.
@options.............. command line form of estimation options.
@smpl description of the sample used for estimation.
@spec original equation specification. Note this will be different from

@varlist if the equation specification contains groups, or is speci-
fied by expression.

@subst................. returns string representation of the equation with substituted coeffi-
cients.

@type returns a string with the object type: “EQUATION”.
@units string containing the Equation object’s units description (if avail-

able).
@updatetime........ returns a string representation of the time and date at which the

equation was last updated.
@varlist space delimited list of the equation’s dependent variable and regres-

sors if the equation was specified by list, or the equation’s underly-
ing variables (both dependent and independent) if the equation was
specified by expression.

Equation Examples

To apply an estimation method (proc) to an existing equation object:

Equation::abtest—41

equation ifunc

ifunc.ls r c r(-1) div

To declare and estimate an equation in one step, combine the two commands:

equation value.tsls log(p) c d(x) @ x(-1) x(-2)

equation drive.logit ifdr c owncar dist income

equation countmod.count patents c rdd

To estimate equations by list, using ordinary and two-stage least squares:

equation ordinary.ls log(p) c d(x)

equation twostage.tsls log(p) c d(x) @ x(-1) x(-2)

You can create and use other coefficient vectors:

coef(10) a

coef(10) b

equation eq01.ls y=c(10)+b(5)*y(-1)+a(7)*inc

The fitted values from EQ01 may be saved using,

series fit = eq01.@coefs(1) + eq01.@coefs(2)*y(-1) +

eq01.@coefs(3)*inc

or by issuing the command:

eq01.fit fitted_vals

To perform a Wald test:

eq01.wald a(7)=exp(b(5))

You can save the t-statistics and covariance matrix for your parameter estimates:

vector eqstats=eq01.@tstats

matrix eqcov=eq01.@coefcov

Equation Entries

The following section provides an alphabetical listing of the commands associated with the
“Equation” object. Each entry outlines the command syntax and associated options, and
provides examples and cross references.

Test for serial correlation in a panel GMM equation using the Arellano-Bond test.

Tests for first and second order autocorrelation amongst the residuals of an equation esti-
mated by GMM with first differences in a panel workfile. If the underlying errors are i.i.d,

abtest Equation Views

42—Chapter 1. Object Reference

we would expect the first differences to be negatively first order serially correlated, and not
display second order correlation.

Syntax
eq_name.abtest(options)

Options

Examples
equation eq1.gmm(cx=fd, per=f, gmm=perwhite, iter=oneb, levelper)

n n(-1) n(-2) w w(-1) k ys ys(-1) @ @dyn(n,-2) w w(-1) k ys ys(-

1)

eq1.abtest

estimates an equation using GMM with first difference fixed effects, and then tests for first
and second order autocorrelation.

Cross-references

See “Arellano-Bond Serial Correlation Testing” on page 964 of User’s Guide II for discussion.

Estimate generalized autoregressive conditional heteroskedasticity (GARCH) models.

Syntax
eq_name.arch(p,q,options) y [x1 x2 x3] [@ p1 p2 [@ t1 t2]]

eq_name.arch(p,q,options) y=expression [@ p1 p2 [@ t1 t2]]

The ARCH method estimates a model with p ARCH terms and q GARCH terms. Note the
order of the arguments in which the ARCH and GARCH terms are entered, which gives prece-
dence to the ARCH term.

The maximum value for or is 9; values above will be set to 9. The minimum value for
 is 1. The minimum value for is 0. If either or is not specified, EViews will assume

a corresponding order of 1. Thus, a GARCH(1, 1) is assumed by default.

After the “ARCH” keyword, specify the dependent variable followed by a list of regressors in
the mean equation.

By default, no exogenous variables (except for the intercept) are included in the conditional
variance equation. If you wish to include variance regressors, list them after the mean equa-
tion using an “@”-sign to separate the mean from the variance equation.

p Print output from the test.

arch Equation Methods

p q
p q p q

Equation::arch—43

When estimating component ARCH models, you may specify exogenous variance regressors
for the permanent and transitory components. After the mean equation regressors, first list
the regressors for the permanent component, followed by an “@”-sign, then the regressors
for the transitory component. A constant term is always included as a permanent compo-
nent regressor.

Options
General Options

egarch Exponential GARCH.

parch[=arg] Power ARCH. If the optional arg is provided, the power
parameter will be set to that value, otherwise the power
parameter will be estimated.

cgarch Component (permanent and transitory) ARCH.

asy=integer
(default=1)

Number of asymmetric terms in the Power ARCH or
EGARCH model. The maximum number of terms allowed is
9.

thrsh=integer
(default=0)

Number of threshold terms for GARCH and Component
models. The maximum number of terms allowed is 9. For
Component models, “thrsh” must take a value of 0 or 1.

archm=arg ARCH-M (ARCH in mean) specification with the condi-
tional standard deviation (“archm=sd”), the conditional
variance (“archm=var”), or the log of the conditional vari-
ance (“archm= log”) entered as a regressor in the mean
equation.

tdist [=number] Estimate the model assuming that the residuals follow a
conditional Student’s t-distribution (the default is the con-
ditional normal distribution). Providing the optional num-
ber greater than two will fix the degrees of freedom to that
value. If the argument is not provided, the degrees of free-
dom will be estimated.

ged [=number] Estimate the model assuming that the residuals follow a
conditional GED (the default is the conditional normal dis-
tribution). Providing a positive value for the optional argu-
ment will fix the GED parameter. If the argument is not
provided, the parameter will be estimated.

z Turn of backcasting for both initial MA innovations and ini-
tial variances.

44—Chapter 1. Object Reference

backcast=n Backcast weight to calculate value used as the presample
conditional variance. Weight needs to be greater than 0 and
less than or equal to 1; the default value is 0.7. Note that a
weight of 1 is equivalent to no backcasting, i.e. using the
unconditional residual variance as the presample condi-
tional variance.

optmethod = arg Optimization method: “bfgs” (BFGS); “newton” (Newton-
Raphson), “opg” or “bhhh” (OPG or BHHH), “legacy”
(EViews legacy).
“bfgs” is the default for new equations.

optstep = arg Step method: “marquardt” (Marquardt - default); “dogleg”
(Dogleg); “linesearch” (Line search).
(Applicable when “optmethod=bfgs”, “optmethod=new-
ton” or “optmethod=opg”.)

b Use Berndt-Hall-Hall-Hausman (BHHH) as maximization
algorithm. The default is Marquardt.
(Applicable when “optmethod=legacy”.)

cov=arg Covariance method: “ordinary” (default method based on
inverse of the estimated information matrix), “huber” or
“white” (Huber-White sandwich method), “bollerslev”
(Bollerslev-Wooldridge method).

covinfo = arg Information matrix method: “opg” (OPG); “hessian”
(observed Hessian), “
(Applicable when non-legacy “optmethod=” with
“cov=ordinary”.)

h Bollerslev-Wooldridge robust quasi-maximum likelihood
(QML) covariance/standard errors.
(Applicable for “optmethod=legacy” when estimating
assuming normal errors.)

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients.

s Use the current coefficient values in “C” as starting values
(see also param (p. 463) of the Command and Program-
ming Reference).

s=number Specify a number between zero and one to determine start-
ing values as a fraction of preliminary LS estimates (out of
range values are set to “s=1”).

Equation::arch—45

GARCH options

Saved results

Most of the results saved for the ls command are also available after ARCH estimation; see
Equation::ls (p. 117) for details.

Examples
equation arc1.arch(4, 0, m=1000, cov=bollerslev) sp500 c

estimates an ARCH(4) model with a mean equation consisting of the series SP500 regressed
on a constant. The procedure will perform up to 1000 iterations, and will report Bollerslev-
Wooldridge robust QML standard errors upon completion.

The commands:

c = 0.1

equation arc1.arch(thrsh=1, s, mean=var) @pch(nys) c ar(1)

estimate a TARCH(1, 1)-in-mean specification with the mean equation relating the percent
change of NYS to a constant, an AR term of order 1, and a conditional variance (GARCH)
term. The first line sets the default coefficient vector to 0.1, and the “s” option uses these
values as coefficient starting values.

The command:

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv /
-fastderiv

[Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.
Available only for legacy estimation (“optmeth=legacy”).

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

prompt Force the dialog to appear from within a program.

p Print estimation results.

vt Variance target of the constant term. (Can’t be used with
integrated specifications).

integrated Restrict GARCH model to be integrated, i.e. IGARCH. (Can’t
be used with variance targeting).

46—Chapter 1. Object Reference

equation arc1.arch(1, 2, asy=0, parch=1.5, ged=1.2)

dlog(ibm)=c(1)+c(2)* dlog(sp500) @ r

estimates a symmetric Power ARCH(2, 1) (autoregressive GARCH of order 2, and moving
average ARCH of order 1) model with GED errors. The power of model is fixed at 1.5 and the
GED parameter is fixed at 1.2. The mean equation consists of the first log difference of IBM
regressed on a constant and the first log difference of SP500. The conditional variance equa-
tion includes an exogenous regressor R.

Following estimation, we may save the estimated conditional variance as a series named
GARCH1.

arc1.makegarch garch1

Cross-references

See Chapter 25. “ARCH and GARCH Estimation,” on page 243 of the User’s Guide II for a dis-
cussion of ARCH models. See also Equation::garch (p. 94) and Equation::makegarch
(p. 126).

Test for autoregressive conditional heteroskedasticity (ARCH).

Carries out Lagrange Multiplier (LM) tests for ARCH in the residuals of a single least squares
equation.

Syntax
eq_name.archtest(options)

Options

You must specify the order of ARCH for which you wish to test. The number of lags to be
included in the test equation should be provided in parentheses after the arch keyword.

Other Options:

Examples
equation eq1.ls output c labor capital

eq1.archtest(4)

Regresses OUTPUT on a constant, LABOR, and CAPITAL, and tests for ARCH up to order 4.

equation eq1.arch sp500 c

eq1.archtest(4)

archtest Equation Views

prompt Force the dialog to appear from within a program.

p Print output from the test.

Equation::ardl—47

Estimates a GARCH(1,1) model with mean equation of SP500 on a constant and tests for
additional ARCH up to order 4. Note that when performing an archtest as a view off of an
estimated arch equation, EViews will use the standardized residuals (the residual of the
mean equation divided by the estimated conditional standard deviation) to form the test.

Cross-references

See “ARCH LM Test” on page 198 of the User’s Guide II for further discussion of testing
ARCH and Chapter 25. “ARCH and GARCH Estimation,” on page 243 of the User’s Guide II
for a general discussion of working with ARCH models in EViews.

See also Equation::hettest (p. 108) for a more full-featured version of this test.

Estimate an equation with autoregressive distributed lags using least squares.

Syntax
equation.ardl(options) dynamic_eqn @ static_regs

The dynamic equation should be the dependent variable followed by a list of dynamic
regressors (regressors with lags). The static regressors should be a list of static regressors,
not including a constant or trend term.

Options

ardl Equation Methods

fixed Do not use automatic selection for lag lengths. This option
must be used with the deplags= and reglags= options.

deplags=int Set the number of lags for the dependent variable to int. If
automatic selection is used, this sets the maximum number
of possible lags. If fixed lags are used (the fixed option is
set), this fixes the number of lags.

reglags=int Set the number of lags for the explanatory variables
(dynamic regressors) to int. If automatic selection is used,
this sets the maximum number of possible lags. If fixed
lags are used (the fixed option is set), this fixes the number
of lags for each regressor.

trend=key Set the trend specification. key may take values of “const”
(include a constant, default), “none” (do not include a
trend or constant), or “linear” (include both a constant and
a linear trend).

48—Chapter 1. Object Reference

Examples
wfopen http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF5-

2.txt

equation eq01.ardl(deplags=8, reglags=8) log(realcons)

log(realgdp) @ @expand(@quarter, @droplast)

show eq01.icgraph

This example uses data from Greene (2008, page 685), containing quarterly US macroeco-
nomic variables between 1950 and 2000. The first line of this example downloads the data
set, the second line creates an equation object and estimates an ARDL model with the log of
real consumption as the dependent variable, and the log of real GDP as a dynamic regressor.
Quarterly dummy variables are included as static regressors. Automatic model selection is
used to determine the number of lags of log(realcons) and log(realgdp).

The final line of code displays a graph showing the Akaike information criteria (the default
selection method) for each of the models estimates.

equation eq02.ardl(deplags=3, reglags=3, fixed) log(realcons)

log(realgdp) @ @expand(@quarter, @droplast)

show eq02.cointrep

These lines estimate a second model, replicating Example 20.4 from Greene, estimating a
model fixed at 3 lags of the dependent variable and 3 lags of the regressor, and then viewing
the cointegration representation of the estimation, as well as the long-run form of the coeffi-
cient estimates.

wfopen oecd.wf1

equation eq03.ardl(fixed, deplags=1, reglags=1) log(cons) log(inf)

log(inc)

ic=key Set the method of automatic model selection. key may take
values of “aic” (Akaike information criterion, default),
“bic” (Schwarz criterion), “hq” (Hannan-Quinn criterion)
or “rbar2” (Adjusted R-squared, not applicable in panel
workfiles).

nodf Do not perform degree of freedom corrections in computing
coefficient covariance matrix. The default is to use degree
of freedom corrections.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

prompt Force the dialog to appear from within a program.

p Print results.

Equation::arma—49

This example estimates a panel ARDL model using the workfile OECD.wf1. This model rep-
licates that given in the original Pesaran, Shin and Smith 1999 paper. Model selection is not
used to choose the optimal lag lengths, rather a fixed single lag of both the dependent vari-
able and the regressor are used.

Cross-references

See “Autoregressive Distributed Lag (ARDL) Models,” beginning on page 295 of User’s Guide
II for further discussion.

Examine ARMA structure of estimated equation.

Provides diagnostic graphical and tabular views that aid you in assessing the structure of the
ARMA component of an estimated equation. The view is currently available only for equa-
tions specified by list and estimated by least squares that include at least one AR or MA
term. There are four views types available: roots, correlogram, impulse response, and fre-
quency spectrum.

Syntax
eq_name.arma(type=arg [,options])

where eq_name is the name of an equation object specified by list, estimated by least
squares, and contains at least one ARMA term.

Options

arma Equation Views

type=arg Required “type=” option selects the type of ARMA struc-
ture output: “root” displays the inverse roots of the AR/MA
characteristic polynomials, “acf” displays the second
moments (autocorrelation and partial autocorrelation) for
the data in the estimation sample and for the estimated
model, “imp” displays the impulse responses., “freq” dis-
plays the frequency spectrum.

t Displays the table view of the results for the view specified
by the “type=” option. By default, EViews will display a
graphical view of the ARMA results.

hrz=arg Specifies the maximum lag length for “type=acf”, and the
maximum horizon (periods) for “type=imp”.

imp=arg Specifies the size of the impulse for the impulse response
(“type=imp”) view. By default, EViews will use the regres-
sion estimated standard error.

50—Chapter 1. Object Reference

Examples
eq1.arma(type=root, save=root)

displays and saves the ARMA roots from the estimated equation EQ1. The roots will be
placed in the matrix object ROOT.

eq1.arma(type=acf, hrz=25, save=acf)

computes the second moments (autocorrelation and partial autocorrelations) for the obser-
vations in the sample and the estimated model. The results are computed for a 25 period
horizon. We save the results in the matrix object ACF.

eq1.arma(type=imp, hrz=25, save=imp)

computes the 25 period impulse-response function implied by the estimated ARMA coeffi-
cients. EViews will use the default 1 standard error of the estimated equation as the shock,
and will save the results in the matrix object IMP.

eq1.arma(type=freq)

displays the frequency spectrum in graph form.

Cross-references

See “ARMA Structure” on page 128 of the User’s Guide II for details. See also Chapter 22.
“Time Series Regression,” on page 99 of the User’s Guide II.

Compute serial correlation LM (Lagrange multiplier) test.

Carries out Breusch-Godfrey Lagrange Multiplier (LM) tests for serial correlation in the esti-
mation residuals.

Syntax
eq_name.auto(order, options)

save=arg Stores the results as a matrix object with the specified
name. The matrix holds the results roughly as displayed in
the table view of the corresponding type. For “type=root”,
roots for the AR and MA polynomials will be stored in sep-
arate matrices as NAME_AR and NAME_MA, where
“NAME” is the name given by the “save=” option.

prompt Force the dialog to appear from within a program.

p Print the table or graph output.

auto Equation Views

Equation::binary—51

You must specify the order of serial correlation for which you wish to test. You should spec-
ify the number of lags in parentheses after the auto keyword, followed by any additional
options.

Options

Examples

To regress OUTPUT on a constant, LABOR, and CAPITAL, and test for serial correlation of
up to order four you may use the commands:

equation eq1.ls output c labor capital

eq1.auto(4)

The commands:

output(t) c:\result\artest.txt

equation eq1.ls cons c y y(-1)

eq1.auto(12, p)

perform a regression of CONS on a constant, Y and lagged Y, and test for serial correlation of
up to order twelve. The first line redirects printed tables/text to the ARTEST.TXT file.

Cross-references

See “Serial Correlation LM Test” on page 108 of the User’s Guide II for further discussion of
the Breusch-Godfrey test.

Estimate binary dependent variable models.

Estimates models where the binary dependent variable Y is either zero or one (probit, logit,
gompit).

Syntax
eq_name.binary(options) y x1 [x2 x3 ...]

eq_name.binary(options) specification

prompt Force the dialog to appear from within a program.

p Print output from the test.

binary Equation Methods

52—Chapter 1. Object Reference

Options

d=arg
(default=“n”)

Specify likelihood: normal likelihood function, probit
(“n”), logistic likelihood function, logit (“l”), Type I
extreme value likelihood function, Gompit (“x”).

optmethod = arg Optimization method: “bfgs” (BFGS); “newton” (Newton-
Raphson), “opg” or “bhhh” (OPG or BHHH), “legacy”
(EViews legacy).
Newton-Raphson is the default method.

optstep = arg Step method: “marquardt” (Marquardt); “dogleg” (Dog-
leg); “linesearch” (Line search).
Marquardt is the default method.

cov=arg Covariance method: “ordinary” (default method based on
inverse of the estimated information matrix), “huber” or
“white” (Huber-White sandwich method), “glm” (GLM
method).

covinfo = arg Information matrix method: “opg” (OPG); “hessian”
(observed Hessian - default).
(Applicable when non-legacy “optmethod=”.)

h Huber-White quasi-maximum likelihood (QML) standard
errors and covariances.
(Legacy option applicable when “optmethod=legacy”).

g GLM standard errors and covariances.
(Legacy option applicable when “optmethod=legacy”).

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

s Use the current coefficient values in “C” as starting values
(see also param (p. 463) of the Command and Program-
ming Reference).

s=number Specify a number between zero and one to determine start-
ing values as a fraction of EViews default values (out of
range values are set to “s=1”).

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

Equation::boundstest—53

Examples

To estimate a logit model of Y using a constant, WAGE, EDU, and KIDS, and computing
Huber-White standard errors, you may use the command:

equation eq1.binary(d=l,cov=huber) y c wage edu kids

Note that this estimation uses the default global optimization options. The commands:

param c(1) .1 c(2) .1 c(3) .1

equation probit1.binary(s) y c x2 x3

estimate a probit model of Y on a constant, X2, and X3, using the specified starting values.
The commands:

coef beta_probit = probit1.@coefs

matrix cov_probit = probit1.@coefcov

store the estimated coefficients and coefficient covariances in the coefficient vector
BETA_PROBIT and matrix COV_PROBIT.

Cross-references

See “Binary Dependent Variable Models” on page 331 of the User’s Guide II for additional
discussion.

Perform the Pesaran, Shin and Smith (2001) Bounds test of long-run relationships from an
ARDL estimated equation.

This view is only available for non-panel equations estimated using the ARDL method.

Syntax
equation_name.boundstest

Examples
wfopen http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF5-

2.txt

equation eq02.ardl(deplags=3, reglags=3, fixed) log(realcons)

log(realgdp) @ @expand(@quarter, @droplast)

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

prompt Force the dialog to appear from within a program.

p Print results.

boundstest Equation Views

54—Chapter 1. Object Reference

show eq02.boundstest

This example uses data from Greene (2008, page 685), containing quarterly US macroeco-
nomic variables between 1950 and 2000. The first line of this example downloads the data
set, the second line creates an equation object and estimates an ARDL model with the log of
real consumption as the dependent variable. Three lags of the dependent variable, and three
lags of the log of real GDP are used as dynamic regressors. Quarterly dummy variables are
included as static regressors.

The final line performs the Pesaran, Shin and Smith (2001) Bounds test to test for a long-run
relationship between the log of real consumption and the log of real GDP.

Cross-references

See “Autoregressive Distributed Lag (ARDL) Models,” beginning on page 295 of User’s Guide
II for further discussion.

Estimation by linear least squares regression with breakpoints.

Syntax
eq_name.breakls(options) y z1 [z2 z3 ...] [@nv x1 x2 x3 ...]

List the dependent variable first, followed by a list of the independent variables that have
coefficients which are allowed to vary across breaks, followed optionally by the keyword
@nv and a list of non-varying coefficient variables.

breakls Equation Methods

Equation::breakls—55

Options
Breakpoint Options

method=arg
(default=“seqplus1”)

Breakpoint selection method: “seqplus1” (sequential
tests of single versus breaks), “seqall”
(sequential test of all possible versus breaks),
“glob” (tests of global vs. no breaks), “globplus1”
(tests of versus globally determined breaks),
“globinfo” (information criteria evaluation),“user”
(user-specified break dates).

select=arg Sub-method setting (options depend on “method=”).
(1) if “method=glob”: Sequential (“seq”) (default),
Highest significant (“high”), (“udmax”),

 (“wdmax”).
(2) if “method=globinfo”: Schwarz criterion (“bic” or
“sic”) (default), Liu-Wu-Zidek criterion (“lwz”).

trim=arg (default=5) Trimming percentage for determining minimum segment
size (5, 10, 15, 20, 25).

maxbreaks=integer
(default=5)

Maximum number of breakpoints to allow (not applica-
ble if “method=seqall”).

maxlevels=integer
(default=5)

Maximum number of break levels to consider in sequen-
tial testing (applicable when “method=sequall”).

breaks="arg" User-specified break dates entered in double quotes. For
use when “method=user”.

size=arg (default=5) Test sizes for use in sequential determination and final
test evaluation (10, 5, 2.5, 1) corresponding to 0.10,
0.05, 0.025, 0.01, respectively

heterr Assume regimes specific error distributions in variance
computation.

commondata Assume a common distribution for the data across seg-
ments (only applicable if original equation is estimated
with a robust covariance method, “heterr” is not speci-
fied).

l 1� l
l 1� l

l
l 1� l

UDmax
WDmax

56—Chapter 1. Object Reference

General Options

w=arg Weight series or expression.

wtype=arg
(default=“istdev”)

Weight specification type: inverse standard deviation (“ist-
dev”), inverse variance (“ivar”), standard deviation
(“stdev”), variance (“var”).

wscale=arg Weight scaling: EViews default (“eviews”), average
(“avg”), none (“none”).
The default setting depends upon the weight type:
“eviews” if “wtype=istdev”, “avg” for all others.

cov=keyword Covariance type (optional): “white” (White diagonal
matrix), “hac” (Newey-West HAC).

nodf Do not perform degree of freedom corrections in computing
coefficient covariance matrix. The default is to use degree
of freedom corrections.

covlag=arg
(default=1)

Whitening lag specification: integer (user-specified lag
value), “a” (automatic selection).

covinfosel=arg
(default=“aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“lag=a”).

covmaxlag=integer Maximum lag-length for automatic selection (optional) (if
“lag=a”). The default is an observation-based maximum
of .

covkern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniel), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen).

covbw=arg
(default=“fixednw”
)

Kernel Bandwidth: “fixednw” (Newey-West fixed),
“andrews” (Andrews automatic), “neweywest” (Newey-
West automatic), number (User-specified bandwidth).

covnwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric kernel bandwidth selection (if “covbw=newey-
west”).

covbwoffset=inte-
ger (default=0)

Apply integer offset to bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

covbwint Use integer portion of bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

T1 3e

Equation::breakspec—57

Examples
equation eq1.breakls m1 c unemp

uses the Bai-Perron sequential versus tests to determine the optimal breaks in a
model regressing M1 on the breaking variables C and UNEMP.

equation eq2.breakls(method=glob, select=high) m1 c unemp

uses the global Bai-Perron versus none tests to determine the breaks. The selected break
will be the highest significant number of breaks.

equation eq3.breakls(size=5, trim=10) m1 c unemp

lowers the sequential test size from 0.10 to 0.05, and raises the trimming to 10 percent.

equation eq4.breakls(method=user, breaks="1990q1 2010q4") m1 c @nv

unemp

estimates the model with two user-specified break dates. In addition, the variable UNEMP is
restricted to have common coefficients across the regimes.

Cross-references

See Chapter 32. “Least Squares with Breakpoints,” beginning on page 441 of User’s Guide II
for discussion. See also “Multiple Breakpoint Tests” on page 210 of User’s Guide II.

See Equation::multibreak (p. 136) for multiple breakpoint testing.

Display the breakpoint specification results for an equation estimated using breakls.

Syntax
eq_name.breakspec

Options

Examples
equation eq1.breakls m1 c unemp

coef=arg Specify the name of the coefficient vector; the default
behavior is to use the “C” coefficient vector.

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

breakspec Equation Views

p Print basic estimation results.

L 1� L

L

58—Chapter 1. Object Reference

eq1.breakspec(p)

displays and prints the breakpoint determination results for the equation EQ1 estimated
using Bai-Perron sequential versus tests to determine the optimal breaks.

Cross-references

See Chapter 32. “Least Squares with Breakpoints,” beginning on page 441 of User’s Guide II
for discussion.

Breakpoint test.

Carries out a breakpoint test for parameter stability in equations estimated using TSLS and
GMM.

See chow for related tests in equations estimated using least squares.

Syntax
eq_name.breaktest obs1 [obs2 obs3....]

You must provide the breakpoint observations (using dates or observation numbers) to be
tested. To specify more than one breakpoint, separate the breakpoints by a space.

Examples

The commands

equation eq1.gmm m1 c gdp cpi @ gdp(-1) cpi(-1)

eq1.breaktest 1960 1970

perform a GMM estimation of M1 on a constant, GDP and CPI, with lagged values of GDP
and CPI used as instruments, and then perform a breakpoint test to test whether the param-
eter estimates for the periods prior to 1960, during the 1960s, and then after 1970 are stable.

Cross-references

See “GMM Breakpoint Test” on page 96 of the User’s Guide II for discussion.

Test for the presence of cross-sectional dependence in the residuals of panels equations.

Computes the Breusch-Pagan (1980) LM, Pesaran (2004) scaled LM, Pesaran (2004) CD, and
Baltagi, and Feng and Kao (2012) bias-corrected scaled LM test for the residuals of a panel or
pool equation, or panel series.

breaktest Equation Views

cdtest Equation Views

L 1� L

Equation::cellipse—59

Syntax
eq_name.cdtest

Options

Examples
equation eq1.ls(cx=f) @log(gsp) c @log(p_cap) @log(pc) @log(emp)

unemp

eq1.cdtest

will estimate a panel model using the fixed effect estimator (EQ1) and then will compute
and display the panel residual dependence test results.

Cross-references

See “Panel Cross-section Dependence Test” on page 958 of User’s Guide II for discussion.

Confidence ellipses for coefficient restrictions.

The cellipse view displays confidence ellipses for pairs of coefficient restrictions for an
equation object.

Syntax
eq_name.cellipse(options) restrictions

Enter the equation name, followed by a period, and the keyword cellipse. This should be
followed by a list of the coefficient restrictions. Joint (multiple) coefficient restrictions
should be separated by commas.

p Print test results

cellipse Equation Views

60—Chapter 1. Object Reference

Options

Examples

The two commands:

eq1.cellipse c(1), c(2), c(3)

eq1.cellipse c(1)=0, c(2)=0, c(3)=0

both display a graph showing the 0.95-confidence ellipse for C(1) and C(2), C(1) and C(3),
and C(2) and C(3).

eq1.cellipse(dist=c,size="0.9 0.7 0.5") c(1), c(2)

displays multiple confidence ellipses (contours) for C(1) and C(2).

Cross-references

See “Confidence Intervals and Confidence Ellipses” on page 176 of the User’s Guide II for
discussion.

See also Equation::wald (p. 181).

ind=arg Specifies whether and how to draw the individual coeffi-
cient intervals. The default is “ind=line” which plots the
individual coefficient intervals as dashed lines.
“ind=none” does not plot the individual intervals, while
“ind=shade” plots the individual intervals as a shaded
rectangle.

size= number
(default=0.95)

Set the size (level) of the confidence ellipse. You may spec-
ify more than one size by specifying a space separated list
enclosed in double quotes.

dist= arg Select the distribution to use for the critical value associ-
ated with the ellipse size. The default depends on estima-
tion object and method. If the parameter estimates are
least-squares based, the distribution is used;
if the parameter estimates are likelihood based, the
distribution will be employed. “dist=f” forces use of the F-
distribution, while “dist=c” uses the distribution.

prompt Force the dialog to appear from within a program.

p Print the graph.

F 2 n 2–,� �
x

2 2� �

x
2

Equation::censored—61

Estimation of censored and truncated models.

Estimates models where the dependent variable is either censored or truncated. The allow-
able specifications include the standard Tobit model.

Syntax
eq_name.censored(options) y x1 [x2 x3]

eq_name.censored(options) specification

Options

censored Equation Methods

l=number
(default=0)

Set value for the left censoring limit.

r=number
(default=none)

Set value for the right censoring limit.

l=series_name, i Set series name of the indicator variable for the left censor-
ing limit.

r=series_name, i Set series name of the indicator variable for the right cen-
soring limit.

t Estimate truncated model.

d=arg
(default=“n”)

Specify error distribution: normal (“n”), logistic (“l”), Type
I extreme value (“x”).

optmethod = arg Optimization method: “bfgs” (BFGS); “newton” (Newton-
Raphson), “opg” or “bhhh” (OPG or BHHH), “legacy”
(EViews legacy).
Newton-Raphson is the default method.

optstep = arg Step method: “marquardt” (Marquardt); “dogleg” (Dog-
leg); “linesearch” (Line search).
Marquardt is the default method.

cov=arg Covariance method: “ordinary” (default method based on
inverse of the estimated information matrix), “huber” or
“white” (Huber-White sandwich method).

covinfo = arg Information matrix method: “opg” (OPG); “hessian”
(observed Hessian - default).
(Applicable when non-legacy “optmethod=”).

62—Chapter 1. Object Reference

Examples

The command:

eq1.censored(cov=huber) hours c wage edu kids

estimates a censored regression model of HOURS on a constant, WAGE, EDU, and KIDS with
QML standard errors. This command uses the default normal likelihood, with left-censoring
at HOURS=0, no right censoring, and the quadratic hill climbing algorithm.

Cross-references

See Chapter 29. “Discrete and Limited Dependent Variable Models,” on page 331 of the
User’s Guide II for discussion of censored and truncated regression models.

Chow test for stability.

Carries out Chow breakpoint or Chow forecast tests for parameter constancy.

h Huber-White quasi-maximum likelihood (QML) standard
errors and covariances.
(Legacy option Applicable when “optmethod=legacy”).

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

s Use the current coefficient values in “C” as starting values
(see also param (p. 463) of the Command and Program-
ming Reference).

s=number Specify a number between zero and one to determine start-
ing values as a fraction of EViews default values (out of
range values are set to “s=1”).

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

prompt Force the dialog to appear from within a program.

p Print results.

chow Equation Views

Equation::chow—63

Syntax
eq_name.chow(options) obs1 [obs2 obs3 ...] @ x1 x2 x3

You must provide the breakpoint observations (using dates or observation numbers) to be
tested. To specify more than one breakpoint, separate the breakpoints by a space. For the
Chow breakpoint test, if the equation is specified by list and contains no nonlinear terms,
you may specify a subset of the regressors to be tested for a breakpoint after an “@” sign.

Options

Examples

The commands:

equation eq1.ls m1 c gdp cpi ar(1)

eq1.chow 1970Q1 1980Q1

perform a regression of M1 on a constant, GDP, and CPI with first order autoregressive
errors, and employ a Chow breakpoint test to determine whether the parameters before the
1970’s, during the 1970’s, and after the 1970’s are “stable”.

To regress the log of SPOT on a constant, the log of P_US, and the log of P_UK, and to carry
out the Chow forecast test starting from 1973, enter the commands:

equation ppp.ls log(spot) c log(p_us) log(p_uk)

ppp.chow(f) 1973

To test whether only the constant term and the coefficient on the log of P_US prior to and
after 1970 are “stable” enter the commands:

ppp.chow 1970 @ c log(p_us)

Cross-references

See “Chow's Breakpoint Test” on page 206 of the User’s Guide II for further discussion.

See also Equation::facbreak (p. 88), Equation::breaktest (p. 58), Equa-
tion::ubreak (p. 179), and Equation::rls (p. 156).

f Chow forecast test. For this option, you must specify a sin-
gle breakpoint to test (default performs breakpoint test).

p Print the result of test.

64—Chapter 1. Object Reference

Confidence interval.

The confidence interval view displays a table of confidence intervals for each of the coeffi-
cients in the equation.

Syntax
eq_name.cinterval(options) arg

where arg is a list of confidence levels, or the name of a scalar or vector in the workfile con-
taining confidence levels.

Options

Examples

The set of commands:

equation eq1.ls lwage c edu edu^2 union

eq1.cinterval .95 .9 .75

displays the 95% confidence intervals followed by the 90% confidence levels, followed by
the 75% confidence levels.

eq1.cinterval(nopair) .95 .9 .75

displays the 75% confidence interals nested inside the 90% intervals which in turn are
nested inside the 95% intervals.

Cross-references

See also “Confidence Intervals and Confidence Ellipses” on page 176 of the User’s Guide II.

Clear the contents of the history attribute for equation objects.

Removes the equation’s history attribute, as shown in the label view of the equation.

Syntax
equation_name.clearhist

cinterval Equation Views

prompt Force the dialog to appear from within a program.

nopair Display the intervals concentrically. The default is to dis-
play them in pairs for each probability value

clearhist Equation Procs

Equation::coefcov—65

Examples
eq1.clearhist

eq1.label

The first line removes the history from the equation EQ1, and the second line displays the
label view of EQ1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Equation::label (p. 114).

Coefficient covariance matrix.

Displays the covariances of the coefficient estimates for an estimated equation.

Syntax
eq_name.coefcov(options)

Options

Examples

The set of commands:

equation eq1.ls lwage c edu edu^2 union

eq1.coefcov

declares and estimates equation EQ1 and displays the coefficient covariance matrix in a win-
dow. To store the coefficient covariance matrix as a sym object, use “@coefcov”:

sym eqcov = eq1.@coefcov

Cross-references

See also Coef::coef (p. 20).

coefcov Equation Views

p Print the coefficient covariance matrix.

66—Chapter 1. Object Reference

Scaled coefficients.

Displays the coefficient estimates, the standardized coefficient estimates and the elasticity at
means.

Syntax
eq_name.coefscale

Examples

The set of commands:

equation eq1.ls lwage c edu edu^2 union

eq1.coefscale

produces the coefficient scale table view of EQ1.

Cross-references

See also “Scaled Coefficients” on page 176 of the User’s Guide II.

Test for cointegration between series in an equation.

Test for cointegration between series in an equation estimated by Equation::cointreg
(p. 71). You may perform a Hansen Instability Test, Park Added Variable (Spurious Trends)
Test, or between a residual-based Engle-Granger or Phillips-Ouliaris test.

Johansen tests for cointegration may be performed from a group or a VAR object (see
Group::coint (p. 296) and Var::coint (p. 850)).

The cointegrating equation specification is taken from the equation. Additional test specifi-
cation components are specified as options and arguments.

Syntax
Equation View: eq_name.coint(options) [arg]

where

coefscale Equation Views

coint Equation Views

method=arg
(default=“hansen”)

Test method: Hansen’s Instability test (“hansen”), Park’s
Added Variable (“park”), Engle-Granger residual test
(“eg”), Phillips-Ouliaris residual test (“po”).

Equation::coint—67

and arg is an optional list describing additional regressors to include in the Park Added
Regressors test (when “method=park” is specified).

The Park, Engle-Granger, and Phillips-Ouliaris tests all have options which control various
aspects of the test.

Options
Options for the Park Test

The following option, along with the optional argument described above, determines the
additional regressors to include in the test equation.

Options for the Engle-Granger Test

The following options determine the specification of the Engle-Granger test (Augmented
Dickey-Fuller) equation and the calculation of the variances used in the test statistic.

trend=arg
(default=two orders
higher than trend in
estimated equation)

Specification for the powers of trend to include in the test
equation: None (“none”), Constant (“const”), Linear trend
(“linear”), Quadratic trend (“quadratic”), Cubic trend
(“cubic”), Quartic trend (“quartic”), integer (user-specified
power).
Note that the specification implies all trends up to the
specified order so that choosing a quadratic trend
instructs EViews to include a constant and a linear trend
term along with the quadratic. Only trend orders higher
than those specified in the original equation will be consid-
ered.

p Print results.

lag=arg
(default=“a”)

Method of selecting the lag length (number of first differ-
ence terms) to be included in the regression: “a” (auto-
matic information criterion based selection), or integer
(user-specified lag length).

lagtype=arg
(default=“sic”)

Information criterion or method to use when computing
automatic lag length selection: “aic” (Akaike), “sic”
(Schwarz), “hqc” (Hannan-Quinn), “msaic” (Modified
Akaike), “msic” (Modified Schwarz), “mhqc” (Modified
Hannan-Quinn), “tstat” (t-statistic).

maxlag=integer Maximum lag length to consider when performing auto-
matic lag-length selection

default=
where is the number of coefficients in the cointegrat-
ing equation. Applicable when “lag=a”.

int min T k–� � 3e 12,() T 100e� �1 4e�()
k

68—Chapter 1. Object Reference

Options for the Phillips-Ouliaris Test

The following options control the computation of the symmetric and one-sided long-run
variances in the Phillips-Ouliaris test.

Basic Options

HAC Whitening Options

HAC Kernel Options

lagpval=number
(default=0.10)

Probability threshold to use when performing automatic
lag-length selection using a t-test criterion. Applicable
when both “lag=a” and “lagtype=tstat”.

nodf Do not degree-of-freedom correct estimates of the vari-
ances.

p Print results.

nodf Do not degree-of-freedom correct the coefficient covariance
estimate.

p Print results.

lag=arg (default=0) Lag specification: integer (user-specified lag value), “a”
(automatic selection).

infosel=arg
(default=“aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“lag=a”).

maxlag=integer Maximum lag-length for automatic selection (optional) (if
“lag=a”). The default is an observation-based maximum.

kern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniel), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen).

bw=arg
(default=“nwfixed”)

Bandwidth: “fixednw” (Newey-West fixed), “andrews”
(Andrews automatic), “neweywest” (Newey-West auto-
matic), number (User-specified bandwidth).

Equation::coint—69

Examples
Hansen

equation base_eq.cointreg(trend=linear, bw=andrews, kern=quadspec)

base_eq.coint

estimates the cointegrating equation BASE_EQ using FMOLS and performs the Hansen
cointegration test.

Park

base_eq.coint(method=park)

conducts the default Park test, which for BASE_EQ involves testing the significance of the
quadratic and cubic trend coefficients.

base_eq.coint(method=park, trend=quartic) mytrend

performs a test which evaluates the significance of the quadratic, cubic, and quartic terms,
and user trend variable MYTREND.

base_eq.coint(method=eg, trend=6)

estimates the test equation with trend powers up to 6.

Engle-Granger

base_eq.coint(method=eg)

performs the default Engle-Granger test using SIC and an observation-based maximum num-
ber of lags to determine the lags for an ADF equation.

base_eq.coint(method=eg, lag=a, lagtype=tstat, lagpval=.15,

maxlag=10)

uses a sequential t-test starting at lag 10 with threshold probability 0.15 to determine the
number of lags.

base_eq.coint(method=eg, lag=5)

conducts an Engle-Granger cointegration test with a fixed lag of 5.

Phillips-Ouliaris

base_eq.coint(method=po)

nwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric bandwidth selection (if “bw=neweywest”).

bwoffset=integer
(default=0)

Apply integer offset to bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

bwint Use integer portion of bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

70—Chapter 1. Object Reference

performs the default Phillips-Ouliaris test using a Bartlett kernel and Newey-West fixed
bandwidth.

base_eq.coint(method=po, bw=andrews, kernel=quadspec, nodf)

estimates the long-run covariances using a Quadratic Spectral kernel, Andrews automatic
bandwidth, and no degrees-of-freedom correction.

base_eq.coint(method=po, lag=1, bw=4)

constructs the long-run covariances using AR(1) prewhitening, a fixed bandwidth of 4, and
the Bartlett kernel.

Cross-references

See Chapter 48. “Cointegration Testing,” beginning on page 1023 of the User’s Guide II. See
also Group::coint (p. 296) for testing from a group object.

View a graph of the estimated cointegrating relation form of an ARDL estimated equation.

This view is only available for non-panel equations estimated using the ARDL method.

Syntax
equation_name.cointgraph

Examples
wfopen http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF5-

2.txt

equation eq02.ardl(deplags=3, reglags=3, fixed) log(realcons)

log(realgdp) @ @expand(@quarter, @droplast)

show eq02.cointgraph

This example uses data from Greene (2008, page 685), containing quarterly US macroeco-
nomic variables between 1950 and 2000. The first line of this example downloads the data
set, the second line creates an equation object and estimates an ARDL model with the log of
real consumption as the dependent variable. Three lags of the dependent variable, and three
lags of the log of real GDP are used as dynamic regressors. Quarterly dummy variables are
included as static regressors.

The final line views a graph of the cointegration representation of the estimation.

Cross-references

See “Autoregressive Distributed Lag (ARDL) Models,” beginning on page 295of User’s Guide
II for further discussion.

cointgraph Equation Views

Equation::cointreg—71

Estimate a cointegrating equation using Fully Modified OLS (FMOLS), Canonical Cointe-
grating Regression (CCR), or Dynamic OLS (DOLS) in single time series settings, and Panel
FMOLS and DOLS in panel workfiles.

Syntax
eq_name.cointreg(options) y x1 [x2 x3 ...] [@determ determ_spec] [@regdeterm reg-

determ_spec]

List the cointreg keyword, followed by the dependent variable and a list of the cointegrat-
ing variables.

Cointegrating equation specifications that include a constant, linear, or quadratic trends,
should use the “trend=” option to specify those terms. If any of those terms are in the sto-
chastic regressors equations but not in the cointegrating equation, they should be specified
using the “regtrend=” option.

Deterministic trend regressors that are not covered by the list above may be specified using
the keywords @determ and @regdeterm. To specify deterministic trend regressors that enter
into the regressor and cointegrating equations, you should add the keyword @determ fol-
lowed by the list of trend regressors. To specify deterministic trends that enter in the regres-
sor equations but not the cointegrating equation, you should include the keyword
@regdeterm followed by the list of trend regressors.

Basic Options

cointreg Equation Methods

method=arg
(default=“fmols”)

Estimation method: Fully Modified OLS (“fmols”), Canoni-
cal Cointegrating Regression (“ccr”), Dynamic OLS (“dols”)
Note that CCR estimation is not available in panel set-
tings.

trend=arg
(default=“const”)

Specification for the powers of trend to include in the
cointegrating and regressor equations: None (“none”),
Constant (“const”), Linear trend (“linear”), Quadratic trend
(“quadratic”).
Note that the specification implies all trends up to the
specified order so that choosing a quadratic trend
instructs EViews to include a constant and a linear trend
term along with the quadratic.

72—Chapter 1. Object Reference

In addition to these options, there are specialized options for each estimation method.

Panel Options

Options for FMOLS and CCR

To estimate FMOLS or CCR use the “method=fmols” or “method=ccr” options. The follow-
ing options control the computation of the symmetric and one-sided long-run covariance
matrices and the estimate of the coefficient covariance.

HAC Whitening Options

regtrend=arg
(default=“none”)

Additional trends to include in the regressor equations (but
not the cointegrating equation): None (“none”), Constant
(“const”), Linear trend (“linear”), Quadratic trend (“qua-
dratic”). Only trend orders higher than those specified by
“trend=” will be considered.
Note that the specification implies all trends up to the
specified order so that choosing a quadratic trend
instructs EViews to include a constant and a linear trend
term along with the quadratic.

regdiff Estimate the regressor equation innovations directly using
the difference specifications.

coef=arg Specify the name of the coefficient vector; the default
behavior is to use the “C” coefficient vector.

btwcoefs=arg Save the cross-section specific deterministic coefficient esti-
mates in a matrix object (one row per cross-section).

btwcovs=arg Save the covariances of the cross-section specific determin-
istic coefficient estimates in a matrix object (one row per
cross-section, with each row holding the vech of the covari-
ance).

prompt Force the dialog to appear from within a program.

p Print results.

panmethod=arg
(default=“pooled”)

Panel estimation method: pooled (“pooled”), pooled
weighted (“weighted”), grouped (“grouped”)

pancov=sandwich Estimate the coefficient covariance using a sandwich
method that allows for cross-section heterogeneity.

lag=arg (default=0) Lag specification: integer (user-specified lag value), “a”
(automatic selection).

Equation::cointreg—73

HAC Kernel Options

Coefficient Covariance

Panel Options

Options for DOLS

To estimate using DOLS use the “method=dols” option. The following options control the
specification of the lags and leads and the estimate of the coefficient covariance.

infosel=arg
(default=“aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“lag=a”).

maxlag=integer Maximum lag-length for automatic selection (optional) (if
“lag=a”). The default is an observation-based maximum.

kern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniell), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen).

bw=arg
(default=“nwfixed”)

Bandwidth:: “fixednw” (Newey-West fixed), “andrews”
(Andrews automatic), “neweywest” (Newey-West auto-
matic), number (User-specified bandwidth).

nwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric bandwidth selection (if “bw=neweywest”).

bwoffset=integer
(default=0)

Apply integer offset to bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

bwint Use integer portion of bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

nodf Do not degree-of-freedom correct the coefficient covariance
estimate.

hetfirst Estimate the first-stage regression assuming heterogeneous
coefficients. For FMOLS specifications estimated using
pooled or pooled weighted methods
(“panmethod =pooled”, “panmethod=weighted”)

74—Chapter 1. Object Reference

For the default covariance calculation or “cov=hac”, the following options control the com-
putation of the long-run variance or robust covariance:

HAC Covariance Whitening Options (if default covariance or “cov=hac”)

lltype=arg
(default=“fixed”)

Lag-lead method: fixed values (“fixed”), automatic selec-
tion - Akaike (“aic”), automatic - Schwarz (“sic”), auto-
matic - Hannan-Quinn (“hqc”), None (“none”).

lag=arg Lag specification: integer (required user-specified number
of lags if “lltype=fixed”).

lead=arg Lead specification: integer (required user-specified number
of lags if “lltype=fixed”).

maxll=integer Maximum lag and lead-length for automatic selection
(optional user-specified integer if “lltype=” is used to
specify automatic selection). The default is an observation-
based maximum.

cov=arg Coefficient covariance method: (default) long-run variance
scaled OLS, unscaled OLS (“ols”), White (“white”),
Newey-West (“hac”).

nodf Do not degree-of-freedom correct the coefficient covariance
estimate.

covlag=arg
(default=0)

Lag specification: integer (user-specified lag value), “a”
(automatic selection).

covinfosel=arg
(default=“aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“lag=a”).

covmaxlag=integer Maximum lag-length for automatic selection (optional) (if
“lag=a”). The default is an observation-based maximum.

Equation::cointreg—75

HAC Covariance Kernel Options (if default covariance or “cov=hac”)

Panel Options

Weighted coefficient or coefficient covariance estimation in panel DOLS requires individual
estimates of the long-run variances of the residuals. You may compute these estimates using
the standard default long-run variance options, or you may choose to estimate it using the
ordinary variance.

For weighted estimation we have:

covkern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniel), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen).

covbw=arg
(default=“nwfixed”)

Bandwidth: “fixednw” (Newey-West fixed), “andrews”
(Andrews automatic), “neweywest” (Newey-West auto-
matic), number (User-specified bandwidth).

covnwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric bandwidth selection (if “covbw=neweywest”).

covbwoffset=integer
(default=0)

Apply integer offset to bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

covbwint Use integer portion of bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

panwgtlag=arg
(default=0)

Lag specification: integer (user-specified lag value), “a”
(automatic selection).

panwgtinfosel=arg
(default=“aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“lrvarlag=a”).

panwgtmaxlag=inte-
ger

Maximum lag-length for automatic selection (optional) (if
“lrvarlag=a”). The default is an observation-based maxi-
mum.

panwgtkern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniell), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen).

76—Chapter 1. Object Reference

For the coefficient covariance estimation we have:

panwgtbw=arg
(default=“nwfixed”)

Bandwidth:: “fixednw” (Newey-West fixed), “andrews”
(Andrews automatic), “neweywest” (Newey-West auto-
matic), number (User-specified bandwidth).

panwgtnwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric bandwidth selection (if “bw=neweywest”).

panwgtbwoff-
set=integer
(default=0)

Apply offset to automatically selected bandwidth.
For settings where “cov=hac”, “covkern=” is specified,
and “covbw=” is not user-specified.

panwgtbwint Use integer portion of bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

lrvar=ordinary Compute DOLS estimates of the long-run residual variance
used in covariance calculation using the ordinary variance.

lrvarlag=arg
(default=0)

For DOLS estimates of the long-run residual variance used
in covariance calculation, lag specification: integer (user-
specified lag value), “a” (automatic selection).

lrvarinfosel=arg
(default=“aic”)

For DOLS estimates of the long-run residual variance used
in covariance calculation, information criterion for auto-
matic selection: “aic” (Akaike), “sic” (Schwarz), “hqc”
(Hannan-Quinn) (if “lrvarlag=a”).

lrvarmaxlag=integer For DOLS estimates of the long-run residual variance used
in covariance calculation, maximum lag-length for auto-
matic selection (optional) (if “lrvarlag=a”). The default is
an observation-based maximum.

lrvarkern=arg
(default=“bart”)

For DOLS estimates of the long-run residual variance used
in covariance calculation, Kernel shape: “none” (no ker-
nel), “bart” (Bartlett, default), “bohman” (Bohman), “dan-
iell” (Daniell), “parzen” (Parzen), “parzriesz” (Parzen-
Riesz), “parzgeo” (Parzen-Geometric), “parzcauchy”
(Parzen-Cauchy), “quadspec” (Quadratic Spectral), “trunc”
(Truncated), “thamm” (Tukey-Hamming), “thann” (Tukey-
Hanning), “tparz” (Tukey-Parzen).

lrvarbw=arg
(default=“nwfixed”)

For DOLS estimates of the long-run residual variance used
in covariance calculation, bandwidth:: “fixednw” (Newey-
West fixed), “andrews” (Andrews automatic), “neweywest”
(Newey-West automatic), number (User-specified band-
width).

Equation::cointreg—77

Examples
FMOLS and CCR

To estimate, by FMOLS, the cointegrating equation for LC and LY including a constant, you
may use:

equation fmols.cointreg(nodf, bw=andrews) lc ly

The long-run covariances are estimated nonparametrically using a Bartlett kernel and a
bandwidth determined by the Andrews automatic selection method. The coefficient covari-
ances are estimated with no degree-of-freedom correction.

To include a linear trend term in a model where the long-run covariances computed using
the Quadratic Spectral kernel and a fixed bandwidth of 10, enter:

equation fmols.cointreg(trend=linear, nodf, bw=10, kern=quadspec)

lc ly

A model with a cubic trend may be estimated using:

equation fmols.cointreg(trend=linear, lags=2, bw=neweywest,

nwlag=10, kernel=parzen) lc ly @determ @trend^3

Here, the long-run covariances are estimated using a VAR(2) prewhitened Parzen kernel
with Newey-West nonparametric bandwidth determined using 10 lags in the autocovariance
calculations.

equation fmols.cointreg(trend=quadratic, bw=andrews, lags=a,

infosel=aic, kernel=none, regdiff) lc ly @regdeterm @trend^3

estimates a restricted model with a cubic trend term that does not appear in the cointegrat-
ing equation using a parametric VARHAC with automatic lag length selection based on the
AIC. The residuals for the regressors equations are obtained by estimating the difference
specification.

lrvarnwlag=integer For DOLS estimates of the long-run residual variance used
in covariance calculation, Newey-West lag-selection param-
eter for use in nonparametric bandwidth selection (if
“bw=neweywest”).

lrvarbwoffset=inte-
ger (default=0)

For DOLS estimates of the long-run residual variance used
in covariance calculation, apply offset to automatically
selected bandwidth.
For settings where “cov=hac”, “covkern=” is specified,
and “covbw=” is not user-specified.

lrvarbwint For DOLS estimates of the long-run residual variance used
in covariance calculation, use integer portion of band-
width.

78—Chapter 1. Object Reference

To estimate by CCR, we provide the “method=ccr” option. The command

equation ccr.cointreg(method=ccr, lag=2, bw=andrews,

kern=quadspec) lc ly

estimates, by CCR, the constant only model using a VAR(2) prewhitened Quadratic Spectral
and Andrews automatic bandwidth selection.

equation ccr.cointreg(method=ccr, trend=linear, lag=a, maxlag=5,

bw=andrews, kern=quadspec) lc ly

modifies the previous estimates by adding a linear trend term to the cointegrating and
regressors equations, and changing the VAR prewhitening to automatic selection using the
default SIC with a maximum lag length of 5.

equation ccr.cointreg(method=ccr, trend=linear,

regtrend=quadratic, lag=a, maxlag=5, bw=andrews) lc ly

adds a quadratic trend term to the regressors equations only, and changes the kernel to the
default Bartlett.

DOLS

equation dols.cointreg(method=dols, trend=linear, nodf, lag=4,

lead=4) lc ly

estimates the linear specification using DOLS with four lags and leads. The coefficient cova-
riance is obtained by rescaling the no d.f.-correction OLS covariance using the long-run vari-
ance of the residuals computed using the default Bartlett kernel and default fixed Newey-
West bandwidth.

equation dols.cointreg(method=dols, trend=quadratic, nodf, lag=4,

lead=2, covkern=bohman, covbw=10) lc ly @determ @trend^3

estimates a cubic specification using 4 lags and 2 leads, where the coefficient covariance
uses a Bohman kernel and fixed bandwidth of 10.

equation dols.cointreg(method=dols, trend=quadratic, nodf, lag=4,

lead=2, cov=hac, covkern=bohman, covbw=10) lc ly @determ

@trend^3

estimates the same specification using a HAC covariance in place of the scaled OLS covari-
ance.

equation sols.cointreg(method=dols, trend=quadratic, lltype=none,

cov=ols) lc ly @determ @trend^3

computes the static OLS estimates with the usual OLS d.f. corrected coefficient covariance.

Cross-references

See Chapter 26. “Cointegrating Regression,” beginning on page 267 of the User’s Guide II for
a discussion of single equation cointegrating regression. See Chapter 46. “Panel Cointegra-

Equation::correl—79

tion Estimation,” beginning on page 973 of the User’s Guide II for discussion of estimation in
panel settings.

See “Vector Error Correction (VEC) Models” on page 726 of the User’s Guide II for a discus-
sion of VEC estimation.

See also Group::coint (p. 296).

View the estimated cointegration form and the long-run coefficients table of an ARDL esti-
mated equation.

This view is only available for non-panel equations estimated using the ARDL method.

Syntax
equation_name.cointrep

Examples
wfopen http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF5-

2.txt

equation eq02.ardl(deplags=3, reglags=3, fixed) log(realcons)

log(realgdp) @ @expand(@quarter, @droplast)

show eq02.cointrep

This example uses data from Greene (2008, page 685), containing quarterly US macroeco-
nomic variables between 1950 and 2000. The first line of this example downloads the data
set, the second line creates an equation object and estimates an ARDL model with the log of
real consumption as the dependent variable. Three lags of the dependent variable, and three
lags of the log of real GDP are used as dynamic regressors. Quarterly dummy variables are
included as static regressors.

The final line views the cointegration representation of the estimation, as well as the long-
run form of the coefficient estimates.

Cross-references

Display autocorrelation and partial correlations.

Displays the correlogram and partial correlation functions of the residuals of the equation,
together with the Q-statistics and p-values associated with each lag.

cointrep Equation Views

correl Equation Views

80—Chapter 1. Object Reference

Syntax
eq_name.correl(n, options)

You must specify the largest lag n to use when computing the autocorrelations.

Options

Examples
eq1.correl(24)

Displays the correlograms of the residuals of EQ1 for up to 24 lags.

Cross-references

See “Autocorrelations (AC)” on page 421 and “Partial Autocorrelations (PAC)” on page 422
of the User’s Guide I for a discussion of autocorrelation and partial correlation functions,
respectively.

See also Equation::correlsq (p. 80).

Correlogram of squared residuals.

Displays the autocorrelation and partial correlation functions of the squared residuals from
an estimated equation, together with the Q-statistics and p-values associated with each lag.

Syntax
equation_name.correlsq(n, options)

You must specify the largest lag n to use when computing the autocorrelations.

Options

Examples
eq1.correlsq(24)

displays the correlograms of the squared residuals of EQ1 up to 24 lags.

p Print the correlograms.

correlsq Equation Views

p Print the correlograms.

Equation::count—81

Cross-references

See “Autocorrelations (AC)” on page 421 and “Partial Autocorrelations (PAC)” on page 422
of the User’s Guide I for a discussion of autocorrelation and partial correlation functions,
respectively.

See also Equation::correl (p. 79).

Estimates models where the dependent variable is a nonnegative integer count.

Syntax
eq_name.count(options) y x1 [x2 x3...]

eq_name.count(options) specification

Follow the count keyword by the name of the dependent variable and a list of regressors or
provide a linear specification.

Options

count Equation Methods

d=arg
(default=“p”)

Likelihood specification: Poisson likelihood (“p”), normal
quasi-likelihood (“n”), exponential likelihood (“e”), nega-
tive binomial likelihood or quasi-likelihood (“b”).

v=positive_num
(default=1)

Specify fixed value for QML parameter in normal and nega-
tive binomial quasi-likelihoods.

optmethod = arg Optimization method: “bfgs” (BFGS); “newton” (Newton-
Raphson), “opg” or “bhhh” (OPG or BHHH), “legacy”
(EViews legacy).
Newton-Raphson is the default method.

optstep = arg Step method: “marquardt” (Marquardt); “dogleg” (Dog-
leg); “linesearch” (Line search).
Marquardt is the default method.

cov=arg Covariance method: “ordinary” (default method based on
inverse of the estimated information matrix), “huber” or
“white” (Huber-White sandwich methods)., “glm” (GLM
method)..

covinfo = arg Information matrix method: “opg” (OPG); “hessian”
(observed Hessian).
(Applicable when non-legacy “optmethod=”.)

82—Chapter 1. Object Reference

Examples

The command:

equation eq1.count(d=n,v=2,cov=glm) y c x1 x2

estimates a normal QML count model of Y on a constant, X1, and X2, with fixed variance
parameter 2, and GLM standard errors.

equation eq1.count arrest c job police

eq1.makeresids(g) res_g

estimates a Poisson count model of ARREST on a constant, JOB, and POLICE, and stores the
generalized residuals in the series RES_G.

equation eq1.count(d=p) y c x1

eq1.fit yhat

estimates a Poisson count model of Y on a constant and X1, and saves the fitted values (con-
ditional mean) in the series YHAT.

equation eq1.count(d=p, h) y c x1

estimates the same model with QML standard errors and covariances.

h Huber-White quasi-maximum likelihood (QML) standard
errors and covariances.
(Legacy option Applicable when “optmethod=legacy”).

g GLM standard errors and covariances.
(Legacy option Applicable when “optmethod=legacy”).

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

s Use the current coefficient values in “C” as starting values
(see also param (p. 463) of the Command and Program-
ming Reference).

s=number Specify a number between zero and one to determine start-
ing values as a fraction of the EViews default values (out of
range values are set to “s=1”).

prompt Force the dialog to appear from within a program.

p Print the result.

Equation::depfreq—83

Cross-references

See “Count Models” on page 377 of the User’s Guide II for additional discussion.

Displays the coefficient covariance decomposition table.

Syntax
equation_name.cvardecomp

Examples
equation e1.ls y c x

eq1.cvardecomp

creates and estimates an equation named E1, and then displays the coefficient covariance
decomposition table.

Cross-references

See “Coefficient Variance Decomposition” on page 180 of the User’s Guide II for a discus-
sion.

Dependent variable frequency table.

Displays the frequency table for the dependent variable in binary, count, and ordered equa-
tions.

Syntax
equation_name.depfreq(options)

Options

Examples
eq1.depfreq(p)

displays and prints the dependent variable frequency.

cvardecomp Equation Views

depfreq Equation Views

p Print the frequency table.

84—Chapter 1. Object Reference

Cross-references

See also “Views of Binary Equations” on page 339, “Views of Ordered Equations” on
page 354, and “Views of Count Models” on page 381 of the User’s Guide II.

See also Equation::means (p. 133).

Examine derivatives of the equation specification.

Display information about the derivatives of the equation specification in tabular, graphical,
or summary form.

The (default) summary form shows information about how the derivative of the equation
specification was computed, and will display the analytic expression for the derivative, or a
note indicating that the derivative was computed numerically.

You may optionally choose a tabular or graphical display of the derivatives. The tabular
form shows a spreadsheet view of the derivatives of the regression specification with respect
to each coefficient (for each observation). The graphical form of the view shows this infor-
mation in a multiple line graph.

Syntax
equation_name.derivs(options)

Options

Note that the “g” and “t” options may not be used at the same time.

Examples

To show a table view of the derivatives:

eq1.derivs(t)

To display and print the summary view:

eq1.derivs(p)

derivs Equation Views

t Display spreadsheet view of the values of the derivatives
with respect to the coefficients evaluated at each observa-
tion.

g Display multiple graphs showing the derivatives of the
equation specification with respect to the coefficients, eval-
uated at each observation.

p Print results.

Equation::displayname—85

Cross-references

See “Derivative Computation” on page 1093 of the User’s Guide II for details on the compu-
tation of derivatives.

See also Equation::makederivs (p. 125) for additional routines for examining deriva-
tives, and Equation::grads (p. 106), and Equation::makegrads (p. 127) for corre-
sponding routines for gradients.

Display table, graph, or spool output in the equation object window.

Display the contents of a table, graph, or spool in the window of the equation object.

Syntax
equation_name.display object_name

Examples
equation1.display tab1

Display the contents of the table TAB1 in the window of the object EQUATION1.

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

Display name for equation objects.

Attaches a display name to an equation which may be used to label output in place of the
standard equation object name.

Syntax
equation_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in equation object names.

Examples
eq1.displayname Hours Worked

eq1.label

display Equation Views

displayname Equation Procs

86—Chapter 1. Object Reference

The first line attaches a display name “Hours Worked” to the equation EQ1, and the second
line displays the label view of EQ1, including its display name.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Equation::label (p. 114).

Display the estimates of the fixed and/or random effects.

The effects view of a panel equation shows the estimates of the fixed and/or random
effects associated with the estimated equation. These effects are expressed as deviations
from the overall intercept displayed in the main equation output..

Syntax
eq_name.effects

Options

Examples
equation eq1.ls(cx=f) y c x1 x2

e1.effects

estimates the equation EQ1 with fixed effects, and displays a view showing the estimated
cross-section deviations from the overall intercept.

Cross-references

See Chapter 45. “Panel Estimation,” on page 917 of the User’s Guide II for a discussion of
panel equation estimation.

Performs the regressor endogeneity test

The endogtest view of an equation carries out the Regressor Endogeneity/Donald-Wu Test
for equations estimated via TSLS or GMM.

effects Equation Views

p Print view.

endogtest Equation Views

Equation::equation—87

Syntax
eq_name.endogtest regressors

Options

Regressors

A list of equation regressors to be tested for endogeneity. Note the regressors must have
been included in the original equation.

Examples
equation eq1.gmm y c x1 x2 @ z1 z2 z3 z4

e1.endogtest x1

estimates an equation, called EQ1, and estimates it via GMM, and then performs the Endog-
eneity Test, where X1 is tested for endogeneity.

Cross-references

See “Regressor Endogeneity Test” on page 93 of the User’s Guide II for a discussion.

Declare an equation object.

Syntax
equation eq_name

equation eq_name.method(options) specification

Follow the equation keyword with a name and an optional specification. If you wish to
enter the specification, you should follow the new equation name with a period, an estima-
tion method, and the equation specification. Valid estimation methods are given in “Equa-
tion Methods” on page 33. Refer to each method for a description of the available options.

Examples
equation cobdoug.ls log(y) c log(k) log(l)

declares and estimates an equation object named COBDOUG.

equation ces.ls log(y)=c(1)*log(k^c(2)+l^c(3))

declares an equation object named CES containing a nonlinear least squares specification.

equation demand.tsls q c p x @ x p(-1) gov

prompt Force the dialog to appear from within a program.

equation Equation Declaration

88—Chapter 1. Object Reference

creates an equation object named DEMAND and estimates DEMAND using two-stage least
squares with instruments X, lagged P, and GOV.

Cross-references

Chapter 19. “Basic Regression Analysis,” on page 5 of the User’s Guide II provides basic
information on estimation and equation objects.

Factor breakpoint test for stability.

Carries out a factor breakpoint test for parameter constancy.

Syntax
eq_name.facbreak(options) ser1 [ser2 ser3 ...] @ x1 x2 x3

You must provide one or more series to be used as the factors with which to split the sample
into categories. To specify more than one factor, separate the factors by a space. If the equa-
tion is specified by list and contains no nonlinear terms, you may specify a subset of the
regressors to be tested for a breakpoint after an “@” sign.

Options

Examples

The commands:

equation ppp.ls log(spot) c log(p_us) log(p_uk)

ppp.facbreak season

perform a regression of the log of SPOT on a constant, the log of P_US, and the log of P_UK,
and employ a factor breakpoint test to determine whether the parameters are stable through
the different values of SEASON.

To test whether only the constant term and the coefficient on the log of P_US are “stable”
enter the commands:

ppp.facbreak season @ c log(p_us)

Cross-references

See “Factor Breakpoint Test” on page 191 of the User’s Guide II for further discussion.

See also Equation::chow (p. 62), Equation::breaktest (p. 58), and Equation::rls
(p. 156).

facbreak Equation Views

p Print the result of the test.

Equation::fit—89

Compute static forecasts or fitted values from an estimated equation.

When the regressor contains lagged dependent values or ARMA terms, fit uses the actual
values of the dependent variable instead of the lagged fitted values. You may instruct fit to
compare the forecasted data to actual data, and to compute forecast summary statistics.

Not available for equations estimated using ordered methods; use Equation::makemodel
(p. 128) to create a model using the ordered equation results (see example below).

Syntax
eq_name.fit(options) yhat [y_se]

eq_name.fit(options) yhat [y_se y_var]

Following the fit keyword, you should type a name for the forecast series and, optionally, a
name for the series containing the standard errors. For ARCH specifications, you may use
the second form of the command, and optionally include a name for the conditional vari-
ance series.

Forecast standard errors are currently not available for binary, censored, and count models.

Options

fit Equation Procs

d In models with implicit dependent variables, forecast the
entire expression rather than the normalized variable.

u Substitute expressions for all auto-updating series in the
equation.

g Graph the fitted values together with the ±2 standard error
bands.

ga Graph the forecasts along with the actuals (if available).

e Produce the forecast evaluation table.

i Compute the fitted values of the index. Only for binary,
censored and count models.

s Ignore ARMA terms and use only the structural part of the
equation to compute the fitted values.

n Ignore coef uncertainty in standard error calculations that
use them.

90—Chapter 1. Object Reference

Examples
equation eq1.ls cons c cons(-1) inc inc(-1)

eq1.fit c_hat c_se

genr c_up=c_hat+2*c_se

genr c_low=c_hat-2*c_se

line cons c_up c_low

The first line estimates a linear regression of CONS on a constant, CONS lagged once, INC,
and INC lagged once. The second line stores the static forecasts and their standard errors as
C_HAT and C_SE. The third and fourth lines compute the +/- 2 standard error bounds. The
fifth line plots the actual series together with the error bounds.

equation eq2.binary(d=l) y c wage edu

eq2.fit yf

eq2.fit(i) xbeta

genr yhat = 1-@clogit(-xbeta)

The first line estimates a logit specification for Y with a conditional mean that depends on a
constant, WAGE, and EDU. The second line computes the fitted probabilities, and the third
line computes the fitted values of the index. The fourth line computes the probabilities from
the fitted index using the cumulative distribution function of the logistic distribution. Note
that YF and YHAT should be identical.

Note that you cannot fit values from an ordered model. You must instead solve the values
from a model. The following lines generate fitted probabilities from an ordered model:

equation eq3.ordered y c x z

eq3.makemodel(oprob1)

solve oprob1

The first line estimates an ordered probit of Y on a constant, X, and Z. The second line
makes a model from the estimated equation with a name OPROB1. The third line solves the
model and computes the fitted probabilities that each observation falls in each category.

f = arg
(default=
“actual”)

Out-of-fit-sample fill behavior: “actual” (fill observations
outside the fit sample with actual values for the fitted vari-
able), “na” (fill observations outside the fit sample with
missing values).

prompt Force the dialog to appear from within a program.

p Print view.

Equation::fixedtest—91

Cross-references

To perform dynamic forecasting, use Equation::forecast (p. 92). See Equa-
tion::makemodel (p. 128) and Model::solve (p. 452) for forecasting from systems of
equations or ordered equations.

See Chapter 23. “Forecasting from an Equation,” on page 147 of the User’s Guide II for a dis-
cussion of forecasting in EViews and Chapter 29. “Discrete and Limited Dependent Variable
Models,” on page 331 of the User’s Guide II for forecasting from binary, censored, truncated,
and count models.

Test joint significance of the fixed effects estimates.

Tests the hypothesis that the estimated fixed effects are jointly significant using and LR
test statistics. If the estimated specification involves two-way fixed effects, three separate
tests will be performed; one for each set of effects, and one for the joint effects.

Syntax
eq_name.fixedtest(options)

Options

Examples
equation eq1.ls(cx=f) sales c adver lsales

eq1.fixedtest

estimates a specification with cross-section fixed effects and tests whether the fixed effects
are jointly significant.

Cross-references

See “Fixed Effects Testing” on page 947 of the User’s Guide II for discussion.

See also Equation::rcomptest (p. 151) for testing random for random components.

fixedtest Equation Views

p Print output from the test.

F

92—Chapter 1. Object Reference

Computes (n-period ahead) dynamic forecasts of an estimated equation.

forecast computes the forecast for all observations in a specified sample. In some settings,
you may instruct forecast to compare the forecasted data to actual data, and to compute
summary statistics.

Syntax
eq_name.forecast(options) yhat [y_se]

eq_name.forecast(options) yhat [y_se y_var]

Enter a name for the forecast series and, optionally, a name for the series containing the
standard errors. For ARCH specifications, you may use the second form of the command,
and optionally enter a name for the conditional variance series. Forecast standard errors are
currently not available for binary or censored models. forecast is not available for models
estimated using ordered methods.

Options

forecast Equation Procs

d In models with implicit dependent variables, forecast the
entire expression rather than the normalized variable.

u Substitute expressions for all auto-updating series in the
equation.

g Graph the forecasts together with the ±2 standard error
bands.

ga Graph the forecasts along with the actuals (if available).

e Produce the forecast evaluation table.

i Compute the forecasts of the index. Only for binary, cen-
sored and count models.

s Ignore ARMA terms and use only the structural part of the
equation to compute the forecasts.

n Ignore coef uncertainty in standard error calculations that
use them.

b =arg MA backcast method: “fa” (forecast available). Only for
equations estimated with MA terms. This option is ignored
if you specify the “s” (structural forecast) option.
The default method uses the estimation sample.

Equation::forecast—93

Examples

The following lines:

smpl 1970q1 1990q4

equation eq1.ls con c con(-1) inc

smpl 1991q1 1995q4

eq1.fit con_s

eq1.forecast con_d

plot con_s con_d

estimate a linear regression over the period 1970Q1–1990Q4, compute static (fitted) and
dynamic forecasts for the period 1991Q1–1995Q4, and plot the two forecasts in a single
graph.

equation eq1.ls m1 gdp ar(1) ma(1)

eq1.forecast m1_bj bj_se

eq1.forecast(s) m1_s s_se

plot bj_se s_se

estimates an ARMA(1,1) model, computes the forecasts and standard errors with and with-
out the ARMA terms, and plots the two forecast standard errors.

Cross-references

To perform static forecasting with equation objects see Equation::fit (p. 89). For multi-
ple equation forecasting, see Equation::makemodel (p. 128), and Model::solve
(p. 452).

For more information on equation forecasting in EViews, see Chapter 23. “Forecasting from
an Equation,” on page 147 of the User’s Guide II.

f = arg
(default=
“actual”)

Out-of-forecast-sample fill behavior: “actual” (fill observa-
tions outside the forecast sample with actual values for the
fitted variable), “na” (fill observations outside the forecast
sample with missing values).

stochastic Perform stochastic simulation for dynamic equations esti-
mated using least squares.

streps=integer
(default=1000)

Number of stochastic repetitions (for threshold regression
or stochastic simulation).

stfrac=number
(default=.02)

Fraction of failed repetitions before stopping (for threshold
regression or stochastic simulation).

prompt Force the dialog to appear from within a program.

p Print view.

94—Chapter 1. Object Reference

Conditional variance/covariance of (G)ARCH estimation.

Displays the conditional variance, covariance or correlation of an equation estimated by
ARCH.

Syntax
eq_name.garch(options)

Options

Examples
equation eq1.arch sp500 c

eq1.garch

estimates a GARCH(1,1) model and displays the estimated conditional standard deviation
graph.

eq1.garch(v, p)

displays and prints the estimated conditional variance graph.

Cross-references

ARCH estimation is described in Chapter 25. “ARCH and GARCH Estimation,” on page 243
of the User’s Guide II.

Estimate a Generalized Linear Model (GLM).

Syntax
eq_name.glm(options) spec

List the glm keyword, followed by the dependent variable and a list of the explanatory vari-
ables, or an explicit linear expression.

garch Equation Views

v Display conditional variance graph instead of the standard
deviation graph.

p Print the graph

glm Equation Methods

Equation::glm—95

If you enter an explicit linear specification such as “Y=C(1)+C(2)*X”, the response vari-
able will be taken to be the variable on the left-hand side of the equality (“Y”) and the linear
predictor will be taken from the right-hand side of the expression (“C(1)+C(2)*X”).

Offsets may be entered directly in an explicit linear expression or they may be entered as
using the “offset=” option.

Specification Options

family=arg
(default=“normal”)

Distribution family: Normal (“normal”), Poisson (“pois-
son”), Binomial Count (“binomial”), Binomial Proportion
(“binprop”), Negative Binomial (“negbin”), Gamma
(“gamma”), Inverse Gaussian (“igauss”), Exponential
Mean (“emean)”, Power Mean (“pmean”), Binomial
Squared (“binsq”).
The Binomial Count, Binomial Proportion, Negative Bino-
mial, and Power Mean families all require specification of a
distribution parameter:

n=arg (default=1) Number of trials for Binomial Count (“family=binomial”)
or Binomial Proportions (“family=binprop”) families.

fparam=arg Family parameter value for Negative Binomial (“fam-
ily=negbin”) and Power Mean (“family=pmean”) fami-
lies.

link=arg
(default=“identity”)

Link function: Identity (“identity”), Log (“log”), Log Com-
pliment (“logc”), Logit (“logit”), Probit (“probit”), Log-log
(“loglog”), Complementary Log-log (“cloglog”), Reciprocal
(“recip”), Power (“power”), Box-Cox (“boxcox”), Power
Odds Ratio (“opow”), Box-Cox Odds Ratio (“obox”).
The Power, Box-Cox, Power Odds Ratio, and Box-Cox Odds
Ratio links all require specification of a link parameter
specified using “lparam=”.

lparam=arg Link parameter for Power (“link=power”), Box-Cox
(“link=boxcox”), Power Odds Ratio (“link=opow”) and
Box-Cox Odds Ratio (“link=obox”) link functions.

offset=arg Offset terms.

96—Chapter 1. Object Reference

In addition to the specification options, there are options for estimation and covariance cal-
culation.

Additional Options

disp=arg Dispersion estimator: Pearson statistic (“pearson”),
deviance statistic (“deviance”), unit (“unit”), user-speci-
fied (“user”).
The default is family specific: “unit” for Binomial Count,
Binomial Proportion, Negative Binomial, and Poison, and
“pearson” for all others.
The “deviance” option is only offered for families in the
exponential family of distributions (Normal, Poisson, Bino-
mial Count, Binomial Proportion, Negative Binomial,
Gamma, Inverse Gaussian).

dispval=arg User-dispersion value (if “disp=user”).

fwgts=arg Frequency weights.

w=arg Weight series or expression.

wtype=arg
(default=“istdev”)

Weight specification type: inverse standard deviation (“ist-
dev”), inverse variance (“ivar”), standard deviation
(“stdev”), variance (“var”).

wscale=arg Weight scaling: EViews default (“eviews”), average
(“avg”), none (“none”).
The default setting depends upon the weight type:
“eviews” if “wtype=istdev”, “avg” for all others.

optmethod = arg Optimization method: “bfgs” (BFGS); “newton” (Newton-
Raphson), “opg” or “bhhh” (OPG or BHHH), “fisher” (IRLS
– Fisher Scoring), “legacy” (EViews legacy).
Newton-Raphson is the default method.

optstep = arg Step method: “marquardt” (Marquardt); “dogleg” (Dog-
leg); “linesearch” (Line search).
Marquardt is the default method.

estmeth=arg
(default=”mar-
quardt”)

Legacy estimation algorithm: Quadratic Hill Climbing
(“marquardt”), Newton-Raphson (“newton”), IRLS - Fisher
Scoring (“irls”), BHHH (“bhhh”).
(Applicable when “optmethod=legacy”.)

m=integer Set maximum number of iterations.

x
2

Equation::glm—97

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

s Use the current coefficient values in estimator coefficient
vector as starting values (see also param (p. 463) in the
Command and Programming Reference).

s=number Specify a number between zero and one to determine start-
ing values as a fraction of EViews default values (out of
range values are set to “s=1”).

showopts / -showopts [Do / do not] display the starting coefficient values and
estimation options in the estimation output.

preiter=arg
(default=0)

Number of IRLS pre-iterations to refine starting values
(only available for non-IRLS estimation).

cov=arg Covariance method: “ordinary” (default method based on
inverse of the estimated information matrix), “huber” or
“white” (Huber-White sandwich method), “glm” (GLM
method).

covinfo = arg Information matrix method: “opg” (OPG); “hessian”
(observed Hessian), “fisher” (expected Hessian).
(Applicable when “optmethod=” not equal to “legacy”.

nodf Do not degree-of-freedom correct the coefficient covariance
estimate.

covlag=arg
(default=1)

Whitening lag specification: integer (user-specified lag
value), “a” (automatic selection).
Applicable where “cov=hac”.

covinfosel=arg
(default=”aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“lag=a”).
For settings where “cov=hac, covlag=a”.

covmaxlag=integer Maximum lag-length for automatic selection (optional) (if
“lag=a”). The default is an observation-based maximum
of .
For settings where “cov=hac, covlag=a”.

T1 3e

98—Chapter 1. Object Reference

Examples
equation eqstrike.glm(link=log) numb c ip feb

estimates a normal regression model with exponential mean.

equation eqbinom.glm(family=binomial, n=total) disease c snore

estimates a binomial count model with default logit link where TOTAL contains the number
of binomial trials and DISEASE is the number of binomial successes. The specification

equation eqbinom.glm(family=binprop, n=total, cov=huber, nodf)

disease/total c snore

covkern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniel), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen).
For settings where “cov=hac”.

covbw=arg
(default=“fixednw”)

Kernel Bandwidth: “fixednw” (Newey-West fixed),
“andrews” (Andrews automatic), “neweywest” (Newey-
West automatic), number (User-specified bandwidth).
For settings where “cov=hac” and “covkern=” is speci-
fied.

covnwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric kernel bandwidth selection (if “covbw=newey-
west”).
For settings where “cov=hac” and “covkern=” is speci-
fied.

covbwoffset=number Apply offset to automatically selected bandwidth.
For settings where “cov=hac”, “covkern=” is specified,
and “covbw=” is not user-specified.

covbwint Use integer portion of kernel bandwidth.
For settings where “cov=hac” and “covkern=” is speci-
fied.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

prompt Force the dialog to appear from within a program.

p Print results.

Equation::gmm—99

estimates the same specification in proportion form, and computes the coefficient covari-
ance using the Huber-White sandwich with no d.f. correction.

equation eqprate.glm(family=binprop, disp=pearson) prate mprate

log(totemp) log(totemp)^2 age age^2 sole

estimates a binomial proportions model with default logit link, but computes the coefficient
covariance using the GLM scaled covariance with dispersion computed using the Pearson
Chi-square statistic.

equation eqprate.glm(family=binprop, link=probit, cov=huber) prate

mprate log(totemp) log(totemp)^2 age age^2 sole

estimates the same basic specification, but with a probit link and Huber-White standard
errors.

equation testeq.glm(family=poisson, offset=log(pyears)) los hmo

white type2 type3 c

estimates a Poisson specification with an offset term LOG(PYEARS).

Cross-references

See Chapter 30. “Generalized Linear Models,” beginning on page 391 of the User’s Guide II
for discussion.

Estimation by generalized method of moments (GMM).

The equation object must be specified with a list of instruments.

Syntax
eq_name.gmm(options) y x1 [x2 x3...] @ z1 [z2 z3...]

eq_name.gmm(options) specification @ z1 [z2 z3...]

Follow the name of the dependent variable by a list of regressors, followed by the “@” sym-
bol, and a list of instrumental variables which are orthogonal to the residuals. Alternatively,
you can specify an expression using coefficients, an “@” symbol, and a list of instrumental
variables. There must be at least as many instrumental variables as there are coefficients to
be estimated.

In panel settings, you may specify dynamic instruments corresponding to predetermined
variables. To specify a dynamic instrument, you should tag the instrument using “@DYN”,
as in “@DYN(X)”. By default, EViews will use a set of period-specific instruments corre-
sponding to lags from -2 to “-infinity”. You may also specify a restricted lag range using argu-
ments in the “@DYN” tag. For example, to use lags from-5 to “-infinity” you may enter
“@DYN(X, -5)”; to specify lags from -2 to -6, use “@DYN(X, -2, -6)” or “@DYN(X, -6, -2)”.

gmm Equation Methods

100—Chapter 1. Object Reference

Note that dynamic instrument specifications may easily generate excessively large numbers
of instruments.

Options
Non-Panel GMM Options

Basic GMM Options

nocinst Do not include automatically a constant as an instrument.

method=keyword Set the weight updating method. keyword should be one of
the following: “nstep” (N-Step Iterative, or Sequential N-
Step Iterative, default), “converge” (Iterate to Convergence
or Sequential Iterate to Convergence), “simul” (Simultane-
ous Iterate to Convergence), “oneplusone” (One-Step
Weights Plus One Iteration), or “cue” (Continuously Updat-
ing”.

gmmiter=integer Number of weight iterations. Only applicable if the
“method=nstep” option is set.

w=arg Weight series or expression.

wtype=arg
(default=“istdev”)

Weight specification type: inverse standard deviation (“ist-
dev”), inverse variance (“ivar”), standard deviation
(“stdev”), variance (“var”).

wscale=arg Weight scaling: EViews default (“eviews”), average
(“avg”), none (“none”).
The default setting depends upon the weight type:
“eviews” if “wtype=istdev”, “avg” for all others.

m=integer Maximum number of iterations.

s Use the current coefficient values in estimator coefficient
vector as starting values for equations specified by list (see
also param (p. 463) of the Command and Programming
Reference).

s=number Determine starting values for equations specified by list.
Specify a number between zero and one representing the
fraction of preliminary TSLS estimates computed without
AR or MA terms to be used. Note that out of range values
are set to “s=1”. Specifying “s=0” initializes coefficients
to zero. By default EViews uses “s=1”.
Does not apply to coefficients for AR and MA terms which
are instead set to EViews determined default values.

c=number Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

Equation::gmm—101

Estimation Weighting Matrix Options

l=number Set maximum number of iterations on the first-stage itera-
tion to get the one-step weighting matrix.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv / -fastderiv [Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

showopts / -showopts [Do / do not] display the starting coefficient values and
estimation options in the estimation output.

prompt Force the dialog to appear from within a program.

p Print results.

instwgt=keyword Set the estimation weighting matrix type. Keyword should
be one of the following: “tsls” (two-stage least squares),
“white” (White diagonal matrix), “hac” (Newey-West HAC,
default) or “user” (user defined).

instwgtmat=name Set the name of the user-defined estimation weighting
matrix. Only applicable if the “instwgt=user” option is set.

instlag=arg
(default=1)

Whitening Lag specification: integer (user-specified lag
value), “a” (automatic selection).

instinfosel=arg
(default=“aic”)

Information criterion for automatic whitening lag selection:
“aic” (Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“instlag=a”).

instmaxlag= integer Maximum lag-length for automatic selection (optional) (if
“instlag=a”). The default is an observation-based maxi-
mum of .

instkern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniell), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen).

instbw=arg
(default=“fixednw”)

Kernel Bandwidth: “fixednw” (Newey-West fixed),
“andrews” (Andrews automatic), “neweywest” (Newey-
West automatic), number (User-specified bandwidth).

T1 3e

102—Chapter 1. Object Reference

Covariance Options

instnwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric bandwidth selection (if “instbw=neweywest”).

instbwoffset=integer
(default=0)

Apply integer offset to bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

instbwint Use integer portion of bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

cov=keyword Covariance weighting matrix type (optional): “updated”
(estimation updated), “tsls” (two-stage least squares),
“white” (White diagonal matrix), “hac” (Newey-West
HAC), “wind” (Windmeijer) or “user” (user defined).
The default is to use the estimation weighting matrix.

nodf Do not perform degree of freedom corrections in computing
coefficient covariance matrix. The default is to use degree
of freedom corrections.

covwgtmat=name Set the name of the user-definied covariance weighting
matrix. Only applicable if the “covwgt=user” option is set.

covlag=arg
(default=1)

Whitening lag specification: integer (user-specified lag
value), “a” (automatic selection).

covinfosel=arg
(default=”aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“lag=a”).

covmaxlag=integer Maximum lag-length for automatic selection (optional) (if
“lag=a”). The default is an observation-based maximum
of .

covkern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniel), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen).

covbw=arg
(default=“fixednw”)

Kernel Bandwidth: “fixednw” (Newey-West fixed),
“andrews” (Andrews automatic), “neweywest” (Newey-
West automatic), number (User-specified bandwidth).

T1 3e

Equation::gmm—103

Panel GMM Options

covnwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric kernel bandwidth selection (if “covbw=newey-
west”).

covbwoffset=integer
(default=0)

Apply integer offset to bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

covbwint Use integer portion of bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

cx=arg Cross-section effects method: (default) none, fixed effects
estimation (“cx=f”), first-difference estimation (“cx=fd”),
orthogonal deviation estimation (“cx=od”)

per=arg Period effects method: (default) none, fixed effects estima-
tion (“per=f”).

levelper Period dummies always specified in levels (even if one of
the transformation methods is used, “cx=fd” or “cx=od”).

wgt=arg GLS weighting: (default) none, cross-section system
weights (“wgt=cxsur”), period system weights
(“wgt=persur”), cross-section diagonal weighs
(“wgt=cxdiag”), period diagonal weights (“wgt=per-
diag”).

gmm=arg GMM weighting: 2SLS (“gmm=2sls”), White period sys-
tem covariances (Arellano-Bond 2-step/n-step)
(“gmm=perwhite”), White cross-section system
(“gmm=cxwhite”), White diagonal
(“gmm=stackedwhite”), Period system (“gmm=persur”),
Cross-section system (“gmm=cxsur”), Period heteroske-
dastic (“cov=perdiag”), Cross-section heteroskedastic
(“gmm=cxdiag”).
By default, uses the identity matrix unless estimated with
first difference transformation (“cx=fd”), in which case,
uses (Arellano-Bond 1-step) difference weighting matrix. In
this latter case, you should specify 2SLS weights
(“gmm=2sls”) for Anderson-Hsiao estimation.

cov=arg Coefficient covariance method: (default) ordinary, White
cross-section system robust (“cov=cxwhite”), White
period system robust (“cov=perwhite”), White heteroske-
dasticity robust (“cov=stackedwhite”), Cross-section sys-
tem robust/PCSE (“cov=cxsur”), Period system robust/
PCSE (“cov=persur”), Cross-section heteroskedasticity
robust/PCSE (“cov=cxdiag”), Period heteroskedasticity
robust (“cov=perdiag”).

104—Chapter 1. Object Reference

keepwgts Keep full set of GLS/GMM weights used in estimation with
object, if applicable (by default, only weights which take
up little memory are saved).

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

iter=arg
(default=“onec”)

Iteration control for GLS and GMM weighting specifica-
tions: perform one weight iteration, then iterate coefficients
to convergence (“iter=onec”), iterate weights and coeffi-
cients simultaneously to convergence (“iter=sim”), iterate
weights and coefficients sequentially to convergence
(“iter=seq”), perform one weight iteration, then one coef-
ficient step (“iter=oneb”).

s Use the current coefficient values in estimator coefficient
vector as starting values for equations specified by list (see
also param (p. 463) of the Command and Programming
Reference).

s=number Determine starting values for equations specified by list.
Specify a number between zero and one representing the
fraction of preliminary TSLS estimates computed without
AR terms to be used. Note that out of range values are set
to “s=1”. Specifying “s=0” initializes coefficients to zero.
By default EViews uses “s=1”.
Does not apply to coefficients for AR terms which are
instead set to EViews determined default values.

m=integer Maximum number of iterations.

c=number Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

l=number Set maximum number of iterations on the first-stage itera-
tion to get the one-step weighting matrix.

unbalsur Compute SUR factorization in unbalanced data using the
subset of available observations for a cluster.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

showopts / -showopts [Do / do not] display the starting coefficient values and
estimation options in the estimation output.

Equation::gmm—105

Note that some options are only available for a subset of specifications.

Examples

In a non-panel workfile, we may estimate equations using the standard GMM options. The
specification:

gmmc.gmm(instwgt=white,gmmiter=2,nodf) cons c y y(-1) w @ c p(-1)

k(-1) x(-1) tm wg g t

estimates the Klein equation for consumption using GMM with a White diagonal weighting
matrix (two steps and no degree of freedom correction). The command:

gmmi.gmm(method=cue,instwgt=hac,instlag=1,instkern=thann,instbw=an

drews,nodf) i c y y(-1) k(-1) @ c p(-1) k(-1) x(-1) tm wg g t

estimates the Klein equation for investment using a Newey-West HAC weighting matrix,
with pre-whitening with 1 lag, a Tukey-Hanning kernel and the Andrews automatic band-
width routine. The estimation is performed using continuously updating weight iterations.

When working with a workfile that has a panel structure, you may use the panel equation
estimation options. The command

eq.gmm(cx=fd, per=f) dj dj(-1) @ @dyn(dj)

estimates an Arellano-Bond “1-step” estimator with differencing of the dependent variable
DJ, period fixed effects, and dynamic instruments constructed using DJ with observation
specific lags from period to 1.

To perform the “2-step” version of this estimator, you may use:

eq.gmm(cx=fd, per=f, gmm=perwhite, iter=oneb) dj dj(-1) @ @dyn(dj)

where the combination of the options “gmm=perwhite” and (the default) “iter=oneb”
instructs EViews to estimate the model with the difference weights, to use the estimates to
form period covariance GMM weights, and then re-estimate the model.

You may iterate the GMM weights to convergence using:

eq.gmm(cx=fd, per=f, gmm=perwhite, iter=seq) dj dj(-1) @ @dyn(dj)

Alternately:

eq.gmm(cx=od, gmm=perwhite, iter=oneb) dj dj(-1) x y @ @dyn(dj,-2,-

6) x(-1) y(-1)

showopts / -showopts [Do / do not] display the starting coefficient values and
estimation options in the estimation output.

prompt Force the dialog to appear from within a program.

p Print results.

t 2–

106—Chapter 1. Object Reference

estimates an Arellano-Bond “2-step” equation using orthogonal deviations of the dependent
variable, dynamic instruments constructed from DJ from period to , and ordi-
nary instruments X(-1) and Y(-1).

Cross-references

See “Generalized Method of Moments” on page 81 and Chapter 45. “Panel Estimation,” on
page 917 of the User’s Guide II for discussion of the various GMM estimation techniques.

See also Equation::tsls (p. 174).

Gradients of the objective function.

Displays the gradients of the objective function. Evaluating the gradients at current coeffi-
cient values allows you to examine the behavior of the objective function at starting values.

The (default) summary form shows the value of the gradient vector at the estimated param-
eter values (if valid estimates exist) or at the current coefficient values.

You may optionally choose to display the results in tabular or graphical form. The tabular
form shows a spreadsheet view of the gradients for each observation. The graphical form
shows this information in a multiple line graph.

Syntax
equation_name.grads(options)

Options

Examples

To show a summary view of the gradients:

eq1.grads

To display and print the table view:

eq1.grads(t, p)

grads Equation Views

t Display spreadsheet view of the values of the gradients of
the objective function with respect to the coefficients eval-
uated at each observation.

g Display multiple graph showing the gradients of the objec-
tive function with respect to the coefficients evaluated at
each observation.

p Print results.

t 6– t 2–

Equation::heckit—107

Cross-references

See also Equation::derivs (p. 84), Equation::makederivs (p. 125), and Equa-
tion::makegrads (p. 127).

Estimate a selection equation using the Heckman ML or 2-step method.

Syntax
equation_name.heckit(options) response_eqn @ selection_eqn

The response equation should be the dependent variable followed by a list of regressors. The
selection equation should be a binary dependent variable followed by a list of regressors.

Options

General Options

ML Options

Note these options are not available if the "2step" option, above, is used.

heckit Equation Methods

2step Use the Heckman 2-step estimation method. Note that this
option is incompatible with the maximum likelihood
options below.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

prompt Force the dialog to appear from within a program.

p Print the estimation results.

optmethod =
arg

Optimization method: “bfgs” (BFGS); “newton” (Newton-
Raphson), “opg” or “bhhh” (OPG or BHHH), “legacy”
(EViews legacy).
Newton-Raphson is the default method.

optstep = arg Step method: “marquardt” (Marquardt); “dogleg” (Dog-
leg); “linesearch” (Line search).
Marquardt is the default method.

cov=arg Covariance method: “ordinary” (default method based on
inverse of the estimated information matrix), “huber” or
“white” (Huber-White sandwich methods).,

108—Chapter 1. Object Reference

Examples
wfopen http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF5-

1.txt

equation eq01.heckit ww c ax ax^2 we cit @ lfp c wa wa^2 faminc we

(k618+kl6)>0

equation eq02.heckit(2step) ww c ax ax^2 we cit @ lfp c wa wa^2

faminc we (k618+kl6)>0

This example replicates the Heckman Selection example given in Greene (2008, page 888),
which uses data from the Mroz (1987) study to estimate a selection model. The first line of
this example downloads the data set, the second line creates an equation object and esti-
mates it using the default maximum likelihood estimation method of Heckman Selection,
which replicates the first pane of Table 24.3 in Greene. The third line estimates the same
model, using the two-step approach, which replicates the second pane of Table 24.3.

Cross-references

Test for Heteroskedasticity.

Performs a test for heteroskedasticity among the residuals from an equation.

The test performed can be a Breusch-Pagan-Godfrey (the default option), Harvey, Glejser,
ARCH or White style test.

Syntax
equation_name.hettest(options) variables

covinfo = arg Information matrix method: “opg” (OPG); “hessian”
(observed Hessian).
(Applicable when non-legacy “optmethod=”.)

m=integer Set maximum number of iterations.

c=number Set convergence criteria.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

s=number Scale EViews’ starting values by number.

r Use Newton-Raphson optimizer.

b Use BHHH optimizer.

hettest Equation Views

Equation::hettest—109

Options

Variables

A list of series names to be included in the auxiliary regression. Not applicable for ARCH or
White type tests. The following keywords may be included:

Examples
eq1.hettest(type=harvey) @white(@regs @drop(log(ip)))

performs a heteroskedasticity test with an auxiliary regression of the log of squared residuals
on the cross product of all the original equation’s variables, except LOG(IP).

type = keyword where keyword is either “BPG” (Breusch-Pagan-Godfrey -
default), “Harvey”, “Glejser”, “ARCH”, or “White”.

c include cross terms for White test.

lags = int set number of lags to use for ARCH test. (Only applies
when type = “ARCH”.

prompt Force the dialog to appear from within a program.

@regs include every regressor from the original equation.

@grads include every gradient in the original equation (non-linear
equations only).

@grad(int) include the int-th gradient.

@white(key) include white-style regressors (the cross-product of the
regressor list, or the gradient list if non-linear). key may be
on of the following keywords: “@regs” (include every
regressor from the original equation), “@drop(variables)”
(drop a variable from those already included. For example,
“@white(@regs @drop(x2))” would include all original
regressors apart from X2), “@comp” (include the compati-
ble style White regressors, i.e. levels, squares, and cross-
products).

@arch(lag_-
structure)

include an ARCH specification with the number of lags
specified by lag_structure. If lag_structure is a single num-
ber, then it defines the number of lags to include. Other-
wise, the lag structure is in pairs. For example, “@arch(1 5
9 10)” will include lags 1, 2, 3, 4, 5, 9, 10.

@uw(variables) include unweighted variables (only applicable in a
weighted original equation).

110—Chapter 1. Object Reference

Cross-references

See “Heteroskedasticity Tests,” beginning on page 197 of the User’s Guide II for a discussion
of heteroskedasticity testing in EViews.

Histogram and descriptive statistics of the residual series of an equation.

Syntax
equation_name.hist(options)

Options

Examples
eq1.hist

Displays the histogram and descriptive statistics of the residual series of equation EQ1.

Cross-references

See “Histogram and Stats” on page 402 of the User’s Guide I for a discussion of the descrip-
tive statistics reported in the histogram view.

selection method) for each of the models estimates.

Display a graph of the selection criteria for the top 20 models observed as part of model
selection during estimation.

This view is only available for equations estimated using the ARDL or TAR methods.

Syntax
equation_name.icgraph

Examples
wfopen http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF5-

2.txt

equation eq01.ardl(deplags=8, reglags=8) log(realcons)

log(realgdp) @ @expand(@quarter, @droplast)

show eq01.icgraph

hist Equation Views

p Print the histogram.

icgraph Equation Views

Equation::ictable—111

This example uses data from Greene (2008, page 685), containing quarterly US macroeco-
nomic variables between 1950 and 2000. The first line of this example downloads the data
set, the second line creates an equation object and estimates an ARDL model with the log of
real consumption as the dependent variable, and the log of real GDP as a dynamic regressor.
Quarterly dummy variables are included as static regressors. Automatic model selection is
used.

The final line of code displays a graph showing the Akaike information criteria (the default
selection method) for each of the models estimates.

Cross-references

See “Autoregressive Distributed Lag (ARDL) Models,” beginning on page 295e and “Discrete
Threshold Regression,” beginning on page 461 of User’s Guide II for further discussion.

Display a table of the log-likelihood and selection criteria for the top 20 models observed as
part of model selection during estimation.

This view is only available for equations estimated using the ARDL or TAR methods.

Syntax
equation_name.ictable

Examples
wfopen http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF5-

2.txt

equation eq01.ardl(deplags=8, reglags=8) log(realcons)

log(realgdp) @ @expand(@quarter, @droplast)

show eq01.ictable

This example uses data from Greene (2008, page 685), containing quarterly US macroeco-
nomic variables between 1950 and 2000. The first line of this example downloads the data
set, the second line creates an equation object and estimates an ARDL model with the log of
real consumption as the dependent variable, and the log of real GDP as a dynamic regressor.
Quarterly dummy variables are included as static regressors. Automatic model selection is
used.

The final line of code displays a table showing the log-likelihood value, Akaike information
criteria, Schwarz information criteria, the Hannan-Quinn criteria and the adjusted R-squared
of the top 20 models.

ictable Equation Views

112—Chapter 1. Object Reference

Cross-references

See “Autoregressive Distributed Lag (ARDL) Models,” beginning on page 295 and “Discrete
Threshold Regression” on page 461 of User’s Guide II for further discussion.

Scaled difference in the estimated betas for influence statistics.

DFBETAS are the scaled difference in the estimated betas between the original equation and
an equation estimated without that observation.

Syntax
equation_name.infbetas(options) [base_name]

where base_name is an optional naming suffix used to store the DFBETAS into the workfile.

Options

Examples
equation eq1.ls y c x z

eq1.infbetas

displays a graph of the DFBETAS corresponding to the coefficients for C, X, and Z.

eq1.infbetas(t) out

will display a table showing the first 150 rows of DFBETAs in table form and saves the
results in the series COUT, XOUT and ZOUT.

Cross-references

See also “Influence Statistics” on page 231 of the User’s Guide II. See also Equation::inf-
stats (p. 113).

infbetas Equation Views

t Show a table of the statistics (the default is to display a
graph view of the specified statistics).

rows = key The number of observations/rows to display in the table,
where key can be either “50”, “100” (default), “150”, or
“200”.

g=arg arg is the name of an object in which the graph output
will be saved.

prompt Force the dialog to appear from within a program.

Equation::infstats—113

Influence statistics.

Displays influence statistics to discover influential observations, or outliers.

Syntax
equation_name.infstats(options)

equation_name.infstats(options) stats_list [@ save_names]

If no stats_list is provided all of the statistics will be displayed. save_names is an optional
list of names for storing the statistics into series in the workfile. The save_names should
match the order in which the keywords in stats_list are entered.

Options

The stats_list parameter is a list of keywords indicating which statistics to display. It may
take on the values:

infstats Equation Views

t Show a table of the statistics (the default is to display a
graph view of the specified statistics).

rows = key The number of observations/rows to display in the table,
where key can be either “50”, “100” (default), “150”, or
“200”.

sort = key Sort order for the table, where key can be “r” (Residual -
default), “rs” (RStudent), “df” (DFFITS), “dr” (Dropped
Residual), “cov” (COVRATIO), “h” (diagonal elements of
the hat matrix).

sortdisp Display the table by the sort order rather than by the obser-
vation order.

prompt Force the dialog to appear from within a program.

rstudent The studentized residual: the t-statistic on a dummy vari-
able that is equal to 1 on that observation only.

dffits The scaled difference in fitted values.

drresid Dropped residual: the estimated residual for that observa-
tion had the equation been run without that observation.

covratio The ratio of the covariance matrix of the coefficients with
and without that observation.

hatmatrix Diagonal elements of the hat matrix: xic XcX� � 1– xi

114—Chapter 1. Object Reference

Examples
eq1.infstats(t, rows=150, sort=rs) rstudent covratio dffits @

rstuds covs

will display a table showing the 150 largest RSTUDENT statistics, along with the corre-
sponding COVRATIO and DFFITS statistics. It will save the RSTUDENT and COVRATIO sta-
tistics into the series in the workfile named RSTUDS and COVS, respectively.

Cross-references

See also “Influence Statistics” on page 231 of the User’s Guide II. See also Equation::inf-
betas (p. 112).

Shows a summary of the equation instruments.

Changes the view of the equation to the Instrument Summary view. Note this is only avail-
able for equations estimated by TSLS, GMM, or LIML.

Syntax
eq_name.instsum

Examples
equation eq1.tsls sales c adver lsales @ gdp unemp int

e1.instsum

creates an equation E1 and estimates it via two-stage least squares, then shows a summary
of the instruments used in estimation.

Cross-references

See “Instrument Summary” on page 92 of the User’s Guide II for discussion.

Display or change the label view of an equation, including the last modified date and dis-
play name (if any).

As a procedure, label changes the fields in the equation label.

Syntax
equation_name.label

equation_name.label(options) [text]

instsum Equation Views

label Equation Views | Equation Procs

Equation::liml—115

Options

The first version of the command displays the label view of the equation. The second ver-
sion may be used to modify the label. Specify one of the following options along with
optional text. If there is no text provided, the specified field will be cleared.

Examples

The following lines replace the remarks field of EQ1 with “Data from CPS 1988 March File”:

eq1.label(r)

eq1.label(r) Data from CPS 1988 March File

To append additional remarks to EQ1, and then to print the label view:

eq1.label(r) Log of hourly wage

eq1.label(p)

To clear and then set the units field, use:

eq1.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels.

See also Equation::displayname (p. 85).

Limited Information Maximum Likelihood and K-class Estimation.

Syntax
eq_name.liml(options) y c x1 [x2 x3 ...] @ z1 [z2 z3 ...]

eq_name.liml(options) specification @ z1 [z2 z3 ...]

To use the liml command, list the dependent variable first, followed by the regressors, then
any AR or MA error specifications, then an “@”-sign, and finally, a list of exogenous instru-
ments.

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

liml Equation Methods

116—Chapter 1. Object Reference

You may estimate nonlinear equations or equations specified with formulas by first provid-
ing a specification, then listing the instrumental variables after an “@”-sign. There must be
at least as many instrumental variables as there are independent variables. All exogenous
variables included in the regressor list should also be included in the instrument list. A con-
stant is included in the list of instrumental variables, unless the noconst option is specified.

Options

noconst Do not include a constant in the instrumental list. Without
this option, a constant will always be included as an instru-
ment, even if not specified explicitly.

w=arg Weight series or expression.

wtype=arg
(default=“istdev”)

Weight specification type: inverse standard deviation
(“istdev”), inverse variance (“ivar”), standard deviation
(“stdev”), variance (“var”).

wscale=arg Weight scaling: EViews default (“eviews”), average
(“avg”), none (“none”).
The default setting depends upon the weight type:
“eviews” if “wtype=istdev”, “avg” for all others.

kclass=number Set the value of in the K-class estimator. If omitted, LIML
is performed, and is calculated as part of the estimation
procedure.

se = arg
(default=“iv”)

Set the standard-error calculation type: IV based
(“se=iv”), K-Class based (“se=kclass”), Bekker
(“se=bekk”), or Hansen, Hausman, and Newey
(“se=hhn”).

m=integer Set maximum number of iterations.

c=number Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv /
-fastderiv

[Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.
Available only for legacy estimation (“optmeth=legacy”).

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

k
k

Equation::ls—117

Examples
equation eq1.liml gdp c cpi inc @ lw lw(-1)

creates equation EQ1 and calculates a LIML estimation of GDP on a constant, CPI, and INC,
using a constant, LW, and LW(-1) as instruments.

e1.liml(kclass=2)

estimates the same equation, but this time via K-Class estimation, with K=2.

Cross-references

See also “Limited Information Maximum Likelihood and K-Class Estimation” on page 77 of
the User’s Guide II for discussion.

Estimate binary models with logistic errors.

Provide for backward compatibility. Equivalent to issuing the command, binary with the
option “(d=l)”.

See binary (p. 51).

Estimation by linear or nonlinear least squares regression.

When the current workfile has a panel structure, ls also estimates cross-section weighed
least squares, feasible GLS, and fixed and random effects models.

Syntax
eq_name.ls(options) y x1 [x2 x3 ...]

eq_name.ls(options) specification

For linear specifications, list the dependent variable first, followed by a list of the indepen-
dent variables. Use a “C” if you wish to include a constant or intercept term; unlike some
programs, EViews does not automatically include a constant in the regression. You may add

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

prompt Force the dialog to appear from within a program.

p Print estimation results.

logit Equation Methods

ls Equation Methods

118—Chapter 1. Object Reference

AR, MA, SAR, and SMA error specifications, a D fractional differencing term, and PDL spec-
ifications for polynomial distributed lags. If you include lagged variables, EViews will adjust
the sample automatically, if necessary.

Both dependent and independent variables may be created from existing series using stan-
dard EViews functions and transformations. EViews treats the equation as linear in each of
the variables and assigns coefficients C(1), C(2), and so forth to each variable in the list.

Linear or nonlinear single equations may also be specified by explicit equation. You should
specify the equation as a formula. The parameters to be estimated should be included
explicitly: “C(1)”, “C(2)”, and so forth (assuming that you wish to use the default coefficient
vector “C”). You may also declare an alternative coefficient vector using coef and use these
coefficients in your expressions.

Options
Non-Panel LS Options

w=arg Weight series or expression.
Note: we recommend that, absent a good reason, you
employ the default settings Inverse std. dev. weights
(“wtype=istdev”) with EViews default scaling
(“wscale=eviews”) for backward compatibility with ver-
sions prior to EViews 7.

wtype=arg
(default=“istdev”)

Weight specification type: inverse standard deviation (“ist-
dev”), inverse variance (“ivar”), standard deviation
(“stdev”), variance (“var”).

wscale=arg Weight scaling: EViews default (“eviews”), average
(“avg”), none (“none”).
The default setting depends upon the weight type:
“eviews” if “wtype=istdev”, “avg” for all others.

z Turn off backcasting in ARMA models where “arma=cls”.

optmethod = arg Optimization method for nonlinear least squares and
ARMA: “bfgs” (BFGS); “newton” (Newton-Raphson),
“opg” or “bhhh” (OPG or BHHH), “kohn” (Kohn-Ansley
for ARMA estimated by ML or GLS), or “legacy” (EViews
legacy for nonlinear least squares and ARMA estimated by
CLS).
Gauss-Newton is the default method.

optstep = arg Step method for nonlinear least squares and ARMA: “mar-
quardt” (Marquardt); “dogleg” (Dogleg); “linesearch” (Line
search).
Marquardt is the default method.

m=integer Set maximum number of iterations.

Equation::ls—119

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

arma=arg ARMA estimation method: “ml” (maximum likelihood);
“gls” (generalized least squares), “cls” (conditional least
squares).
Not applicable to ARFIMA models which always estimate
using maximum likelihood.

armastart=arg ARMA coefficient starting values: “auto” (automatic)
“fixed” (legacy EViews fixed); “random” (random draw);
“user” (user-specified).
Applicable when “arma=ml” or “arma=gls”.

s Use the current coefficient values in estimator coefficient
vector as starting values for equations specified by list with
AR or MA terms when “arma=cls” (see also param
(p. 463) of the Command and Programming Reference).

s=number Determine starting values for equations specified by list
with AR or MA terms when “arma=cls”. Specify a number
between zero and one representing the fraction of prelimi-
nary least squares estimates computed without AR or MA
terms to be used. Note that out of range values are set to
“s=1”. Specifying “s=0” initializes coefficients to zero. By
default EViews uses “s=1”.
Does not apply to coefficients for AR and MA terms which
are set to EViews determined default values.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv / -fastderiv [Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.
Available only for legacy estimation (“optmeth=legacy”).

cov=arg Covariance method: “ordinary” (default method based on
inverse of the estimated information matrix), “huber” or
“white” (Huber-White sandwich method available for non-
linear least squares or ARMA estimated by CLS), “hac”
(Newey-West HAC, available for nonlinear least squares or
ARMA estimated by CLS)., “hc” (extended heteroskedastic-
ity consistent), “hcuser” (user-specified heteroskedastic-
ity), “cr” (cluster robust).
The extended “hc” methods are only available for linear
specifications.

120—Chapter 1. Object Reference

covinfo = arg Information matrix method: “opg” (OPG); “hessian”
(observed Hessian).
(Applicable when non-legacy “optmethod=”.)

nodf Do not perform degree of freedom corrections in computing
coefficient covariance matrix. The default is to use degree
of freedom corrections.

covlag=arg
(default=1)

Whitening lag specification: integer (user-specified lag
value), “a” (automatic selection).

covinfosel=arg
(default=“aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“lag=a”).

covmaxlag=integer Maximum lag-length for automatic selection (optional) (if
“lag=a”). The default is an observation-based maximum
of .

covkern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniel), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen).

covbw=arg
(default=“fixednw”
)

Kernel Bandwidth: “fixednw” (Newey-West fixed),
“andrews” (Andrews automatic), “neweywest” (Newey-
West automatic), number (User-specified bandwidth).

covnwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric kernel bandwidth selection (if “covbw=newey-
west”).

covbwint Use integer portion of bandwidth.

hctype=arg (default
“hc2”)

Extended heteroskedasticity consistent method: “hc0” (no
d.f. adjustment), “hc1” (d.f. adjusted), “hc2”, “hc3”,
“hc4”, “hc4m”, “hc5”, when “cov=hc”.

userwt=arg Name of series containing user-diagonal weights (if
“cov=hcuser”)

crtype=arg (default
“cr1”)

Cluster robust weighting method: “cr0” (no finite sample
correction), “cr1” (finite sample correction), “hc2”, “hc3”,
“hc4”, “hc4m”, “hc5”, when “cov=cr”.

crname=arg Cluster robust series name, when “cov=cr”.

k=arg
(default = 0.7)

Parameter for “cov=hc, hctype=hc5” or “cov=cr,
crtype=cr5”.

T1 3e

Equation::ls—121

Note: not all options are available for all equation methods. See the User’s Guide II for details
on each estimation method.

Panel LS Options

k1=arg
(default = 1.0)

Parameter for “cov=hc, hctype=hc4m” or “cov=cr,
crtype=cr4m”.

k2=arg
(default = 1.5)

Parameter for “cov=hc, hctype=hc4m” or “cov=cr,
crtype=cr4m”.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

prompt Force the dialog to appear from within a program.

p Print estimation results.

cx=arg Cross-section effects: (default) none, fixed effects
(“cx=f”), random effects (“cx=r”).

per=arg Period effects: (default) none, fixed effects (“per=f”), ran-
dom effects (“per=r”).

wgt=arg GLS weighting: (default) none, cross-section system
weights (“wgt=cxsur”), period system weights
(“wgt=persur”), cross-section diagonal weighs
(“wgt=cxdiag”), period diagonal weights (“wgt=per-
diag”).

cov=arg Coefficient covariance method: (default) ordinary, White
cross-section system robust (“cov=cxwhite”), White
period system robust (“cov=perwhite”), White heteroske-
dasticity robust (“cov=stackedwhite”), Cross-section sys-
tem robust/PCSE (“cov=cxsur”), Period system robust/
PCSE (“cov=persur”), Cross-section heteroskedasticity
robust/PCSE (“cov=cxdiag”), Period heteroskedasticity
robust/PCSE (“cov=perdiag”).

keepwgts Keep full set of GLS weights used in estimation with object,
if applicable (by default, only small memory weights are
saved).

rancalc=arg
(default=“sa”)

Random component method: Swamy-Arora (“ran-
calc=sa”), Wansbeek-Kapteyn (“rancalc=wk”), Wallace-
Hussain (“rancalc=wh”).

122—Chapter 1. Object Reference

nodf Do not perform degree of freedom corrections in computing
coefficient covariance matrix. The default is to use degree
of freedom corrections.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

iter=arg (default=
“onec”)

Iteration control for GLS specifications: perform one weight
iteration, then iterate coefficients to convergence
(“iter=onec”), iterate weights and coefficients simultane-
ously to convergence (“iter=sim”), iterate weights and
coefficients sequentially to convergence (“iter=seq”), per-
form one weight iteration, then one coefficient step
(“iter=oneb”).
Note that random effects models currently do not permit
weight iteration to convergence.

unbalsur Compute SUR factorization in unbalanced data using the
subset of available observations for a cluster.

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

s Use the current coefficient values in estimator coefficient
vector as starting values for equations specified by list with
AR terms (see also param (p. 463) of the Command and
Programming Reference).

s=number Determine starting values for equations specified by list
with AR terms. Specify a number between zero and one
representing the fraction of preliminary least squares esti-
mates computed without AR terms to be used. Note that
out of range values are set to “s=1”. Specifying “s=0” ini-
tializes coefficients to zero. By default EViews uses “s=1”.
Does not apply to coefficients for AR terms which are
instead set to EViews determined default values.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv / -fastderiv [Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

Equation::ls—123

Examples
equation eq1.ls m1 c uemp inf(0 to -4) @trend(1960:1)

estimates a linear regression of M1 on a constant, UEMP, INF (from current up to four lags),
and a linear trend.

equation eq2.ls(z) d(tbill) c inf @seas(1) @seas(1)*inf ma(2)

regresses the first difference of TBILL on a constant, INF, a seasonal dummy, and an interac-
tion of the dummy and INF, with an MA(2) error. The “z” option turns off backcasting.

coef(2) beta

param beta(1) .2 beta(2) .5 c(1) 0.1

equation eq3.ls(cov=white) q = beta(1)+beta(2)*(l^c(1) + k^(1-

c(1)))

estimates the nonlinear regression starting from the specified initial values. The
“cov=white” option reports heteroskedasticity consistent standard errors.

equation eq4.ls r = c(1)+c(2)*r(-1)+div(-1)^c(3)

sym betacov = eq4.@cov

declares and estimates a nonlinear equation and stores the coefficient covariance matrix in a
symmetric matrix called BETACOV.

equation eq5.ls(cx=f, per=f) n w k ys c

estimates the equation EQ5 in the panel workfile using both cross-section and period fixed
effects.

equation eq6.ls(cx=f, wgt=cxdiag) n w k ys c

estimates the equation EQ6 in a panel workfile with cross-section weights and fixed effects.

Cross-references

Chapter 19. “Basic Regression Analysis,” on page 5 and Chapter 20. “Additional Regression
Tools,” on page 23 of the User’s Guide II discuss the various regression methods in greater
depth.

Chapter 16. “Special Expression Reference,” on page 621 of the Command and Programming
Reference describes special terms that may be used in ls specifications.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

124—Chapter 1. Object Reference

See Chapter 45. “Panel Estimation,” on page 917 of the User’s Guide II for a discussion of
panel equation estimation.

Leverage plots.

Displays leverage plots to discover influential observations, or outliers.

Syntax
equation_name.lvageplot(options) variables @ name_suffix

where name_suffix is an optional naming suffix for storing the statistics into series in the
workfile.

Options

Examples
eq1.lvageplot x1 x2 @ lplot_

will display two graphs, one for the leverage plot of X1 and one for the leverage plot of X2,
and will create two new series in the workfile, LPLOT_X1 and LPLOT_X2.

Cross-references

See also “Leverage Plots” on page 230 of the User’s Guide II.

Create a series containing the estimated cointegrating relationship from an ARDL estimated
equation.

This view is only available for non-panel equations estimated using the ARDL method.

Syntax
equation_name.makecoint [series_name]

Examples
wfopen http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF5-

2.txt

lvageplot Equation Views

raw Do not use partial residuals.

nofit Do not include a line of fit on the graphs

prompt Force the dialog to appear from within a program.

makecoint Equation Procs

Equation::makederivs—125

equation eq02.ardl(deplags=3, reglags=3, fixed) log(realcons)

log(realgdp) @ @expand(@quarter, @droplast)

show eq02.makecoint cointser

This example uses data from Greene (2008, page 685), containing quarterly US macroeco-
nomic variables between 1950 and 2000. The first line of this example downloads the data
set, the second line creates an equation object and estimates an ARDL model with the log of
real consumption as the dependent variable. Three lags of the dependent variable, and three
lags of the log of real GDP are used as dynamic regressors. Quarterly dummy variables are
included as static regressors.

The final line creates a new series, COINTSER, containing the estimated cointegrating rela-
tionship.

Cross-references

See “Autoregressive Distributed Lag (ARDL) Models,” beginning on page 295 of User’s Guide
II for further discussion.

Make a group containing individual series which hold the derivatives of the equation spec-
ification.

Syntax
equation_name.makederivs(options) [ser1 ser2 ...]

If desired, enclose the name of a new group object to hold the series in parentheses follow-
ing the command name.

The argument specifying the names of the series is also optional. If not provided, EViews
will name the series “DERIV##” where ## is a number such that “DERIV##” is the next
available unused name. If the names are provided, the number of names must match the
number of target series.

names must match the number of target series.

Options

Examples
eq1.makederivs(n=out)

creates a group named OUT containing series named DERIV01, DERIV02, and DERIV03.

makederivs Equation Procs

n=arg Name of group object to contain the series.

126—Chapter 1. Object Reference

eq1.makederivs(n=out) d1 d2 d3

creates the same group, but names the series D1, D2 and D3.

Cross-references

See Chapter 41. “State Space Models and the Kalman Filter,” on page 755 of the User’s Guide
II for details on state space estimation.

See also Equation::derivs (p. 84), Equation::grads (p. 106), Equation::makegrads
(p. 127).

Generate conditional variance series.

Saves the estimated conditional variance (from an equation estimated using ARCH) as a
named series.

Syntax
eq_name.makegarch series1_name [@ series2_name]

You should provide a name for the saved conditional standard deviation series following the
makegarch keyword. If you do not provide a name, EViews will name the series using the
next available name of the form “GARCH##” (if GARCH01 already exists, it will be named
GARCH02, and so on).

For component GARCH equations, the permanent component portion of the conditional
variance may be saved by adding “@” followed by a series name.

Options

Examples
equation eq1.arch sp c

eq1.makegarch cvar

plot cvar^.5

estimates a GARCH(1,1) model, saves the conditional variance as a series named CVAR, and
plots the conditional standard deviation. If you merely wish to view a plot of the conditional
standard deviation without saving the series, use the Equation::garch (p. 94) view.

The commands

equation eq1.arch(cgarch) sp c

eq1.makegarch cvar @ pvar

makegarch Equation Procs

prompt Force the dialog to appear from within a program.

Equation::makegrads—127

first estimates a Component GARCH model and then saves both the conditional variance
and the permanent component portion of the conditional variance in the series CVAR and
PVAR, respectively.

Cross-references

See Chapter 25. “ARCH and GARCH Estimation,” on page 243 of the User’s Guide II for a dis-
cussion of GARCH models.

See also Equation::arch (p. 42), Equation::archtest (p. 46), and Equation::garch
(p. 94).

Make a group containing individual series which hold the gradients of the objective func-
tion.

Syntax
equation_name.makegrads(options) [ser1 ser2 ...]

The argument specifying the names of the series is also optional. If the argument is not pro-
vided, EViews will name the series “GRAD##” where ## is a number such that “GRAD##” is
the next available unused name. If the names are provided, the number of names must
match the number of target series.

Options

Examples
eq1.grads(n=out)

creates a group named OUT containing series named GRAD01, GRAD02, and GRAD03.

eq1.makegrads(n=out) g1 g2 g3

creates the same group, but names the series G1, G2 and G3.

Cross-references

See “Gradients” on page 1103 of the User’s Guide II for discussion.

See also Equation::derivs (p. 84), Equation::makederivs (p. 125), Equa-
tion::grads (p. 106).

makegrads Equation Procs

n=arg Name of group object to contain the series.

128—Chapter 1. Object Reference

Create vector of limit points from ordered models.

makelimits creates a vector of the estimated limit points from equations estimated by
Equation::ordered (p. 138).

Syntax
eq_name.makelimits [vector_name]

Provide a name for the vector after the makelimits keyword. If you do not provide a name,
EViews will name the vector with the next available name of the form LIMITS## (if LIM-
ITS01 already exists, it will be named LIMITS02, and so on).

Examples
equation eq1.ordered edu c age race gender

eq1.makelimits cutoff

Estimates an ordered probit and saves the estimated limit points in a vector named CUTOFF.

Cross-references

See “Ordered Dependent Variable Models” on page 350 of the User’s Guide II for a discus-
sion of ordered models.

Make a model from an equation object.

Syntax
equation_name.makemodel(name) assign_statement

If you provide a name for the model in parentheses after the keyword, EViews will create the
named model in the workfile. If you do not provide a name, EViews will open an untitled
model window if the command is executed from the command line.

Examples
equation eq3.ls 1 4 m1 gdp tb3

eq3.makemodel(eqmod) @prefix s_

estimates an equation and makes a model named EQMOD from the estimated equation
object. EQMOD includes an assignment statement “ASSIGN @PREFIX S_”. Use the com-
mand “show eqmod” or “eqmod.spec” to open the EQMOD window.

makelimits Equation Procs

makemodel Equation Procs

Equation::makeresids—129

Cross-references

See Chapter 42. “Models,” on page 781 of the User’s Guide II for a discussion of specifying
and solving models in EViews. See also solve (p. 490).

Make regressor group.

Creates a group containing the dependent and independent variables from an equation spec-
ification.

Syntax
equation_name.makeregs grp_name

Follow the keyword makeregs with the name of the group.

Examples
equation eq1.ls y c x1 x2 x3 z

eq1.makeregs reggroup

creates a group REGGROUP containing the series Y X1 X2 X3 and Z.

Cross-references

See also Group::group (p. 325).

Create residual series.

Creates and saves residuals in the workfile from an estimated equation object.

Syntax
equation_name.makeresids(options) [res1]

Follow the equation name with a period and the makeresids keyword, then provide a
name to be given to the stored residual.

makeregs Equation Procs

makeresids Equation Procs

130—Chapter 1. Object Reference

Options

Examples
equation eq1.ls y c m1 inf unemp

eq1.makeresids res_eq1

estimates a linear regression of Y on a constant, M1, INF, UNEMP, and saves the residuals as
a series named RES_EQ1.

Cross-references

See “Weighted Least Squares” on page 47 of the User’s Guide II for a discussion of standard-
ized residuals after weighted least squares and Chapter 29. “Discrete and Limited Dependent
Variable Models,” on page 331 of the User’s Guide II for a discussion of standardized and
generalized residuals in binary, ordered, censored, and count models.

Save the regime probabilities for switching regression equation in series in the workfile.

Syntax
equation_name.makergmprobs(options) series_names

where equation_name is the name of an equation estimated using switching regression. The
series to be saved should be listed following the command name and options, with one
name per regime for one up to the number of estimated regimes.

Options

o (default) Ordinary residuals.

s Standardized residuals (available only after weighted esti-
mation and GARCH, binary, ordered, censored, and count
models).

g (default for
ordered models)

Generalized residuals (available only for binary, ordered,
censored, and count models).

prompt Force the dialog to appear from within a program.

makergmprobs Equation Procs

type=arg
(default=“pred”)

Type of regime probability to compute: one-step ahead pre-
dicted (“pred”), filtered (“filt”), smoothed (“smooth”).

n=arg (optional) Name of group to contain the saved regime
probabilities.

prompt Force the dialog to appear from within a program.

Equation::maketransprobs—131

Examples
equation eq1.switchreg(type=markov) y c @nv ar(1) ar(2) ar(3)

eq1.makergmprobs r1 r2

saves the one-step ahead regime probabilities for the Markov switching regression estimated
in EQ1 in series R1 and R2 in the workfile

eq1.makergmprobs(type=filt) f1

saves the filtered probabilities for regime 1 in F1.

eq1.makergmprobs(type=smooth, n=smoothed) s1 s2

saved the smoothed probabilities for both regimes in the series S1 and S2, and creates the
group SMOOTHED containing S1 and S2.

Cross-references

See “Switching Regression” on page 505 of the User’s Guide II for discussion. See also Equa-
tion::rgmprobs (p. 155).

Save a series containing the smooth transition weights for each observation in the estima-
tion sample in a smooth threshold regression.

Syntax
eq_name.makestrwgts(options) basename

Options

Save the regime transition probabilities and expected durations for a switching regression
equation in the workfile.

Syntax
equation_name.maketransprobs(options) [base_name]

equation_name.maketransprobs(out=mat, options) [matrix_name]

where equation_name is the name of an equation estimated using switching regression.

makestrwgts Equation Procs

n=a Name of group containing the names.

prompt Force the dialog to appear from within a program.

maketransprobs Equation Procs

132—Chapter 1. Object Reference

• In the first form of the command, base_name will be used to generate series names
for the series that will hold the transition probabilities or durations. The series names
for regime transition probabilities will be of the form base_name##, where ## are the
indices representing elements of the transition matrix . The series names for
expected durations will be of the form base_name# where # corresponds to the regime
index. Thus, in a two-regime model, the base name “TEMP” corresponds to the tran-
sition probability series TEMP11, TEMP12, TEMP21, TEMP22, and the expected dura-
tion series TEMP1, TEMP2.

If base_name is not provided, EViews will use the default of “TPROB”

• When the option “output=mat” is provided, the matrix_name is the name of the out-
put matrix that will hold the transition probabilities or durations.

If matrix_name are not provided, EViews will default to “TPROB” or the next avail-
able name of the form “TPROB##”.

EViews will evaluate the transition probabilities or durations at the date specified by
the “obs=” option. If no observation is specified, EViews will use the first date of the
estimation sample to evaluate the transition probabilities. Note that if the transition
probabilities are time-invariant, setting the observation will have no effect on the con-
tents of the saved results.

Options

Examples
equation eq1.switchreg(type=markov) y c @nv ar(1) ar(2) ar(3)

eq1.maketransprobs(n=transgrp) trans

type=arg
(default=“trans”)

Transition probability results to save: transition probabili-
ties (“trans”), expected durations (“expect”).

out=arg
(default=“series”)

Output format: series (“series”) or matrix (“mat”). If saved
as a matrix, only a single transition matrix will be saved
using the date specified by “obs=”.

obs=arg Date/observation used to evaluate the transition probabili-
ties if saving results as a matrix (“out=mat”). If no obser-
vation is specified, EViews will use the first date of the
estimation sample to evaluate the transition probabilities.
Note that if the transition probabilities are time-invariant,
setting the observation will have no effect on the content of
the saved results.

n=arg (optional) Name of group to contain the saved transition
probabilities.

prompt Force the dialog to appear from within a program.

i j,� �

Equation::means—133

saves the transition probabilities in the workfile in the series TRANS11, TRANS12,
TRANS21, TRANS22 and creates the group TRANSGRP containing the series.

The command

eq1.maketransprobs(type=expect) AA

saves the expected durations in the series AA1 and AA2.

eq1.maketransprobs(out=mat) BB

saves the transition probabilities in the matrix BB.

Cross-references

See “Switching Regression” on page 505 of the User’s Guide II for discussion. See also Equa-
tion::transprobs (p. 173).

Descriptive statistics by category of dependent variable.

Computes and displays descriptive statistics of the explanatory variables (regressors) of an
equation categorized by values of the dependent variable for binary and censored/truncated
models

Syntax
eq_name.means(options)

Options

Examples
equation eq1.binary(d=l) work c edu faminc

eq1.means

estimates a logit and displays the descriptive statistics of the regressors C, EDU, FAMINC for
WORK=0 and WORK=1.

Cross-references

See Chapter 29. “Discrete and Limited Dependent Variable Models,” on page 331 of the
User’s Guide II for a discussion of binary and censored/truncated dependent variable mod-
els.

means Equation Views

p Print the descriptive statistics table.

134—Chapter 1. Object Reference

Estimates an equation using Mixed Data Sampling (MIDAS) regression.

MIDAS regression is an estimation technique which allows for data sampled at different fre-
quencies to be used in the same regression.

Syntax
eq_name.midas(options) y x1 [x2 x3 ...] @ z1page\z1 [z2page\z2 ...]

where y, x1, etc., are the dependent and explanatory variables in the current page frequency,
and z1page\z1 and z2page\z2 are the high frequency variable page\series specification.

You may not include ARMA terms in a MIDAS regression.

Options

midas Equation Methods

midwgt=arg MIDAS weight method: step function(“step”), normalized
exponential Almon (“expalmon”), normalized beta func-
tion (“beta”), or the default Almon/PDL weighting
(“almon”).

lag=arg Method for specifying the number of lags of the high fre-
quency regressor to use: lag selection (“auto”), fixed
(“fixed”). The default is “lag=fixed”.

maxlag=arg Maximum number of lags of the high frequency regressor
to use when using lag selection. For use when “lag=auto”.
The default value is 4.

fixedlag=arg Fixed number of lags of the high frequency regressor to
use. For use when “lags=fixed”. The default value is 4.

steps=integer Stepsize (number of high frequency periods to group). For
use when “midwgt=step”.

polynomial=integer Polynomial degree. For use when Almon/PDL weighting is
employed.

beta=arg Beta function restriction: none (“none”), trend coefficient
equals 1 (“trend”), endpoints coefficient equals 0 (“end-
point”), both trend and endpoints restriction (“both”).
For use when “midwgt=beta”. The default is
“beta=none”.

Equation::midas—135

optmethod = arg Optimization method for nonlinear estimation: “bfgs”
(BFGS); “newton” (Newton-Raphson), “opg” or “bhhh”
(OPG or BHHH), “hybrid” (initial BHHH followed by
BFGS).
Hybrid is the default method.

optstep = arg Step method for nonlinear estimation: “marquardt” (Mar-
quardt); “dogleg” (Dogleg); “linesearch” (Line search).
Marquardt is the default method.

cov=arg Covariance method for nonlinear models: “ordinary”
(default method based on inverse of the estimated informa-
tion matrix), “huber” or “white” (Huber-White sandwich).

covinfo = arg Information matrix method for nonlinear models: “opg”
(OPG); “hessian” (observed Hessian).

freq = key Set the frequency conversion method. Key can be “first”
(the higher frequency data are used from the first observa-
tion in the lower frequency period), “last” (default, the
higher frequency data are used from the last observation in
the lower frequency), or “match” (a specific date matching
series from each page is used).

freqsrc = arg Set the source date matching series. Only applies if
freq=match is used.

freqdest = arg Set the destination date matching series. Only applies if
freq=match is used.

nodf Do not perform degree of freedom corrections in computing
coefficient covariance matrix. The default is to use degree
of freedom corrections.

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

s Use the current coefficient values in estimator coefficient
vector as starting values in nonlinear estimation (see also
param (p. 463) of the Command and Programming Ref-
erence).

s=number Determine starting values for nonlinear estimation.. Specify
a number between zero and one representing the fraction
of preliminary EViews chosen values. Note that out of
range values are set to “s=1”. Specifying “s=0” initializes
coefficients to zero. By default EViews uses “s=1”.

136—Chapter 1. Object Reference

Examples
equation eq1.midas(fixedlag=9, midwgt=beta, beta=endpoint) realgdp

c realgdp(-1) @ monthlypage\emp(-5)

estimates a MIDAS beta weight specification using the low frequency dependent variable
REALGDP and regressors C and REALGDP(-1), and 9 beta weighted lags of EMP(-5) from
the “monthlypage” workfile page. The beta weight function places zero restrictions on the
endpoint coefficient.

equation eq2.midas(maxlag=12, lag=auto) realgdp c realgdp(-1) @

monthlypage\emp(-5)

estimates the same equation using PDL/Almon weights. The number of lags is chosen auto-
matically with a maximum of 12 lags.

Cross-references

“Midas Regression” on page 313 of the User’s Guide II discusses the specification and esti-
mation of MIDAS regression models in EViews.

Multiple breakpoint testing.

The multibreak view of an equation displays the results of multiple breakpoint testing
using sequential and global optimization methods.

This view is only available for (non-panel) equations specified by list without ARMA terms
and estimated by ordinary least squares.

Syntax
equation_name.multibreak(options) [list_of_breaking_regressors]

where equation_name is the name on an equation specified by list and estimated using least
squares. The multibreak may be followed by options, and an optional list of breaking

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

prompt Force the dialog to appear from within a program.

p Print estimation results.

multibreak Equation Views

Equation::multibreak—137

regressor names. If the latter list is omitted, the coefficients for all of the regressors in the
original equation will be allowed to vary across regimes.

Options

Examples
equation eq01.ls m1 c tb3 gdp

eq01.multibreak(maxbreaks=3)

eq01.multibreak(method=glob, size=10, trim=15) tb3

The first test line tests for up to 3 structural breaks in all of the coefficients using sequential
tests of single versus breaks. The second line tests uses the global breaks versus
none tests with trimming value 0.15, and a size of 0.10 to test for differences in the coeffi-
cient on TB3 across regimes.

The multiple breakpoint tests will use the covariance matrix settings from the original equa-
tion when constructing tests. The command

method=arg
(default=“seqplus1”)

Breakpoint testing method: “seqplus1” (sequential tests
of single versus breaks), “seqall” (sequential
test of all possible versus breaks), “glob” (tests
of global vs. no breaks), “globplus1” (tests of
versus globally determined breaks), “globinfo”
(information criteria evaluation).

trim=arg (default=5) Trimming percentage for determining minimum segment
size (5, 10, 15, 20, 25).

maxbreaks=integer
(default=5)

Maximum number of breakpoints to allow (not applica-
ble if “method=seqall”).

maxlevels=integer
(default=5)

Maximum number of break levels to consider in sequen-
tial testing (applicable when “method=sequall”).

size=arg (default=5) Test sizes for use in sequential determination and final
test evaluation (10, 5, 2.5, 1) corresponding to 0.10,
0.05, 0.025, 0.01, respectively

heterr Assume regimes specific error distributions in variance
computation.

commondata Assume a common distribution for the data across seg-
ments (only applicable if original equation is estimated
with a robust covariance method, “heterr” is not speci-
fied).

prompt Force the dialog to appear from within a program.

p Print the view.

l 1� l
l 1� l

l l 1�
l

l 1� l l

138—Chapter 1. Object Reference

equation eq01.ls(cov=hac, covkern=quadspec, covlag=1,

covbw=andrews) rates c

eq01.multibreak(heterr)

eq01.multibreak(method=glob, heterr)

eq01.multibreak(method=globinfo)

estimate an equation using HAC covariances. The second line tests for up to 5 structural
breaks using sequential tests of single versus breaks. The third line uses the global
breaks versus none tests. Both of these tests allow for error distributions to vary across the
different segments. The final line evaluates the breakpoints using information criteria associ-
ated with the global optimizers.

Cross-references

See “Multiple Breakpoint Tests” on page 210 of User’s Guide II for discussion. See also
Chapter 32. “Least Squares with Breakpoints,” beginning on page 441 of User’s Guide II for
tools which estimate equations with structural breaks.

See Equation::breakls (p. 54) for estimation of regression equations with breaks.

Push updates to OLE linked objects in open applications.

Syntax
equation_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Estimation of ordered dependent variable models.

Syntax
equation name.ordered(options) y x1 [x2 x3 ...]

equation name.ordered(options) specification

The ordered command estimates the model and saves the results as an equation object
with the given name.

olepush Equation Procs

ordered Equation Methods

l 1� l l

Equation::ordered—139

Options

d=arg
(default=“n”)

Specify likelihood: normal likelihood function, ordered pro-
bit (“n”), logistic likelihood function, ordered logit (“l”),
Type I extreme value likelihood function, ordered Gompit
(“x”).

optmethod =
arg

Optimization method: “bfgs” (BFGS); “newton” (Newton-
Raphson), “opg” or “bhhh” (OPG or BHHH), “legacy”
(EViews legacy).
Newton-Raphson is the default method.

optstep = arg Step method: “marquardt” (Marquardt); “dogleg” (Dog-
leg); “linesearch” (Line search).
Marquardt is the default method.

cov=arg Covariance method: “ordinary” (default method based on
inverse of the estimated information matrix), “huber” or
“white” (Huber-White sandwich method)., “glm” (GLM
method)..

covinfo = arg Information matrix method: “opg” (OPG); “hessian”
(observed Hessian).
(Applicable when non-legacy “optmethod=”.)

h Huber-White quasi-maximum likelihood (QML) standard
errors and covariances.
(Legacy option Applicable when “optmethod=legacy”).

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

s Use the current coefficient values in “C” as starting values
(see also param (p. 463) of the Command and Program-
ming Reference).

s=number Specify a number between zero and one to determine start-
ing values as a fraction of preliminary EViews default val-
ues (out of range values are set to “s=1”).

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

prompt Force the dialog to appear from within a program.

140—Chapter 1. Object Reference

If you choose to employ user specified starting values, the parameters corresponding to the
limit points must be in ascending order.

Examples
ordered(d=l,cov=huber) y c wage edu kids

estimates an ordered logit model of Y on a constant, WAGE, EDU, and KIDS with QML stan-
dard errors. This command uses the default quadratic hill climbing algorithm.

param c(1) .1 c(2) .2 c(3) .3 c(4) .4 c(5).5

equation eq1.binary(s) y c x z

coef betahat = eq1.@coefs

eq1.makelimit gamma

estimates an ordered probit model of Y on a constant, X, and Z from the specified starting
values. The estimated coefficients are then stored in the coefficient vector BETAHAT, and the
estimated limit points are stored in the vector GAMMA.

Cross-references

See “Ordered Dependent Variable Models” on page 350 of the User’s Guide II for additional
discussion.

See Equation::binary (p. 51) for the estimation of binary dependent variable models. See
also Equation::makelimits (p. 128).

Performs the Instrument Orthogonality Test

The Orthogtest view of an equation carries out the Instrument Orthogonality / C-test Test for
equations estimated via TSLS or GMM.

Syntax
eq_name.orthogtest(options) instruments

Options

p Print results.

orthogtest Equation Views

prompt Force the dialog to appear from within a program.

p Print results.

Equation::output—141

Instruments

A list of instruments to be tested for orthogonality. Note the instruments must have been
included in the original equation.

Examples
equation eq1.gmm y c x1 x2 @ z1 z2 z3 z4

e1.orthogtest z1 z4

estimates an equation, called EQ1, and estimates it via GMM with four instruments Z1, Z2,
Z3, Z4, and then performs the Orthogonality Test where Z1 and Z4 are tested for orthogonal-
ity.

Cross-references

See “Instrument Orthogonality Test” on page 93 of the User’s Guide II for discussion.

Display estimation output.

The output command changes the default object view to display the equation output
(equivalent to using Equation::results (p. 154)).

Syntax
eq_name.output(options)

Options

Examples
eq1.output

displays the estimation output for equation EQ1.

Cross-references

See Equation::results (p. 154).

output Equation Views

p Print estimation output for estimation object.

142—Chapter 1. Object Reference

Prediction table for binary and ordered dependent variable models.

The prediction table displays the actual and estimated frequencies of each distinct value of
the discrete dependent variable.

Syntax
eq_name.predict(n, options)

For binary models, you may optionally specify how large the estimated probability must be
to be considered a success (). Specify the cutoff level as the first option in parenthe-
ses after the keyword predict.

Options

Examples
equation eq1.binary(d=l) work c edu age race

eq1.predict(0.7)

Estimates a logit and displays the expectation-prediction table using a cutoff probability of
0.7.

Cross-references

See “Binary Dependent Variable Models” on page 331 of the User’s Guide II for a discussion
of binary models, and “Expectation-Prediction (Classification) Table” on page 340 of the
User’s Guide II for examples of prediction tables.

Estimation of binary dependent variable models with normal errors.

Equivalent to “binary(d=n)”.

See binary (p. 51).

predict Equation Views

n (default=.5) Cutoff probability for success prediction in binary models
(between 0 and 1).

prompt Force the dialog to appear from within a program.

p Print the prediction table.

probit Equation Methods

y 1

Equation::qreg—143

Estimate a quantile regression specification.

Syntax
eq_name.qreg(options) y x1 [x2 x3 ...]

eq_name.qreg(options) linear_specification

Options

qreg Equation Methods

quant=number
(default = 0.5)

Quantile to be fit (where number is a value between 0 and
1).

w=arg Weight series or expression.
Note: we recommend that, absent a good reason, you
employ the default settings Inverse std. dev. weights
(“wtype=istdev”) with EViews default scaling
(“wscale=eviews”) for backward compatibility with ver-
sions prior to EViews 7.

wtype=arg
(default=“istdev”)

Weight specification type: inverse standard deviation (“ist-
dev”), inverse variance (“ivar”), standard deviation
(“stdev”), variance (“var”).

wscale=arg Weight scaling: EViews default (“eviews”), average
(“avg”), none (“none”).
The default setting depends upon the weight type:
“eviews” if “wtype=istdev”, “avg” for all others.

cov=arg
(default=“sand-
wich”)

Method for computing coefficient covariance matrix: “iid”
(ordinary estimates), “sandwich” (Huber sandwich esti-
mates), “boot” (bootstrap estimates).
When “cov=iid” or “cov=sandwich”, EViews will use the
sparsity nuisance parameter calculation specified in
“spmethod=” when estimating the coefficient covariance
matrix.

bwmethod=arg
(default = “hs”)

Method for automatically selecting bandwidth value for
use in estimation of sparsity and coefficient covariance
matrix: “hs” (Hall-Sheather), “bf” (Bofinger), “c” (Cham-
berlain).

bw =number Use user-specified bandwidth value in place of automatic
method specified in “bwmethod=”.

bwsize=number
(default = 0.05)

Size parameter for use in computation of bandwidth (used
when “bw=hs” and “bw=bf”).

144—Chapter 1. Object Reference

spmethod=arg
(default=“kernel”)

Sparsity estimation method: “resid” (Siddiqui using residu-
als), “fitted” (Siddiqui using fitted quantiles at mean values
of regressors), “kernel” (Kernel density using residuals)
Note: “spmethod=resid” is not available when
“cov=sandwich”.

btmethod=arg
(default= “pair”)

Bootstrap method: “resid” (residual bootstrap), “pair” (xy-
pair bootstrap), “mcmb” (MCMB bootstrap), “mcmba”
(MCMB-A bootstrap).

btreps=integer
(default=100)

Number of bootstrap repetitions

btseed=positive
integer

Seed the bootstrap random number generator.
If not specified, EViews will seed the bootstrap random
number generator with a single integer draw from the
default global random number generator.

btrnd=arg
(default=“kn” or
method previously
set using rndseed
(p. 474) in the
Command and Pro-
gramming Refer-
ence).

Type of random number generator for the bootstrap:
improved Knuth generator (“kn”), improved Mersenne
Twister (“mt”), Knuth’s (1997) lagged Fibonacci generator
used in EViews 4 (“kn4”) L’Ecuyer’s (1999) combined mul-
tiple recursive generator (“le”), Matsumoto and
Nishimura’s (1998) Mersenne Twister used in EViews 4
(“mt4”).

btobs=integer Number of observations for bootstrap subsampling (when
“bsmethod=pair”).
Should be significantly greater than the number of regres-
sors and less than or equal to the number of observations
used in estimation. EViews will automatically restrict val-
ues to the range from the number of regressors and the
number of estimation observations.
If omitted, the bootstrap will use the number of observa-
tions used in estimation.

btout=name (optional) Matrix to hold results of bootstrap simulations.

k=arg
(default=“e”)

Kernel function for sparsity and coefficient covariance
matrix estimation (when “spmethod=kernel”): “e” (Epan-
echnikov), “r” (Triangular), “u” (Uniform), “n” (Normal–
Gaussian), “b” (Biweight–Quartic), “t” (Triweight), “c”
(Cosinus).

m=integer Maximum number of iterations.

s Use the current coefficient values in estimator coefficient
vector as starting values (see also param (p. 463) in the
Command and Programming Reference).

Equation::qrprocess—145

Examples
equation eq1.qreg y c x

estimates the default least absolute deviations (median) regression for the dependent vari-
able Y on a constant and X. The estimates use the Huber Sandwich method for computing
the covariance matrix, with individual sparsity estimates obtained using kernel methods.
The bandwidth uses the Hall and Sheather formula.

equation eq1.qreg(quant=0.6, cov=boot, btmethod=mcmba) y c x

estimates the quantile regression for the 0.6 quantile using MCMB-A bootstrapping to obtain
estimates of the coefficient covariance matrix.

Cross-references

See Chapter 36. “Quantile Regression,” on page 541 of the User’s Guide II for a discussion of
the quantile regression.

Display quantile process coefficient estimates (multiple quantile regression estimates).

Syntax
eq_name.qrprocess(options) [arg] [@coefs coeflist]

where arg is a optional list containing the quantile values (specified using numbers, scalar
objects, or vectors) for which you wish to compute estimates, and optionally the @coefs
keyword followed by a coeflist of the subset of coefficients to display.

• If arg is not specified, EViews will display results for the original equation along with
coefficients for equations estimated at a set of equally spaced number of quantiles as

s=number (default
=0)

Determine starting values for equations. Specify a number
between 0 and 1 representing the fraction of preliminary
least squares coefficient estimates.
Note that out of range values are set to the default.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

prompt Force the dialog to appear from within a program.

p Print estimation results.

qrprocess Equation Views

146—Chapter 1. Object Reference

specified by the “n=” option. If “n=” is not specified, the default is to display results
for the deciles.

• If arg is specified, EViews will display results for the original equation along with
coefficients for equations estimated at the specified quantiles.

• If a coeflist is not provided, results for all coefficients will be displayed. For models
that contain an intercept, the coeflist may consist of the @incptonly keyword, indicat-
ing that only results for the intercept will be displayed.

You may specify a maximum of 1000 total coefficients (number of display coefficients times
the number of quantiles) and a maximum of 500 quantiles.

All estimation will be performed using the settings from the original equation.

Options

Examples
equation eq1.qreg log(y) c log(x)

eq1.qrprocess

estimates a quantile (median) regression of LOG(Y) on a constant and LOG(X), and displays
results for all nine quantiles in a table

Similarly,

equation eq1.qreg(quant=.4) log(y) c log(x)

eq1.qrprocess(coefcout=cout)

n=arg
(default=10)

Number of quantiles for process estimates.

graph Display process estimate results as graph.

size=arg
(default=0.95)

Confidence interval size for graph display

quantout=name Save vector containing test quantile values.

coefout=name Save matrix containing test coefficient estimates. Each col-
umn of the matrix corresponds to a different quantile
matching the corresponding quantile in “quantout=”.
To match the covariance matrix given in “covout=” you
should take the @vec of the coefficient matrix.

covout=name Save symmetric matrix containing covariance matrix for
the vector set of coefficient estimates.

prompt Force the dialog to appear from within a program.

p Print output.

Equation::qrslope—147

displays the coefficient estimated at the deciles (and at 0.4), and saves the coefficient matrix
to COUT.

eq1.qrprocess(coefout=cout, n=4, graph)

eq1.qrprocess(coefout=cout, graph) .25 .5 .75

both estimate coefficients for the three quartiles and display the results in a graph, as does
the equivalent:

vector v1(3)

v1.fill .25 .5 .75

eq1.qrprocess(graph) v1

Cross-references

See “Process Coefficients” on page 548 of the User’s Guide II for a discussion of the quantile
process. See also Equation::qrslope (p. 147).

Perform Wald test of equality of slope coefficients across multiple quantile regression esti-
mates. The equality test restrictions are of the form: for the slope coefficients .

Syntax
eq_name.qrslope(options) [arg] [@coefs coeflist]

where arg is a optional list containing the quantile values (specified using numbers, scalar
objects, or vectors) for which you wish to compute estimates, and optionally the @coefs
keyword followed by a coeflist of the subset of coefficients to display.

• If arg is not specified, EViews will perform tests for the existing equation and coeffi-
cients for equations estimated at a set of equally spaced quantiles as specified by the
“n=” option. If “n=” is not specified, the default is to display results for the quartiles
(.25, .75).

• If arg is specified, EViews will perform results for the original equation along with
tests including coefficients for equations estimated at the specified quantiles.

• If a coeflist is not provided, all of the slope coefficients will be employed in the test.

You may specify a maximum of 1000 total coefficients (number of coefficients in the equa-
tion specification times the number of quantiles) and a maximum of 500 quantiles in the
test.

All estimation will be performed using the settings from the original equation.

qrslope Equation Views

bt bt c b

148—Chapter 1. Object Reference

Options

Examples
equation eq1.qreg log(y) c log(x)

eq1.qrslope

estimates a quantile (median) regression of LOG(Y) on a constant and LOG(X), and tests for
the equality of the coefficients of LOG(X) for all three of the quartiles.

Similarly,

equation eq1.qreg(quant=.4) log(y) c log(x)

eq1.qrslope(coefcout=cout)

tests for equality of the LOG(X) coefficient estimated at {.25, .4, .5, .75}, and saves the coef-
ficient matrix to COUT. Both

eq1.qrslope(coefout=count, n=10)

eq1.qrslope(coefout=cout) .1 .2 .3 .4 .5 .6 .7 .8 .9

perform the Wald test for equality of the slope coefficient across all of the deciles, as does
the equivalent

vector v1(9)

v1.fill .1,.2,.3,.4,.5,.6,.7,.8,.9

eq1.qrslope v1

Cross-references

See “Slope Equality Test” on page 550 of the User’s Guide II for a discussion of the slope
equality test. See also Equation::qrsymm (p. 149).

n=arg
(default=4)

Number of quantiles for process estimates.

quantout=name Save vector containing test quantile values.

coefout=name Save matrix containing test coefficient estimates. Each col-
umn of the matrix corresponds to a different quantile
matching the corresponding quantile in “quantout=”.
To match the covariance matrix given in “covout=” you
should take the @vec of the coefficient matrix.

covout=name Save symmetric matrix containing covariance matrix for
the vector set of coefficient estimates.

prompt Force the dialog to appear from within a program.

p Print output from the test.

Equation::qrsymm—149

Perform Wald test of coefficients using symmetric quantiles. The symmetric quantile test
restrictions are of the form: .

Syntax
eq_name.qrsymm(options) [arg] [@coefs coeflist]

where arg is a optional list containing the quantile values (specified using numbers, scalar
objects, or vectors) for which you wish to compute estimates, and optionally the @coefs
keyword followed by a coeflist of the subset of coefficients to display.

• If arg is not specified, EViews will perform one of two tests, depending on the original
equation specification:

If the original specification is a median regression (), EViews will test using
estimates obtained at the specified outer quantiles as specified by the “n=” option. If
“n=” is not specified, the default is to display results for the outer quartiles {0.25,
0.75}.

For specifications estimated with , EViews will include the original quantile in
the set of quantiles to test. You may specify “n=e” to perform a test using only esti-
mates obtained at the symmetric pair { , }.

• If arg is specified, EViews will perform the test using only the specified quantiles and
their complements. The original equation quantile will not be tested unless it is
entered explicitly.

• If a coeflist is not provided, results for all coefficients will be displayed. For models
that contain an intercept, the coeflist may consist of the @incptonly keyword, indicat-
ing that only results for the intercept will be displayed.

You may specify a maximum of 1000 total coefficients (number of coefficients in the equa-
tion specification times the number of quantiles) and a maximum of 500 quantiles in the
test.

All estimation will be performed using the settings from the original equation. Note that the
original equation must include an intercept for you to perform this test

qrsymm Equation Views

bt b1 t–� 2b0.5

t 0.5

t 0.5z

t 1 t–

150—Chapter 1. Object Reference

Options

Examples
equation eq1.qreg log(y) c log(x)

eq1.qrsymm

estimates a quantile (median) regression of LOG(Y) on a constant and LOG(X), and per-
forms a symmetry test using the outer quartiles.

We may restrict the hypothesis to just consider the intercept,

eq1.qrsymm @coefs @incptonly

and we may specify alternative quantiles to test

eq1.qrsymm(quantout=qo) .2 .4 .7

Note that the latter command will test using the symmetric quantiles {0.2, 0.3, 0.4, 0.6, 0.7,
0.8}, and at the median. Note that the median is automatically estimated, even though it is
not specified explicitly, since it is always required for testing.

Alternatively, the commands

equation eq1.qreg(quant=.4) log(y) c log(x)

eq1.qrsymm(n=0)

will perform the test using the symmetric quantiles {0.4, 0.6} and the median.

To performs the test using all of the deciles, you may enter

vector(4) v1

v1.fill .1,.2,.3,.4

eq1.qrsymm v1

n=arg
(default=4)

Number of quantiles for testing.

quantout=name Save vector containing test quantile values.

coefout=name Save matrix containing test coefficient estimates. Each col-
umn of the matrix corresponds to a different quantile
matching the corresponding quantile in “quantout=”.
To match the covariance matrix given in “covout=” you
should take the @vec of the coefficient matrix.

covout=name Save symmetric matrix containing covariance matrix for
the vector set of coefficient estimates.

prompt Force the dialog to appear from within a program.

p Print output from the test.

Equation::rcomptest—151

Cross-references

See “Symmetric Quantiles Test” on page 551 of the User’s Guide II for a discussion of the
symmetric quantiles test. See also Equation::qrslope (p. 147).

Test for correlation between random effects and regressors using Hausman test.

Tests the hypothesis that the random effects (components) are correlated with the right-
hand side variables in a panel or pool equation setting. Uses Hausman test methodology to
compare the results from the estimated random effects specification and a corresponding
fixed effects specification. If the estimated specification involves two-way random effects,
three separate tests will be performed; one for each set of effects, and one for the joint
effects.

Only valid for panel or pool regression equations estimated with random effects. Note that
the test results may be suspect in cases where robust standard errors are employed.

Syntax
eq_name.ranhaus(options)

Options

Examples
equation eq1.ls(cx=r) sales c adver lsales

eq1.ranhaus

estimates a specification with cross-section random effects and tests whether the random
effects are correlated with the right-hand side variables ADVER and LSALES using the Haus-
man test methodology.

Cross-references

See also Equation::testadd (p. 167), Equation::testdrop (p. 167), Equa-
tion::fixedtest (p. 91), and Equation::wald (p. 181).

Tests for the presence of cross-sectional or time random components in a panel equation.
estimated using pooled least squares.

ranhaus Equation Views

p Print output from the test.

rcomptest Equation Views

152—Chapter 1. Object Reference

Computes the conventional LM (Breusch-Pagan, 1980, uniformly most powerful LM (Honda,
1985), standardized Honda (Moulton and Randolph, 1989; Baltagi, Chang, and Li, 1998),
locally mean most powerful (LMMP) (King and Wu, 1997), Standardized King-Wu, and
Gourieroux, Holly, and Monfort (1982) test statistics.

Note that the equation must be estimated with pooled least squares for this test to be
applied.

Syntax
equation_name.rcomptest

Options
G

Examples
equation eq1.ls @log(gsp) c @log(p_cap) @log(pc) @log(emp) unemp

eq1.rcomptest

will estimate a panel model using pooled least squares and will compute and display the
panel random effects test results.

Cross-references

See “LM Tests for Random Effects” on page 951 of the User’s Guide II for discussion.

See also Equation::fixedtest (p. 91).

Display text of specification for equation objects.

Syntax
equation_name.representation(options)

Options

Examples
eq1.representations

displays the specifications of the equation object EQ1.

p Print test results

representations Equation Views

p Print the representation text.

Equation::resids—153

Compute Ramsey’s regression specification error test.

Syntax
eq_name.reset(n, options)

You must provide the number of powers of fitted terms n to include in the test regression.

Options

Examples
equation eq1.ls lwage c edu race gender

eq1.reset(2)

carries out the RESET test by including the square and the cube of the fitted values in the
test equation.

Cross-references

See “Ramsey's RESET Test” on page 224 of the User’s Guide II for a discussion of the RESET
test.

Display residuals.

The resids command allows you to display the actual, fitted values and residuals in either
tabular or graphical form.

Syntax
equation_name.resids(options)

reset Equation Views

prompt Force the dialog to appear from within a program.

p Print the test result.

resids Equation Views

154—Chapter 1. Object Reference

Options

Examples
equation eq1.ls m1 c inc tb3 ar(1)

eq1.resids

regresses M1 on a constant, INC, and TB3, correcting for first order serial correlation, and
displays a table of actual, fitted, and residual series.

eq1.resids(g)

displays a graph of the actual, fitted, and residual series.

Cross-references

See also Equation::makeresids (p. 129).

Displays the results view of an estimated equation.

Syntax
equation_name.results(options)

Options

Examples
equation eq1.ls m1 c inc tb3 ar(1)

eq1.results(p)

estimates an equation using least squares, and displays and prints the results.

g (default) Display graph of actual/fittted/residuals (with one stan-
dard error bands)

n Display graph of residuals only (with one standard error
bands)

t Display table of actual/fitted/residuals.

s Display graph of standardized residuals.

p Print the table/graph.

results Equation Views

p Print the view.

Equation::rgmprobs—155

Display regime probabilities for a switching regression equation.

Syntax
eq_name.rgmprobs(options) [indices]

where eq_name is the name of an equation estimated using switching regression. The ele-
ments to display are given by the optional indices corresponding to the regimes (e.g., “1 2 3”
or “2 3”). If indices is not provided, results for all of the regimes will be displayed.

Options

Examples
equation eq1.switchreg(type=markov) y c @nv ar(1) ar(2) ar(3)

eq1.rgmprobs

displays two graphs containing the one-step ahead regime probabilities for the Markov
switching regression estimated in EQ1.

eq1.rgmprobs(type=filt) 2

displays the filtered probabilities for regime 2.

eq1.rgmprobs(type=smooth, view=graph1)

displays the smoothed probabilities for both regimes in a single graph.

Cross-references

See “Switching Regression” on page 505 of the User’s Guide II for discussion. See also Equa-
tion::makergmprobs (p. 130).

rgmprobs Equation Views

type=arg
(default=“pred”)

Type of regime probability to compute: one-step ahead pre-
dicted (“pred”), filtered (“filt”), smoothed (“smooth”).

view=arg
(default=“graph”)

Display format: multiple graphs (“graph”), single graph
“graph1”, sheet (“sheet”), summary (“summary”).

prompt Force the dialog to appear from within a program.

p Print results.

156—Chapter 1. Object Reference

Recursive least squares regression.

The rls view of an equation displays the results of recursive least squares (rolling) regres-
sion. This view is only available for (non-panel) equations estimated by ordinary least
squares without ARMA terms.

You may plot various statistics from rls by choosing an option.

Syntax
eq_name.rls(options) c(1) c(2) …

Options

Examples
equation eq1.ls m1 c tb3 gdp

eq1.rls(r,s)

eq1.rls(c) c(2) c(3)

rls Equation Views

r Plot the recursive residuals about the zero line with plus
and minus two standard errors.

r,s Plot the recursive residuals and save the residual series and
their standard errors as series named R_RES and R_RESSE,
respectively.

c Plot the recursive coefficient estimates with two standard
error bands.

c,s Plot the listed recursive coefficients and save all coeffi-
cients and their standard errors as series named R_C1,
R_C1SE, R_C2, R_C2SE, and so on.

o Plot the p-values of recursive one-step Chow forecast tests.

n Plot the p-values of recursive n-step Chow forecast tests.

q Plot the CUSUM (standardized cumulative recursive resid-
ual) and 5 percent critical lines.

v Plot the CUSUMSQ (CUSUM of squares) statistic and 5 per-
cent critical lines.

prompt Force the dialog to appear from within a program.

p Print the view.

Equation::robustls—157

plots and saves the recursive residual series from EQ1 and their standard errors as R_RES
and R_RESSE. The third line plots the recursive slope coefficients of EQ1.

equation eq2.ls m1 c pdl(tb3,12,3) pdl(gdp,12,3)

eq2.rls(c) c(3)

eq2.rls(q)

The second command plots the recursive coefficient estimates of PDL02, the linear term in
the polynomial of TB3 coefficients. The third line plots the CUSUM test statistic and the 5%
critical lines.

Cross-references

See “Recursive Least Squares” on page 225 of the User’s Guide II. See also Equation::fac-
break (p. 88) and Equation::breaktest (p. 58).

Estimates an equation using robust least squares.

You may perform three different types of robust estimation: M-estimation, S-estimation and
MM-estimation.

Syntax:
eq_name.robustls(options) y x1 [x2 x3…]

Enter the robustls keyword, followed by the dependent variable and a list of the regres-
sors.

Options

robustls Equation Methods

method=arg
(default=“m”)

Robust estimation method: “m” (M-estimation), “s”
(S-estimation) or “mm” (MM-estimation).

cov=arg
(default=“type1”)

Covariance method type: “type1”, “type2”, or “type3”.

tuning=number Specify a value for the tuning parameter. If a value is
not specified, EViews will use the default tuning
parameter for the type of estimation and weighting
function (if applicable).

c=s Convergence criterion. The criterion will be set to the
nearest value between 1e-24 and 0.2.

coef=arg Specify the name of the coefficient vector (if specified
by list); the default behavior is to use the “C” coeffi-
cient vector.

158—Chapter 1. Object Reference

M-estimation Options

S and MM estimation options

m=integer Maximum number the number of iterations.

prompt Force the dialog to appear from within a program.

p Print results.

fn=arg
(default=“bisquare”)

Weighting function used during M-estimation:
“andrews” (Andrews), “bisquare” (Bisquare), “cau-
chy” (Cauchy), “fair”, “huber”, “huberbi” (Huber-
bisquare), “logistic” (Logistic), “median”, “tal” (Tal-
worth), “Welsch” (Welsch).

scale=arg
(default=“madzero”)

Scaling method used for calculating the scalar parame-
ter during M estimation: “madzero” (median absolute
deviation, zero centered), “madmed” (median abso-
lute deviation, median centered), "huber" (Huber scal-
ing).

hmat Use the hat-matrix to down-weight observations with
high leverage.

compare = integer
(default=4)

Number of comparison sets.

refine = integer
(default= 2)

Number of refinements.

trials = integer
(default=200)

Number of trials.

subsmpl=integer Specifies the size of the subsamples. Note, the default
is number of coefficients in the regression.

seed=number Specifies the random number generator seed

rng=arg Specifies the type of random number generator. The
key can be; improved Knuth generator (“kn”),
improved Mersenne Twister (“mt”), Knuth’s (1997)
lagged Fibonacci generator used in EViews 4 (“kn4”)
L’Ecuyer’s (1999) combined multiple, recursive gener-
ator (“le”), Matsumoto and Nishimura’s (1998)
Mersenne Twister used in EViews 4 (“mt4”).

Equation::setattr—159

MM estimation options

Examples

The following examples use the “Rousseeuw and Leroy.wf1” file located in the EViews
application data directory.

equation eq1.robustls salinity c lagsal trend discharge

This line estimates a simple M-type robust estimation, with SALINITY as the dependent
variable, and a constant, LAGSAL, TREND and DISCHARGE as independent variables.

The line:

equation eq2.robustls(method=mm, tuning=2.937, mtuning=3.44,

cov=type2) salinity c lagsal trend discharge

estimates the same model, but using MM-estimation, with an S tuning constant of 2.937, an
M tuning constant of 3.44, and using Huber Type II standard errors.

Cross-references

See Chapter 31. “Robust Least Squares,” beginning on page 421 of User’s Guide II for discus-
sion.

Set the object attribute.

Syntax
equation_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

mtuning=arg M-estimator tuning parameter.
Note the S-estimator tuning parameter is set with the
“tuning=” option outlined above.

hmat Use the hat-matrix to down-weight observations with
high leverage during m-estimation.

setattr Equation Procs

160—Chapter 1. Object Reference

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Estimation by stepwise least squares.

Syntax
eq_name.stepls(options) y x1 [x2 x3 ...] @ z1 z2 z3

Specify the dependent variable followed by a list of variables to be included in the regres-
sion, but not part of the search routine, followed by an “@” symbol and a list of variables to
be part of the search routine. If no included variables are required, simply follow the depen-
dent variable with an “@” symbol and the list of search variables.

Options

stepls Equation Methods

method = arg Stepwise regression method: “stepwise” (default), “uni”
(uni-directional), “swap” (swapwise), “comb” (combinato-
rial).

nvars = int Set the number of search regressors. Required for swapwise
and combinatorial methods, optional for uni-directional
and stepwise methods.

w=arg Weight series or expression.
Note: we recommend that, absent a good reason, you
employ the default settings Inverse std. dev. weights
(“wtype=istdev”) with EViews default scaling
(“wscale=eviews”) for backward compatibility with ver-
sions prior to EViews 7.

wtype=arg
(default=“istdev”)

Weight specification type: inverse standard deviation (“ist-
dev”), inverse variance (“ivar”), standard deviation
(“stdev”), variance (“var”).

wscale=arg Weight scaling: EViews default (“eviews”), average
(“avg”), none (“none”).
The default setting depends upon the weight type:
“eviews” if “wtype=istdev”, “avg” for all others.

Equation::stepls—161

Stepwise and uni-directional method options

Swapwise method options

Combinatorial method options

Examples
eq1.stepls(method=comb,nvars=3) y c @ x1 x2 x3 x4 x5 x6 x7 x8

performs a combinatorial search routine to search for the three variables from the set of X1,
X2, ..., X8, yielding the largest R-squared in a regression of Y on a constant and those three
variables.

Cross-references

See “Stepwise Least Squares Regression,” beginning on page 60 of User’s Guide II.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

prompt Force the dialog to appear from within a program.

p Print estimation results.

back Set stepwise or uni-directional method to run backward. If
omitted, the method runs forward.

tstat Use t-statistic values as a stopping criterion. (default uses
p-values).

ftol=number
(default = 0.5)

Set forward stopping criterion value.

btol=number
(default = 0.5)

Set backward stopping criterion value.

fmaxstep=int
(default = 1000)

Set the maximum number of steps forward.

bmaxstep=int
(default = 1000)

Set the maximum number of steps backward.

tmaxstep=int
(default = 2000)

Set the maximum total number of steps.

minr2 Use minimum R-squared increments. (Default uses maxi-
mum R-squared increments.)

force Suppress the warning message issued when a large number
of regressions will be performed.

162—Chapter 1. Object Reference

Compute tests of parameter constancy of the base specification against a smooth transition
alternative in a smooth threshold regression.

Syntax
eq_name.strconstant(options)

Options

Compute tests for linearity of the base specification against the smooth threshold alterna-
tive in a smooth threshold regression.

Syntax
eq_name.strlinear(options)

Options

Compute tests for additional nonlinearity against additive or encapsulated alternatives (for
equations in a smooth threshold regression).

Syntax
eq_name.strnonlin(options)

Options

strconstant Equation Views

p Print output from the test.

strlinear Equation Views

p Print output from the test.

strnonlin Equation Views

encap Compute tests for additional nonlinearity against
encapsulated alternatives.

p Print output from the test.

Equation::switchreg—163

Compute and display the transition weights in a smooth threshold regression.

The default display shows a graph of the transition function. You may also display the
weights for each observation in the estimation sample.

Syntax
eq_name.strwgts(options)

Options

Estimate a switching regression model (simple exogenous or Markov).

Syntax
eq_name.switchreg(options) dependent_var list_of_varying_regressors [@nv

list_of_nonvarying_regressors] [@prv list_of_probability_regressors]

List the switchreg keyword, followed by options, then the dependent variable and a list of
the regressors with regime-varying coefficients, following optionally by the keyword @nv
and a list of regressors with regime-invariant coefficients, and by the keyword @prv and a
list of regressors that enter into the transition probability specification.

strwgts Equation Views

view=arg Weight display: “graph” (graph of the weight for each
individual in the estimation sample), “sheet” (spread-
sheet containing weights for each individual), “sum-
mary” (summary statistics).
The default view displays a graph of the function with
optional borders.

ab=arg Additional graph borders to display when showing the
default view of the weights: “none” (do not display
borders)”, “boxplot” (display boxplot borders),
“histogram” (display a histogram).
The default view shows a boxplot on each border.

output=arg Optional name of matrix to save the data used in the
function plot.

prompt Force the dialog to appear from within a program.

p Print output from the test.

switchreg Equation Methods

164—Chapter 1. Object Reference

The dependent variable in switchreg may not be an expression. Dynamics may be speci-
fied by including lags of the dependent variable as regressors, or by specifying AR errors
using the AR keyword. The latter incorporate mean adjusted lags of the form specified by the
“Hamilton-model.”

Options

type=arg Type of switching: simple exogenous (“simple”), Markov
(“markov”).

nstates=integer
(default=2)

Number of regimes.

heterr Allow for heterogeneous error variances across regimes

fprobmat=arg Name of fixed transition probability matrix allows for fixing
specific elements of the time-invariant transition matrix.
Leave NAs in elements of the matrix to estimate. The

 element of the matrix corresponds to
.

initprob=arg
(default=“ergodic”)

Method for determining initial Markov regime probabilities:
ergodic solution (“ergodic”), estimated parameter (“est”),
equal probabilities (“uniform”), user-specified probabilities
(“user”).
If “initprob=user” is specified, you will need to specify the
“userinit=” option.

userinit=arg Name of vector containing user-specified initial Markov
probabilities. The vector should have rows equal to the
number of states; we expand this to the size of the initial
lag state vector where necessary for AR specifications.
For use in specifications containing both the “type=mar-
kov” and “initprob=user” options.

startnum=arg
(default=0 or 25)

Number of random starting values tried. The default is 0
for user-supplied coefficients (option “s”) and 25 in all
other cases.

startiter=arg
(default=10)

Number of iterations taken after each random start before
comparing objective to determine final starting value.

searchnum=arg
(default=0)

Number of post-estimation perturbed starting values tried.

searchsds=arg
(default=1)

Number of standard deviations to use in perturbed starts (if
“searchnum=”) is specified.

i j,� �
P st j st 1– i � �

Equation::switchreg—165

In addition to the specification options, there are options for estimation and covariance cal-
culation.

Additional Options

seed=positive_inte-
ger from 0 to
2,147,483,647

Seed the random number generator.
If not specified, EViews will seed random number genera-
tor with a single integer draw from the default global ran-
dom number generator.

rnd=arg
(default=“kn” or
method previously set
using rndseed
(p. 474) in the Com-
mand and Program-
ming Reference).

Type of random number generator: improved Knuth gener-
ator (“kn”), improved Mersenne Twister (“mt”), Knuth’s
(1997) lagged Fibonacci generator used in EViews 4
(“kn4”) L’Ecuyer’s (1999) combined multiple recursive
generator (“le”), Matsumoto and Nishimura’s (1998)
Mersenne Twister used in EViews 4 (“mt4”).

optmethod = arg Optimization method: “bfgs” (BFGS); “newton” (Newton-
Raphson), “opg” or “bhhh” (OPG or BHHH), “legacy”
(EViews legacy).
BFGS is the default method.

optstep = arg Step method: “marquardt” (Marquardt); “dogleg” (Dog-
leg); “linesearch” (Line search).
Marquardt is the default method.

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

cov=arg Covariance method: “ordinary” (default method based on
inverse of the estimated information matrix), “huber” or
“white” (Huber-White sandwich method).

covinfo = arg Information matrix method: “opg” (OPG); “hessian”
(observed Hessian).
(Applicable when non-legacy “optmethod=”.)

nodf Do not degree-of-freedom correct the coefficient covariance
estimate.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

166—Chapter 1. Object Reference

Examples
equation eq_41a.switchreg(type=markov) y c @nv ar(1) ar(2) ar(3)

ar(4)

estimates a Hamilton-type Markov switching regression model with four non-regime varying
autoregressive terms implying mean adjustment for the lagged endogenous.

equation eq_lagdep.switchreg(type=markov) y c @nv y(-1) y(-2) y(-3)

y(-4)

specifies an alternate dynamic model in which the lags enter directly into the contemporane-
ous equation without mean adjustment.

equation eq_filardo.switchreg(type=markov) yy_dalt c @nv ar(1)

ar(2) ar(3) ar(4) @prv c yy_ldalt

estimates a 2 state model with non-varying AR(4) and transition matrix probability regressor
YY_LDALT.

Cross-references

See Chapter 35. “Switching Regression,” beginning on page 505 of User’s Guide II for a
description of the switching regression methodology.

See also Equation::rgmprobs (p. 155), Equation::transprobs (p. 173), Equa-
tion::makergmprobs (p. 130) and Equation::maketransprobs (p. 131) for routines
that allow you to work with the regime probabilities and transition probabilities.

s Use the current coefficient values in “C” as starting values
(see also param (p. 463) of the Command and Program-
ming Reference).

s=number Specify a number between zero and one to determine start-
ing values as a fraction of EViews default values (out of
range values are set to “s=1”).

showopts / -showopts [Do / do not] display the starting coefficient values and
estimation options in the estimation output.

prompt Force the dialog to appear from within a program.

p Print results.

Equation::testdrop—167

Test whether to add regressors to an estimated equation.

Tests the hypothesis that the listed variables were incorrectly omitted from an estimated
equation (only available for equations estimated by list). The test displays some combina-
tion of Wald and LR test statistics, as well as the auxiliary regression.

Syntax
eq_name.testadd(options) arg1 [arg2 arg3 ...]

eq_name.testadd(options) arg1 [arg2 arg3 ...] [@nv x1 x2 x3 ...]

List the names of the series or groups of series to test for omission after the keyword.

For equations estimated using breakls, there are two types of added series, those with
coefficients that break, and those with coefficients that are non-breaking. The former should
be listed before, and the latter should be listed after the optional @nv keyword.

Options

Examples
equation oldeq.ls sales c adver lsales ar(1)

oldeq.testadd gdp gdp(-1)

tests whether GDP and GDP(-1) belong in the specification for SALES using the equation
OLDEQ.

Cross-references

See “Coefficient Diagnostics” on page 176 of the User’s Guide II for further discussion.

See also Equation::testdrop (p. 167) and Equation::wald (p. 181).

Test whether to drop regressors from a regression.

Tests the hypothesis that the listed variables were incorrectly included in the estimated
equation (only available for equations estimated by list). The test displays some combina-
tion of and LR test statistics, as well as the test regression.

testadd Equation Views

prompt Force the dialog to appear from within a program.

p Print output from the test.

testdrop Equation Views

F

168—Chapter 1. Object Reference

Syntax
eq_name.testdrop(options) arg1 [arg2 arg3 ...]

List the names of the series or groups of series to test for omission after the keyword.

Options

Examples
equation oldeq.ls sales c adver lsales ar(1)

oldeq.testdrop adver

tests whether ADVER should be excluded from the specification for SALES using a the equa-
tion OLDEQ.

Cross-references

See “Coefficient Diagnostics” on page 176 of the User’s Guide II for further discussion of
testing coefficients.

See also Equation::testadd (p. 167) and Equation::wald (p. 181).

Carry out the Hosmer-Lemeshow and/or Andrews goodness-of-fit tests for estimated binary
models.

Syntax
binary_equation.testfit(options)

Options

prompt Force the dialog to appear from within a program.

p Print output from the test.

testfit Equation Views

h Group by the predicted values of the estimated equation.

s=series_name Group by the specified series.

integer
(default=10)

Specify the number of quantile groups in which to classify
observations.

u Unbalanced grouping. Default is to randomize ties to bal-
ance the number of observations in each group.

v Group according to the values of the reference series.

Equation::threshold—169

Examples
equation eq1.binary work c age edu

eq1.testfit(h,5,u)

estimates a probit specification, and tests goodness-of-fit by comparing five unbalanced
groups of actual data to those estimated by the model.

Cross-references

See “Goodness-of-Fit Tests” on page 342 of the User’s Guide II for a discussion of the
Andrews and Hosmer-Lemeshow tests.

Estimation by discrete or smooth threshold least squares, including threshold autoregres-
sion.

Syntax
eq_name.threshold(options) y z1 [z2 z3 ...] [@nv x1 x2 x3 ...] @thresh t1 [t2 t3 ...]

List the dependent variable first, followed by a list of the independent variables that have
coefficients that are allowed to vary across threshold, followed optionally by the keyword
@nv and a list of non-varying coefficient variables.

List a threshold variable or variables (for model selection) or a single integer or range pairs
after the keyword @thresh. The integer or range pairs indicate a self-exciting model with the
lagged dependent variable as the threshold variable.

For smooth threshold equations you may specify variables that are to be included only in the
base specification or only in the alternative specification. Base-only variables should be
specified in parentheses using the @base key, as in “@base(x1) @base(x2) @base(x3 x4)”.
Alternative-only variables may be specified analogously using the @alt key.

Options
Specification Options

l=integer
(default=100)

Limit the number of values to use for grouping. Should be
used with the “v” option.

prompt Force the dialog to appear from within a program.

p Print the result of the test.

threshold Equation Methods

type=arg
(default=“discrete”)

Type of threshold estimation: “discrete” (discrete),
“smooth” (smooth).

170—Chapter 1. Object Reference

Discrete Threshold Options

method=arg
(default=“seqplus1”)

Threshold selection method: “seqplus1” (sequential
tests of single versus thresholds), “seqall”
(sequential test of all possible versus thresh-
olds), “glob” (tests of global vs. no thresholds), “glob-
plus1” (tests of versus globally determined
thresholds), “globinfo” (information criteria evalua-
tion)., “fixedseq” (fixed number of sequentially deter-
mined thresholds), “fixedglob” (fixed number of
globally determined thresholds), “user” (user-specified
thresholds)

nthresh=arg
(default=1)

Number of thresholds for fixed number threshold selec-
tion methods.

select=arg Sub-method setting (options depend on “method=”).
(1) if “method=glob”: Sequential ("seq") (default),
Highest significant ("high"), ("udmax"),

 ("wdmax").
(2) if “method=globinfo”: Schwarz criterion (“bic” or
“sic”) (default), Liu-Wu-Zidek criterion (“lwz”).

trim=arg (default=5) Trimming percentage for determining minimum segment
size (5, 10, 15, 20, 25).

maxthresh=integer
(default=5)

Maximum number of thresholds to allow (not applicable
if “method=seqall”).

maxlevels=integer
(default=5)

Maximum number of threshold levels to consider in
sequential testing (applicable when
“method=sequall”).

size=arg (default=5) Test sizes for use in sequential determination and final
test evaluation (10, 5, 2.5, 1) corresponding to 0.10,
0.05, 0.025, 0.01, respectively

heterr Assume regimes specific error distributions in variance
computation.

commondata Assume a common distribution for the data across seg-
ments (only applicable if original equation is estimated
with a robust covariance method, “heterr” is not speci-
fied).

l 1� l
l 1� l

l
l 1� l

UDmax
WDmax

Equation::threshold—171

Smooth Threshold Options

General Options

smoothtrans=arg
(default=“logistic”)

Smooth threshold transition function: “logistic” (logis-
tic), “logistic2” (second-order logistic), “exponential”
(exponential), “normal” (normal).

smoothstart=arg
(default=“grid_conc”
)

Smoth threshold starting value method: or fixed number
threshold selection methods: “grid_conc” (grid search
with concentrated regression coefficients”, “grid_zeros”
(grid search with zero regression coefficients), “data”
(data-based), “user” (user-specified using the contents
of the coefficient vector in the workfile).

smoothst=arg Sub-method setting (options depend on “method=”).
(1) if “method=glob”: Sequential ("seq") (default),
Highest significant ("high"), ("udmax"),

 ("wdmax").
(2) if “method=globinfo”: Schwarz criterion (“bic” or
“sic”) (default), Liu-Wu-Zidek criterion (“lwz”).

w=arg Weight series or expression.

wtype=arg
(default=“istdev”)

Weight specification type: inverse standard deviation (“ist-
dev”), inverse variance (“ivar”), standard deviation
(“stdev”), variance (“var”).

wscale=arg Weight scaling: EViews default (“eviews”), average
(“avg”), none (“none”).
The default setting depends upon the weight type:
“eviews” if “wtype=istdev”, “avg” for all others.

cov=keyword Covariance type (optional): “white” (White diagonal
matrix), “hac” (Newey-West HAC).

nodf Do not perform degree of freedom corrections in computing
coefficient covariance matrix. The default is to use degree
of freedom corrections.

covlag=arg
(default=1)

Whitening lag specification: integer (user-specified lag
value), “a” (automatic selection).

covinfosel=arg
(default=“aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“lag=a”).

covmaxlag=integer Maximum lag-length for automatic selection (optional) (if
“lag=a”). The default is an observation-based maximum
of .

UDmax
WDmax

T1 3e

172—Chapter 1. Object Reference

Examples
equation eq1.threshold(method=fixedseq, type=discrete) ss_transf c

ss_transf(-1 to -11) @thresh 2

uses the fixed number of thresholds test to determine the optimal threshold in a model
regressing SS_TRANSF on the threshold variables C and SS_TRANSF(-1 to -11).

equation eq2.threshold(method=fixedseq, type=discrete) ss_transf c

ss_transf(-1 to -11) @thresh 1 5

uses the fixed number of thresholds test to determine the optimal threshold and does model
selection over lags of SS_TRANSF from SS_TRANSF(-1) to SS_TRANSF(-5).

equation eq3.threshold(method=user, threshold=7.44) ss_transf c

@nv ss_transf(-1 to -11) @thresh 2

estimates the model with one user-specified threshold value. In addition, the variables
SS_TRANSF(-1 to -11) are restricted to have common coefficients across the regimes.

Cross-references

See Chapter 33. “Discrete Threshold Regression,” on page 461 and Chapter 34. “Smooth
Transition Regression,” on page 477 for a discussion of the various forms of threshold mod-
els.

covkern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniel), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen).

covbw=arg
(default=“fixednw”
)

Kernel Bandwidth: “fixednw” (Newey-West fixed),
“andrews” (Andrews automatic), “neweywest” (Newey-
West automatic), number (User-specified bandwidth).

covnwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric kernel bandwidth selection (if “covbw=newey-
west”).

covbwint Use integer portion of bandwidth.

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

Equation::transprobs—173

Display regime transition probabilities and expected durations for a switching regression
equation.

Syntax
equation_name.transprobs(options)

where equation_name is the name of an equation estimated using switching regression.

Options

Examples
equation eq1.switchreg(type=markov) y c @nv ar(1) ar(2) ar(3)

eq1.transprobs

displays the default summary of the transition probabilities estimated in EQ1.

The command

eq1.transprobs(type=trans)

displays the transition probabilities in a graph, while

transprobs Equation Views

type=arg
(default=“summary”)

Transition probability results to display: summary
(“default”), transition probabilities (“trans”), expected
durations (“expect”).
The default summary displays the transition matrix and
expected regime durations for constant transition probabil-
ity models, and descriptive statistics for the transition and
expected durations for varying probability models.

view=arg
(default=“graph”)

Display method: graph (“graph”), spreadsheet (“sheet”),
table (“table”).
Applicable when displaying the transition probabilities or
expected durations (“type=trans” or “type=expect”).
The spreadsheet form represents shows the transition prob-
abilities or regime expected durations in columns and
observations in rows.
The table form displays the transition probabilities or
expected durations in a table (in a single matrix for a time-
constant model, and individual matrices for a time-varying
model).

prompt Force the dialog to appear from within a program.

p Print results.

174—Chapter 1. Object Reference

eq1.transprobs(type=trans, view=sheet)

displays the transition probabilities in a spreadsheet, with each row column representing
one of the probabilities and each row representing an observation.

eq1.transprobs(type=trans, view=table)

displays the transition probabilities in a table.

eq1.transprobs(type=expect, view=sheet)

displays the expected durations in spreadsheet form.

Cross-references

See “Switching Regression” on page 505 of the User’s Guide II for discussion. See also Equa-
tion::transprobs (p. 173).

Two-stage least squares.

Carries out estimation for equations using two-stage least squares.

Syntax
eq_name.tsls(options) y x1 [x2 x3 ...] @ z1 [z2 z3 ...]

eq_name.tsls(options) specification @ z1 [z2 z3 ...]

To use the tsls command, list the dependent variable first, followed by the regressors, then
any AR or MA error specifications, then an “@”-sign, and finally, a list of exogenous instru-
ments. You may estimate nonlinear equations or equations specified with formulas by first
providing a specification, then listing the instrumental variables after an “@”-sign.

There must be at least as many instrumental variables as there are independent variables.
All exogenous variables included in the regressor list should also be included in the instru-
ment list. A constant is included in the list of instrumental variables even if not explicitly
specified.

tsls Equation Methods

Equation::tsls—175

Options
Non-Panel TSLS Options

nocinst Do not automatically include a constant as an instrument.

w=arg Weight series or expression.
Note: we recommend that, absent a good reason, you
employ the default settings Inverse std. dev. weights
(“wtype=istdev”) with EViews default scaling
(“wscale=eviews”) for backward compatibility with ver-
sions prior to EViews 7.

wtype=arg
(default=“istdev”)

Weight specification type: inverse standard deviation (“ist-
dev”), inverse variance (“ivar”), standard deviation
(“stdev”), variance (“var”).

wscale=arg Weight scaling: EViews default (“eviews”), average
(“avg”), none (“none”).
The default setting depends upon the weight type:
“eviews” if “wtype=istdev”, “avg” for all others.

cov=keyword Covariance type (optional): “white” (White diagonal
matrix), “hac” (Newey-West HAC).

nodf Do not perform degree of freedom corrections in computing
coefficient covariance matrix. The default is to use degree
of freedom corrections.

covlag=arg
(default=1)

Whitening lag specification: integer (user-specified lag
value), “a” (automatic selection).

covinfosel=arg
(default=“aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“lag=a”).

covmaxlag=integer Maximum lag-length for automatic selection (optional) (if
“lag=a”). The default is an observation-based maximum
of .

covkern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniel), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen).

covbw=arg
(default=“fixednw”
)

Kernel Bandwidth: “fixednw” (Newey-West fixed),
“andrews” (Andrews automatic), “neweywest” (Newey-
West automatic), number (User-specified bandwidth).

T1 3e

176—Chapter 1. Object Reference

covnwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric kernel bandwidth selection (if “covbw=newey-
west”).

covbwint Use integer portion of bandwidth.

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

s Use the current coefficient values in estimator coefficient
vector as starting values for equations specified by list with
AR or MA terms (see also param (p. 463) of the Com-
mand and Programming Reference).

s=number Determine starting values for equations specified by list
with AR or MA terms. Specify a number between zero and
one representing the fraction of TSLS estimates computed
without AR or MA terms to be used. Note that out of range
values are set to “s=1”. Specifying “s=0” initializes coeffi-
cients to zero. By default EViews uses “s=1”.
Does not apply to coefficients for AR and MA terms which
are instead set to EViews determined default values.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv / -fastderiv [Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

z Turn off backcasting in ARMA models.

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

Equation::tsls—177

Panel TSLS Options

cx=arg Cross-section effects. For fixed effects estimation, use
“cx=f”; for random effects estimation, use “cx=r”.

per=arg Period effects. For fixed effects estimation, use “cx=f”; for
random effects estimation, use “cx=r”.

wgt=arg GLS weighting: (default) none, cross-section system
weights (“wgt=cxsur”), period system weights
(“wgt=persur”), cross-section diagonal weighs
(“wgt=cxdiag”), period diagonal weights (“wgt=per-
diag”).

cov=arg Coefficient covariance method: (default) ordinary, White
cross-section system robust (“cov=cxwhite”), White
period system robust (“cov=perwhite”), White heteroske-
dasticity robust (“cov=stackedwhite”), Cross-section sys-
tem robust/PCSE (“cov=cxsur”), Period system robust/
PCSE (“cov=persur”), Cross-section heteroskedasticity
robust/PCSE (“cov=cxdiag”), Period heteroskedasticity
robust (“cov=perdiag”).

keepwgts Keep full set of GLS weights used in estimation with object,
if applicable (by default, only small memory weights are
saved).

rancalc=arg
(default=“sa”)

Random component method: Swamy-Arora (“ran-
calc=sa”), Wansbeek-Kapteyn (“rancalc=wk”), Wallace-
Hussain (“rancalc=wh”).

nodf Do not perform degree of freedom corrections in computing
coefficient covariance matrix. The default is to use degree
of freedom corrections.

iter=arg
(default=“onec”)

Iteration control for GLS specifications: perform one weight
iteration, then iterate coefficients to convergence
(“iter=onec”), iterate weights and coefficients simultane-
ously to convergence (“iter=sim”), iterate weights and
coefficients sequentially to convergence (“iter=seq”), per-
form one weight iteration, then one coefficient step
(“iter=oneb”).
Note that random effects models currently do not permit
weight iteration to convergence.

unbalsur Compute SUR factorization in unbalanced data using the
subset of available observations for a cluster.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default is to use the “C” coefficient vector.

178—Chapter 1. Object Reference

Examples
eq1.tsls y_d c cpi inc ar(1) @ lw(-1 to -3)

estimates EQ1 using TSLS regression of Y_D on a constant, CPI, INC with AR(1) using a con-
stant, LW(-1), LW(-2), and LW(-3) as instruments.

param c(1) .1 c(2) .1

eq1.tsls(s,m=500) y_d=c(1)+inc^c(2) @ cpi

estimates a nonlinear TSLS model using a constant and CPI as instruments. The first line
sets the starting values for the nonlinear iteration algorithm.

Cross-references

See Chapter 21. “Instrumental Variables and GMM,” on page 69 and “Two-Stage Least
Squares” on page 647 of the User’s Guide II for details on two-stage least squares estimation
in single equations and systems, respectively.

s Use the current coefficient values in estimator coefficient
vector as starting values for equations specified by list with
AR terms (see also param (p. 463) of the Command and
Programming Reference).

s=number Determine starting values for equations specified by list
with AR terms. Specify a number between zero and one
representing the fraction of TSLS estimates computed with-
out AR terms to be used. Note that out of range values are
set to “s=1”. Specifying “s=0” initializes coefficients to
zero. By default EViews uses “s=1”.
Does not apply to coefficients for AR terms which are
instead set to EViews determined default values.

m=integer Set maximum number of iterations.

c=number Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv / -fastderiv [Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

prompt Force the dialog to appear from within a program.

p Print estimation results.

Equation::ubreak—179

“Instrumental Variables” on page 886 of the User’s Guide II discusses estimation using pool
objects, while “Instrumental Variables Estimation” on page 920 of the User’s Guide II dis-
cusses estimation in panel structured workfiles.

See also Equation::ls (p. 117).

Andrews-Quandt test for unknown breakpoint.

Carries out the Andrews-Quandt test for parameter stability at some unknown breakpoint.

Syntax
eq_name.ubreak(options) trimlevel @ x1 x2 x3

You must provide the level of trimming of the data. The level must be one of the following:
49, 48, 47, 45, 40, 35, 30, 25, 20, 15, 10, or 5. If the equation is specified by list and contains
no nonlinear terms, you may specify a subset of the regressors to be tested for a breakpoint
after an “@” sign.

Options

Examples
equation ppp.ls log(spot) c log(p_us) log(p_uk)

ppp.ubreak 15

regresses the log of SPOT on a constant, the log of P_US, and the log of P_UK, and then car-
ries out the Andrews-Quandt test, trimming 15% of the data from each end.

To test whether only the constant term and the coefficient on the log of P_US are subject to
a structural break, use:

ppp.ubreak @ c log(p_us)

Cross-references

See “Quandt-Andrews Breakpoint Test” on page 208 of the User’s Guide II for further discus-
sion.

ubreak Equation Views

wfname =
series_name

Store the individual Wald F-statistics into the series
series_name.

lfname =
series_name

Store the individual likelihood ratio F-statistics into the
series series_name.

prompt Force the dialog to appear from within a program.

p Print the result of the test.

180—Chapter 1. Object Reference

See also Equation::chow (p. 62) and Equation::rls (p. 156).

Update coefficient object values from an equation object.

Copies coefficients from the equation object into the appropriate coefficient vector or vec-
tors.

Syntax
equation_name.updatecoef

Follow the name of the equation object with a period and the keyword updatecoef.

Examples
equation eq1.ls y c x1 x2 x3

equation eq2.ls z c z1 z2 z3

eq1.updatecoef

places the coefficients from EQ1 in the default coefficient vector C.

coef(3) a

equation eq3.ls y=a(1)+z1^c(1)+log(z2+a(2))+exp(c(4)+z3/a(3))

equation eq2.ls z c z1 z2 z3

eq3.updatecoef

updates the coefficient vector A and the default vector C so that both contain the coefficients
from EQ3.

Cross-references

See also Coef::coef (p. 20).

Variance Inflation Factor (VIF).

Display the Variance Inflation Factors (VIFs). VIFs are a method of measuring the level of
collinearity between the regressors in an equation.

Syntax
eq_name.varinf

updatecoefs Equation Procs

varinf Equation Views

Equation::wald—181

Options

Examples

The set of commands:

equation eq1.ls lwage c edu edu^2 union

eq1.varinf

displays the variance inflation factor view of EQ1.

Cross-references

See also “Variance Inflation Factors” on page 179 of User’s Guide II.

Wald coefficient restriction test.

The wald view carries out a Wald test of coefficient restrictions for an equation object.

Syntax
equation_name.wald restrictions

Enter the equation name, followed by a period, and the keyword. You must provide a list of
the coefficient restrictions, with joint (multiple) coefficient restrictions separated by com-
mas.

Options

Examples
eq1.wald c(2)=0, c(3)=0

tests the null hypothesis that the second and third coefficients in equation EQ1 are jointly
zero.

eq2.wald c(2)=c(3)*c(4)

tests the non-linear restriction that the second coefficient in equation EQ2 is equal to the
product of the third and fourth coefficients.

p Print the results.

wald Equation Views

p Print the test results.

182—Chapter 1. Object Reference

Cross-references

See “Wald Test (Coefficient Restrictions)” on page 182 of the User’s Guide II for a discussion
of Wald tests.

See also Equation::cellipse (p. 59), Equation::testdrop (p. 167), Equa-
tion::testadd (p. 167).

Displays the Weak Instruments Summary

The weakinst view of an equation displays the Weak Instrument Summary for equations
estimated by TSLS, GMM or LIML. The summary includes both the Cragg-Donald test and
Moment Selection Criteria (for TSLS and GMM only).

Syntax
eq_name.weakinst

Examples
equation eq1.gmm y c x1 x2 @ z1 z2 z3 z4

e1.weakinst

estimates and equation via GMM and then displays the weak instrument summary.

Cross-references

See “Weak Instrument Diagnostics” on page 94 of the User’s Guide II for discussion.

Performs White’s test for heteroskedasticity of residuals.

Carries out White’s test for heteroskedasticity of the residuals of the specified equation. By
default, the test is computed without the cross-product terms (using only the terms involv-
ing the original variables and squares of the original variables). You may elect to compute
the original form of the White test that includes the cross-products.

White’s test is not available for equations estimated by binary, ordered, censored, or
count.

Note that a more general version of the White test is available using Equation::hettest
(p. 108). We also note that for equations estimated without a constant term, version 6 of the

weakinst Equation Views

white Equation Views

Equation::white—183

White command will, by default, generate results that differ from version 5. You may obtain
version 5 compatible results by adding the @comp keyword to white as in:

eq_name.white @comp

Syntax
eq_name.white(options)

Options

Examples
eq1.white(c)

carries out the White test of heteroskedasticity including all possible cross-product terms.

Cross-references

See “White's Heteroskedasticity Test” on page 199 of the User’s Guide II for a discussion of
White’s test. For the multivariate version of this test, see “White Heteroskedasticity Test” on
page 706 of the User’s Guide II.

See also Equation::hettest (p. 108) for a more full-featured version of this test.

c Include all possible nonredundant cross-product terms in
the test regression.

prompt Force the dialog to appear from within a program.

p Print the test results.

184—Chapter 1. Object Reference

Factor::—185

Factor

Factor analysis object.

Factor Declaration
factorfactor object declaration (p. 193).

To declare a factor object, use the factor keyword, followed by a name to be given to the
object. See also factest (p. 358).

Factor Methods
glsgeneralized least squares estimation (p. 195).
ipf.........................iterated principal factors estimation (p. 199).
ml.........................maximum likelihood estimation (p. 208).
pacenon-iterative partitioned covariance estimation (PACE) (p. 213).
pf..........................principal factors estimation (p. 217).
ulsunweighted least squares estimation (p. 231).

Factor Views
anticov..................display the anti-image covariance matrix of the observed matrix

(p. 189).
displaydisplay table, graph, or spool in object window (p. 190).
eigen.....................display table or graph of eigenvalues of observed, scaled observed,

or reduced covariance matrix (p. 191).
fitstats...................show table of Goodness-of-Fit statistics (p. 194).
fittedshow fitted and reproduced covariances (p. 194).
loadingsdisplay loadings tables or graphs (p. 204).
maxcor..................display maximum absolute correlations for the observed covariance

matrix (p. 207).
msa.......................compute and display Kaiser’s Measure of Sampling Adequacy

(MSA) (p. 211).
observeddisplay observed covariance matrix, scaled covariance matrix, or

number of observations used in analysis (p. 212).
output...................display main factor analysis estimation output (p. 213).
partcorshow observed partial correlation matrix (p. 216).
reduced.................display reduced covariance matrix using initial or final unique-

nesses (p. 220).
residsdisplay residual covariance estimates (p. 221).
rotateoutshow rotated factors and rotation estimation results (p. 226).
scorescompute factor score coefficients and scores and display results

(p. 227).

186—Chapter 1. Object Reference

smc display table of squared multiple correlations for the observed cova-
riance matrix (p. 230).

structure............... display factor structure matrix (p. 230).

Factor Procs
clearhist clear the contents of the history attribute (p. 190).
displayname set display name for factor object (p. 191).
factnames specify names for factors (p. 193).
label..................... label view of factor object (p. 203).
makescores........... compute and save factor score scores series (p. 205).
olepush push updates to OLE linked objects in open applications (p. 212).
rotate perform an orthogonal or oblique factor rotation (p. 221).
rotateclear clear existing rotation results (p. 225).
setattr................... set the value of an object attribute (p. 226).

Factor Data Members
Scalar values for model

@valid (0, 1) indicator for whether the factor object has valid factor esti-
mates (1=true).

@nvars number of variables to analyze.
@nfactors............. number of retained factors.
@obs number of observations.
@balanced (0, 1) indicator for whether the covariance matrix uses a balanced

sample (1=balanced).
@ncondition number of conditioning variables (including the constant term for

centered covariances).
@pratio parsimony ratio.
@nnfi Non-normed Fit Index (generalized Tucker-Lewis index).
@rfi Bollen’s Relative Fit Index.
@nfi Bentler-Bonnet’s Incremental Fit Index.
@ifi Bollen’s Incremental Fit Index.
@cfi Bentlers Comparative Fit Index.

Scalar values for model and independence (zero factor) specifications

Each of the following takes an optional argument “(0)” (e.g., “@params(0)”). If no argu-
ment is provided, the data member returns the value for the estimated factor specification. If
the optional argument is provided, the member returns the value for the independence (zero
factor) model.

@params[(0)]....... number of estimated parameters.
@ncoefs[(0)] same as @parms.

Factor::—187

@objective[(0)]value of the objective function in factor extraction.
@discrep[(0]same as @objective.
@aic[(0]Akaike Information Criterion.
@sc[(0)]Schwarz Information Criterion.
@hq[(0)]Hannan-Quinn Information Criterion.
@ecvi[(0)]Expected Cross-validation Index.
@chisq[(0)]Chi-square test statistic for model adequacy.
@chisqdf[(0)]Degrees of freedom for the chi-square statistic.
@chisqprob[(0)] ...p-value for the chi-square statistic
@bartlett[(0)]Bartlett’s adjusted version of the Chi-square test statistic.
@bartlettprob[(0)].p-value for Bartlett’s adjusted version of the chi-square statistic.
@rmsr[(0)]Root mean square residuals.
@srmsr[(0)]..........Standardized root mean square residuals.
@gfi[(0)]Jöreskog and Sörbom Generalized Fit Index.
@agfi[(0)].............Jöreskog and Sörbom Adjusted Generalized Fit Index.
@noncent[(0)]Noncentrality parameter.
@gammahat[(0)] ..Gamma hat non-centrality.
@mdnoncent[(0)] .McDonald non-centrality.
@rmsea[(0)]Root MSE approximation.

Vectors and Matrices for Model

@obsmatmatrix of number of observations used for each pair of variables.
@covobserved covariance or correlation matrix.
@scaledscaled covariance matrix.
@fitted..................fitted covariance matrix.
@commoncommon variance fitted covariance matrix (fitted matrix with com-

munality on the diagonal).
@residresidual matrix (observed–fitted).
@residcommonresidual matrix using common variance.
@reducedreduced covariance matrix using final uniqueness estimates.
@ireducedreduced covariance matrix using initial uniqueness estimates.
@anticovAnti-image covariance matrix.
@partcor...............partial correlation matrix.
@iunique..............vector of initial uniqueness estimates.
@unique...............vector of final uniqueness estimates.
@icommunalvector initial communality estimates.
@communalvector of final communality estimates.

188—Chapter 1. Object Reference

@rowadjust.......... vector of row standardization terms (used to rescale results so that
the uniqueness and communality estimates add up to the observed
diagonals).

@loadings estimated loadings matrix.
@rloadings........... rotated loadings matrix.
@rotmat............... factor rotation matrix: .
@rotmatinv loadings rotation matrix: .
@factcor factor correlation matrix.
@factstruct........... factor structure matrix (correlation between factors and the vari-

ables).

String Values

@attr(“arg”) string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@command.......... full command line form of the Factor estimation command. Note
this is a combination of @method, @options, and @spec.

@description string containing the Factor object’s description (if available).
@detailedtype returns a string with the object type: “FACTOR”.
@displayname...... returns the Factor object’s display name. If the Factor object has no

display name set, the name is returned.
@factnames factor names.
@method command line form of the Factor estimation method type.
@name returns the Factor object’s name.
@options.............. command line form of estimation options.
@smpl sample used for estimation.
@spec original factor specification.
@type returns a string with the object type: “FACTOR”.
@units string containing the Factor object’s units description (if available).
@updatetime........ returns a string representation of the time and date at which the

Factor was last updated.
@varnames variable names.

Factor Examples

To declare a factor object named F1:

factor f1

To declare and estimate by maximum likelihood a factor object F2 using data in the group
GROUP01:

factor f2.ml group01

T
T 1–� �c

Factor::anticov—189

To declare and estimate, using iterated principal factors, the factor object F3 using the sym
matrix SYM01:

factor f3.ipf sym01 785

In addition to providing the name of the matrix, we indicate that the covariance is computed
using 785 observations.

To estimate a factor model by ML using the series X1 X2 and X3 using a command:

factest x1 x2 x3

EViews will create an untitled factor object containing the results of the estimation.

Factor Entries

The following section provides an alphabetical listing of the commands associated with the
“Factor” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Display the anti-image covariance matrix based on the observed covariance matrix

Syntax
factor_name.anticov(options)

The anti-image covariance is obtained by taking the inverse of the covariance matrix, and
row and column scaling by the diagonals of the inverse.

The diagonal elements of the matrix are equal to 1 minus the squared multiple correlations
(SMCs). The off-diagonal elements of the anti-image covariance are equal to the negative of
the partial covariances multiplied by , where are the remaining variables.

Options

Examples
factor f1.ml group01

f1.anticov(p)

estimates the factor analysis object F1, then displays and prints the anti-image covariance
matrix.

anticov Factor Views

p Print the matrix.

1 rxy Z
2–� � Z

190—Chapter 1. Object Reference

Cross-References

See “Observed Covariances” on page 1055 of User’s Guide II. See also Factor::observed
(p. 212), Factor::partcor (p. 216), Factor::smc (p. 230).

Clear the contents of the history attribute for factor objects.

Removes the factor object’s history attribute, as shown in the label view of the factor object.

Syntax
factor_name.clearhist

Examples
f1.clearhist

f1.label

The first line removes the history from the factor F1, and the second line displays the label
view of F1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Factor::label (p. 203).

Display table, graph, or spool output in the factor object window.

Display the contents of a table, graph, or spool in the window of the factor object.

Syntax
factor_name.display object_name

Examples
factor1.display tab1

Display the contents of the table TAB1 in the window of the object FACTOR1.

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

clearhist Factor Procs

display Factor Views

Factor::eigen—191

Set display name for factor object.

Attaches a display name to a factor object which may be used to label output in place of the
standard factor object name.

Syntax
factor_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in object names.

Examples
f1.displayname Holzinger Example

The first line attaches a display name “Holzinger Example” to the factor object F1.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names. See also Factor::label (p. 203).

Display table or graph of eigenvalues of observed, scaled observed, or reduced covariance
matrix.

Syntax
factor_name.eigen(options)

By default, eigen will display a table of eigenvalues for the specified source matrix. You
may add the option keywords “eigvec” and “matrix” to include additional output.

To display a graph of the results, you should some combination of the “scree”, “diff” and
“cproport” option keywords.

displayname Factor Procs

eigen Factor Views

192—Chapter 1. Object Reference

Options

Examples
f1.eigen(source=observed, scree)

displays the scree plot based on the observed covariance matrix.

f1.eigen(source=reducedinit, eigvec, matrix)

displays a table of eigenvalues and corresponding eigenvectors for the reduced covariance
matrix (using the initial uniquenesses). The table also shows the reduced covariance matrix.

f1.eigen(source=reducedinit, scree, cproport, diff)

shows the scree, cumulative proportion, and eigenvalue difference graphs based on the
reduced initial covariance.

Cross-references

See “Eigenvalues” on page 1057 of User’s Guide II.

source=arg
(default=
“observed”)

Source matrix to be analyzed: “observed” (observed cova-
riance matrix), “scaled” (scaled observed matrix), “reduce-
dinit” (reduced using initial uniquenesses), “reduced”
(reduced using final uniquenesses).

eigvec Add the eigenvectors to the table of eigenvalue results. May
be combined with the “matrix” keyword.

matrix Display the source matrix along with the table of eigen-
value results. May be combined with the “eigvec” keyword.

scree Display eigenvalue graph of the ordered eigenvalues (Scree
plot). May be combined with the “diff” and “cproport” key-
words.

diff Display graph of the difference in successive eigenvalues.
May be combined with the “scree” and “cproport” key-
words.

cproport Display graph of the cumulative proportion of total vari-
ance associated with each eigenvalue/eigenvector. May be
combined with the “scree” and “diff” keywords.

prompt Force the dialog to appear from within a program.

p Print results.

Factor::factor—193

Specify names for the unobserved factors.

Assign names to the unobserved factors in an estimated factor object. These names will sub-
sequently be used in table and graphical output.

Syntax
factor_name.factnames [name1 ...]

You should follow the keyword with a list of names for the factors. You may clear an existing
set of factnames by using the factnames keyword with an empty list of factors.

Examples
f1.factnames Verbal Visual

attaches names “Verbal” and “Visual” to the first two retained factors. The names will be
used in subsequent views and procedures.

f1.factnames

clears the existing list of factor names.

Declare a factor object.

Syntax
factor factor_name

factor factor_name.method(options) specification

Follow the factor keyword with a name and an optional specification. If you wish to enter
the specification, you should follow the new factor name with a period, an estimation
method, and the factor analysis specification. Valid estimation methods are gls (p. 195),
ipf (p. 199), ml (p. 208), pace (p. 213), pf (p. 217), and uls (p. 231). Refer to each
method for a description of the available options.

Examples
factor f1.gls(n=map, priors=max) group01

declares the factor object F1 and estimates a factor model from the correlation matrix for the
series in the group object GROUP01. The default method, Velicer’s MAP, is used for deter-
mining the number of factors.

factnames Factor Procs

factor Factor Declaration

194—Chapter 1. Object Reference

factor fac1.ipf(n=2, maxit=4) var1 var2 var3 var4

creates the factor object FAC1 then extracts two factors from the variables VAR1–VAR4 by
the iterative principal factor method, with a maximum of four iterations.

factor f2.ml group01

declares the factor object F2 then estimates the factor model using the correlation matrix for
the series in GROUP01 by maximum likelihood method.

Cross-references

Chapter 49. “Factor Analysis,” on page 1043 of User’s Guide II provides basic information on
factor analysis.

Display Goodness-of-fit statistics for an estimated factor analysis object.

Syntax
factor_name.fitstats

Options

Examples
factor f1.ml group01

f1.fitstats(p)

estimates a factor model then displays and prints a table of Goodness-of-fit statistics.

Cross-references

See “Discrepancy and Chi-Square Tests” on page 1079 of User’s Guide II.

Display fitted and common covariances from a factor analysis object.

Syntax
factor_name.fitted(options)

fitstats Factor Views

p Print the results.

fitted Factor Views

Factor::gls—195

Options

Examples
factor f1.ml group01

f1.fitted(p)

estimates a factor model for the series in GROUP01, then displays and prints the fitted cova-
riance matrix for the factor object F1.

f1.fitted(common)

displays the estimate of the fitted common variance.

Cross-references

See “Matrix Views” on page 1055 of User’s Guide II. See also Factor::reduced (p. 220).

Generalized least squares estimation of the factor model.

Syntax
factor_name.gls(options) x1 [x2 x3...] [@partial z1 z2 z3...]

factor_name.gls(options) matrix_name [[obs] [conditioning]] [@ name1 name2
name3...]

The first method computes the observed dispersion matrix from a set of series or group
objects. Simply append a period and the gls keyword to the name of your object, followed
by the names of your series and groups, You may optionally use the keyword @partial and
append a list of conditioning series.

In the second method you will provide the name of the observed dispersion matrix, and
optionally, the number of observations and the rank of the set of conditioning variables. If
the latter is not provided, it will be set to 1 (representing the constant in the standard cen-
tered variance calculations). You may also provide names for the columns of the correlation
matrix by entering the @-sign followed by a list of valid series names.

common Display common covariance.(default is to display the fitted
covariance).

p Print the matrix.

gls Factor Methods

196—Chapter 1. Object Reference

Options
Estimation Options

Number of Factors Options

rescale Rescale the uniqueness and loadings estimates so that they
match the observed variances.

maxit=integer Maximum number of iterations.

conv=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled esti-
mates. The criterion will be set to the nearest value
between 1e-24 and 0.2.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the rotation output.

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

n=arg
(default=“map”)

Number of factors: “kaiser” (Kaiser-Guttman greater than
mean), “mineigen” (Minimum eigenvalue criterion; speci-
fied using “eiglimit”), “varfrac” (fraction of variance
accounted for; specified using “varlimit”), “map” (Velicer’s
Minimum Average Partial method), “bstick” (comparison
with broken stick distribution), “parallel” (parallel analy-
sis: number of replications specified using “pnreps”;
“pquant” indicates the quantile method value if employed),
“scree” (standard error scree method), integer (user-speci-
fied integer value).

eiglimit=number
(default=1)

Limit value for retaining factors using the eigenvalue com-
parison (where “n=mineigen”).

varlimit=number
(default=0.5)

Fraction of total variance explained limit for retaining fac-
tors using the variance limit criterion (where
“n=varlimit”).

porig Use the unreduced matrix for parallel analysis (the default
is to use the reduced matrix).
For parallel analysis only (“n=parallel”).

preps= integer
(default=100)

Number of parallel analysis repetitions.
For parallel analysis only (“n=parallel”).

pquant=number Quantile value for parallel analysis comparison (if not spec-
ified, the mean value will be employed).
For parallel analysis only (“n=parallel”).

Factor::gls—197

Initial Communalities Options

pseed=positive inte-
ger

Seed the random number generator for parallel analysis.
If not specified, EViews will seed the random number gen-
erator with a single integer draw from the default global
random number generator.
For parallel analysis only (“n=parallel”).

prnd=arg
(default=“kn” or
method previously
set using rndseed
(p. 474) in the
Command and Pro-
gramming Refer-
ence)

Type of random number generator for the simulation:
improved Knuth generator (“kn”), improved Mersenne
Twister (“mt”), Knuth’s (1997) lagged Fibonacci generator
used in EViews 4 (“kn4”) L’Ecuyer’s (1999) combined mul-
tiple recursive generator (“le”), Matsumoto and
Nishimura’s (1998) Mersenne Twister used in EViews 4
(“mt4”).
For parallel analysis only (“n=parallel”).

priors=arg Method for obtaining initial communalities: “smc”
(squared multiple correlations), “max” (maximum abso-
lute correlation”), “pace” (noniterative partitioned covari-
ance estimation), “frac” (fraction of the diagonals of the
original matrix; specified using “priorfrac=”), “random”
(random fractions of the original diagonals), “user” (user-
specified vector; specified using “priorunique”).

priorfrac=number User-specified common fraction (between 0 and 1) to be
used when “priors=frac”.

priorunique=arg Vector of initial uniqueness estimates to be used when
“priors=user”. By default, the values will be taken from
the corresponding elements of the coefficient vector C.

198—Chapter 1. Object Reference

Covariance Options

Examples
factor f1.gls(n=map, priors=max) group01

declares the factor object F1 and estimates a factor model from the correlation matrix for the
series in the group object GROUP01. The default method, Velicer’s MAP, is used for deter-
mining the number of factors.

f1.gls(n=map, priors=max) group01 @partial ser1 ser2

estimates the same specification using the partial correlation for the series in GROUP01, con-
ditional on the series SER1 and SER2.

f1.gls(rescale, maxit=200, n=2, priors=smc, cov=rcorr) x y z

estimates a two factor model for the rank correlation computed from the series X, Y, and Z,
using generalized least squares with 200 maximum iterations. The result is rescaled if neces-
sary so that estimated uniqueness and the communality sum to 1; the initial uniquenesses
are set to the SMCs of the observed correlation matrix.

f1.gls sym01 393

cov=arg
(default=“cov”)

Covariance calculation method: ordinary (Pearson product
moment) covariance (“cov”), ordinary correlation (“corr”),
Spearman rank covariance (“rcov”), Spearman rank cor-
relation (“rcorr”), Kendall’s tau-b (“taub”), Kendall’s tau-a
(“taua”), uncentered ordinary covariance (“ucov”), uncen-
tered ordinary correlation (“ucorr”).
User-specified covariances are indicated by specifying a
sym matrix object in place of a list of series or groups in
the command.

wgt=name
(optional)

Name of series containing weights.

wgtmethod=arg
(default = “sst-
dev”)

Weighting method (when weights are specified using
“weight=”): frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations.
Weights specified by “wgt=” are frequency weights for
rank correlation and Kendall’s tau calculations.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
for the mean (for centered specifications), and any partial
conditioning variables.

Factor::ipf—199

estimates a factor model using the symmetric matrix object as the observed matrix. The
number of observations for the model is set to 393.

Cross-references

See Chapter 49. “Factor Analysis,” on page 1043 of User’s Guide II for a general discussion of
factor analysis. The various estimation methods are described in “Estimation Methods” on
page 1076 of User’s Guide II.

See also Factor::ipf (p. 199), Factor::ml (p. 208), Factor::pace (p. 213), Fac-
tor::pf (p. 217), Factor::uls (p. 231).

Iterated principal factors estimation of the factor model.

Syntax
factor_name.ipf(options) x1 [x2 x3...] [@partial z1 z2 z3...]

factor_name.ipf(options) matrix_name [[obs] [conditioning]] [@ name1 name2
name3...]

The first method computes the observed dispersion matrix from a set of series or group
objects. Simply append a period and the ipf keyword to the name of your object, followed
by the names of your series and groups, You may optionally use the keyword @partial and
append a list of conditioning series.

In the second method you will provide the name of the observed dispersion matrix, and
optionally, the number of observations and the rank of the set of conditioning variables. If
the latter is not provided, it will be set to 1 (representing the constant in the standard cen-
tered variance calculations). You may also provide names for the columns of the correlation
matrix by entering the @-sign followed by a list of valid series names.

ipf Factor Methods

200—Chapter 1. Object Reference

Options
Estimation Options

Number of Factors Options

heywood=arg
(default=“stop”)

Method for handling Heywood cases (negative uniqueness
estimates): “stop” (stop and report final results), “last”
(stop and report previous iteration results”, “reset” (set
negative uniquenesses to zero and continue), “ignore”
(ignore and continue).

maxit=integer Maximum number of iterations.

conv=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled esti-
mates. The criterion will be set to the nearest value
between 1e-24 and 0.2.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the rotation output.

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

n=arg
(default=“map”)

Number of factors: “kaiser” (Kaiser-Guttman greater than
mean), “mineigen” (Minimum eigenvalue criterion; speci-
fied using “eiglimit”), “varfrac” (fraction of variance
accounted for; specified using “varlimit”), “map” (Velicer’s
Minimum Average Partial method), “bstick” (comparison
with broken stick distribution), “parallel” (parallel analy-
sis: number of replications specified using “pnreps”;
“pquant” indicates the quantile method value if employed),
“scree” (standard error scree method), integer (user-speci-
fied integer value).

eiglimit=number
(default=1)

Limit value for retaining factors using the eigenvalue com-
parison (where “n=mineigen”).

varlimit=number
(default=0.5)

Fraction of total variance explained limit for retaining fac-
tors using the variance limit criterion (where
“n=varlimit”).

porig Use the unreduced matrix for parallel analysis (the default
is to use the reduced matrix).
For parallel analysis only (“n=parallel”).

preps= integer
(default=100)

Number of parallel analysis repetitions.
For parallel analysis only (“n=parallel”).

Factor::ipf—201

Initial Communalities Options

Covariance Options

pquant=number Quantile value for parallel analysis comparison (if not spec-
ified, the mean value will be employed).
For parallel analysis only (“n=parallel”).

pseed=positive inte-
ger

Seed the random number generator for parallel analysis.
If not specified, EViews will seed the random number gen-
erator with a single integer draw from the default global
random number generator.
For parallel analysis only (“n=parallel”).

prnd=arg
(default=“kn” or
method previously
set using rndseed
(p. 474) in the
Command and Pro-
gramming Refer-
ence)

Type of random number generator for the simulation:
improved Knuth generator (“kn”), improved Mersenne
Twister (“mt”), Knuth’s (1997) lagged Fibonacci generator
used in EViews 4 (“kn4”) L’Ecuyer’s (1999) combined mul-
tiple recursive generator (“le”), Matsumoto and
Nishimura’s (1998) Mersenne Twister used in EViews 4
(“mt4”).
For parallel analysis only (“n=parallel”).

priors=arg Method for obtaining initial communalities: “smc”
(squared multiple correlations), “max” (maximum abso-
lute correlation”), “pace” (noniterative partitioned covari-
ance estimation), “frac” (fraction of the diagonals of the
original matrix; specified using “priorfrac=”), “random”
(random fractions of the original diagonals), “user” (user-
specified vector; specified using “priorunique”).

priorfrac=number User-specified common fraction (between 0 and 1) to be
used when “priors=frac”.

priorunique=arg Vector of initial uniqueness estimates to be used when
“priors=user”. By default, the values will be taken from
the corresponding elements of the coefficient vector C.

cov=arg
(default=“cov”)

Covariance calculation method: ordinary (Pearson product
moment) covariance (“cov”), ordinary correlation (“corr”),
Spearman rank covariance (“rcov”), Spearman rank cor-
relation (“rcorr”), Kendall’s tau-b (“taub”), Kendall’s tau-a
(“taua”), uncentered ordinary covariance (“ucov”), uncen-
tered ordinary correlation (“ucorr”).
User-specified covariances are indicated by specifying a
sym matrix object in place of a list of series or groups in
the command.

202—Chapter 1. Object Reference

Examples
factor f1.ipf(n=2, maxit=4) var1 var2 var3 var4

declares the factor object F1 then extracts two factors from the variables VAR1–VAR4 by the
iterative principal factor method, with a maximum of four iterations.

f1.ipf(conv=1e-9, heywood=reset) group01

sets the convergence criterion to 1e-9, and estimates the factor model for the series in
GROUP01. If encountered, negative uniqueness estimates will be set to zero and the estima-
tion will proceed.

f1.ipf(conv=1e-9, heywood=reset) group01 @partial ser1 ser2

estimates the same specification using the partial correlation for GROUP01, conditional on
the series SER1 and SER2.

f1.ipf(n=parallel) sym01 424

estimates the iterative principal factor model using the observed matrix SYM01. The number
of observations is 424, and the number of factors is determined using parallel analysis.

Cross-references

See Chapter 49. “Factor Analysis,” on page 1043 of User’s Guide II for a general discussion of
factor analysis. The various estimation methods are described in “Estimation Methods” on
page 1076 of User’s Guide II.

See also Factor::gls (p. 195), Factor::ml (p. 208), Factor::pace (p. 213), Fac-
tor::pf (p. 217), Factor::uls (p. 231).

wgt=name
(optional)

Name of series containing weights.

wgtmethod=arg
(default =
“sstdev”)

Weighting method (when weights are specified using
“weight=”): frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations.
Weights specified by “wgt=” are frequency weights for
rank correlation and Kendall’s tau calculations.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
for the mean (for centered specifications), and any partial
conditioning variables.

Factor::label—203

Display or change the label view of the factor object.

Syntax
factor_name.label

factor_name.label(options) [text]

Options

The first version of the command displays the label view of the factor. The second version
may be used to modify the label. Specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared.

If no options are provided, label will display the current values in the label.

Examples

The following lines replace the remarks field of F1 with “Example factor analysis problem”:

f1.label(r) Example factor analysis problem

To append additional remarks to F1, and then to print the label view:

f1.label(r, p) Test evaluation

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Factor::displayname (p. 191).

label Factor Views | Factor Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

204—Chapter 1. Object Reference

Display factor loadings tables or graphs.

Syntax
factor_name.loadings(options)

factor_name.loadings(graph, options) [graph_list]

where the [graph_list] is an optional list of integers and/or vectors containing integers iden-
tifying the factors to plot. If graph_list is not provided, EViews will construct graphs using all
of the retained factors.

Multiple pairs are handled using the method specified in the “mult=” option. Note that the
order of elements in the list matters; reversing the order of two indices reverses the axis on
which each factor is displayed.

Options

Graph Options

Examples
f1.loadings

displays the spreadsheet view of the (possibly rotated) loadings.

f1.loadings(graph, unrotated) 1 2

displays an XY graph of the first two unrotated factor loadings.

loadings Factor Views

graph Display graphs of the loadings (default is to display the
loadings in a spreadsheet view).

unrotated Use the unrotated loadings (default is to use the rotated
loadings, if available).

prompt Force the dialog to appear from within a program (for load-
ings graphs only)

p Print results.

mult =arg
(default=“first”)

Multiple series handling: plot first against remainder
(“first”), plot as x-y pairs (“pair”), lower-triangular plot
(“lt”).

nocenter Do not center graphs around the origin. By default, EViews
centers biplots around (0, 0).

Factor::makescores—205

Cross-references

See “Background,” beginning on page 1074 of User’s Guide II for a general discussion of the
factor model, and “Loadings Views” on page 1056 of User’s Guide II for specific discussion
of the loadings view.

Save estimated factor score series in the workfile

Syntax
factor_name.makescores(options) [output_list] [@ observed_list]

The optional output_list describes the factors that you wish to save. There are two formats
for the list:

• You may specify output_list using a list of integers and/or vectors containing integers
identifying the factors that you wish to save (e.g., “1 2 3 5”).

EViews will construct the output series names using the factor names previously spec-
ified in the factor object (using Factor::factnames (p. 193)) or using the default
names “F1”, “F2”, etc. If a name modifier is provided (using the “append=” option),
it will be appended to each name

• You may provide an output_list containing names for factors to be saved (e.g., “math
science verbal”).

If you provide factor names, EViews will save the first factors to the workfile.
The factors will be named using the specified list, appended with the name modifiers,
if specified.

By default, EViews will save all of the factors using the names in the factor object, with
modifiers if necessary.

The optional observed_list of observed input variables will be multiplied by the score coeffi-
cients to compute the scores. Note that:

• If an observed_list is not provided, EViews will use the observed variables from factor
estimation. For user-specified factor models (specified by providing a symmetric
matrix) you must provide a list if you wish to obtain score values.

• Scores values will be computed for the current workfile sample. Observations with
input values that are missing will generate NAs.

makescores Factor Procs

k k

206—Chapter 1. Object Reference

Options

unrotated Use unrotated loadings in computations (the default is to
use the rotated loadings, if available).

type =arg
(default=“exact”)

Exact coefficient (“exact”), coarse adjusted factor coeffi-
cients (“coefs”), coarse adjusted factor loadings (“load-
ings”).

coef=arg
(default=“reg”)

Method for computing the factor score coefficient matrix:
Thurstone regression (“reg”), Ideal Variables (“ideal”),
Bartlett weighted least squares (“wls”), generalized Ander-
son-Rubin-McDonald (“anderson”), Green (“green”).
For “type=exact” and “type=coefs” specifications.

coarse=arg
(default=“unre-
strict”)

Method for computing the coarse (-1, 0, 1) scores coeffi-
cients (Grice, 1991a):
Unrestricted -- (“unrestrict”) coef weights set based only on
sign; Unique–recode (“recode”) only element with highest
value is coded to a non-zero value; Unique–drop (“drop”)
only elements with loadings not in excess of the threshold
are set to non-zero values.
For “type=coefs” and “type=loadings” specifications.

cutoff=number
(default = 0.3)

Cutoff value for coarse score coefficient calculation (Grice,
1991a).
For “type=coef” specifications, the cutoff value represents
the fraction of the largest absolute coefficient weight per
factor against which the absolute exact score coefficients
should be compared.
For “type=loadings”, and “type=struct” specifications,
the cutoff is the value against which the absolute loadings
or structure coefficients should be compared.

moment=arg
(default =“est”; if
feasible)

Standardize the observables data using means and vari-
ances from: original estimation (“est”), or the computed
moments from specified observable variables (“obs”).
The “moment=est” option is only available for factor mod-
els estimated using Pearson or uncentered Pearson correla-
tion and covariances since the remaining models involve
unobserved or non-comparable moments.

df Degrees-of-freedom correct the observables variances com-
puted when “moment=obs” (divide sums-of-squares by

 instead of).n 1– n

Factor::maxcor—207

Examples
f1.makescores(coef=green, n=outgrp)

computes factor scores coefficients using Green’s method, then saves the results into series
in the workfile using the names in the factor object. The observed data from the estimation
specification will be used as inputs to the procedure. If no names have been specified, the
names will be “F1”, “F2”, etc. The output series will be saved in the group object OUTGRP.

f1.makescores(coef=green, n=outgrp) 1 2

computes scores in the same fashion, but only saves factors 1 and 2.

f1.makescores(type=coefs) sc1 sc2 sc3

computes coarse factor scores using the default (Thurstone) scores coefficients and saves
them in the series SC1, SC2, and SC3. The observed data from the estimation specification
will be used as inputs.

Cross-references

See “Estimating Scores,” beginning on page 1051 of User’s Guide II and “Scoring,” on
page 1084 of User’s Guide II. See also Factor::scores (p. 227).

Display the maximum absolute correlations for each column of the observed covariance
matrix.

Syntax
factor_name.maxcor(options)

The table also displays the observed covariance matrix.

Options

Examples
f1.maxcor(p)

n=arg (Optional) Name of group object to contain the factor score
series.

coefout (Optional) Name of matrix in which to save the factor
score coefficient matrix.

prompt Force the dialog to appear from within a program.

maxcor Factor Views

p Print the matrix.

208—Chapter 1. Object Reference

displays and prints the maximum absolute covariance matrix for the factor object F1.

Cross-references

See also Factor::anticov (p. 189), Factor::observed (p. 212), and Factor::partcor
(p. 216).

Maximum likelihood estimation of the factor model.

Syntax
factor_name.ml(options) x1 [x2 x3...] [@partial z1 z2 z3...]

factor_name.ml(options) matrix_name [[obs] [conditioning]] [@ name1 name2
name3...]

The first method computes the observed dispersion matrix from a set of series or group
objects. Simply append a period and the ml keyword to the name of your object, followed by
the names of your series and groups, You may optionally use the keyword @partial and
append a list of conditioning series.

In the second method you will provide the name of the observed dispersion matrix, and
optionally, the number of observations and the rank of the set of conditioning variables. If
the latter is not provided, it will be set to 1 (representing the constant in the standard cen-
tered variance calculations). You may also provide names for the columns of the correlation
matrix by entering the @-sign followed by a list of valid series names.

Options
Estimation Options

ml Factor Methods

rescale Rescale the uniqueness and loadings estimates so that they
match the observed variances.

maxit=integer Maximum number of iterations.

conv=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled esti-
mates. The criterion will be set to the nearest value
between 1e-24 and 0.2.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the rotation output.

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

Factor::ml—209

Number of Factors Options

n=arg
(default=“map”)

Number of factors: “kaiser” (Kaiser-Guttman greater than
mean), “mineigen” (Minimum eigenvalue criterion; speci-
fied using “eiglimit”), “varfrac” (fraction of variance
accounted for; specified using “varlimit”), “map” (Velicer’s
Minimum Average Partial method), “bstick” (comparison
with broken stick distribution), “parallel” (parallel analy-
sis: number of replications specified using “pnreps”;
“pquant” indicates the quantile method value if employed),
“scree” (standard error scree method), integer (user-speci-
fied integer value).

eiglimit=number
(default=1)

Limit value for retaining factors using the eigenvalue com-
parison (where “n=mineigen”).

varlimit=number
(default=0.5)

Fraction of total variance explained limit for retaining fac-
tors using the variance limit criterion (where
“n=varlimit”).

porig Use the unreduced matrix for parallel analysis (the default
is to use the reduced matrix).
For parallel analysis only (“n=parallel”).

preps= integer
(default=100)

Number of parallel analysis repetitions.
For parallel analysis only (“n=parallel”).

pquant=number Quantile value for parallel analysis comparison (if not spec-
ified, the mean value will be employed).
For parallel analysis only (“n=parallel”).

pseed=positive inte-
ger

Seed the random number generator for parallel analysis.
If not specified, EViews will seed the random number gen-
erator with a single integer draw from the default global
random number generator.
For parallel analysis only (“n=parallel”).

prnd=arg
(default=“kn” or
method previously
set using rndseed
(p. 474) in the
Command and Pro-
gramming Refer-
ence)

Type of random number generator for the simulation:
improved Knuth generator (“kn”), improved Mersenne
Twister (“mt”), Knuth’s (1997) lagged Fibonacci generator
used in EViews 4 (“kn4”) L’Ecuyer’s (1999) combined mul-
tiple recursive generator (“le”), Matsumoto and
Nishimura’s (1998) Mersenne Twister used in EViews 4
(“mt4”).
For parallel analysis only (“n=parallel”).

210—Chapter 1. Object Reference

Initial Communalities Options

Covariance Options

Examples
factor f1.ml group01

priors=arg Method for obtaining initial communalities: “smc”
(squared multiple correlations), “max” (maximum abso-
lute correlation”), “pace” (noniterative partitioned covari-
ance estimation), “frac” (fraction of the diagonals of the
original matrix; specified using “priorfrac=”), “random”
(random fractions of the original diagonals), “user” (user-
specified vector; specified using “priorunique”).

priorfrac=number User-specified common fraction (between 0 and 1) to be
used when “priors=frac”.

priorunique=arg Vector of initial uniqueness estimates to be used when
“priors=user”. By default, the values will be taken from
the corresponding elements of the coefficient vector C.

cov=arg
(default=“cov”)

Covariance calculation method: ordinary (Pearson product
moment) covariance (“cov”), ordinary correlation (“corr”),
Spearman rank covariance (“rcov”), Spearman rank cor-
relation (“rcorr”), Kendall’s tau-b (“taub”), Kendall’s tau-a
(“taua”), uncentered ordinary covariance (“ucov”), uncen-
tered ordinary correlation (“ucorr”).
User-specified covariances are indicated by specifying a
sym matrix object in place of a list of series or groups in
the command.

wgt=name
(optional)

Name of series containing weights.

wgtmethod=arg
(default =
“sstdev”)

Weighting method (when weights are specified using
“weight=”): frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations.
Weights specified by “wgt=” are frequency weights for
rank correlation and Kendall’s tau calculations.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
for the mean (for centered specifications), and any partial
conditioning variables.

Factor::msa—211

declares the factor object F1 then estimates the factor model using the correlation matrix for
the series in GROUP01 by the method of maximum likelihood.

f1.ml group01 @partial ser1 ser2

estimates the same specification using the partial correlation for the series in GROUP01, con-
ditional on the series SER1 and SER2.

f1.ml(n=parallel, priors=max) x y z

uses parallel analysis to determine the number of factors for a model estimates from the
series X, Y, and Z, and uses the maximum absolute correlations to determine the initial
uniqueness estimates.

f1.ml(n=scree) sym01 424

estimates the factor model using the observed matrix SYM01. The number of observations is
424, and the number of factors is determined using the standard error scree.

Cross-references

See Chapter 49. “Factor Analysis,” on page 1043 of User’s Guide II for a general discussion of
factor analysis. The various estimation methods are described in “Estimation Methods” on
page 1076 of User’s Guide II.

See also Factor::gls (p. 195), Factor::ipf (p. 199), Factor::ml (p. 208), Fac-
tor::pace (p. 213), Factor::pf (p. 217), Factor::uls (p. 231).

Display Kaiser’s Measure of Sampling Adequacy and matrix of partial correlations.

Syntax
factor_name.msa(options)

Options

Examples
f1.msa(p)

displays and prints the results for the factor object F1.

Cross-references

See also Factor::partcor (p. 216) and Factor::anticov (p. 189).

msa Factor Views

p Print the results.

212—Chapter 1. Object Reference

Display observed covariance matrix, scaled observed covariance (correlation), or matrix of
number of observations.

Syntax
factor_name.observed(options)

Options

Examples
factor f1.ml group01

f1.observed

estimates a common factor model for the series in GROUP01, then displays the observed
covariance matrix.

f1.observed(scaled, p)

displays and prints the corresponding correlation matrix.

Cross-references

See “Observed Covariances” on page 1055 of User’s Guide II. See also Factor::anticov
(p. 189), Factor::partcor (p. 216), and Factor::smc (p. 230).

Push updates to OLE linked objects in open applications.

Syntax
factor_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

observed Factor Views

scaled Scale the observed matrix so that it has unit diagonals.

p Print the results.

olepush Factor Procs

Factor::pace—213

Display factor estimation output.

Syntax
factor_name.output(options)

Options

Examples
f1.output

displays the estimation output for factor F1.

Non-iterative partitioned covariance estimation of the factor model

Syntax
factor_name.pace(options) x1 [x2 x3...] [@partial z1 z2 z3...]

factor_name.pace(options) matrix_name [[obs] [conditioning]] [@ name1 name2
name3...]

The first method computes the observed dispersion matrix from a set of series or group
objects. Simply append a period and the pace keyword to the name of your object, followed
by the names of your series and groups, You may optionally use the keyword @partial and
append a list of conditioning series.

In the second method you will provide the name of the observed dispersion matrix, and
optionally, the number of observations and the rank of the set of conditioning variables. If
the latter is not provided, it will be set to 1 (representing the constant in the standard cen-
tered variance calculations). You may also provide names for the columns of the correlation
matrix by entering the @-sign followed by a list of valid series names.

output Factor Views

p Print view.

pace Factor Methods

214—Chapter 1. Object Reference

Options
Estimation Options

Number of Factors Options

rescale Rescale the uniqueness and loadings estimates so that they
match the observed variances.

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

n=arg
(default=“map”)

Number of factors: “kaiser” (Kaiser-Guttman greater than
mean), “mineigen” (Minimum eigenvalue criterion; speci-
fied using “eiglimit”), “varfrac” (fraction of variance
accounted for; specified using “varlimit”), “map” (Velicer’s
Minimum Average Partial method), “bstick” (comparison
with broken stick distribution), “parallel” (parallel analy-
sis: number of replications specified using “pnreps”;
“pquant” indicates the quantile method value if employed),
“scree” (standard error scree method), integer (user-speci-
fied integer value).

eiglimit=number
(default=1)

Limit value for retaining factors using the eigenvalue com-
parison (where “n=mineigen”).

varlimit=number
(default=0.5)

Fraction of total variance explained limit for retaining fac-
tors using the variance limit criterion (where
“n=varlimit”).

porig Use the unreduced matrix for parallel analysis (the default
is to use the reduced matrix).
For parallel analysis only (“n=parallel”).

preps= integer
(default=100)

Number of parallel analysis repetitions.
For parallel analysis only (“n=parallel”).

Factor::pace—215

Covariance Options

pquant=number Quantile value for parallel analysis comparison (if not spec-
ified, the mean value will be employed).
For parallel analysis only (“n=parallel”).

pseed=positive inte-
ger

Seed the random number generator for parallel analysis.
If not specified, EViews will seed the random number gen-
erator with a single integer draw from the default global
random number generator.
For parallel analysis only (“n=parallel”).

prnd=arg
(default=“kn” or
method previously
set using rndseed
(p. 474) in the
Command and Pro-
gramming Refer-
ence)

Type of random number generator for the simulation:
improved Knuth generator (“kn”), improved Mersenne
Twister (“mt”), Knuth’s (1997) lagged Fibonacci generator
used in EViews 4 (“kn4”) L’Ecuyer’s (1999) combined mul-
tiple recursive generator (“le”), Matsumoto and
Nishimura’s (1998) Mersenne Twister used in EViews 4
(“mt4”).
For parallel analysis only (“n=parallel”).

cov=arg
(default=“cov”)

Covariance calculation method: ordinary (Pearson product
moment) covariance (“cov”), ordinary correlation (“corr”),
Spearman rank covariance (“rcov”), Spearman rank cor-
relation (“rcorr”), Kendall’s tau-b (“taub”), Kendall’s tau-a
(“taua”), uncentered ordinary covariance (“ucov”), uncen-
tered ordinary correlation (“ucorr”).
User-specified covariances are indicated by specifying a
sym matrix object in place of a list of series or groups in
the command.

wgt=name
(optional)

Name of series containing weights.

wgtmethod=arg
(default =
“sstdev”)

Weighting method (when weights are specified using
“weight=”): frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations.
Weights specified by “wgt=” are frequency weights for
rank correlation and Kendall’s tau calculations.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
for the mean (for centered specifications), and any partial
conditioning variables.

216—Chapter 1. Object Reference

Examples
factor f1.pace(n=map, rescale) x y z

declares the factor object F1 and estimates the factors for the correlation matrix of X, Y, and
Z, by the PACE method. The number of factors is determined by Velicer’s MAP procedure
and the result is rescaled to match the observed variances.

f1.pace(n=3) group01

estimates the three factor model for the series in GROUP01 by the PACE method.

f1.pace(n=3) group01 @partial ser1 ser2

estimates the same specification using the partial correlation for the series in GROUP01, con-
ditional on the series SER1 and SER2.

f1.pace(n=scree) sym01 848

estimates the PACE factor model using the observed matrix SYM01. The number of observa-
tions is 848, and the number of factors is determined using the standard error scree.

Cross-references

See Chapter 49. “Factor Analysis,” on page 1043 of User’s Guide II for a general discussion of
factor analysis. The various estimation methods are described in “Estimation Methods” on
page 1076 of User’s Guide II.

See also Factor::gls (p. 195), Factor::ipf (p. 199), Factor::ml (p. 208), Fac-
tor::pf (p. 217), Factor::uls (p. 231).

Display the partial correlation matrix derived from the observed covariance matrix.

Syntax
factor_name.partcor(options)

The elements of the partial correlation matrix are the pairwise correlations conditional on
the other variables.

The partial correlation matrix is computed by scaling the anti-image covariance to unit diag-
onal (or equivalently, by row and column scaling the inverse of the observed matrix by the
square roots of its diagonals).

Options

partcor Factor Views

p Print the matrix.

Factor::pf—217

Examples
factor f1.ml group01

f1.partcor(p)

displays and prints the partial correlation matrix for the factor object F1.

Cross-references

See “Observed Covariances” on page 1055 of User’s Guide II. See also Factor::anticov
(p. 189), Factor::observed (p. 212), and Factor::smc (p. 230).

Principal factors estimation of the factor model.

Syntax
factor_name.pf(options) x1 [x2 x3...] [@partial z1 z2 z3...]

factor_name.pf(options) matrix_name [[obs] [conditioning]] [@ name1 name2
name3...]

The first method computes the observed dispersion matrix from a set of series or group
objects. Simply append a period and the pf keyword to the name of your object, followed by
the names of your series and groups, You may optionally use the keyword @partial and
append a list of conditioning series.

In the second method you will provide the name of the observed dispersion matrix, and
optionally, the number of observations and the rank of the set of conditioning variables. If
the latter is not provided, it will be set to 1 (representing the constant in the standard cen-
tered variance calculations). You may also provide names for the columns of the correlation
matrix by entering the @-sign followed by a list of valid series names.

Options
Estimation Options

pf Factor Methods

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

218—Chapter 1. Object Reference

Number of Factors Options

n=arg
(default=“map”)

Number of factors: “kaiser” (Kaiser-Guttman greater than
mean), “mineigen” (Minimum eigenvalue criterion; speci-
fied using “eiglimit”), “varfrac” (fraction of variance
accounted for; specified using “varlimit”), “map” (Velicer’s
Minimum Average Partial method), “bstick” (comparison
with broken stick distribution), “parallel” (parallel analy-
sis: number of replications specified using “pnreps”;
“pquant” indicates the quantile method value if employed),
“scree” (standard error scree method), integer (user-speci-
fied integer value).

eiglimit=number
(default=1)

Limit value for retaining factors using the eigenvalue com-
parison (where “n=mineigen”).

varlimit=number
(default=0.5)

Fraction of total variance explained limit for retaining fac-
tors using the variance limit criterion (where
“n=varlimit”).

porig Use the unreduced matrix for parallel analysis (the default
is to use the reduced matrix).
For parallel analysis only (“n=parallel”).

preps= integer
(default=100)

Number of parallel analysis repetitions.
For parallel analysis only (“n=parallel”).

pquant=number Quantile value for parallel analysis comparison (if not spec-
ified, the mean value will be employed).
For parallel analysis only (“n=parallel”).

pseed=positive inte-
ger

Seed the random number generator for parallel analysis.
If not specified, EViews will seed the random number gen-
erator with a single integer draw from the default global
random number generator.
For parallel analysis only (“n=parallel”).

prnd=arg
(default=“kn” or
method previously
set using rndseed
(p. 474) in the
Command and Pro-
gramming Refer-
ence)

Type of random number generator for the simulation:
improved Knuth generator (“kn”), improved Mersenne
Twister (“mt”), Knuth’s (1997) lagged Fibonacci generator
used in EViews 4 (“kn4”) L’Ecuyer’s (1999) combined mul-
tiple recursive generator (“le”), Matsumoto and
Nishimura’s (1998) Mersenne Twister used in EViews 4
(“mt4”).
For parallel analysis only (“n=parallel”).

Factor::pf—219

Initial Communalities Options

Covariance Options

Examples
factor f1.pf(n=map, priors=frac, priorfrac=1) x y z

priors=arg Method for obtaining initial communalities: “smc”
(squared multiple correlations), “max” (maximum abso-
lute correlation”), “pace” (noniterative partitioned covari-
ance estimation), “frac” (fraction of the diagonals of the
original matrix; specified using “priorfrac=”), “random”
(random fractions of the original diagonals), “user” (user-
specified vector; specified using “priorunique”).

priorfrac=number User-specified common fraction (between 0 and 1) to be
used when “priors=frac”.

priorunique=arg Vector of initial uniqueness estimates to be used when
“priors=user”. By default, the values will be taken from
the corresponding elements of the coefficient vector C.

cov=arg
(default=“cov”)

Covariance calculation method: ordinary (Pearson product
moment) covariance (“cov”), ordinary correlation (“corr”),
Spearman rank covariance (“rcov”), Spearman rank cor-
relation (“rcorr”), Kendall’s tau-b (“taub”), Kendall’s tau-a
(“taua”), uncentered ordinary covariance (“ucov”), uncen-
tered ordinary correlation (“ucorr”).
User-specified covariances are indicated by specifying a
sym matrix object in place of a list of series or groups in
the command.

wgt=name
(optional)

Name of series containing weights.

wgtmethod=arg
(default =
“sstdev”)

Weighting method (when weights are specified using
“weight=”): frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations.
Weights specified by “wgt=” are frequency weights for
rank correlation and Kendall’s tau calculations.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
for the mean (for centered specifications), and any partial
conditioning variables.

220—Chapter 1. Object Reference

declares the factor object F1 and extracts factors from the correlation matrix of the series X,
Y, and Z, by the principal factor method. The original variances are used as the initial
uniqueness estimates.

f1.pf(priors=pace) group01

extracts factors for the correlation of the series in GROUP01 by the principal factor method
with initial uniqueness estimated by the PACE method.

f1.pf(priors=pace) group01 @partial ser1 ser2

estimates the same specification using the partial correlation for the series in GROUP01, con-
ditional on the series SER1 and SER2.

Cross-references

See Chapter 49. “Factor Analysis,” on page 1043 of User’s Guide II for a general discussion of
factor analysis. The various estimation methods are described in “Estimation Methods” on
page 1076 of User’s Guide II.

See also Factor::gls (p. 195), Factor::ipf (p. 199), Factor::ml (p. 208), Fac-
tor::pace (p. 213), Factor::uls (p. 231).

Display reduced covariance matrix for the estimated factor analysis object.

Syntax
factor_name.reduced(options)

By default, the reduced covariance is computed by subtracting the final uniqueness esti-
mates from the observed covariance matrix. You may use the “initial” option to evaluate the
reduced matrix using the initial uniqueness estimates.

Options

Examples
factor f1.pf x1 x2 x3 x4 x5 x6 x7 x8

f1.reduced

estimates a factor analysis model applied to the series X1 to X8 and displays the final
reduced matrix (using final uniqueness estimates).

reduced Factor Views

initial Display the reduced matrix computed using the initial
uniqueness estimates.

p Print the matrix.

Factor::rotate—221

f1.reduced(initial)

displays the reduced matrix with the initial uniquenesses on the diagonal.

Cross-references

See “Matrix Views” on page 1055 of User’s Guide II. See also Factor::fitted (p. 194).

Display residual covariance estimates for the factor analysis object.

Syntax
factor_name.resids(options)

By default, the residuals are computed by subtracting the estimate of the common variance
and the final uniqueness estimates from the observed covariance matrix. You may use the
“common” option to only subtract the common variance.

Options

Examples
factor f1.pfact x1 x2 x3 x4 x5 x6 x7 x8

f1.resids

estimates and displays the residuals for a factor analysis model applied to the series X1 to
X8.

f1.resids(common)

displays the residuals computed without subtracting the uniqueness estimates.

Cross-references

See also fit (p. 363).

Perform an orthogonal or oblique factor rotation of the loadings of an estimated factor
object.

resids Factor Views

common Display the residuals computed using only the common fit-
ted covariance.

p Print the matrix.

rotate Factor Procs

222—Chapter 1. Object Reference

Syntax
factor_name.rotate(options)

You may use the “type=” and “method=” options to select from a variety of rotations
methods.

Method Options

The first five options control the basic rotation specification:

The following rotation methods are supported:

type=arg
(default=“orthog”)

Orthogonal (“orthog”) or oblique (“oblique”) rotation
(ignored if method is not supported, e.g, “orthogonal
Harris-Kaiser” or “oblique Entropy Ratio”).

method=arg
(default=“varimax”)

Method (objective) for the rotation. See keywords
below

param=arg Rotation parameter, if applicable (see description
below).

preparam=arg
(default=1, Varimax)

Orthomax pre-rotation parameter (for “method=hk”
and “method=promax”).

Method Keyword Orthogonal Oblique

Biquartimax biquartimax • •

Crawford-Ferguson cf • •

Entropy entropy •

Entropy Ratio entratio •

Equamax equamax • •

Factor Parsimony parsimony • •

Generalized Crawford-Fer-
guson

gcf • •

Geomin geomin • •

Harris-Kaiser (case II) hk •

Infomax infomax • •

Oblimax oblimax •

Oblimin oblimin •

Orthomax orthomax • •

Parsimax parsimax • •

Pattern Simplicity pattern • •

Promax promax •

Factor::rotate—223

In selecting a rotation method you should bear in mind the following:

• EViews employs the Crawford-Ferguson variants of the Biquartimax, Equamax, Factor
Parsimony, Orthomax, Parsimax, Quartimax, and Varimax objective functions. These
objective functions yield the same results as the standard versions in the orthogonal
case, but are better behaved (e.g., do not permit factor collapse) under direct oblique
rotation (see Browne 2001, p. 118-119). Note that oblique Crawford-Ferguson Quarti-
max is equivalent to Quartimin.

• The EViews Orthomax objective for parameter is evaluated using the Crawford-Fer-
guson objective with factor complexity weight (see “Types of Rotation,” on
page 1082 of User’s Guide II).

Some special cases of Orthomax are Quartimax (), Varimax (), Equa-
max (), Parsimax () and Factor Parsimony
().

• The two orthoblique methods, Promax and Harris-Kaiser both perform an initial
orthogonal rotation, followed by a oblique adjustment. For both of these methods,
EViews provides some flexibility in the choice of initial rotation. By default, EViews
will perform an initial orthogonal Orthomax rotation with the default parameter set to
1 (Varimax). To perform initial rotation with Quartimax, you should set the Orthomax
parameter to 0.

Some of the rotation criteria have user-specified parameters that may be specified using the
“param=” and (for Harris-Kaiser and Promax) the “preparam=” options. The parameters
and their default values are given by:

Quartimax/Quartimin quartimax • •

Simplimax simplimax • •

Tandem I tandemi •

Tandem II tandemii •

Target target • •

Varimax varimax • •

Method Parameter Description

Crawford-Ferguson 1 Factor complexity weight. The variable complex-
ity weight is 1 minus the factor complexity
weight.
(default=0, Quartimax)

g

k g pe

g 0 g 1
g m 2e g p m 1–� � p m 2–�� �e

g p

n

224—Chapter 1. Object Reference

where is the number of variables and is the number of factors. The remaining options
modify the properties of the specified rotation method:

Options

Generalized Crawford-
Ferguson

4 Vector of weights for (in order): total squares,
variable complexity, factor complexity, diagonal
quartics.
(no default)

Geomin 1 Epsilon offset.
(default=0.01)

Harris-Kaiser (case II) 2 Power parameter (default=0, independent cluster
solution), Orthomax pre-rotation parameter.
(default=1, Varimax)

Oblimin 1 Deviation from orthogonality.
(default=0, Quartimin)

Orthomax 1 Factor complexity weight.
(default=1, Varimax)

Promax 2 Power parameter (default=3), Orthomax pre-
rotation parameter (default=1, Varimax).

Simplimax 1 Fraction of near-zero loadings. (default=0.75)

Target 1 Name of matrix of target loadings. Miss-
ing values correspond to unrestricted elements.
(no default)

wgts=arg
(default=“none”)

Row weighting for loadings: none (“none”), kaiser (“kai-
ser”), Cureton-Mulaik (“cureton”).

prior=arg (default
=“unrotated”)

Initial rotation matrix: unrotated (“unrotated”), randomly
generated (“random”), previous rotation (“previous”),
user-specified (“user”).

ptype=arg
(default=“orthog”)

Type of prior random rotation: orthogonal (“orthog”) or
oblique (“oblique”).
Only relevant if “prior=random” and the main rotation
method is oblique. If the main rotation method is orthogo-
nal, random prior rotations will be orthogonalized.

preps=integer
(default=25)

Number of random prior rotations to evaluate (maximum
10000).

pname=arg Name of matrix containing prior rotation.

p mu

p m

Factor::rotateclear—225

Examples
f1.rotate(type=orthog, method=equamax)

performs an orthogonal rotation with the equamax objective function.

f1.rotate(type=oblique, method=hk, param=.4)

performs a Harris-Kaiser oblique rotation with parameter 0.4

f1.rotate(type=oblique, method=promax, param=.7)

performs a Promax rotation with parameter 0.7

Cross-references

See “Rotating Factors” on page 1050 of User’s Guide II for a discussion of factor rotation. See
also Factor::rotateout (p. 226) and Factor::rotateclear (p. 225).

Clear existing rotation.

Clears any existing factor rotations.

pseed=positive inte-
ger

Seed the random number generator for the prior random
rotations.
If not specified, EViews will seed the random number gen-
erator with a single integer draw from the default global
random number generator.

prnd=arg
(default=“kn” or
method previously
set using rndseed
(p. 474)) in the Com-
mand and Program-
ming Reference)

Type of random number generator for the random prior
rotation: improved Knuth generator (“kn”), improved
Mersenne Twister (“mt”), Knuth’s (1997) lagged Fibonacci
generator used in EViews 4 (“kn4”) L’Ecuyer’s (1999) com-
bined multiple recursive generator (“le”), Matsumoto and
Nishimura’s (1998) Mersenne Twister used in EViews 4
(“mt4”).

m=integer Maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
norm of the gradients scaled by the objective function. The
criterion will be set to the nearest value between 1e-24 and
0.2.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the rotation output.

p Print rotation results.

rotateclear Factor Views

226—Chapter 1. Object Reference

Syntax
factor_name.rotateclear

Examples
fact1.rotateclear

Cross-references

See “Rotating Factors” on page 1050 of User’s Guide II for a discussion of factor rotation. See
also Factor::rotate (p. 221) and Factor::rotateout (p. 226).

Display rotated factors and other results of factor rotation estimation.

Syntax
factor_name.rotateout

Options

Examples
f1.rotate

f1.output

f1.rotateout(p)

performs factor rotation, switches to the main estimation output view, then displays and
prints the rotation results.

Cross-references

See “Rotating Factors” on page 1050 of User’s Guide II for a discussion of factor rotation. See
also Factor::rotate (p. 221) and Factor::rotateclear (p. 225).

Set the object attribute.

Syntax
factor_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

rotateout Factor Views

p Print the table of results.

setattr Factor Procs

Factor::scores—227

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Compute factor score coefficients and scores and display results in table, sheet, or graph
form.

Syntax

There are two forms of the scores command. The first form of the command, which
applies when displaying table results or spreadsheet displays of scores is given by:

factor_name.scores(options) [observed_list]

The optional observed_list of observed input variables will be multiplied by the score coeffi-
cients to compute the scores.

The second form of the command applies when plotting scores. In this case, the syntax is:
factor_name.scores(options) [graph_list] [@ observed_list]

where the [graph_list] is an optional list of integers and/or vectors containing integers iden-
tifying the factors to plot. If graph_list is not provided, EViews will construct graphs using all
of the retained factors.

Multiple pairs are handled using the method specified in the “mult=” option. Note that the
order of elements in the list matters; reversing the order of two indices reverses the axis on
which each factor is displayed.

You should also bear in mind that:

• Specification of the observed_list is required only for actually computing score val-
ues—it is not required for computing score coefficient summaries and diagnostics
(“out=table”).

• If observed_list is not provided, EViews will use the observed variables from the factor
estimation specification. For factor models specified using a symmetric matrix, you
must provide a observed_list if you wish to obtain score values.

scores Factor Views

228—Chapter 1. Object Reference

• Scores values will be computed for observations in the current workfile sample that
do not have missing values for the observed inputs.

Options

out=arg
(default=“table”)

Output format: coefficient summary and diagnostics
(“table”), spreadsheet table of scores (“sheet”), graph of
scores (“graph”), graph of scores with loadings axes
(“biplot”).

unrotated Use unrotated loadings in computations (the default is to
use the rotated loadings, if available).

type =arg
(default=“exact”)

Exact coefficient (“exact”), coarse adjusted factor coeffi-
cients (“coefs”), coarse adjusted factor loadings (“load-
ings”).

coef=arg
(default=“reg”)

Method for computing the exact or coarse adjusted factor
score coefficient matrix: Thurstone regression (“reg”), Ideal
Variables (“ideal”), Bartlett weighted least squares (“wls”),
generalized Anderson-Rubin-McDonald (“anderson”),
Green (“green”).
For “type=exact” and “type=coefs” specifications.

coarse=arg
(default=“unre-
strict”)

Method for computing the coarse (-1, 0, 1) scores coeffi-
cients (Grice, 1991a):
Unrestricted -- (“unrestrict”) coef weights set based only on
sign; Unique–recode (“recode”) only element with highest
value is coded to a non-zero value; Unique–drop (“drop”)
only elements with loadings not in excess of the threshold
are set to non-zero values.
For “type=coefs” and “type=loadings” specifications.

cutoff=number
(default = 0.3)

Cutoff value for coarse scores coefficient calculations
(Grice, 1991a).
For “type=coefs” specifications, the cutoff value rep-
resents the fraction of the largest absolute coefficient
weight per factor against which the exact score coefficients
should be compared.
For “type=loadings” specifications, the cutoff is the value
against which the absolute loadings or structure coeffi-
cients should be compared.

Factor::scores—229

Graph Options

Examples
f1.scores(out=table)

computes factor score coefficients and displays a table of coefficient summaries and diag-
nostics.

f1.scores(coef=anderson, out=biplot, mult=first) 1 3 4

displays a biplot graph of the factor scores. The graph plots the first factor against the third,
and the first factor against the fourth. The scores are computed using the observed variables

moment=arg
(default =“est”; if
feasible)

Standardize the observables data using means and vari-
ances from: original estimation (“est”), the computed
moments from specified observable variables (“obs”).
The “moment=est” option is only available for factor mod-
els estimated using Pearson or uncentered Pearson correla-
tion and covariances since the remaining models involve
unobserved or non-comparable moments.

df Degrees-of-freedom correct the observables variances com-
puted when “moment=obs” (divide sums-of-squares by

 instead of).

coefout (Optional) Name of matrix in which to save factor score
coefficient matrix.

prompt Force the dialog to appear from within a program.

p Print results.

mult =arg
(default=“first”)

Multiple series handling for graphs: plot first against
remainder (“first”), plot as x-y pairs (“pair”), lower-trian-
gular plot (“lt”)

nocenter Do not center graphs around the origin.

labels=arg,
(default=“outlier”)

Observation labels for scores: outliers only (“outlier”), all
points (“all”), none (“none”).

labelprob=number Probability value for determining whether a point is an out-
lier according to the chi-square tests based on the squared
Mahalanbois distance between the observation and the
sample means (when using the “labels=outlier” option).

userscale=arg User-scale factor to be applied to the unscaled loadings
(setting this option overrides the automatic scaling).

autoscale=arg
(default = 1)

User-scale factor to be applied to the automatic loadings
scale (when displaying both loadings and scores).

n 1– n

230—Chapter 1. Object Reference

from the original factor estimation specification and generalized Anderson-Rubin-McDonald
factor score coefficients.

Cross-references

See “Estimating Scores,” beginning on page 1051 and “Scoring,” on page 1084 of User’s
Guide II. See also Factor::makescores (p. 205).

Display the squared multiple correlations for the observed covariance matrix.

Syntax
factor_name.smc(options)

The SMCS are equal to 1 minus the diagonal elements of the anti-image covariance.

Options

Examples
factor f1.ml group01

f1.smc(p)

displays and prints the squared multiple correlations for the observed matrix attached to F1.

Cross-references

See also Factor::observed (p. 212), Factor::anticov (p. 189), and Factor::maxcor
(p. 207).

Display the factor structure matrix.

Shows the factor structure matrix containing the correlations between the variables and fac-
tors implied by an estimated factor model. For orthogonal factors, the structure matrix is
equal to the loadings matrix.

Syntax
factor_name.structure(options)

smc Factor Views

p Print the matrix.

structure Factor Views

Factor::uls—231

Options

Examples
factor f1.ml group01

f1.structure(p)

displays and prints the factor structure matrix for the estimated factor object F1.

Cross-references

See “Factor Structure Matrix” on page 1056 of User’s Guide II for details. See Fac-
tor::rotate (p. 221) and Factor::loadings (p. 204).

Unweighted least squares estimation of the factor model.

Syntax
factor_name.uls(options) x1 [x2 x3...] [@partial z1 z2 z3...]

factor_name.uls(options) matrix_name [[obs] [conditioning]] [@ name1 name2
name3...]

The first method computes the observed dispersion matrix from a set of series or group
objects. Simply append a period and the uls keyword to the name of your object, followed
by the names of your series and groups, You may optionally use the keyword @partial and
append a list of conditioning series.

In the second method you will provide the name of the observed dispersion matrix, and
optionally, the number of observations and the rank of the set of conditioning variables. If
the latter is not provided, it will be set to 1 (representing the constant in the standard cen-
tered variance calculations). You may also provide names for the columns of the correlation
matrix by entering the @-sign followed by a list of valid series names.

p Print the matrix.

uls Factor Methods

232—Chapter 1. Object Reference

Options
Estimation Options

Number of Factors Options

rescale Rescale the uniqueness and loadings estimates so that they
match the observed variances.

maxit=integer Maximum number of iterations.

conv=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled esti-
mates. The criterion will be set to the nearest value
between 1e-24 and 0.2.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the rotation output.

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

n=arg
(default=“map”)

Number of factors: “kaiser” (Kaiser-Guttman greater than
mean), “mineigen” (Minimum eigenvalue criterion; speci-
fied using “eiglimit”), “varfrac” (fraction of variance
accounted for; specified using “varlimit”), “map” (Velicer’s
Minimum Average Partial method), “bstick” (comparison
with broken stick distribution), “parallel” (parallel analy-
sis: number of replications specified using “pnreps”;
“pquant” indicates the quantile method value if employed),
“scree” (standard error scree method), integer (user-speci-
fied integer value).

eiglimit=number
(default=1)

Limit value for retaining factors using the eigenvalue com-
parison (where “n=mineigen”).

varlimit=number
(default=0.5)

Fraction of total variance explained limit for retaining fac-
tors using the variance limit criterion (where
“n=varlimit”).

porig Use the unreduced matrix for parallel analysis (the default
is to use the reduced matrix).
For parallel analysis only (“n=parallel”).

preps= integer
(default=100)

Number of parallel analysis repetitions.
For parallel analysis only (“n=parallel”).

Factor::uls—233

Initial Communalities Options

Covariance Options

pquant=number Quantile value for parallel analysis comparison (if not spec-
ified, the mean value will be employed).
For parallel analysis only (“n=parallel”).

pseed=positive inte-
ger

Seed the random number generator for parallel analysis.
If not specified, EViews will seed the random number gen-
erator with a single integer draw from the default global
random number generator.
For parallel analysis only (“n=parallel”).

prnd=arg
(default=“kn” or
method previously
set using rndseed
(p. 474) in the
Command and Pro-
gramming Refer-
ence)

Type of random number generator for the simulation:
improved Knuth generator (“kn”), improved Mersenne
Twister (“mt”), Knuth’s (1997) lagged Fibonacci generator
used in EViews 4 (“kn4”) L’Ecuyer’s (1999) combined mul-
tiple recursive generator (“le”), Matsumoto and
Nishimura’s (1998) Mersenne Twister used in EViews 4
(“mt4”).
For parallel analysis only (“n=parallel”).

priors=arg Method for obtaining initial communalities: “smc”
(squared multiple correlations), “max” (maximum abso-
lute correlation”), “pace” (noniterative partitioned covari-
ance estimation), “frac” (fraction of the diagonals of the
original matrix; specified using “priorfrac=”), “random”
(random fractions of the original diagonals), “user” (user-
specified vector; specified using “priorunique”).

priorfrac=number User-specified common fraction (between 0 and 1) to be
used when “priors=frac”.

priorunique=arg Vector of initial uniqueness estimates to be used when
“priors=user”. By default, the values will be taken from
the corresponding elements of the coefficient vector C.

cov=arg
(default=“cov”)

Covariance calculation method: ordinary (Pearson product
moment) covariance (“cov”), ordinary correlation (“corr”),
Spearman rank covariance (“rcov”), Spearman rank cor-
relation (“rcorr”), Kendall’s tau-b (“taub”), Kendall’s tau-a
(“taua”), uncentered ordinary covariance (“ucov”), uncen-
tered ordinary correlation (“ucorr”).
User-specified covariances are indicated by specifying a
sym matrix object in place of a list of series or groups in
the command.

234—Chapter 1. Object Reference

Examples
factor f1.uls(n=map, priors=frac, priorfrac=1) x y z

declares the factor object F1 and estimates the factors for the correlation matrix of the series
X, Y, and Z, by the unweighted least squares method.

f1.uls(maxit=300, conv=1e-8) group01

estimates the factors by the unweighted least squares method for the series in GROUP01
with maximum iterations 300 and convergence criterion 1e-8.

f1.uls(maxit=300, conv=1e-8) group01 @partial ser1 ser2

estimates the same specification using the partial correlation for the series in GROUP01, con-
ditional on the series SER1 and SER2.

f1.uls(n=4) sym01 747

estimates the four factor ULS factor model using the observed matrix SYM01. The number of
observations is 747.

Cross-references

See Chapter 49. “Factor Analysis,” on page 1043 of User’s Guide II for a general discussion of
factor analysis. The various estimation methods are described in “Estimation Methods” on
page 1076 of User’s Guide II.

See also Factor::gls (p. 195), Factor::ipf (p. 199), Factor::ml (p. 208), Fac-
tor::pace (p. 213), Factor::pf (p. 217), Factor::uls (p. 231).

wgt=name
(optional)

Name of series containing weights.

wgtmethod=arg
(default = “sst-
dev”)

Weighting method (when weights are specified using
“weight=”): frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations.
Weights specified by “wgt=” are frequency weights for
rank correlation and Kendall’s tau calculations.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
for the mean (for centered specifications), and any partial
conditioning variables.

Factor::uls—235

236—Chapter 1. Object Reference

Graph

Graph object. Specialized object used to hold graphical output.

Graph Declaration
freeze freeze graphical view of object (p. 368).
graph create graph object using graph command or by merging existing

graphs (p. 261).

Graphs may be created by declaring a graph using one of the graph commands described
below, or by freezing the graphical view of an object. For example:

graph myline.line ser1

graph myscat.scat ser1 ser2

graph myxy.xyline grp1

declare and create the graph objects MYLINE, MYSCAT and MYXY. Alternatively, you can
use the freeze command to create graph objects:

freeze(myline) ser1.line

group grp2 ser1 ser2

freeze(myscat) grp2.scat

freeze(myxy) grp1.xyline

which are equivalent to the declarations above.

Graph Type Commands

Graph creation types are discussed in detail in “Graph Creation Command Summary” on
page 911.

area...................... area graph (p. 913).
band area band graph (p. 916).
bar bar graph (p. 918).
boxplot................. boxplot graph (p. 923).
bubble.................. bubble plot graph (p. 925).
bubbletrip bubble plot graph specified as triplets (p. 926).
distplot................. distribution graph (p. 926).
dot dot plot graph (p. 934).
errbar................... error bar graph (p. 938).
hilo high-low(-open-close) graph (p. 939).
line line-symbol graph (p. 941).
mixed................... mixed-type graph (p. 945).
pie pie chart (p. 947).
qqplot quantile-quantile graph (p. 950).
scat scatterplot (p. 954).

Graph::—237

scatmat................. matrix of scatterplots (p. 959).
scatpair scatterplot pairs graph (p. 961).
seasplot seasonal line graph (p. 965).
spike spike graph (p. 966).
xyarea XY area graph (p. 970).
xybar.................... XY bar graph (p. 973).
xyline XY line graph (p. 975).
xypair................... XY pairs graph (p. 979).

Graph View
display.................. display table, graph, or spool in object window (p. 256).
label label information for the graph (p. 263).

Graph Procs
addarrow draw a line or arrow on a graph (p. 239).
addellipse draw an ellipse on a graph (p. 243).
addrect draw a rectangle on a graph (p. 245).
addtext place arbitrary text on the graph (p. 247).
align..................... align the placement of multiple graphs (p. 250).
axis set the axis scaling and display characteristics for the graph

(p. 251).
clearhist clear the contents of the history attribute (p. 254).
datelabel............... controls labeling of the bottom date/time axis in time plots (p. 255).
displayname set display name (p. 257).
draw..................... draw lines and shaded areas on the graph (p. 257).
drawdefault set default settings for lines and shaded areas on the graph (p. 259).
legend control the appearance and placement of legends (p. 264).
makegroup creates a group object containing all the series in the graph (p. 264).
merge merge graph objects (p. 266).
name change the series name for legends or axis labels (p. 267).
olepush push updates to OLE linked objects in open applications (p. 268).
options change the option settings of the graph (p. 268).
save...................... save graph to a graphics file (p. 273).
setattr set the value of an object attribute (p. 275).
setbpelem set options for element of a boxplot graph (p. 276).
setelem set individual line, symbol, bar and legend options for each series

in the graph (p. 277).
setfont set the font for the text in a graph (p. 281).
setobslabel............ set custom axis labels for observation scale of a graph (p. 281).
setupdate set update options for the graph (p. 283).

238—Chapter 1. Object Reference

sort sort the series in a graph (p. 284).
template use template graph (p. 285).
textdefault set default settings for text objects in the graph (p. 287).
update.................. update graph with data changes (p. 288).

The relationship between the elements of the graph dialog and the associated graph procs is
illustrated below:

Graph Data Members
Scalar Values

@axismin(axis)returns the minimum value for the specified axis. Acceptable
values for axis are “t”, “l”, “b”, “r”, for top, left, bottom, right.

@axismax(axis)....returns the maximum value for the specified axis. Acceptable
values for axis are “t”, “l”, “b”, “r”, for top, left, bottom, right.

@axispos(value, axis)returns the location in virtual inches of the specified data
value on the graph. value is in the same units as the specified axis.
When specifying a date for value, the string must be quoted.
Acceptable values for axis are “t”, “l”, “b”, “r” for top, left, bottom,
right.

String Values

@attr(“arg”) string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description returns a string containing the object description (if available).
@detailedtype returns a string with the object type: “GRAPH”.
@displayname...... returns a string containing the Graph’s displayname. If the Graph

has no display name set, the name is returned.

Graph::addarrow—239

@members............string containing a space delimited list of the names of the series
contained in the Graph.

@namereturns a string containing the Graph’s name.
@remarksreturns a string containing the Graph’s remarks (if available).
@typereturns a string with the object type: “GRAPH”.
@units..................string containing the Graph object’s units description (if available).
@updatetimereturns a string representation of the time and date at which the

Graph was last updated.

Graph Examples

You can declare your graph:

graph abc.xyline(m) unemp gnp inf

graph bargraph.bar(d,l) unemp gnp

Alternately, you may freeze any graphical view:

freeze(mykernel) ser1.distplot kernel

You can change the graph type,

graph mygraph.line ser1

mygraph.hist

or combine multiple graphs:

graph xyz.merge graph1 graph2

Graph Entries

The following section provides an alphabetical listing of the commands associated with the
“Graph” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Draw a line or arrow on a graph.

Syntax
graph_name.addarrow [pos(x1,y1,x2,y2) axispos(x1,y1,x2,y2,x-axis,y-axis) axis-

pos(x1,y1,x2,y2,y-axis) axispt(x2,y2,angle,length,x-axis,y-axis)] line-
width(lwidth) arrowwidth(awidth) color(color) pattern(pattern)
startsym(ssym) endsym(esym) label(str) labelpos(position) frame(size) indica-
tor

addarrow Graph Procs

240—Chapter 1. Object Reference

Follow the addarrow keyword a set of specifications determining the position and style of
the line/arrow to be drawn.

The position and size of the arrow/line can be specified with one of the pos, axispos or
axispt arguments.

The pos argument specifies coordinates of the line in virtual space. x1 is the starting X (hor-
izontal) coordinate, and y1 is the starting Y (vertical) coordinate. Similarly x2 and y2 are the
end point coordinates. Coordinates are set in virtual inches. Individual graphs are always

 virtual inches (scatter diagrams are virtual inches) or a user-specified size,
regardless of their current display size.

The origin of the coordinate is the upper left hand corner of the graph. The x1 number spec-
ifies how many virtual inches to offset to the right from the origin. The second number y1
specifies how many virtual inches to offset below the origin. The start point of the line will
be set at the specified coordinates.

The axispos argument specifies coordinates in units of the graph scale. x1 is the starting X
(horizontal) coordinate, and y1 is the starting Y (vertical) coordinate. Similarly x2 and y2 are
the end point coordinates.

For time-series graphs you must also specify which non-time based axis the y-coordinates’s
scale are based on, using l,t,r,b for left, top, right, bottom respectively. x-coordinates should
be specified as a date/time.

For non-time series graphs you must specify the axis of scale of both x and y coordinates.

The axispt argument specifies the end point coordinates of the line, along with the angle
and length of the line. Angles are measured in degrees, and length in virtual inches.

The linewidth argument specifies the thickness of the line. lwidth should be a number
between “.25” and “5”, indicating the width in points.

Arrowwidth determines the size of the arrow head on the line. awidth can be either
“small”, “medium” or “large”.

color specifies the color of the line. The color value may set by using one of the color key-
words (e.g., “blue”), or by using the RGB values (e.g., “@RGB(255, 255, 0)”). For a descrip-
tion of the available color keywords (“blue”, “red”, “green”, “black”, “white”, “purple”,
“orange”, “yellow”, “gray”, “ltgray”). For a full description of the keywords, see
Table::setfillcolor (p. 795).

The pattern argument specifies the line pattern. pattern can take a numerical value, or one
of the corresponding keywords:

4 3u 3 3u

Graph::addarrow—241

The startsym and endsym arguments define the arrowhead at the start or end of the line.
You may specify “none”, “filled”, “outline”, or “rangeline”.

label adds a text label to the start point of the arrow. labelpos specifies the location of
the text relative to the start point of the line. The following positions are available:

Frame encloses the text in a box. Size specifies whether the box should be a small box (sb)
or a large box (lb).

Vert left or right of the start point depending on the angle of the
line

Horz left or right of the start point depending on the angle of the
line

AR above and right of the start point

AL above and left of the start point

BR below and right of the start point

BL below and left of the start point

L left of the start point

R right of the start point

A above the start point

B below the start point

242—Chapter 1. Object Reference

Indicator places a red indicator within the text frame, indicating the start point location
relative to the text. NOTE: The indicator will only appear if the label position (labelpos) is
set to AR, AL, BR, or BL

Examples

The commands

create m 1990 2000

smpl 1990 1995

series y=nrnd

smpl 1995 2000

y = 6+nrnd

smpl @all

freeze(gr) y.line

gr.addarrow pos(0.7,0.65, 2.2,2.1) color(red) arrowwidth(large)

endsym(outline) linewidth(2) label(Jump here)

create a graph and draw an arrow at the specified positions:

The command
gr.addarrow axispos(94, 3, 97, 4.2, l)

adds a second arrow starting at the point corresponding to the year 1994 on the x-axis and
the y-axis value of 3, and ending at the year 1997 with a y-value of 4.2.

Cross-references

See “Drawing Lines and Arrows” on page 759 of User’s Guide I for discussion.

-4

-2

0

2

4

6

8

90 91 92 93 94 95 96 97 98 99 00

Y

Jump here

Graph::addellipse—243

See Graph::addellipse (p. 243), Graph::addrect (p. 245) and Graph::addtext
(p. 247). See also Graph::legend (p. 264) and Graph::textdefault (p. 287).

Draw an ellipse on a graph.

Syntax
graph_name.addellipse [pos(x1,y1,x2,y2) axisctr(x1,y1,x-axis,y-axis) axispos(x1,y1,y-

axis)] linewidth(lwidth) color(color) pattern(pattern) height(height)
width(width) angle(angle)

Follow the addellipse keyword a set of specifications determining the position and style of
the ellipse to be drawn.

The position and size of the ellipse can be specified with either the pos or axisctr argu-
ments.

The pos argument specifies coordinates of the center of the ellipse in virtual space. x1 is the
center point X (horizontal) coordinate, and y1 is the center point Y (vertical) coordinate.
Coordinates are set in virtual inches. Individual graphs are always virtual inches
(scatter diagrams are virtual inches) or a user-specified size, regardless of their cur-
rent display size.

The origin of the coordinate is the upper left hand corner of the graph. The x1 number spec-
ifies how many virtual inches to offset to the right from the origin. The second number y1
specifies how many virtual inches to offset below the origin.

The axisctr argument specifies coordinates in units of the graph scale. x1 is the center
point X (horizontal) coordinate, and y1 is the center point Y (vertical) coordinate.

For time-series graphs you must also specify which non-time based axis the y-coordinates’s
scale are based on, using l,t,r,b for left, top, right, bottom respectively. x-coordinates should
be specified as a date/time.

For non-time series graphs you must specify the axis of scale of both x and y coordinates.

The height argument specifies the height of the ellipse. Similarly the width argument spec-
ifies its width. angle controls the rotation of the ellipse (in degrees).

The linewidth argument specifies the thickness of the ellipse outline. lwidth should be a
number between “.25” and “5”, indicating the width in points.

color specifies the color of the ellipse outline. The color value may set by using one of the
color keywords (e.g., “blue”), or by using the RGB values (e.g., “@RGB(255, 255, 0)”). For
a description of the available color keywords (“blue”, “red”, “green”, “black”, “white”,

addellipse Graph Procs

4 3u
3 3u

244—Chapter 1. Object Reference

“purple”, “orange”, “yellow”, “gray”, “ltgray”). For a full description of the keywords, see
Table::setfillcolor (p. 795).

The pattern argument specifies the ellipse outline pattern. pattern can take a numerical
value, or one of the corresponding keywords:

Examples

The commands

create m 1990 2000

smpl 1990 1995

series y=nrnd

smpl 1995 2000

y = 6+nrnd

smpl @all

freeze(gr) y.line

gr.addellipse pos(1,1) width(2) height(.7) angle(110) color(red)

pattern(2) linewidth(3)

create a graph and adds a red ellipse that is centered 1 virtual inch from the top and 1 virtual
inch from the left of the graph that is 2 virtual inches wide and 0.7 virtual inches tall. It uses
a 3 pt dash1 line pattern. The ellipse is also rotated 110 degrees

The command
gr.addellipse axisctr(1995, @mean(x),l) width(30) height(.2)

angle(-50) color(blue)

adds to a blue ellipse that is centered at 1995 and the mean of x in left axis units. It is 30
observations wide and 0.2 left axis units tall. It is also rotated -50 degrees

Graph::addrect—245

Cross-references

See “Drawing Lines and Arrows” on page 759 of User’s Guide I for discussion.

See Graph::addarrow (p. 239), Graph::addrect (p. 245) and Graph::addtext
(p. 247). See also Graph::legend (p. 264) and Graph::textdefault (p. 287).

Draw a rectangle on a graph.

Syntax
graph_name.addrect[pos(x1,y1,x2,y2) axisctr(x1,y1,x-axis,y-axis) axispos(x1,y1,y-

axis)] linewidth(lwidth) color(color) pattern(pattern) height(height)
width(width) angle(angle)

Follow the addrect keyword a set of specifications determining the position and style of the
rectangle to be drawn.

The position and size of the rectangle can be specified with either the pos or axisctr
arguments.

The pos argument specifies coordinates of the center of the rectangle in virtual space. x1 is
the center point X (horizontal) coordinate, and y1 is the center point Y (vertical) coordinate.
Coordinates are set in virtual inches. Individual graphs are always virtual inches
(scatter diagrams are virtual inches) or a user-specified size, regardless of their cur-
rent display size.

The origin of the coordinate is the upper left hand corner of the graph. The x1 number spec-
ifies how many virtual inches to offset to the right from the origin. The second number y1
specifies how many virtual inches to offset below the origin.

The axisctr argument specifies coordinates in units of the graph scale. x1 is the center
point X (horizontal) coordinate, and y1 is the center point Y (vertical) coordinate.

For time-series graphs you must also specify which non-time based axis the y-coordinates’s
scale are based on, using l,t,r,b for left, top, right, bottom respectively. x-coordinates should
be specified as a date/time.

For non-time series graphs you must specify the axis of scale of both x and y coordinates.

The height argument specifies the height of the rectangle. Similarly the width argument
specifies its width. angle controls the rotation of the rectangle (in degrees).

The linewidth argument specifies the thickness of the rectangle outline. lwidth should be a
number between “.25” and “5”, indicating the width in points.

addrect Graph Procs

4 3u
3 3u

246—Chapter 1. Object Reference

arrowwidth determines the size of the arrow head on the line. awidth can be either
“small”, “medium” or “large”.

color specifies the color of the rectangle outline. The color value may set by using one of
the color keywords (e.g., “blue”), or by using the RGB values (e.g., “@RGB(255, 255, 0)”).
For a description of the available color keywords (“blue”, “red”, “green”, “black”, “white”,
“purple”, “orange”, “yellow”, “gray”, “ltgray”). For a full description of the keywords, see
Table::setfillcolor (p. 795).

The pattern argument specifies the rectangle outline pattern. pattern can take a numerical
value, or one of the corresponding keywords:

Examples

The commands

create m 1990 2000

smpl 1990 1995

series y=nrnd

smpl 1995 2000

y = 6+nrnd

smpl @all

freeze(gr) y.line

gr.addrect pos(1,1) width(2) height(.7) angle(110) color(red)

pattern(2) linewidth(3)

create a graph and adds a red rectangle that is centered 1 virtual inch from the top and 1 vir-
tual inch from the left of the graph that is 2 virtual inches wide and 0.7 virtual inches tall. It
uses a 3 pt dash1 line pattern. The rectangle is also rotated 110 degrees

The command

Graph::addtext—247

gr.addrect axisctr(1995, @mean(x),l) width(30) height(.2) angle(-

50) color(blue)

adds to a blue rectangle that is centered at 1995 and the mean of x in left axis units. It is 30
observations wide and 0.2 left axis units tall. It is also rotated -50 degrees

Cross-references

See “Drawing Lines and Arrows” on page 759 of User’s Guide I for discussion.

See Graph::addarrow (p. 239), Graph::addellipse (p. 243) and Graph::addtext
(p. 247). See also Graph::legend (p. 264) and Graph::textdefault (p. 287).

Place text in graphs.

When adding text in one of the four predefined positions (left, right, top, bottom), EViews
deletes any existing text that is in that position before adding the new text. Use the keep
option to preserve the existing text.

Syntax
graph_name.addtext(options) "text"

Follow the addtext keyword with the text to be placed in the graph, enclosed in double
quotes.

To include carriage returns in your text, use the control “\r” or “\n” to represent the return.
Since the backslash “\” is a special character in the addtext command, use a double slash
“\\” to include the literal backslash character.

Options

The following options may be provided to change the characteristics of the specified text
object. Any unspecified options will use the default text settings of the graph.

addtext Graph Procs

248—Chapter 1. Object Reference

The following options control the position of the text:

font([face], [pt],
[+/- b], [+/- i],
[+/- u], [+/- s])

Set characteristics of text font. The font name (face), size
(pt), and characteristics are all optional. face should be a
valid font name, enclosed in double quotes. pt should be
the font size in points. The remaining options specify
whether to turn on/off boldface (b), italic (i), underline
(u), and strikeout (s) styles.

textcolor(arg) Sets the color of the text. arg may be one of the predefined
color keywords, or it may be made up of n1, n2, n3, a set
of three integers from 0 to 255, representing the RGB values
of the color. For a description of the available color key-
words (“blue”, “red”, “green”, “black”, “white”, “purple”,
“orange”, “yellow”, “gray”, “ltgray”), see Table::set-
fillcolor (p. 795).

fillcolor(arg) Sets the background fill color of the text box. arg may be
one of the predefined color keywords, or it may be made
up of n1, n2, n3, a set of three integers from 0 to 255, rep-
resenting the RGB values of the color. For a description of
the available color keywords (“blue”, “red”, “green”,
“black”, “white”, “purple”, “orange”, “yellow”, “gray”,
“ltgray”), see Table::setfillcolor (p. 795).

framecolor(arg) Sets the color of the text box frame. arg may be one of the
predefined color keywords, or it may be made up of n1, n2,
n3, a set of three integers from 0 to 255, representing the
RGB values of the color. For a description of the available
color keywords (“blue”, “red”, “green”, “black”, “white”,
“purple”, “orange”, “yellow”, “gray”, “ltgray”), see
Table::setfillcolor (p. 795).

keep When adding text to one of the predefined positions (left,
right, top, bottom), any existing text in that position will be
deleted and replaced with the new text. Use the “keep”
option to preserve the existing text and place the second
text object on top of the text in that position.

t, ac Top (above and centered over the graph).

l Left rotated.

r Right rotated.

b, bc Below and centered over the graph.

bl Below and left side of the graph.

br Below and right side of the graph.

al Above and left side of the graph.

Graph::addtext—249

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

To place text within a graph, you can use explicit coordinates to specify the position of the
upper left corner of the text.

Coordinates are set by a
pair of numbers h, v in vir-
tual inches. Individual
graphs are always
virtual inches (scatter dia-
grams are virtual
inches) or a user-specified
size, regardless of their cur-
rent display size.

The origin of the coordi-
nate is the upper left hand
corner of the graph. The
first number h specifies
how many virtual inches to
offset to the right from the
origin. The second number
v specifies how many vir-
tual inches to offset below the origin. The upper left hand corner of the text will be placed at
the specified coordinate.

Coordinates may be used with other options, but they must be in the first two positions of
the options list. Coordinates are overridden by other options that specify location.

ar Above and right side of the graph.

ibl Inside near the bottom left corner of the graph.

ibr Inside near the bottom right corner of the graph.

itl Inside near the top left corner of the graph.

itr Inside near the top right corner of the graph.

just(arg) Set the justification of the text, where arg may be: “c” (cen-
ter), “l” (left - default), “r” (right).

x, lb Enclose text in a large box.

sb Enclose text in a small box.

4 3u

3 3u

250—Chapter 1. Object Reference

When addtext is used with a multiple graph, the text is applied to the whole graph, not to
each individual graph.

Examples
freeze(g1) gdp.line

g1.addtext(t) "Fig 1: Monthly GDP (78m1-95m12)"

places the text “Fig1: Monthly GDP (78m1-95m12)” centered above the graph G1.

g1.addtext(.2, .2, X) "Seasonally Adjusted"

places the text “Seasonally Adjusted” in a box within the graph, slightly indented from the
upper left corner.

g1.addtext(t, x, textcolor(red), fillcolor(128,128,128),

framecolor(black)) "Civilian\rUnemployment (First\\Last)"

adds the text “Civilian Unemployment (First\Last)” where there is a return between the
“Civilian” and “Unemployment”. The text is colored red, and is enclosed in a gray box with
a black frame.

Cross-references

See “Adding and Editing Text” on page 757 of User’s Guide I for discussion.

See Graph::addarrow (p. 239), Graph::addellipse (p. 243) and Graph::addrect
(p. 245). See also Graph::legend (p. 264) and Graph::textdefault (p. 287).

Align placement of multiple graphs.

Syntax
graph_name.align(n,h,v)

Options

You must specify three numbers (each separated by a comma) in parentheses in the follow-
ing order: the first number n is the number of columns in which to place the graphs, the sec-
ond number h is the horizontal space between graphs, and the third number v is the vertical
space between graphs. Spacing is specified in virtual inches.

Examples
mygraph.align(3,1.5,1)

aligns MYGRAPH with graphs placed in three columns, horizontal spacing of 1.5 virtual
inches, and vertical spacing of 1 virtual inch.

align Graph Procs

Graph::axis—251

var var1.ls 1 4 m1 gdp

freeze(impgra) var1.impulse(m,24) gdp @ gdp m1

impgra.align(2,1,1)

estimates a VAR, freezes the impulse response functions as multiple graphs, and realigns the
graphs. By default, the graphs are stacked in one column, and the realignment places the
graphs in two columns.

Cross-references

For a detailed discussion of customizing graphs, see Chapter 13. “Graphing Data,” beginning
on page 617 of User’s Guide I.

Sets axis scaling and display characteristics for the graph.

By default, EViews optimally chooses the axis scaling to fit the graph data.

Syntax
graph_name.axis(axis_id) options_list

The axis_id parameter identifies which of the axes the command modifies. If no option is
specified, the proc will modify all of the axes. axis_id may take on one of the following val-
ues:

Options

The options list may include any of the following options:

axis Graph Procs

left / l Left vertical axis.

right / r Right vertical axis.

bottom / b Bottom axis for XY and scatter graphs (scat (p. 954),
xyarea (p. 970), xybar (p. 973), xyline (p. 975),
xypair (p. 979)).

top / t Top axis for XY and scatter graphs (scat (p. 954), xyarea
(p. 970), xybar (p. 973), xyline (p. 975), xypair
(p. 979)).

zerotop / zero-
back

Draw zero line on [top / bottom] of other graph elements.

all / a All axes.

252—Chapter 1. Object Reference

Data scaling options

Axis options

linear Linear data scaling (default).

linearzero Linear data scaling (include zero when auto range selection
is employed).

log Logarithmic scaling.

norm Norm (standardize) the data prior to plotting.

range(arg) Specifies the endpoints for the scale, where arg may be:
“auto” (automatic choice), “minmax” (use the maximum
and minimum values of the data), “n1, n2” (set minimum
to n1 and maximum to n2, e.g. “range(3, 9)”).

overlap / -over-
lap

[Overlap / Do not overlap] scales on dual scale graphs.

invert / -invert [Invert / do not invert] scale.

units(arg) Specifies the units of the data, where arg may be: “n”
(native), “p” (percent), “k” (thousands), “m” (millions),
“b” (billions), “t” (trillions).

format(option1
[,option2, ...])

Sets data formatting, where you may provide one or more
of the following options:
“commadec” / “-commadec” ([Do / Do not] use comma as
decimal, “ksep” / “-ksep” ([Do / Do not] include a thou-
sands separator, “leadzero” / “-leadzero” ([Do / Do not]
include leading zeros, “dec=arg” (set number of decimal
places, where arg may be an integer or “a” for auto), “pre-
fix=c” (add a prefix character, where c may be a single
quoted character or “” to remove the prefix), “suffix=c”
(add a suffix character, where c may be a single quoted
character or “” to remove the suffix).

grid / -grid [Draw / Do not draw] grid lines.

zeroline /
-zeroline

[Draw / Do not draw] a line at zero on the data scale.

zerotop /
-zerotop

[Draw / Do not draw] the zero line on top of the graph.

ticksout Draw tickmarks outside the graph axes.

ticksin Draw tickmarks inside the graph axes.

ticksboth Draw tickmarks both outside and inside the graph axes.

ticksnone Do not draw tickmarks.

Graph::axis—253

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Note that the default settings are taken from the Global Defaults.

Examples

To set the right scale to logarithmic with manual range, you can enter:

graph1.axis(right) log range(10, 30)

ticksauto Allow EViews to determine whether to draw tickmarks on
or between observations.

tickson Draw tickmarks on observations.

ticksbtw Draw tickmarks between observations.

ticksbtwns Draw tickmarks between observations, removing space at
the axis ends.

minor /
-minor

[Allow / Do not allow] minor tick marks.

label /
-label

[Place / Do not place] labels on the axes.

duallevel / -
duallevel

[Allow / Do not allow] two row date labels on the observa-
tion axis.

font([face], [pt],
[+/- b], [+/- i],
[+/- u], [+/- s])

Set characteristics of axis font. The font name (face), size
(pt), and characteristics are all optional. face should be a
valid font name, enclosed in double quotes. pt should be
the font size in points. The remaining options specify
whether to turn on/off boldface (b), italic (i), underline
(u), and strikeout (s) styles.

textcolor(arg) Sets the color of the axis text. arg may be one of the pre-
defined color keywords, or it may be made up of n1, n2,
n3, a set of three integers from 0 to 255, representing the
RGB values of the color. For a description of the available
color keywords (“blue”, “red”, “green”, “black”, “white”,
“purple”, “orange”, “yellow”, “gray”, “ltgray”), see
Table::setfillcolor (p. 795).

mirror / -mirror [Label / Do not label] both left and right axes with dupli-
cate axes (single scale graphs only).

angle(arg) Set label angle, where arg can be an integer between -90
and 90 degrees, measured in 15 degree increments, or “a”
(auto) for automatically determined angling. The angle is
measured from the horizontal axis.

254—Chapter 1. Object Reference

graph1.axis(r) zeroline -minor font(12)

draws a horizontal line through the graph at zero on the right axis, removes minor ticks, and
changes the font size of the right axis labels to 12 point.

graph2.axis -mirror

turns of mirroring of axes in single scale graphs.

mygra1.axis font("Times", 12, b, i) textcolor(blue)

sets the axis font to blue “Times” 12pt bold italic.

gra1.axis(l) units(b) format(ksep, prefix="$", suffix="")

plots the data on the left axis in billions, using commas to separate thousands, adds a “$” to
the beginning of each data label and erases the suffix.

Cross-references

See Chapter 15. “Graph Objects,” on page 751 of User’s Guide I for a discussion of graph
options.

See also Graph::datelabel (p. 255), Graph::options (p. 268) and Graph::setelem
(p. 277).

Specify labeling of a boxplot axis.

Note that bplabel is no longer supported. See instead, Graph::setobslabel (p. 281).

Clear the contents of the history attribute for graph objects.

Removes the graph’s history attribute, as shown in the label view of the graph.

Syntax
graph_name.clearhist

Examples
g1.clearhist

g1.label

The first line removes the history from the graph G1, and the second line displays the label
view of G1, including the now blank history field.

bplabel Graph Procs

clearhist Graph Procs

Graph::datelabel—255

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Graph::label (p. 263).

Control labeling of the bottom date/time axis in time plots.

datelabel sets options that are specific to the appearance of time/date labeling. Many of
the options that also affect the appearance of the date axis are set by the Graph::axis
(p. 251) command with the “bottom” option. These options include tick control, label and
font options, and grid lines.

Syntax
graph_name.datelabel option_list

Options

datelabel Graph Procs

format("datestring") datestring should be one of the supported data formats
describing how the date should appear. The datestring
argument should be enclosed in double-quotes. For exam-
ple, “yy:mm” specifies two-digit years followed by a colon
delimited and then two-digit months.
You may use the special single space datestring “ “ to indi-
cate automatic formatting.
EViews provides considerable flexibility in formatting your
dates. See “Date Formats” on page 97 of the Command
and Programming Reference for a complete description.

interval(step_size
[,steps][,align_date])

where step_size takes one of the following values: “auto”
(steps and align_date are ignored), “ends” (only label end-
points; steps and align_date are ignored), “all” (label every
point; the steps and align_date options are ignored), “obs”
(steps are one observation), “year” (steps are one year),
“m” (steps are one month), “q” (steps are one quarter).
steps is a number (default=1) indicating the number of
steps between labels.
align_date is a date specified to receive a label.
Note, the align_date should be in the units of the data
being graphed, but may lie outside the current sample or
workfile range.

256—Chapter 1. Object Reference

Examples
graph1.datelabel format(yyyy:mm)

will display dates using four-digit years followed by the default delimiter “:” and a two-digit
month (e.g. – “1974:04”).

graph1.datelabel format(yy[q]mm)

will display a two-digit year followed by a “q” separator and then a two-digit month (e.g. –
“74q04”)

graph1.datelabel interval(y, 2, 1951)

specifies labels every two years on odd numbered years.

Cross-references

See Chapter 15. “Graph Objects,” on page 751 of User’s Guide I for a discussion of graph
options.

See also Graph::axis (p. 251), Graph::options (p. 268), and Graph::setelem
(p. 277).

See the replacement command Graph::datelabel (p. 255).

Display table, graph, or spool output in the graph object window.

Display the contents of a table, graph, or spool in the window of the graph object.

Syntax
graph_name.display object_name

span(arg) Specify date label spanning: “auto” (automatic determina-
tion), “on” (turn spanning on; label start of period, tick on
obs.), “between” (center label on period), “trimbetween”
(center label on period, trim spaces at axis ends).
Consider the case of a yearly label with monthly ticks. If
span is on, the label is centered on the 12 monthly ticks. If
the span option is off, year labels are put on the first quar-
ter or month of the year.

end / -end [Use / Do not use] end-of-period labeling.

dates Graph Procs

display Graph View

Graph::draw—257

Examples
graph1.display tab1

Display the contents of the table TAB1 in the window of the object GRAPH1.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names. See also Graph::label (p. 263).

Display name for a graph object.

Attaches a display name to a graph object which may be used to label output in place of the
standard graph object name.

Syntax
graph_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in graph object names.

Examples
gr1.displayname Hours Worked

gr1.label

The first line attaches a display name “Hours Worked” to the graph GR1, and the second
line displays the label view of GR1, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Graph::label (p. 263) and Graph::legend (p. 264).

Place horizontal or vertical lines and shaded areas on the graph.

Syntax
graph_name.draw(draw_type, axis_id [,options]) position1 [position2]

where draw_type may be one of the following:

displayname Graph Procs

draw Graph Procs

258—Chapter 1. Object Reference

Note that the “dashline” option has been removed (though it is supported for backward
compatibility). You should use the “pattern” option to specify whether the line is solid or
patterned.

axis_id may take the values:

If drawing a line, the drawing position is taken from position1. If drawing a shaded area, you
must provide a position1 and position2 to define the boundaries of the shaded region.

Line/Shade Options

The following options may be provided to change the characteristics of the specified line or
shade. Any unspecified options will use the default text settings of the graph.

line / l A line

shade A shaded area

left / l Draw a horizontal line or shade using the left axis to define
the drawing position

right / r Draw a horizontal line or shade using the right axis to
define the drawing position

bottom / b Draw a vertical line or shade using the bottom axis to
define the drawing position

color(arg) Specifies the color of the line or shade. The argument may
be made up of n1, n2, and n3, a set of three integers from 0
to 255, representing the RGB values of the line or shade, or
it may be one of the predefined color keywords (“blue”,
“red”, “green”, “black”, “white”, “purple”, “orange”, “yel-
low”, “gray”, “ltgray”). For a full description of the key-
words, see Table::setfillcolor (p. 795).
The default is black for lines and gray for shades. RGB val-
ues may be examined by calling up the color palette in the
Graph Options dialog.

pattern(index) Sets the line pattern to the type specified by index. index
can be an integer from 1 to 12 or one of the matching key-
words (“solid”, “dash1” through “dash10”, “none”). See
Graph::setelem (p. 277) for a description of the avail-
able patterns. The “none” keyword turns on solid lines.

width(n1) Specify the width, where n1 is the line width in points
(used only if object_type is “line” or “dashline”). The
default is 0.5 points.

top Specifies that the line be drawn on top of the graph. (Note
that this option has no effect on shades.)

Graph::drawdefault—259

Examples
graph1.draw(line, left, rgb(0,0,127)) 5.25

draws a horizontal blue line at the value “5.25” as measured on the left axis while:

graph1.draw(shade, right) 7.1 9.7

draws a shaded horizontal region bounded by the right axis values “7.1” and “9.7”. You may
also draw vertical regions by using the “bottom” axis_id:

graph1.draw(shade, bottom) 1980:1 1990:2

draws a shaded vertical region bounded by the dates “1980:1” and “1990:2”.

graph1.draw(line, bottom, pattern(dash1)) 1985:1

draws a vertical dashed line at “1985:1”.

Cross-references

See Chapter 15. “Graph Objects,” on page 751 of User’s Guide I for a discussion of graph
options.

See Graph::drawdefault (p. 259) for setting defaults.

Change default settings for lines and shaded areas in the graph.

This command specifies changes in the default settings which will be applied to line and
shade objects added subsequently to the graph. If you include the “existing” option, all of
the drawing default settings will also be applied to existing line and shade objects in the
graph.

Syntax
graph_name.drawdefault draw_options

where draw_options may include one or more of the following:

drawdefault Graph Procs

260—Chapter 1. Object Reference

Examples
graph1.drawdefault linecolor(blue) width(.25) existing

changes the default setting for new line/shade objects. New lines added to the graph will
now be drawn in blue, with a width of 0.25 points. In addition, all existing line and shade
objects will be updated with the graph default settings. Note that in addition to the line color
and width settings specified in the command, the existing default line pattern and shade col-
ors will be applied to the line and shade objects in graph.

graph1.drawdefault existing

updates all line and shade objects in the graph with the currently specified default draw
object settings.

Cross-references

See Chapter 15. “Graph Objects,” on page 751 of User’s Guide I for a discussion of graph
options.

linecolor(arg) Sets the default color for lines. The arg value may set by
using one of the color keywords (e.g., “blue”), or by using
the RGB values (e.g., “@RGB(255, 255, 0)”). For a descrip-
tion of the available color keywords (“blue”, “red”,
“green”, “black”, “white”, “purple”, “orange”, “yellow”,
“gray”, “ltgray”). For a full description of the keywords, see
Table::setfillcolor (p. 795).

shadecolor(arg) Sets the default color for shades. arg may be one of the pre-
defined color keywords, or it may be made up of n1, n2,
n3, a set of three integers from 0 to 255, representing the
RGB values of the color. For a description of the available
color keywords (“blue”, “red”, “green”, “black”, “white”,
“purple”, “orange”, “yellow”, “gray”, “ltgray”), see
Table::setfillcolor (p. 795).

width(n1) Specify the width, where n1 is the line width in points
(used only if object_type is “line” or “dashline”). The
default is 0.5 points.

pattern(index) Sets the default line pattern to the type specified by index.
index can be an integer from 1 to 12 or one of the matching
keywords (“solid”, “dash1” through “dash10”, “none”).
See Graph::setelem (p. 277) for a description of the
available patterns. The “none” keyword turns on solid
lines.

existing Apply the default settings to all existing line/shade objects
in the graph.

Graph::graph—261

See Graph::draw (p. 257).

Create named graph object containing the results of a graph command, or created when
merging multiple graphs into a single graph.

Syntax
graph graph_name.graph_command(options) arg1 [arg2 arg3 ...]

graph graph_name.merge graph1 graph2 [graph3 ...]

Follow the keyword with a name for the graph, a period, and then a statement used to create
a graph. There are two distinct forms of the command.

In the first form of the command, you create a graph using one of the graph commands, and
then name the object using the specified name. The portion of the command given by,

graph_command(options) arg1 [arg2 arg3 ...]

should follow the form of one of the standard EViews graph commands:

graph Graph Declaration

area Area graph (area (p. 913)).

band Area band graph (band (p. 916)).

bar Bar graph (bar (p. 918)).

boxplot Boxplot graph (boxplot (p. 923)).

distplot Distribution graph (distplot (p. 926)).

dot Dot plot graph (dot (p. 934)).

errbar Error bar graph (errbar (p. 938)).

hilo High-low(-open-close) graph (hilo (p. 939)).

line Line graph (line (p. 941)).

pie Pie graph (pie (p. 947)).

qqplot Quantile-Quantile graph (qqplot (p. 950)).

scat Scatterplot—same as XY, but lines are initially turned off,
symbols turned on, and a frame is used (scat
(p. 954)).

scatmat Matrix of scatterplots (scatmat (p. 959)).

scatpair Scatterplot pairs graph (scatpair (p. 961)).

seasplot Seasonal line graph (seasplot (p. 965)).

spike Spike graph (spike (p. 966)).

3 3u

262—Chapter 1. Object Reference

In the second form of the command, you instruct EViews to merge the listed graphs into a
single graph, and then name the graph object using the specified name.

Options

Additional options will depend on the type of graph chosen. See the entry for each graph
type for a list of the available options (for example, see bar (p. 918) for details on bar
graphs).

Examples
graph gra1.line(s, p) gdp m1 inf

creates and prints a stacked line graph object named GRA1. This command is equivalent to
running the command:

line(s, p) gdp m1 inf

freezing the view, and naming the graph GRA1.

graph mygra.merge gr_line gr_scat gr_pie

creates a multiple graph object named MYGRA that merges three graph objects named
GR_LINE, GR_SCAT, and GR_PIE.

Cross-references

See Chapter 15. “Graph Objects,” on page 751 of User’s Guide I for a general discussion of
graphs.

See also freeze (p. 368) and Graph::merge (p. 266).

xyarea XY line-symbol graph with one X plotted against one or
more Y’s using existing line-symbol settings (xyarea
(p. 970)).

xybar XY line-symbol graph with one X plotted against one or
more Y’s using existing line-symbol settings (xybar
(p. 973)).

xyline Same as XY, but symbols are initially turned off, lines
turned on, and a frame is used (xyline (p. 975)).

xypair Same as XY but sets XY settings to display pairs of X and Y
plotted against each other (xypair (p. 979)).

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph (for use when specified with a graph com-
mand).

4 3u

Graph::label—263

Display or change the label view of a graph object, including the last modified date and
display name (if any).

As a procedure, label changes the fields in the graph label.

Syntax
graph_name.label

graph_name.label(options) [text]

Options

The first version of the command displays the label view of the graph. The second version
may be used to modify the label. Specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared.

Examples

The following lines replace the remarks field of GRA1 with “Data from CPS 1988 March
File”:

gra1.label(r)

gra1.label(r) Data from CPS 1988 March File

To append additional remarks to GRA1, and then to print the label view:

gra1.label(r) Log of hourly wage

gra1.label(p)

To clear and then set the units field, use:

gra1.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

label Graph View | Graph Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

264—Chapter 1. Object Reference

See also Graph::displayname (p. 257).

Set legend appearance and placement in graphs.

When legend is used with a multiple graph, the legend settings apply to all graphs. See
Graph::setelem (p. 277) for setting legends for individual graphs in a multiple graph.

Syntax
graph_name.legend option_list

Options

legend Graph Procs

columns(arg)
(default=“auto”)

Columns for legend: “auto” (automatically choose number
of columns), int (put legend in specified number of col-
umns).

display/–display Display/do not display the legend.

inbox/–inbox Put legend in box/remove box around legend.

position(arg) Position for legend: “left” or “l” (place legend on left side
of graph), “right” or “r” (place legend on right side of
graph), “botleft” or “bl” (place left-justified legend below
graph), “botcenter” or “bc” (place centered legend below
graph), “botright” or “br” (place right-justified legend
below graph), “(h, v)” (the first number h specifies the
number of virtual inches to offset to the right from the ori-
gin. The second number v specifies the virtual inch offset
below the origin. The origin is the upper left hand corner of
the graph).

font([face], [pt],
[+/- b], [+/- i],
[+/- u], [+/- s])

Set characteristics of legend font. The font name (face),
size (pt), and characteristics are all optional. face should
be a valid font name, enclosed in double quotes. pt should
be the font size in points. The remaining options specify
whether to turn on/off boldface (b), italic (i), underline
(u), and strikeout (s) styles.

textcolor(arg) Sets the color of the legend text. arg may be one of the pre-
defined color keywords, or it may be made up of n1, n2,
n3, a set of three integers from 0 to 255, representing the
RGB values of the color. For a description of the available
color keywords (“blue”, “red”, “green”, “black”, “white”,
“purple”, “orange”, “yellow”, “gray”, “ltgray”), see
Table::setfillcolor (p. 795).

Graph::legend—265

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

The default settings are taken from the global defaults.

Examples
mygra1.legend display position(l) inbox

places the legend of MYGRA1 in a box to the left of the graph.

mygra1.legend position(.2,.2) -inbox

places the legend of MYGRA1 within the graph, indented slightly from the upper left corner
with no box surrounding the legend text.

mygra1.legend font("Times", 12, b, i) textcolor(red)

fillcolor(blue) framecolor(blue)

sets the legend font to red “Times” 12pt bold italic, and changes both the legend fill and
frame colors to blue.

Cross-references

See Chapter 15. “Graph Objects,” on page 751 of User’s Guide I for a discussion of graph
objects in EViews.

See Graph::addtext (p. 247) and Graph::textdefault (p. 287). See Graph::setelem
(p. 277) for changing legend text and other graph options.

fillcolor(arg) Sets the background fill color of the legend box. arg may be
one of the predefined color keywords, or it may be made
up of n1, n2, n3, a set of three integers from 0 to 255, rep-
resenting the RGB values of the color. For a description of
the available color keywords (“blue”, “red”, “green”,
“black”, “white”, “purple”, “orange”, “yellow”, “gray”,
“ltgray”), see Table::setfillcolor (p. 795).

framecolor(arg) Sets the color of the legend box frame. arg may be one of
the predefined color keywords, or it may be made up of n1,
n2, n3, a set of three integers from 0 to 255, representing
the RGB values of the color. For a description of the avail-
able color keywords (“blue”, “red”, “green”, “black”,
“white”, “purple”, “orange”, “yellow”, “gray”, “ltgray”),
see Table::setfillcolor (p. 795).

266—Chapter 1. Object Reference

Creates a group object containing all the series in the graph.

Syntax
graph_name.makegroup group_name

group_name is an optional new group name. Group will be untitled if group_name is not
specified.

Examples
mygraph.makegroup mynewgroup

Creates new group called mynewgroup.

mygraph.makegroup

Creates an untitled group.

Merge graph objects.

merge combines graph objects into a single graph object. The graph objects to merge must
exist in the current workfile.

Syntax
graph_name.merge graph1 graph2 [graph3 ...]

Follow the keyword with a list of existing graph object names to merge.

Examples
graph mygra.merge gra1 gra2 gra3 gra4

show mygra.align(4,1,1)

The first line merges the four graphs GRA1, GRA2, GRA3, GRA4 into a graph named
MYGRA. The second line displays the four graphs in MYGRA in a single row.

Cross-references

See Chapter 15. “Graph Objects,” on page 751 of User’s Guide I for a discussion of graphs.

makegroup Graph Procs

merge Graph Procs

Graph::name—267

Save graph to disk as an enhanced or ordinary Windows metafile.

Provided for backward compatibility, metafile has been replaced by the more general
graph proc Graph::save (p. 273), which allows for saving graphs in metafile or postscript
files, with additional options for controlling the output.

Change the names used for legends or axis labels in XY graphs.

Allows you to provide an alternative to the names used for legends or for axis labels in XY
graphs. The name command is available only for single graphs and will be ignored in multi-
ple graphs.

Syntax
graph_name.name(n) legend_text

Provide a series number in parentheses and legend_text for the legend (or axis label) after
the keyword. If you do not provide text, the current legend will be removed from the legend/
axis label.

 Examples
graph g1.line(d) unemp gdp

g1.name(1) Civilian unemployment rate

g1.name(2) Gross National Product

The first line creates a line graph named G1 with dual scale, no crossing. The second line
replaces the legend of the first series UNEMP, and the third line replaces the legend of the
second series GDP.

graph g2.scat id w h

g2.name(1)

g2.name(2) weight

g2.name(3) height

g2.legend(l)

The first line creates a scatter diagram named G2. The second line removes the legend of the
horizontal axis, and the third and fourth lines replace the legends of the variables on the
vertical axis. The last line moves the legend to the left side of the graph.

metafile Graph Procs

name Graph Procs

268—Chapter 1. Object Reference

Cross-references

See Chapter 15. “Graph Objects,” on page 751 of User’s Guide I for a discussion of working
with graphs.

See also Graph::displayname (p. 257).

Push updates to OLE linked objects in open applications.

Syntax
graph_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Set options for a graph object.

Allows you to change the option settings of an existing graph object. When options is used
with a multiple graph, the options are applied to all graphs.

Syntax
graph_name.options option_list

Options
Basic Graph Options

olepush Graph Procs

options Graph Procs

legend / -legend Turn on and off legend.

size(w, h) Specifies the size of the plotting frame in virtual inches
(w=width, h=height).

lineauto Use solid lines when drawing in color and use patterns and
grayscale when drawing in black and white.

linesolid Always use solid lines.

linepat Always use line patterns.

Graph::options—269

color / -color Specifies that lines/filled areas [use / do not use] color.
Note that if the “lineauto” option is specified, this choice
will also influence the type of line or filled area drawn on
screen: if color is specified, solid colored lines and filled
areas will be drawn; if color is turned off, lines will be
drawn using black and white line patterns, and gray scales
will be used for filled areas.

barlabelabove /
-barlabelabove

[Place / Do not place] text value of data above bar in bar
graph.

barlabelinside /
-barlabelinside

[Place / Do not place] text value of data inside bar in bar
graph.

barlabelnone Remove text value of data from bar graph.

outlinebars /
-outlinebars

[Outline / Do not outline] bars in a bar graph.

outlinearea /
-outlinearea

[Outline / Do not outline] areas in an area graph.

outlineband /
-outlineband

[Outline / Do not outline] bands in an area band graph.

barspace /-bar-
space

[Put / Do not put] space between bars in bar graph.

pielabel /
-pielabel

[Place / Do not place] text value of data in pie chart.

automult/-auto-
mult

[Auto reduce / Do not autoreduce] frame size in multiple
graphs to make text appear larger

dual/-dual [Overlap / Do not overlap] scales (no cross).

barfade(arg) Sets the fill fade of the bars in a bar graph. arg may be:
“none” (solid fill - default), “3d” (3D rounded fill), “lzero”
(light at zero), “dzero” (dark at zero).

antialias(arg) Sets anti-aliasing to smooth the appearance of data lines in
the graph. arg may be: “auto” (EViews uses anti-aliasing
where appropriate - default), “on”, or “off”.

interpolate(arg) Sets the interpolation method to estimate values between
two known data points in the graph. arg may be: “linear”
(no interpolation), “mild” (mild spline), “medium”
(medium spline), or “full” (full spline).

stackposneg /
-stackposneg

For bar graphs, stack positive and negative values sepa-
rately (Excel style).

270—Chapter 1. Object Reference

Graph Grid Options

gridl / -gridl [Turn on / Turn off] grid lines on the left scale.

gridr / -gridr [Turn on / Turn off] grid lines on the right scale.

gridb / -gridb [Turn on / Turn off] grid lines on the bottom scale.

gridt / -gridt [Turn on / Turn off] grid lines on the top scale.

gridnone No grid lines (turns of time scale grid).

gridauto Allow EViews to place grid lines at automatic intervals.

gridcust(freq
[,step])

Place grid lines at custom intervals, specified by freq. freq
may be:
“obs” or “o” (Step = One obs),
“year” or “y” (Step = Year),
“quarter” or “q” (Step = Quarter),
“month” or “m” (Step = Month),
“day” or “d” (Step = Day),
“user” or “u” (Step = custom).
You may optionally specify a step for the interval. If not
specified, the default is the last grid step used for this
graph, or 1 if a step has never been specified.

gridcolor(arg) Sets the grid line color. arg may be one of the predefined
color keywords, or it may be made up of n1, n2, n3, a set
of three integers from 0 to 255, representing the RGB values
of the color. For a description of the available color key-
words (“blue”, “red”, “green”, “black”, “white”, “purple”,
“orange”, “yellow”, “gray”, “ltgray”), see Table::set-
fillcolor (p. 795).

gridwidth(n) Sets the width of the grid lines in points. n should be a
number between 0.25 and 5.

gridpat(index) Sets the line pattern for grid lines to the type specified by
index. index can be an integer from 1 to 12 or one of the
matching keywords (“solid”, “dash1” through “dash10”,
“none”). See Graph::setelem (p. 277) for a description
of the available patterns. The “none” keyword turns on
solid lines.

gridontop /
-gridontop

[Draw / Do not draw] the grid lines on top of the graph.

Graph::options—271

Background and Frame Options

fillcolor(arg) Sets the fill color of the graph frame. arg may be one of the
predefined color keywords, or it may be made up of n1, n2,
n3, a set of three integers from 0 to 255, representing the
RGB values of the color. For a description of the available
color keywords (“blue”, “red”, “green”, “black”, “white”,
“purple”, “orange”, “yellow”, “gray”, “ltgray”), see
Table::setfillcolor (p. 795).

backcolor(arg) Sets the background color of the graph. arg may be one of
the predefined color keywords, or it may be made up of n1,
n2, n3, a set of three integers from 0 to 255, representing
the RGB values of the color. For a description of the avail-
able color keywords (“blue”, “red”, “green”, “black”,
“white”, “purple”, “orange”, “yellow”, “gray”, “ltgray”),
see Table::setfillcolor (p. 795).

framecolor(arg) Sets the background color of the graph frame. arg may be
one of the predefined color keywords, or it may be made
up of n1, n2, n3, a set of three integers from 0 to 255, rep-
resenting the RGB values of the color. For a description of
the available color keywords (“blue”, “red”, “green”,
“black”, “white”, “purple”, “orange”, “yellow”, “gray”,
“ltgray”), see Table::setfillcolor (p. 795).

fillfade(arg) Sets the fill fade of the graph frame. arg may be: “none”
(solid frame fill - default), “ltop” (light at top), “dtop”
(dark at top).

backfade(arg) Sets the background fade of the graph. arg may be: “none”
(solid background - default), “ltop” (light at top), “dtop”
(dark at top).

framewidth(n) Sets the width of the graph frame in points. n should be a
number between 0.25 and 5.

frameaxes(arg) Specifies which frame axes to display. arg may be one of
the keywords: “all”, “none”, or “labeled” (all axes that
have labels), or any combination of letters “l” (left), “r”
(right), “t” (top), and “b” (bottom), e.g. “lrt” for left, right
and top.

indenth(n) Sets the horizontal indentation of the graph from the graph
frame in virtual inches. n should be a number between 0
and 0.75.

indentv(n) Sets the vertical indentation of the graph from the graph
frame in virtual inches. n should be a number between 0
and 0.75.

272—Chapter 1. Object Reference

Sample Break and NA Handling

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Data labels in bar and pie graphs will only be visible when there is sufficient space in the
graph.

Examples
graph1.options size(4,4) +inbox color

sets GRAPH1 to use a frame enclosed in a box. The graph will use color.

graph1.options linepat -color size(2,8) -inbox

sets GRAPH1 to use a frame with no box. The graph does not use color, with the lines
instead being displayed using patterns.

graph1.options fillcolor(gray) backcolor(192, 192, 192)

framecolor(blue)

sets the fill color of the graph frame to gray, the background color of the graph to the RGB
values 192, 192, and 192, and the graph frame color to blue.

graph1.options gridpat(3) gridl -gridb

display left scale grid lines using line pattern 3 (“dash2”) and turn off display of vertical grid
lines from the bottom axis.

inbox / -inbox [Show / Do not show] the graph frame on axes that do not
have data assigned to them.

background /
-background

[Include / Do not include] the background color when
exporting or printing the graph.

drop (default) For a graph with a non-contiguous sample, drop the
excluded observations from the graph scale.

connect For a graph with missing values or a non-contiguous sam-
ple, connect non-missing observations.

disconnect For a graph with missing values or a non-contiguous sam-
ple, disconnect non-missing observations.

pad For a graph with a non-contiguous sample, pad the graph
scale with the excluded observations

segment For a graph with a non-contiguous sample, drop the
excluded observations from the graph scale and draw verti-
cal lines at the seams in the observation scale.

4 4u

2 8u

Graph::save—273

graph1.options indenth(.5) frameaxes(lb) framewidth(.5)

gridwidth(.25)

indents the graph .5 virtual inches from the frame, displays left and bottom frame axes of
width .5 points, and sets the gridline width to .25 points.

Cross-references

See Chapter 15. “Graph Objects,” on page 751 of User’s Guide I for a discussion of graph
options in EViews.

See also Graph::axis (p. 251), Graph::datelabel (p. 255), and Graph::setelem
(p. 277).

Save a graph object to disk as a Windows metafile (.EMF or .WMF), PostScript (.EPS), bit-
map (.BMP), Graphics Interchange Format (.GIF), Joint Photographic Experts Exchange
(.JPEG), Portable Network Graphics (.PNG), Portable Document Format (.PDF) file, or
LaTeX (.TEX) file.

Syntax
graph_name.save(options) [path\]file_name

Follow the keyword with a name for the file. file_name may include the file type extension,
or the file type may be specified using the “t=” option. A graph may be saved with an EMF,
WMF, EPS, BMP, GIF, JPG, PNG, or PDF extension.

If an explicit path is not specified, the file will be stored in the default directory, as set in the
File Locations global options.

Graph Options

save Graph Procs

t=file_type Specifies the file type, where file_type may be one of:
Enhanced Windows metafile (“emf” or “meta”), ordinary
Windows metafile (“wmf”), Encapsulated PostScript (“eps”
or “ps”), Bitmap file (“bmp”), Graphics Interchange For-
mat (“gif”), Joint Photographic Experts Exchange (“jpeg”
or “jpg”), Portable Network Graphics (“png”), Portable
Document File (“pdf”), or LaTeX file (“tex”).
Files will be saved with the “.emf”, “.wmf”, “.eps”, “.bmp”,
“.gif”, “.jpeg”, “.png”, or “pdf” extensions, respectively.

u=units Specify units of measurement, where units is one of: “in”
(inches), “cm” (centimeters), “pt” (points), “pica” (picas),
“pixels” (pixels). Note: pixels are only applicable to bmp,
gif, jpeg, and png files. Default is inches otherwise.

274—Chapter 1. Object Reference

Note that if only a width or a height option is specified, EViews will calculate the other
dimension holding the aspect ratio of the graph constant. If both width and height are pro-
vided, the aspect ratio will no longer be locked. (Note that the aspect ratio for an ordinary
Windows Metafile (.WMF) cannot be unlocked, so only a height or width should be speci-
fied in this case.) EViews will default to the current graph dimensions if size is unspecified.

All defaults with exception to dots per inch are taken from the global graph export settings
(Options/Graphics Defaults.../Exporting). The default dots per inch for bmp, gif, jpeg, and
png file types is equal to the number of pixels per logical inch along the screen width of your
system. Values may therefore differ from system to system.

Postscript Options

LaTeX Options

Examples
graph1.save(t=ps, -box, land) c:\data\MyGra1

saves GRAPH1 as a PostScript file MYGRA1.EPS. The graph is saved in landscape orienta-
tion without a bounding box.

graph2.save(t=emf, u=pts, w=300, h=300) MyGra2

w=width Set width of the graphic in the selected units.

h=height Set height of the graphic in the selected units.

c / -c [Save / Do not save] the graph in color.

trans / -trans [Set / Do not set] background to transparent (for graph for-
mats which support transparency).

d = dpi Specify the number of dots per inch. Only applicable to
bmp, gif, jpeg, and png files when units has not been set to
pixels. In the case units = “pixels”, it is ignored.

box / -box [Save / Do not save] the graph with a bounding box. The
bounding box is an invisible rectangle placed around the
graphic to indicate its boundaries. The default is taken
from the global graph export settings.

land Save the graph in landscape orientation. The default uses
portrait mode.

prompt Force the dialog to appear from within a program.

texspec / -texspec [Include / Do not include] the full LaTeX documentation
specification in the LaTeX output. The default behavior is
taken from the global default settings.

Graph::setattr—275

saves GRAPH2 in the default directory as an Enhanced Windows metafile MYGRA2.EMF.
The image will be scaled to points.

graph3.save(t=png, u=in, w=5, d=300) MyGra3

saves GRAPH3 in the default directory as a PNG file MYGRA3.PNG. The image will be 5
inches wide at 300 dpi.

Cross-references

See Chapter 15. “Graph Objects,” beginning on page 751 of User’s Guide I for a discussion of
graphs.

The scale command is supported for backward compatibility, but has been replaced by the
Graph::axis (p. 251) command, which handles all axis and scaling options.

Set the object attribute.

Syntax
graph_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

scale Graph Procs

setattr Graph Procs

300 300u

276—Chapter 1. Object Reference

Enable/disable individual boxplot elements.

Syntax
graph_name.setbpelem element_list

The element_list may contain one or more of the following:

Examples
graph01.setbpelem -far width(n) ci(notch)

hides the far outliers, sets the box widths proportional to the number of observations, and
enables notching of the confidence intervals.

Cross-references

See “Boxplot” on page 701 of User’s Guide I for a description of boxplots.

See Graph::setelem (p. 277) to modify line and symbol attributes. See also
Graph::options (p. 268) and Graph::axis (p. 251).

setbpelem Graph Procs

median, med / -
median, -med

[Show / Do not show] the medians.

mean / -mean [Show / Do not show] the means.

whiskers, w /
-whiskers, -w

[Show / Do not show] the whiskers (lines from the box to
the staples).

staples, s
/ -staples, -s

[Show / Do not show] the staples (lines drawn at the last
data point within the inner fences).

near / -near [Show /Do not show] the near outliers (values between the
inner and outer fences).

far / -far [Show / Do not show] the far outliers (values beyond the
outer fences).

width(arg)
(default
=“fixed”)

Set the width settings for the boxplots, where arg is one of:
“fixed” (uniform width), “n” (proportional to sample size),
“rootn” (proportional to the square root of sample size).

ci(arg)
(default=
“shade”)

Set the display method for the median confidence intervals,
where arg is one of: “none” (do not display), “shade”
(shaded intervals), “notch” (notched intervals).

Graph::setelem—277

Set individual line, bar and legend options for each series in the graph.

Syntax
graph_name.setelem(graph_elem) argument_list

where graph_elem is the identifier for the graph element whose options you wish to modify:

The argument list for setelem may contain one or more of the following:

setelem Graph Procs

integer Index for graph element (for non-boxplot graphs). For
example, if you provide the integer “2”, EViews will modify
the second line in the graph.

box_elem Boxplot element to be modified: box (“b”), median
(“med”), mean (“mean”), near outliers (“near” or “no”),
far outliers (“far” or “fo”), whiskers (“w”), staples (“s”).
For boxplot graphs only.

symbol(arg) Sets the drawing
symbol: arg can be
an integer from 1–13,
or one of the match-
ing keywords.
“obslabel” and
“dotobslabel” use
the observation label
as the symbol.
Selecting a symbol
automatically turns
on symbol use. The
“none” option turns
off symbol use.

symbolsize(arg),
symsize(arg)

Sets the symbol size. arg may be an integer between 1-8,
where 1 is the smallest symbol and 8 is the largest, or
one of the keywords: “XS” (X-Small), “S” (Small), “M”
(Medium), “L” (Large), “XL” (X-Large), “2XL” (2X-Large),
“3XL” (3X-Large), “4XL” (4X-Large).

278—Chapter 1. Object Reference

linecolor(arg),
lcolor(arg)

Sets the line and symbol color. The arg value may set by
using one of the color keywords (e.g., “blue”), or by using
the RGB values (e.g., “@RGB(255, 255, 0)”). For a descrip-
tion of the available color keywords (“blue”, “red”,
“green”, “black”, “white”, “purple”, “orange”, “yellow”,
“gray”, “ltgray”). For a full description of the keywords, see
Table::setfillcolor (p. 795).

linewidth(n1),
lwidth(n1)

Sets the line and symbol width: n1 should be a number
between “.25” and “5”, indicating the width in points.

linepattern(arg),
lpat(arg)

Sets the line pattern to the
type specified by arg. arg
can be an integer from 1–
12 or one of the matching
keywords.
Note that the option inter-
acts with the graph options
for “color”, “lineauto”,
“linesolid”, “linepat” (see
Graph::options
(p. 268), for details). You
may need to set the graph
option for “linepat” to
enable the display of line
patterns. See
Graph::options
(p. 268).
Note also that the patterns with index values 7–11 have
been modified since version 5.0. In particular, the “none”
option has been moved to position 12.
The “none” option turns off lines and uses only symbols.

fillcolor(arg),
fcolor(arg)

Sets the fill color for symbols, bars, and pies. The arg value
may set by using of the color keywords (“blue”, “red”,
“green”, “black”, “white”, “purple”, “orange”, “yellow”,
“gray”, “ltgray”) or by using the RGB values (e.g.,
“@RGB(255, 255, 0)”). For a full description of the key-
words, see Table::setfillcolor (p. 795)

Graph::setelem—279

fillgray(n1),
gray(n1)

Sets the gray scale for bars and
pies: n1 should be an integer from
1–15 corresponding to one of the
predefined gray scale settings
(from lightest to darkest).

fillhatch(arg),
hatch(arg)

Sets the hatch characteris-
tics for bars and pies: arg
can be an integer from 1–
7, or one of the matching
keywords.

preset(n1) Sets line and fill characteristics to the specified EViews pre-
set values, where n1 is an integer from 1–30. Simultane-
ously sets “linecolor”, “linepattern”, “linewidth”,
“symbol”, “fillcolor”, “fillgray”, and “fillhatch” to the
EViews predefined definitions for graph element n1.
When applied to boxplots, the line color of the specified
element will be applied to the box, whiskers, and staples.

default(n1) Sets line and fill characteristics to the specified user-
defined default settings where n1 is an integer from 1–30.
Simultaneously sets “linecolor”, “linepattern”, “linewidth”,
“symbol”, “fillcolor”, “fillgray”, and “fillhatch” to the val-
ues in the user-defined global defaults for graph element
n1.
When applied to boxplots, the line color of the specified
settings will be applied to the box, whiskers, and staples.

280—Chapter 1. Object Reference

Examples
graph1.setelem(2) lcolor(blue) lwidth(2) symbol(circle)

sets the second line of GRAPH1 to be a blue line of width 2 with circle symbols.

graph1.setelem(1) lcolor(blue)

graph1.setelem(1) linecolor(0, 0, 255)

are equivalent methods of setting the linecolor to blue.

graph1.setelem(1) fillgray(6)

sets the gray-scale color for the first graph element.

The lines:

graph1.setelem(1) scale(l)

graph1.setelem(2) scale(l)

graph1.setelem(3) scale(r)

create a dual scale graph where the first two series are scaled together and labeled on the
left axis, and the third series is scaled and labeled on the right axis.

graph1.setelem(2) legend("gross domestic product")

sets the legend for the second graph element.

Cross-references

See Chapter 15. “Graph Objects,” on page 751 of User’s Guide I for a discussion of graph
options in EViews.

See also Graph::axis (p. 251), Graph::datelabel (p. 255) and Graph::options
(p. 268).

axis(arg),
scale(arg)

Assigns the element to an axis: left (“l”), right (“r”), bot-
tom (“b”), top (“t”). The latter two options are only appli-
cable for XY and scatter graphs (scat (p. 954), xyarea
(p. 970), xybar (p. 973), xyline (p. 975), xypair
(p. 979)).

legend(str) Assigns legend text for the element. str will be used in the
legend to label the element.

Graph::setobslabel—281

Set the font for text in the graph.

Syntax
graph_name.setfont font_args

The font_args may include one or more of the following:

and type is one of “all”, “axes”, “legend”, “text”, “obs”, where “axes” refers to the axes
labels, “legend” refers to the graph legend, “text” refers to the added text, “obs” refers to the
observation scale, and “all” refers to all of the elements.

Examples
mygraph.setfont axes("Times", 20, b)

sets the font to Times, 20pt, bold for all of the graph elements.

mygraph.setfont text("Arial") legend("Helvetica")

sets the added text font to Arial and the legend font to Helvetica.

Cross-references

See Chapter 15. “Graph Objects,” on page 751 of User’s Guide I for a discussion of graph
options.

See also Graph::datelabel (p. 255), Graph::axis (p. 251), Graph::options (p. 268)
and Graph::setelem (p. 277).

Sets custom axis labels for the observation scale of a graph.

Syntax
graph_name.setobslabel([step_options,] init_options) [string1 string2 ...]

setfont Graph Procs

type([face], [pt],
[+/- b], [+/- i],
[+/- u], [+/- s])

Set characteristics of the font for the graph element type.
The font name (face), size (pt), and characteristics are all
optional. face should be a valid font name, enclosed in dou-
ble quotes. pt should be the font size in points. The remain-
ing options specify whether to turn on/off boldface (b),
italic (i), underline (u), and strikeout (s) styles.

setobslabel Graph Procs

282—Chapter 1. Object Reference

Follow the keyword with a list of axis labels, or the name of a series when the “series”
init_option is used.

To preserve case, enclose the label in quotation marks. To hide a label, use “”. If the number
of labels provided is less than the number of existing labels, the remaining labels will not be
affected.

Options

Step options

Init options

Examples

Given a graph GRA1 with updating turned off, change the first label to “CA” using the com-
mand:

gra1.setobslabel(current) "CA"

Note that all but the first label remain unchanged.

To keep the first label as “CA” and set the second label to “OR”, you could enter:

gra1.setobslabel(current) "CA" "OR"

Alternatively, an equivalent command would be

gra1.setobslabel(2,current) "OR"

start[, step] start should be the observation number of the first label to
modify. step defines the number of observations to skip
between applying labels.

init_options
(default =
“blank”)

init_options sets initialization options for the labels.
For a frozen graph (updating off), you may use the key-
words:
“current” (keep current labels, or initialize the labels with
standard observation labels if custom labels do not cur-
rently exist, then add the labels provided),
“obsnum” (initialize with observation numbers), or
“blank” (set all labels to empty strings, then add the labels
provided).
For live or frozen graphs, you may use the keywords:
“series” (initialize the labels with the values of a series; fol-
low the command with the name of a series instead of
labels), or
“clear” (delete custom labels if they exist and return to
automatic labeling).

Graph::setupdate—283

which starts applying labels at the second observation.

To set the first, third, and fifth observation labels in the frozen graph GRAPH2 and leave all
others unchanged:

graph2.setobslabel(1,2,current) "first" "third" "fifth"

This instructs EViews to begin modifying at the first label and step two observations
between new labels.

graph2.setobslabel(1,2,blank) "first" "third" "fifth"

performs the same operation as the previous command, while also clearing out all other
labels.

graph2.setobslabel(clear)

deletes all custom labels and returns to EViews automatic labeling.

Say we have an alpha series in our workfile, ALPHA01, whose values are: “CA”, “OR”,
“WA”, etc. To use these values as axis labels, use the series option and specify a series name
in place of labels:

gra3.setobslabel(series) alpha01

This command creates labels on the time axis, using values in ALPHA01 to label the obser-
vations with: “CA”, “OR”, “WA”, etc.

Cross-references

See Chapter 15. “Graph Objects,” on page 751 of User’s Guide I for a discussion of graph
options.

See also Graph::datelabel (p. 255), Graph::axis (p. 251), Graph::options (p. 268)
and Graph::setelem (p. 277).

Set the update state of a graph object.

Syntax
graph_name.setupdate(options) [sample]

Follow the name of the graph with a period, the keyword setupdate, and the update set-
ting.

Optionally, include a sample with the “manual” or “automatic” options to restrict updates to
data changes made within the sample period. If you do not include a sample, updates will
occur according to changes in the workfile sample.

setupdate Graph Procs

284—Chapter 1. Object Reference

Options

Examples
gr1.setupdate(o)

This command turns off updating for graph GR1.

gr1.setupdate(a)

turns on automatic updating for graph GR1, according to the workfile sample. Whenever the
underlying data or the workfile sample changes, GR1 will be updated with the changes.

gr2.setupdate(m) 1992 1993

turns on manual updating for graph GR2, for the sample period 1992 to 1993. When the
graph is manually updated, using the update (p. 288) command, changes in data between
1992 and 1993 will be updated.

Cross-references

See Chapter 15. “Graph Objects,” beginning on page 752 of User’s Guide I for a discussion of
graph updating options.

See Graph::update (p. 288).

Sort the series in a graph.

The sort command sorts all series in the graph on the basis of the values of up to three
series. For purposes of sorting, NAs are considered to be smaller than any other value. By
default, EViews will sort the series in ascending order. You may use options to override the
sort order.

Note that sorting cannot be undone. You may wish to freeze or copy the graph before apply-
ing the sort.

“off” or “o” Turn updating off.

“manual” or
“m”

Update when requested (with the Graph::update
(p. 288) command), or when the graph type is
changed.

“auto” or “a” Update whenever the update condition is met. If a
sample is specified, an update will occur when data
changes within the sample. If no sample is specified,
updates will occur when data or the workfile sample
changes.

sort Graph Procs

Graph::template—285

Syntax
graph_name.sort(series1[, series2, series3])

Follow the keyword with a list of the series by which you wish to sort the graph. If you list
two or more series, sort uses the values of the second series to resolve ties from the first
series, and values of the third series to resolve ties from the second.

The series may be specified using the series display name or the index of the series in the
graph. For example, if you provide the integer “2”, EViews will use the second series. To sort
by observation labels, use the integer “0” or the keyword “Obs label”.

To sort in descending order, precede the series name with a minus sign (“-”).

Note that a graph with more than 500 observations cannot be sorted.

Examples
gra1.sort(x,y)

sorts graph GRA1 first by the series X. Any ties in X will be resolved by the series Y.

If X is the first series in graph GRA1 and Y is the second series,

gra1.sort(1,-2)

sorts first in ascending order by X and then in descending order by Y.

gra1.sort(0)

sorts GRA1 by its observation labels.

Apply a template to a graph object.

If you apply template to a multiple graph object, the template options will be applied to each
graph in the multiple graph. If the template graph is a multiple graph, the options of the first
graph will be used.

Syntax
graph_name.template(options) template

Follow the name of the graph to which you want to apply the template options with a
period, the keyword template, and the name of a graph template. template may be one of
the predefined template keywords: “default” (current global defaults), “classic”, “modern”,
“reverse”, “midnight”, “spartan”, “monochrome”, or a named graph in the workfile.

template Graph Procs

286—Chapter 1. Object Reference

Options

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Examples
gra_cs.template gra_gdp

applies the option settings in the graph object GRA_GDP to the graph GRA_CS. Text and line
shading options from GRA_GDP will be applied to GRA_CS, but the characteristics of exist-
ing text and line/shade objects in GRA_CS will not be modified. Text and shading objects
include those added with the Graph::addtext (p. 247) or Graph::draw (p. 257) com-
mands.

g1.template(t) mygraph1

applies the option settings of MYGRAPH1, and all text and shadings in the template graph,
to the graph G1. Note that the “t” option overwrites any existing text and shading objects in
the target graph.

graph1.template(e) modern

applies the predefined template “modern” to GRAPH1, also changing the settings of existing
text and line/shade objects in the graph.

graph1.template(e, b, w) reverse

applies the predefined template “reverse” to GRAPH1, with the bold and wide modifiers.
Any existing text and line/shade objects in GRAPH1 are also modified to use the object set-
tings of the monochrome template.

graph1.template(-w) monochrome

t Replace text and line/shade objects with those of the
template graph, when template is the name of a graph
in the workfile.

e Apply template settings to existing text and line/fill
options.

b / -b [Apply / Remove] bold modifiers of the specified pre-
defined template style.

w / -w [Apply / Remove] wide modifiers of the specified pre-
defined template style.

axis / -axis [Apply / Remove] axis modifiers of the specified tem-
plate.

legend / -legend [Apply / Remove] legend modifiers of the specified
template.

Graph::textdefault—287

applies the monochrome settings to GRAPH1, removing the wide modifier.

If you are using a boxplot as a template for another graph type, or vice versa, note that the
graph types and boxplot specific attributes will not be changed. In addition, when the “t”
option is used, vertical lines or shaded areas will not be copied between the graphs, since
the horizontal scales differ.

Cross-references

See “Templates” on page 778 of User’s Guide I for additional discussion.

Change default settings for text objects in the graph.

This command specifies changes in the default settings which will be applied to text objects
added subsequently to the graph. If you include the “existing” option, all of the text default
settings will also be applied to existing text objects in the graph.

Syntax
graph_name.textdefault text_options

where text_options include one or more of one of the following:

textdefault Graph Procs

font([face], [pt],
[+/- b], [+/- i],
[+/- u], [+/- s])

Set characteristics of default text font. The font name
(face), size (pt), and characteristics are all optional. face
should be a valid font name, enclosed in double quotes. pt.
should be the font size in points. The remaining options
specify whether to turn on/off boldface (b), italic (i),
underline (u), and strikeout (s) styles.

textcolor(arg) Sets the default color of the text. arg may be one of the pre-
defined color keywords, or it may be made up of n1, n2,
n3, a set of three integers from 0 to 255, representing the
RGB values of the color. For a description of the available
color keywords (“blue”, “red”, “green”, “black”, “white”,
“purple”, “orange”, “yellow”, “gray”, “ltgray”), see
Table::setfillcolor (p. 795).

fillcolor(arg) Sets the default background fill color of the text box. arg
may be one of the predefined color keywords, or it may be
made up ofn1, n2, n3, a set of three integers from 0 to 255,
representing the RGB values of the color. For a description
of the available color keywords (“blue”, “red”, “green”,
“black”, “white”, “purple”, “orange”, “yellow”, “gray”,
“ltgray”), see Table::setfillcolor (p. 795).

288—Chapter 1. Object Reference

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Examples
graph1.textdefault font("Arial", b) fillcolor(gray) existing

changes the default text settings for new text objects so that new text is in Arial bold, using
the current default font size and color. Should the new text be enclosed in a box, the box
will have a gray fill. Additionally, the “existing” keyword specifies that existing text objects
in the graph will be updated with the current text settings. Note that in addition to the font
type and fill color specified in the command, all text default settings will be applied to the
existing text.

graph1.textdefault existing

updates the text objects in GRAPH1 with the current text default settings.

Cross-references

See Chapter 15. “Graph Objects,” on page 751 of User’s Guide I for a discussion of graph
options.

See Graph::addtext (p. 247) and Graph::legend (p. 264).

Update graph.

This command updates a graph that has updating turned on.

Syntax
graph_name.update

Examples
graph1.update

framecolor(arg) Sets the default color of the text box frame. arg may be one
of the predefined color keywords, or it may be made up of
n1, n2, n3, a set of three integers from 0 to 255, represent-
ing the RGB values of the color. For a description of the
available color keywords (“blue”, “red”, “green”, “black”,
“white”, “purple”, “orange”, “yellow”, “gray”, “ltgray”),
see Table::setfillcolor (p. 795).

existing Apply the default settings to all existing text objects in the
graph.

update Graph Procs

Graph::update—289

If GRAPH1 is a graph with manual updating enabled, this command instructs the graph to
update its data. If the graph has automatic updating enabled, this command is unnecessary,
as it will simply repeat the automatic update. For a graph with updating off, this command
does nothing.

Cross-references

See Chapter 15. “Graph Objects,” beginning on page 752 of User’s Guide I for a discussion of
graph updating options.

See Graph::setupdate (p. 283).

290—Chapter 1. Object Reference

Group

Group of series. Groups are used for working with collections of series objects (series,
alphas, links).

Group Declaration
group create a group object (p. 325).

To declare a group, enter the keyword group, followed by a name, and optionally, a list of
series or expressions:

group salesvrs

group nipa cons(-1) log(inv) g x

You may use the wildcard characters “*” and “?” to match more than one series in the work-
file, and you may use the keywords “and” and “not” to specify that certain items should be
excluded from the group:

group g a* and *1

makes a group G containing all series whose names begin with the letter “a” and end with
“1”, while

group g a* b* not *1 *2

makes a group G containing all series whose names begin with either letter “a” or “b” that
do not end with either “1” or “2”.

Additionally, a number of object procedures will automatically create a group.

Note: to convert data between groups and matrices, see “Copying Data Between Matrix And
Other Objects” on page 269, stom (p. 722), stomna (p. 723), mtos (p. 711), all in the Com-
mand and Programming Reference.

Group Views
cause.................... pairwise Granger causality tests (p. 294).
coint test for cointegration between series in a group (p. 296).
cor correlation matrix between series (p. 304).
correl correlogram of the first series in the group (p. 307).
cov covariance matrix between series (p. 308).
cross cross correlogram of the first two series (p. 311).
display display table, graph, or spool in object window (p. 319).
dtable................... dated data table (p. 322).
freq frequency table -way contingency table (p. 323).
label..................... label information for the group (p. 328).
lrcov..................... compute the symmetric, one-sided, or strict one-sided long-run

covariance matrix for a group of series (p. 329).

n

Group::—291

membersdisplay the members of the group (p. 335).
pcomp...................principal components analysis (p. 335).
sheetspreadsheet view of the series in the group (p. 346).
statsdescriptive statistics (p. 348).
testbtw..................tests of equality for mean, median, or variance, between series in

group (p. 349).
uroot.....................unit root test on the series in the group (p. 350).

Group Graph Views

Graph creation types are discussed in detail in “Graph Creation Command Summary” on
page 911.

areaarea graph of the series in the group (p. 913).
bandarea band graph (p. 916).
bar........................single or multiple bar graph view of all series (p. 918).
boxplotboxplot of each series in the group (p. 923).
distplotdistribution graph (p. 926).
dotdot plot graph (p. 934).
errbarerror bar graph view (p. 938).
hilo.......................high-low(-open-close) chart (p. 939).
linesingle or multiple line graph view of all series (p. 941).
mixedmixed-type graph (p. 945).
piepie chart view (p. 947).
qqplotquantile-quantile plots (p. 950).
scatscatterplot (p. 954).
scatmatmatrix of all pairwise scatter plots (p. 959).
scatpairscatterplot pairs graph (p. 961).
seasplot.................seasonal line graph (p. 965).
spike.....................spike graph (p. 966).
xyarea...................XY area graph (p. 970).
xybarXY bar graph (p. 973).
xylineXY line graph (p. 975).
xypairXY pairs graph (p. 979).

Group Procs
addadd one or more series to the group (p. 294).
clearhistclear the contents of the history attribute (p. 295).
ddloadtmpl............loads a dated data table template for the group (p. 312).
ddrowoptsset the individual row options for the dated data table view of the

series in a group (p. 313).

292—Chapter 1. Object Reference

ddsavetmpl saves the current dated data table settings as a new template
(p. 315).

ddtabopts set the table default options for the dated data table view of the
series in a group (p. 316).

displayname set display name (p. 320).
distdata save distribution plot data to a matrix (p. 320).
drop drop one or more series from the group (p. 322).
insertobs shift the observations of the group up or downwards, inserting

blank observations (p. 327).
makepcomp.......... save the scores from a principal components analysis of the series

in a group (p. 331).
makesystem.......... creates a system object from the group for other estimation methods

(p. 333).
makewhiten whiten a series in the group (p. 334).
olepush push updates to OLE linked objects in open applications (p. 331).
resample resample from rows of group (p. 338).
setattr................... set the value of an object attribute (p. 340).
setformat set the display format in the group spreadsheet for the specified

series (p. 341).
setindent set the indentation in the group spreadsheet for the specified series

(p. 344).
setjust set the justification in the group spreadsheet for the specified series

(p. 345).
setwidth set the column width in the group spreadsheet for the specified

series (p. 346).
sort change display order for group spreadsheet (p. 347).

Group Data Members
(i) i-th series in the group. Simply append “(i)” to the group name

(without a “.”). For use as argument to functions that take a series,
not as a series object.

Scalar Values

@comobs number of observations in the current sample for which each series
in the group has a non-missing value (observations in the common
sample).

@count number of series in the group.
@minobs number of non-missing observations in the current sample for the

shortest series in the group.
@maxobs number of non-missing observations in the current sample for the

the longest series in the group.

Group::—293

String Values

@attr(“arg”)..........string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description.........string containing the object description (if available).
@dependsstring containing a list of the series in the current workfile on which

this group depends.
@detailedtypestring with the object type: “GROUP”.
@displaynamestring containing the Group’s display name. If the Group has no dis-

play name set, the name is returned.
@members............string containing a space delimited list of the names of the series

contained in the Group.
@namestring containing the Group’s name.
@remarksstring containing the Group’s remarks (if available).
@seriesname(i).....string containing the name of the i-th series in the group.
@source................string containing the Group’s source (if available).
@typestring with the object type: “GROUP”.
@units..................string containing the Group object’s units description (if available).
@updatetimestring representation of the time and date at which the Group was

last updated.

Group Examples

To create a group G1, you may enter:

group g1 gdp income

To change the contents of an existing group, you can repeat the declaration, or use the add
and drop commands:

group g1 x y

g1.add w z

g1.drop y

The following commands produce a cross-tabulation of the series in the group, display the
covariance matrix, and test for equality of variance:

g1.freq

g1.cov

g1.testbtw(var,c)

You can index selected series in the group:

show g1(2).line

series sum=g1(1)+g1(2)

To create a scalar containing the number of series in the group, use the command:

294—Chapter 1. Object Reference

scalar nsers=g1.@count

Group Entries

The following section provides an alphabetical listing of the commands associated with the
“Group” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Add series to a group.

Syntax
group_name.add arg1 [arg2 arg3 ...]

List the names of series or a group of series to add to the group.

Examples
dummy.add d11 d12

Adds the two series D11 and D12 to the group DUMMY.

Cross-references

See “Groups” on page 133 of User’s Guide I for additional discussion of groups. “Cross-sec-
tion Identifiers” on page 845 of User’s Guide II discusses pool identifiers.

See also Group::drop (p. 322).

Granger causality test.

Performs pairwise Granger causality tests between (all possible) pairs of the group of series.
If performed on series in a panel workfile, you may optionally choose to perform the Dumi-
trescu-Hurlin (2012) version of the test.

Syntax
group_name.cause(n, options)

Options

You must specify the number of lags n to use for the test by providing an integer in paren-
theses after the keyword. Note that the regressors of the test equation are a constant and the
specified lags of the pair of series under test.

add Group Procs

cause Group Views

Group::clearhist—295

Panel Options

General Options:

Examples

To compute Granger causality tests of whether GDP Granger causes M1 and whether M1
Granger causes GDP, you may enter the commands:

group g1 gdp m1

g1.cause(4)

The regressors of each test are a constant and four lags of GDP and M1.

The commands:

group macro m1 gdp r

macro.cause(12, p, dh)

print the result of six pairwise Dumitrescu-Hurlin causality tests for the three series in the
MACRO group in a panel workfile.

Cross-references

See “Granger Causality” on page 610 of User’s Guide I for a discussion of Granger’s approach
to testing hypotheses about causality. See “Panel Causality Testing” on page 1010 of User’s
Guide II for discussion of testing in panel settings.

Empirical distribution plot.

The cdfplot command is no longer supported. See distplot (p. 926).

Clear the contents of the history attribute for group objects.

Removes the group’s history attribute, as shown in the label view of the graph.

Syntax
group_name.clearhist

dh Perform the Dumitrescu-Hurlin test.

prompt Force the dialog to appear from within a program.

p Print output of the test.

cdfplot Group Views

clearhist Group Procs

296—Chapter 1. Object Reference

Examples
g1.clearhist

g1.label

The first line removes the history from the group G1, and the second line displays the label
view of G1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Group::label (p. 328).

Perform either (1) Johansen’s system cointegration test, (2) Engle-Granger or Phillips-
Ouliaris single equation cointegration testing, or (3) Pedroni, Kao, or Fisher panel cointe-
gration testing for the series in the group.

There are three forms for the coint command depending on which form of the test you wish
to perform

Johansen Cointegration Test Syntax
group_name.coint(test_option, n, option) [@ x1 x2 x3 ...]

uses the coint keyword followed by the test_option and the number of lags n, and if
desired, an “@”-sign followed by a list of exogenous variables. The first option must be one
of the following six test options:

coint Group Views

a No deterministic trend in the data, and no intercept or
trend in the cointegrating equation.

b No deterministic trend in the data, and an intercept but no
trend in the cointegrating equation.

c Linear trend in the data, and an intercept but no trend in
the cointegrating equation.

d Linear trend in the data, and both an intercept and a trend
in the cointegrating equation.

e Quadratic trend in the data, and both an intercept and a
trend in the cointegrating equation.

s Summarize the results of all 5 options (a-e).

Group::coint—297

Options for the Johansen Test

This type of cointegration testing may be used in a non-panel workfile. For Fisher combined
testing using the Johansen framework, see below. The remaining options for the Johansen
cointegration test are outlined below (“Options for the Johansen Test” on page 297).

Note that the output for cointegration tests displays p-values for the rank test statistics.
These p-values are computed using the response surface coefficients as estimated in MacK-
innon, Haug, and Michelis (1999). The 0.05 critical values are also based on the response
surface coefficients from MacKinnon-Haug-Michelis. Note: the reported critical values
assume no exogenous variables other than an intercept and trend.

restrict Impose restrictions as specified by the append (coint)
proc.

m = integer Maximum number of iterations for restricted estimation
(only valid if you choose the restrict option).

c = scalar Convergence criterion for restricted estimation. (only valid
if you choose the restrict option).

save = mat_name Stores test statistics as a named matrix object. The save=
option stores a matrix, where is the num-
ber of endogenous variables in the VAR. The first column
contains the eigenvalues, the second column contains the
maximum eigenvalue statistics, the third column contains
the trace statistics, and the fourth column contains the log
likelihood values. The i-th row of columns 2 and 3 are the
test statistics for rank . The last row is filled with
NAs, except the last column which contains the log likeli-
hood value of the unrestricted (full rank) model.

cvtype=ol Display 0.05 and 0.01 critical values from Osterwald-
Lenum (1992).
This option reproduces the output from version 4. The
default is to display critical values based on the response
surface coefficients from MacKinnon-Haug-Michelis
(1999). Note that the argument on the right side of the
equals sign are letters, not numbers 0-1).

cvsize=arg
(default=0.05)

Specify the size of MacKinnon-Haug-Michelis (1999) criti-
cal values to be displayed. The size must be between
0.0001 and 0.9999; values outside this range will be reset to
the default value of 0.05. This option is ignored if you set
“cvtype=ol”.

prompt Force the dialog to appear from within a program.

p Print results.

k 1�� � 4u k

i 1–

298—Chapter 1. Object Reference

Single Equation Test Syntax
group_name.coint(method=arg, options) [@determ determ_spec] [@regdeterm reg-

determ_spec]

where

Cointegrating equation specifications that include a constant, linear, or quadratic trends,
should use the “trend=” option to specify those terms. If any of those terms are in the sto-
chastic regressors equations but not in the cointegrating equation, they should be specified
using the “regtrend=” option.

Deterministic trend regressors that are not covered by the list above may be specified using
the keywords @determ and @regdeterm. To specify deterministic trend regressors that enter
into the regressor and cointegrating equations, you should add the keyword @determ fol-
lowed by the list of trend regressors. To specify deterministic trends that enter in the regres-
sor equations but not the cointegrating equation, you should include the keyword
@regdeterm followed by the list of trend regressors.

Note that the p-values for the test statistics are based on simulations, and do not account for
any user-specified deterministic regressors.

This type of cointegration testing may be used in a non-panel workfile. The remaining
options for the single equation cointegration tests are outlined below.

Options for Single Equation Tests
Options for the Engle-Granger Test

The following options determine the specification of the Engle-Granger test (Augmented
Dickey-Fuller) equation and the calculation of the variances used in the test statistic.

method=arg Test method: Engle-Granger residual test (“eg”), Phillips-
Ouliaris residual test (“po”).

trend=arg
(default=“const”)

Specification for the powers of trend to include in the
cointegrating equation: None (“none”), Constant (“const”),
Linear trend (“linear”), Quadratic trend (“quadratic”).
Note that the specification implies all trends up to the
specified order so that choosing a quadratic trend
instructs EViews to include a constant and a linear trend
term along with the quadratic.

Group::coint—299

Options for the Phillips-Ouliaris Test

The following options control the computation of the symmetric and one-sided long-run
variances in the Phillips-Ouliaris test.

Basic Options:

regtrend=arg
(default=“none”)

Additional trends to include in the regressor equations (but
not the cointegrating equation): None (“none”), Constant
(“const”), Linear trend (“linear”), Quadratic trend (“qua-
dratic”). Only trend orders higher than those specified by
“trend=” will be considered.
Note that the specification implies all trends up to the
specified order so that choosing a quadratic trend
instructs EViews to include a constant and a linear trend
term along with the quadratic.

lag=arg
(default=“a”)

Method of selecting the lag length (number of first differ-
ence terms) to be included in the regression: “a” (auto-
matic information criterion based selection), or integer
(user-specified lag length).

lagtype=arg
(default=“sic”)

Information criterion or method to use when computing
automatic lag length selection: “aic” (Akaike), “sic”
(Schwarz), “hqc” (Hannan-Quinn), “msaic” (Modified
Akaike), “msic” (Modified Schwarz), “mhqc” (Modified
Hannan-Quinn), “tstat” (t-statistic).

maxlag=integer Maximum lag length to consider when performing auto-
matic lag-length selection

default=
where is the number of coefficients in the cointegrat-
ing equation. Applicable when “lag=a”.

lagpval=number
(default=0.10)

Probability threshold to use when performing automatic
lag-length selection using a t-test criterion. Applicable
when both “lag=a” and “lagtype=tstat”.

nodf Do not degree-of-freedom correct estimates of the vari-
ances.

prompt Force the dialog to appear from within a program.

p Print results.

int min T k–� � 3e 12,() T 100e� �1 4e�()
k

300—Chapter 1. Object Reference

HAC Whitening Options:

HAC Kernel Options:

trend=arg
(default=“const”)

Specification for the powers of trend to include in the
cointegrating equation: None (“none”), Constant (“const”),
Linear trend (“linear”), Quadratic trend (“quadratic”).
Note that the specification implies all trends up to the
specified order so that choosing a quadratic trend
instructs EViews to include a constant and a linear trend
term along with the quadratic.

regtrend=arg
(default=“none”)

Additional trends to include in the regressor equations (but
not the cointegrating equation): None (“none”), Constant
(“const”), Linear trend (“linear”), Quadratic trend (“qua-
dratic”). Only trend orders higher than those specified by
“trend=” will be considered.
Note that the specification implies all trends up to the
specified order so that choosing a quadratic trend
instructs EViews to include a constant and a linear trend
term along with the quadratic.

nodf Do not degree-of-freedom correct the coefficient covariance
estimate.

prompt Force the dialog to appear from within a program.

p Print results.

lag=arg (default=0) Lag specification: integer (user-specified lag value), “a”
(automatic selection).

infosel=arg
(default=“aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“lag=a”).

maxlag=integer Maximum lag-length for automatic selection (optional) (if
“lag=a”). The default is an observation-based maximum.

kern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniel), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen).

bw=arg
(default=“nwfixed”)

Bandwidth: “fixednw” (Newey-West fixed), “andrews”
(Andrews automatic), “neweywest” (Newey-West auto-
matic), number (User-specified bandwidth).

Group::coint—301

Panel Test Syntax
group_name.coint(option)

The coint command tests for cointegration among the series in the group. This form of the
command should be used with panel structured workfiles.

Options for the Panel Tests

For panel cointegration tests, you may specify the type using one of the following keywords:

Depending on the type selected above, the following may be used to indicate deterministic
trends:

Additional Options:

nwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric bandwidth selection (if “bw=neweywest”).

bwoffset=integer
(default=0)

Apply integer offset to bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

bwint Use integer portion of bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

Pedroni (default) Pedroni (1994 and 2004).

Kao Kao (1999)

Fisher Fisher - pooled Johansen

const (default) Include a constant in the test equation.
Applicable to Pedroni and Kao tests.

trend Include a constant and a linear time trend in the test equa-
tion.
Applicable to Pedroni tests.

none Do not include a constant or time trend.
Applicable to Pedroni tests.

a, b, c, d, or e Indicate deterministic trends using the “a”, “b”, “c”, “d”,
and “e” keywords, as detailed above in “Options for the
Johansen Test” on page 297.
Applicable to Fisher tests.

hac=arg
(default=“bt”)

Method of estimating the frequency zero spectrum: “bt”
(Bartlett kernel), “pr” (Parzen kernel), “qs” (Quadratic
Spectral kernel).
Applicable to Pedroni and Kao tests.

302—Chapter 1. Object Reference

Examples
Johansen Test

gr1.coint(s,4)

summarizes the results of the Johansen cointegration test for the series in the group GR1 for
all five specifications of trend. The test equation uses lags of up to order four.

Engle-Granger Test

gr1.coint(method=eg)

performs the default Engle-Granger test on the residuals from a cointegrating equation
which includes a constant. The number of lags is determined using the SIC criterion and an
observation-based maximum number of lags.

gr1.coint(method=eg, trend=linear, lag=a, lagtype=tstat,

lagpval=.15, maxlag=10)

bw=arg
(default=“nw”)

Method of selecting the bandwidth, where arg may be
“nw” (Newey-West automatic variable bandwidth selec-
tion), or a number indicating a user-specified common
bandwidth.
Applicable to Pedroni and Kao tests.

lag=arg For Pedroni and Kao tests, the method of selecting lag
length (number of first difference terms) to be included in
the residual regression. For Fisher tests, a pair of numbers
indicating lag.

infosel=arg
(default=“sic”)

Information criterion to use when computing automatic lag
length selection: “aic” (Akaike), “sic” (Schwarz), “hqc”
(Hannan-Quinn).
Applicable to Pedroni and Kao tests.

maxlag=int Maximum lag length to consider when performing auto-
matic lag length selection, where int is an integer. The
default is

where is the length of the cross-section.
Applicable to Pedroni and Kao tests.

disp=arg
(default=500)

Maximum number of individual results to be displayed.

prompt Force the dialog to appear from within a program.

p Print results.

int min Ti 3e 12,� � Ti 100e� �1 4e�()

Ti

Group::coint—303

employs a cointegrating equation that includes a constant and linear trend, and uses a
sequential t-test starting at lag 10 with threshold probability 0.15 to determine the number
of lags.

gr1.coint(method=eg, lag=5)

conducts an Engle-Granger cointegration test on the residuals from a cointegrating equation
with a constant, using a fixed lag of 5.

Phillips-Ouliaris Test

gr1.coint(method=po)

performs the default Phillips-Ouliaris test on the residuals from a cointegrating equation
with a constant, using a Bartlett kernel and Newey-West fixed bandwidth.

gr1.coint(method=po, bw=andrews, kernel=quadspec, nodf)

estimates the long-run covariances using a Quadratic Spectral kernel, Andrews automatic
bandwidth, and no degrees-of-freedom correction.

gr1.coint(method=po, trend=linear, lag=1, bw=4)

estimates a cointegrating equation with a constant and linear trend, and performs the Phil-
lips-Ouliaris test on the residuals by computing the long-run covariances using AR(1) pre-
whitening, a fixed bandwidth of 4, and the Bartlett kernel.

Panel Tests

For a panel structured workfile,

grp1.coint(pedroni,maxlag=3,infosel=sic)

performs Pedroni’s residual-based panel cointegration test with automatic lag selection with
a maximum lag limit of 3. Automatic selection based on Schwarz criterion.

Cross-references

See Chapter 48. “Cointegration Testing,” on page 1023 of User’s Guide II for details on the
various cointegration tests. See also Equation::coint (p. 66).

304—Chapter 1. Object Reference

Compute covariances, correlations and other measures of association for the series in a
group.

You may compute measures related to Pearson product-moment (ordinary) covariances and
correlations, Spearman rank covariances, or Kendall’s tau along with test statistics for evalu-
ating whether the correlations are equal to zero.

Syntax
group_name.cor(options) [keywords [@partial z1 z2 z3...]]

You should specify keywords indicating the statistics you wish to display from the list below,
optionally followed by the keyword @partial and a list of conditioning series or groups (for
the group view), or the name of a conditioning matrix (for the matrix view). In the matrix
view setting, the columns of the matrix should contain the conditioning information, and
the number or rows should match the original matrix.

You may specify keywords from one of the four sets (Pearson correlation, Spearman correla-
tion, Kendall’s tau, Uncentered Pearson) corresponding the computational method you wish
to employ. (You may not select keywords from more than one set.)

If you do not specify keywords, EViews will assume “corr” and compute the Pearson correla-
tion matrix. Note that Group::cor is equivalent to the Group::cov (p. 308) command
with a different default setting.

Pearson Correlation

Spearman Rank Correlation

cor Group Views

cov Product moment covariance.

corr Product moment correlation.

sscp Sums-of-squared cross-products.

stat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

prob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

rcov Spearman’s rank covariance.

Group::cor—305

Kendall’s tau

Uncentered Pearson

Note that cases, obs, and wgts are available for each of the methods.

rcorr Spearman’s rank correlation.

rsscp Sums-of-squared cross-products.

rstat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

rprob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

taub Kendall’s tau-b.

taua Kendall’s tau-a.

taucd Kendall’s concordances and discordances.

taustat Kendall’s score statistic for evaluating whether the Kend-
all’s tau-b measure is zero.

tauprob Probability under the null for the score statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

ucov Product moment covariance.

ucorr Product moment correlation.

usscp Sums-of-squared cross-products.

ustat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

uprob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

306—Chapter 1. Object Reference

Options

Examples
group grp1 height weight age

grp1.cor

displays a Pearson correlation matrix for the three series in GRP1.

grp1.cor corr stat prob

wgt=name
(optional)

Name of series containing weights.

wgtmethod=arg
(default = “sst-
dev”

Weighting method (when weights are specified using
“weight=”): frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations.
Weights specified by “wgt=” are frequency weights for
rank correlation and Kendall’s tau calculations.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
to account for estimated means (for centered specifica-
tions), and any partial conditioning variables.

multi=arg
(default=“none”)

Adjustment to p-values for multiple comparisons: none
(“none”), Bonferroni (“bonferroni”), Dunn-Sidak
(“dunn”).

outfmt=arg
(default=“single”)

Output format: single table (“single”), multiple table
(“mult”), list (“list”), spreadsheet (“sheet”). Note that
“outfmt=sheet” is only applicable if you specify a single
statistic keyword.

out=name Basename for saving output. All results will be saved in
Sym matrices named using keys (“COV”, “CORR”, “SSCP”,
“TAUA”, “TAUB”, “CONC” (Kendall’s concurrences),
“DISC” (Kendall’s discordances), “CASES”, “OBS”,
“WGTS”) appended to the basename (e.g., the covariance
specified by “out=my” is saved in the Sym matrix
“MYCOV”).

prompt Force the dialog to appear from within a program.

p Print the result.

3 3u

Group::correl—307

displays a table containing the Pearson correlation, t-statistic for testing for zero correlation,
and associated p-value, for the series in GRP1.

grp1.cor(pairwise) taub taustat tauprob

computes the Kendall’s tau-b, score statistic, and p-value for the score statistic, using sam-
ples with pairwise missing value exclusion.

grp1.cor(out=aa) cov @partial gender

computes the Pearson covariance for the series in GRP1 conditional on GENDER and saves
the results in the symmetric matrix object AACOV.

Cross-references

See also Group::cov (p. 308). For simple forms of the calculation, see @cor (p. 688), and
@cov (p. 689) in the Command and Programming Reference.

Display autocorrelation and partial correlations.

Displays the autocorrelation and partial correlation functions of the first series in the group,
together with the Q-statistics and p-values associated with each lag.

Syntax
group_name.correl(n, options)

You must specify the largest lag n to use when computing the autocorrelations as the first
option.

Options

Examples
gr1.correl(24)

Displays the correlograms of group GR1 for up to 24 lags.

correl Group Views

d=integer
(default=0)

Compute correlogram for specified difference of the data.

prompt Force the dialog to appear from within a program.

p Print the correlograms.

308—Chapter 1. Object Reference

Cross-references

See “Autocorrelations (AC)” on page 421 and “Partial Autocorrelations (PAC)” on page 422
of User’s Guide I for a discussion of autocorrelation and partial correlation functions, respec-
tively.

Compute covariances, correlations and other measures of association for the series in a
group.

You may compute measures related to Pearson product-moment (ordinary) covariances and
correlations, Spearman rank covariances, or Kendall’s tau along with test statistics for evalu-
ating whether the correlations are equal to zero.

Syntax
group_name.cov(options) [keywords [@partial z1 z2 z3...]]

You should specify keywords indicating the statistics you wish to display from the list below,
optionally followed by the keyword @partial and a list of conditioning series or groups (for
the group view), or the name of a conditioning matrix (for the matrix view).

You may specify keywords from one of the four sets (Pearson correlation, Spearman correla-
tion, Kendall’s tau, Uncentered Pearson) corresponding the computational method you wish
to employ. (You may not select keywords from more than one set.)

If you do not specify keywords, EViews will assume “cov” and compute the Pearson covari-
ance matrix. Note that Group::cov is equivalent to the Group::cor (p. 304) command
with a different default setting.

Pearson Correlation

cov Group Views

cov Product moment covariance.

corr Product moment correlation.

sscp Sums-of-squared cross-products.

stat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

prob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

Group::cov—309

Spearman Rank Correlation

Kendall’s tau

Uncentered Pearson

Note that cases, obs, and wgts are available for each of the methods.

rcov Spearman’s rank covariance.

rcorr Spearman’s rank correlation.

rsscp Sums-of-squared cross-products.

rstat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

rprob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

taub Kendall’s tau-b.

taua Kendall’s tau-a.

taucd Kendall’s concordances and discordances.

taustat Kendall’s score statistic for evaluating whether the Kend-
all’s tau-b measure is zero.

tauprob Probability under the null for the score statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

ucov Product moment covariance.

ucorr Product moment correlation.

usscp Sums-of-squared cross-products.

ustat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

uprob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

310—Chapter 1. Object Reference

Options

Examples
group grp1 height weight age

grp1.cov

displays a Pearson covariance matrix for the three series in GRP1.

grp1.cov corr stat prob

wgt=name
(optional)

Name of series containing weights.

wgtmethod=arg
(default =
“sstdev”

Weighting method (when weights are specified using
“weight=”): frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations.
Weights specified by “wgt=” are frequency weights for
rank correlation and Kendall’s tau calculations.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
to account for estimated means (for centered specifica-
tions), and any partial conditioning variables.

multi=arg
(default=“none”)

Adjustment to p-values for multiple comparisons: none
(“none”), Bonferroni (“bonferroni”), Dunn-Sidak
(“dunn”).

outfmt=arg
(default=
“single”)

Output format: single table (“single”), multiple table
(“mult”), list (“list”), spreadsheet (“sheet”). Note that
“outfmt=sheet” is only applicable if you specify a single
statistic keyword.

out=name Basename for saving output. All results will be saved in
Sym matrices named using keys (“COV”, “CORR”, “SSCP”,
“TAUA”, “TAUB”, “CONC” (Kendall’s concurrences),
“DISC” (Kendall’s discordances), “CASES”, “OBS”,
“WGTS”) appended to the basename (e.g., the covariance
specified by “out=my” is saved in the Sym matrix
“MYCOV”).

prompt Force the dialog to appear from within a program.

p Print the result.

3 3u

Group::cross—311

displays a table containing the Pearson correlation, t-statistic for testing for zero correlation,
and associated p-value, for the series in GRP1.

grp1.cov(pairwise) taub taustat tauprob

computes the Kendall’s tau-b, score statistic, and p-value for the score statistic, using sam-
ples with pairwise missing value exclusion.

grp1.cov(out=aa) cor @partial gender

computes the Pearson correlation for the series in GRP1 conditional on GENDER and saves
the results in the symmetric matrix object AACORR.

Cross-references

See also Group::cor (p. 304). For simple forms of the calculation, see @cor (p. 688), and
@cov (p. 689) in the Command and Programming Reference.

Displays cross correlations (correlograms) for a pair of series.

Syntax
group_name.cross(n,options)

You must specify the number of lags n to use in computing the cross correlations as the first
option. Cross correlations will be computed for the first two series in the group.

Options

The following options may be specified inside the parentheses after the number of lags:

Examples
group grp1 log(m1) dlog(cpi)

grp1.cross(36)

displays the cross correlogram between the log of M1 and the first difference of the log of
CPI, using up to 36 leads and lags.

equation eq1.arch sp500 c

eq1.makeresids(s) res_std

group g1 res_std^2 res_std

g1.cross(24)

cross Group Views

prompt Force the dialog to appear from within a program.

p Print the cross correlogram.

312—Chapter 1. Object Reference

The first line estimates a GARCH(1,1) model and the second line retrieves the standardized
residuals. The third line creates a group and the fourth line plots the cross correlogram
squared standardized residual and the standardized residual, up to 24 leads and lags. This
correlogram provides a rough check of asymmetry in the ARCH effect.

Cross-references

See “Cross Correlations and Correlograms” on page 603 of User’s Guide I for discussion.

Loads a dated data table template for the group.

Syntax
group_name.ddloadtmpl(options) template_name

template_name should be the name of a previously saved dated data table template.

Options

Examples
group01.ddloadtmpl template1

loads all table settings from the template template1 and applies them to the dated data table
of group GROUP01.

group01.ddloadtmpl(series) template1

loads both table settings and series specific settings from the template.

Cross-references

See “Dated Data Table” on page 554 of User’s Guide I for a description of dated data tables
and formatting options.

See also dtable (p. 322) and ddtabopts (p. 316).

ddloadtmpl Group Proc

type=arg Specify which settings to apply. type=trans loads the col-
umn group frequency, data display, table default transfor-
mation, and table default frequency conversion settings.
type=appear loads the table default appearance settings.
This includes the table default fonts, color, header options,
label options, and formats. By default both types are
loaded.

series Load series specific settings. This option is ignored if
type=trans is used.

Group::ddrowopts—313

Set row-specific options for dated date tables.

This proc sets row specific options for the group’s dated data table view. To set default set-
tings for the dated data table, use the ddtabopts (p. 316) proc.

Syntax
group_name.ddrowopts(series, row) args

You should provide integers to indicate the series and row number you wish to modify as an
option to the command, followed by a list of arguments containing the display options for
that row.

Arguments

ddrowopts Group Proc

transform(trans) Set the transformation method for the row. trans can be:
“l”(level), “d”(1 period diff), “yd”(year difference), “pc”(1
period % change), “pca”(1 period % chg-AR), “pcy”(year
% chg), “tabdefault” (table default setting), “none” (don’t
apply transformation)

freqconv(conv) Set the frequency conversion method for the row. conv can
be “avgtran”(avg then transform), “tranavg”(transform
then avg), “sumtran”(sum then transform), “first”(first
period), “last”(last period), “tabdefault” (table default set-
ting).

format(fmt= new_-
format,
units=new_units,
prefix=” “, suf-
fix=” “, +/-thou-
sand, +/-comma,
+/-parens)

Assign a custom prefix/suffix to the number, add a separa-
tor (comma or point) to denote thousands, replace a
comma with a decimal point, or bracket negative numbers
with parenthesis:
fmt can be: “f[.prec]”(fixed decimal), “c[.prec]”(fixed char-
acters), “auto”, “serformat”(series format).
units can be: “N”(native), “P”(percent), “T”(thousands),
“M”(millions), “B”(billions), “TR”(trillions)

custom-
row(“string”)

Add a custom row header containing the quoted text
string. To use a blank row, simply leave string empty.

font(“name”, size,
+/-b, +/-I, +/-s,
+/-u))

Sets the font, size and style. name should be the name of
the font, size should be an integer size value. You may use
+b, +i, +s or +u to set bold, italic, strikeout or underline
respectively. Use “tabdefault” to use the table default font
setting.

314—Chapter 1. Object Reference

Examples

The following examples show the use of dtable, ddtabopts and ddrowopts together to
customize dated display tables.

group cgrp cenergy cfood chealth

cgrp.dtable

cgrp.ddtabopts firstfreq(a) secfreq(none) display(year,1)

cgrp.ddrowopts(1,1) transform(l) format(fmt=f.1)

customrow("Consumption Indicators")

cgrp.ddrowopts(1,2) transform(pc) format(fmt=f.2, parens)

fillcolor(red)

cgrp.ddrowopts(2,2) transform(pcy) format(fmt=f.2) fillcolor(blue)

creates the group CGGRP from the series CENERGY, CFOOD AND CHEALTH, and displays
the dated data table for that group. ddtapopts is used to set the first table frequency to
annual and the second frequency to none, displaying one year of data per row.

The three ddrowopts commands set display options for CENERGY and CFOOD. For CEN-
ERGY the first row is transformed to levels, numbers are displayed to one decimal place, and
row is placed above the series with the custom string "Consumption Indicators". The next
command adds a red row to CENERGY with the data transformed to 1-period percent
changes, rounded to two decimal places, surrounded by parentheses if negative. The last
command adds a blue filled row to CFOOD containing 1-year percent changes rounded to
two decimal places.

group fgrp houliab hounetworth houassets

fgrp.dtable

fgrp.ddtabopts firstfreq(q) secfreq(a)

fgrp.ddrowopts(1,1) freqconv(avgtran) format(units=t)

fgrp.ddrowopts(3,1) format(fmt=f.0) transform(d) textcolor(blue)

The ddtabopts command sets the table defaults to show blocks of quarterly and annual
data in the dated data table. The ddrowopts commands change the way HOULIAB and
HOUSALES are displayed in the dated data table view. HOULIAB is set to be averaged then
transformed with the units set to thousands. HOUASSETS are set to zero decimal places,
transformed to the first period difference and changed to a blue font color.

group ggpr govinv govpurchases govsav

ggpr.dtable

textcolor(@rgb(r, g,
b) or white, blue,
red, black, etc.)

Set the font color. You may use the @rgb keyword to set an
RGB value, or use the name of a basic color.

rowlabel(label) Sets a custom row label in place of the series name.

Group::ddsavetmpl—315

ggpr.ddtabopts qtrformat(qr) nalabel("NA") rowheader(+b)

ggpr.ddrowopts(1,1) transform(pca) freqconv(tabdefault)

ggpr.ddrowopts(2,1) transform(pc) customrow(" ")

ggpr.ddrowopts(3,2) transform(pcy)

The ddtabopts command sets the table defaults to show the quarter in short case roman
numerals, then adds an "NA" to any missing data, it also bold the row headers. The
ddrowopts command transforms the GOVINV display to percent change annual rate and
sets the frequency conversion method to the table default. The proc also sets GOVPUR-
CHASES to percent change, adds a blank row above the data, and adds a transformed 1-year
percent change row to GOVSAV.

group igrp natincome persincome dispincome

igrp.dtable

igrp.ddtabopts font("arial",10) colheader(b)

igrp.ddrowopts(1,1) transform(pca) format(fmt=f.1) textcolor(red)

igrp.ddrowopts(2,1) transform(pca) format(fmt=parens)

igrp.ddrowopts(3,1) transform(pca) customstring("Disp. Income")

The ddtabopts command sets the font to Arial size 10 and bolds the column header. For
the series NATINCOME the ddrowopts command transforms the series to percent change
annual rate, sets the numerical format to one decimal place, and sets the text color to red.
For PERSINCOME the command adds a parenthesis for negative numbers, and for DISPIN-
COME it adds a custom row above the series containing the text heading “Disp. Income”.

Cross-references

See “Dated Data Table” on page 554 of User’s Guide I for a description of dated data tables
and formatting options.

See also dtable (p. 322) and ddtabopts (p. 316).

Saves the current dated data table settings as a new template.

Syntax
group_name.ddsavetmpl(options) template_name

Options

ddsavetmpl Group Proc

overwrite Overwrite an existing template with the same name. With-
out this option naming conflicts will result in an error.

316—Chapter 1. Object Reference

Examples
group01.ddsavetmpl template1

saves the current dated data template settings of group GROUP01 as the new template tem-
plate1.

Cross-references

See “Dated Data Table” on page 554 of User’s Guide I for a description of dated data tables
and formatting options.

See also dtable (p. 322) and ddtabopts (p. 316).

Set table default options for dated data tables.

Specifies the table default options for the group’s dated data table view. To set row specific
options that override the defaults, use the ddrowopts (p. 313) proc.

Syntax
group_name.ddtabopts args

Arguments

ddtabopts Group Proc

display(arg, n) Specify the data to display in each table row. arg can
be “first”, “last” or “year”.
“first” or “last” will display annual totals, plus the
first, or last, n observations in each row.
“year” will display observations for n years of data per
row.

firstfreq(freq) Sets the frequency for the first column grouping: freq
can be “n”(native), “a”(annual), “q”(quarterly),
“m”(monthly).

secfreq(freq) Sets the frequency for the second column grouping:
freq can be “none” (none), “n”(native), “a”(annual),
“q”(quarterly), “m”(monthly).

nalabel(“arg”) Sets the label for NA values to arg.

+/-displayname Use display names as default labels.

transform(row, trans) Set the transformation method for row row. trans can
be: “l”(level), “d”(1 period diff), “yd”(year differ-
ence), “pc”(1 period % change), “pca”(1 period %
chg-AR), “pcy”(year % chg).

Group::ddtabopts—317

freqconv(row, conv) Set the frequency conversion method for the specified
row. conv can be “avgtran” (avg then transform), “tra-
navg” (transform then avg), “sumtran” (sum then
transform), “first” (first period), “last”(last period).

format(fmt= new_for-
mat, units=new_units,
prefix=” “, suffix=” “,
+/-thousand, +/-
comma, +/-parens)

Assign a custom prefix/suffix to the number, add a
separator (comma or point) to denote thousands,
replace a comma with a decimal point, or bracket neg-
ative numbers with parenthesis:
fmt can be: “f[.prec]”(fixed decimal), “c[.prec]”(fixed
characters), “auto”, “serformat”(series format).
units can be: “N”(native), “P”(percent), “T”(thou-
sands), “M”(millions), “B”(billions), “TR”(trillions)

colheader(+/-b, +/- i) Sets column headers to bold or italic style.

rowheader(+/-b, +/- i) Sets row headers to bold or italic style.

fillcolor(colorspec) Set the table row background color to colorspec. color-
spec may consist of an @rgb(r,g,b) specification or
it may be the name of a basic color such as “white”,
“blue”, “red”, “black”, etc.

altfillcolor(colorspec) Set the table alternate row background color to color-
spec. colorspec may consist of an @rgb(r,g,b) spec-
ification or it may be the name of a basic color such as
“white”, “blue”, “red”, “black”, etc.

font(row, “name”, size,
+/–b, +/–I, +/–s, +/–
u)

Sets the font, size and style. name should be the
quoted name of the font, size should be an integer size
value. You may use +b, +i, +s or +u to set bold,
italic, strikeout or underline respectively.

yrformat(arg) Sets the date format for year date labels. arg may be
“YYYY” (4-digit years) or “YY” (2 digit years).

qtrformat(arg) Sets the date format for quarterly date labels. arg may
be “QR” (upper-case Roman numerals), “qr” (lower-
case Roman numerals), “[Q]Q” (“Q” followed by the
quarter number), “Q” (quarter number), “Mon” (3 let-
ter month abbreviation for first month in quarter),
“Month” (full month name for first month in quarter).

monformat(arg) Sets the date format for monthly date labels. arg may
be “[M]mm” (“M” followed by month number),
“mm” (month number), “MM” (month number with
preceding zero), “[M]MM” (“M” followed by month
number with preceding zero) “Mon” (3 letter month
abbreviation), “Month” (full month name), “M”
(upper-case first letter of month name), or “m”
(lower-case first letter of month name).

318—Chapter 1. Object Reference

Examples
group cgrp cenergy cfood chealth

cgrp.dtable

cgrp.ddtabopts firstfreq(a) secfreq(none) display(year,1)

creates the group CGRP from the series CENERGY, CFOOD AND CHEALTH, and then it dis-
plays the dated data table for that group. ddtapopts is used to set the first table block fre-
quency to annual and the second frequency to none, with one year of data displayed in each
row.

group fgrp houliab hounetworth houassets

fgrp.dtable

fgrp.ddtabopts +displayname firstfreq(q) secfreq(a) colheader(i)

font("Calibri",10) altfillcolor(yellow) qtrformat([Q]Q)

The ddtabopts command sets the table options for the group FGRP to show the display-
names of each series in place of the series names, sets the first block frequency to quarterly
and the second to annual, sets the column header style to italics, changes the font to Calibri
size 10, sets the alternative row color to yellow, and sets the display for quarterly data to
“Q[q]”.

group govgrp govinv govpurchases govsav

govgrp.dtable

govgrp.ddtabopts qtrformat(qr) nalabel("NA") rowheader(+b)

qtryrformat(arg) Sets the joint date format for quarter and year. Only
applicable if “Display(first)” or “Display(last)” is used.
arg may be: “YYYY[q]Q]”, “YYYY[Q]Q”, “YYYY:Q”,
“YY[q]Q”, “YY[Q]Q”, “YY:Q”, “YYYY QR”, “YYYYqr”,
“YYYY qr”, “YY QR”, “YYqr”, “YY qr”, “Mon YYYY”,
“Mon YY”, or “Month YYYY”.
See description of “yrformat” and “qtrformat” above
for details.

monyrformat(arg) Sets the joint date format for month and year. Only
applicable if “Display(first)” or “Display(last)” is used.
arg may be: “YYYY[m]mm]”, “YYYY[M]mm”,
“YYYY[m]MM”, “YYYY:M”, “YY[m]mm”,
“YY[M]mm”, “YY[m]MM”, “YY:mm”, “YY:MM”,
“Mon YYYY”, “Mon YY”, “Month YYYY”, “Month
YY”, “YYMon”, or “YY-Mon”.
See description of “yrformat” and “monformat” above
for details on each.

+/– endperiod Use end of period date labels.

Group::display—319

creates the group GOVGRP out of the series GOVINV, GOVPURCHASES, and GOVSAV and
then the dated data table. The ddtabopts command is set to show the quarter in short case
roman numerals, then adds an "NA" to any missing data, it also bold the row headers.

group hgrp starts singlestarts multistarts

hgrp.dtable

hgrp.ddtabopts firstfreq(a) secfreq(none) +displayname

fillcolor(@rgb(205,201,201)) yrformat(YY) format(units=n,

fmt=f.2)

The ddtabopts command sets table default options for the group HGRP, with the first col-
umn grouping frequency as annual and the second grouping to none. The table defaults will
show displaynames in place of series names, will use a light gray row fill color specified by
RGB. The year format is set to show only the last two digits of the year and the numerical
display format is set to native with two decimal places.

group incgrp natincome persincome dispincome

incgrp.dtable

incgrp.ddtabopts font("arial",10) colheader(b)

sets the table default font to size 10 Arial and specifies bold column headers.

Cross-references

See “Dated Data Table” on page 554 of User’s Guide I for a description of dated data tables
and formatting options.

See also dtable (p. 322) and ddrowopts (p. 313).

Display table, graph, or spool output in the group object window.

Display the contents of a table, graph, or spool in the window of the group object.

Syntax
group_name.display object_name

Examples
group1.display tab1

Display the contents of the table TAB1 in the window of the object GROUP1.

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

display Group Views

320—Chapter 1. Object Reference

Display name for the group object.

Attaches a display name to a group object which may be used to label output in tables and
graphs in place of the standard group object name.

Syntax
group_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in group object names.

Examples
grp1.displayname Hours Worked

grp1.label

The first line attaches a display name “Hours Worked” to the group object GRP1, and the
second line displays the label view of GRP1, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Group::label (p. 328).

Save distribution plot data to a matrix.

Saves the data used to construct a distribution plot to the workfile.

Syntax
groupname.distdata(dtype=dist_type, dist_options) matrix_name_pattern

saves the distribution plot data specified by dist_type where dist_type must be one of the fol-
lowing keywords:

displayname Group Procs

distdata Group Procs

kernfit Kernel regression (default).

nnfit Nearest neighbor (local) regression.

empqq Empirical quantile-quantile plot.

Group::distdata—321

The matrix_name_pattern is used to define a naming pattern for the output matrices; if the
pattern is “NAME”, the resulting matrices will be named “NAME01”, “NAME02”, … and so
on, using the next available name.

Options

For the first two types (“kernfit” and “nnfit”), dist_options are any of the distribution type-
specific options described in “Kernfit Options” on page 986 and “Nnfit Options” on
page 987, respectively. The empirical quantile-quantile plot type (“empqq”) takes the
options described in qqplot (p. 950) under “Empirical Options” on page 953.

Note that the graph display specific options such as “fill,” “nofill,” “leg,” and “noline” are
not relevant for this procedure.

In addition, you may use the “mult” option to specify multiple series handling

and the “prompt” option to force the dialog display

Examples
group g w x y z

g.distdata(mult=first, dtype=kernel, k=e, ngrid=100) m

creates a group called G from the series X, Y and Z, then creates three matrices, M01, M02
and M03, where the first matrix contains the kernel fit (with an Epanechnikov kernel and
100 grid points) of W on X, the second contains the fit of W on Y, and the third matrix con-
tains the kernel fit of Won Z.

g.distdata(mult=pairs, dtype=local, b=0.3, d=1, neval=100, s) n

creates two matrices, N1 and N2, where N1 contains the nearest neighbor fit of W on X
computed using a bandwidth of 0.3 and polynomial degree of 1, 100 evaluation points and
symmetric neighbors, and N2 contains the data for the nearest neighbor fit of Y on Z.

group g.drop z

g.distdata(mult=all, dtype=empqq, q=r) mat

drops Z from the group, then creates 3 matrices; MAT01, MAT02, MAT03, where MAT01 con-
tains the empirical quantile-quantile for W and X, computed using the rankit quantile
method, and MAT02 contains the qq-plot data for W and Y, and MAT03 contains the qq-plot
data for X and Y.

mult = mat_type Multiple series or column handling: where mat_type may
be: “pairs” or “p” - pairs, “mat” or “m” - scatterplot matrix,
“lower” or “l” - lower triangular matrix.

prompt Force the dialog to appear from within a program.

322—Chapter 1. Object Reference

Cross-references

For a description of distribution graphs and quantile-quantile graphs, see “Auxiliary Graph
Types,” on page 704 of User’s Guide I.

See also qqplot (p. 950) and “Auxiliary Spec” on page 985.

Drops series from a group.

Syntax
group_name.drop ser1 [ser2 ser3 ...]

List the series to be dropped from the group object.

Examples
group gdplags gdp(-1 to -4)

gdplags.drop gdp(-4) gdp(-3)

drops the two series GDP(-4) and GDP(-3) from the group GDPLAGS.

Cross-references

See “Groups” on page 133 of User’s Guide I for additional discussion of groups.

See also Group::add (p. 294).

Dated data report table.

This group view is designed to make tables for reporting and presenting data, forecasts, and
simulation results. You can display various transformations and various frequencies of the
data in the same table.

The dtable view is currently available only for annual, semi-annual, quarterly, or monthly
workfiles.

Syntax
group_name.dtable(options)

Options

drop Group Procs

dtable Group Views

p Print the report table.

Group::freq—323

Examples
freeze(report) group1.dtable

freezes the dated table view of GROUP1 and saves it as a table object named REPORT.

Cross-references

See “Dated Data Table” on page 554 of User’s Guide I for a description of dated data tables
and formatting options.

See also ddrowopts (p. 313), ddtabopts (p. 316).

Compute frequency tables.

When used with a group containing a single series, freq performs a one-way frequency tab-
ulation. The options allow you to control binning (grouping) of observations.

When used with a group containing multiple series, freq produces an N-way frequency tab-
ulation for all of the series in the group.

Syntax
group_name.freq(options)

Options
Options common to both one-way and N-way frequency tables

freq Group Views

dropna (default) /
keepna

[Drop/Keep] NA as a category.

v=integer
(default=100)

Make bins if the number of distinct values or categories
exceeds the specified number.

nov Do not make bins on the basis of number of distinct values;
ignored if you set “v=integer.”

a=number
(default=2)

Make bins if average count per distinct value is less than
the specified number.

noa Do not make bins on the basis of average count; ignored if
you set “a=number.”

b=integer
(default=5)

Maximum number of categories to bin into.

n, obs, count
(default)

Display frequency counts.

nocount Do not display frequency counts.

324—Chapter 1. Object Reference

Options for one-way tables

Options for N-way tables

nolimt Remove protections on total number of cells.

prompt Force the dialog to appear from within a program.

p Print the table.

total (default) /
nototal

[Display / Do not display] totals.

pct (default) /
nopct

[Display / Do not display] percent frequencies.

cum (default) /
nocum

(Display/Do not) display cumulative frequency counts/per-
centages.

table (default) Display in table mode.

list Display in list mode.

rowm (default) /
norowm

[Display / Do not display] row marginals.

colm (default) /
nocolm

[Display / Do not display] column marginals.

tabm (default) /
notabm

[Display / Do not display] table marginals—only for more
than two series.

subm (default) /
nosubm

[Display / Do not display] sub marginals—only for “l”
option with more than two series.

full (default) /
sparse

(Full/Sparse) tabulation in list display.

totpct / nototpct
(default)

[Display / Do not display] percentages of total observa-
tions.

tabpct / notabpct
(default)

[Display / Do not display] percentages of table observa-
tions—only for more than two series.

rowpct / norowpct
(default)

[Display / Do not display] percentages of row total.

colpct / nocolpct
(default)

[Display / Do not display] percentages of column total.

exp / noexp
(default)

[Display / Do not display] expected counts under full inde-
pendence.

tabexp / notab-
exp (default)

[Display / Do not display] expected counts under table
independence—only for more than two series.

Group::group—325

Examples
group g1 hrs

g1.freq(nov,noa)

tabulates each value (no binning) of HRS in ascending order with counts, percentages, and
cumulatives.

group g2 inc

g2.freq(v=20,b=10,noa)

tabulates INC excluding NAs. The observations will be binned if INC has more than 20 dis-
tinct values; EViews will create at most 10 equal width bins. The number of bins may be
smaller than specified.

group labor lwage gender race

labor.freq(v=10,norowm,nocolm)

displays tables of LWAGE against GENDER for each bin/value of RACE.

Cross-references

See “One-Way Tabulation” on page 419 and “N-Way Tabulation” on page 585 of User’s
Guide I for a discussion of frequency tables.

Declare a group object containing a group of series.

Syntax
group group_name ser1 ser2 [ser3 ...]

Follow the group name with a list of series to be included in the group.

The wildcard operator, *, may be used as part of the series list to include many series at
once. The keywords AND or NOT can be used to specify certain series should not be
included in the group.

Examples
group g1 gdp cpi inv

group g1 tb3 m1 gov

g1.add gdp cpi

test (default) /
notest

[Display / Do not display] tests of independence.

group Group Declaration

326—Chapter 1. Object Reference

The first line creates a group named G1 that contains three series GDP, CPI, and INV. The
second line redeclares group G1 to contain the three series TB3, M1, and GOV. The third line
adds two series GDP and CPI to group G1 to make a total of five series. See Group::add
(p. 294).

group rhs d1 d2 d3 d4 gdp(0 to -4)

ls cons rhs

ls cons c rhs(6)

The first line creates a group named RHS that contains nine series. The second line runs a
linear regression of CONS on the nine series in RHS. The third line runs a linear regression
of CONS on C and only the sixth series GDP(-1) of RHS.

group g2 us_*

This line creates a group named G2 that contains any series whose name starts with the
characters US_.

group g3 * not resid

This command makes a group, G3, containing all series in the workfile except for the resid
series.

group g4 a* and *1

Makes a group named G4 containing all series whose names begin with the letter A and end
with L.

group g5 a* b* not *1 *2

This line makes a group, G5, containing all series whose names begin with either letter A or
B and do not end with either 1 or 2.

group g6 g1 and g2

Makes a group named G6 containing all series that are both in group G1 and group G2 (i.e.
the intersection of the two groups).

Cross-references

See Chapter 12. “Groups,” on page 547 of User’s Guide I for additional discussion.

See also Group::add (p. 294) and Group::drop (p. 322).

Group::insertobs—327

Shift the observations of the series in the group up or downwards, inserting blank observa-
tions.

Syntax
group_name.insertobs(“startpoint”, col_range) n

Where startpoint specifies the first or last observation from which the observations are
shifted. For dated workfiles, startpoint should be entered as a date. For panels and non-
dated workfiles startpoint should be an observation number.

The col_range option is used to describe the columns to be shifted in the group. It may take
one of the following forms:

n specifies the number of observations shifted.

Examples
g.insertobs("1952q2", 1) 2

Inserts 2 new observations beginning at observation 1952 quarter 2 into the first series in
the group. The previous value associated with 1952Q2 for that series will now correspond to
1952Q4.

g.insertobs(10, gdp) -5

Inserts 5 new observations to the series GDP ending at observation number 10.
g.insertobs(1990m2, @all) 8

Inserts 8 new observations beginning at February 1990 for all series in the group.

insertobs Group Procs

@all Apply to all series in the group.

col Column number or letter (e.g., “2”, “B”). Apply to the series
corresponding to the column.

first_col[:]last_col Colon delimited range of columns (from low to high, e.g.,
“3:5”). Apply to all series corresponding to the column
range.

first_series[:]last_ser
ies

Colon delimited range of columns (from low to high, e.g.,
“series01:series05”) specified by the series names. Apply to
all series corresponding to the column range.

328—Chapter 1. Object Reference

Scatterplot with bivariate kernel regression fit.

The kerfit command is no longer supported. See scat (p. 954).

Display or change the label view of a group, including the last modified date and display
name (if any).

As a procedure, label changes the fields in the group label.

Syntax
group_name.label

group_name.label(options) [text]

Options

The first version of the command displays the label view of the group. The second version
may be used to modify the label. Specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared.

Examples

The following lines replace the remarks field of G1 with “Data from CPS 1988 March File”:

g1.label(r)

g1.label(r) Data from CPS 1988 March File

To append additional remarks to G1, and then to print the label view:

g1.label(r) Log of hourly wage

g1.label(p)

To clear and then set the units field, use:

kerfit Group Views

label Group Views | Group Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

Group::lrcov—329

g1.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Group::displayname (p. 320).

Scatterplot with bivariate fit.

The linefit command is no longer supported. See scat (p. 954).

Compute the symmetric, one-sided, or strict one-sided long-run covariance matrix for a
group of series.

Syntax
Group View: group_name.lrcov(options)

Options

Whitening Options

linefit Group Views

lrcov Group Views

window=arg Type of long-run covariance to compute: “sym” (symmet-
ric), “lower” (lower - lags in columns), “slower” (strict
lower - lags only), “upper” (upper - leads in columns),
“supper” (strict upper - leads only)

noc Do not remove means (center data).

rwgt=arg Row weights.

out=arg Name of output sym or matrix (optional).

panout=arg Name of panel output matrix (optional).

prompt Force the dialog to appear from within a program.

p Print results.

lag=arg (default=0) Lag specification: integer (user-specified number of lags),
“a” (automatic selection).

infosel=arg
(default=“aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“lag=a”).

330—Chapter 1. Object Reference

Kernel Options

Examples

grp1.lrcov(out=outsym)

computes the symmetric long-run covariance of the series in the group GRP1 and saves the
results in the output sym matrix OUTSYM.

xgrp.lrcov(kern=quadspec, bw=andrews, rwgt=res)

computes the long-run covariance of the series in the group XGRP using the quadratic spec-
tral kernel, Andrews automatic bandwidth, and the row-weight series RES.

xgrp.lrcov(kern=quadspec, lag=1, bw=andrews, rwgt=res)

performs the same calculation but uses VAR(1) prewhitening prior to computing the kernel
estimator.

xgrp.lrcov(kern=none, window=upper, lag=a, infosel=aic,

bw=andrews, rwgt=res)

computes parametric VAR estimates of the upper long-run covariance using an AIC based
automatic bandwidth selection method.

maxlag=integer Maximum lag-length for automatic selection (optional) (if
“lag=a”). The default is an observation-based maximum
of .

kern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniell), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen), “user” (User-specified; see “kernwgt=”
below).

kernwgt=vector User-specified kernel weight vector (if “kern=user”).

bw=arg
(default=”nwfixed”)

Bandwidth: “fixednw” (Newey-West fixed), “andrews”
(Andrews automatic), “neweywest” (Newey-West auto-
matic), number (User-specified bandwidth).

nwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric bandwidth selection (if “bw=neweywest”).

bwoffset=integer
(default=0)

Apply integer offset to bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

bwint Use integer portion of bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

T1 3e

Group::makepcomp—331

Cross-references

See “Long-run Covariance,” on page 604 of User’s Guide I, “Panel Long-run Variances,” on
page 1012 of User’s Guide II, and Appendix F. “Long-run Covariance Estimation,” on
page 1115 of User’s Guide II.

See also Series::lrvar (p. 579).

Push updates to OLE linked objects in open applications.

Syntax
group_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Save the scores from a principal components analysis of the series in a group.

Syntax
group_name.makepcomp(options) output_list

where the output_list is a list of names identifying the saved components. EViews will save
the first components corresponding to the elements in output_list, up to the total num-
ber of series in the group.

Options

olepush Group Procs

makepcomp Group Procs

scale=arg
(default=“norm-
load”)

Diagonal matrix scaling of the loadings and the scores: nor-
malize loadings (“normload”), normalize scores (“norm-
scores”), symmetric weighting (“symmetric”), user-
specified (arg=number).

cpnorm Compute the normalization for the score so that cross-
products match the target (by default, EViews chooses a
normalization scale so that the moments of the scores
match the target).

eigval=vec_name Specify name of vector to hold the saved the eigenvalues in
workfile.

k k

332—Chapter 1. Object Reference

Covariance Options

Examples
grp1.makepcomp comp1 comp2 comp3

saves the first three principal components (in normalized loadings form) to the workfile.
The components will have variances that are proportional to the eigenvalues.

grp1.makepcomp(scale=normscore) comp1 comp2 comp3

normalizes the scores so that the resulting series have variances that are equal to 1.

You may change the scaling for the normalized components so that the cross-products equal
1, using the cpnorm option:

eigvec=mat_name Specify name of matrix to hold the save the eigenvectors in
workfile.

prompt Force the dialog to appear from within a program.

cov=arg
(default=“corr”)

Covariance calculation method: ordinary (Pearson product
moment) covariance (“cov”), ordinary correlation (“corr”),
Spearman rank covariance (“rcov”), Spearman rank cor-
relation (“rcorr”), uncentered ordinary correlation
(“ucorr”). Note that Kendall’s tau measures are not valid
methods.

wgt=name
(optional)

Name of series containing weights.

wgtmethod=arg
(default = “sstdev”

Weighting method: frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations where
“weights=” is specified. Weights for rank correlation and
Kendall’s tau calculations are always frequency weights.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

partial=arg Compute partial covariances conditioning on the list of
series specified in arg.

df Compute covariances with a degree-of-freedom correction
accounting for the mean (for centered specifications) and
any partial conditioning variables.
The default behavior in these cases is to perform no adjust-
ment (e.g. – compute sample covariance dividing by
rather than).

n
n k–

Group::makesystem—333

grp1.makepcomp(scale=normscore, cpnorm) comp1 comp2 comp3

Cross-references

See “Saving Component Scores,” beginning on page 597 of User’s Guide I for further discus-
sion. See Group::pcomp (p. 335) for tools to display the principal components results for
the series in the group.

Create system from a group.

Syntax
group_name.makesystem(options) [x1 x2 x3 ...] [@eqreg w1 w2 ...] [@inst z1 z2 ...]

[@eqinst z3 z4 ...]

Creates a system of equations out of the variables in the group. Each series in the group will
be used as the dependent variable in an equation. The [x1 x2 x3 ...] list consists of regres-
sors with common coefficients in the system. The @eqreg list consists of regressors with dif-
ferent coefficients in each equation. The list of variables that follow @inst are the common
instruments. The list of variables that follow @eqinst are the equation specific instruments.

Options

Examples
grp1.makesystem(name=sys1) c x1 x2 @inst z1 z2 z3

creates a system named SYS1 with the series in GRP1 as the dependent variables and a com-
mon intercept and coefficients on X1 and X2, with common instruments Z1, Z2, and Z3.

grp1.makesystem(name=sys2) x1 @eqreg c x2 @inst z1 z2 @eqinst z3

creates a system named SYS2 with a common coefficient for X1 and a different intercept and
coefficient for X2 for each equation. There are common intercepts Z1 and Z2, and an equa-
tion specific instrument Z3.

makesystem Group Procs

name=name Specify name for the system object.

ytrans=arg Dependent variable transformation: none (default), log
(“log”), difference (“d”), difference of logs (“dlog”), one
percentage change in decimal (“pch”), one-period percent-
age change—annualized, in percent (“pcha”), one-year
percentage change in decimal (“pchy”).

prompt Force the dialog to appear from within a program.

334—Chapter 1. Object Reference

Cross-references

See Chapter 39. “System Estimation,” on page 645 of User’s Guide II for a discussion of sys-
tem objects in EViews.

Whiten the series in the group.

Estimate a VAR() for the series in the group, compute the residuals, and save the results
into whitened series.

Syntax
Group View: group_name.makewhiten(options) out_specification

where out_specification is either a list of names for the output series, one per series in the
original group, or is a wildcard expression. Note that wildcards may not be used if the origi-
nal group contains series expressions.

Options

Examples
grp1.makewhiten(grp=wht, lag=a, infosel=sic, maxlag=10) *a

whitens the series in GRP1 using a VAR with auto-selected number of lags based on the SIC
information criterion and a maximum of 10 lags. The resulting series are named using the
wildcard expression “*a” in the named group WHT.

grp2.makewhiten(noc, lag=5) *a

whitens the series in GRP2 using a no-constant VAR and 5 lags.

makewhiten Group Procs

grp=arg Name of group to hold output series (optional).

lag=arg
(default=1)

Lag specification: integer (user-specified number of lags),
“a” (automatic selection).

noc Do not remove means (center data) prior to whitening.

infosel=arg
(default=“aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn).

maxlag=integer Maximum lag-length for automatic selection (optional).
The default is an observation-based maximum of the inte-
ger portion of .

prompt Force the dialog to appear from within a program.

p

T1 3e

Group::pcomp—335

Cross-references

See “Make Whitened” on page 613 of User’s Guide I for detail.

Display the members of the group.

Syntax
Group View: group_name.members

Examples
grp1.members

Cross-references

See “Group Members” on page 547 of User’s Guide I for additional detail.

Scatterplot with bivariate nearest neighbor fit.

The nnfit command is no longer supported. See scat (p. 954).

Principal components analysis.

Syntax
group_name.pcomp(options) [indices]

where the elements to display in loadings, scores, and biplot graph form (“out=loadings”,
“out=scores” or “out=biplot”) are given by the optional indices, (e.g., “1 2 3” or “2 3”). If
indices is not provided, the first two elements will be displayed.

Basic Options

members Group Views

nnfit Group Views

pcomp Group Views

out=arg
(default=“table”)

Output type: eigenvector/eigenvalue table (“table”), eigen-
values graph (“graph”), loadings graph (“loadings”),
scores graph (“scores”), biplot (“biplot”).

eigval=vec_name Specify name of vector to hold the saved the eigenvalues in
workfile.

336—Chapter 1. Object Reference

Table and Eigenvalues Plot Options

The number of elements to display in the table and eigenvalue graph form is given by the
minimum of the elements specified using the “n=”, “mineigen=” and “cproport=”
options.

The default eigenvalue graph shows a scree plot of the ordered eigenvalues. You may use the
“scree”, “cproport”, and “diff” option keywords to display any combination of the scree
plot, cumulative eigenvalue proportions plot, or eigenvalue difference plot.

Loadings, Scores, Biplot Graph Options

eigvec=mat_name Specify name of matrix to hold the save the eigenvectors in
workfile.

prompt Force the dialog to appear from within a program.

p Print results.

n=arg (default=all) Maximum number of components.

mineigen=arg
(default=0)

Minimum eigenvalue.

cproport=arg
(default=1.0)

Cumulative proportion of eigenvalue total to attain.

scree Display a scree plot of the eigenvalues (if “output=graph).

diff Display a graph of the eigenvalue differences (if “out-
put=graph).

cproport Display a graph of the cumulative proportions (if “out-
put=graph).

scale=arg,
(default=
“normload”)

Diagonal matrix scaling of the loadings and the scores: nor-
malize loadings (“normload”), normalize scores (“norm-
scores”), symmetric weighting (“symmetric”), user-
specified (arg=number).

cpnorm Compute the normalization for the scores so that cross-
products match the target (by default, EViews chooses a
normalization scale so that the moments of the scores
match the target).

nocenter Do not center the elements in the graph.

mult=arg
(default=”first”)

Multiple graph options: first versus remainder (“first”),
pairwise (“pair”), all pairs arrayed in lower triangle (“lt”)

labels=arg
(default=“outlier”)

Scores label options: identify outliers only (“outlier”), all
points (“all”), none (“none”).

Group::pcomp—337

Covariance Options

Examples
group g1 x1 x2 x3 x4

freeze(tab1) g1.pcomp(eigval=v1, eigvec=m1)

The first line creates a group named G1 containing the four series X1, X2, X3, X4. The sec-
ond line produces a view of the basic results for the principal components. The output view
is stored in a table named TAB1, the eigenvalues in a vector named V1, and the eigenvectors
in a matrix named M1.

labelprob=arg
(default=0.1)

Outlier label probability (if “labels=outlier”).

autoscale=arg
(default=1.0)

Rescaling factor for auto-scaling.

userscale=arg User-specified scaling.

cov=arg
(default=“corr”)

Covariance calculation method: ordinary (Pearson product
moment) covariance (“cov”), ordinary correlation (“corr”),
Spearman rank covariance (“rcov”), Spearman rank cor-
relation (“rcorr”), uncentered ordinary correlation
(“ucorr”). Note that Kendall’s tau measures are not valid
methods.

wgt=name
(optional)

Name of series containing weights.

wgtmethod=arg
(default = “sstdev”)

Weighting method: frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations where
“weights=” is specified. Weights for rank correlation and
Kendall’s tau calculations are always frequency weights.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

partial=arg Compute partial covariances conditioning on the list of
series specified in arg.

df Compute covariances with a degree-of-freedom correction
accounting for the mean (for centered specifications) and
any partial conditioning variables.
The default behavior in these cases is to perform no adjust-
ment (e.g. – compute sample covariance dividing by
rather than).

n
n k–

338—Chapter 1. Object Reference

g1.pcomp(out=graph)

g1.pcomp(out=graph, scree, cproport)

displays a screen plot of the eigenvalues, and a graph containing both a screen plot and a
plot of the cumulative eigenvalue proportions.

g1.pcomp(out=loading)

displays a loadings plot, and

g1.pcomp(out=biplot, scale=symmetric, mult=lt) 1 2 3

displays a symmetric biplot for all three pairwise comparisons.

Cross-references

See “Principal Components” on page 590 of User’s Guide I for further discussion. To save
principal components scores in series in the workfile, see Group::makepcomp (p. 331).

Resample from observations in a group.

Syntax
group_name.resample(options) [output_spec]

You should follow the resample keyword and options with and an output_spec containing a
list of names or a wildcard expression identifying the series to hold the output. If a list is
used to identify the targets, the number of target series must match the number of names
implied by the keyword. If you do not provide an output_spec, the output names will be
formed using the names of the original series combined with the string specified by the suf-
fix option.

Options

resample Group Procs

outsmpl=
smpl_spec

Sample to fill the new series. Either provide the sample
range in double quotes or specify a named sample object.
The default is the current workfile sample.

name=
group_name

Name of group to hold created series.

permute Draw from rows without replacement. Default is to draw
with replacement.

weight=
series_name

Name of series to be used as weights. The weight series
must be non-missing and non-negative in the current work-
file sample. The default is equal weights.

Group::resample—339

• You may not use groups that contain auto-series unless you provide an output_spec.
For example, resampling from a group containing the series X(–1) or LOG(X) without
providing explicit output names will produce an error since we will attempt to append
a suffix to the original name, producing invalid object names.

• If the group name you provide already exists and is a group object, the group object
will be overwritten. If the object already exists but is not a group object, EViews will
error.

• Block bootstrap (block length larger than 1) requires a continuous output sample.
Therefore a block length larger than 1 cannot be used together with the “fixna”
option, and the “outsmpl” should not contain any gaps.

• The “fixna” option will have an effect only if there are missing values in the overlap-
ping sample of the input sample (current workfile sample) and the output sample
specified by “outsmpl”.

• If you specify “fixna”, we first copy any missing values in the overlapping sample to
the output series. Then the input sample is adjusted to drop rows containing missing
values and the output sample is adjusted so as not to overwrite the copied values.

• If you choose “dropna” and the block length is larger than 1, the input sample may
shrink in order to ensure that there are no missing values in any of the drawn blocks.

• If you choose “permute”, the block option will be reset to 1, the “dropna” and “fixna”
options will be ignored (reset to the default “withna” option), and the “weight” option
will be ignored (reset to default equal weights).

Examples
group g1 x y

g1.resample

block=integer Block length for each draw. Must be a positive integer. The
default block length is 1.

withna (default) [Draw / Do not draw] from all rows in the current sample,
including those with NAs.

dropna Do not draw from rows that contain missing values in the
current workfile sample.

fixna Excludes NAs from draws but copies rows containing miss-
ing values to the output series.

suffix=arg
(default=“_b”)

Suffix to be appended to the original series names when
forming output series names.

prompt Force the dialog to appear from within a program.

340—Chapter 1. Object Reference

creates new series X_B and Y_B by drawing with replacement from the rows of X and Y in
the current workfile sample. If X_B or Y_B already exist in the workfile, they will be over-
written if they are series objects, otherwise EViews will error. Note that only values of X_B
and Y_B in the output sample (in this case the current workfile sample) will be overwritten.

g1.resample(weight=wt,suffix=_2) g2

will append “_2” to the names for the new series, and will create a group objected named
G2 containing these series. The rows in the sample will be drawn with probabilities propor-
tional to the corresponding values in the series WT. WT must have non-missing non-nega-
tive values in the current workfile sample.

Cross-references

See “Resample” on page 439 of User’s Guide I for a discussion of the resampling procedure.
For additional discussion of wildcards, see Appendix A. “Wildcards,” on page 771 of User’s
Guide I.

See also @resample (p. 717) and @permute (p. 714) in the Command and Programming
Reference for sampling from matrices.

Set the object attribute.

Syntax
group_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

setattr Group Procs

Group::setformat—341

Set the display format for cells in a group spreadsheet view.

Syntax
group_name.setformat(col_range) format_arg

where format_arg is a set of arguments used to specify format settings. If necessary, you
should enclose the format_arg in double quotes.

The col_range option is used to describe the columns to be updated in groups. It may take
one of the following forms:

To format numeric values, you should use one of the following format specifications:

To specify a format that groups digits into thousands using a comma separator, place a “t”
after the format character. For example, to obtain a fixed number of decimal places with
commas used to separate thousands, use “ft[.precision]”.

To use the period character to separate thousands and commas to denote decimal places,
use “..” (two periods) when specifying the precision. For example, to obtain a fixed number
of characters with a period used to separate thousands, use “ct[..precision]”.

If you wish to display negative numbers surrounded by parentheses (i.e., display the num-
ber -37.2 as “(37.2)”), you should enclose the format string in “()” (e.g., “f(.8)”).

setformat Group Procs

@all Apply to all series in the group.

col Column number or letter (e.g., “2”, “B”). Apply to the series
corresponding to the column.

first_col[:]last_col Colon delimited range of columns (from low to high, e.g.,
“3:5”). Apply to all series corresponding to the column
range.

first_series[:]last_ser
ies

Colon delimited range of columns (from low to high, e.g.,
“series01:series05”) specified by the series names. Apply to
all series corresponding to the column range.

g[.precision] significant digits

f[.precision] fixed decimal places

c[.precision] fixed characters

e[.precision] scientific/float

p[.precision] percentage

r[.precision] fraction

342—Chapter 1. Object Reference

To format numeric values using date and time formats, you may use a subset of the possible
date format strings (see “Date Formats” on page 97 in the Command and Programming Ref-
erence). The possible format arguments, along with an example of the date number
730856.944793113 (January 7, 2002 10:40:30.125 p.m) formatted using the argument are
given by:

WF (uses current EViews workfile
period display format)

YYYY “2002”

YYYY-Mon “2002-Jan”

YYYYMon “2002 Jan”

YYYY[M]MM “2002[M]01”

YYYY:MM “2002:01”

YYYY[Q]Q “2002[Q]1”

YYYY:Q “2002:Q

YYYY[S]S “2002[S]1” (semi-annual)

YYYY:S “2002:1”

YYYY-MM-DD “2002-01-07”

YYYY Mon dd “2002 Jan 7”

YYYY Month dd “2002 January 7”

YYYY-MM-DD HH:MI “2002-01-07 22:40”

YYYY-MM-DD HH:MI:SS “2002-01-07 22:40:30”

YYYY-MM-DD HH:MI:SS.SSS “2002-01-07 22:40:30.125”

Mon-YYYY “Jan-2002”

Mon dd YYYY “Jan 7 2002”

Mon dd, YYYY “Jan 7, 2002”

Month dd YYYY “January 7 2002”

Month dd, YYYY “January 7, 2002”

MM/DD/YYYY “01/07/2002”

mm/DD/YYYY “1/07/2002”

mm/DD/YYYY HH:MI “1/07/2002 22:40”

mm/DD/YYYY HH:MI:SS “1/07/2002 22:40:30”

mm/DD/YYYY HH:MI:SS.SSS “1/07/2002 22:40:30.125”

mm/dd/YYYY “1/7/2002”

mm/dd/YYYY HH:MI “1/7/2002 22:40”

mm/dd/YYYY HH:MI:SS “1/7/2002 22:40:30”

Group::setformat—343

Note that the “hh” formats display 24-hour time without leading zeros. In our examples
above, there is no difference between the “HH” and “hh” formats for 10 p.m.

Also note that all of the “YYYY” formats above may be displayed using two-digit year “YY”
format.

Examples

To set the format for a series in a group, provide the column identifier and format:

group1.setformat(1) f.5

sets the first series in GROUP1 to fixed 5-digit precision.

group1.setformat(2) f(.7)

group1.setformat(c) e.5

sets the formats for the second and third series in the group.

mm/dd/YYYY HH:MI:SS.SSS “1/7/2002 22:40:30.125”

dd/MM/YYYY “7/01/2002”

dd/mm/YYYY “7/1/2002”

DD/MM/YYYY “07/01/2002”

dd Mon YYYY “7 Jan 2002”

dd Mon, YYYY “7 Jan, 2002”

dd Month YYYY “7 January 2002”

dd Month, YYYY “7 January, 2002”

dd/MM/YYYY HH:MI “7/01/2002 22:40”

dd/MM/YYYY HH:MI:SS “7/01/2002 22:40:30”

dd/MM/YYYY HH:MI:SS.SSS “7/01/2002 22:40:30.125”

dd/mm/YYYY hh:MI “7/1/2002 22:40”

dd/mm/YYYY hh:MI:SS “7/1/2002 22:40:30”

dd/mm/YYYY hh:MI:SS.SSS “7/1/2002 22:40:30.125”

hm:MI am “10:40 pm“

hm:MI:SS am “10:40:30 pm”

hm:MI:SS.SSS am “10:40:30.125 pm”

HH:MI “22:40”

HH:MI:SS “22:40:30”

HH:MI:SS.SSS “22:40:30.125”

hh:MI “22:40”

hh:MI:SS “22:40:30”

hh:MI:SS.SSS “22:40:30.125”

344—Chapter 1. Object Reference

You may use any of the date formats given above:

group1.setformat(2) YYYYMon

group1.setformat(d) "YYYY-MM-DD HH:MI:SS.SSS"

The column identifier may be the series names. Assuming we have a group which contains
the series A1, C1, B2, A5, and H2, in that order,

group1.setformat(c1:a5) p.3

sets the formats of the series C1, B2, and A5.

Cross-references

See Group::setwidth (p. 346), Group::setindent (p. 344) and Group::setjust
(p. 345) for details on setting spreadsheet widths, indentation and justification.

Set the display indentation for cells in a group object spreadsheet view.

Syntax
group_name.setindent(col_range) indent_arg

where indent_arg is an indent value specified in 1/5 of a width unit. The width unit is com-
puted from representative characters in the default font for the current spreadsheet (the
EViews spreadsheet default font at the time the spreadsheet was created), and corresponds
roughly to a single character. Indentation is only relevant for non-center justified cells.

The default indentation setttings are taken from the Global Defaults for spreadsheet views
(“Spreadsheet Data Display” on page 868 of User’s Guide I) at the time the spreadsheet was
created.

The col_range option is used to describe the columns to be updated. See Group::setfor-
mat (p. 341) for the syntax for col_range specifications.

Examples

To set the justification, provide the column identifier and the format. The commands,

group1.setindent(2) 3

group1.setindent(c) 2

set the formats for the second and third series in the group, while:

group2.setindent(@all) 3

sets formats for all of the series.

setindent Group Procs

Group::setjust—345

Cross-references

See Group::setwidth (p. 346) and Group::setjust (p. 345) for details on setting
spreadsheet widths and justification.

Set the display justification for cells in a group object spreadsheet view.

Syntax
group_name.setjust(col_range) format_arg

where format_arg is a set of arguments used to specify format settings. You should enclose
the format_arg in double quotes if it contains any spaces or delimiters.

The col_range option is used to describe the columns to be updated. See Group::setfor-
mat (p. 341) for the syntax for col_range specifications.

The format_arg may be formed using the following:

You may enter one or both of the justification settings. The default justification settings are
taken from the Global Defaults for spreadsheet views (“Spreadsheet Data Display” on
page 868 of User’s Guide I) at the time the spreadsheet was created.

Examples

To set the justification, provide the column identifier and the format. The commands,

group1.setjust(2) bottom center

group1.setjust(c) center middle

set the formats for the second and third series in the group, while:

group2.setjust(@all) right

sets all of the series formats.

Cross-references

See Group::setwidth (p. 346) and Group::setindent (p. 344) for details on setting
spreadsheet widths and indentation.

setjust Group Procs

top / middle /
bottom]

Vertical justification setting.

auto / left / cen-
ter / right

Horizontal justification setting. “Auto” uses left justifica-
tion for strings, and right for numbers.

346—Chapter 1. Object Reference

Set the column width for selected columns in a group spreadsheet.

Syntax
group_name.setwidth(col_range) width_arg

where col_range is either a single column number or letter (e.g., “5”, “E”), a colon delimited
range of columns (from low to high, e.g., “3:5”, “C:E”), or the keyword “@ALL”, and
width_arg specifies the width unit value. The width unit is computed from representative
characters in the default font for the current spreadsheet (the EViews spreadsheet default
font at the time the spreadsheet was created), and corresponds roughly to a single character.
width_arg values may be non-integer values with resolution up to 1/10 of a width unit.

Examples
gr1.setwidth(2) 12

sets the width of column 2 to 12 width units.

gr1.setwidth(2:10) 20

sets the widths for columns 2 through 10 to 20 width units.

Cross-references

See Group::setindent (p. 344) and Group::setjust (p. 345) for details on setting
spreadsheet indentation and justification.

Spreadsheet view of a group object.

Syntax
group_name.sheet(options)

Options

setwidth Group Procs

sheet Group Views

w Wide. In a panel this will switch to the unstacked form of
the panel (dates along the side, cross-sections along the
top).

t Transpose.

a All observations (ignore sample)

nl Do not display labels.

Group::sort—347

Examples
g1.sheet(p)

displays and prints the spreadsheet view of the group G1.

g1.sheet(t, tform=log)

shows log values of the series in G1 using the current sample in a wide spreadsheet.

g1.sheet(nl, tform=diff)

displays differenced values of the series in the group using the current sample with no
labels.

g1.sheet(a, tform=pc)

displays the one period percent changes for all observations in the workfile.

Cross-references

See Chapter 5. “Basic Data Handling,” on page 123 of User’s Guide I for a discussion of the
spreadsheet view of series and groups.

Change display order for group spreadsheet.

The sort command changes the sort order settings for spreadsheet display of the group.

Syntax
group_name.sort(series1[, series2, series3])

Follow the keyword with a list of the series you wish to use to determine display order. You
may specify up to three series for sorting. If you list two or more series, sort uses the val-
ues of the second series to resolve ties in the first series, and values of the third series to
resolve ties in the first and second. By default, EViews will sort in ascending order. For pur-
poses of sorting, NAs are considered to be smaller than any other value.

tform=arg
(default=
“level”

Display transformed data: raw data (“level”), one period
difference (“dif” or “d”), annual difference (“dify” or
“dy”), one period percentage change (“pch” or “pc”),
annualized one period percentage change (“pcha” or
“pca”), annual percentage change (“pchy” or “pcy”), natu-
ral logarithm (“log”), one period difference of logged val-
ues (“dlog”).

c Compare view. Display the compare view of the group.

p Print the spreadsheet view.

sort Group Procs

348—Chapter 1. Object Reference

The series may be specified using the name or index of a series in the group. For example, if
you provide the integer “2”, EViews will use the second series. To sort by the original work-
file observation order, use the integer “0”, or the keyword “obs”.

To sort in descending order, precede the series name or index with a minus sign (“-”).

Examples
gr1.sort(x,y)

change the display order for group GR1, sorting by the series X and Y, with ties in X resolved
using Y.

If X is the first series in group GR1 and Y is the second series,

gr1.sort(1,-2)

sorts first in ascending order by X and then in descending order by Y.

gr1.sort(obs)

returns the display order for group GR1 to the original (by observation).

Cross-references

See “Spreadsheet” on page 548 of User’s Guide II for additional discussion.

Descriptive statistics.

Computes and displays a table of means, medians, maximum and minimum values, stan-
dard deviations, and other descriptive statistics of a group of series.

Syntax
group_name.stats(options)

Options

Examples
group group1 wage hrs edu

group1.stats(i)

displays the descriptive statistics view of GROUP1 for the individual samples.

stats Group Views

i Individual sample for each series. By default, EViews com-
putes the statistics using a common sample.

p Print the stats table.

Group::testbtw—349

Cross-references

See “Descriptive Statistics” on page 572 of User’s Guide I for a discussion of the descriptive
statistics views of a group.

See also boxplot (p. 923).

Test equality of the mean, median or variance between (among) series in a group.

Syntax
group_name.testbtw(options)

Specify the type of test as an option.

Options

Examples
group g1 wage_m wage_f

g1.testbtw

g1.testbtw(var,c)

tests the equality of means between the two series WAGE_M and WAGE_F.

Cross-references

See “Tests of Equality” on page 589 of User’s Guide I for further discussion of these tests.

See also Series::testby (p. 610), Series::teststat (p. 611).

testbtw Group Views

mean (default) Test equality of mean.

med Test equality of median.

var Test equality of variance.

c Use common sample.

i (default) Use individual sample.

prompt Force the dialog to appear from within a program.

p Print the test results.

350—Chapter 1. Object Reference

Carries out (panel) unit root tests on a group of series.

When used on a group of series, the procedure will perform panel unit root testing. The
panel unit root tests include Levin, Lin and Chu (LLC), Breitung, Im, Pesaran, and Shin
(IPS), Fisher - ADF, Fisher - PP, and Hadri tests on levels, or first or second differences.

Syntax
group_name.uroot(options)

Options
Basic Specification Options

You should specify the exogenous variables and order of dependent variable differencing in
the test equation using the following options:

You may use one of the following keywords to specify the test:

Sample Option

uroot Group Views

const (default) Include a constant in the test equation.

trend Include a constant and a linear time trend in the test equa-
tion.

none Do not include a constant or time trend (only available for
the ADF and PP tests).

dif=integer
(default=0)

Order of differencing of the series prior to running the test.
Valid values are {0, 1, 2}.

sum (default) Summary of the first five panel unit root tests (where appli-
cable).

llc Levin, Lin, and Chu.

breit Breitung.

ips Im, Pesaran, and Shin.

adf Fisher - ADF.

pp Fisher - PP.

hadri Hadri.

balance Use balanced (across cross-sections or series) data when
performing test.

Group::uroot—351

Lag Difference Options

Specifies the number of lag difference terms to be included in the test equation. Applicable
in “Summary”, LLC, Breitung, IPS, and Fisher-ADF tests. The default setting depends on
whether you choose to balance the samples across cross-sections.

If you do not include the “balance” option, the default is to perform automatic lag selection
using the Schwarz criteria (“lagmethod=sic”).

Alternately, if you include the “balance” option, the default setting is a common, observa-
tion-based fixed lag (“lag=default”) where:

default= (1.1)

Kernel Options

Specifies options for computing kernel estimates of the zero-frequency spectrum (long-run
covariance). Applicable to “Summary”, LLC, Fisher-PP, and Hadri tests.

lagmethod=arg
(default=“sic”)

Method for selecting lag lengths (number of first difference
terms) to be included in the Dickey-Fuller test regressions:
“aic” (Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn),
“tstat” (Ng-Perron first backward significant t-statistic).

lag=arg Specified lag length (number of first difference terms) to be
included in the regression: integer (user-specified common
lag length), vector_name (user-specific individual lag
length, one row per cross-section).

maxlag=arg Maximum lag length to consider when performing auto-
matic lag length selection: integer (common maximum lag
length), or vector_name (individual maximum lag length,
one row per cross-section). The default setting produces
individual maximum lags of,

default=

where is the length of the cross-section.

lagpval=arg
(default=0.1)

Probability value for use in the t-statistic automatic lag
selection method (when “lagmethod = tstat”).

1 if Tmin 60d� �

2 if 60 T� min 100d� �

4 if Tmin 100!� �¯
°
®
°

int min 12 Ti 3e,() Ti 100e� �1 4e�()

Ti

352—Chapter 1. Object Reference

Other options

Examples

The command:

Grp1.uroot(llc,exog=trend)

performs the LLC panel unit root test with exogenous individual trends and individual
effects on series in GRP1.

Grp2.uroot(is,exog=const,maxlag=4,lagmethod=AIC)

performs the IPS panel unit root test on series in group GP2. The test includes individual
effects, lag will be chosen by AIC from maximum lag of three.

Grp3.uroot(sum,exog=const,lag=3,hac=pr,b=2.3)

performs a summary of the panel unit root tests on the series in group GP3. The test equa-
tion includes a constant term and three lagged first-difference terms. The frequency zero
spectrum is estimated using kernel methods (with a Parzen kernel), and a bandwidth of 2.3.

Cross-references

See “Unit Root Testing” on page 589 of User’s Guide II for discussion of standard unit root
tests performed on a single series, and “Panel Unit Root Testing” on page 617 of User’s Guide
II for discussion of unit roots tests performed on panel structured workfiles, groups of series,
or pooled data.

See Series::uroot (p. 615).

References

MacKinnon, James G., Alfred A. Haug, and Leo Michelis (1999), “Numerical Distribution Func-
tions of Likelihood Ratio Tests For Cointegration,” Journal of Applied Econometrics, 14, 563-
577.

hac=arg
(default=“bt”)

Method of estimating the frequency zero spectrum: “bt”
(Bartlett kernel), “pr” (Parzen kernel), “qs” (Quadratic
Spectral kernel),

band = arg, b=arg
(default=“nw”)

Method of selecting the bandwidth: “nw” (Newey-West
automatic variable bandwidth selection), “a” (Andrews
automatic selection), number (user-specified common
bandwidth), vector_name (user-specified individual band-
widths, one row for each cross-section).

prompt Force the dialog to appear from within a program.

p Print output from the test.

Group::uroot—353

Osterwald-Lenum, Michael (1992). “A Note with Quantiles of the Asymptotic Distribution of the Maxi-
mum Likelihood Cointegration Rank Test Statistics,” Oxford Bulletin of Economics and Statistics, 54,
461–472.

354—Chapter 1. Object Reference

Link::—355

Link

Link object. Series or alpha link used to frequency converted or match merge data from
another workfile page.

Once created, links may be used just like the corresponding “Series” (p. 541) or “Alpha”
(p. 4) objects.

Link Declaration
link.......................link object declaration (p. 358).

To declare a link object, enter the keyword link, followed by a name:

link newser

and an optional link specification:

link altser.linkto(c=obs,nacat) indiv::x @src ind1 ind2 @dest ind1

ind2

Link Views
labellabel information for the link (p. 357).

Link Procs
clearhistclear the contents of the history attribute (p. 356).
displayname..........set display name (p. 357).
linkto....................specify link object definition (p. 359).
olepushpush updates to OLE linked objects in open applications (p. 364).
setattrset the value of an object attribute (p. 364).

Link Data Members
String values

@attr(“arg”)..........string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description.........string containing the description (if available).
@detailedtypestring with the object type: “LINK”.
@displaynamestring containing display name. If the Link object has no display

name set, the name is returned.
@firststring containing the date or observation number of the first non-

missing observation of the Link. In a panel workfile, the first date at
which any cross-section has a non-missing observation is returned.

@firstall................returns the same as @first, however in a panel workfile, the first
date at which all cross-sections have a non-missing observation is
returned.

356—Chapter 1. Object Reference

@last string containing the date or observation number of the last non-
blank observation of the alpha. In a panel workfile, the last date at
which any cross-section has a non-missing observation is returned.

@lastall................ returns the same as @last, however in a panel workfile, the last
date at which all cross-sections have a non-missing observation is
returned.

@name string containing the Link’s name.
@remarks string containing the Link’s remarks (if available).
@source string containing the Link’s source (if available).
@type string with the series object type: “SERIES” or “ALPHA”.
@units string containing the Group object’s units description (if available).
@updatetime........ string representation of the time and date at which the Link was last

updated.

Link Entries

The following section provides an alphabetical listing of the commands associated with the
“Link” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Clear the contents of the history attribute.

Removes the rowvector’s history attribute, as shown in the label view of the rowvector.

Syntax
rowvector_name.clearhist

Examples
r1.clearhist

r1.label

The first line removes the history from the rowvector R1, and the second line displays the
label view of R1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Link::label (p. 357).

clearhist Link Procs

Link::label—357

Display names for a link object.

Attaches a display name to a link object which may be used to label output in tables and
graphs in place of the standard link object name.

Syntax
link_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in link object names.

Examples
hrs.displayname Hours Worked

hrs.label

The first line attaches a display name “Hours Worked” to the link object HRS, and the sec-
ond line displays the label view of HRS, including its display name.

gdp.displayname US Gross Domestic Product

plot gdp

The first line attaches a display name “US Gross Domestic Product” to the link object GDP.
The line graph view of GDP from the second line will use the display name as the legend.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Link::label (p. 357) and Graph::legend (p. 264).

Display or change the label view of the link object, including the last modified date and
display name (if any).

As a procedure, label changes the fields in the link object label.

Syntax
link_name.label

link_name.label(options) [text]

displayname Link Procs

label Link Views | Link Procs

358—Chapter 1. Object Reference

Options

The first version of the command displays the label view of the link. The second version
may be used to modify the label. Specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared.

Examples

The following lines replace the remarks field of the link object LWAGE with “Data from CPS
1988 March File”:

lwage.label(r)

lwage.label(r) Data from CPS 1988 March File

To append additional remarks to LWAGE, and then to print the label view:

lwage.label(r) Log of hourly wage

lwage.label(p)

To clear and then set the units field, use:

lwage.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Link::displayname (p. 357).

Create a series link object.

Declares a link object which may be used to refer to data in a series contained in a different
workfile page. Links are used to create automatically updating match merges using identifier
series or using dates (frequency conversion).

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

link Link Declaration

Link::linkto—359

Syntax
link link_name

link link_name.linkto(options) link specification

Follow the link keyword with the name to be given to the link object. If desired, you may
combine the declaration with the Link::linkto (p. 359) proc in order to provide a full link
specification.

Examples
link mylink

creates the link MYLINK with no link specification, while,

link l1.linkto(c=obs,nacat) indiv\x @src ind1 ind2 @dest ind1 ind2

combines the link declaration with the link specification step.

Cross-references

For a discussion of linking, see Chapter 8. “Series Links,” on page 233 of User’s Guide I.

See also Link::linkto (p. 359) and unlink (p. 513).

Define the specification of a series link.

Specify the method by which the object uses data in an existing series. Links are used to per-
form cross-page match merging or frequency conversion.

Syntax
link_name.linkto(options) source_page\series_name [src_id dest_id]

link_name.linkto(options) source_page\series_name [@src src_ids @dest dest_ids]

The most common use of linkto will be to define a link that employs general match merg-
ing. You should use the keyword linkto followed by any desired options, and then provide
the name of the source series followed by the names of the source and destination IDs. If
more than one identifier series is used, you must separate the source and destination IDs
using the “@SRC” and “@DEST” keywords.

In the special case where you wish to link your data using date matching, you must use the
special keyword “@DATE” as an ID series for a regular frequency page. If “@DATE” is not
specified as either a source or destination ID, EViews will perform an exact match merge
using the specified identifiers.

linkto Link Procs

360—Chapter 1. Object Reference

The other use of linkto will be to define a frequency conversion link between two date
structured pages. To specify a frequency conversion link, you should use the linkto key-
word followed by any desired options and then the name of a numeric source series. You
must not specify ID series since a frequency conversion link uses the implicit dates associ-
ated with the regular frequency pages—if ID series are specified, the link will instead
employ general match merging. Note also that if ID series are not specified, but a general
match merge specific conversion option is provided (e.g., “c=med”), “@DATE @DATE” will
be appended to the list of IDs and a general match merge employed.

When performing frequency conversion (where ID series are not provided) where either of
the pages are undated, EViews will perform a raw copy link, in which the first observation
in the source workfile page is copied into the first observation in the destination page, the
second observation in the source into the second observation in the destination, and so
forth.

It is worth mentioning that a frequency conversion link that uses an alpha source series will
generate an evaluation error.

Note that linking by frequency conversion is the same as linking by general match merge
using the source and destination IDs “@DATE @DATE” with the following exceptions:

• General match merge linking offers contraction methods not available with frequency
conversion (e.g., median, variance, skewness).

• General match merge linking allows you to use samples to restrict the source observa-
tions used in evaluating the link.

• General match merge linking allows you to treat NA values in the ID series as a cate-
gory to be used in matching.

• Frequency conversion linking offers expansion methods other than repeat.

• Frequency conversion linking provides options for the handling of NA values.

Note that frequency conversion linking with panel structured pages offers special handling:

• If both pages are dated panel pages that are structured with a single identifier, EViews
will perform frequency conversion cross-section by cross-section.

• Conversion from a dated panel page to a dated, non-panel page will first perform a
mean contraction across cross-sections to obtain a single time series (by computing
the means for each period), and then a frequency conversion of the resulting time
series to the new frequency.

• Conversion from a dated, non-panel page to a dated panel page will first involve a fre-
quency conversion of the single time series to the new frequency. The converted time
series will be used for each cross-section in the panel page.

Link::linkto—361

In all three of these cases, all of the high-to-low conversion methods are supported, but low-
to-high frequency conversion only offers Constant-match average (repeating of the low fre-
quency observations).

• Lastly, frequency conversion involving a panel page with more than one dimension or
an undated page will default to raw data copy unless general match merge options are
provided.

Options

General Match Merge Link Options

The following options are available when linking with general match merging:

smpl=
smpl_spec

Sample to be used when computing contractions in a link
by match merge. Either provide the sample range in double
quotes or specify a named sample object. By default,
EViews will use the entire workfile sample “@ALL”.

c=arg Set the match merge contraction or the frequency conver-
sion method.
If you are linking a numeric source series by general match
merge, the argument can be one of: “mean”, “med”
(median), “max”, “min”, “sum”, “sumsq” (sum-of-
squares), “var” (variance), “sd” (standard deviation),
“skew” (skewness), “kurt” (kurtosis), “quant” (quantile,
used with “quant=” option), “obs” (number of observa-
tions), “nas” (number of NA values), “first” (first observa-
tion in group), “last” (last observation in group), “unique”
(single unique group value, if present), “none” (disallow
contractions).
If linking an alpha series, only the non-summary methods
“max”, “min”, “obs”, “nas”, first”, “last”, “unique” and
“none” are supported. For numeric links, the default con-
traction method is “c=mean”; for alpha links, the default
is “c=unique”.
If you are linking by frequency conversion, you may use
this argument to specify the up- or down-conversion
method using the options found in fetch (p. 360) in the
Command and Programming Reference. The default fre-
quency conversion methods are taken from the series
defaults.

quant=number Quantile value to be used when contracting using the
“c=quant” option (e.g, “quant=.3”).

nacat Treat “NA” values as a category when performing link by
general match merge operations.

362—Chapter 1. Object Reference

Most of the conversion options should be self-explanatory. As for the others: “first” and
“last” give the first and last non-missing observed for a given group ID; “obs” provides the
number of non-missing values for a given group; “nas” reports the number of NAs in the
group; “unique” will provide the value in the source series if it is the identical for all obser-
vations in the group, and will return NA otherwise; “none” will cause the link to fail if there
are multiple observations in any group—this setting may be used if you wish to prohibit all
contractions.

On a match merge expansion, linking by ID will repeat the values of the source for every
matching value of the destination. If both the source and destination have multiple values
for a given ID, EViews will first perform a contraction in the source (if not ruled out by
“c=none”), and then perform the expansion by replicating the contracted value in the desti-
nation.

Frequency Conversion Link Options

If the linkto command does not specify identifier series, EViews will link series data using
frequency conversion where appropriate.

The following options control the frequency conversion method when creating a frequency
conversion link, converting from low to high frequency:

The following options control the frequency conversion method when creating a frequency
conversion link, converting from high to low frequency:

Note that if no conversion method is specified, the series specific default conversion method
or the global settings will be employed.

c=arg Low to high conversion methods: “r” (constant match aver-
age), “d” (constant match sum), “q” (quadratic match
average), “t” (quadratic match sum), “i” (linear match
last), “c” (cubic match last).

c=arg High to low conversion methods removing NAs: “a” (aver-
age of the nonmissing observations), “s” (sum of the non-
missing observations), “f” (first nonmissing observation),
“l” (last nonmissing observation), “x” (maximum nonmiss-
ing observation), “m” (minimum nonmissing observation).
High to low conversion methods propagating NAs: “an” or
“na” (average, propagating missings), “sn” or “ns” (sum,
propagating missings), “fn” or “nf” (first, propagating
missings), “ln” or “nl” (last, propagating missings), “xn”
or “nx” (maximum, propagating missings), “mn” or “nm”
(minimum, propagating missings).

Link::linkto—363

Examples
General Match Merge Linking

Let us start with a concrete example. Suppose our active workfile page contains observa-
tions on the 50 states of the US, and contains a series called STATE containing the unique
state identifiers. We also have a workfile page called INDIV that contains data on individuals
from all over the country, their incomes (INCOME), and their state of birth (BIRTHSTATE).

Now suppose that we wish to find the median income of males in our data for each possible
state of birth, and then to match merge that value into our 50 observation state page.

The following commands:

link male_income

male_income.linkto(c=med, smpl="if male=1") indiv\income

birthstate state

create the series link MALE_INCOME. MALE_INCOME contains links to the individual
INCOME data, telling EViews to subsample only observations where MALE=1, to compute
median values for individuals in each BIRTHSTATE, and to match observations by compar-
ing the values of BIRTHSTATE to STATE in the current page.

In this next example, we link to the series X in the INDIV page, matching values of the IND1
and the IND2 series in the two workfile pages. The link will compute the number of valid
observations in the X series for each index group, with NA values in the ID series treated as
a valid identifier value.

link l1.linkto(c=obs,nacat) indiv\x @src ind1 ind2 @dest ind1 ind2

You may wish to use the “@DATE” keyword as an explicit identifier, in order to gain access
to our expanded date matching feature. In our annual workfile, the command:

link gdp.linkto(c=sd) monthly\gdp @date @date

will create link that computes the standard deviation of the values of GDP for each year and
then match merges these values to the years in the current page. Note that this command is
equivalent to:

link gdp.linkto(c=sd) quarterly\gdp

since the presence of the match merge option “c=sd” and the absence of indices instructs
EViews to perform the link by ID matching using the defaults “@DATE” and “@DATE”.

Frequency Conversion Linking

Suppose that we are in an annual workfile page and wish to link data from a quarterly page.
Then the commands:

link gdp

gdp.linkto quarterly\gdp

364—Chapter 1. Object Reference

creates a series link GDP in the current page containing a link by date to the GDP series in
the QUARTERLY workfile page. When evaluating the link, EViews will automatically fre-
quency convert the quarterly GDP to the annual frequency of the current page, using the
series default conversion options. If we wish to control the conversion method, we can spec-
ify the conversion method as an option:

gdp.linkto(c=s) quarterly\gdp

links to GDP in the QUARTERLY page, and will frequency convert by summing the non-
missing observations.

Cross-references

For a detailed discussion of linking, see Chapter 8. “Series Links,” on page 233 of User’s
Guide I.

See Link::link (p. 358). See also unlink (p. 513), and copy (p. 332) in the Command
and Programming Reference.

Push updates to OLE linked objects in open applications.

Syntax
link_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Set the object attribute.

Syntax
link_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

olepush Link Procs

setattr Link Procs

Link::setattr—365

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

366—Chapter 1. Object Reference

Logl::—367

Logl

Likelihood object. Used for performing maximum likelihood estimation of user-specified
likelihood functions.

Logl Declaration
logllikelihood object declaration (p. 376).

To declare a logl object, use the logl keyword, followed by a name to be given to the object.

Logl Method
ml.........................maximum likelihood estimation (p. 377).

Logl Views
append..................add line to the specification (p. 369).
cellipseconfidence ellipses for coefficient restrictions (p. 370).
checkderivscompare user supplied and numeric derivatives (p. 371).
coefcovcoefficient covariance matrix (p. 372).
displaydisplay table, graph, or spool in object window (p. 372).
grads.....................examine the gradients of the log likelihood (p. 374).
labellabel view of likelihood object (p. 375).
output...................table of estimation results (p. 379).
results...................estimation results (p. 380).
speclikelihood specification (p. 381).
waldWald coefficient restriction test (p. 382).

Logl Procs
clearhistclear the contents of the history attribute (p. 371).
displayname..........set display name (p. 373).
makegradsmake group containing gradients of the log likelihood (p. 376).
makemodelmake model (p. 377).
olepushpush updates to OLE linked objects in open applications (p. 379).
setattrset the value of an object attribute (p. 380).
updatecoefsupdate coefficient vector(s) from likelihood (p. 381).

Logl Statements

The following statements can be included in the specification of the likelihood object. These
statements are optional, except for “@logl” which is required. See Chapter 37. “The Log
Likelihood (LogL) Object,” on page 565 of User’s Guide II for further discussion.

@byeqnevaluate specification by equation.
@byobs.................evaluate specification by observation (default).
@deriv..................specify an analytic derivative series.

368—Chapter 1. Object Reference

@derivstep set parameters to control step size.
@logl specify the likelihood contribution series.
@param set starting values.
@temp remove temporary working series.

Logl Data Members
Scalar Values (system data)

@aic Akaike information criterion.
@coefcov(i,j)........ covariance of coefficients i and j.
@coefs(i) coefficient i.
@hq Hannan-Quinn information criterion.
@linecount scalar containing the number of lines in the Logl object.
@logl value of the log likelihood function.
@ncoefs number of estimated coefficients.
@regobs............... number of observations used in estimation.
@sc Schwarz information criterion.
@stderrs(i)........... standard error for coefficient i.
@tstats(i) t-statistic value for coefficient i.
coef_name(i) i-th element of default coefficient vector for likelihood.

Vectors and Matrices

@coefcov covariance matrix of estimated parameters.
@coefs coefficient vector.
@stderrs............... vector of standard errors for coefficients.
@tstats................. vector of z-statistic values for coefficients.

String values

@attr(“arg”) string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description string containing the Logl object’s description (if available).
@detailedtype returns a string with the object type: “LOGL”.
@displayname...... returns the Logl’s display name. If the Logl has no display name set,

the name is returned.
@line(i) returns a string containing the i-th line of the Logl object.
@name returns the Logl’s name.
@smpl sample used for Logl estimation.
@svector returns an Svector where each element is a line of the Logl object.
@svectornb same as @svector, with blank lines removed.
@type returns a string with the object type: “LOGL”.
@units string containing the Logl object’s units description (if available).

Logl::append—369

@updatetimereturns a string representation of the time and date at which the
Logl was last updated.

Logl Examples

To declare a likelihood named LL1:

logl ll1

To define a likelihood function for OLS (not a recommended way to do OLS!):

ll1.append @logl logl1

ll1.append res1 = y-c(1)-c(2)*x

ll1.append logl1 = log(@dnorm(res1/@sqrt(c(3))))-log(c(3))/2

To estimate LL1 by maximum likelihood (the “showstart” option displays the starting val-
ues):

ll1.ml(showstart)

To save the estimated covariance matrix of the parameters from LL1 as a named matrix
COV1:

matrix cov1=ll1.@coefcov

Logl Entries

The following section provides an alphabetical listing of the commands associated with the
“Logl” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Append a specification line to a logl.

Syntax
logl_name.append text

Type the text to be added after the append keyword.

Examples
logl ll1

ll1.append @logl logl1

ll1.append res1 = y-c(1)-c(2)*x

ll1.append logl1 = log(@dnorm(res1/@sqrt(c(3))))-log(c(3))/2

declares a logl object called LL1, and then appends a specification that estimates an ordinary
least squares model.

append Logl Procs

370—Chapter 1. Object Reference

Confidence ellipses for coefficient restrictions.

The cellipse view displays confidence ellipses for pairs of coefficient restrictions for an
estimation object.

Syntax
logl_name.cellipse(options) restrictions

Enter the object name, followed by a period, and the keyword cellipse. This should be fol-
lowed by a list of the coefficient restrictions. Joint (multiple) coefficient restrictions should
be separated by commas.

Options

Examples

The two commands:

log1.cellipse c(1), c(2), c(3)

log1.cellipse c(1)=0, c(2)=0, c(3)=0

both display a graph showing the 0.95-confidence ellipse for C(1) and C(2), C(1) and C(3),
and C(2) and C(3).

cellipse Logl Views

ind=arg Specifies whether and how to draw the individual coeffi-
cient intervals. The default is “ind=line” which plots the
individual coefficient intervals as dashed lines.
“ind=none” does not plot the individual intervals, while
“ind=shade” plots the individual intervals as a shaded
rectangle.

size= number
(default=0.95)

Set the size (level) of the confidence ellipse. You may spec-
ify more than one size by specifying a space separated list
enclosed in double quotes.

dist= arg Select the distribution to use for the critical value associ-
ated with the ellipse size. The default depends on estima-
tion object and method. If the parameter estimates are
least-squares based, the distribution is used;
if the parameter estimates are likelihood based, the
distribution will be employed. “dist=f” forces use of the F-
distribution, while “dist=c” uses the distribution.

prompt Force the dialog to appear from within a program.

p Print the graph.

F 2 n 2–,� �
x

2 2� �

x
2

Logl::clearhist—371

log1.cellipse(dist=c,size="0.9 0.7 0.5") c(1), c(2)

displays multiple confidence ellipses (contours) for C(1) and C(2).

Cross-references

See “Confidence Intervals and Confidence Ellipses” on page 176 of User’s Guide II for dis-
cussion.

See also Logl::wald (p. 382).

Check derivatives of likelihood object.

Displays a table containing information on numeric derivatives and, if available, the user-
supplied analytic derivatives.

Syntax
logl_name.checkderiv(options)

Options

Examples
ll1.checkderiv

displays a table that evaluates the numeric derivatives of the logl object LL1.

Cross-references

See Chapter 37. “The Log Likelihood (LogL) Object,” on page 565 of User’s Guide II for a
general discussion of the likelihood object and the @deriv statement for specifying analytic
derivatives.

See also Logl::grads (p. 374) and Logl::makegrads (p. 376).

Clear the contents of the history attribute for logl objects.

Removes the logl’s history attribute, as shown in the label view of the logl.

Syntax
logl_name.clearhist

checkderivs Logl Views

p Print the table of results.

clearhist Logl Procs

372—Chapter 1. Object Reference

Examples
L1.clearhist

L1.label

The first line removes the history from the logl L1, and the second line displays the label
view of L1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Logl::label (p. 375).

Coefficient covariance matrix.

Displays the covariances of the coefficient estimates for an estimated likelihood object.

Syntax
logl_name.coefcov(options)

Options

Examples
ll2.coefcov

displays the coefficient covariance matrix for the likelihood object LL2 in a window.

To store the coefficient covariance matrix as a sym object, use the @coefcov object data
member:

sym eqcov = ll2.@coefcov

Cross-references

See also Coef::coef (p. 20) and Logl::spec (p. 381).

Display table, graph, or spool output in the logl object window.

Display the contents of a table, graph, or spool in the window of the logl object.

coefcov Logl Views

p Print the coefficient covariance matrix.

display Logl Views

Logl::displayname—373

Syntax
logl_name.display object_name

Examples
logl1.display tab1

Display the contents of the table TAB1 in the window of the object LOGL1.

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

Display names for likelihood objects.

Attaches a display name to a likelihood object which may be used to label output in place of
the standard object name.

Syntax
logl_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in likelihood object names.

Examples
lg1.displayname Hours Worked

lg1.label

The first line attaches a display name “Hours Worked” to the likelihood object LG1, and the
second line displays the label view of LG1, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Logl::label (p. 375).

displayname Logl Procs

374—Chapter 1. Object Reference

Gradients of the objective function.

Displays the gradients of the objective function (where available) for an estimated likelihood
object.

The (default) summary form shows the value of the gradient vector at the estimated param-
eter values (if valid estimates exist) or at the current coefficient values. Evaluating the gradi-
ents at current coefficient values allows you to examine the behavior of the objective
function at starting values. The tabular form shows a spreadsheet view of the gradients for
each observation. The graphical form shows this information in a multiple line graph.

Syntax
logl_name.grads(options)

Options

Examples

To show a summary view of the gradients:

ll2.grads

To display and print the table view:

ll2.grads(t, p)

Cross-references

See also Logl::makegrads (p. 376).

grads Logl Views

g Display multiple graph showing the gradients of the objec-
tive function with respect to the coefficients evaluated at
each observation.

t (default) Display spreadsheet view of the values of the gradients of
the objective function with respect to the coefficients eval-
uated at each observation.

p Print results.

Logl::label—375

Display or change the label view of likelihood object, including the last modified date and
display name (if any).

As a procedure, label changes the fields in the likelihood object label.

Syntax
logl_name.label

logl_name.label(options) [text]

Options

The first version of the command displays the label view of the likelihood object. The sec-
ond version may be used to modify the label. Specify one of the following options along
with optional text. If there is no text provided, the specified field will be cleared.

Examples

The following lines replace the remarks field of the logl object L2 with “Data from CPS 1988
March File”:

l2.label(r)

l2.label(r) Data from CPS 1988 March File

To append additional remarks to L2, and then to print the label view:

l2.label(r) Log of hourly wage

l2.label(p)

To clear and then set the units field, use:

l2.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

label Logl Views | Logl Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

376—Chapter 1. Object Reference

See also Logl::displayname (p. 373).

Declare likelihood object.

Syntax
logl logl_name

Examples
logl ll1

declares a likelihood object named LL1.

ll1.append @logl logl1

ll1.append res1 = y-c(1)-c(2)*x

ll1.append logl1 = log(@dnorm(res1/@sqrt(c(3))))-log(c(3))/2

specifies the likelihood function for LL1 and estimates the parameters by maximum likeli-
hood.

Cross-references

See Chapter 37. “The Log Likelihood (LogL) Object,” on page 565 of User’s Guide II for fur-
ther examples of the use of the likelihood object.

See also Logl::append (p. 369) for adding specification lines to an existing likelihood
object, and Logl::ml (p. 377) for estimation.

Make a group containing individual series which hold the gradients of the objective func-
tion.

Syntax
logl_name.makegrads(options) [ser1 ser2 ...]

The argument specifying the names of the series is also optional. If the argument is not pro-
vided, EViews will name the series “GRAD##” where ## is a number such that “GRAD##” is
the next available unused name. If the names are provided, the number of names must
match the number of target series.

Options

logl Logl Declaration

makegrads Logl Procs

n=arg Name of group object to contain the series.

Logl::ml—377

Examples
ll2.grads(n=out)

creates a group named OUT containing series named GRAD01, GRAD02, and GRAD03.

ll2.grads(n=out) g1 g2 g3

creates the same group, but names the series G1, G2 and G3.

Cross-references

See also Logl::grads (p. 374).

Make a model from a likelihood object.

Syntax
logl_name.makemodel(name) assign_statement

If you provide a name for the model in parentheses after the keyword, EViews will create the
named model in the workfile. If you do not provide a name, EViews will open an untitled
model window if the command is executed from the command line.

Examples
ll3.makemodel(logmod) @prefix s_

makes a model named LOGMOD from the estimated logl object. LOGMOD includes an
assignment statement “ASSIGN @PREFIX S_”. Use the command “show logmod” or “log-
mod.spec” to open the LOGMOD window.

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of specifying and
solving models in EViews.

See also Logl::append (p. 369), Model::merge (p. 441) and Model::solve (p. 452).

Maximum likelihood estimation of logl models.

Syntax
logl_name.ml(options)

makemodel Logl Procs

ml Logl Method

378—Chapter 1. Object Reference

Options

Examples
bvar.ml

estimates the logl object BVAR by maximum likelihood.

Cross-references

See Chapter 37. “The Log Likelihood (LogL) Object,” on page 565 of User’s Guide II for a
discussion of user specified likelihood models.

optmethod =
arg

Optimization method: “bfgs” (BFGS); “newton” (Newton-
Raphson), “opg” or “bhhh” (OPG or BHHH), “legacy”
(EViews legacy).
Newton-Raphson is the default method.

optstep = arg Step method: “marquardt” (Marquardt); “dogleg” (Dog-
leg); “linesearch” (Line search).
Marquardt is the default method.

cov=arg Covariance method: “ordinary” (default method based on
inverse of the estimated information matrix), “huber” or
“white” (Huber-White sandwich methods).,

covinfo = arg Information matrix method: “opg” (OPG); “hessian”
(observed Hessian).
(Applicable when non-legacy “optmethod=”.)

b Use Berndt-Hall-Hall-Hausman (BHHH) algorithm (default
is Marquardt).

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

Logl::output—379

Push updates to OLE linked objects in open applications.

Syntax
logl_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Display estimation output.

output changes the default object view to display the estimation output (equivalent to
using Logl::results (p. 380)).

Syntax
logl_name.output

Options

Examples

The output keyword may be used to change the default view of an estimation object. Enter-
ing the command:

log2.output

displays the estimation output for likelihood object LOG2.

Cross-references

See Logl::results (p. 380).

olepush Logl Procs

output Logl Views

p Print estimation output for estimation object

380—Chapter 1. Object Reference

Displays the results view of an estimated likelihood object.

Syntax
logl_name.results(options)

Options

Examples
ll1.results(p)

prints the estimation results from the estimated logl, LL1.

Set the object attribute.

Syntax
logl_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

results Logl Views

p Print the view.

setattr Logl Procs

Logl::updatecoefs—381

Display the text specification view for logl objects.

Syntax
logl_name.spec(options)

Options

Examples
lg1.spec

displays the specification of the logl object LG1.

Cross-references

See also Logl::append (p. 369).

Update coefficient object values from likelihood object.

Copies coefficients from the likelihood object into the appropriate coefficient vector or vec-
tors.

Syntax
logl_name.updatecoefs

Follow the name of the likelihood object by a period and the keyword updatecoefs.

Examples
ll1.updatecoefs

places the coefficients from LL1 in the default coefficient vector C.

Cross-references

See also Coef::coef (p. 20).

spec Logl Views

p Print the specification text.

updatecoefs Logl Procs

382—Chapter 1. Object Reference

Wald coefficient restriction test.

Syntax
logl_name.wald restrictions

Enter the likelihood object name, followed by a period, and the keyword. You must provide
a list of the coefficient restrictions, with joint (multiple) coefficient restrictions separated by
commas.

Options

Examples
ll1.wald c(2)=0, c(3)=0

tests the null hypothesis that the second and third coefficients in LL1 are jointly zero.

Cross-references

See “Wald Test (Coefficient Restrictions)” on page 182 of User’s Guide II for a discussion of
Wald tests.

See also Logl::cellipse (p. 370), testdrop (p. 502), testadd (p. 502).

wald Logl Views

p Print the test results.

Logl::wald—383

384—Chapter 1. Object Reference

Matrix

Matrix (two-dimensional array).

Matrix Declaration
matrix declare matrix object (p. 405).

There are several ways to create a matrix object. You can enter the matrix keyword (with
an optional row and column dimension) followed by a name:

matrix scalarmat

matrix(10,3) results

Alternatively, you can combine a declaration with an assignment statement, in which case
the new matrix will be sized accordingly.

Lastly, a number of object procedures create matrices.

Matrix Views
cor correlation matrix by columns (p. 388).
cov covariance matrix by columns (p. 391).
display display table, graph, or spool in object window (p. 394).
label..................... label information for the matrix (p. 402).
pcomp principal components analysis of the columns in a matrix (p. 406).
sheet spreadsheet view of the matrix (p. 416).
stats descriptive statistics by column (p. 417).

Matrix Graph Views

Graph creation views are discussed in detail in “Graph Creation Command Summary” on
page 911.

area...................... area graph of the columns in the matrix (p. 913).
band area band graph (p. 916).
bar bar graph of each column (p. 918).
boxplot................. boxplot of each column (p. 923).
distplot................. distribution graph (p. 926).
dot dot plot graph (p. 934).
errbar................... error bar graph view (p. 938).
hilo high-low(-open-close) chart (p. 939).
line line graph of each column (p. 941).
mixed................... mixed-type graph (p. 945).
pie pie chart view (p. 947).
qqplot quantile-quantile graph (p. 950).
scat scatter diagrams of the columns of the matrix (p. 954).

Matrix::—385

scatmatmatrix of all pairwise scatter plots (p. 959).
scatpairscatterplot pairs graph (p. 961).
seasplot.................seasonal line graph of the columns of the matrix (p. 965).
spike.....................spike graph (p. 966).
xyarea...................XY area graph (p. 970).
xybarXY bar graph (p. 973).
xylineXY line graph (p. 975).
xypairXY pairs graph (p. 979).

Matrix Procs
clearhistclear the contents of the history attribute (p. 387).
displayname..........set display name (p. 395).
fill.........................fill the elements of the matrix (p. 395).
import...................imports data from a foreign file into the matrix object (p. 396).
labelset label information for the matrix (p. 402).
makepcompsave the scores from a principal components analysis of the matrix

(p. 403).
olepushpush updates to OLE linked objects in open applications (p. 406).
read(deprecated) import data from disk (p. 410).
setattrset the value of an object attribute (p. 412).
setcollabelsset the column headers in a matrix object spreadsheet (p. 412).
setformat...............set the display format for the matrix spreadsheet (p. 413).
setindentset the indentation for the matrix spreadsheet (p. 414).
setjustset the justification for the matrix spreadsheet (p. 414).
setrowlabelsset the row headers in a matrix object spreadsheet (p. 415).
setwidth................set the column width in the matrix spreadsheet (p. 416).
writeexport data to disk (p. 417).

Matrix Data Members
String values

@attr(“arg”)..........string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@collabelsstring containing the column labels of the matrix.
@description.........string containing the Matrix object’s description (if available).
@detailedtypestring with the object type: “MATRIX”.
@displaynamestring containing the Matrix object’s display name. If the Matrix has

no display name set, the name is returned.
@namestring containing the Matrix object’s name.
@remarksstring containing the Matrix object’s remarks (if available).
@rowlabelsstring containing the row labels of the matrix.

386—Chapter 1. Object Reference

@source string containing the Matrix object’s source (if available).
@type string with the object type: “MATRIX”.
@units string containing the Matrix object’s units description (if available).
@updatetime........ string representation of the time and date at which the Matrix was

last updated.

Scalar values

(i,j) (i,j)-th element of the matrix. Simply append “(i, j)” to the matrix
name (without a “.”).

@cols................... number of columns.
@rows number of rows in the matrix.

Matrix values

@col(i) The ith column of the matrix. i may be a vector of integers, in
which case multiple columns are returned (as a matrix).

@diag vector containing the diagonal elements of the matrix.
@dropcol(i).......... Returns the matrix with the ith column removed. i may be a vector

of integers, in which case multiple columns are removed.
@droprow(i) Returns the matrix with the ith row removed. i may be a vector of

integers, in which case multiple rows are removed.
@row(j) The jth row of the matrix. j may be a vector of integers, in which

case multiple rows are returned (as a matrix).
@sub(i,j) The (i,j) element of the matrix. Both i and j may be vectors of inte-

gers, in which case multiple elements are returned (as a matrix).
@t transpose of the matrix.

Matrix Examples

The following assignment statements create and initialize matrix objects,

matrix copymat=results

matrix covmat1=eq1.@coefcov

matrix(5,2) count

count.fill 1,2,3,4,5,6,7,8,9,10

as does the equation procedure:

eq1.makecoefcov covmat2

You can declare and initialize a matrix in one command:

matrix(10,30) results=3

matrix(5,5) other=results1

Graphs and covariances may be generated for the columns of the matrix,

copymat.line

Matrix::clearhist—387

copymat.cov

and statistics computed for the rows of a matrix:

matrix rowmat=@transpose(copymat)

rowmat.stats

You can use explicit indices to refer to matrix elements:

scalar diagsum=cov1(1,1)+cov1(2,2)+cov(3,3)

Matrix Entries

The following section provides an alphabetical listing of the commands associated with the
“Matrix” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Clear the contents of the history attribute for matrix objects.

Removes the matrix’s history attribute, as shown in the label view of the matrix.

Syntax
matrix_name.clearhist

Examples
m1.clearhist

m1.label

The first line removes the history from the matrix M1, and the second line displays the label
view of M1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Matrix::label (p. 402).

clearhist Matrix Procs

388—Chapter 1. Object Reference

Compute covariances, correlations, and other measures of association for the columns in a
matrix.

You may compute measures related to Pearson product-moment (ordinary) covariances and
correlations, Spearman rank covariances, or Kendall’s tau along with test statistics for evalu-
ating whether the correlations are equal to zero.

Syntax
matrix_name.cor(options) [keywords [@partial z1 z2 z3...]]

You should specify keywords indicating the statistics you wish to display from the list below,
optionally followed by the keyword @partial and the name of a conditioning matrix. The
columns should contain the conditioning variables, and the number of rows should match
the original matrix.

You may specify keywords from one of the four sets (Pearson correlation, Spearman correla-
tion, Kendall’s tau, Uncentered Pearson) corresponding the computational method you wish
to employ. (You may not select keywords from more than one set.)

If you do not specify keywords, EViews will assume “corr” and compute the Pearson correla-
tion matrix. Note that Matrix::cor is equivalent to the Matrix::cov (p. 391) command
with a different default setting.

Pearson Correlation

Spearman Rank Correlation

cor Matrix Views

cov Product moment covariance.

corr Product moment correlation.

sscp Sums-of-squared cross-products.

stat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

prob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

rcov Spearman’s rank covariance.

rcorr Spearman’s rank correlation.

Matrix::cor—389

Kendall’s tau

Uncentered Pearson

Note that cases, obs, and wgts are available for each of the methods.

rsscp Sums-of-squared cross-products.

rstat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

rprob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

taub Kendall’s tau-b.

taua Kendall’s tau-a.

taucd Kendall’s concordances and discordances.

taustat Kendall’s score statistic for evaluating whether the Kend-
all’s tau-b measure is zero.

tauprob Probability under the null for the score statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

ucov Product moment covariance.

ucorr Product moment correlation.

usscp Sums-of-squared cross-products.

ustat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

uprob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

390—Chapter 1. Object Reference

Options

Examples
mat1.cor

displays a Pearson correlation matrix for the columns series in MAT1.

mat1.cor corr stat prob

displays a table containing the Pearson correlation, t-statistic for testing for zero correlation,
and associated p-value, for the columns in MAT1.

wgt=name
(optional)

Name of vector containing weights. The number of rows of
the weight vector should match the number of rows in the
original matrix.

wgtmethod=arg
(default =
“sstdev”

Weighting method (when weights are specified using
“weight=”): frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations.
Weights specified by “wgt=” are frequency weights for
rank correlation and Kendall’s tau calculations.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
for the mean (for centered specifications), and any partial
conditioning variables.

multi=arg
(default=“none”)

Adjustment to p-values for multiple comparisons: none
(“none”), Bonferroni (“bonferroni”), Dunn-Sidak
(“dunn”).

outfmt=arg
(default=“single”)

Output format: single table (“single”), multiple table
(“mult”), list (“list”), spreadsheet (“sheet”). Note that
“outfmt=sheet” is only applicable if you specify a single
statistic keyword.

out=name Basename for saving output. All results will be saved in
Sym matrices named using keys (“COV”, “CORR”, “SSCP”,
“TAUA”, “TAUB”, “CONC” (Kendall’s concurrences),
“DISC” (Kendall’s discordances), “CASES”, “OBS”,
“WGTS”) appended to the basename (e.g., the covariance
specified by “out=my” is saved in the Sym matrix
“MYCOV”).

prompt Force the dialog to appear from within a program.

p Print the result.

3 3u

Matrix::cov—391

mat1.cor(pairwise) taub taustat tauprob

computes the Kendall’s tau-b, score statistic, and p-value for the score statistic, using sam-
ples with pairwise missing value exclusion.

grp1.cor(out=aa) cov

computes the Pearson covariance for the columns in MAT1 and saves the results in the sym-
metric matrix object AACO.

Cross-references

See also Matrix::cov (p. 391). For simple forms of the calculation, see @cor (p. 688), and
@cov (p. 689)in the Command and Programming Reference.

Compute covariances, correlations, and other measures of association for the columns in a
matrix.

You may compute measures related to Pearson product-moment (ordinary) covariances and
correlations, Spearman rank covariances, or Kendall’s tau along with test statistics for evalu-
ating whether the correlations are equal to zero.

Syntax
matrix_name.cov(options) [keywords [@partial z1 z2 z3...]]

You should specify keywords indicating the statistics you wish to display from the list below,
optionally followed by the keyword @partial and the name of a conditioning matrix. The
columns should contain the conditioning variables, and the number of rows should match
the original matrix.

You may specify keywords from one of the four sets (Pearson correlation, Spearman correla-
tion, Kendall’s tau, Uncentered Pearson) corresponding the computational method you wish
to employ. (You may not select keywords from more than one set.)

If you do not specify keywords, EViews will assume “cov” and compute the Pearson covari-
ance matrix. Note that Matrix::cov is equivalent to the Matrix::cor (p. 388) command
with a different default setting.

Pearson Correlation

cov Matrix Views

cov Product moment covariance.

corr Product moment correlation.

sscp Sums-of-squared cross-products.

392—Chapter 1. Object Reference

Spearman Rank Correlation

Kendall’s tau

Uncentered Pearson

stat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

prob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

rcov Spearman’s rank covariance.

rcorr Spearman’s rank correlation.

rsscp Sums-of-squared cross-products.

rstat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

rprob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

taub Kendall’s tau-b.

taua Kendall’s tau-a.

taucd Kendall’s concordances and discordances.

taustat Kendall’s score statistic for evaluating whether the Kend-
all’s tau-b measure is zero.

tauprob Probability under the null for the score statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

ucov Product moment covariance.

ucorr Product moment correlation.

usscp Sums-of-squared cross-products.

Matrix::cov—393

Note that cases, obs, and wgts are available for each of the methods.

Options

ustat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

uprob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

wgt=name
(optional)

Name of vector containing weights. The number of rows of
the weight vector should match the number of rows in the
original matrix.

wgtmethod=arg
(default =
“sstdev”)

Weighting method (when weights are specified using
“weight=”): frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations.
Weights specified by “wgt=” are frequency weights for
rank correlation and Kendall’s tau calculations.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
for the mean (for centered specifications), and any partial
conditioning variables.

multi=arg
(default=“none”)

Adjustment to p-values for multiple comparisons: none
(“none”), Bonferroni (“bonferroni”), Dunn-Sidak
(“dunn”).

outfmt=arg
(default=
“single”)

Output format: single table (“single”), multiple table
(“mult”), list (“list”), spreadsheet (“sheet”). Note that
“outfmt=sheet” is only applicable if you specify a single
statistic keyword.

out=name Basename for saving output. All results will be saved in
Sym matrices named using keys (“COV”, “CORR”, “SSCP”,
“TAUA”, “TAUB”, “CONC” (Kendall’s concurrences),
“DISC” (Kendall’s discordances), “CASES”, “OBS”,
“WGTS”) appended to the basename (e.g., the covariance
specified by “out=my” is saved in the Sym matrix
“MYCOV”).

394—Chapter 1. Object Reference

Examples
mat1.cov

displays a Pearson covariance matrix for the columns series in MAT1.

mat1.cov corr stat prob

displays a table containing the Pearson covariance, t-statistic for testing for zero correlation,
and associated p-value, for the columns in MAT1.

mat1.cov(pairwise) taub taustat tauprob

computes the Kendall’s tau-b, score statistic, and p-value for the score statistic, using sam-
ples with pairwise missing value exclusion.

mat1.cov(out=aa) cov

computes the Pearson covariance for the columns in MAT1 and saves the results in the sym-
metric matrix object AACO.

Cross-references

See also Matrix::cor (p. 388). For simple forms of the calculation, see @cor (p. 688), and
@cov (p. 689) in the Command and Programming Reference.

Display table, graph, or spool output in the matrix object window.

Display the contents of a table, graph, or spool in the window of the matrix object.

Syntax
matrix_name.display object_name

Examples
matrix1.display tab1

Display the contents of the table TAB1 in the window of the object MATRIX1.

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

prompt Force the dialog to appear from within a program.

p Print the result.

display Matrix Views

3 3u

Matrix::fill—395

Display names for matrix objects.

Attaches a display name to a matrix object which may be used to label output in place of the
standard matrix object name.

Syntax
matrix_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in matrix object names.

Examples
m1.displayname Hours Worked

m1.label

The first line attaches a display name “Hours Worked” to the matrix object M1, and the sec-
ond line displays the label view of M1, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Matrix::label (p. 402).

Fill a matrix object with specified values.

Syntax
matrix_name.fill(options) n1[, n2, n3 …]

Follow the keyword with a list of values to place in the matrix object. Each value should be
separated by a comma.

Running out of values before the object is completely filled is not an error; the remaining
cells or observations will be unaffected, unless the “l” option is specified. If, however, you
list more values than the object can hold, EViews will not modify any observations and will
return an error message.

displayname Matrix Procs

fill Matrix Procs

396—Chapter 1. Object Reference

Options

Examples

The commands,

matrix(2,2) m1

matrix(2,2) m2

m1.fill 1, 0, 1, 2

m2.fill(b=r) 1, 0, 1, 2

create the matrices:

(1.2)

Cross-references

See Chapter 11. “Matrix Language,” on page 261 of the Command and Programming Refer-
ence for a detailed discussion of vector and matrix manipulation in EViews.

Imports data from a foreign file into the matrix object.

Syntax
matrix_name.import([type=]) source_description import_specification

• Source_description should contain a description of the file from which the data is to be
imported. The specification of the description is usually just the path and file name of
the file, however you can also specify more precise information. See wfopen (p. 526)
of the Command and Programming Reference for more details on the specification of
source_description.

• The optional “type=” option may be used to specify a source type. For the most part,
you should not need to specify a “type=” option as EViews will automatically deter-
mine the type from the filename. The following table summaries the various source
formats and along with the corresponding “type=” keywords:

l Loop repeatedly over the list of values as many times as it
takes to fill the object.

o=integer
(default=1)

Fill the object from the specified element. Default is the
first element.

b=arg
(default=“c”)

Matrix fill order: “c” (fill the matrix by column), “r” (fill
the matrix by row).

import Matrix Procs

m1 1 1
0 2

, m2 1 0
1 2

Matrix::import—397

• import_specification can be used to provide additional information about the file to be
read. The details of import_specification will depend upon the type of file being
imported.

Excel Files

The syntax for reading Excel files is:
matrix_name.import(type=excel[xml]) source_description [table_description] [vari-

ables_description]

The following table_description elements may be used when reading Excel data:

• “range = arg”, where arg is a range of cells to read from the Excel workbook, follow-
ing the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the
worksheet name is omitted, the cell range is assumed to refer to the currently active
sheet. If only a top left cell is provided, a bottom right cell will be chosen automati-
cally to cover the range of non-empty cells adjacent to the specified top left cell. If
only a sheet name is provided, the first set of non-empty cells in the top left corner of
the chosen worksheet will be selected automatically. As an alternative to specifying
an explicit range, a name which has been defined inside the excel workbook to refer
to a range or cell may be used to specify the cells to read.

• “byrow”, transpose the incoming data. This option allows you to read files where the
series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w”(EViews automatic detection). This option is rarely required.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

 Option Keywords

Excel (through 2003) “excel”

Excel 2007 (xml) “excelxml”

HTML “html”

Text / ASCII “text”

398—Chapter 1. Object Reference

• “scan=[int| all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the data (default is 1). This
option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the data (default is last observation
of the file). This option may be used to read only part of the file, which may be useful
for testing.

Excel Examples

matrix_name.import "c:\data files\data.xls"

loads the active sheet of DATA.XLSX into the MATRIX_NAME matrix object.

matrix_name.import "c:\data files\data.xls" range="GDP data"

reads the data contained in the “GDP data” sheet of “Data.XLS” into the MATRIX_NAME
object.

HTML Files

The syntax for reading HTML pages is:
matrix_name.import(type=html) source_description [table_description] [variables_-

description]

The following table_description elements may be used when reading an HTML file or page:

• “table = arg”, where arg specifies which HTML table to read in an HTML file/page
containing multiple tables.

When specifying arg, you should remember that tables are named automatically fol-
lowing the pattern “Table01”, “Table02”, “Table03”, etc. If no table name is specified,
the largest table found in the file will be chosen by default. Note that the table num-
bering may include trivial tables that are part of the HTML content of the file, but
would not normally be considered as data tables by a person viewing the page.

• “skip = int”, where int is the number of rows to discard from the top of the HTML
table.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any

Matrix::import—399

of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w”(EViews automatic detection). This option is rarely used.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

HTML Examples

mat1.import "c:\data.html"

loads into the MAT1 matrix object the data located in the HTML file “Data.HTML” located
on the C:\ drive

forexmat.import(type=html) "http://www.tradingroom.com.au/apps/

mkt/forex.ac" colhead=3

loads into a matrix object called FOREXMAT the data with the given URL located on the
website site “http://www.tradingroom.com.au”. The column header is set to three rows.

Text and Binary Files

The syntax for reading text or binary files is:
matrix_name.import(type=arg) source_description [table_description] [variables_de-

scription]

If a table_description is not provided, EViews will attempt to read the file as a free-format
text file. The following table_description elements may be used when reading a text or
binary file:

• “ftype = [ascii|binary]” specifies whether numbers and dates in the file are stored in
a human readable text (ASCII), or machine readable (Binary) form.

• “rectype = [crlf|fixed|streamed]” describes the record structure of the file:

“crlf”, each row in the output table is formed using a fixed number of lines from
the file (where lines are separated by carriage return/line feed sequences). This is
the default setting.

“fixed”, each row in the output table is formed using a fixed number of charac-
ters from the file (specified in “reclen= arg”). This setting is typically used for
files that contain no line breaks.

400—Chapter 1. Object Reference

“streamed”, each row in the output table is formed by reading a fixed number of
fields, skipping across lines if necessary. This option is typically used for files that
contain line breaks, but where the line breaks are not relevant to how rows from
the data should be formed.

• “reclines =int”, number of lines to use in forming each row when “rectype=crlf”
(default is 1).

• “reclen=int”, number of bytes to use in forming each row when “rectype=fixed”.

• “recfields=int”, number of fields to use in forming each row when “rec-
type=streamed”.

• “skip=int”, number of lines (if rectype is “crlf”) or bytes (if rectype is not “crlf”) to
discard from the top of the file.

• “comment=string“, where string is a double-quoted string, specifies one or more
characters to treat as a comment indicator. When a comment indicator is found,
everything on the line to the right of where the comment indicator starts is ignored.

• “emptylines=[keep|drop]”, specifies whether empty lines should be ignored
(“drop”), or treated as valid lines (“keep”) containing missing values. The default is
to ignore empty lines.

• “tabwidth=int”, specifies the number of characters between tab stops when tabs are
being replaced by spaces (default=8). Note that tabs are automatically replaced by
spaces whenever they are not being treated as a field delimiter.

• “fieldtype=[delim|fixed|streamed|undivided]”, specifies the structure of fields within
a record:

“Delim”, fields are separated by one or more delimiter characters

“Fixed”, each field is a fixed number of characters

“Streamed”, fields are read from left to right, with each field starting immediately
after the previous field ends.

“Undivided”, read entire record as a single series.

• “quotes=[single|double|both|none]”, specifies the character used for quoting fields,
where “single” is the apostrophe, “double” is the double quote character, and “both”
means that either single or double quotes are allowed (default is “both”). Characters
contained within quotes are never treated as delimiters.

• “singlequote“, same as “quotes = single”.

• “delim=[comma|tab|space|dblspace|white|dblwhite]”, specifies the character(s) to
treat as a delimiter. “White” means that either a tab or a space is a valid delimiter. You
may also use the abbreviation “d=” in place of “delim=”.

Matrix::import—401

• “custom="arg1"”, specifies custom delimiter characters in the double quoted string.
Use the character “t” for tab, “s” for space and “a” for any character.

• “mult=[on|off]”, to treat multiple delimiters as one. Default value is “on” if “delim”
is “space”, “dblspace”, “white”, or “dblwhite”, and “off” otherwise.

• “endian = [big|little]”, selects the endianness of numeric fields contained in binary
files.

• “string = [nullterm|nullpad|spacepad]”, specifies how strings are stored in binary
files. If “nullterm”, strings shorter than the field width are terminated with a single
zero character. If “nullpad”, strings shorter than the field width are followed by extra
zero characters up to the field width. If “spacepad”, strings shorter than the field
width are followed by extra space characters up to the field width.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

A central component of the table_description element is the format statement. You may
specify the data format using the following table descriptors:

• Fortran Format:

fformat=([n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)

where Type specifies the underlying data type, and may be one of the following,

I - integer

F - fixed precision

E - scientific

A - alphanumeric

X - skip

and n1, n2, ... are the number of times to read using the descriptor (default=1). More
complicated Fortran compatible variations on this format are possible.

• Column Range Format:

rformat="[n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)"

where optional type is “$” for string or “#” for number, and n1, n2, n3, n4, etc. are the
range of columns containing the data.

• C printf/scanf Format:

cformat="fmt"

where fmt follows standard C language (printf/scanf) format rules.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

402—Chapter 1. Object Reference

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w”(EViews automatic detection). This option is rarely used.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

Text and Binary File Examples (.txt, .csv, etc.)

mat2.import c:\data.csv skip=5

reads “Data.CSV” into a MAT2, skipping the first 5 rows.

matrix01.import(type=text, name=matrix01) c:\date.txt delim=comma

loads the comma delimited data DATE.TXT into the MATRIX01 matrix object.

Display or change the label view of a matrix, including the last modified date and display
name (if any).

As a procedure, label changes the fields in the matrix label.

Syntax
matrix_name.label

matrix_name.label(options) [text]

Options

The first version of the command displays the label view of the matrix. The second version
may be used to modify the label. Specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared.

label Matrix Views | Matrix Procs

c Clears all text fields in the label.

d Sets the description field to text.

Matrix::makepcomp—403

Examples

The following lines replace the remarks field of M1 with “Data from CPS 1988 March File”:

m1.label(r)

m1.label(r) Data from CPS 1988 March File

To append additional remarks to M1, and then to print the label view:

m1.label(r) Log of hourly wage

m1.label(p)

To clear and then set the units field, use:

m1.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Matrix::displayname (p. 395).

Save the scores from a principal components analysis of the series in a matrix.

Syntax
matrix_name.makepcomp(options) output_list

where the output_list is a list of names identifying the saved components. EViews will save
the first components corresponding to the elements in output_list, up to the total num-
ber of series in the group.

Options

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

makepcomp Matrix Procs

scale=arg
(default=“norm-
load”)

Diagonal matrix scaling of the loadings and the scores: nor-
malize loadings (“normload”), normalize scores (“norm-
scores”), symmetric weighting (“symmetric”), user-
specified (arg=number).

k k

404—Chapter 1. Object Reference

Covariance Options

Examples
mat1.makepcomp comp1 comp2 comp3

saves the first three principal components (in normalized loadings form) to the workfile.
The components will have variances that are proportional to the eigenvalues.

cpnorm Compute the normalization for the score so that cross-
products match the target (by default, EViews chooses a
normalization scale so that the moments of the scores
match the target).

eigval=vec_name Specify name of vector to hold the saved the eigenvalues in
workfile.

eigvec=mat_name Specify name of matrix to hold the save the eigenvectors in
workfile.

prompt Force the dialog to appear from within a program.

cov=arg
(default=“corr”)

Covariance calculation method: ordinary (Pearson product
moment) covariance (“cov”), ordinary correlation (“corr”),
Spearman rank covariance (“rcov”), Spearman rank cor-
relation (“rcorr”), uncentered ordinary correlation
(“ucorr”). Note that Kendall’s tau measures are not valid
methods.

wgt=name
(optional)

Name of vector containing weights. The number of rows of
the weight vector should match the number of rows in the
original matrix.

wgtmethod=arg
(default = “sstdev”

Weighting method: frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations where
“weights=” is specified. Weights for rank correlation and
Kendall’s tau calculations are always frequency weights.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
accounting for the mean (for centered specifications) and
any partial conditioning variables.
The default behavior in these cases is to perform no adjust-
ment (e.g. – compute sample covariance dividing by
rather than).

n
n k–

Matrix::matrix—405

mat1.makepcomp(scale=normscore) comp1 comp2 comp3

normalizes the scores so that the resulting series have variances that are equal to 1.

You may change the scaling for the normalized components so that the cross-products equal
1, using the cpnorm option:

mat1.makepcomp(scale=normscore, cpnorm) comp1 comp2 comp3

Cross-references

See “Saving Component Scores,” beginning on page 597 of User’s Guide I for further discus-
sion. See Matrix::pcomp (p. 406) for tools to display the principal components results for
the matrix.

Declare and optionally initializes a matrix object.

Syntax
matrix(r, c) matrix_name[=assignment]

The matrix keyword is followed by the name you wish to give the matrix. matrix also
takes an optional argument specifying the row r and column c dimension of the matrix.
Once declared, matrices may be resized by repeating the matrix command using the origi-
nal name.

You may combine matrix declaration and assignment. If there is no assignment statement,
the matrix will initially be filled with zeros.

You should use sym for symmetric matrices.

Examples
matrix mom

declares a matrix named MOM with one element, initialized to zero.

matrix(3,6) coefs

declares a 3 by 6 matrix named COEFS, filled with zeros.

Cross-references

See Chapter 11. “Matrix Language,” beginning on page 261 of the Command and Program-
ming Reference for further discussion.

See “Rowvector” (p. 507) and “Vector” (p. 885) and “Sym” (p. 709) for full descriptions of
the various matrix objects.

matrix Matrix Declaration

406—Chapter 1. Object Reference

Push updates to OLE linked objects in open applications.

Syntax
matrix_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Principal components analysis of the columns in a matrix.

Syntax

There are two forms of the pcomp command. The first form, which applies when displaying
eigenvalue table output or graphs of the ordered eigenvalues, has only options and no com-
mand argument.

matrix_name.pcomp(options)

The second form, which applies to the graphs of component loadings, component scores,
and biplots, uses the optional argument to determine which components to plot. In this
form:

matrix_name.pcomp(options) [graph_list]

where the [graph_list] is an optional list of integers and/or vectors containing integers iden-
tifying the components to plot. Multiple pairs are handled using the method specified in the
“mult=” option.

If the list of component indices omitted, EViews will plot only first and second components.
Note that the order of elements in the list matters; reversing the order of two indices reverses
the axis on which each component is displayed.

olepush Matrix Procs

pcomp Matrix Views

Matrix::pcomp—407

Options

out=arg
(default=“table”)

Output: table of eigenvalue and eigenvector results
(“table”), graphs of ordered eigenvalues (“graph”), graph
of the eigenvectors (“loadings”), graph of the component
scores (“scores”), biplot of the loadings and scores
(“biplot”).
Note: when specifying the eigenvalue graph
(“out=graph”), the option keywords “scree” (scree graph),
“diff” (difference in successive eigenvalues), and “cpro-
port” (cumulative proportion of total variance) may be
included to control the output. By default, EViews will dis-
play the scree graph. If you may one or more the three key-
words, EViews will construct the graph using only the
specified types.

n=integer Maximum number of components to retain when present-
ing table (“out=table”) or eigenvalue graph
(“out=graph”) results.
The default is to set to the number of variables.
EViews will retain the minimum number satisfying any of:
“n=”, “mineig=” or “cproport=”.

mineig=arg
(default=0)

Minimum eigenvalue threshold value: we retain compo-
nents with eigenvalues that are greater than or equal to the
threshold.
EViews will retain the minimum number satisfying any of:
“n=”, “mineig=” or “cproport=”.

cproport=arg
(default=1)

Cumulative proportion threshold value: we retain , the
number of components required for the sum of the first
eigenvalues exceeds the specified value for the cumulative
variance explained proportion.
EViews will retain the minimum number satisfying any of:
“n=”, “mineig=” or “cproport=”.

eigval=vec_name Specify name of vector to hold the saved the eigenvalues in
workfile.

eigvec=mat_name Specify name of matrix to hold the save the eigenvectors in
workfile.

prompt Force the dialog to appear from within a program.

p Print results.

n

k
k

408—Chapter 1. Object Reference

Covariance Options

Graph Options

cov=arg
(default=“cov”)

Covariance calculation method: ordinary (Pearson product
moment) covariance (“cov”), ordinary correlation (“corr”),
Spearman rank covariance (“rcov”), Spearman rank cor-
relation (“rcorr”), Kendall’s tau-b (“taub”), Kendall’s tau-a
(“taua”), uncentered ordinary covariance (“ucov”), uncen-
tered ordinary correlation (“ucorr”).

wgt=name
(optional)

Name of vector containing weights. The number of rows of
the weight vector should match the number of rows in the
original matrix.

wgtmethod=arg
(default = “sstdev”

Weighting method: frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations where
“weights=” is specified. Weights for rank correlation and
Kendall’s tau calculations are always frequency weights.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
accounting for the mean (for centered specifications) and
any partial conditioning variables.
The default behavior in these cases is to perform no adjust-
ment (e.g. – compute sample covariance dividing by
rather than).

scale=arg,
(default=“norm-
load”)

Diagonal matrix scaling of the loadings and the scores: nor-
malize loadings (“normload”), normalize scores (“norm-
scores”), symmetric weighting (“symmetric”), user-
specified (arg=number).

mult =arg
(default=“first”)

Multiple series handling: plot first against remainder
(“first”), plot as x-y pairs (“pair”), lower-triangular plot
(“lt”).

nocenter Do not center graphs around the origin. By default, EViews
centers biplots around (0, 0).

labels=arg,
(default=“outlier”)

Observation labels for the scores: outliers only (“outlier”),
all points (“all”), none (“none”).

n
n k–

Matrix::pcomp—409

Examples
freeze(tab1) mat1.pcomp(method=corr, eigval=v1, eigvec=m1)

stores the table view of the eigenvalues and eigenvectors of MAT1 in a table object named
TAB1, the eigenvalues in a vector named V1, and the eigenvectors in a matrix named M1.

mat1.pcomp(method=cov, out=graph)

displays the scree plot of the ordered eigenvalues computed from the covariance matrix.

mat1.pcomp(method=rcorr, out=biplot, scale=normscores)

displays a biplot where the scores are normalized to have variances that equal the eigenval-
ues of the Spearman correlation matrix computed for the series in MAT1.

Cross-references

See “Principal Components” on page 590 of User’s Guide I for further discussion. See also
“Covariance Analysis,” beginning on page 572 of User’s Guide I for discussion of the prelim-
inary computation.

Note that this view analyzes the eigenvalues and eigenvectors of a covariance (or other
association) matrix computed from the series in a group or the columns of a matrix. You
may use Sym::eigen (p. 719) to examine the eigenvalues of a symmetric matrix.

labelprob=number Probability value for determining whether a point is an out-
lier according to the chi-square tests based on the squared
Mahalanbois distance between the observation and the
sample means (when using the “labels=outlier” option).

autoscale=arg Scale factor applied to the automatically specified loadings
when displaying both loadings and scores). The default is
to let EViews auto-choose a scale or to specify “user-
scale=” to scale the original loadings.

userscale=arg Scale factor applied to the original loadings when display-
ing both loadings and scores). The default is to let EViews
auto-choose a scale, or to specify “autoscale=” to scale the
automatically scaled loadings.

cpnorm Compute the normalization for the score so that cross-
products match the target (by default, EViews chooses a
normalization scale so that the moments of the scores
match the target).

410—Chapter 1. Object Reference

Import data from a foreign disk file into a matrix.

(This is a deprecated method of importing into a matrix. See Matrix::import (p. 396) for
the currently supported method.)

May be used to import data into an existing workfile from a text, Excel, or Lotus file on disk.

Syntax
matrix_name.read(options) [path\]file_name

You must supply the name of the source file. If you do not include the optional path specifi-
cation, EViews will look for the file in the default directory. Path specifications may point to
local or network drives. If the path specification contains a space, you may enclose the
entire expression in double quotation marks.

Options
File type options

If you do not specify the “t” option, EViews uses the file name extension to determine the
file type. If you specify the “t” option, the file name extension will not be used to determine
the file type.

Options for ASCII text files

read Matrix Procs

t=dat, txt ASCII (plain text) files.

t=wk1, wk3 Lotus spreadsheet files.

t=xls Excel spreadsheet files.

t Read data organized by column (transposed). Default is to
read by row.

na=text Specify text for NAs. Default is “NA”.

d=t Treat tab as delimiter (note: you may specify multiple
delimiter options). The default is “d=c” only.

d=c Treat comma as delimiter.

d=s Treat space as delimiter.

d=a Treat alpha numeric characters as delimiter.

custom =
symbol

Specify symbol/character to treat as delimiter.

mult Treat multiple delimiters as one.

Matrix::read—411

Options for spreadsheet (Lotus, Excel) files

Examples
m1.read(t=dat,na=.) a:\mydat.raw

reads data into matrix M1 from an ASCII file MYDAT.RAW in the A: drive. The data in the
file are listed by row, and the missing value NA is coded as a “.” (dot or period).

m1.read(t,a2,s=sheet3) cps88.xls

reads data into matrix M1 from an Excel file CPS88 in the default directory. The data are
organized by column (transposed), the upper left data cell is A2, and the data is read from a
sheet named SHEET3.

m2.read(a2, s=sheet2) "\\network\dr 1\cps91.xls"

reads the Excel file CPS91 into matrix M2 from the network drive specified in the path.

Cross-references

See “Importing Data” on page 146 of User’s Guide I for a discussion and examples of import-
ing data from external files.

rect (default) /
norect

[Treat / Do not treat] file layout as rectangular.

skipcol =
integer

Number of columns to skip. Must be used with the “rect”
option.

skiprow =
integer

Number of rows to skip. Must be used with the “rect”
option.

comment=
symbol

Specify character/symbol to treat as comment sign. Every-
thing to the right of the comment sign is ignored. Must be
used with the “rect” option.

singlequote Strings are in single quotes, not double quotes.

dropstrings Do not treat strings as NA; simply drop them.

negparen Treat numbers in parentheses as negative numbers.

allowcomma Allow commas in numbers (note that using commas as a
delimiter takes precedence over this option).

t Read data organized by column (transposed). Default is to
read by row.

letter_number
(default=“b2”)

Coordinate of the upper-left cell containing data.

s=sheet_name Sheet name for Excel 5–8 Workbooks.

412—Chapter 1. Object Reference

See also Matrix::write (p. 417).

Set the object attribute.

Syntax
alpha_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Set the column headers in a matrix object spreadsheet.

Syntax
matrix_name.setcollabels label1 label2 label3....

Follow the setcollabels command with a space delimited list of column headers. Note
that each column heading should not contain spaces, unless it is enclosed in quotes. If you
provide fewer labels than there are columns, EViews will name the remaining columns C1,
C2, etc...

Examples
mat1.setcollabels USA UK FRANCE

sets the column heading for the first column in matrix MAT1 to USA, the second to UK, and
the third to FRANCE.

setattr Matrix Procs

setcollabels Matrix Procs

Matrix::setformat—413

Cross-references

Set the display format for cells in a matrix object spreadsheet view.

Syntax
matrix_name.setformat format_arg

where format_arg is a set of arguments used to specify format settings. If necessary, you
should enclose the format_arg in double quotes.

For matrices, setformat operates on all of the cells in the matrix.

To format numeric values, you should use one of the following format specifications:

To specify a format that groups digits into thousands using a comma separator, place a “t”
after the format character. For example, to obtain a fixed number of decimal places with
commas used to separate thousands, use “ft[.precision]”.

To use the period character to separate thousands and commas to denote decimal places,
use “..” (two periods) when specifying the precision. For example, to obtain a fixed number
of characters with a period used to separate thousands, use “ct[..precision]”.

If you wish to display negative numbers surrounded by parentheses (i.e., display the num-
ber -37.2 as “(37.2)”), you should enclose the format string in “()” (e.g., “f(.8)”).

Examples

To set the format for all cells in the matrix to fixed 5-digit precision, simply provide the for-
mat specification:

matrix1.setformat f.5

Other format specifications include:

matrix1.setformat f(.7)

matrix1.setformat e.5

setformat Matrix Procs

g[.precision] significant digits

f[.precision] fixed decimal places

c[.precision] fixed characters

e[.precision] scientific/float

p[.precision] percentage

r[.precision] fraction

414—Chapter 1. Object Reference

Cross-references

See Matrix::setwidth (p. 416), Matrix::setindent (p. 414) and Matrix::setjust
(p. 414) for details on setting spreadsheet widths, indentation and justification.

Set the display indentation for cells in a matrix object spreadsheet view.

Syntax
matrix_name.setindent indent_arg

where indent_arg is an indent value specified in 1/5 of a width unit. The width unit is com-
puted from representative characters in the default font for the current spreadsheet (the
EViews spreadsheet default font at the time the spreadsheet was created), and corresponds
roughly to a single character. Indentation is only relevant for non-center justified cells.

The default value is taken from the Global Defaults at the time the spreadsheet view is cre-
ated.

For matrices, setindent operates on all of the cells in the matrix.

Examples

To set the indentation for all the cells in a matrix object:

matrix1.setindent 2

Cross-references

See Matrix::setwidth (p. 416) and Matrix::setjust (p. 414) for details on setting
spreadsheet widths and justification.

Set the display justification for cells in a matrix object spreadsheet view.

Syntax
matrix_name.setjust format_arg

where format_arg is a set of arguments used to specify format settings. You should enclose
the format_arg in double quotes if it contains any spaces or delimiters.

For matrices, setjust operates on all of the cells in the matrix.

The format_arg may be formed using the following:

setindent Matrix Procs

setjust Matrix Procs

Matrix::setrowlabels—415

You may enter one or both of the justification settings. The default settings are taken from
the Global Defaults for spreadsheet views.

Examples
mat1.setjust middle

sets the vertical justification to the middle.

mat1.setjust top left

sets the vertical justification to top and the horizontal justification to left.

Cross-references

See Matrix::setwidth (p. 416) and Matrix::setindent (p. 414) for details on setting
spreadsheet widths and indentation.

Set the row headers in a matrix object spreadsheet.

Syntax
matrix_name.setrowlabels label1 label2 label3....

Follow the setrowlabels command with a space delimited list of row headers. Note that
each row heading should not contain spaces, unless it is enclosed in quotes. If you provide
fewer labels than there are rows, EViews will name the remaining rows R1, R2, etc...

Examples
mat1.setrowlabels USA UK FRANCE

sets the row heading for the first row in matrix MAT1 to USA, the second to UK, and the
third to FRANCE.

top / middle /
bottom]

Vertical justification setting.

auto / left / cen-
ter / right

Horizontal justification setting. “Auto” uses left justifica-
tion for strings, and right for numbers.

setrowlabels Matrix Procs

416—Chapter 1. Object Reference

Cross-references

Set the column width for all columns in a matrix object spreadsheet.

Syntax
matrix_name.setwidth width_arg

where width_arg specifies the width unit value. The width unit is computed from represen-
tative characters in the default font for the current spreadsheet (the EViews spreadsheet
default font at the time the spreadsheet was created), and corresponds roughly to a single
character. width_arg values may be non-integer values with resolution up to 1/10 of a width
unit.

Examples
mat1.setwidth 12

sets the width of all columns in matrix MAT1 to 12 width units.

Cross-references

See Matrix::setindent (p. 414) and Matrix::setjust (p. 414) for details on setting
spreadsheet indentation and justification.

Spreadsheet view of a matrix object.

Syntax
matrix_name.sheet(options)

Options

Examples
mat1.sheet(p)

displays and prints the spreadsheet view of matrix MAT1.

setwidth Matrix Procs

sheet Matrix Views

p Print the spreadsheet view.

Matrix::write—417

Descriptive statistics.

Computes and displays a table of means, medians, maximum and minimum values, stan-
dard deviations, and other descriptive statistics of each column in the matrix.

Syntax
matrix_name.stats(options)

Options

Examples
mat1.stats

displays the descriptive statistics view of matrix MAT1.

Cross-references

See “Descriptive Statistics & Tests” on page 402 and “Descriptive Statistics” on page 572 of
User’s Guide I for a discussion of descriptive statistics views.

Write EViews data to a text (ASCII), Excel, or Lotus file on disk.

Creates a foreign format disk file containing EViews data. May be used to export EViews
data to another program.

Syntax
matrix_name.write(options) [path\filename]

Follow the name of the matrix object by a period, the keyword, and the name for the output
file. The optional path name may be on the local machine, or may point to a network drive.
If the path name contains spaces, enclose the entire expression in double quotation marks.
The entire matrix will be exported.

Note that EViews cannot, at present, write into an existing file. The file that you select will,
if it exists, be replaced.

stats Matrix Views

p Print the stats table.

write Matrix Procs

418—Chapter 1. Object Reference

Options

Options are specified in parentheses after the keyword and are used to specify the format of
the output file.

File type

If you omit the “t=” option, EViews will determine the type based on the file extension.
Unrecognized extensions will be treated as ASCII files. For Lotus and Excel spreadsheet files
specified without the “t=” option, EViews will automatically append the appropriate exten-
sion if it is not otherwise specified.

ASCII text files

Spreadsheet (Lotus, Excel) files

Examples
m1.write(t=txt,na=.) a:\dat1.csv

Writes the matrix M1 into an ASCII file named DAT1.CSV on the A: drive. NAs are coded as
“.” (dot).

m1.write(t=txt,na=.) dat1.csv

writes the same file in the default directory.

m1.write(t=xls) "\\network\drive a\results"

saves the contents of M1 in an Excel file “Results.xls” in the specified directory.

Cross-references

See “Exporting to a Spreadsheet or Text File” on page 163 of User’s Guide I for a discussion.

t=dat, txt ASCII (plain text) files.

t=wk1, wk3 Lotus spreadsheet files.

t=xls Excel spreadsheet files.

na=string Specify text string for NAs. Default is “NA”.

d=arg Specify delimiter (default is tab): “s” (space), “c”
(comma).

t Write by column (transpose the data). Default is to write by
row.

letter_number Coordinate of the upper-left cell containing data.

t Write by column (transpose the data). Default is to write by
row.

Matrix::write—419

See also Matrix::read (p. 410).

420—Chapter 1. Object Reference

Model

Set of simultaneous equations used for forecasting and simulation.

Model Declaration
model................... declare model object (p. 442).

Declare an object by entering the keyword model, followed by a name:

model mymod

declares an empty model named MYMOD. To fill MYMOD, open the model and edit the
specification view, or use the append view. Note that models are not used for estimation of
unknown parameters.

See also the section on model keywords in “Text View” on page 805 of User’s Guide II.

Model Views
block.................... display model block structure (p. 428).
checkbounds display details for any variables that crossed boundaries during

model solution (p. 428).
compare show the differences between scenarios for the specified series

(p. 430).
display display table, graph, or spool in object window (p. 432).
eqs view of model organized by equation (p. 434).
digraph display the model dependency graph (p. 436).
label..................... view or set label information for the model (p. 437).
msg...................... display model solution messages (p. 442).
printview.............. show enhanced display of the mode specification (p. 444).
scenlist................. display list description of the model scenarios (p. 450).
text show text showing equations in the model (p. 456).
trace..................... view of trace output from model solution (p. 456).
vars...................... view of model organized by variable (p. 459).

Model Procs
addassign assign add factors to equations (p. 423).
addinit initialize add factors (p. 424).
adjust prepare a variable for editing in the current scenario and/or update

its values using an array expression (p. 426).
addover set the active scenario add factor overrides (p. 426).
append append a line of text to a model (p. 427).
clearhist clear the contents of the history attribute (p. 429).

Model::—421

controlsolve for values of control variable so that target matches trajectory
(p. 431).

displayname..........set display name (p. 432).
drop......................drop equations for one or more endogenous variables in the model

(p. 433).
droplinkdrop linked objects from the model (p. 433).
excludespecifies (or merges) excluded series to the active scenario (p. 434).
innovsolve options for stochastic simulation (p. 436).
labelview or set label information for the model (p. 437).
makegraphmake graph object showing model series (p. 438).
makegroup............make group out of model series and display dated data table

(p. 440).
mergemerge objects into the model (p. 441).
olepushpush updates to OLE linked objects in open applications (p. 443).
overridespecifies (or merges) override series to the active scenario (p. 443).
reinclude...............removes one or more variables from the excluded variable list

(p. 445).
replacereplace the text specification for an endogenous variable in the

model with a new specification (p. 445).
replacelinkreplace a linked object with a different linked object (p. 446).
replacevarreplace all instances of a variable in the text specification of a

model with a different variable (p. 447).
revertrevert one or more overriden variables in the active scenario back to

baseline values (p. 447).
scenarioset the active, alternate, or comparison scenario (p. 448).
setattrset the value of an object attribute (p. 450).
setboundsset upper and lower boundaries for endogenous variables during

model solution (p. 451).
settracespecify the endogenous variables to be traced when solving the

model (p. 451).
solvesolve the model (p. 452).
solveoptset solve options for model (p. 453).
specdisplay the text specification view (p. 454).
stochasticstochastic solution options (p. 455).
tracespecify endogenous variables to trace (p. 456).
trackspecify endogenous variables to track (p. 457).
unlink...................break links in specification (p. 457).
updateupdate model specification (p. 458).

422—Chapter 1. Object Reference

Model Data Members
Scalar values

@bounds.............. integer containing the number of variables that crossed their
boundaries during the previous solve.

String values

@attr(“arg”) string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description string containing the Model object’s description (if available).
@detailedtype string with the object type: “MODEL”.
@displayname...... string containing the Model object’s display name. If the Model has

no display name set, the name is returned.
@name string containing the Model object’s name.
@remarks string containing the Model object’s remarks (if available).
@scenarios........... string containing a list of scenarios in the Model.
@source string containing the Model object’s source (if available).
@type string with the object type: “MODEL”.
@units string containing the Model object’s units description (if available).
@updatetime........ string representation of the time and date at which the Model was

last updated.

String values for Model variables

@addfactors[(“scenario”)] or @aflist[(“scenario”)] string containing a space delimited
list of the model’s addfactor variables in the specified scenario
(default is Actuals).

@endoglist[(“scenario”)] string containing a space delimited list of the model’s endog-
enous variables in the specified scenario (default is Actuals).

@excludelist[(“scenario”)] string containing a space delimited list of the model’s
excluded variables in the specified scenario (default is Actuals).

@exoglist[(“scenario”)] string containing a space delimited list of the model’s exoge-
nous variables in the specified scenario (default is Actuals).

@identity string containing a space delimited list of the model’s endogenous
variables determined by identities.

@overridelist[(“scenario”)] or @olist[(“scenario”)] string containing a space delimited
list of the model’s variables set as overrides in the specified sce-
nario (default is Actuals).

@linklist string containing space delimited list of all linked objects in the
model

@spec(“variable”) string containing the estimation object name or text specification of
the equation determining the specified endogenous variable, or an
empty string if “variable” is an invalid name.

Model::addassign—423

@stochastic...........string containing a space delimited list of stochastic endogenous
variables.

@varlist[(“scenario”)] string containing a space delimited list of all the model’s vari-
ables for the specified scenario (default is Actuals).

In addition to a scenario name, you may specify “@active” (in quotes) to specify the
current active scenario or “@alternate” to specify the current alternative scenario.

Model Examples

The commands:

model mod1

mod1.append y=324.35+x

mod1.append x=-234+7.3*z

mod1.solve(m=100,c=.008)

create, specify, and solve the model MOD1.

The command:

mod1(g).makegraph gr1 x y z

plots the endogenous series X, Y, and Z, in the active scenario for model MOD1.

Model Entries

The following section provides an alphabetical listing of the commands associated with the
“Model” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Assign add factors to equations.

Syntax
model_name.addassign(options) equation_spec

where equation_spec identifies the equations for which you wish to assign add factors. You
may either provide a list of endogenous variables, or you can use one of the following short-
hand keywords:

addassign Model Procs

@all All equations.

@stochastic All stochastic equations (no identities).

@identity All identities.

424—Chapter 1. Object Reference

The options identify the type of add factor to be used, and control the assignment behavior
for equations where you have previously assigned add factors. addassign may be called
multiple times to add different types of add factors to different equations. addassign may
also be called to remove existing add factors.

Options

Examples
m1.addassign(v) @all

assigns a variable shift to all equations in the model.

m1.addassign(c, i) @stochastic

changes the stochastic equation add factors to intercept shifts.

m1.addassign(v) @stochastic

m1.addassign(v) y1 y2 y2

m1.addassign(i) @identity

assigns variable shifts to the stochastic equations and the equations for Y1, Y2, and Y3, and
assigns intercept shifts to the identities.

Cross-references

See “Using Add Factors” on page 814 of User’s Guide II. See also Chapter 42. “Models,”
beginning on page 781 of User’s Guide II for a general discussion of models.

See Model::addinit (p. 424).

Initialize add factors.

Syntax
model_name.addinit(options) equation_spec

i Intercept shifts (default).

v Variable shift.

n None—remove add factors.

c Change existing add factors to the specified type—if the “c”
option is not used, only newly assigned add factors will be
given the specified type.

addinit Model Procs

Model::addinit—425

where equation_spec identifies the equations for which you wish to initialize the add factors.
You may either provide a list of endogenous variables, or you may use one of the following
shorthand keywords:

The options control the type of initialization and the scenario for which you want to perform
the initialization. addinit may be called multiple times to initialize various types of add
factors in the different scenarios.

Options

Examples
m1.addinit(v=b) @all

sets all of the add factors in the active scenario to the values of the baseline.

m1.addinit(v=z) @stochastic

m1.addinit(v=n) y1 y1 y2

first sets the active scenario stochastic equation add factors to zero, and then sets the Y1,
Y2, and Y3 equation residuals to zero (evaluated at actuals).

m1.addinit(s=b, v=z) @stochastic

sets the baseline scenario add factors to zero.

Cross-references

See “Using Add Factors” on page 814 of User’s Guide II. See also Chapter 42. “Models,” on
page 781 of User’s Guide II for a general discussion of models.

See also Model::addassign (p. 423).

@all All equations

@stochastic All stochastic equations (no identities)

@identity All identities

v=arg
(default=“z”)

Initialize add factors: “z” (set add factor values to zero),
“n” (set add factor values so that the equation has no resid-
ual when evaluated at actuals), “b” (set add factors to the
values of the baseline; override=actual), “a” (set add fac-
tor values so that the equation has no residual when evalu-
lated at actives).

s=arg
(default=“a”)

Scenario selection: “a” (set active scenario add factors),
“b” (set baseline scenario/actuals add factors), “o” (set
active scenario override add factors).

426—Chapter 1. Object Reference

Add override.

Set the active scenario add factor overrides.

Syntax
model.addover(options)

Examples

Examples
mod1.addover(o)

overrides the active scenario’s add factors.

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of specifying and
solving models in EViews. See also Model::append (p. 427), Model::merge (p. 441) and
Model::solve (p. 452).

Prepare a variable for editing in the current scenario and/or update its values using an
array expression.

Syntax
model_name.adjust(options) ser [array expression]...

The adjust proc allows you to adjust the values of the series ser in the current scenario. If
the series is an exogenous variable, it will be added to the override list. If the series is an
endogenous variable it will be added to both the excluded list and the override list.

If an array expression is provided, the overridden series will be modified according to the
expression specification. Note that a transform may optionally be provided as part of the
variable name using the syntax: transform(varname).

addover Model Procs

o Use scenario add factors (default is to use the baseline fac-
tors)

nc Do not create active scenario add factor series if they do
not already exist (default is to create the series if neces-
sary).

adjust Model Procs

Model::append—427

If you use an array expression which applies an operator to existing series values the over-
riden series must already exist in the workfile, unless the init option is used.

Options

Examples
mod1.adjust gdp

simply sets the variable GDP as an overriden variable in the current scenario. If GDP is
endogenous, it is also added to the exclude list.

mod1.scenario(a=_1) "sim1"

mod1.adjust gdp =+10

sets the current scenario as “SIM1”, with an alias of _1, and then overrides the variable
GDP, setting the override series, GDP_1, equal to the previous values in GDP_1 plus 10.

mod1.scenario(a=_1) "sim1"

mod1.adjust(init="sim2") gdp =+10

performs the same operation, but rather than using the previous values in GDP_1 for the
array expression, the values in GDP_2 (corresponding to the scenario SIM2) are used.

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of specifying and
solving models in EViews. See also, the discussion in “Specifying Scenarios” on page 810 of
User’s Guide II.

See Model::scenario (p. 448) and Model::compare (p. 430).

Append a specification line to a model.

Syntax
model_name.append text

Type the text to be added after the append keyword.

Examples
model macro2

init[=scenario] Initialize the overridden variable with values from the
specified scenario before applying any adjustment. If no
scenario name is provided, the variable is initialized with
values from the base scenario.

append Model Procs

428—Chapter 1. Object Reference

macro2.merge eq_m1

macro2.merge eq_gdp

macro2.append assign @all f

macro1.append @trace gdp

macro2.solve

The first line declares a model object. The second and third lines merge existing equations
into the model. The fourth and fifth line appends an assign statement and a trace of GDP to
the model. The last line solves the model.

Cross-references

For details, see “Models” on page 781 of User’s Guide II.

Display the model block structure view.

Show the block structure of the model, identifying which blocks are recursive and which
blocks are simultaneous.

Syntax
model_name.checkbounds(options)

Options

Cross-references

See “Block Structure View” on page 804 of User’s Guide II for details. Chapter 42. “Models,”
on page 781 of User’s Guide II provides a general discussion of models.

See also Model::eqs (p. 434), Model::text (p. 456) and Model::vars (p. 459) for alter-
native representations of the model.

Display details for variables that crossed boundaries during model solution.

Show the block structure of the model, identifying which blocks are recursive and which
blocks are simultaneous.

Syntax
model_name.block(options)

block Model Views

p Print the block structure view.

checkbounds Model Views

Model::clearhist—429

Options

Cross-references

See “Boundaries” on page 829 of User’s Guide II for details.

See also Model::setbounds (p. 451)l.

Clear the contents of the history attribute for model objects.

Removes the model’s history attribute, as shown in the label view of the model.

Syntax
model_name.clearhist

Examples
m1.clearhist

m1.label

The first line removes the history from the model M1, and the second line displays the label
view of M1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Model::label (p. 437).

p Print the view.

clearhist Model Procs

430—Chapter 1. Object Reference

Produce a table showing the differences between scenarios for the specified series.

Syntax
model_name.compare(options) model_vars

The compare view allows you to quickly compare the results from different scenarios (or the
actual values) following a model solve. By default the output table will show any of the
series specified in model_vars whose difference between the current active and comparison
scenarios exceeds a specified tolerance. You may optionally use the “patt=” option to spec-
ify a separate set of comparison series from those in the current comparison scenario.

The list of model_vars may include the following special keywords:

Options

Examples
mod1.scenario(a="_0") "scenario0"

mod1.scenario(c, a="_1") "scenario1"

mod1.solve(a=t)

mod1.compare gdp unemp infl

compare Model Views

@all All model variables.

@endog All endogenous model variables.

@exog All exogenous model variables.

@addfactor All add factor variables in the model.

@overides All currently overridden exogenous variables

@excludes All currently overridden endogenous variables

tol=num Set the tolerance level for comparing the series. Any differ-
ences below the tolerance will not be reported. Default
value is 0.001.

patt=”pattern” Set the comparison set of series. Without this option,
EViews will build the comparison set based upon the cur-
rent comparison scenario. This option allows you to select
a different set of series using pattern matching. pattern
should contain an * to represent the variable names given
in model_vars.

Model::control—431

The first two lines of this example set the current active scenario “Scenario0”, and set the
comparison scenario to “Scenario1”, with a name alias of “_1”. The model is then solved for
both scenarios. The compare command is used to produce a table detailing the differences
between the two scenarios for the three variables GDP, UNEMP and INFL. Any differences
between the solved series GDP_0 and GDP_1, UNEMP_0 and UNEMP_1 or INFL_0 and
INFL_1 greater than 0.001 will be shown in the table.

mod1.compare(tol=0.00001) gdp unemp infl

produces the same table, but uses a lower tolerance rate (of 0.00001).

mod1.compare @endog

produces a table comparing all endogenous variables in the model, not just GDP, UNEMP
and INFL.

mod1.compare(patt="*_2") gdp unemp infl

produces a table that compares GDP_0 with GDP_2, UNEMP_0 with UNEMP_2 and INFL_0
with INFL_2, even though the current comparison scenario is still “Scenario1”.

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of specifying and
solving models in EViews. See also, the discussion in “Specifying Scenarios” on page 810 of
User’s Guide II.

See Model::scenario (p. 448) and Model::adjust (p. 426).

Solve for values of control variable so that the target series matches a trajectory.

Syntax
model_name.control control_var target_var trajectory

Specify the name of the control variable, followed by the target variable, and then the trajec-
tory you wish to achieve for the target variable. EViews will solve for the values of the con-
trol so that the target equals the trajectory over the current workfile sample.

Examples
m1.control myvar targetvar trajvar

will put into MYVAR the values that lead the solution of the model for TARGETVAR to
match TRAJVAR for the workfile sample.

control Model Procs

432—Chapter 1. Object Reference

Cross-references

See “Solve Control for Target” on page 833 of User’s Guide II. See Chapter 42. “Models,” on
page 781 of User’s Guide II for a general discussion of models.

Display table, graph, or spool output in the model object window.

Display the contents of a table, graph, or spool in the window of the model object.

Syntax
model_name.display object_name

Examples
model1.display tab1

Display the contents of the table TAB1 in the window of the object MODEL1.

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

Display name for model objects.

Attaches a display name to a model object which may be used in place of the standard
model object name.

Syntax
model_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in model object names.

Examples
mod1.displayname Sept 2006

mod1.label

The first line attaches a display name “Sept 2006” to the model object MOD1, and the sec-
ond line displays the label view of MOD1, including its display name.

display Model Views

displayname Model Procs

Model::droplink—433

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Model::label (p. 437).

Drop equations for one or more endogenous variables in the model.

Syntax
model_name.drop(options) var_list

Where var_list is a space delimited list of variables whose equations will be dropped from
the model. By default if a variable is contained in a multi-equation object, such as a system,
VAR or model, the entire object will be dropped, which will also drop the specification for
the other variables defined in that object.

Options

Examples
m1.drop gdp

will drop the equation/object which has GDP as a dependent variable from the model M1.

 m2.drop(nomult) gdp unemp

will drop the equations which have GDP or UNEMP as dependent variables. Systems, VARs,
models, etc… will not be dropped.

Cross-references

Drop linked objects from the model.

Syntax
model_name.droplink(options) obj_list

Where obj_list is a space delimited list of objects to be dropped from the model.

drop Model Procs

nomult Do not drop multi-equation objects

noerr Suppress variable not found errors

droplink Model Procs

434—Chapter 1. Object Reference

Options

Examples
m1.droplink eq1 mod1

will drop the equation EQ1 and the model MOD1 from the model M1.

Cross-references

Note that endog and makeendog are no longer supported for model objects. See instead,
Model::makegroup (p. 440).

View of model organized by equation.

Lists the equations in the model. This view also allows you to identify which equations are
entered by text, or by link, and to access and modify the equation specifications.

Syntax
model_name.eqs

Cross-references

See “Equation View” on page 801 of User’s Guide II for details. See Chapter 42. “Models,” on
page 781 of User’s Guide II for a general discussion of models.

See also Model::block (p. 428), Model::text (p. 456), and Model::vars (p. 459) for
alternative representations of the model.

Specifies (or merges) excluded endogenous variables in the active scenario.

Syntax
model_name.exclude(options) ser1(smpl) ser2(smpl) ...

noerr Suppress object link not found errors

endog Model Views

eqs Model Views

exclude Model Procs

Model::exclude—435

Follow the exclude keyword with the argument list containing the endogenous variables
you wish to exclude from the solution, along with an optional sample for exclusion. If a
sample is not provided, the variable will be excluded for the entire solution sample.

Options

Examples
mod1.exclude fedfunds govexp("1990:01 1995:02")

will create an exclude list containing the variables FEDFUNDS and GOVEXP. FEDFUNDS will
be excluded for the entire solution sample, while GOVEXP will only be excluded for the
specified sample.

If you then issue the command:

mod1.exclude govexp

EViews will replace the original exclude list with one containing only GOVEXP. To add
excludes to an existing list, use the “m” option:

mod1.exclude govexp

The excluded list now contains both GOVEXP and FEDFUNDS.

mod1.exclude(actexist=t,m)

instructs EViews to keep all existing excludes (the “m” option) in the current active scenario
and in addition to exclude all endogenous variables in periods where actuals exist.

Cross-references

See the discussion in “Specifying Scenarios” on page 810 of User’s Guide II.

See also Model::override (p. 443), Model::reinclude (p. 445), and Model::solve-
opt (p. 453).

m Merge into instead of replace the existing exclude list.

actexist = arg arg may be “t” (true) or “f” (false). When true, EViews will
exclude periods for all endogenous variables where values
of the actuals exist. (Applies to all endogenous variables,
not just those explicitly listed in the proc.)

r Re-include a variable (drop from the exclude list).

436—Chapter 1. Object Reference

Display the model dependency graph.

Syntax
model_name.digraph

Examples
model1.digraph

visualizes the dependencies among the model's variables as a directed graph.

Cross-references

See “Dependency Graph View” in User’s Guide II for further details on the model depen-
dency graph.

Solve options for stochastic simulation.

Syntax
model_name.innov var1 option [var2 option, var3 option, ...]

Follow the innov keyword with a list of model variables and options. If the variable is an
endogenous variable (or add factor), it identifies a model equation and will use different
options than an exogenous variable.

Options
Options for endogenous variables

digraph Model Views

innov Model Procs

“i” or “identity” Specifies that the equation is an identity in stochastic solu-
tion.

“s” or “stochas-
tic”

Specifies that the equation is stochastic with unknown
innovation variance in stochastic solution. Note: if a value
has been previously specified in the positive_num option, it
will be kept.

positive_num Specifies that the equation is stochastic with an equation
innovation standard error equal to the positive number pos-
itive_num. Note: the innovation standard error is only rele-
vant when used with the Model::stochastic
command, with the “v=t” option set.

Model::label—437

Options for exogenous variables

Examples
usmacro.innov gdp i

specifies that the endogenous variable GDP be treated as an identity in stochastic solution.

model01.innov cons 5600 gdp i cpi s

indicates that the endogenous variable CONS is stochastic with standard error equal to 5600,
GDP is an identity, and CPI is stochastic with unknown innovation variance.

model01.innov govexp 12210

specifies that the forecast standard error of the exogenous variable GOVEXP is 12210.

Cross-references

See the discussion in “Stochastic Options” on page 824 of User’s Guide II.

See also Model::model (p. 442), Model::stochastic (p. 455), and Model::solve
(p. 452).

Display or change the label view of a model object, including the last modified date and
display name (if any).

As a procedure, label changes the fields in the model object label.

Syntax
model_name.label

model_name.label(options) [text]

Options

The first version of the command displays the label view of the model. The second version
may be used to modify the label. Specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared.

number number specifies the forecast standard error of the exoge-
nous variable. You may use “NA” to specify an unknown
(or zero) forecast error.

label Model Views | Model Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

438—Chapter 1. Object Reference

Examples

The following lines replace the remarks field of M1 with “Data from CPS 1988 March File”:

m1.label(r)

m1.label(r) Data from CPS 1988 March File

To append additional remarks to M1, and then to print the label view:

m1.label(r) Log of hourly wage

m1.label(p)

To clear and then set the units field, use:

m1.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Model::displayname (p. 432).

Note that in endog and makeendog are no longer supported for model objects. See instead,
Model::makegroup (p. 440).

Make graph object showing model series.

Syntax
model_name.makegraph(options) graph_name model_vars

where graph_name is the name of the resulting graph object, and models_vars are the names
of the series. The list of model_vars may include the following special keywords:

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

makeendog Model Procs

makegraph Model Procs

@all All model variables.

@endog All endogenous model variables.

@exog All exogenous model variables.

@addfactor All add factor variables in the model.

Model::makegraph—439

Options

Examples
mod1.makegraph(a) gr1 y1 y2 y3

creates a graph containing the model series Y1, Y2, and Y3 in the active scenario and the
actual Y1, Y2, and Y3.

mod1.makegraph(a,t=pchy) gr1 y1 y2 y3

plots the same graph, but with data displayed as 1-year percent changes.

Cross-references

See “Displaying Data” on page 835 of User’s Guide II for details. See Chapter 42. “Models,”
on page 781 of User’s Guide II for a general discussion of models.

See Model::makegroup (p. 440).

@overides All currently overridden exogenous variables

@excludes All currently overridden endogenous variables

a Include actuals.

c Include comparison scenarios.

d Include deviations.

n Do not include active scenario (by default the active sce-
nario is included).

t= trans_type
(default=level)

Transformation type: “level” (display levels in graph, “pch”
(display percent change in graph), “pcha” (display percent
change - annual rates - in graph), “pchy” (display 1-year
percent change in graph), “dif” (display 1-period differ-
ences in graph), “dify” (display 1-year differences in
graph).

s=sol_type
(default=“d”)

Solution type: “d” (deterministic), “m” (mean of stochas-
tic), “s” (mean and o2 std. dev. of stochastic), “b” (mean
and confidence bounds of stochastic).

g=grouping
(default=“v”)

Grouping setting for graphs: “v” (group series in graph by
model variable), “s” (group series in graph by scenario),
“u” (ungrouped - each series in its own graph).

440—Chapter 1. Object Reference

Make a group out of model series and display dated data table.

Syntax
model_name.makegroup(options) grp_name model_vars

The makegroup keyword should be followed by options, the name of the destination group,
and the list of model variables to be created. The options control the choice of model series,
and transformation and grouping features of the resulting dated data table view. The list of
model_vars may include the following special keywords:

Options

makegroup Model Procs

@all All model variables.

@endog All endogenous model variables.

@exog All exogenous model variables.

@addfactor All add factor variables in the model.

@overides All currently overridden exogenous variables

@excludes All currently overridden endogenous variables

a Include actuals.

c Include comparison scenarios.

d Include deviations.

r Include percentage deviations.

n Do not include active scenario (by default the active sce-
nario is included).

t= arg
(default=
“level”)

Transformation type: “level” (display levels), “pch” (per-
cent change), “pcha” (display percent change - annual
rates), “pchy” (display 1-year percent change), “dif” (dis-
play 1-period differences), “dify” (display 1-year differ-
ences).

s=arg
(default=“d”)

Solution type: “d” (deterministic), “m” (mean of stochas-
tic), “s” (mean and o2 std. dev. of stochastic), “b” (mean
and confidence bounds of stochastic).

g=arg
(default=“v”)

Grouping setting for graphs: “v” (group series in graph by
model variable), “s” (group series in graph by scenario).

Model::merge—441

Examples
model1.makegroup(a,n) group1 @endog

places all of the actual endogenous series in the group GROUP1.

Cross-references

See “Displaying Data” on page 835 of User’s Guide II for details. See Chapter 42. “Models,”
on page 781 of User’s Guide II for a general discussion of models.

See also Model::makegraph (p. 438).

Merge equations from an estimated equation, model, pool, system, or var object.

If you supply only the object’s name, EViews first searches the current workfile for the
object containing the equation. If the object is not found, EViews looks in the default direc-
tory for an equation or pool file (.DBE). If you want to merge the equations from a system
file (.DBS), a var file (.DBV), or a model file (.DBL), include the extension in the command
and an optional path when merging files. You must merge objects to a model one at a time;
merge appends the object to the equations already existing in the model.

Syntax
model_name.merge(options) object_name

Follow the keyword with a name of an object containing estimated equation(s) to merge.

Options

Examples
eq1.makemodel(mod1)

mod1.merge eq2

mod1.merge(t) c:\data\test.txt

The first line makes a model named MOD1 from EQ1. The second line merges (appends)
EQ2 to MOD1 and the third line further merges (appends) the text file TEST from the speci-
fied directory.

merge Model Procs

t Merge an ASCII text file.

442—Chapter 1. Object Reference

Declare a model object.

Syntax
model model_name

The keyword model should be followed by a name for the model. To fill the model, you may
use Model::append (p. 427) or Model::merge (p. 441).

Examples
model macro

macro.append cs = 10+0.8*y(-1)

macro.append i = 0.7*(y(-1)-y(-2))

macro.append y = cs+i+g

declares an empty model named MACRO and adds three lines to MACRO.

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of specifying and
solving models in EViews.

See also Model::append (p. 427), Model::merge (p. 441) and Model::solve (p. 452).

Display model solution messages.

Show view containing messages generated by the most recent model solution.

Syntax
model_name.msg(options)

Options

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of specifying and
solving models in EViews.

See also Model::solve (p. 452) and Model::solveopt (p. 453).

model Model Declaration

msg Model Views

p Print the model solution messages.

Model::override—443

Push updates to OLE linked objects in open applications.

Syntax
model_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Specifies (or merges) overridden exogenous variables and add factors in the active sce-
nario.

Syntax
model_name.override(options) ser1 [ser2 ser3 ...]

Follow the keyword with the argument list containing the exogenous variables or add factors
you wish to override.

Options

Examples
mod1.override fed1 add1

creates an override list containing the variables FED1 and ADD1.

If you then issue the command:

mod1.override fed1

EViews will replace the original exclude list with one containing only FED1. To add over-
rides to an existing list, use the “m” option:

modl.override(m) add1

The override list now contains both series.

olepush Model Procs

override Model Procs

m Merge into (instead of replace) the existing override list.

r Remove the variable from the override list.

444—Chapter 1. Object Reference

Cross-references

See the discussion in “Specifying Scenarios” on page 810 of User’s Guide II. See also
Chapter 42. “Models,” on page 781 of User’s Guide II for a general discussion of models.

See Model::exclude (p. 434). Model::scenario (p. 448) and Model::revert (p. 447).

Display print view of the model.

Show enhanced display of the model specification.

Syntax
model_name.printview(options)

Options

Options
mod1.printview(idents, innov)

displays the model with broken links, identities, and @innov statements.

mod1.printview(idents, innov, signif=3)

displays numeric values with three significant digits.

Cross-references

See “Print View” on page 806 of User’s Guide II for a discussion

printview Model Views

keeplink Do not display the underlying equations in linked estima-
tion objects (default is to break links in the display).

idents Display identities.

innov Display @innov statements.

addfact Display add factors.

comments Display comments.

dispnames Use display names

decimals=
integer

Display numbers using the specified number of decimal
digits.

signif= integer Display numbers using the specified number of significant
digits.

p Print the model solution messages.

Model::replace—445

See also Model::text (p. 456).

Removes one or more variables from the excluded variable list.

Syntax
Model_name.reinclude(options) ser1 ser2

The specified variables are removed from the current active scenario’s exclude list, and gen-
erates an add factor for each variable so that the solution for the current scenario remains
unchanged.

Options

Examples
M1.reinclude x z

removes both X and Z from the exclude list in the current scenario, and creates add factors
for each.

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of specifying and
solving models in EViews.

See also Model::exclude (p. 434).

Replace the text specification for an endogenous variable in the model with a new specifi-
cation.

Syntax
model_name.replace new_specification

The replace command will only replace the specification for variables that currently have a
text specification in the model. Variables defined by a linked object cannot have their speci-

reinclude Model Procs

v Create variable shift add factors in cases where no add fac-
tor Is currently associated with the endogenous variable.
(Default is to create intercept shifts).

skipidents Ignore endogenous variables whose associated equation is
tagged as an identity.

replace Model Procs

446—Chapter 1. Object Reference

fication replace. New_specification should be the new text specification for the variable.
Note EViews will automatically detect the endogenous variable in the new specification,
even if it is contained in an implicit expression, and will replace the existing specification for
that variable.

Examples
model m1

m1.append x = 3*y

m1.replace x = 4*y

this trivial example first creates a model, M1, then adds a text specification for the variable
X, setting it equal to 3*Y. It then changes the specification for X to set it equal to 4*Y.

model m1

m1.append x = 3*y

m1.replace log(x) = 4*y

this example replaces the specification for X by setting the log of X equal to 4*Y.

model m1

m1.append log(x/w) = 3*y

m1.replace x^2 = 4*y

this example first defines using an expression, log(X/W), The replace command is used to
change that definition to be in terms of X^2. EViews automatically detects that the new
specification, even though it is based in terms of X^2, should be used to replace the current
line involving log(X/W).

Replace a linked object with a different linked object.

Syntax
model_name.replacelink old_obj new_obj

old_obj should be the name of an object currently linked inside the model. That object will
be removed from the model and replaced with the new object, new_obj.

Examples
M1.replacelink eq1 eq1_new

replaces the linked equation, EQ1, with a different equation, EQ1_NEW.

replacelink Model Procs

Model::revert—447

Cross-references

Replace all instances of a variable in the text specification of a model with a different vari-
able.

Syntax
model_name.replacevar oldvar newvar

Replacevar can only replace variables defined by a text specification inside the model. It will
not replace variables contained inside linked objects. Note that replacevar does not do a
simple text substitution, and is capable of determining full variable names from other pieces
of text.

Examples
Model m1

M1.append y = 3*x

M1.replacevar x z

this example creates a model, M1, and adds a text specification for the variable Y, setting it
equal to 3*X. It then replaces all occurrences of X with Z, changing the specification of Y to
be equal to 3*Z.

M1.append y=3*log(x(-2))

m1.append w = 4*x1

M1.replacevar x z

this example generates a specification for Y, setting it equal to 3 times the log of the twice
lagged value of X, and a specification for W, setting it equal to 4 times X1. It then replaces
all instances of the variable X with the variable Z, changing the specification of Y to be
equal to 3 times the log of twice lagged Z. Note that the specification of W does not change,
since X1 is a different variable from X.

Cross-references

Reverts one or more overridden variables in the active model scenario back to their base-
line values.

Syntax
model_name.revert ser1 [ser2 ...]

replacevar Model Procs

revert Model Procs

448—Chapter 1. Object Reference

The specified variables will be removed from the override and exclude list of this scenario,
and the associated overridden series in the workfile will be deleted.

If an asterisk is provided for the variable name, all overridden series in the active model sce-
nario will be reverted.

Examples
M1.revert x z

removes X and Z from the override list in the current scenario.

Cross-references

Manage the model scenarios.

The scenario procedure is used to set the active and comparison scenarios for a model, to
create new scenarios, to initialize one scenario with settings from another scenario, to delete
scenarios, and to change the variable aliasing associated with a scenario.

Syntax
model_name.scenario(options) "name"

performs scenario options on a scenario given by the specified name (entered in double
quotes). By default the scenario procedure also sets the active scenario to the specified
name.

Options

scenario Model Procs

c Set the comparison scenario to the named scenario.

n Create a new scenario with the specified name.

i= “name” Copy the Excludes and Overrides from the named scenario.

d Delete the named scenario.

a=string Set the scenario alias string to be used when creating
aliased variables (string is a 1 to 3 alphanumeric string to
be used in creating aliased variables). If an underscore is
not specified, one will be added to the beginning of the
string. Examples: “_5”, “_T”, “S2”. The string “A” may not
be used since it may conflict with add factor specifications.

desc=string Description of the scenario.

usedesc Export the description specified in “desc=” to all solution
series.

Model::scenario—449

Examples

The command string,

mod1.scenario "baseline"

sets the active scenario to the baseline, while:

mod1.scenario(c) "actuals"

sets the comparison scenario to the actuals (warning: this action will overwrite any histori-
cal data in the solution period).

A newly created scenario will become the active scenario. Thus:

mod1.scenario(n) "Peace Scenario"

creates a scenario called “Peace Scenario” and makes it the active scenario. The scenario
will automatically be assigned a unique numeric alias. To change the alias, simply use the
“a=” option:

mod1.scenario(a=_ps) "Peace Scenario"

changes the alias for “Peace Scenario” to “_PS” and makes this scenario the active scenario.

The command:

mod1.scenario(n, a=w, i="Peace Scenario", c) "War Scenario"

creates a scenario called “War Scenario”, initializes it with the Excludes and Overrides con-
tained in “Peace Scenario”, associates it with the alias “_W”, and makes this scenario the
comparison scenario.

mod1.scenario(i="Scenario 1") "Scenario 2"

copies the Excludes and Overrides in “Scenario 1” to “Scenario 2” and makes “Scenario 2”
the active scenario.

Compatibility Notes

For backward compatibility with EViews 4, the single character option “a” may be used to
set the comparison scenario, but future support for this option is not guaranteed.

In all of the arguments above the quotation marks around scenario name are currently
optional. Support for the non-quoted names is provided for backward compatibility, but may
be dropped in the future, thus

mod1.scenario Scenario 1

is currently valid, but may not be in future versions of EViews.

v Copy the values of any overridden series in the scenario
specified in the "i=" option into the overridden series for
this scenario, creating new series if necessary.

450—Chapter 1. Object Reference

Cross-references

Scenarios are described in detail in “Specifying Scenarios” on page 810 of User’s Guide II.
Chapter 42. “Models,” on page 781 of User’s Guide II documents EViews models.

See also Model::solve (p. 452).

Display list description of the model scenarios.

Syntax
model_name.scenlist(options)

Options

Examples
model1.scenlist

displays the list of scenarios view of the object MODEL1.

Cross-references

See “Scenario List” on page 813 of User’s Guide II for further details on the scenario list
view.

See also Model::scenario (p. 448).

Set the object attribute.

Syntax
model_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

scenlist Model Views

p Print the model scenario view.

setattr Model Procs

Model::settrace—451

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Set upper and lower boundaries for endogenous variables during model solution.

EViews will warn if any variable’s solved for value is higher than the upper bound or less
than the lower bound for any observation during the solve.

Syntax
model_name.setbounds variable1(upper, lower) [variable2(upper, lower)…]

Examples
model1.setbounds gdp(0,1000) unemp(un_lower, un_higher)

specifies a lower bound of 0 and 1,000 for GDP and the series bounds UN_LOWER and
UN_HIGHER for UNEMP in model MODEL01.

Cross-references

See “Boundaries” on page 829 of User’s Guide II for details.

See also Model::checkbounds (p. 428).

Specify the endogenous variables to be traced when solving the model

Specifies the endogenous variables for which you wish to keep intermediate calculations at
the next deterministic simulation. The intermediate results of all traced variables will be part
of the model solution output. Tracing intermediate values may give you some idea of where
to look for problems when a model is generating errors or failing to converge.

Syntax
model_name.settrace [endogenous_list]

If the endogenous_list of variables is omitted, settrace clears out the existing trace specifi-
cation.

setbounds Model Procs

settrace Model Procs

452—Chapter 1. Object Reference

Examples
model1.trace gdp cons interest cpi

specifies that GDP, CONS, INTEREST, and CPI should be traced at the next simulation.

If you then issue the command:

mod1.settrace

EViews will clear the trace list.

Cross-references

See the discussion in “Diagnostics” on page 828 of User’s Guide II.

See also Model::trace (p. 456) and Model::track (p. 457).

Solve the model.

solve finds the solution to a simultaneous equation model for the set of observations spec-
ified in the current workfile sample.

Syntax
model_name.solve(options)

Note: when solve is used in a program (batch mode) models are always solved over the
workfile sample. If the model contains a solution sample, it will be ignored in favor of the
workfile sample.

You should follow the name of the model after the solve command. The default solution
method is dynamic simulation. You may modify the solution method as an option.

solve first looks for the specified model in the current workfile. If it is not present, solve
attempts to fetch a model file (.DBL) from the default directory or, if provided, the path
specified with the model name.

Options

solve can take any of the options available in Model::solveopt (p. 453). Stochastic solu-
tion options should be set using Model::stochastic (p. 455).

Examples
mod1.solve

solves the model MOD1 using the default solution method.

nonlin2.solve(m=500,e)

solve Model Procs

Model::solveopt—453

solves the model NONLIN2 with an extended search of up to 500 iterations.

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of models.

See also Model::model (p. 442), Model::msg (p. 442), Model::solveopt (p. 453), and
Model::stochastic (p. 455).

Solve options for models.

solveopt sets options for model solution but does not solve the model. The same options
can be set directly in a solve procedure.

Syntax
model_name.solveopt(options)

Options

solveopt Model Procs

s=arg
(default=“d”)

Solution type: “d” (deterministic), “m” (stochastic – collect
means only), “s” (stochastic – collect means and s.d.), “b”
(stochastic – collect means and confidence bounds), “a”
(stochastic – collect all; means, s.d. and confidence
bounds).

d=arg
(default=“d”)

Model solution dynamics: “d” (dynamic solution), “s”
(static solution), “f” (fitted values – single equation solu-
tion).

struct=t Ignore ARMA terms and use only the structural part of the
equations when solving the model.

m=integer
(default=5000)

Maximum number of iterations for solution (maximum
100,000).

c=number
(default=1e-8)

Convergence criterion. Based upon the maximum change
in any of the endogenous variables in the model. You may
set a number between 1e-15 and 0.01.

a=arg
(default=“f”)

Alternate scenario solution: “t” (true - solve both active
and alternate scenario and collect deviations for stochas-
tic), “f” (false - solve only the active scenario).

o=arg
(default=“g”)

Solution method: “g” (Gauss-Seidel), “n” (Newton), “b”
(Broyden).

i=arg
(default=“a”)

Set initial (starting) solution values: “a” (actuals), “p” (val-
ues in period prior to start of solution period).

454—Chapter 1. Object Reference

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of models.

See also Model::model (p. 442), Model::msg (p. 442), and Model::solve (p. 452). Sto-
chastic solution options should be set using Model::stochastic (p. 455).

Display the text specification view for model objects.

Syntax
model_name.spec(options)

Options

Examples
model1.spec

n=arg
(default=“t”)

NA behavior: “t” (true - stop on “NA” values), “f” (false -
do not stop when encountering “NA” values). Only applies
to deterministic solution; EViews will always stop on “NA”
values in stochastic solution.

e=arg
(default=“t”)

Excluded variables initialized from actuals: “t” (true), “f”
(false).

t=arg
(default=“u”)

Terminal condition for forward solution: “u” (user supplied
- actuals), “l” (constant level), “d” (constant difference),
“g” (constant growth rate).

w=arg Solve direction: “t” (two-directional), “f” (forwards only).

g=arg
(default==7)

Number of digits to round solution: an integer value (num-
ber of digits), “n” (do not roundoff).

z=arg
(default==1e-7)

Zero value: a positive number below which the solution
(absolute value) is set to zero, “n” (do not set to zero).

f=arg
(default==”t”)

Order simultaneous blocks for minimum feedback: “t”
(true), “f” (false).

v=arg
(default==“f”)

Display verbose diagnostic messages: “t” (true), “f” (false).

j=arg
(default==“a”)

Use analytic or numeric Jacobians: “a” (analytic), “n”
(numeric only).

spec Model Views

p Print the specification text.

Model::stochastic—455

displays the specification of the object MODEL1.

Cross-references

See also Model::append (p. 427), Model::merge (p. 441), Model::printview (p. 444).

Stochastic solution options for models.

stochastic sets options for stochastic model solution but does not solve the model.

Syntax
model_name.stochastic(options)

Options

Note that these options have no effect on the current solve if deterministic solution has been
selected.

stochastic Model Procs

i=arg
(default=“n”)

Innovation generation: “n” (normal random number) or
“b” (bootstrap).

d=arg
(default=“f”)

Diagonal covariance matrix (for bootstrap: draw resids
independently for each equation): “t” (true), “f” (false).

v=arg
(default=“t”)

Scale covariance matrix to equation specified innovation
variances: “t” (true), “f” (false). Does not apply to Boot-
strap.

m=pos_number
(default=1.0)

Multiply resid covariance or bootstrap by the positive num-
ber pos_number.

s=quoted_sample Covariance estimation sample (Bootstrap residual draw
sample). For example, s =“1970.1 2003.4”

r=integer
(default=1000)

Number of stochastic repetitions.

k Calculate confidence interval from entire sample.

f=number
(default=.02)

Fraction of failed repetitions before stopping.

b=number
(default=.95)

Size of stochastic confidence intervals.

c=arg
(default=“f”)

Include coefficient uncertainty: “t” (true), “f” (false).

456—Chapter 1. Object Reference

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of models. See
Model::innov (p. 436) to set options on individual series in stochastic solution.

See also Model::model (p. 442), Model::solve (p. 452) and Model::solveopt (p. 453).

Display text representation of the model specification.

Syntax
model_name.text(options)

The text command is equivalent to Model::spec (p. 454).

Options

Examples
model1.text

displays the text representation of the object MODEL1.

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for further details on models.

See also Model::printview (p. 444).

Display trace view of a model showing iteration history for selected solved variables.

Syntax
model_name.trace(options)

p=page_name Page name for a new workfile page to save the results of all
repetitions of the stochastic solve. If blank (default) only
summaries (mean, sd, etc.) of the repetitions are main-
tained.

text Model Views

p Print the model text specification.

trace Model Views

Model::unlink—457

Options

Cross-references

See “Diagnostics” on page 828 of User’s Guide II for further details on tracing model solu-
tions.

See also Model::msg (p. 442), Model::solve (p. 452) and Model::solveopt (p. 453).

Specify endogenous variables to track.

Sets the list of endogenous variables that will be tracked at the next simulation. Results of all
tracked endogenous variables will be part of the model solution output.

Syntax
model_name.track endog1 [endog2 endog3 ...]

Specify a list of endogenous variables to be tracked. You may use @all to track all endoge-
nous variables.

Examples
model1.track gdp cons interest cpi

specifies that GDP, CONS, INTEREST, and CPI should be tracked at the next simulation.

model1.track @all

tracks all endogenous variables at the next simulation.

Cross-references

See also Model::model (p. 442) and Model::trace (p. 456).

Break links in models.

Syntax
object.unlink spec

unlink breaks equation links in the model. Follow the name of the model object by a
period, the keyword, and a specification for the variables to unlink.

p Print the block structure view.

track Model Procs

unlink Model Procs

458—Chapter 1. Object Reference

The spec may contain either a list of the endogenous variables to be unlinked, the name of
an estimation object, or the keyword “@ALL”, instructing EViews to unlink all equations in
the model.

Note: if a link is to another model or a system object, more than one endogenous variable
may be associated with the link. If the spec contains any of the endogenous variables in a
linked model or system, EViews will break the link for all of the variables found in the link.

Examples

The expressions:

mod1.unlink @all

mod2.unlink z1 z2

unlink all of equations in MOD1, and all of the variables associated with the links for Z1 and
Z2 in MOD2.

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of specifying and
solving models in EViews. See also Model::append (p. 427), Model::merge (p. 441) and
Model::solve (p. 452).

Update model specification.

Recompiles the model and updates links.

Syntax
model.update [arg]

Follow the name of the model object by a period the keyword update, and optionally a list
of estimation objects to update. If no argument is provided, every object is updated.

Examples
mod1.update

recompiles and updates all of the links in MOD1.

mod1.update eq01 var01

updates the links to equation objectEQ01 and VAR object VAR01.

update Model Procs

Model::vars—459

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of specifying and
solving models in EViews. See also Model::append (p. 427), Model::merge (p. 441) and
Model::solve (p. 452).

View of model organized by variable.

Display the model in variable form with identification of endogenous, exogenous, and iden-
tity variables, with dependency tracking.

Syntax
model_name.vars

Cross-references

See “Variable View” on page 803 of User’s Guide II for details. See Chapter 42. “Models,” on
page 781 of User’s Guide II for a general discussion of models.

See also Model::block (p. 428), Model::text (p. 456), and Model::eqs (p. 434) for
alternative representations of the model.

vars Model Views

460—Chapter 1. Object Reference

Pool

Pooled time series, cross-section object. Used when working with data with both time
series and cross-section structure.

Pool Declaration
pool declare pool object (p. 485).

To declare a pool object, use the pool keyword, followed by a pool name, and optionally, a
list of pool members. Pool members are short text identifiers for the cross section units:

pool mypool

pool g7 _can _fr _ger _ita _jpn _us _uk

Pool Methods
ls estimate linear regression models including cross-section weighted

least squares, and fixed and random effects models (p. 477).
tsls linear two-stage least squares (TSLS) regression models (p. 496).

Pool Views
cellipse................. Confidence ellipses for coefficient restrictions (p. 464).
coefcov................. coefficient covariance matrix (p. 465).
coint Johansen’s cointegration test (p. 466).
describe................ calculate pool descriptive statistics (p. 469).
fixedtest test significance of estimates of fixed effects (p. 474).
label..................... label information for the pool object (p. 476).
output table of estimation results (p. 484).
ranhaus Hausman test for correlation between random effects and regressors

(p. 486).
representations text showing equations in the model (p. 489).
residcor residual correlation matrix (p. 489).
residcov................ residual covariance matrix (p. 490).
resids table or graph of residuals for each pool member (p. 490).
results table of estimation results (p. 491).
sheet spreadsheet view of series in pool (p. 492).
testadd likelihood ratio test for adding variables to pool equation (p. 494).
testdrop likelihood ratio test for dropping variables from pool equation

(p. 495).
uroot unit root test on a pool series (p. 499).
wald..................... Wald coefficient restriction test (p. 502).

Pool Procs
add add cross section members to pool (p. 463).

Pool::—461

clearhistclear the contents of the history attribute (p. 465).
definedefine cross section identifiers (p. 468).
delete....................delete pool series (p. 468).
displayname..........set display name (p. 471).
drop......................drop cross section members from pool (p. 472).
fetchfetch series into workfile using a pool (p. 472).
genrgenerate pool series using the “?” (p. 475).
makegroup............create a group of series from a pool (p. 480).
makemodelcreates a model object from the estimated pool (p. 481).
makeresidsmake series containing residuals from pool (p. 481).
makestats..............make descriptive statistic series (p. 482).
makesystemcreates a system object from the pool for other estimation methods

(p. 483).
olepushpush updates to OLE linked objects in open applications (p. 484).
readimport pool data from disk (p. 486).
setattrset the value of an object attribute (p. 492).
storestore pool series in database/bank files (p. 493).
updatecoefsupdate coefficient vector from pool (p. 499).
writeexport pool data to disk (p. 503).

Pool Data Members
String Values

@attr(“arg”)..........string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@commandfull command line form of the estimation command. Note this is a
combination of @method, @options and @spec.

@crossidsspace delimited list of the Pool identifiers.
@crossidsestspace delimited list of the Pool identifiers used in estimation.
@description.........string containing the Pool object’s description (if available).
@detailedtypereturns a string with the object type: “POOL”.
@displaynamereturns the Pool’s display name. If the Pool has no display name set,

the name is returned.
@idname(i)i-th cross-section identifier.
@idnameest(i)i-th cross-section identifier for estimated equation.
@methodcommand line form of estimation method (“LS”, “TSLS”, etc....).
@namereturns the Pool’s name.
@optionscommand line form of pool estimation options.
@smpldescription of sample used for estimation.
@spec...................original Pool estimation specification.

462—Chapter 1. Object Reference

@type returns a string with the object type: “POOL”.
@units string containing the Pool object’s units description (if available).
@updatetime........ returns a string representation of the time and date at which the

Pool was last updated.

Scalar Values

@aic Akaike information criterion.
@coefcov(i,j) covariance of coefficients i and j.
@coefs(i) coefficient i.
@dw Durbin-Watson statistic.
@effects(i) estimated fixed or random effect for the i-th cross-section member

(only for fixed or random effects).
@f F-statistic.
@logl log likelihood.
@meandep mean of the dependent variable.
@ncoef total number of estimated coefficients.
@ncross total number of cross sectional units.
@ncrossest number of cross sectional units in last estimated pool equation.
@npers number of workfile periods used in estimation of the pool equation.
@r2 R-squared statistic.
@rbar2................. adjusted R-squared statistic.
@regobs............... total number of observations in regression.
@schwarz Schwarz information criterion.
@sddep standard deviation of the dependent variable.
@se standard error of the regression.
@ssr sum of squared residuals.
@stderrs(i)........... standard error for coefficient i.
@totalobs............. total number of observations in the pool. For a balanced sample

this is “@regobs*@ncrossest”.
@tstats(i) t-statistic value for coefficient i.
c(i)....................... i-th element of default coefficient vector for the pool.

Vectors and Matrices

@coefcov covariance matrix for coefficients of equation.
@coefs coefficient vector.
@effects vector of estimated fixed or random effects (only for fixed or ran-

dom effects estimation).
@residcov (sym) covariance matrix of the residuals.
@stderrs............... vector of standard errors for coefficients.
@tstats................. vector of t-statistic values for coefficients.

Pool::add—463

Pool Examples

To read data using the pool object:

mypool1.read(b2) data.xls x? y? z?

To delete and store pool series you may enter:

mypool1.delete x? y?

mypool1.store z?

Descriptive statistics may be computed using the command:

mypool1.describe(m) z?

To estimate a pool equation using least squares and to access the t-statistics, enter:

mypool1.ls y? c z? @ w?

vector tstat1 = mypool1.@tstats

Pool Entries

The following section provides an alphabetical listing of the commands associated with the
“Pool” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Add cross section members to a pool.

Syntax
pool_name.add id1 [id2 id3 ...]

List the cross-section identifiers to add to the pool.

Examples
countries.add us gr

Adds US and GR as cross-section members of the pool object COUNTRIES.

Cross-references

See “Cross-section Identifiers” on page 845 of User’s Guide II for a discussion of pool identi-
fiers.

See also Pool::drop (p. 472).

add Pool Procs

464—Chapter 1. Object Reference

Confidence ellipses for coefficient restrictions.

The cellipse view displays confidence ellipses for pairs of coefficient restrictions for an
estimation from a pool object.

Syntax
pool_name.cellipse(options) restrictions

Enter the object name, followed by a period, and the keyword cellipse. This should be fol-
lowed by a list of the coefficient restrictions. Joint (multiple) coefficient restrictions should
be separated by commas.

Options

Examples

The two commands:

pool1.cellipse c(1), c(2), c(3)

pool1.cellipse c(1)=0, c(2)=0, c(3)=0

both display a graph showing the 0.95-confidence ellipse for C(1) and C(2), C(1) and C(3),
and C(2) and C(3).

cellipse Pool Views

ind=arg Specifies whether and how to draw the individual coeffi-
cient intervals. The default is “ind=line” which plots the
individual coefficient intervals as dashed lines.
“ind=none” does not plot the individual intervals, while
“ind=shade” plots the individual intervals as a shaded
rectangle.

size= number
(default=0.95)

Set the size (level) of the confidence ellipse. You may spec-
ify more than one size by specifying a space separated list
enclosed in double quotes.

dist= arg Select the distribution to use for the critical value associ-
ated with the ellipse size. The default depends on estima-
tion object and method. If the parameter estimates are
least-squares based, the distribution is used;
if the parameter estimates are likelihood based, the
distribution will be employed. “dist=f” forces use of the F-
distribution, while “dist=c” uses the distribution.

prompt Force the dialog to appear from within a program.

p Print the graph.

F 2 n 2–,� �
x

2 2� �

x
2

Pool::coefcov—465

pool1.cellipse(dist=c,size="0.9 0.7 0.5") c(1), c(2)

displays multiple confidence ellipses (contours) for C(1) and C(2).

Cross-references

See “Confidence Intervals and Confidence Ellipses” on page 176 of User’s Guide II for dis-
cussion.

See also Pool::wald (p. 502).

Clear the contents of the history attribute for pool objects.

Removes the pool’s history attribute, as shown in the label view of the pool.

Syntax
pool_name.clearhist

Examples
p1.clearhist

p1.label

The first line removes the history from the pool P1, and the second line displays the label
view of P1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Pool::label (p. 476).

Coefficient covariance matrix.

Displays the covariances of the coefficient estimates for an estimated pool object.

Syntax
pool_name.coefcov(options)

Options

clearhist Pool Procs

coefcov Pool Views

p Print the coefficient covariance matrix.

466—Chapter 1. Object Reference

Examples
pool1.coefcov

displays the coefficient covariance matrix for POOL1 in a window. To store the coefficient
covariance matrix as a sym object, use “@coefcov”:

sym eqcov = pool1.@coefcov

Cross-references

See also Coef::coef (p. 20).

Panel cointegration tests.

Syntax
pool_name.coint(option) pool_ser1 pool_ser2 [pool_ser3]...

Follow the pool name with the coint keyword, any options, and a list of two or more ordi-
nary or pool series.

Options

You may specify the type using one of the following keywords:

Depending on the type selected above, the following may be used to indicate deterministic
trends:

coint Pool Views

Pedroni (default) Pedroni (1994 and 2004).

Kao Kao (1999)

Fisher Fisher - pooled Johansen

const (default) Include a constant in the test equation.
Applicable to Pedroni and Kao tests.

trend Include a constant and a linear time trend in the test equa-
tion.
Applicable to Pedroni tests.

none Do not include a constant or time trend.
Applicable to Pedroni tests.

a No deterministic trend in the data, and no intercept or
trend in the cointegrating equation.
Applicable to Fisher tests.

Pool::coint—467

Additional options:

b No deterministic trend in the data, and an intercept but no
trend in the cointegrating equation.
Applicable to Fisher tests.

c Linear trend in the data, and an intercept but no trend in
the cointegrating equation.
Applicable to Fisher tests.

d Linear trend in the data, and both an intercept and a trend
in the cointegrating equation.
Applicable to Fisher tests.

e Quadratic trend in the data, and both an intercept and a
trend in the cointegrating equation.
Applicable to Fisher tests.

ac=arg
(default= “bt”)

Method of estimating the frequency zero spectrum: “bt”
(Bartlett kernel), “pr” (Parzen kernel), “qs” (Quadratic
Spectral kernel).
Applicable to Pedroni and Kao tests.

band=arg
(default= “nw”)

Method of selecting the bandwidth, where arg may be
“nw” (Newey-West automatic variable bandwidth selec-
tion), or a number indicating a user-specified common
bandwidth.
Applicable to Pedroni and Kao tests.

lag=arg For Pedroni and Kao tests, the method of selecting lag
length (number of first difference terms) to be included in
the residual regression. For Fisher tests, a pair of numbers
indicating lag.

info=arg
(default= “sic”)

Information criterion to use when computing automatic lag
length selection: “aic” (Akaike), “sic” (Schwarz), “hqc”
(Hannan-Quinn).
Applicable to Pedroni and Kao tests.

maxlag=int Maximum lag length to consider when performing auto-
matic lag length selection, where int is an integer. The

default=

where is the length of the cross-section.
Applicable to Pedroni and Kao tests.

disp=arg
(default=500)

Maximum number of individual results to be displayed.

int min Ti k–� � 3e 12,() Ti 100e� �1 4e�()

Ti

468—Chapter 1. Object Reference

Examples
pool01.coint(fisher,lag=1 2,c) y? x1? x2?

performs a Johansen test for pool series Y?, X1?, and X2? with a lag of 1 to 2 and linear trend
in the data, and an intercept but no trend in the cointegrating equation is assumed as exoge-
nous variables.

Cross-references

See “References” on page 1041 of User’s Guide II for details on panel cointegration testing.
See also Pool::uroot (p. 499).

Define cross section members (identifiers) in a pool.

Syntax
pool_name.define id1 [id2 id3 ...]

List the cross section identifiers after the define keyword.

Examples
pool spot uk jpn ger can

spot.def uk ger ita fra

The first line declares a pool object named SPOT with cross section identifiers UK, JPN,
GER, and CAN. The second line redefines the identifiers to be UK, GER, ITA, and FRA.

Cross-references

See Chapter 43. “Pooled Time Series, Cross-Section Data,” on page 843 of User’s Guide II for
a discussion of cross-section identifiers.

See also Pool::add (p. 463), Pool::drop (p. 472) and Pool::pool (p. 485).

Deletes series based upon identifiers in a pool.

Syntax
pool_name.delete(option) pool_ser1 [pool_ser2 pool_ser3 ...]

prompt Force the dialog to appear from within a program.

p Print results.

define Pool Procs

delete Pool Procs

Pool::describe—469

Follow the keyword by a list of the names of any series you wish to remove from the current
workfile. Deleting does not remove objects that have been stored on disk in EViews database
files.

The delete command allows you to delete series from the workfile using ordinary and pool
series names.

You can delete an object from a database by prefixing the name with the database name and
a double colon. You can use a pattern to delete all objects from a workfile or database with
names that match the pattern. Use the “?” to match any one character and the “*” to match
zero or more characters.

If you use delete in a program file, EViews will delete the listed objects without prompting
you to confirm each deletion.

Options

Examples

To delete all series in the workfile with names beginning with “CPI” that are followed by
identifiers in the pool object MYPOOL:

mypool.delete cpi?

Cross-references

See Chapter 4. “Object Basics,” on page 101 of User’s Guide I for a discussion of working
with objects, and Chapter 10. “EViews Databases,” on page 317 of User’s Guide I for a dis-
cussion of EViews databases.

Computes and displays descriptive statistics for the pooled data.

Syntax
pool_name.describe(options) pool_ser1 [pool_ser2 pool_ser3 ...]

List the name of ordinary and pool series for which you wish to compute descriptive statis-
tics.

By default, statistics are computed for each stacked pool series, using only common obser-
vations where all of the cross-sections for a given series have nonmissing data. A missing
observation for a series in any one cross-section causes that observation to be dropped for

prompt Force the dialog to appear from within a program.

describe Pool Views

470—Chapter 1. Object Reference

all cross-sections for the corresponding series. You may change the default treatment of NAs
using the “i” and “b” options.

EViews also allows you to compute statistics with the cross-section means removed, statis-
tics for each cross-sectional series in a pool series, and statistics for each period, taken
across all cross-section units.

Options

Examples
pool1.describe(m) gdp? inv? cpi?

displays the “within” descriptive statistics of the three series GDP, INV, CPI for the POOL1
cross-section members.

pool1.describe(t) gdp?

computes the statistics for GDP for each period, taken across each of the cross-section iden-
tifiers.

Cross-references

See Chapter 43. “Pooled Time Series, Cross-Section Data,” on page 843 of the User’s Guide II
for a discussion of the computation of these statistics, and a description of individual and
balanced samples.

m Stack data and subtract cross-section specific means from
each variable—this option provides the within estimators.

c Do not stack data—compute statistics individually for each
cross-sectional unit.

t Time period specific—compute statistics for each period,
taken over all cross-section identifiers.

i Individual sample—includes every valid observation for
the series even if data are missing from other series in the
list.

b Balanced sample—constrains each cross-section to have
the same observations. If an observation is missing for any
series, in any cross-section, it will be dropped for all cross-
sections.

prompt If no pool series are specified, force the dialog to appear
from within a program.

p Print the descriptive statistics.

Pool::displayname—471

Display table, graph, or spool output in the pool object window.

Display the contents of a table, graph, or spool in the window of the pool object.

Syntax
pool_name.display object_name

Examples
pool1.display tab1

Display the contents of the table TAB1 in the window of the object POOL1.

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

Display name for pool objects.

Attaches a display name to a pool object which may be used to label output in place of the
standard pool object name.

Syntax
pool_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in pool object names.

Examples
hrs.displayname Hours Worked

hrs.label

The first line attaches a display name “Hours Worked” to the pool object HRS, and the sec-
ond line displays the label view of HRS, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Pool::label (p. 476).

display Pool Views

displayname Pool Procs

472—Chapter 1. Object Reference

Drops cross-section members from a pool.

Syntax
pool_name.drop id1 [id2 id3 ...]

List the cross-section members to be dropped from the pool.

Examples
crossc.drop jpn kor hk

drops the cross-section members JPN, KOR, and HK from the pool CROSSSC.

Cross-references

“Cross-section Identifiers” on page 845 of User’s Guide II discusses pool identifiers.

See also Pool::add (p. 463).

Fetch objects from databases or databank files into the workfile.

fetch reads one or more objects from EViews databases or databank files into the active
workfile. The objects are loaded into the workfile using the object in the database or using
the databank file name. EViews will first expand the list of series using the pool operator,
and then perform the fetch.

If you fetch a series into a workfile with a different frequency, EViews will automatically
apply the frequency conversion method attached to the series by setconvert. If the series
does not have an attached conversion method, EViews will use the method set by Options/
Date-Frequency in the main menu. You can override the conversion method by specifying
an explicit conversion method option.

Syntax
pool_name.fetch(options) pool_ser1 [pool_ser2 pool_ser3 ...]

The fetch command keyword is followed by a list of object names separated by spaces. The
default behavior is to fetch the objects from the default database (this is a change from ver-
sions of EViews prior to EViews 3.x where the default was to fetch from individual databank
files).

drop Pool Procs

fetch Pool Procs

Pool::fetch—473

You can precede the object name with a database name and the double colon “::” to indicate
a specific database source. If you specify the database name as an option in parentheses (see
below), all objects without an explicit database prefix will be fetched from the specified
database. You may optionally fetch from individual databank files or search among regis-
tered databases.

You may use wild card characters, “?” (to match a single character) or “*” (to match zero or
more characters), in the object name list. All objects with names matching the pattern will
be fetched.

To fetch from individual databank files that are not in the default path, you should include
an explicit path. If you have more than one object with the same file name (for example, an
equation and a series named CONS), then you should supply the full object file name
including identifying extensions.

Options

The database specified by the double colon “::” takes precedence over the database specified
by the “d=” option.

In addition, there are a number of options for controlling automatic frequency conversion
when performing a fetch. The following options control the frequency conversion method
when copying series and group objects to a workfile, converting from low to high frequency:

The following options control the frequency conversion method when copying series and
group objects to a workfile, converting from high to low frequency:

d=db_name Fetch from specified database.

d Fetch all registered databases in registry order.

i Fetch from individual databank files.

notifyillegal When in a program, report illegal EViews object names. By
default, objects with illegal names are automatically
renamed. (Has no effect in the command window.)

prompt Force the dialog to appear from within a program.

c=arg Low to high conversion methods: “r” (constant match aver-
age), “d” (constant match sum), “q” (quadratic match
average), “t” (quadratic match sum), “i” (linear match
last), “c” (cubic match last).

474—Chapter 1. Object Reference

If no conversion method is specified, the series-specific or global default conversion method
will be employed.

Examples

To fetch M1, GDP, and UNEMP pool series from the default database, use:

pool1.fetch m1? gdp? unemp?

To fetch M1 and GDP from the US1 database and UNEMP from the MACRO database, use
the command:

pool1.fetch(d=us1) m1? gdp? macro::unemp

Use the “notifyillegal” option to display a dialog when fetching the series MYIL-
LEG@LNAME that will suggest a valid name and give you to opportunity to name the object
before it is inserted into a workfile:

pool2.fetch(notifyillegal) myilleg@lname

Cross-references

See Chapter 10. “EViews Databases,” on page 317 of User’s Guide I for a discussion of data-
bases, databank files, and frequency conversion. Appendix A. “Wildcards,” on page 771 of
the Command and Programming Reference describes the use of wildcard characters.

See also Series::setconvert (p. 596), Pool::store (p. 493), and Pool::store
(p. 493).

Test joint significance of the fixed effects estimates.

Tests the hypothesis that the estimated fixed effects are jointly significant using and LR
test statistics. If the estimated specification involves two-way fixed effects, three separate
tests will be performed; one for each set of effects, and one for the joint effects.

c=arg High to low conversion methods removing NAs: “a” (aver-
age of the nonmissing observations), “s” (sum of the non-
missing observations), “f” (first nonmissing observation),
“l” (last nonmissing observation), “x” (maximum nonmiss-
ing observation), “m” (minimum nonmissing observation).
High to low conversion methods propagating NAs: “an” or
“na” (average, propagating missings), “sn” or “ns” (sum,
propagating missings), “fn” or “nf” (first, propagating
missings), “ln” or “nl” (last, propagating missings), “xn”
or “nx” (maximum, propagating missings), “mn” or “nm”
(minimum, propagating missings).

fixedtest Pool Views

F

Pool::genr—475

Only valid for panel or pool regression equations estimated with fixed effects. Not currently
available for specifications estimated using instrumental variables.

Syntax
pool_name.fixedtest(options)

Options

Examples
pool1.fixedtest

tests whether the fixed effects are jointly significant.

Cross-references

See “Fixed Effects Testing” on page 947 of User’s Guide II for discussion. See also
Pool::testadd (p. 494), Pool::testdrop (p. 495), Pool::ranhaus (p. 486), and
Pool::wald (p. 502).

Generate series.

This procedure allows you to generate multiple series using the cross-section identifiers in a
pool.

Syntax
pool_name.genr(option) ser_name = expression

You may use the cross section identifier “?” in the series name and/or in the expression on
the right-hand side.

Options

Examples

The commands,

pool pool1

pool1.add 1 2 3

pool1.genr y? = x? - @mean(x?)

are equivalent to generating separate series for each cross-section:

p Print output from the test.

genr Pool Procs

prompt Force the dialog to appear from within a program.

476—Chapter 1. Object Reference

genr y1 = x1 - @mean(x1)

genr y2 = x2 - @mean(x2)

genr y3 = x3 - @mean(x3)

Similarly:

pool pool2

pool2.add us uk can

pool2.genr y_? = log(x_?) - log(x_us)

generates three series Y_US, Y_UK, Y_CAN that are the log differences from X_US. Note that
Y_US=0.

It is worth noting that the pool genr command simply loops across the cross-section identi-
fiers, performing the evaluations using the appropriate substitution. Thus, the command,

pool2.genr z = y_?

is equivalent to entering:

genr z = y_us

genr z = y_uk

genr z = y_can

so that upon completion, the ordinary series Z will contain Y_CAN.

Cross-references

See Chapter 43. “Pooled Time Series, Cross-Section Data,” on page 843 of User’s Guide II for
a discussion of the computation of pools, and a description of individual and balanced sam-
ples.

See Series::series (p. 594) for a discussion of the expressions allowed in genr.

Display or change the label view of a pool object, including the last modified date and dis-
play name (if any).

As a procedure, label changes the fields in the pool object label.

Syntax
pool_name.label

pool_name.label(options) [text]

label Pool Views | Pool Procs

Pool::ls—477

Options

The first version of the command displays the label view of the pool object. The second ver-
sion may be used to modify the label. Specify one of the following options along with
optional text. If there is no text provided, the specified field will be cleared.

Examples

The following lines replace the remarks field of POOL1 with “Data from CPS 1988 March
File”:

pool1.label(r)

pool1.label(r) Data from CPS 1988 March File

To append additional remarks to POOL1, and then to print the label view:

pool1.label(r) Log of hourly wage

pool1.label(p)

To clear and then set the units field, use:

pool1.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Pool::displayname (p. 471).

Estimation by linear or nonlinear least squares regression.

ls estimates cross-section weighed least squares, feasible GLS, and fixed and random effects
models.

Syntax
pool_name.ls(options) y [x1 x2 x3...] [@cxreg z1 z2 ...] [@perreg z3 z4 ...]

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

ls Pool Methods

478—Chapter 1. Object Reference

ls carries out pooled data estimation. Type the name of the dependent variable followed by
one or more lists of regressors. The first list should contain ordinary and pool series that are
restricted to have the same coefficient across all members of the pool. The second list, if pro-
vided, should contain pool variables that have different coefficients for each cross-section
member of the pool. If there is a cross-section specific regressor list, the two lists must be
separated by “@CXREG”. The third list, if provided, should contain pool variables that have
different coefficients for each period. The list should be separated from the previous lists by
“@PERREG”.

You may include AR terms as regressors in either the common or cross-section specific lists.
AR terms are, however, not allowed for some estimation methods. MA terms are not sup-
ported.

Options

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

s Use the current coefficient values in “C” as starting values
for equations with AR or MA terms (see also param
(p. 463) of the Command and Programming Reference).

s=number Determine starting values for equations specified by list
with AR or MA terms. Specify a number between zero and
one representing the fraction of preliminary least squares
estimates computed without AR or MA terms to be used.
Note that out of range values are set to “s=1”. Specifying
“s=0” initializes coefficients to zero. By default EViews
uses “s=1”.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv /
-fastderiv

[Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

cx=arg Cross-section effects: (default) none, fixed effects
(“cx=f”), random effects (“cx=r”).

per=arg Period effects: (default) none, fixed effects (“per=f”), ran-
dom effects (“per=r”).

Pool::ls—479

wgt=arg GLS weighting: (default) none, cross-section system
weights (“wgt=cxsur”), period system weights
(“wgt=persur”), cross-section diagonal weighs
(“wgt=cxdiag”), period diagonal weights (“wgt=per-
diag”).

cov=arg Coefficient covariance method: (default) ordinary, White
cross-section system robust (“cov=cxwhite”), White
period system robust (“cov=perwhite”), White heteroske-
dasticity robust (“cov=stackedwhite”), Cross-section sys-
tem robust/PCSE (“cov=cxsur”), Period system robust/
PCSE (“cov=persur”), Cross-section heteroskedasticity
robust/PCSE (“cov=cxdiag”), Period heteroskedasticity
robust/PCSE (“cov=perdiag”).

keepwgts Keep full set of GLS weights used in estimation with object,
if applicable (by default, only small memory weights are
saved).

rancalc=arg
(default=“sa”)

Random component method: Swamy-Arora (“ran-
calc=sa”), Wansbeek-Kapteyn (“rancalc=wk”), Wallace-
Hussain (“rancalc=wh”).

nodf Do not perform degree of freedom corrections in computing
coefficient covariance matrix. The default is to use degree
of freedom corrections.

b Estimate using a balanced sample (pool estimation only).

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

iter=arg
(default=
“onec”)

Iteration control for GLS specifications: perform one weight
iteration, then iterate coefficients to convergence
(“iter=onec”), iterate weights and coefficients simultane-
ously to convergence (“iter=sim”), iterate weights and
coefficients sequentially to convergence (“iter=seq”), per-
form one weight iteration, then one coefficient step
(“iter=oneb”).
Note that random effects models currently do not permit
weight iteration to convergence.

unbalsur Compute SUR factorization for unbalanced data using the
subset of available observations in a cluster.

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

480—Chapter 1. Object Reference

Examples
pool1.ls dy? c inv? edu? year

estimates pooled OLS of DY? on a constant, INV?, EDU? and YEAR.

pool1.ls(cx=f) dy? @cxreg inv? edu? year ar(1)

estimates a fixed effects model without restricting any of the coefficients to be the same
across pool members.

Cross-references

Chapter 19. “Basic Regression Analysis,” on page 5 and Chapter 20. “Additional Regression
Tools,” on page 23 of User’s Guide II discuss the various regression methods in greater
depth.

See Chapter 43. “Pooled Time Series, Cross-Section Data,” on page 843 of User’s Guide II for
a discussion of pool estimation, and Chapter 45. “Panel Estimation,” on page 917 of User’s
Guide II for a discussion of panel equation estimation.

See Chapter 16. “Special Expression Reference,” on page 621 of the Command and Program-
ming Reference for special terms that may be used in ls specifications.

See also Pool::tsls (p. 496) for instrumental variables estimation.

Make a group out of pool and ordinary series using a pool object.

Syntax
pool_name.makegroup(group_name, options) pool_series1 [pool_series2

pool_series3…]

List the ordinary and pool series to be placed in the group. If specified, group_name should
be the first option.

Options

Examples
pool1.makegroup(g1) x? z y?

places the ordinary series Z, and all of the series represented by the pool series X? and Y?, in
the group G1.

makegroup Pool Procs

prompt Force the dialog to appear from within a program.

Pool::makeresids—481

Cross-references

See “Making a Group of Pool Series” on page 861 of User’s Guide II for details.

Make a model from a pool object.

Syntax
pool_name.makemodel(name) assign_statement

If you provide a name for the model in parentheses after the keyword, EViews will create the
named model in the workfile. If you do not provide a name, EViews will open an untitled
model window if the command is executed from the command line.

Examples
pool3.ls m1? gdp? tb3?

pool3.makemodel(poolmod) @prefix s_

estimates a VAR and makes a model named POOLMOD from the estimated pool object.
POOLMOD includes an assignment statement “ASSIGN @PREFIX S_”. Use the command
“show poolmod” or “poolmod.spec” to open the POOLMOD window.

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of specifying and
solving models in EViews.

See also Model::merge (p. 441) and Model::solve (p. 452).

Create residual series.

Creates and saves residuals in the workfile from a pool object.

Syntax
pool_name.makeresids [poolser]

Follow the object name with a period and the makeresids keyword, then provide a list of
names to be given to the stored residuals. You may use a cross section identifier “?” to spec-
ify a set of names.

makemodel Pool Procs

makeresids Pool Procs

482—Chapter 1. Object Reference

Options

Examples
pool1.makeresids res1_?

The residuals of each pool member will have a name starting with “RES1_” and the cross-
section identifier substituted for the “?”.

Cross-references

See “Residuals” on page 879 of User’s Guide II.

Create and save series of descriptive statistics computed from a pool object.

Syntax
pool_name.makestats(options) pool_series1 [pool_series2 ...] @ stat_list

You should provide options, a list of series names, an “@” separator, and a list of command
names for the statistics you wish to compute. The series will have a name with the cross-
section identifier “?” replaced by the statistic command.

Options
Options in parentheses specify the sample to use to compute the statistics

Command names for the statistics to be computed

n=arg Create group object to hold the residual series.

makestats Pool Procs

i Use individual sample.

c (default) Use common sample.

b Use balanced sample.

o Force the overwrite of the computed statistics series if they
already exist. The default creates a new series using the
next available names.

prompt Force the dialog to appear from within a program.

obs Number of observations.

mean Mean.

med Median.

var Variance.

Pool::makesystem—483

Examples
pool1.makestats gdp_? edu_? @ mean sd

computes the mean and standard deviation of the GDP_? and EDU_? series in each period
(across the cross-section members) using the default common sample. The mean and stan-
dard deviation series will be named GDP_MEAN, EDU_MEAN, GDP_SD, and EDU_SD.

pool1.makestats(b) gdp_? @ max min

Computes the maximum and minimum values of the GDP_? series in each period using the
balanced sample. The max and min series will be named GDP_MAX and GDP_MIN.

Cross-references

See Chapter 43. “Pooled Time Series, Cross-Section Data,” on page 843 of User’s Guide II for
details on the computation of these statistics and a discussion of the use of individual, com-
mon, and balanced samples in pool.

See also Pool::describe (p. 469).

Create system from a pool object.

Syntax
pool_name.makesystem(options) y [x1 x2 x3 ...] [@cxeg w1 w2 ...] [@inst z1 z2 ...]

[@cxinst z3 z4 ...]

Creates a system out of the pool equation specification. Each cross-section in the pool will
be used to form an equation. The pool variable y is the dependent variable. The [x1 x2 x3
...] list consists of regressors with common coefficients in the system. The @cxreg list are
regressors with different coefficients in each cross-section. The list of variables that follow
@inst are the common instruments. The list of variables that follow @cxinst are the equa-
tion specific instruments.

Note that period specific coefficients and effects are not available in this routine.

sd Standard deviation.

skew Skewness.

kurt Kurtosis.

jarq Jarque-Bera test statistic.

min Minimum value.

max Maximum value.

makesystem Pool Procs

484—Chapter 1. Object Reference

Options

Examples
pool1.makesystem(name=sys1) inv? cap? @inst val?

creates a system named SYS1 with INV? as the dependent variable and a common intercept
for each cross-section member. The regressor CAP? is restricted to have the same coefficient
in each equation, while the VAL? regressor has a different coefficient in each equation.

pool1.makesystem(name=sys2,cx=f) inv? @cxreg cap? @cxinst @trend

inv?(-1)

This command creates a system named SYS2 with INV? as the dependent variable and a dif-
ferent intercept for each cross-section member equation. The regressor CAP? enters each
equation with a different coefficient and each equation has two instrumental variables
@TREND and INV? lagged.

Cross-references

See Chapter 39. “System Estimation,” on page 645 of User’s Guide II for a discussion of sys-
tem objects in EViews.

Push updates to OLE linked objects in open applications.

Syntax
pool_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Display estimation output.

output changes the default object view to display the estimation output (equivalent to
using Pool::results (p. 491)).

name=name Specify name for the system object.

prompt Force the dialog to appear from within a program.

olepush Pool Procs

output Pool Views

Pool::pool—485

Syntax
pool_name.output

Options

Examples

The output keyword may be used to change the default view of an estimation object. Enter-
ing the command:

pool1.output

displays the estimation output for pool POOL1.

Cross-references

See Pool::results (p. 491).

Declare pool object.

Syntax
pool name [id1 id2 id3 …]

Follow the pool keyword with a name for the pool object. You may optionally provide the
identifiers for the cross-section members of the pool object. Pool identifiers may be added or
removed at any time using Pool::add (p. 463) and Pool::drop (p. 472).

Examples
pool zoo1 dog cat pig owl ant

Declares a pool object named ZOO1 with the listed cross-section identifiers.

Cross-references

See Chapter 43. “Pooled Time Series, Cross-Section Data,” on page 843 of User’s Guide II for
a discussion of working with pools in EViews.

See Pool::add (p. 463) and Pool::drop (p. 472). See also Pool::ls (p. 477) for details
on estimation using a pool object.

p Print estimation output for estimation object

pool Pool Declaration

486—Chapter 1. Object Reference

Test for correlation between random effects and regressors using Hausman test.

Tests the hypothesis that the random effects (components) are correlated with the right-
hand side variables in a pool equation setting. Uses Hausman test methodology to compare
the results from the estimated random effects specification and a corresponding fixed effects
specification. If the estimated specification involves two-way random effects, three separate
tests will be performed; one for each set of effects, and one for the joint effects.

Only valid for pool regression equations estimated with random effects. Note that the test
results may be suspect in cases where robust standard errors are employed.

Syntax
pool_name.ranhaus(options)

Options

Examples
poo11.ls(cx=r) sales? c adver? lsales?

pool1.ranhaus

estimates a specification with cross-section random effects and tests whether the random
effects are correlated with the right-hand side variables ADVER and LSALES using the Haus-
man test methodology.

Cross-references

See also Pool::testadd (p. 494), Pool::testdrop (p. 495), Pool::fixedtest (p. 474),
and Pool::wald (p. 502).

Import data from a foreign disk file into a pool object.

May be used to import data into an existing workfile from a text, Excel, or Lotus file on disk.

Note: we strongly recommend that you instead of using this proc, you use wfopen or page-
load to read the source data into a panel structured workfile and pageunstack if desired.

Syntax
pool_name.read(options) [path\]file_name pool_ser1 [pool_ser2 pool_ser3 ...]

ranhaus Pool Views

p Print output from the test.

read Pool Procs

Pool::read—487

You must supply the name of the source file. If you do not include the optional path specifi-
cation, EViews will look for the file in the default directory. Path specifications may point to
local or network drives. If the path specification contains a space, you may enclose the
entire expression in double quotation marks.

Follow the source file name with a list of ordinary or pool series.

Options

File type options

If you do not specify the “t” option, EViews uses the file name extension to determine the
file type. If you specify the “t” option, the file name extension will not be used to determine
the file type.

Options for ASCII text files

prompt Force the dialog to appear from within a program.

t=dat, txt ASCII (plain text) files.

t=wk1, wk3 Lotus spreadsheet files.

t=xls Excel spreadsheet files.

t Read data organized by series. Default is to read by obser-
vation with series in columns.

na=text Specify text for NAs. Default is “NA”.

d=t Treat tab as delimiter (note: you may specify multiple
delimiter options). The default is “d=c” only.

d=c Treat comma as delimiter.

d=s Treat space as delimiter.

d=a Treat alpha numeric characters as delimiter.

custom =
symbol

Specify symbol/character to treat as delimiter.

mult Treat multiple delimiters as one.

names Series names provided in file.

label=integer Number of lines between the header line and the data.
Must be used with the “name” option.

rect (default) /
norect

[Treat / Do not treat] file layout as rectangular.

skipcol =
integer

Number of columns to skip. Must be used with the “rect”
option.

488—Chapter 1. Object Reference

Options for spreadsheet (Lotus, Excel) files

Options for pool reading

Examples
pool1.read(t=dat,na=.) a:\mydat.raw year lwage? hrs?

reads stacked data from an ASCII file MYDAT.RAW in the A: drive. The data in the file are
stacked by cross-section, the missing value NA is coded as a “.” (dot or period). We read one
ordinary series YEAR, and three two pool series LWAGE? and HRS?.

pool1.read(a2,s=sheet3,byper) statepan.xls inc? educ? pop?

reads data from an Excel file STATEPAN in the default directory. The data are stacked by
period in the sheet SHEET3 with the upper left data cell A2. We read three pool series INC?
EDUC? and POP?.

skiprow =
integer

Number of rows to skip. Must be used with the “rect”
option.

comment=
symbol

Specify character/symbol to treat as comment sign. Every-
thing to the right of the comment sign is ignored. Must be
used with the “rect” option.

singlequote Strings are in single quotes, not double quotes.

dropstrings Do not treat strings as NA; simply drop them.

negparen Treat numbers in parentheses as negative numbers.

allowcomma Allow commas in numbers (note that using commas as a
delimiter takes precedence over this option).

currency=
symbol

Specify symbol/character for currency data.

t Read data organized by series. Default is to read by obser-
vation with series in columns.

letter_number
(default=“b2”)

Coordinate of the upper-left cell containing data.

s=sheet_name Sheet name for Excel 5–8 Workbooks.

bycross
(default) /
byper

Structure of stacked pool data [cross-section / date or
period] (only for pool read).

Pool::residcor—489

Cross-references

See “Creating a Workfile by Reading from a Foreign Data Source” on page 47 and “Importing
Data” on page 146 of User’s Guide I for a discussion and examples of importing data from
external files.

Chapter 44. “Working with Panel Data,” beginning on page 893 of User’s Guide II describes
panel data alternatives to working with pooled data.

See also pageload (p. 449) and wfopen (p. 526) of the Command and Programming Refer-
ence and Pool::write (p. 503).

Display text of specification for pool objects.

Syntax
pool_name.representation(options)

Options

Examples
pool1.representations

displays the specifications of the estimation object POOL1.

Cross-references

See “Estimating a Pool Equation” on page 864 of User’s Guide II for a discussion of pool
equations.

Residual correlation matrix.

Displays the correlations of the residuals from each pool cross-section equation.

Syntax
pool_name.residcor(options)

Options

representations Pool Views

p Print the representation text.

residcor Pool Views

p Print the correlation matrix.

490—Chapter 1. Object Reference

Examples
pool1.residcor

displays the residual correlation matrix of POOL1.

Cross-references

See also Pool::residcov (p. 490) and Pool::makeresids (p. 481).

Residual covariance matrix.

Displays the covariances of the residuals from each pool cross-section equation.

Syntax
pool_name.residcov(options)

Options

Examples
pool1.residcov

displays the residual covariance matrix of POOL1.

Cross-references

See “Estimating a Pool Equation” on page 864 of User’s Guide II for a discussion of pool
equations. See also Pool::residcor (p. 489) and Pool::makeresids (p. 481).

Display residuals.

Display the actual, fitted values and residuals in either tabular or graphical form. resids
displays multiple graphs, where each graph will contain the residuals for each cross-section
in the pool.

Syntax
pool_name.resids(options)

residcov Pool Views

p Print the covariance matrix.

resids Pool Views

Pool::results—491

Options

Examples
pool1.ls m1? c inc? tb3?

pool1.resids

regresses M1 on a constant, INC, and TB3, and displays a table of actual, fitted, and residual
series.

pool1.resids(g)

displays a graph of the actual, fitted, and residual series.

Cross-references

See also Pool::makeresids (p. 481).

Cross-references

See “Estimating a Pool Equation” on page 864 of User’s Guide II for a discussion of pool
equations.

Displays the results view of a pool object.

Syntax
pool_name.results(options)

Options

Examples
pool1.ls m1? c inc? tb3?

pool1.results(p)

estimates an equation using least squares, and displays and prints the results.

Cross-references

See “Estimating a Pool Equation” on page 864 of User’s Guide II for a discussion of pool
equations.

g (default) Display graph(s) of residuals.

p Print the table/graph.

results Pool Views

p Print the view.

492—Chapter 1. Object Reference

Set the object attribute.

Syntax
pool_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Spreadsheet view of a pool object.

Syntax
pool_name.sheet(options) pool_ser1 [pool_ser2 pool_ser3 ...]

The sheet view displays the spreadsheet view of the series in the pool. Follow the word
sheet by a list of series to display; you may use the cross section identifier “?” in the series
name.

Options

Examples
pool1.sheet(p) x? y? z?

displays and prints the pool spreadsheet view of the series X?, Y?, and Z?.

setattr Pool Procs

sheet Pool Views

prompt Force the dialog to appear from within a program.

p Print the spreadsheet view.

Pool::store—493

Cross-references

See Chapter 43. “Pooled Time Series, Cross-Section Data,” on page 843 of User’s Guide II for
a discussion of pools.

Store objects in databases and databank files.

Stores one or more objects in the current workfile in EViews databases or individual data-
bank files on disk. The objects are stored under the name that appears in the workfile.
EViews will first expand the list of series using the pool operator, and then perform the oper-
ation.

Syntax
pool_name.store(options) pool_ser1 [pool_ser2 pool_ser3 ...]

Follow the store command keyword with a list of object names (each separated by a space)
that you wish to store. The default is to store the objects in the default database. (This
behavior is a change from EViews 2 and earlier where the default was to store objects in indi-
vidual databank files).

You may precede the object name with a database name and the double colon “::” to indi-
cate a specific database. You can also specify the database name as an option in parenthe-
ses, in which case all objects without an explicit database name will be stored in the
specified database.

You may use the wild card character “*” to match zero or more characters in the object
name list. All objects with names matching the pattern will be stored. You may not use “?”
as a wildcard character, since this conflicts with the pool identifier.

You can optionally choose to store the listed objects in individual databank files. To store in
files other than the default path, you should include a path designation before the object
name.

Options

store Pool Procs

d=db_name Store to the specified database.

i Store to individual databank files.

1 / 2 Store series in [single / double] precision to save space.

o Overwrite object in database (default is to merge data,
where possible).

494—Chapter 1. Object Reference

If you do not specify the precision option (1 or 2), the global option setting will be used. See
“Database Storage Defaults” on page 870 of User’s Guide II.

Examples
pool1.store m1? gdp? unemp?

stores the three pool objects M1, GDP, UNEMP in the default database.

pool1.store(d=us1) m1? gdp? macro::unemp?

Cross-references

“Basic Data Handling” on page 123 of User’s Guide I discusses exporting data in other file
formats. See Chapter 10. “EViews Databases,” on page 317 of User’s Guide I for a discussion
of EViews databases and databank files.

For additional discussion of wildcards, see Appendix A. “Wildcards,” on page 771 of the
Command and Programming Reference.

See also Pool::fetch (p. 472).

Test whether to add regressors to an estimated equation.

Tests the hypothesis that the listed variables were incorrectly omitted from an estimated
equation (only available for equations estimated by list). The test displays some combina-
tion of Wald and LR test statistics, as well as the auxiliary regression.

Syntax
pool_name.testadd(options) [x1 x2 ...] [@cxreg z1 z2 ...] [@perreg z3 z4 ...]

List the names of the series to test for omission after the keyword.

Options

g=arg Group store from workfile to database: “s” (copy group
definition and series as separate objects), “t” (copy group
definition and series as one object), “d” (copy series only
as separate objects), “l” (copy group definition only).

prompt Force the dialog to appear from within a program.

testadd Pool Views

prompt Force the dialog to appear from within a program.

p Print output from the test.

Pool::testdrop—495

Examples
pool1.testadd gdp? @cxreg inc?

tests the addition of the pool series GDP? to the common coefficients list and INC? to the
cross-section specific coefficients list.

Cross-references

See “Coefficient Diagnostics” on page 176 of User’s Guide II for further discussion.

See also Pool::testdrop (p. 495) and Pool::wald (p. 502).

Test whether to drop regressors from a regression.

Tests the hypothesis that the listed variables were incorrectly included in the estimated
equation (only available for equations estimated by list). The test displays some combina-
tion of and LR test statistics, as well as the test regression.

Syntax
pool_name.testdrop(options) arg1 [arg2 arg3 ...]

List the names of the series to test for omission after the keyword.

Options

Examples
pool1.testdrop(p) x?

drops X? from the existing pool specification and prints the results of the test.

Cross-references

See “Coefficient Diagnostics” on page 176 of User’s Guide II for further discussion of testing
coefficients.

See also Pool::testadd (p. 494) and Pool::wald (p. 502).

testdrop Pool Views

prompt Force the dialog to appear from within a program.

p Print output from the test.

F

496—Chapter 1. Object Reference

Two-stage least squares.

Syntax
pool_name.tsls(options) y [x1 x2 x3 ...] [@cxreg w1 w2 ...] [@perreg w3 w4 ...]

[@inst z1 z2 ...] [@cxinst z3 z4 ...] [@perinst z5 z6 ...]

Type the name of the dependent variable followed by one or more lists of regressors. The
first list should contain ordinary and pool series that are restricted to have the same coeffi-
cient across all members of the pool. The second list, if provided, should contain pool vari-
ables that have different coefficients for each cross-section member of the pool. If there is a
cross-section specific regressor list, the two lists must be separated by “@CXREG”. The third
list, if provided, should contain pool variables that have different coefficients for each
period. The list should be separated from the previous lists by “@PERREG”.

You may include AR terms as regressors in either the common or cross-section specific lists.
AR terms are, however, not allowed for some estimation methods. MA terms are not sup-
ported.

Instruments should be specified in one of three lists. The “@INST” list should contain
instruments that are common across all cross-sections and periods. The “@CXINST” should
contain instruments that differ across cross-sections, while the “@PERINST” list specifies
instruments that differ across periods.

There must be at least as many instrumental variables as there are independent variables.
All exogenous variables included in the regressor list should also be included in the corre-
sponding instrument list. A constant is included in the common instrumental list if not
explicitly specified.

Options
General options

tsls Pool Methods

m=integer Set maximum number of iterations.

c=number Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv /
-fastderiv

[Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

Pool::tsls—497

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

s Use the current coefficient values in “C” as starting values
for equations with AR or MA terms (see also param
(p. 463) of the Command and Programming Reference).

s=number Determine starting values for equations specified by list
with AR or MA terms. Specify a number between zero and
one representing the fraction of preliminary least squares
estimates computed without AR or MA terms. Note that
out of range values are set to “s=1”. Specifying “s=0” ini-
tializes coefficients to zero. By default, EViews uses “s=1”.

cx=arg Cross-section effects. For fixed effects estimation, use
“cx=f”; for random effects estimation, use “cx=r”.

per=arg Period effects. For fixed effects estimation, use “cx=f”; for
random effects estimation, use “cx=r”.

wgt=arg GLS weighting: (default) none, cross-section system
weights (“wgt=cxsur”), period system weights
(“wgt=persur”), cross-section diagonal weighs
(“wgt=cxdiag”), period diagonal weights (“wgt=per-
diag”).

cov=arg Coefficient covariance method: (default) ordinary, White
cross-section system robust (“cov=cxwhite”), White
period system robust (“cov=perwhite”), White heteroske-
dasticity robust (“cov=stackedwhite”), Cross-section sys-
tem robust/PCSE (“cov=cxsur”), Period system robust/
PCSE (“cov=persur”), Cross-section heteroskedasticity
robust/PCSE (“cov=cxdiag”), Period heteroskedasticity
robust (“cov=perdiag”).

keepwgts Keep full set of GLS weights used in estimation with object,
if applicable (by default, only small memory weights are
saved).

rancalc=arg
(default=“sa”)

Random component method: Swamy-Arora (“ran-
calc=sa”), Wansbeek-Kapteyn (“rancalc=wk”), Wallace-
Hussain (“rancalc=wh”).

nodf Do not perform degree of freedom corrections in computing
coefficient covariance matrix. The default is to use degree
of freedom corrections.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default is to use the “C” coefficient vector.

498—Chapter 1. Object Reference

Examples
pool1.tsls y? c x? @inst z?

estimates TSLS on the pool specification using common instruments Z?

Cross-references

See “Two-stage Least Squares” on page 69 and “Two-Stage Least Squares” on page 647 of
User’s Guide II for details on two-stage least squares estimation in single equations and sys-
tems, respectively.

“Instrumental Variables” on page 886 of User’s Guide II discusses estimation using pool
objects, while “Instrumental Variables Estimation” on page 920 of User’s Guide II discusses
estimation in panel structured workfiles.

See also Pool::ls (p. 477).

iter=arg
(default=“onec”)

Iteration control for GLS specifications: perform one weight
iteration, then iterate coefficients to convergence
(“iter=onec”), iterate weights and coefficients simultane-
ously to convergence (“iter=sim”), iterate weights and
coefficients sequentially to convergence (“iter=seq”), per-
form one weight iteration, then one coefficient step
(“iter=oneb”).
Note that random effects models currently do not permit
weight iteration to convergence.

s Use the current coefficient values in “C” as starting values
for equations with AR or MA terms (see also param
(p. 463) of the Command and Programming Reference).

s=number Determine starting values for equations specified by list
with AR terms. Specify a number between zero and one
representing the fraction of preliminary least squares esti-
mates computed without AR terms. Note that out of range
values are set to “s=1”. Specifying “s=0” initializes coeffi-
cients to zero. By default, EViews uses “s=1”.

unbalsur Compute SUR factorization in unbalanced data using the
subset of available observations for a cluster.

prompt Force the dialog to appear from within a program.

p Print estimation results.

Pool::uroot—499

Update coefficient object values from pool object.

Copies coefficients from the pool into the appropriate coefficient vector.

Syntax
pool_name.updatecoef

Follow the name of the pool object by a period and the keyword updatecoef.

Examples
pool1.ls y? c x1? x2? x3?

pool2.ls z? c z1? z2? z3?

pool1.updatecoef

places the coefficients from POOL1 in the default coefficient vector C.

Cross-references

See also Coef::coef (p. 20).

Carries out unit root tests on a pool series.

When used with a pool series, the procedure will perform panel unit root testing. The panel
unit root tests include Levin, Lin and Chu (LLC), Breitung, Im, Pesaran, and Shin (IPS),
Fisher - ADF, Fisher - PP, and Hadri tests on levels, or first or second differences.

Note that simulation evidence suggests that in various settings (for example, small),
Hadri's panel unit root test experiences significant size distortion in the presence of autocor-
relation when there is no unit root. In particular, the Hadri test appears to over-reject the
null of stationarity, and may yield results that directly contradict those obtained using alter-
native test statistics (see Hlouskova and Wagner (2006) for discussion and details).

Syntax
pool_name.uroot(options) pool_series

Enter the pool object name followed by a period, the keyword, and the name of a pool “?”
series.

updatecoefs Pool Procs

uroot Pool Views

T

500—Chapter 1. Object Reference

Options
Basic Specification Options

You should specify the exogenous variables and order of dependent variable differencing in
the test equation using the following options:

You may use one of the following keywords to specify the test:

Sample Option

Lag Difference Options

Specifies the number of lag difference terms to be included in the test equation. Applicable
in “Summary”, LLC, Breitung, IPS, and Fisher-ADF tests. The default setting depends on
whether you choose to balance the samples across cross-sections.

If you do not include the “balance” option, the default is to perform automatic lag selection
using the Schwarz criteria (“lagmethod=sic”).

Alternately, if you include the “balance” option, the default setting is a common, observa-
tion-based fixed lag (“lag=default”) where:

default= (1.3)

exog=arg
(default=“const”)

Specification of exogenous trend variables in the test equa-
tion: “const” “trend” (include a constant and a linear time
trend).

dif=integer
(default=0)

Order of differencing of the series prior to running the test.
Valid values are {0, 1, 2}.

sum (default) Summary of the first five panel unit root tests (where appli-
cable).

llc Levin, Lin, and Chu.

breit Breitung.

ips Im, Pesaran, and Shin.

adf Fisher - ADF.

pp Fisher - PP.

hadri Hadri.

balance Use balanced (across cross-sections or series) data when
performing test.

1 if Tmin 60d� �

2 if 60 T� min 100d� �

4 if Tmin 100!� �¯
°
®
°

Pool::uroot—501

Kernel Options

Specifies options for computing kernel estimates of the zero-frequency spectrum (long-run
covariance). Applicable to “Summary”, LLC, Fisher-PP, and Hadri tests.

Other options

Examples
Pool1.uroot(llc,exog=trend) gdp?

performs the LLC panel unit root test with exogenous individual trends and individual
effects on pool series GDP?

lagmethod=arg
(default=“sic”)

Method for selecting lag lengths (number of first difference
terms) to be included in the Dickey-Fuller test regressions:
“aic” (Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn),
“tstat” (Ng-Perron first backward significant t-statistic).

lag=arg Specified lag length (number of first difference terms) to be
included in the regression: integer (user-specified common
lag length), vector_name (user-specific individual lag
length, one row per cross-section).

maxlag=arg Maximum lag length to consider when performing auto-
matic lag length selection: integer (common maximum lag
length), or vector_name (individual maximum lag length,
one row per cross-section). The default setting produces
individual maximum lags of,

default=

where is the length of the cross-section.

lagpval=arg
(default=0.1)

Probability value for use in the t-statistic automatic lag
selection method (when “lagmethod = tstat”).

hac=arg
(default=“bt”)

Method of estimating the frequency zero spectrum: “bt”
(Bartlett kernel), “pr” (Parzen kernel), “qs” (Quadratic
Spectral kernel),

band = arg, b=arg
(default=“nw”)

Method of selecting the bandwidth: “nw” (Newey-West
automatic variable bandwidth selection), “a” (Andrews
automatic selection), number (user-specified common
bandwidth), vector_name (user-specified individual band-
widths, one row for each cross-section).

prompt Force the dialog to appear from within a program.

p Print output from the test.

int min 12 Ti 3e,() Ti 100e� �1 4e�()

Ti

502—Chapter 1. Object Reference

Pool1.uroot(ips,exog=const,maxlag=4,lagmethod=aic) inv?

performs the IPS panel unit root test on pool series INV?. The test includes individual
effects, lag will be chosen by AIC from maximum lag of three.

Pool1.uroot(sum,exog=const,lag=3,hac=pr,b=2.3) mm?

performs a summary of the panel unit root tests on the pool series MM?. The test equation
includes a constant term and three lagged first-difference terms. The frequency zero spec-
trum is estimated using kernel methods (with a Parzen kernel), and a bandwidth of 2.3.

Cross-references

See “Panel Unit Root Testing” on page 617 of User’s Guide II for discussion of unit roots tests
performed on pooled data.

See also Pool::coint (p. 466).

Wald coefficient restriction test.

The wald view carries out a Wald test of coefficient restrictions for a pool object.

Syntax
pool_name.wald restrictions

Enter the pool object name, followed by a period, and the keyword. You must provide a list
of the coefficient restrictions, with joint (multiple) coefficient restrictions separated by com-
mas.

Options

Examples
pool panel us uk jpn

panel.ls cons? c inc? @cxreg ar(1)

panel.wald c(3)=c(4)=c(5)

declares a pool object with three cross section members (US, UK, JPN), estimates a pooled
OLS regression with separate AR(1) coefficients, and tests the null hypothesis that all AR(1)
coefficients are equal.

wald Pool Views

prompt If no restrictions are specified, force the dialog to appear
from within a program.

p Print the test results.

Pool::write—503

Cross-references

See “Wald Test (Coefficient Restrictions)” on page 182 of User’s Guide II for a discussion of
Wald tests.

See also Pool::cellipse (p. 464), Pool::testdrop (p. 495), Pool::testadd (p. 494).

Write EViews data to a text (ASCII), Excel, or Lotus file on disk.

Creates a foreign format disk file containing EViews data. May be used to export EViews
data to another program.

Note: we strongly recommend that you instead of using this proc, you use pagestack to cre-
ate a panel structured workfile and then use wfsave or pagesave .

Syntax
pool_name.write(options) [path\filename] pool_series1 [pool_series2 pool_series3 ...]

Follow the keyword by a name for the output file and list the series to be written. The
optional path name may be on the local machine, or may point to a network drive. If the
path name contains spaces, enclose the entire expression in double quotation marks.

Note that EViews cannot, at present, write into an existing file. The file that you select will,
if it exists, be replaced.

Options

Other options are used to specify the format of the output file.

File type

If you omit the “t=” option, EViews will determine the type based on the file extension.
Unrecognized extensions will be treated as ASCII files. For Lotus and Excel spreadsheet files
specified without the “t=” option, EViews will automatically append the appropriate exten-
sion if it is not otherwise specified.

write Pool Procs

prompt Force the dialog to appear from within a program.

t=dat, txt ASCII (plain text) files.

t=wk1, wk3 Lotus spreadsheet files.

t=xls Excel spreadsheet files.

504—Chapter 1. Object Reference

ASCII text files

Spreadsheet (Lotus, Excel) files

Pooled data writing

Examples
pool1.write(t=txt,na=.,d=c,id) a:\dat1.csv gdp? edu?

Writes into an ASCII file named “Dat1.csv” on the A drive. The data file is listed by observa-
tions, NAs are coded as “.” (dot), each series is separated by a comma, and the date/obser-
vation numbers and cross-section identifiers are written together with the series names.

pool1.write(t=txt,na=.,d=c,id) dat1.csv gdp? edu?

writes the same file in the default directory.

mypool.write(t=xls,per) "\\network\drive a\growth" gdp? edu?

writes an Excel file “GROWTH.XLS” in the specified directory. The data are organized by
observation, and are listed by period/time.

na=string Specify text string for NAs. Default is “NA”.

names (default) /
nonames

[Write / Do not write] series names.

id Write dates/obs and cross-section identifiers.

d=arg Specify delimiter (default is tab): “s” (space), “c”
(comma).

t Write by series. Default is to write by obs with series in col-
umns.

letter_number Coordinate of the upper-left cell containing data.

names (default) /
nonames

[Write / Do not write] series names.

id Write dates/obs and cross-section identifiers.

dates=arg Excel format for writing date: “first” (convert to the first
day of the corresponding observation if necessary), “last”
(convert to the last day of the corresponding observation).

t Write by series. Default is to write by obs with series in col-
umns.

bycross (default) /
byper

Stack pool data by [cross-section / date or period].

Pool::write—505

Cross-references

See “Exporting Data,” beginning on page 161 of User’s Guide I for a discussion. Pool writing
is discussed in “Exporting Pooled Data” on page 862 of User’s Guide II.

See also pagesave (p. 451) of the Command and Programming Reference and Pool::read
(p. 486).

506—Chapter 1. Object Reference

Rowvector::—507

Rowvector

Row vector. (One dimensional array of numbers).

Rowvector Declaration
rowvector..............declare rowvector object (p. 521).

There are several ways to create a rowvector object. First, you can enter the rowvector key-
word (with an optional dimension) followed by a name:

rowvector scalarmat

rowvector(10) results

The resulting rowvector will be initialized with zeros.

Alternatively, you may combine a declaration with an assignment statement. The new vec-
tor will be sized and initialized accordingly:

rowvector(10) y=3

rowvector z=results

Rowvector Views
displaydisplay table, graph, or spool in object window (p. 510).
labellabel information for the rowvector (p. 517).
sheetspreadsheet view of the vector (p. 525).
stats(trivial) descriptive statistics (p. 525).

Rowvector Graph Views

Graph creation views are discussed in detail in “Graph Creation Command Summary” on
page 911.

bar........................bar graph of each column (element) of the data against the row
index (p. 918).

boxplotboxplot graph (p. 923).
distplotdistribution graph (p. 926).
dotdot plot graph (p. 934).
errbarerror bar graph view (p. 938).
mixedmixed-type graph (p. 945).
piepie chart view (p. 947).
qqplotquantile-quantile graph (p. 950).
scatscatter diagrams of the columns of the rowvector (p. 954).
scatmatmatrix of all pairwise scatter plots (p. 959).
scatpairscatterplot pairs graph (p. 961).
seasplot.................seasonal line graph of the columns of the rowvector (p. 965).
spike.....................spike graph (p. 966).

508—Chapter 1. Object Reference

xybar XY bar graph (p. 973).
xypair XY pairs graph (p. 979).

Rowvector Procs
clearhist clear the contents of the history attribute (p. 509).
displayname set display name (p. 510).
fill fill elements of the vector (p. 511).
import imports data from a foreign file into the vector object (p. 511).
olepush push updates to OLE linked objects in open applications (p. 518).
read (deprecated) import data from disk (p. 519).
setattr................... set the value of an object attribute (p. 521).
setformat set the display format for the vector spreadsheet (p. 522).
setindent set the indentation for the vector spreadsheet (p. 523).
setjust set the justification for the vector spreadsheet (p. 524).
setwidth set the column width in the vector spreadsheet (p. 524).
write export data to disk (p. 526).

Rowvector Data Members
String values

@attr(“arg”) string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@collabels............ string containing the column labels of the rowvector.
@description string containing the Rowvector object’s description (if available).
@detailedtype string with the object type: “ROWVECTOR”.
@displayname...... string containing the Rowvector object’s display name. If the

Rowvector has no display name set, the name is returned.
@name string containing the Rowvector object’s name.
@remarks string containing the Rowvector object’s remarks (if available).
@rowlabels string containing the row label of the rowvector.
@source string containing the Rowvector object’s source (if available).
@type string with the object type: “ROWVECTOR”.
@units string containing the Rowvector object’s units description (if avail-

able).
@updatetime........ string representation of the time and date at which the Rowvector

was last updated.

Scalar values

(i) i-th element of the vector. Simply append “(i)” to the matrix name
(without a “.”).

@cols................... number of columns in the matrix.

Rowvector::clearhist—509

Vector values

@dropcol(i)Returns the rowvector with the i-th row removed. i may be a vector
of integers, in which case multiple rows are removed.

Rowvector Examples

To declare a rowvector and to fill it with data read from an Excel file:

rowvector(10) mydata

mydata.read(b2) thedata.xls

To access a single element of the vector using direct indexing:

scalar result1=mydata(2)

The rowvector may be used in standard matrix expressions:

vector transdata=@transpose(mydata)

Rowvector Entries

The following section provides an alphabetical listing of the commands associated with the
“Rowvector” object. Each entry outlines the command syntax and associated options, and
provides examples and cross references.

Clear the contents of the history attribute.

Removes the rowvector’s history attribute, as shown in the label view of the rowvector.

Syntax
rowvector_name.clearhist

Examples
r1.clearhist

r1.label

The first line removes the history from the rowvector R1, and the second line displays the
label view of R1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Rowvector::label (p. 517).

clearhist Rowvector Procs

510—Chapter 1. Object Reference

Display table, graph, or spool output in the rowvector object window.

Display the contents of a table, graph, or spool in the window of the rowvector object.

Syntax
rowvector_name.display object_name

Examples
rowvector1.display tab1

Display the contents of the table TAB1 in the window of the object ROWVECTOR1.

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

Display name for rowvector objects.

Attaches a display name to a rowvector object which may be used to label output in tables
and graphs in place of the standard rowvector object name.

Syntax
vector_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in rowvector object names.

Examples
hrs.displayname Hours Worked

hrs.label

The first line attaches a display name “Hours Worked” to the rowvector object HRS, and the
second line displays the label view of HRS, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Rowvector::label (p. 517).

display Rowvector Views

displayname Rowvector Procs

Rowvector::import—511

Fill a rowvector object with specified values.

Syntax
vector_name.fill(options) n1[, n2, n3 …]

Follow the keyword with a list of values to place in the specified object. Each value should
be separated by a comma.

Running out of values before the object is completely filled is not an error; the remaining
cells or observations will be unaffected, unless the “l” option is specified. If, however, you
list more values than the object can hold, EViews will not modify any observations and will
return an error message.

Options

Examples

The following example declares a four element rowvector MC, initially filled with zeros. The
second line fills MC with the specified values and the third line replaces from column 3 to
the last column with –1.

rowvector(4) mc

mc.fill 0.1, 0.2, 0.5, 0.5

mc.fill(o=3,l) -1

Cross-references

See Chapter 11. “Matrix Language,” on page 261 of User’s Guide II for a detailed discussion
of vector and matrix manipulation in EViews.

Imports data from a foreign file into the rowvector object.

Syntax
rowvector_name.import([type=]) source_description import_specification

fill Rowvector Procs

l Loop repeatedly over the list of values as many times as it
takes to fill the object.

o=integer
(default=1)

Fill the object from the specified element. Default is the
first element.

import Rowvector Procs

512—Chapter 1. Object Reference

• Source_description should contain a description of the file from which the data is to be
imported. The specification of the description is usually just the path and file name of
the file, however you can also specify more precise information. See wfopen (p. 526)
of the Command and Programming Reference for more details on the specification of
source_description.

• The optional “type=” option may be used to specify a source type. For the most part,
you should not need to specify a “type=” option as EViews will automatically deter-
mine the type from the filename. The following table summaries the various source
formats and along with the corresponding “type=” keywords:

• import_specification can be used to provide additional information about the file to be
read. The details of import_specification will depend upon the type of file being
imported.

Excel Files

The syntax for reading Excel files is:
matrix_name.import(type=excel[xml]) source_description [table_description] [vari-

ables_description]

The following table_description elements may be used when reading Excel data:

• “range = arg”, where arg is a range of cells to read from the Excel workbook, follow-
ing the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the
worksheet name is omitted, the cell range is assumed to refer to the currently active
sheet. If only a top left cell is provided, a bottom right cell will be chosen automati-
cally to cover the range of non-empty cells adjacent to the specified top left cell. If
only a sheet name is provided, the first set of non-empty cells in the top left corner of
the chosen worksheet will be selected automatically. As an alternative to specifying
an explicit range, a name which has been defined inside the excel workbook to refer
to a range or cell may be used to specify the cells to read.

• “byrow”, transpose the incoming data. This option allows you to read files where the
series are contained in rows (one row per series) rather than columns.

 Option Keywords

Excel (through 2003) “excel”

Excel 2007 (xml) “excelxml”

HTML “html”

Text / ASCII “text”

Rowvector::import—513

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w”(EViews automatic detection). This option is rarely required.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int| all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the data (default is 1). This
option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the data (default is last observation
of the file). This option may be used to read only part of the file, which may be useful
for testing.

Excel Examples

rowvec_name.import "c:\data files\data.xls"

loads the active sheet of DATA.XLSX into the ROWVEC_NAME matrix object.

rowvec_name.import "c:\data files\data.xls" range="GDP data"

reads the data contained in the “GDP data” sheet of “Data.XLS” into the ROWVEC_NAME
object.

HTML Files

The syntax for reading HTML pages is:
matrix_name.import(type=html) source_description [table_description] [variables_-

description]

The following table_description elements may be used when reading an HTML file or page:

• “table = arg”, where arg specifies which HTML table to read in an HTML file/page
containing multiple tables.

When specifying arg, you should remember that tables are named automatically fol-
lowing the pattern “Table01”, “Table02”, “Table03”, etc. If no table name is specified,
the largest table found in the file will be chosen by default. Note that the table num-
bering may include trivial tables that are part of the HTML content of the file, but
would not normally be considered as data tables by a person viewing the page.

514—Chapter 1. Object Reference

• “skip = int”, where int is the number of rows to discard from the top of the HTML
table.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w”(EViews automatic detection). This option is rarely used.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

HTML Examples

rvec.import "c:\data.html"

loads into the RVEC matrix object the data located in the HTML file “Data.HTML” located
on the C:\ drive

forexmat.import(type=html) "http://www.tradingroom.com.au/apps/

mkt/forex.ac" colhead=3

loads into a rowvector object called FOREXMAT the data with the given URL located on the
website site “http://www.tradingroom.com.au”. The column header is set to three rows.

Text and Binary Files

The syntax for reading text or binary files is:
rowvector_name.import(type=arg) source_description [table_description] [variables_-

description]

If a table_description is not provided, EViews will attempt to read the file as a free-format
text file. The following table_description elements may be used when reading a text or
binary file:

Rowvector::import—515

• “ftype = [ascii|binary]” specifies whether numbers and dates in the file are stored in
a human readable text (ASCII), or machine readable (Binary) form.

• “rectype = [crlf|fixed|streamed]” describes the record structure of the file:

“crlf”, each row in the output table is formed using a fixed number of lines from
the file (where lines are separated by carriage return/line feed sequences). This is
the default setting.

“fixed”, each row in the output table is formed using a fixed number of charac-
ters from the file (specified in “reclen= arg”). This setting is typically used for
files that contain no line breaks.

“streamed”, each row in the output table is formed by reading a fixed number of
fields, skipping across lines if necessary. This option is typically used for files that
contain line breaks, but where the line breaks are not relevant to how rows from
the data should be formed.

• “reclines =int”, number of lines to use in forming each row when “rectype=crlf”
(default is 1).

• “reclen=int”, number of bytes to use in forming each row when “rectype=fixed”.

• “recfields=int”, number of fields to use in forming each row when “rec-
type=streamed”.

• “skip=int”, number of lines (if rectype is “crlf”) or bytes (if rectype is not “crlf”) to
discard from the top of the file.

• “comment=string“, where string is a double-quoted string, specifies one or more
characters to treat as a comment indicator. When a comment indicator is found,
everything on the line to the right of where the comment indicator starts is ignored.

• “emptylines=[keep|drop]”, specifies whether empty lines should be ignored
(“drop”), or treated as valid lines (“keep”) containing missing values. The default is
to ignore empty lines.

• “tabwidth=int”, specifies the number of characters between tab stops when tabs are
being replaced by spaces (default=8). Note that tabs are automatically replaced by
spaces whenever they are not being treated as a field delimiter.

• “fieldtype=[delim|fixed|streamed|undivided]”, specifies the structure of fields within
a record:

“Delim”, fields are separated by one or more delimiter characters

“Fixed”, each field is a fixed number of characters

“Streamed”, fields are read from left to right, with each field starting immediately
after the previous field ends.

“Undivided”, read entire record as a single series.

516—Chapter 1. Object Reference

• “quotes=[single|double|both|none]”, specifies the character used for quoting fields,
where “single” is the apostrophe, “double” is the double quote character, and “both”
means that either single or double quotes are allowed (default is “both”). Characters
contained within quotes are never treated as delimiters.

• “singlequote“, same as “quotes = single”.

• “delim=[comma|tab|space|dblspace|white|dblwhite]”, specifies the character(s) to
treat as a delimiter. “White” means that either a tab or a space is a valid delimiter. You
may also use the abbreviation “d=” in place of “delim=”.

• “custom="arg1"”, specifies custom delimiter characters in the double quoted string.
Use the character “t” for tab, “s” for space and “a” for any character.

• “mult=[on|off]”, to treat multiple delimiters as one. Default value is “on” if “delim”
is “space”, “dblspace”, “white”, or “dblwhite”, and “off” otherwise.

• “endian = [big|little]”, selects the endianness of numeric fields contained in binary
files.

• “string = [nullterm|nullpad|spacepad]”, specifies how strings are stored in binary
files. If “nullterm”, strings shorter than the field width are terminated with a single
zero character. If “nullpad”, strings shorter than the field width are followed by extra
zero characters up to the field width. If “spacepad”, strings shorter than the field
width are followed by extra space characters up to the field width.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

A central component of the table_description element is the format statement. You may
specify the data format using the following table descriptors:

• Fortran Format:

fformat=([n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)

where Type specifies the underlying data type, and may be one of the following,

I - integer

F - fixed precision

E - scientific

A - alphanumeric

X - skip

and n1, n2, ... are the number of times to read using the descriptor (default=1). More
complicated Fortran compatible variations on this format are possible.

• Column Range Format:

rformat="[n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)"

Rowvector::label—517

where optional type is “$” for string or “#” for number, and n1, n2, n3, n4, etc. are the
range of columns containing the data.

• C printf/scanf Format:

cformat="fmt"

where fmt follows standard C language (printf/scanf) format rules.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w”(EViews automatic detection). This option is rarely used.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

Text and Binary File Examples (.txt, .csv, etc.)

rvec2.import c:\data.csv skip=5

reads “Data.CSV” into a RVEC2, skipping the first 5 rows.

rvec01.import(type=text, name=matrix01) c:\date.txt delim=comma

loads the comma delimited data DATE.TXT into the RVEC01 matrix object.

Display or change the label view of a rowvector object, including the last modified date
and display name (if any).

As a procedure, label changes the fields in the rowvector label.

Syntax
vector_name.label

vector_name.label(options) [text]

label Rowvector Views | Rowvector Procs

518—Chapter 1. Object Reference

Options

The first version of the command displays the label view of the rowvector. The second ver-
sion may be used to modify the label. Specify one of the following options along with
optional text. If there is no text provided, the specified field will be cleared.

Examples

The following lines replace the remarks field of rowvector RV1 with “Data from CPS 1988
March File”:

rv1.label(r)

rv1.label(r) Data from CPS 1988 March File

To append additional remarks to RV1, and then to print the label view:

rv1.label(r) Log of hourly wage

rv1.label(p)

To clear and then set the units field, use:

rv1.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Rowvector::displayname (p. 510).

Push updates to OLE linked objects in open applications.

Syntax
vector_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

olepush Rowvector Procs

Rowvector::read—519

Import data from a foreign disk file into a rowvector.

(This is a deprecated method of importing into a rowvector. See Rowvector::import
(p. 511) for the currently supported method.)

May be used to import data into an existing workfile from a text, Excel, or Lotus file on disk.

Syntax
vector_name.read(options) [path\]file_name

You must supply the name of the source file. If you do not include the optional path specifi-
cation, EViews will look for the file in the default directory. Path specifications may point to
local or network drives. If the path specification contains a space, you may enclose the
entire expression in double quotation marks.

Options

File type options

If you do not specify the “t” option, EViews uses the file name extension to determine the
file type. If you specify the “t” option, the file name extension will not be used to determine
the file type.

Options for ASCII text files

read Rowvector Procs

prompt Force the dialog to appear from within a program.

t=dat, txt ASCII (plain text) files.

t=wk1, wk3 Lotus spreadsheet files.

t=xls Excel spreadsheet files.

na=text Specify text for NAs. Default is “NA”.

d=t Treat tab as delimiter (note: you may specify multiple
delimiter options). The default is “d=c” only.

d=c Treat comma as delimiter.

d=s Treat space as delimiter.

d=a Treat alpha numeric characters as delimiter.

custom =
symbol

Specify symbol/character to treat as delimiter.

mult Treat multiple delimiters as one.

520—Chapter 1. Object Reference

Options for spreadsheet (Lotus, Excel) files

Examples
rv1.read(t=dat,na=.) a:\mydat.raw

reads data into rowvector RV1 from an ASCII file MYDAT.RAW in the A: drive. The data in
the file are listed by row, and the missing value NA is coded as a “.” (dot or period).

rv1.read(a2,s=sheet3) cps88.xls

reads data into rowvector RV1 from an Excel file CPS88 in the default directory. The upper
left data cell is A2, and the data is read from a sheet named SHEET3.

rv2.read(a2, s=sheet2) "\\network\dr 1\cps91.xls"

reads the Excel file CPS91 into rowvector RV1 from the network drive specified in the path.

Cross-references

See “Importing Data” on page 146 of User’s Guide I for a discussion and examples of import-
ing data from external files.

See also Rowvector::write (p. 526).

rect (default) /
norect

[Treat / Do not treat] file layout as rectangular.

skipcol =
integer

Number of columns to skip. Must be used with the “rect”
option.

skiprow =
integer

Number of rows to skip. Must be used with the “rect”
option.

comment=
symbol

Specify character/symbol to treat as comment sign. Every-
thing to the right of the comment sign is ignored. Must be
used with the “rect” option.

singlequote Strings are in single quotes, not double quotes.

dropstrings Do not treat strings as NA; simply drop them.

negparen Treat numbers in parentheses as negative numbers.

allowcomma Allow commas in numbers (note that using commas as a
delimiter takes precedence over this option).

letter_number
(default=“b2”)

Coordinate of the upper-left cell containing data.

s=sheet_name Sheet name for Excel 5–8 Workbooks.

Rowvector::setattr—521

Declare a rowvector object.

The rowvector command declares and optionally initializes a (row) vector object.

Syntax
rowvector(n1) vector_name

rowvector vector_name=assignment

You may optionally specify the size (number of columns) of the row vector in parentheses
after the rowvector keyword. If you do not specify the size, EViews creates a rowvector of
size 1, unless the declaration is combined with an assignment.

By default, all elements of the vector are set to 0, unless an assignment statement is pro-
vided. EViews will automatically resize new rowvectors, if appropriate.

Examples
rowvector rvec1

rowvector(20) coefvec = 2

rowvector newcoef = coefvec

RVEC1 is a row vector of size one with value 0. COEFVEC is a row vector of size 20 with all
elements equal to 2. NEWCOEF is also a row vector of size 20 with all elements equal to the
same values as COEFVEC.

Cross-references

See also Coef::coef (p. 20) and Vector::vector (p. 907).

Set the object attribute.

Syntax
rowvector_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

rowvector Rowvector Declaration

setattr Rowvector Procs

522—Chapter 1. Object Reference

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Set the display format for cells in a rowvector object spreadsheet view.

Syntax
vector_name.setformat format_arg

where format_arg is a set of arguments used to specify format settings. If necessary, you
should enclose the format_arg in double quotes.

For rowvectors, setformat operates on all of the cells in the rowvector.

To format numeric values, you should use one of the following format specifications:

To specify a format that groups digits into thousands using a comma separator, place a “t”
after the format character. For example, to obtain a fixed number of decimal places with
commas used to separate thousands, use “ft[.precision]”.

To use the period character to separate thousands and commas to denote decimal places,
use “..” (two periods) when specifying the precision. For example, to obtain a fixed number
of characters with a period used to separate thousands, use “ct[..precision]”.

If you wish to display negative numbers surrounded by parentheses (i.e., display the num-
ber -37.2 as “(37.2)”), you should enclose the format string in “()” (e.g., “f(.8)”).

Examples

To set the format for all cells in the rowvector to fixed 5-digit precision, simply provide the
format specification:

setformat Rowvector Procs

g[.precision] significant digits

f[.precision] fixed decimal places

c[.precision] fixed characters

e[.precision] scientific/float

p[.precision] percentage

r[.precision] fraction

Rowvector::setindent—523

rv1.setformat f.5

Other format specifications include:

rv1.setformat f(.7)

rv1.setformat e.5

Cross-references

See Rowvector::setwidth (p. 524), Rowvector::setindent (p. 523) and Rowvec-
tor::setjust (p. 524) for details on setting spreadsheet widths, indentation and justifica-
tion.

Set the display indentation for cells in a rowvector object spreadsheet view.

Syntax
vector_name.setindent indent_arg

where indent_arg is an indent value specified in 1/5 of a width unit. The width unit is com-
puted from representative characters in the default font for the current spreadsheet (the
EViews spreadsheet default font at the time the spreadsheet was created), and corresponds
roughly to a single character. Indentation is only relevant for non-center justified cells.

The default indentation setttings are taken from the Global Defaults for spreadsheet views
(“Spreadsheet Data Display” on page 868 of User’s Guide I) at the time the spreadsheet was
created.

For rowvectors, setindent operates on all of the cells in the vector.

Examples

To set the indentation for all the cells in a matrix object:

rv1.setindent 2

Cross-references

See Rowvector::setwidth (p. 524) and Rowvector::setjust (p. 524) for details on set-
ting spreadsheet widths and justification.

setindent Rowvector Procs

524—Chapter 1. Object Reference

Set the display justification for cells in a rowvector spreadsheet view.

Syntax
vector_name.setjust format_arg

where format_arg is a set of arguments used to specify format settings. You should enclose
the format_arg in double quotes if it contains any spaces or delimiters.

For rowvectors, setjust operates on all of the cells in the vector.

The format_arg may be formed using the following:

You may enter one or both of the justification settings. The default justification settings are
taken from the Global Defaults for spreadsheet views (“Spreadsheet Data Display” on
page 868 of User’s Guide I) at the time the spreadsheet was created.

Examples
rv1.setjust middle

sets the vertical justification to the middle.

rv1.setjust top left

sets the vertical justification to top and the horizontal justification to left.

Cross-references

See Rowvector::setwidth (p. 524) and Rowvector::setindent (p. 523) for details on
setting spreadsheet widths and indentation.

Set the column width for all columns in a rowvector object spreadsheet.

Syntax
vector_name.setwidth width_arg

setjust Rowvector Procs

top / middle /
bottom]

Vertical justification setting.

auto / left / cen-
ter / right

Horizontal justification setting. “Auto” uses left justifica-
tion for strings, and right for numbers.

setwidth Rowvector Procs

Rowvector::stats—525

where width_arg specifies the width unit value. The width unit is computed from represen-
tative characters in the default font for the current spreadsheet (the EViews spreadsheet
default font at the time the spreadsheet was created), and corresponds roughly to a single
character. width_arg values may be non-integer values with resolution up to 1/10 of a width
unit.

Examples
rv1.setwidth 12

sets the width of all columns in rowvector RV1 to 12 width units.

Cross-references

See Rowvector::setindent (p. 523) and Rowvector::setjust (p. 524) for details on
setting spreadsheet indentation and justification.

Spreadsheet view of a rowvector object.

Syntax
vector_name.sheet(options)

Options

Examples
rv1.sheet(p)

displays and prints the spreadsheet view of rowvector RV1.

Descriptive statistics.

Computes and displays a table of means, medians, maximum and minimum values, stan-
dard deviations, and other descriptive statistics for a rowvector.

The stats command computes the statistics for each column. Note that in the case of a
rowvector, this will be for a single observation.

Syntax
vector_name.stats(options)

sheet Rowvector Views

p Print the spreadsheet view.

stats Rowvector Views

526—Chapter 1. Object Reference

Options

Examples
rv1.stats

displays the descriptive statistics view of rowvector RV1.

Cross-references

See “Descriptive Statistics & Tests” on page 402 and page 572 of User’s Guide I for a discus-
sion of the descriptive statistics views of series and groups.

Write EViews data to a text (ASCII), Excel, or Lotus file on disk.

Creates a foreign format disk file containing EViews data. May be used to export EViews
data to another program.

Syntax
vector_name.write(options) [path\filename]

Follow the name of the rowvector object by a period, the keyword, and the name for the out-
put file. The optional path name may be on the local machine, or may point to a network
drive. If the path name contains spaces, enclose the entire expression in double quotation
marks. The entire rowvector will be exported.

Note that EViews cannot, at present, write into an existing file. The file that you select will,
if it exists, be replaced.

Options

File type

If you omit the “t=” option, EViews will determine the type based on the file extension.
Unrecognized extensions will be treated as ASCII files. For Lotus and Excel spreadsheet files

p Print the stats table.

write Rowvector Procs

prompt Force the dialog to appear from within a program.

t=dat, txt ASCII (plain text) files.

t=wk1, wk3 Lotus spreadsheet files.

t=xls Excel spreadsheet files.

Rowvector::write—527

specified without the “t=” option, EViews will automatically append the appropriate exten-
sion if it is not otherwise specified.

ASCII text files

Spreadsheet (Lotus, Excel) files

Examples
rv1.write(t=txt,na=.) a:\dat1.csv

writes the rowvector RV1 into an ASCII file named DAT1.CSV on the A: drive. NAs are coded
as “.” (dot).

rv1.write(t=txt,na=.) dat1.csv

writes the same file in the default directory.

rv1.write(t=xls) "\\network\drive a\results"

saves the contents of RV1 in an Excel file “Results.xls” in the specified directory.

Cross-references

See “Exporting to a Spreadsheet or Text File” on page 163 of User’s Guide I for a discussion.

See also pagesave (p. 451) and Rowvector::read (p. 519).

na=string Specify text string for NAs. Default is “NA”.

d=arg Specify delimiter (default is tab): “s” (space), “c”
(comma).

letter_number Coordinate of the upper-left cell containing data.

528—Chapter 1. Object Reference

Sample

Sample of observations. Description of a set of observations to be used in operations.

Sample Declaration
sample declare a sample object (p. 531).

To declare a sample object, use the keyword sample, followed by a name and a sample
string:

sample mysample 1960:1 1990:4

sample altsample 120 170 300 1000 if x>0

Sample Views
label..................... label information for the sample (p. 530).
spec display sample specification information (p. 533).

Sample Procs
clearhist clear the contents of the history attribute (p. 529).
displayname set display name (p. 529).
olepush push updates to OLE linked objects in open applications (p. 531).
set........................ reset the sample range (p. 532).
setattr................... set the value of an object attribute (p. 533).

Sample Data Members
String values

@attr(“arg”) string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description string containing the Sample object’s description (if available).
@detailedtype string with the object type: “SAMPLE”.
@displayname...... string containing the Sample object’s display name. If the Sample

has no display name set, the name is returned.
@name string containing the Sample object’s name.
@remarks string containing the Sample object’s remarks (if available).
@source string containing the Sample object’s source (if available).
@type string with the object type: “SAMPLE”.
@updatetime........ string representation of the time and date at which the Sample was

last updated.

Sample Example

To change the observations in a sample object, you can use the set proc:

mysample.set 1960:1 1980:4 if y>0

sample thesamp 1 10 20 30 40 60 if x>0

Sample::displayname—529

thesamp.set @all

To set the current sample to use a sample, enter a smpl statement, followed by the name of
the sample object:

smpl mysample

equation eq1.ls y x c

Sample Entries

The following section provides an alphabetical listing of the commands associated with the
“Sample” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Clear the contents of the history attribute for sample objects.

Removes the sample’s history attribute, as shown in the label view of the sample.

Syntax
sample_name.clearhist

Examples
s1.clearhist

s1.label

The first line removes the history from the sample S1, and the second line displays the label
view of S1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Sample::label (p. 530).

Display name for sample objects.

Attaches a display name to a sample object which may be used to label output in place of
the standard sample object name.

clearhist Sample Procs

displayname Sample Procs

530—Chapter 1. Object Reference

Syntax
sample_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in sample object names.

Examples
sm1.displayname Annual Sample

sm1.label

The first line attaches a display name “Annual Sample” to the sample object SM1, and the
second line displays the label view of SM1, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Sample::label (p. 530).

Display or change the label view of a sample object, including the last modified date and
display name (if any).

As a procedure, label changes the fields in the sample object label.

Syntax
sample_name.label

sample_name.label(options) [text]

Options

The first version of the command displays the label view of the sample object. The second
version may be used to modify the label. Specify one of the following options along with
optional text. If there is no text provided, the specified field will be cleared.

label Sample Views | Sample Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

Sample::sample—531

Examples

The following lines replace the remarks field of the sample SP1 with “1988 March”

sp1.label(r)

sp1.label(r) 1988 March

To append additional remarks to SP1, and then to print the label view:

sp1.label(r) if X is greater than 3

sp1.label(p)

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Sample::displayname (p. 529).

Push updates to OLE linked objects in open applications.

Syntax
sample_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Declare a sample object.

The sample statement declares, and optionally defines, a sample object.

Syntax
sample smpl_name [smpl_statement]

Follow the sample keyword with a name for the sample object and a sample statement. If
no sample statement is provided, the sample object will be set to the current workfile sam-
ple.

To reset the sample dates in a sample object, you must use the Sample::set (p. 532) proce-
dure.

olepush Sample Procs

sample Sample Declaration

532—Chapter 1. Object Reference

Examples
sample ss

declares a sample object named SS and sets it to the current workfile sample.

sample s2 1974q1 1995q4

declares a sample object named S2 and sets it from1974Q1 to 1995Q4.

sample fe_bl @all if gender=1 and race=3

smpl fe_bl

The first line declares a sample FE_BL that includes observations where GENDER=1 and
RACE=3. The second line sets the current sample to FE_BL.

sample sf @last-10 @last

declares a sample object named SF and sets it to the last 10 observations of the current
workfile range.

sample s1 @first 1973q1

s1.set 1973q2 @last

The first line declares a sample object named S1 and sets it from the beginning of the work-
file range to 1973Q1. The second line resets S1 from 1973Q2 to the end of the workfile
range.

sample s2 @all if @hourf<=9.5 and @hourf<=14.5

declares a sample S2 that includes all observations that are between 9:30AM and 2:30PM.

Cross-references

See “Samples” on page 136 of User’s Guide I and “Dates” on page 94 of the Command and
Programming Reference for a discussion of using samples and dates in EViews.

See also Sample::set (p. 532) and smpl (p. 487) of the Command and Programming Refer-
ence.

Set the sample in a sample object.

The set procedure resets the sample of an existing sample object.

Syntax
sample_name.set(options) sample_description

Follow the set command with a sample description. See sample for instructions on
describing a sample.

set Sample Procs

Sample::spec—533

Options

Examples
sample s1 @first 1973

s1.set 1974 @last

The first line declares and defines a sample object named S1 from the beginning of the
workfile range to 1973. The second line resets S1 from 1974 to the end of the workfile range.

Cross-references

See “Samples” on page 136 of User’s Guide I for a discussion of samples in EViews.

See also Sample::sample (p. 531), Sample::spec (p. 533), and smpl (p. 487) of the Com-
mand and Programming Reference.

Set the object attribute.

Syntax
sample_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Display the sample in a sample object.

The spec procedure displays the sample in an existing sample object.

prompt Force the dialog to appear from within a program.

setattr Sample Procs

spec Sample Procs

534—Chapter 1. Object Reference

Syntax
sample_name.spec(options)

Options

Examples
sample s1 @first 1973

s1.spec

The first line declares and defines a sample object named S1 from the beginning of the
workfile range to 1973. The second line displays the sample specification.

Cross-references

See “Samples” on page 136 of User’s Guide I for a discussion of samples in EViews.

See also Sample::sample (p. 531), Sample::set (p. 532), and smpl (p. 487) of the Com-
mand and Programming Reference.

p Print the sample specification

Scalar::—535

Scalar

Scalar (single number). A scalar holds a single numeric value. Scalar values may be used
in standard EViews expressions in place of numeric values.

Scalar Declaration
scalardeclare scalar object (p. 537).

To declare a scalar object, use the keyword scalar, followed by a name, an “=” sign and a
scalar expression or value.

Scalar Views
labellabel view (p. 536).
sheetspreadsheet view of the scalar (p. 538).

Scalar Procs
clearhistclear the contents of the history attribute (p. 536).
olepushpush updates to OLE linked objects in open applications (p. 537).
setattrset the value of an object attribute (p. 538).

Scalar Data Members
String values

@attr(“arg”)..........string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description.........string containing the Scalar object’s description (if available).
@detailedtypestring with the object type: “SCALAR”.
@displaynamestring containing the Scalar object’s display name. If the Scalar has

no display name set, the name is returned.
@namestring containing the Scalar object’s name.
@remarksstring containing the Scalar object’s remarks (if available).
@source................string containing the Scalar object’s source (if available).
@typestring with the object type: “SCALAR”.
@units..................string containing the Scalar object’s units description (if available).
@updatetimestring representation of the time and date at which the Scalar was

last updated.

Scalar Examples

You can declare a scalar and examine its contents in the status line:

scalar pi=3.14159

scalar shape=beta(7)

show shape

536—Chapter 1. Object Reference

or you can declare a scalar and use it in an expression:

scalar inner=@transpose(mydata)*mydata

series x=1/@sqrt(inner)*y

Scalar Entries

The following section provides an alphabetical listing of the commands associated with the
“Scalar” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Clear the contents of the history attribute.

Removes the scalar’s history attribute, as shown in the label view of the scalar.

Syntax
scalar_name.clearhist

Examples
s1.clearhist

s1.label

The first line removes the history from the scalar S1, and the second line displays the label
view of S1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Scalar::label (p. 536).

Display or change the label view of the scalar object, including the last modified date and
display name (if any).

Syntax
scalar_name.label

scalar_name.label(options) text

clearhist Scalar Procs

label Scalar Views

Scalar::scalar—537

Options

To modify the label, you should specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared:

Examples

The following lines replace the remarks field of the scalar S1 with “Mean of Dependent Vari-
able from EQ3”:

s1.label(r)

s1.label(r) Mean of Dependent Variable EQ3

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

Push updates to OLE linked objects in open applications.

Syntax
scalar_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Declare a scalar object.

The scalar command declares a scalar object and optionally assigns a value.

Syntax
scalar scalar_name[=assignment]

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

olepush Scalar Procs

scalar Scalar Declaration

538—Chapter 1. Object Reference

The scalar keyword should be followed by a valid name, and optionally, by an assignment.
If there is no explicit assignment, the scalar will be initialized with a value of zero.

Examples
scalar alpha

declares a scalar object named ALPHA with value zero.

equation eq1.ls res c res(-1 to -4) x1 x2

scalar lm = eq1.@regobs*eq1.@r2

show lm

runs a regression, saves the as a scalar named LM, and displays its value in the status
line at the bottom of the EViews window.

Set the object attribute.

Syntax
scalar_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Spreadsheet view of a scalar object.

Syntax
scalar_name.sheet(options)

setattr Scalar Procs

sheet Scalar Views

nR2

Scalar::sheet—539

Options

Examples
s01.sheet

displays the spreadsheet view of S01.

p Print the spreadsheet view.

540—Chapter 1. Object Reference

Series::—541

Series

Series of numeric observations. An EViews series contains a set of observations on a
numeric variable.

Series Declaration
frmlcreate numeric series object with a formula for auto-updating

(p. 573).
genrcreate numeric series object (p. 574).
seriesdeclare numeric series object (p. 594).

To declare a series, use the keyword series or alpha followed by a name, and optionally,
by an “=” sign and a valid numeric series expression:

series y

genr x=3*z

If there is no assignment, the series will be initialized to contain NAs.

Note: to convert data between series and vectors, see “Copying Data Between Matrix And
Other Objects” on page 269, stom (p. 722), stomna (p. 723), mtos (p. 711), all in the Com-
mand and Programming Reference.

Series Views
bdstestBDS independence test (p. 550).
buroot...................carries out unit root tests which allow for a single breakpoint

(p. 554).
correlcorrelogram, autocorrelation and partial autocorrelation functions

(p. 560).
displaydisplay table, graph, or spool in object window (p. 560).
edftestempirical distribution function tests (p. 563).
forcevalevaluate different forecasts of a series, and perform the forecast

combination test (p. 570).
freq.......................one-way tabulation (p. 571).
histdescriptive statistics and histogram (p. 574).
labellabel information for the series (p. 578).
lrvar......................compute the symmetric, one-sided, or strict one-sided long-run

variance of a series (p. 579).
pancovcompute covariances, correlations, and other measures of associa-

tion for a panel series (p. 585).
panpcompperform principal components analysis on a panel series (p. 588).
sheetspreadsheet view of the series (p. 602).
statby....................statistics by classification (p. 606).

542—Chapter 1. Object Reference

stats descriptive statistics table (p. 608).
testby equality test by classification (p. 610).
teststat simple hypothesis tests (p. 611).
uroot unit root test on an ordinary or panel series (p. 615).
vratio compute Lo and MacKinlay variance ratio test, or Wright rank,

rank-score, or sign-based forms of the test (p. 620).

Series Graph Views

Graph creation views are discussed in detail in “Graph Creation Command Summary” on
page 911.

area...................... area graph of the series (p. 913).
bar bar graph of the series (p. 918).
boxplot................. boxplot graph (p. 923).
distplot................. distribution graph (p. 926).
dot dot plot graph (p. 934).
line line graph of the series (p. 941).
qqplot quantile-quantile plot (p. 950).
seasplot seasonal line graph (p. 965).
spike spike graph (p. 966).

Series Procs
adjust modify or fill in the values in a series (p. 545).
autoarma.............. forecast from a series using an ARIMA model with automatic deter-

mination of the specification (p. 548).
bpf compute and display band-pass filter (p. 551).
classify recode series into classes defined by a grid, specified limits, or

quantiles (p. 557).
clearhist clear the contents of the history attribute (p. 559).
displayname set display name (p. 561).
distdata save distribution plot data to a matrix (p. 561).
ets........................ perform Error-Trend-Season (ETS) estimation and exponential

smoothing (p. 564).
fill fill the elements of the series (p. 567).
forcavg average forecasts of a series (p. 568).
hpf Hodrick-Prescott filter (p. 575).
insertobs shift the observations of the series up or downwards, inserting

blank observations (p. 576).
ipolate interpolate missing values (p. 577).
makepanpcomp save the scores from a principal components analysis of a panel

series (p. 581).

Series::—543

makewhitenwhiten the series (p. 582).
mapassign or remove value map setting (p. 583).
moveregseasonally adjust series using the movereg method (p. 584).
olepushpush updates to OLE linked objects in open applications (p. 585).
resampleresample from the observations in the series (p. 591).
seasseasonal adjustment for quarterly and monthly time series (p. 593).
setattrset the value of an object attribute (p. 595).
setconvertset default frequency conversion method (p. 596).
setformat...............set the display format for the series spreadsheet (p. 597).
setindentset the indentation for the series spreadsheet (p. 600).
setjustset the justification for the series spreadsheet (p. 601).
setwidth................set the column width in the series spreadsheet (p. 602).
smooth..................exponential smoothing (p. 603).
sortchange display order for series spreadsheet (p. 605).
stlseasonally adjust series using the STL decomposition method

(p. 608).
tramoseats.............seasonal adjustment using Tramo/Seats (p. 612).
x11........................seasonal adjustment by Census X11 method for quarterly and

monthly time series (p. 623).
x12seasonal adjustment by Census X12 method for quarterly and

monthly time series (p. 625).
x13seasonally adjust series using the Census X-13ARIMA-SEATS

method (p. 630).

Series Data Members
String values

@attr(“arg”)..........string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description.........string containing the Series object’s description (if available).
@dependsstring containing a list of the series in the current workfile on which

this series depends.
@detailedtypestring with the object type: “SERIES”, if an ordinary series, or

“LINK”, if defined by link.
@displaynamestring containing the Series object’s display name. If the Series has

no display name set, the name is returned.
@firststring containing the date or observation number of the first non-

NA observation of the series. In a panel workfile, the first date at
which any cross-section has a non-NA observation is returned.

544—Chapter 1. Object Reference

@firstall returns the same as @first, however in a panel workfile, the first
date at which all cross-sections have a non-NA observation is
returned.

@last string containing the date or observation number of the last non-NA
observation of the series. In a panel workfile, the last date at which
any cross-section has a non-NA observation is returned.

@lastall................ returns the same as @last, however in a panel workfile, the last
date at which all cross-sections have a non-NA observation is
returned.

@name string containing the Series object’s name.
@remarks string containing the Series object’s remarks (if available).
@source string containing the Series object’s source (if available).
@type string with the object type: “SERIES”.
@units string containing the Series object’s units description (if available).
@updatetime........ string represent of the time and date at which the Series was last

updated.

Scalar values

@obs scalar containing the number of non-NA observations.
(i) i-th element of the series from the beginning of the workfile (when

used on the left-hand side of an assignment, or when the element
appears in a matrix, vector, or scalar assignment).

Series Element Functions
@elem(ser, "j")..... function to access the j-th observation of the series SER, where j

identifies the date or observation.

Series Examples

You can declare a series in the usual fashion:

series b=income*@mean(z)

series blag=b(1)

Note that the last example above involves a series expression so that B(1) is treated as a one-
period lead of the entire series, not as an element operator. In contrast:

scalar blag1=b(1)

evaluates the first observation on B in the workfile.

Once a series is declared, views and procs are available:

a.qqplot

a.statby(mean, var, std) b

To access individual values:

Series::adjust—545

scalar quarterlyval = @elem(y, "1980:3")

scalar undatedval = @elem(x, "323")

Series Entries

The following section provides an alphabetical listing of the commands associated with the
“Series” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Modify or fill in the values in a series.

Syntax
series_name.adjust [transform] [operator] [values] [interpolation]

Follow the adjust keyword with an expression made up of a combination of transform,
operator, values and interpolation components. transform is used to specify a transformation
of the data to which the adjustment will be made. The operator contains a mathematical
expression defining how you would like to adjust the values in the series. values contains
the values used during that operation. Finally, the interpolation component specifies how
any missing values in the values component should be filled in via interpolation.

All adjustments are made on the current workfile sample.

Transform

The following transformations are available. If a transformation is specified, any adjust-
ments specified in the operator or interpolation components is made to the transformed data
rather than the raw data.

Operators

The following operators are available:

adjust Series Procs

Transform Description

d One period difference.

dy Annual difference.

pch One period percentage change.

pcha Annualized one period percentage change.

pchy Annual percentage change.

log Natural logarithm.

dlog One period difference of logged values.

546—Chapter 1. Object Reference

Values

The values component should be made up of a space delimited set of values to use during
the adjustment. In addition to single numbers, you may use the following keywords as part
of the values component:

Interpolation

The interpolation component specifies how to fill in any missing values in the values compo-
nent designated for interpolation. By default a cubic spline is used for interpolation. The
other available choices are show below.

Operator Description

= Overwrites the existing value with the new value.

+= Adds the new value to the existing value.

-= Subtracts the new value from the existing value.

*= Multiplies the existing value by the new value.

/= Divides the existing value by the new value.

=_ Overwrites the existing value with the previous cell’s value.

+_ Add the new value to the previous observation’s value.

-_ Subtract the new value from the previous observation’s
value.

*_ Multiply the previous observation’s value by the new
value.

/_ Divide the previous observation’s value by the new value.

\ Reverse the order of the observations. Note this operator
cannot be used with a values or interpolation component.

Keyword Description

. A single value to be filled in by interpolation.

Use the existing series value, unless it is an NA, in which
case fill it by interpolation.

NA Insert an NA (which will not be filled by interpolation).

Rint1[(int2)] Repeats the previous value int1 times. You may optionally
include a second number in parenthesis indicating how
many of the previous values to repeat.

.. Interpolate between all remaining values.

Series::adjust—547

Examples

The following command replaces the first four observations in the current sample of the
series UNEMP with the values 2.4, 3.5, 2.9 and 1.4.

unemp.adjust = 2.4 3.5 2.9 1.4

This command modifies the first ten observations in UNEMP, by replacing them with the
values: 3.4, 3.15, 2.9, 3.2, 3.5, 3.7, 3.5, 3.7, 3.5, 3.7. Note that the second observation
(3.15) has been interpolated, using linear interpolation, between 3.4 and 2.9. Similarly the
4th observation was interpolated between 2.9 and 3.5. Also note that the values 3.5 and 3.7
were repeated three times.

unemp.adjust = 3.4 . 2.9 . 3.5 3.7 R3(2) ^

The following command replaces the log of the first observation in the current sample with
3.4 (setting the raw value equal to exp(3.4) = 29.96). The second observation is left alone
(unless it contains an NA, in which case the log value is interpolated). The third observa-
tion’s logged value is replaced with 2.2. The log of the penultimate observation in the cur-
rent sample is replaced with 3.9, and the last observation with 4.8. All observations between
the third and the penultimate are interpolated using a cubic spline interpolation method.

unemp.adjust log = 3.4 # 2.2 .. 3.9 4.8

This command adjusts all the observations in the current sample by adding to the existing
values. The first observation has 3.4 added to it. The second has 2.9 added to it, and the
third has 4.5 added. The last observation has 1.9 added to it. The values added to the obser-
vations in between are calculated via a multiplicative Catmull-Rom spline interpolation.

unemp.adjust += 3.4 2.9 4.5 .. 1.9 &*

Method Symbol Description

__ (double under-
score)

Repeats previous non-missing value.

^ Linear interpolation.

~ Cubic spline interpolation

& Catmull-Rom spline interpolation.

^* Log-linear (multiplicative) interpolation (linear in the log of
the data).

~* Multiplicative cubic spline interpolation (a cubic spline on
the log of the data).

&* Multiplicative Catmull-Rom spline interpolation (a Catmull-
Rom spline on the log of the data).

548—Chapter 1. Object Reference

Cross-references

See Appendix B. “Enhanced Spreadsheet Editing,” on page 885 and “Series Adjust” on
page 433 in User’s Guide I for additional discussion of series adjustment.

Forecast from a series using an ARIMA model with the specification of the model selected
automatically.

Syntax
series.autoarma(options) forecast_name [exogenous_regressors]

Options

autoarma Series Procs

tform=arg Specify the type of dependent variable transformation.
arg may be “auto” (automatically decide between log or no
transformation, default), “none” (perform no transforma-
tion), “log” (perform a log transformation), and “bc” (per-
form the Box-Cox transformation.

bc=int Set the power of the Box-Cox transformation. Only applica-
ble if the tform=bc option is used.

diff=int Set the maximum level of differencing to test for. Default
value is 2.

maxar=int Set the maximum number of AR terms. Default value is 4.

maxma=int Set the maximum number of MA terms. Default value is 4.

maxsar=int Set the maximum number of seasonal AR terms. Default
value is 0.

maxsma=int Set the maximum number of seasonal MA terms. Default
value is 0.

periods=int Set the periodicity of the seasonal ARMA terms. This
defaults to the number of observations in a year, based on
current workfile frequency.

forclen=int Number of periods to forecast over. The forecast sample
will start at the observation immediately after the estima-
tion sample (the current workfile sample).

avg=key Use forecast averaging, rather than model selection. key
sets the type of averaging to perform, and may take values
of “aic” (SAIC weights), “sic” (BMA weights) or “uni” (uni-
form weights).

Series::autoarma—549

Example

The commands

wfopen elecdmd.wf1

elecdmd.autoarma(maxsar=1, maxsma=1, noconv, forclen=20, agraph,

atable, fgraph) elecdmd_f @expand(@month) realgdp tempf

open the workfile elecdmd.wf1 and then perform automatic forecasting on the series
ELECDMD. The forecasts will be stored in a series called ELECDMD_F. The ARIMAX model
includes exogenous regressors of REALGDP, TEMPF and a set of monthly dummy variables,
created with the @expand keyword.

select=key Set the model selection criteria. key make take values of
“aic” (Akaike Information Criteria, default), “sic” (Schwarz
Information Criteria), “hq” (Hannan-Quinn criteria) or
“mse” (Mean Square Error criteria). This option is ignored
if the “avg=” option is used.

nonconv Allow non-converged models to be used in model selection
or forecast averaging.

mselen=key Set the percentage of the estimation sample to be used for
MSE calculation. key may take values of “5”, “10”, “15” or
“20”. This option is only applicable if the “select=mse”
option is used.

msetype=key Set the type of forecast to use when calculating MSE. key
may either be “dyn” (dynamic, default), or an integer, n,
between 1 and 12 indicating that an n-step static forecast
should be performed. This option is only applicable if the
“select=mse” option is used.

kpsssig=key Set the significance level of the KPSS test when determin-
ing the appropriate level of differencing for the dependent
variable. key may take values of “1”, “5” (default) or “10”.

fgraph Output a forecast comparison graph.

atable Output a selection criteria comparison table

agraph Output a selection criteria comparison graph.

etable Output a final equation output table. Not applicable if the
“avg=” option is used.

eqname=name Create an equation object in the workfile with the same
specification as the final selected equation. Not applicable
if the “avg=” option is used.

seed=num Set the random number generator seed for random starting
values.

550—Chapter 1. Object Reference

The number of maximum SAR terms and SMA terms are set to 1 (instead of the default 0).
Model selection is used to determine the best ARMA model, with non-converged models
included in the selection process.

The forecast covers 20 periods, and upon completion, EViews will display a graph of the
Akaike information criteria of each of the ARMA models considered, as well as a table of
each of the selection criteria, and a graph of the each of the forecasts.

Cross-references

See “Automatic ARIMA Forecasting” on page 496 of User’s Guide I for additional discussion.

Perform BDS test for independence.

The BDS test is a Portmanteau test for time-based dependence in a series. The test may be
used for testing against a variety of possible deviations from independence, including linear
dependence, non-linear dependence, or chaos.

Syntax
series_name.bds(options)

Options

Cross-references

See “BDS Independence Test” on page 636 of User’s Guide II for additional discussion.

bdstest Series Views

m=arg
(default=“p”)

Method for calculating : “p” (fraction of pairs), “v” (fixed
value), “s” (standard deviations), “r” (fraction of range).

e=number Value for calculating .

d=integer Maximum dimension.

b=integer Number of repetitions for bootstrap p-values. If option is
omitted, no bootstrapping is performed.

o=arg Name of output vector for final BDS z-statistics.

prompt Force the dialog to appear from within a program.

p Print output.

e

e

Series::bpf—551

Display the boxplots of a series classified into categories.

The boxplotby command is no longer supported. See boxplot (p. 923) for the replace-
ment categorical graph command.

Compute and display the band-pass filter of a series.

Computes, and displays a graphical view of the Baxter-King fixed length symmetric, Chris-
tiano-Fitzgerald fixed length symmetric, or the Christiano-Fitzgerald full sample asymmetric
band-pass filter of the series.

The view will show the original series, the cyclical component, and non-cyclical component
in a single graph. For non time-varying filters, a second graph will show the frequency
responses.

Syntax
series_name.bpf(options) [cyc_name]

Follow the bpf keyword with any desired options, and the optional name to be given to the
cyclical component. If you do not provide cyc_name, the filtered series will be named BPFIL-
TER## where ## is a number chosen to ensure that the name is unique.

To display the graph, you may need to precede the object command with the “show” key-
word.

Options

boxplotby Series Views

bpf Series Procs

type=arg
(default=“bk”)

Specify the type of band-pass filter: “bk” is the Baxter-King
fixed length symmetric filter, “cffix” is the Christiano-Fitz-
gerald fixed length symmetric filter, “cfasym” is the Chris-
tiano-Fitzgerald full sample asymmetric filter.

552—Chapter 1. Object Reference

low=number,
high=number

Low () and high () values for the cycle range to be
passed through (specified in periods of the workfile fre-
quency).
Defaults to the workfile equivalent corresponding to a
range of 1.5–8 years for semi-annual to daily workfiles;
otherwise sets “low=2”, “high=8”.
The arguments must satisfy . The corre-
sponding frequency range to be passed through will be

.

lag=integer Fixed lag length (positive integer). Sets the fixed lead/lag
length for fixed length filters (“type=bk” or “type=cffix”).
Must be less than half the sample size. Defaults to the
workfile equivalent of 3 years for semi-annual to daily
workfiles; otherwise sets “lag=3”.

iorder=[0,1]
(default=0)

Specifies the integration order of the series. The default
value, “0” implies that the series is assumed to be (covari-
ance) stationary; “1” implies that the series contains a unit
root.
The integration order is only used in the computation of
Christiano-Fitzgerald filter weights (“type=cffix” or
“type=cfasym”). When “iorder=1”, the filter weights are
constrained to sum to zero.

detrend=arg
(default=“n”)

Detrending method for Christiano-Fitzgerald filters
(“type=cffix” or “type=cfasym”).
You may select the default argument “n” for no detrending,
“c” to demean, or “t” to remove a constant and linear
trend.
You may use the argument “d” to remove drift, if the option
“iorder=1” is also specified.

nogain Suppresses plotting of the frequency response (gain) func-
tion for fixed length symmetric filters (“type=bk” or
“type=cffix”). By default, EViews will plot the gain func-
tion.

noncyc=arg Specifies a name for a series to contain the non-cyclical
series (difference between the actual and the filtered
series). If no name is provided, the non-cyclical series will
not be saved in the workfile.

PL PH

2 PL PH�d

2p PHe 2p PLe,� �

Series::bpf—553

Examples

Suppose we are working in a quarterly workfile and we issue the following command:

lgdp.bpf(type=bk,low=6,high=32) cyc0

EViews will compute the Baxter-King band-pass filter of the series LGDP. The periodicity of
cycles extracted ranges from 6 to 32 quarters, and the filtered series will be saved in the
workfile in CYC0. The BK filter uses the default lag of 12 (3 years of quarterly data).

Since this is a fixed length filter, EViews will display both a graph of the cyclical/original/
non-cyclical series, as well as the frequency response (gain) graph. To suppress the latter
graph, we could enter a command containing the “nogain” option:

lgdp.bpf(type=bk,low=6,high=32,lag=12,nogain)

w=arg Store the filter weights as an object with the specified
name. For fixed length symmetric filters (“type=bk” or
“type=cffix”), the saved object will be a matrix of dimen-
sion where is the user-specified lag length
order. For these filters, the weights on the leads and the
lags are the same, so the returned matrix contains only the
one-sided weights. The filtered series may be computed
as:

for .
For time-varying filters, the weight matrix is of dimension

 where is the number of non-missing observa-
tions in the current sample. Row of the matrix contains
the weighting vector used to generate the -th observation
of the filtered series, where column contains the weight
on the -th observation of the original series. The filtered
series may be computed as:

where is the original series and is the
element of the weighting matrix. By construction, the first
and last rows of the weight matrix will be filled with miss-
ing values for the symmetric filter.

prompt Force the dialog to appear from within a program.

p Print the graph.

1 q 1�� �u q

zt

zt w 1 c,� �yt 1 c–�

c 1

q 1�

¦ w 1 c,� �yt c 1–�

c 2

q 1�

¦�

t q 1� } n q –, ,

n nu n
r

r
c

c

zt w r c,� �yc

c 1

T

¦ r 1 } T, ,

yt w r c,� � r c,� �

554—Chapter 1. Object Reference

In this example, we have also overridden the default by specifying a fixed lag of 12 (quar-
ters). Since we have omitted the name for the cyclical series, EViews will create a series with
a name like BPFILTER01 to hold the results.

To compute the asymmetric Christiano-Fitzgerald filter, we might enter a command of the
form:

lgdp.bpf(type=cfasym,low=6,high=32,noncyc=non1,weight=wm) cyc0

The cyclical components are saved in CYC0, the non-cyclical in NON1, and the weighting
matrix in WM.

Cross-references

See “Frequency (Band-Pass) Filter” on page 539 of User’s Guide I. See also Series::hpf
(p. 575).

Carries out unit root tests which allow for a single breakpoint.

Syntax
series_name.buroot(options)

Basic Specification Options

You should specify the exogenous variables and order of dependent variable differencing in
the test equation using the following options:

Break Options

buroot Series Views

exog=arg
(default=“const”)

Specification of exogenous trend variables in the test equa-
tion: “const” “trend” (include a constant and a linear time
trend).

dif=integer
(default=0)

Order of differencing of the series prior to running the test.
Valid values are {0, 1, 2}.

break=arg
(default=“const”)

Specification of breaking trend variables in the test equa-
tion: “const” (intercept only), “both” (intercept and trend),
“trend” (trend only). The latter two are applicable only if
“exog=trend”).

Series::buroot—555

Lag Difference Options

Specifies the number of lag difference terms to be included in the test equation. The default
is to perform automatic selection using the Schwarz information criterion. You may specify a
fixed lag using the “lag=” option.

breakmethod=arg
(default=“dfuller”)

Method of specifying the break date: “dfuller” (minimize
Dickey-Fuller t-statistic), “minincpt” (minimize intercept
break t-statistic), “maxincpt” (maximize intercept break t-
statistic), “absincpt” (maximize intercept break absolute t-
statistic), “mintrend” (minimize trend break t-statistic),
“maxtrend” (maximize trend break t-statistic), “abstrend”
(maximize trend break absolute t-statistic), “both” (maxi-
mize joint intercept and trend break F-statistic), “user”
(fixed break date specified using the “userbreak=”
option).

trim=arg
(default=10)

Trimming percentage for allowable break dates to consider
in automatic break selection (applicable if the specified
break method selects a date on the basis of intercept or
trend break coefficients).

userbreak=dateobs User-specified break date.

lagmethod=arg
(default=“sic”)

Method for selecting lag length (number of first difference
terms) to be included in the Dickey-Fuller test regressions:
“aic” (Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn),
“msaic” (Modified Akaike), “msic” (Modified Schwarz),
“mhqc” (Modified Hannan-Quinn), “tstat” (Ng-Perron first
backward significant t-statistic), “fstat” (significant F-sta-
tistic).

lag=integer Use-specified fixed lag.

maxlag=integer Maximum lag length to consider when performing auto-
matic lag length selection.

default=

lagpval=arg
(default=0.1)

Probability value for test-based automatic lag selection
(when “lagmethod = tstat” and “lagmethod=fstat).

int 12T 100e� �0.25()

556—Chapter 1. Object Reference

General options

Cross-references

See “Unit Root Tests with a Breakpoint” on page 601 of User’s Guide II for additional discus-
sion.

See also Series::uroot (p. 615).

Empirical distribution functions.

The cdfplot command is no longer supported. See distplot (p. 926).

Test for the presence of cross-sectional dependence in a panel series.

Computes the Breusch-Pagan (1980) LM, Pesaran (2004) scaled LM, Pesaran (2004) CD, and
Baltagi, and Feng and Kao (2012) bias-corrected scaled LM test for a panel series.

Syntax
series_name.cdtest

Options
G

nograph Do not display breakpoint selection graph (by default,
EViews shows a graph of all of the individual unit root tests
and AR coefficients when there is endogenous breakpoint
selection).

output=arg Output matrix containing individual unit root regression
results for all candidate break dates.
Each row contains the relevant workfile observation ID (as
reported by @TREND), AR coefficient, AR coefficient stan-
dard error, number of observations, number of coefficients,
number of lags, and if applicable, the t-statistic or F-statis-
tic used in break selection.

prompt Force the dialog to appear from within a program.

p Print output from the test.

cdfplot Series Views

cdtest Series Views

p Print test results

Series::classify—557

Examples
ser1.cdtest

will compute and display the panel cross-section dependence test results.

Cross-references

See “Panel Cross-section Dependence Test” on page 958 of User’s Guide II for discussion.

Recode series into classes defined by a grid, specified limits, or quantiles.

Syntax
series_name.classify(options) spec @ outname [mapname]

Follow the classify keyword with any desired options, the “@”-sign, the name to be given
the output series, and optionally the name for a valmap object describing the classification.

The form for the specification spec will depend on which of the four supported methods for
classification is employed (using the “method=” option).

• If the default “method=step” is employed, EViews will construct the classification
using the set of intervals of size step from start through end. The spec specification is
of the form

stepsize start end

where stepsize is a positive numeric value and start and end are numeric values. If
start or end are explicitly set to NAs, EViews will use the corresponding minimum and
maximum value of the data extended by 5% (e.g., 0.95*min or 1.05*max).

• If “method=bins”, EViews will construct the classification by dividing the range
between start and end into a specified number of bins. The specification is of the
form:

nbins start end

where nbins in the integer number of bins. Note that depending upon whether you
have selected left or right-closed intervals (using the “rightclosed” option), observa-
tions with values equal to the start or end may fall out-of-range.

• Using “method=limits” specifies a classification using bins defined by a set of limit
values. The spec is given by:

arg1 [arg2 arg3 ...]

classify Series Procs

558—Chapter 1. Object Reference

where the arguments are limit values or EViews vectors containing limit values. Note
that there must be at least two limit values and that the values need not be provided
in ascending or descending order.

• If “method=quants” is given, EViews uses the specified number of quantiles for the
data, specified as an integer value. The specification is:

nquants

where nquants is the integer for the number of quantiles. For deciles you should set
nquants =10, for quartiles, nquants = 4.

Options

Examples
api5b.classify 100 200 @ api5b_ct api5b_mp

classifies the values of API5B into bins of width 100 starting at 200 and ending at the data
maximum times 1.05. The classification results are saved in the series API5B_CT with asso-
ciated map API5B_MP.

api5b.classify(encode=right) 100 200 1100 @ api5b_ct1

method=arg
(default = “step”)

Method for classification values: “step”– create a grid from
start through end using the stepsize; “bins” – create bins by
dividing the region from start to end into a specified num-
ber of bins; “quants” – create bins using the quantile val-
ues; “limits” - create bins using the specified limit points.

rightclosed Bins formed using right-closed intervals. is defined to be
in the bin from to if .

rangeerr Generate error if data value is found outside of defined
bins. The default is to classify out-of-range values as NAs.

q=arg
(default=“r”)

Quantile calculation method. “b” (Blom), “r” (Rankit-
Cleveland), “o” (Ordinary), “t” (Tukey), “v” (van der
Waerden), “g” (Gumbel). Only relevant where
“method=quants”.

encode =arg
(default=“index”)

Encoding method for output series: “index” – encode as
integers from 0 to where is the number of bins, where
the 0 is reserved for NA encoding if “keepna” is specified;
“left” – encode using the left-most value defining the bin;
“right” – encode using the right-most value defining the
bin; “mid” – encode using the midpoint of the bin.

keepna Classify NA values as 0 (for “encode=index” only).

prompt Force the dialog to appear from within a program.

p Print the results.

x
a b a x bd�

k k

Series::clearhist—559

classifies API5B into bins of size 100 from 200 through 1100. The output series API5B_CT1
will have values taken from the right endpoints of the classification intervals.

api5b.classify(method=bins,rightclosed,rangeerr) 9 200 1100 @

api5b_ct2 api5b_mp2

defines 9 equally sized bins starting at 200 and ending at 1100, and classifies the data into
the series API5B_CT2 with map API5B_MP2. The bins are closed on the right, and out-of-
range values will generate an error.

api5b.classify(method=quants,q=g,keepna) 4 @ api5b_ct3

classifies the values of API5B into quartiles (using the Gumbel definition) in the series
API5B_CT3. NA values for API5B will be encoded as 0 in the output series.

Cross-references

See “Generate by Classification” on page 435 of User’s Guide I for additional discussion.

Clear the contents of the history attribute for series objects.

Removes the series’s history attribute, as shown in the label view of the series.

Syntax
series_name.clearhist

Examples
s1.clearhist

s1.label

The first line removes the history from the series S1, and the second line displays the label
view of S1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Series::label (p. 578).

clearhist Series Procs

560—Chapter 1. Object Reference

Display autocorrelation and partial correlations.

Displays the autocorrelation and partial correlation functions of the series, together with the
Q-statistics and p-values associated with each lag.

Syntax
series_name.correl(n, options)

You must specify the largest lag n to use when computing the autocorrelations.

Options

Examples
ser1.correl(24)

Displays the correlograms of the SER1 series for up to 24 lags.

Cross-references

See “Autocorrelations (AC)” on page 421 and “Partial Autocorrelations (PAC)” on page 422
of User’s Guide I for a discussion of autocorrelation and partial correlation functions, respec-
tively.

Display table, graph, or spool output in the series object window.

Display the contents of a table, graph, or spool in the window of the series object.

Syntax
series_name.display object_name

Examples
series1.display tab1

Display the contents of the table TAB1 in the window of the object SERIES1.

correl Series Views

d=integer
(default=0)

Compute correlogram for specified difference of the data.

prompt Force the dialog to appear from within a program.

p Print the correlograms.

display Series Views

Series::distdata—561

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

Display name for series objects.

Attaches a display name to a series object which may be used to label output in tables and
graphs in place of the standard series object name.

Syntax
series_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in series object names.

Examples
hrs.displayname Hours Worked

hrs.label

The first line attaches a display name “Hours Worked” to the series HRS, and the second
line displays the label view of HRS, including its display name.

gdp.displayname US Gross Domestic Product

plot gdp

The first line attaches a display name “US Gross Domestic Product” to the series GDP. The
line graph view of GDP from the second line will use the display name as the legend.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Series::label (p. 578) and Series::label (p. 578).

Save distribution plot data to a matrix.

Saves the data used to construct a distribution plot to the workfile.

Syntax
series_name.distdata(dtype=dist_type, dist_options) matrix_name

displayname Series Procs

distdata Series Procs

562—Chapter 1. Object Reference

saves the distribution plot data specified by dist_type, where dist_type must be one of the
following keywords:

Options

The theoretical quantile-quantile plot type “theoryqq” takes the options described in
qqplot (p. 950) under “Theoretical Options” on page 952.

For the remaining types, dist_options are any of the distribution type-specific options
described in distplot (p. 926).

Note that the graph display specific options such as “fill,” “nofill,” and “leg,” and “noline”
are not relevant for this procedure.

You may use the “prompt” option to force the dialog display

Examples
gdp.distdata(dtype=hist, anchor=0, scale=dens, rightclosed)

matrix01

creates the data used to draw a histogram from the series GDP with the anchor at 0, density
scaling, and right-closed intervals, and stores that data in a matrix called MATRIX01 in the
workfile.

unemp.distdata(dtype=kernel, k=b,ngrid=50,b=.5) matrix02

generates the kernel density data computed with a biweight kernel at 50 grid points, using a
bandwidth of 0.5 and linear binning, and stores that data in MATRIX02.

wage.distdata(dtype=theoryqq, q=o, dist=logit, p1=.5) matrix03

hist Histogram (default).

freqpoly Histogram Polygon.

edgefreqpoly Histogram Edge Polygon.

ash Average Shifted Histogram.

kernel Kernel Density

theory Theoretical Distribution.

cdf Empirical cumulative distribution function.

survivor Empirical survivor function.

logsurvivor Empirical log survivor function.

quantile Empirical quantile function.

theoryqq Theoretical quantile-quantile plot.

prompt Force the dialog to appear from within a program.

Series::edftest—563

creates theoretical quantile-quantile data from the series WAGE using the ordinary quantile
method to calculate quantiles. The theoretical distribution is the logit distribution, with the
location parameter set to 0.5. The data is saved into the matrix MATRIX03.

Cross-references

For a description of distribution graphs and quantile-quantile graphs, see “Analytical Graph
Types,” on page 685 of User’s Guide I.

See also distplot (p. 926) and qqplot (p. 950).

Computes goodness-of-fit tests based on the empirical distribution function.

Syntax
series_name.edftest(options)

Options
General Options

Estimation Options

The following options apply if iterative estimation of parameters is required:

edftest Series Views

dist=arg
(default=”nomal”)

Distribution to test: “normal” (Normal distribution),
“chisq” (Chi-square distribution), “exp” (Exponential dis-
tribution), “xmax” (Extreme Value - Type I maximum),
“xmin” (Extreme Value Type I minimum), “gamma”
(Gamma), “logit” (Logistic), “pareto” (Pareto), “uniform”
(Uniform).

p1=number Specify the value of the first parameter of the distribution
(as it appears in the dialog). If this option is not specified,
the first parameter will be estimated.

p2=number Specify the value of the second parameter of the distribu-
tion (as it appears in the dialog). If this option is not speci-
fied, the second parameter will be estimated.

p3=number Specify the value of the third parameter of the distribution
(as it appears in the dialog). If this option is not specified,
the third parameter will be estimated.

prompt Force the dialog to appear from within a program.

p Print test results.

564—Chapter 1. Object Reference

Examples
x.edftest

uses the default settings to test whether the series X comes from a normal distribution. Both
the location and scale parameters are estimated from the data in X.

freeze(tab1) x.edftest(type=chisq, p1=5)

tests whether the series x comes from a distribution with 5 degrees of freedom. The out-
put is stored as a table object TAB1.

Cross-references

See “Empirical Distribution Tests” on page 417 of User’s Guide I for a description of the
goodness-of-fit tests.

See also qqplot (p. 950).

Perform Error-Trend-Season (ETS) exponential smoothing.

The ets procedure forecasts a series using the ETS model framework with state-space based
likelihood calculations, support for model selection, and calculation of forecast standard
errors.

The ETS framework defines an extended class of exponential smoothing models, including
the standard exponential smoothing models (e.g., Holt and Holt-Winters additive and multi-
plicative models).

Syntax
series_name.ets(options) smooth_name

b Use Berndt-Hall-Hall-Hausman (BHHH) algorithm. The
default is Marquardt.

m=integer Maximum number of iterations.

c=number Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

s Take starting values from the C coefficient vector. By
default, EViews uses distribution specific starting values
that typically are based on the method of the moments.

ets Series Procs

x
2

Series::ets—565

You should enter the ets keyword followed by options and then the a name for the
smoothed output series. You can specify the smoothing method (the default setting is addi-
tive error, no trend, no seasonality) and the smoothing options in the parenthesis.

Options
General

Model specification

Optimization options

prompt Force the dialog to appear from within a program.

p Print the view.

e=arg
(default = “a”)

Set error type: “a” (additive), “m” (multiplicative), “e”
(auto).

t=arg
(default = “n”)

Set trend type. key can be: “n” (none), “a” (additive),
“m” (multiplicative), “ad” (additive dampened), “md”
(multiplicative dampened), “e” (auto).

 s=arg
(default = “n”)

Set season type. key can be: “n” (none), “a”(additive),
“m” (multiplicative), “e” (auto).

modsel=arg
(default= “aic”)

Model selection method: “aic” (Akaike information cri-
terion), “bic” (Bayesian information criterion/Schwartz
criterion), “hq” (Hannan-Quinn information criterion),
“amse” (average mean squared errors).

alpha=arg Specify fixed value for level parameter .

beta=arg Specify fixed value for trend parameter in models
with trend.

gamma=arg Specify fixed value for seasonal parameter in models
with a seasonal component.

phi=arg Specify fixed value for dampening parameter in mod-
els with dampened trends.

nomult Do not allow multiplicative trend or seasonal terms.
Only applies if the t=e or s=e options are set.

amse Set Average Mean Square Error (AMSE) as the objective
function (The default is log-likelihood as the objective
function).

namse=integer Specify the AMSE length—the number of observations
over which to calculate AMSE if “amse” is selected.

c=number Set the convergence criteria.

a

b

g

f

566—Chapter 1. Object Reference

Output options

Other options

Examples
sales.ets(e=a, t=n, s=a)sales_f

smooths the series SALES using the an ANN (additive error, no trend, no seasonal) model
and creates the smoothed series named “sales_f”.

tb3.ets(e=e, t=e, s=n) tb3_smooth

will smooth TB3, automatically selecting the best smoothing model amongst the different
Error and Trend specifications (the Seasonal specification is set at none).

m=integer Set the maximum number of iterations.

ustart Employ user-supplied starting values (taken from the C
vector in the workfile).

noi Do not optimize the initial state values (fix at their start-
ing values).

dgraph=arg Include a decomposition graph for each specified ele-
ment. arg may be composed of any of the following ele-
ments: “f” (forecast), “l” (level), “t” (trend), “s”
(season).

dgopt=arg
(default =“m”)

Format for display of decomposition graph: “m” (multi-
ple graph), “s” (single graph)

graph=arg Include a comparison graph in the output for each spec-
ified element (if model selection is employed). arg may
be composed of any of the following elements: “c” (fore-
cast comparison) and “l” (likelihood comparison).

table=arg Include a comparison table in the output (if model selec-
tion is employed). arg may be composed of any of the
following elements: “c” (forecast comparison) and “l”
(likelihood comparison).

level=name Save the level component as a separate series in the
workfile.

trend=name Save the trend component as a separate series in the
workfile (if applicable).

season=name Save the seasonal component as a separate series in the
workfile (if applicable).

forc=num Specify the date of the forecast end point. If omitted, the
end point will be the end of the workfile sample.

Series::fill—567

sales.ets(e=a, t=a, s=a, dgopt=m, dgraph=flts)

will smooth the series SALES using the an AAA (additive error, additive trend, additive sea-
sonal) model and display the output in a spool object which contains the actual and decom-
position series (i.e., forecast, trend, level, and seasonal series) in multiple graphs.

sales.ets(e=a, t=a, s=a, level=level1, trend=trend1,

season=season1, dgopt=s, dgraph=flts)

will smooth the series SALES using the an AAA (additive error, additive trend, additive sea-
sonal) model, create the decomposition series named level, trend, and season series as lev-
el1, trend1, and season1, respectively, and display a spool object which contains the actual
and decomposition graphs in a single graph.

tb3.ets(e=e, t=e, s=e, graph=cl)

will find out the best model amongst the different Error, Trend, and Seasonal specifications
and present the estimation results in a spool object which contains the graphs with forecast
and likelihood comparison graphs between all available models.

tb3.ets(e=a, t=e, s=e, amse, table=cl)

will search for the best model using average mean square errors calculations and display the
estimation results in a spool object with forecast and likelihood comparison tables.

Cross-references

See “Exponential Smoothing” on page 511 of User’s Guide I for a discussion of exponential
smoothing methods.

See also Series::smooth (p. 603).

Fill a series object with specified values.

Syntax
series_name.fill(options) n1[, n2, n3 …]

Follow the keyword with a list of values to place in the specified object. Each value should
be separated by a comma. By default, series fill ignores the current sample and fills the
series from the beginning of the workfile range. You may provide sample information using
options.

Running out of values before the object is completely filled is not an error; the remaining
cells or observations will be unaffected, unless the “l” option is specified. If, however, you
list more values than the object can hold, EViews will not modify any observations and will
return an error message.

fill Series Procs

568—Chapter 1. Object Reference

Options

Examples

To generate a series D70 that takes the value 1, 2, and 3 for all observations from 1970:1:

series d70=0

d70.fill(o=1970:1,l) 1,2,3

Note that the last argument in the fill command above is the letter “l”. The next three lines
generate a dummy series D70S that takes the value one and two for observations from
1970:1 to 1979:4:

series d70s=0

smpl 1970:1 1979:4

d70s.fill(s,l) 1,2

smpl @all

Assuming a quarterly workfile, the following generates a dummy variable for observations
in either the third and fourth quarter:

series d34

d34.fill(l) 0, 0, 1, 1

Note that this series could more easily be generated using @seas or the special workfile
functions (see “Basic Date Functions” on page 612 of the Command and Programming Refer-
ence).

Average different forecasts of a series.

Syntax
series.forcavg(options) forecast_data

l Loop repeatedly over the list of values as many times as it
takes to fill the series.

o=[date, integer] Set starting date or observation from which to start filling
the series. Default is the beginning of the workfile range.

s Fill the series only for the current workfile sample. The “s”
option overrides the “o” option.

s=sample_name Fill the series only for the specified subsample. The “s”
option overrides the “o” option.

forcavg Series Procs

Series::forcavg—569

You should specify the forecast data to be averaged by entering a list of objects as forecast_-
data. The list may be a list of series objects, a group object, a series naming pattern (such as
“f*” to indicate all series starting with the letter “F”), or a list of equation objects.

If a list of equations is entered, EViews will automatically forecast from those equation
objects over the forecast sample (the current workfile sample).

Options

Example

The commands

wfopen elecdmd.wf1

elecdmd.forcavg(trainsmpl="2012M1 2012M12", wgt=mse) elecf_fe*

open the workfile elecdmd.wf1 and then perform forecast averaging using the actual series
ELECDMD, and the forecast series specified by the naming pattern ELECF_FE*.

The averaging method MSE is used. A training sample of 2012M1 to 2012M12 is used to cal-
culate the weights in the MSE and MSE Ranks methods.

wgt=”key” Set the type of averaging to use. key can be “mean”
(default), “trmean” (trimmed-mean), “med” (median),
“ols” (least squares weights), “mse” (mean square error
weights), “ranks”, (MSE ranks), “aic” (Smoothed AIC
weights), or “sic” (BMA weights). “aic” and “sic” are only
available if a list of equations is provided as the forecast_-
data.

trim=num Set the level of trimming for the Trimmed mean method.
Num should be a number between 1 and 100. Only applica-
ble if the “trmean” option is used.

msepwr=int Set the power to which the MSE values are raised in the
MSE ranks method. Only applicable if the “mseranks”
option is used.

s Use a static (rather than dynamic) forecast when comput-
ing the forecasts over the training sample. Only applicable
if forecast_data is a list of equation objects.

trainsmpl=arg Specify the sample used for calculating the averaging
weights. Only applicable if the “ols”, “mse”, “mseranks”,
“aic” or “sic” options are used.

name=arg Set the name of the final averaged series.

wgtname=arg Save the weights into a vector in the workfile with the
name wgtname.

570—Chapter 1. Object Reference

See “Forecast Averaging” on page 505 of User’s Guide I for additional discussion.

See also Series::forceval (p. 570).

Evaluate different forecasts of a series, and perform the forecast combination test.

Syntax
series.forceval(options) forecast_data

You should specify the forecast data to be evaluated by entering a list of objects as forecast_-
data. The list may be a list of series objects, a group object, a series naming pattern (such as
“f*” to indicate all series starting with the letter “F”), or a list of equation objects.

If a list of equations is entered, EViews will automatically forecast from those equation
objects over the evaluation sample (the current workfile sample).

Options

forceval Series Views

mean Include the Mean averaging method.

trmean Include the Trimmed mean averaging method.

median Include the Median averaging method.

ols Include the Least-squares averaging method.

mse Include the Mean Square Error averaging method.

mseranks Include the MSE ranks averaging method.

aic Include the Smoothed AIC weights averaging method. Only
applicable if forecast_data is a list of equation objects.

sic Include the Bayesian model averaging method. Only appli-
cable if forecast_data is a list of equation objects.

trim=num Set the level of trimming for the Trimmed mean method.
Num should be a number between 1 and 100. Only applica-
ble if the “trmean” option is used.

msepwr=int Set the power to which the MSE values are raised in the
MSE ranks method. Only applicable if the “mseranks”
option is used.

s Use a static (rather than dynamic) forecast when comput-
ing the forecasts over the training sample. Only applicable
if forecast_data is a list of equation objects.

Series::freq—571

Example

The commands

wfopen elecdmd.wf1

elecdmd.forcval(trainsmpl="2012M1 2012M12", mean, mse, mseranks,

msepwr=2) elecf_fe*

open the workfile elecdmd.wf1 and then perform forecast evaluation using the actual series
ELECDMD, and the forecast series specified by the naming pattern ELECF_FE*.

The averaging methods Mean, MSE and MSE Ranks are used, with the power of the MSE
Ranks method set at “2”. A training sample of 2012M1 to 2012M12 is used to calculate the
weights in the MSE and MSE Ranks methods.

Cross-references

See “Forecast Evaluation” on page 424 of User’s Guide I for additional discussion.

See also Series::forcavg (p. 568).

Compute frequency tables.

The freq command performs a one-way frequency tabulation. The options allow you to
control binning (grouping) of observations.

Syntax
series_name.freq(options)

trainsmpl=arg Specify the sample used for calculating the averaging
weights. Only applicable if the “ols”, “mse”, “mseranks”,
“aic” or “sic” options are used.

testname=arg Save the combination test statistics into a matrix named
arg.

statname=arg Save the names of the best performing forecasts into an
svector named arg.

freq Series Views

572—Chapter 1. Object Reference

Options

Examples
hrs.freq(nov,noa)

tabulates each value (no binning) of HRS in ascending order with counts, percentages, and
cumulatives.

inc.freq(v=20,b=10,noa)

tabulates INC excluding NAs. The observations will be binned if INC has more than 20 dis-
tinct values; EViews will create at most 10 equal width bins. The number of bins may be
smaller than specified.

Cross-references

See “One-Way Tabulation” on page 419 of User’s Guide I for a discussion of frequency tables.

dropna (default) /
keepna

[Drop/Keep] NA as a category.

v=integer
(default=100)

Make bins if the number of distinct values or categories
exceeds the specified number.

nov Do not make bins on the basis of number of distinct values;
ignored if you set “v=integer.”

a=number
(default=2)

Make bins if average count per distinct value is less than
the specified number.

noa Do not make bins on the basis of average count; ignored if
you set “a=number.”

b=integer
(default=5)

Maximum number of categories to bin into.

n, obs, count
(default)

Display frequency counts.

nocount Do not display frequency counts.

total (default) /
nototal

[Display / Do not display] totals.

pct (default) /
nopct

[Display / Do not display] percent frequencies.

cum (default) /
nocum

(Display/Do not) display cumulative frequency counts/per-
centages.

prompt Force the dialog to appear from within a program.

p Print the table.

Series::frml—573

Declare a series object with a formula for auto-updating, or specify a formula for an exist-
ing series.

Syntax
frml series_name = series_expression

frml series_name = @clear

Follow the frml keyword with a name for the series, and an assignment statement. The spe-
cial keyword “@CLEAR” is used to return the auto-updating series to an ordinary numeric
series.

Examples

To define an auto-updating numeric series, you must use the frml keyword prior to entering
an assignment statement. The following example creates a series named LOW that uses a
formula to compute its values.:

frml low = inc<=5000 or edu<13

The auto-updating series takes the value 1 if either INC is less than or equal to 5000 or EDU
is less than 13, and 0 otherwise, and will be re-evaluated whenever INC or EDU change.

You may apply a frml to an existing series. The commands:

series z = 3

frml z =(x+y)/2

makes the previously created series Z an auto-updating series containing the average of
series X and Y. Note that once a series is defined to be auto-updating, it may not be modified
directly. Here, you may not edit Z, nor may you generate values into the series.

Note that the commands:

series z = 3

z = (x+y)/2

while similar, produce quite different results, since the absence of the frml keyword in the
second example means that EViews will generate fixed values in the series instead of defin-
ing a formula to compute the series values. In this latter case, the values in the series Z are
fixed, and may be modified.

One particularly useful feature of auto-updating series is the ability to reference series in
databases. The command:

frml gdp = usdata::gdp

frml Series Declaration

574—Chapter 1. Object Reference

creates a series called GDP that obtains its values from the series GDP in the database
USDATA. Similarly:

frml lgdp = log(usdata::gdp)

creates an auto-updating series that is the log of the values of GDP in the database USDATA.

To turn off auto-updating for a series, you should use the special expression “@CLEAR” in
your frml assignment. The command:

frml z = @clear

sets the series to numeric value format, freezing the contents of the series at the current val-
ues.

Cross-references

See “Auto-Updating Series” on page 203 of User’s Guide I.

See also Link::link (p. 358).

Generate series.

Syntax
genr ser_name = expression

Examples
genr y = 3 + x

generates a numeric series that takes the values from the series X and adds 3.

Cross-references

See Series::series (p. 594) for a discussion of the expressions allowed in genr.

Histogram and descriptive statistics of a series.

The hist command computes descriptive statistics and displays a histogram for the series.

Syntax
series_name.hist(options)

genr Series Declaration

hist Series Views

Series::hpf—575

Options

Examples
lwage.hist

Displays the histogram and descriptive statistics of LWAGE.

Cross-references

See “Histogram and Stats” on page 402 of User’s Guide I for a discussion of the descriptive
statistics reported in the histogram view.

See distplot (p. 926) for a more full-featured and customizable method of constructing
histograms.

Smooth a series using the Hodrick-Prescott filter.

Syntax
series_name.hpf(options) filtered_name [@ cycle_name]

You may need to prepend the “show” keyword to display the graph the smoothed and origi-
nal series.

Smoothing Options

The degree of smoothing may be specified as an option. You may specify the smoothing as a
value, or using a power rule:

If no smoothing option is specified, EViews will use the power rule with a value of 2.

p Print the histogram.

hpf Series Procs

lambda=arg Set smoothing parameter value to arg; a larger number
results in greater smoothing.

power=arg
(default=2)

Set smoothing parameter value using the frequency power
rule of Ravn and Uhlig (2002) (the number of periods per
year divided by 4, raised to the power arg, and multiplied
by 1600).
Hodrick and Prescott recommend the value 2; Ravn and
Uhlig recommend the value 4.

prompt Force the dialog to appear from within a program.

576—Chapter 1. Object Reference

Other Options

Examples
gdp.hpf(lambda=1000) gdp_hp

smooths the GDP series with a smoothing parameter “1000” and saves the smoothed series
as GDP_HP.

gdp.hpf(power=4) gdp_hp @ gdp_cycle

smooths the same series with a power parameter of “4” and saves the smoothed series as
GDP_HP, and the cycle series as GDP_CYCLE.

Cross-references

See “Hodrick-Prescott Filter” on page 538 of User’s Guide I for details.

Shift the observations of the series up or downwards, inserting blank observations.

Syntax
series_name.insertobs(“startpoint”) n

Where startpoint specifies the first or last observation from which the observations are
shifted. For dated workfiles, startpoint should be entered as a date. For panels and non-
dated workfiles startpoint should be an observation number.

n specifies the number of observations shifted.

Examples
x.insertobs("1952q2") 2

Inserts 2 new observations beginning at observation 1952 quarter 2. The previous value
associated with 1952Q2 will now correspond to 1952Q4.

y.insertobs(10) -5

Inserts 5 new observations ending at observation number 10 in the workfile.

p Print the graph of the smoothed series and the original
series.

insertobs Series Procs

Series::kdensity—577

Fill in missing values, or NAs, within a series by interpolating from values that are not
missing.

Syntax
series_name.ipolate(options) series_name

Options

Examples

The following lines interpolate the missing values of series X1 using linear interpolation,
and store the new interpolated series with a name X_INTER:

x1.ipolate x_inter

This line performs the same interpolation, but this time using the Cardinal spline, with a
tension value of 0.8:

x1.ipolate(type=cs, tension=0.8) x_inter

Cross-references

See “Interpolate” on page 441 of User’s Guide I for discussion.

Kernel density plots.

The kdensity command is no longer supported. See distplot (p. 926).

ipolate Series Procs

type = key Specify the interpolation method. key is either “lin” (linear,
default), “log” (log-linear), “cs” (Cardinal spline), “cr”
(Catmull-Rom spline), “cb” (Cubic spline), “lcs” (log-cardi-
nal spline), “lcr” (log-Catmull-Rom spline), or “lcb” (log-
cubic spline).

tension = num-
ber

Sets the tension parameter for the Cardinal spline method
of interpolation. number should be a number between 0
and 1.

f = arg (default
= “actual”)

Out-of-sample fill behavior: “actual” (fill observations
outside the interpolated sample with values from the
source series). “na” (fill observations outside the sample
with missing values”

prompt Force the dialog to appear from within a program.

kdensity Series Views

578—Chapter 1. Object Reference

Display or change the label view of a series object, including the last modified date and
display name (if any).

As a procedure, label changes the fields in the series label.

Syntax
series_name.label

series_name.label(options) [text]

Options

The first version of the command displays the label view of the series. The second version
may be used to modify the label. Specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared.

Examples

The following lines replace the remarks field of SER1 with “Data from CPS 1988 March File”:

ser1.label(r)

ser1.label(r) Data from CPS 1988 March File

To append additional remarks to SER1, and then to print the label view:

ser1.label(r) Log of hourly wage

ser1.label(p)

To clear and then set the units field, use:

ser1.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Series::displayname (p. 561).

label Series Views | Series Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

Series::lrvar—579

Compute the symmetric, one-sided, or strict one-sided long-run variance of a series.

Syntax
Series View: series_name.lrvar(options)

Options

Whitening Options

lrvar Series Views

window=arg Type of long-run covariance to compute: “sym” (symmet-
ric), “lower” (lower - lags in columns), “slower” (strict
lower - lags only), “upper” (upper - leads in columns),
“supper” (strict upper - leads only)

noc Do not remove means (center data) prior to whitening.

out=arg Name of output sym or matrix (optional)

panout=arg Name of ee output matrix (optional).

prompt Force the dialog to appear from within a program.

p Print results.

lag=arg Lag specification: integer (user-specified number of lags),
“a” (automatic selection).

infosel=arg
(default=“aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“lag=a”).

maxlag=integer Maximum lag-length for automatic selection (optional) (if
“lag=a”). The default is an observation-based maximum
of .T1 3e

580—Chapter 1. Object Reference

Kernel Options

Examples

ser1.lrvar(out=outsym)

computes the symmetric long-run variance of the series SER1 and saves the results in the
output sym matrix OUTSYM.

ser1.lrvar(kern=quadspec, bw=andrews)

computes the long-run variance SER1 using the quadratic spectral kernel, Andrews auto-
matic bandwidth.

ser1.lrvar(kern=quadspec, lag=3, bw=andrews)

performs the same calculation but uses AR(3) prewhitening prior to computing the kernel
estimator.

ser1.lrvar(kern=none, window=upper, lag=a, infosel=aic,

bw=neweywest, rwgt=res)

computes parametric VAR estimates of the upper long-run variance using an AIC based
automatic lag-length prewhitening procedure, Newey-West bandwidth selection, and row
weight series RES.

Cross-references

kern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniel), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen), “user” (User-specified; see “kernwgt=”
below).

kernwgt=vector User-specified kernel weight vector (if “kern=user”).

bw=arg
(default=”nwfixed”)

Bandwidth: “fixednw” (Newey-West fixed), “andrews”
(Andrews automatic), “neweywest” (Newey-West auto-
matic), number (User-specified bandwidth).

nwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric bandwidth selection (if “bw=neweywest”).

bwoffset=integer
(default=0)

Apply integer offset to bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

bwint Use integer portion of bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

Series::makepanpcomp—581

See “Long-run Variance,” on page 423 of User’s Guide I, “Panel Long-run Variances,” on
page 1012 of User’s Guide II, Appendix F. “Long-run Covariance Estimation,” on page 1115 of
User’s Guide II. See also Group::lrcov (p. 329).

Save the scores from a principal components analysis of a panel series.

Syntax
series_name.makepanpcomp(options) output_list

where the output_list is a list of names identifying the saved components. EViews will save
the first components corresponding to the elements in output_list, up to the total num-
ber of series in the group.

Options

Covariance Options

makepanpcomp Series Procs

scale=arg
(default=“norm-
load”)

Diagonal matrix scaling of the loadings and the scores: nor-
malize loadings (“normload”), normalize scores (“norm-
scores”), symmetric weighting (“symmetric”), user-
specified (arg=number).

cpnorm Compute the normalization for the score so that cross-
products match the target (by default, EViews chooses a
normalization scale so that the moments of the scores
match the target).

eigval=vec_name Specify name of vector to hold the saved the eigenvalues in
workfile.

eigvec=mat_name Specify name of matrix to hold the save the eigenvectors in
workfile.

prompt Force the dialog to appear from within a program.

period Compute period (within cross-section) panel covariances
and related statistics. The default is to compute contempo-
raneous (between cross-section) measures.

cov=arg
(default=“corr”)

Covariance calculation method: ordinary (Pearson product
moment) covariance (“cov”), ordinary correlation (“corr”),
Spearman rank covariance (“rcov”), Spearman rank cor-
relation (“rcorr”), uncentered ordinary correlation
(“ucorr”). Note that Kendall’s tau measures are not valid
methods.

k k

582—Chapter 1. Object Reference

Examples
ser1.makepanpcomp(eigval=v1, eigvec=m1) comp1 comp2 comp3

saves the first three principal components (in normalized loadings form) of the panel series
SER1 to the workfile. The components will have variances that are proportional to the eigen-
values of the contemporaneous correlation matrix. In addition, the vector V1 and matrix M1
will contain the eigenvectors and eigenvalues of the decomposition.

smpl 1990 2010

ser.makepanpcomp(period, cov=rcorr, scale=normscore) comp1

saves the first principal component of the period (within cross-section) Spearman rank cor-
relations. The scores will be normalized so that the variances of the scores are equal to 1.

Cross-references

See “Saving Component Scores,” beginning on page 1006 of User’s Guide I and “Panel Prin-
cipal Components” on page 1004 of User’s Guide II for further discussion.

To display the results of the panel principal components decomposition, see Series::pan-
pcomp (p. 588).

Whiten the series.

Estimate an AR(), compute the residuals, and save the results into a whitened series.

Syntax
Series View: series_name.makewhiten(options) out_specification

where out_name is either a name for the output series or a wildcard expression. Note that a
wildcard may not be used if the original group contains series expressions.

Options

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
accounting for the estimation of the mean (for centered
specifications).
The default behavior in these cases is to perform no adjust-
ment (e.g. – compute sample covariance dividing by
rather than).

makewhiten Series Procs

n
n k–

p

Series::map—583

Examples
ser1.makewhiten(lag=a, infosel=sic, maxlag=10) *a

whitens the series in GRP1 using a VAR with auto-selected number of lags based on the SIC
information criterion and a maximum of 10 lags. The resulting series is named ASER1.

ser1.makewhiten(noc, lag=5) aser1

whitens the series using a no-constant VAR and 5 lags.

Cross-references

See “Make Whitened” on page 613 of User’s Guide I for details.

Assign or remove value map setting.

Syntax
series_name.map [valmap_name]

If the optional valmap name is provided, the procedure will assign the specified value map
to the series. If no name is provided, EViews will remove an existing valmap assignment.

Examples
series1.map mymap

assigns the valmap object MYMAP to SERIES1.

series1.map

removes an existing valmap assignment from SERIES1.

lag=arg
(default=1)

Lag specification: integer (user-specified number of lags),
“a” (automatic selection).

noc Do not remove means (center data) prior to whitening.

infosel=arg
(default=“aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn).

maxlag=integer Maximum lag-length for automatic selection (optional).
The default is an observation-based maximum of the inte-
ger portion of .

prompt Force the dialog to appear from within a program.

map Series Procs

T1 3e

584—Chapter 1. Object Reference

Cross-references

See “Value Maps” on page 219 of User’s Guide I for a discussion of valmap objects in
EViews.

Seasonally adjust series using the movereg method.

movereg is only available for weekly data.

Syntax:
series.movereg(options) [@ao additiveoutliers] [@ls levelshiftoutliers] [@holiday holi-

day(holiday weighting)] [@user userregs]

You should follow the movereg command with any additive or level-shift outliers, holiday
events or user variables to be included as part of the procedure. Outliers are specified as full
dates or in "weeknumber year" format. Holidays are specified with one of the built-in holi-
day keywords, followed by its holiday weighting pattern. Available holiday keywords are:
"easter", "labor", "newyear", "memorial", "taxday", "christmas", "july4th", "february",
"thanksgiving", "mlking", "veterans", and "columbus".

Options

Examples
icnsa.movereg

movereg Series Procs

Sa=name Specify the name of the output seasonal adjusted
data. If not specified the output series will be the
name of the underlying series with an appended
_sa

Facname=name Specify the name of the output seasonal factors. If
not specified the output series will be the name of
the underlying series with an appended _saf

Holname=name Specify the name of the output holiday series.

Outname=name Specify the name of the output outlier series.

Nfilt=integer Specify the width of the detrending filter. Default is
2.

Nfs=integer Specify number of trigonometric terms. Default is
60. Must be a positive even integer.

phi=number Specify the AR coefficient. Default is 0.4.

Sigr=number Specify the variance ratio parameter. Default is 16.

Series::pancov—585

Performs movereg seasonal adjustment on the series ICNSA, saving the adjusted data and
factors under the default names ICNSA_SA and ICNSA_SAF.

icnsa.movereg(outname=icnsa_hol) @ao 37 2001 @holiday

christmas(5, 4, 1, 1, 1, 2, 2)

Performs a seasonal adjustment with the 37th week of 2001 as an additive outlier, and spec-
ifying an adjustment for Christmas, where the Christmas effect is felt over 5 weeks, 3 weeks
before Christmas through one after, with the week of Christmas and after Christmas having
slightly more weight. The output holiday series is stored under ICNSA_HOL.

Push updates to OLE linked objects in open applications.

Syntax
series_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Compute covariances, correlations, and other measures of association for a panel series.

You may compute measures related to Pearson product-moment (ordinary) covariances and
correlations, Spearman rank covariances, or Kendall’s tau along with test statistics for evalu-
ating whether the correlations are equal to zero.

Syntax
series_name.pancov(options) [keywords]

By default, EViews will compute the contemporaneous (between cross-section) covariances,
correlations and related statistics for the panel series. You may use the “period” option to
instruct EViews to compute the between period (within cross-section) measures.

You should specify keywords indicating the statistics you wish to display from the list below.

You may specify keywords from one of the four sets (Pearson correlation, Spearman rank
correlation, Kendall’s tau, Uncentered Pearson) corresponding the computational method
you wish to employ. (You may not select keywords from more than one set.)

olepush Series Procs

pancov Series Views

586—Chapter 1. Object Reference

If you do not specify keywords, EViews will assume “cov” and compute the Pearson covari-
ance matrix.

Pearson Correlation

Spearman Rank Correlation

Kendall’s tau

Uncentered Pearson

cov Product moment covariance.

corr Product moment correlation.

sscp Sums-of-squared cross-products.

stat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

prob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

rcov Spearman’s rank covariance.

rcorr Spearman’s rank correlation.

rsscp Sums-of-squared cross-products.

rstat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

rprob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

taub Kendall’s tau-b.

taua Kendall’s tau-a.

taucd Kendall’s concordances and discordances.

taustat Kendall’s score statistic for evaluating whether the Kend-
all’s tau-b measure is zero.

tauprob Probability under the null for the score statistic.

cases Number of cases.

obs Number of observations.

ucov Product moment covariance.

Series::pancov—587

Note that cases and obs are available for each of the methods.

Options

Examples
ser1.pancov

ucorr Product moment correlation.

usscp Sums-of-squared cross-products.

ustat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

uprob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

period Compute period (within cross-section) panel covariances
and related statistics. The default is to compute contempo-
raneous (between cross-section) measures.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
for the mean (for centered specifications).

multi=arg
(default=“none”)

Adjustment to p-values for multiple comparisons: none
(“none”), Bonferroni (“bonferroni”), Dunn-Sidak
(“dunn”).

outfmt=arg
(default=
“single”)

Output format: single table (“single”), multiple table
(“mult”), list (“list”), spreadsheet (“sheet”). Note that
“outfmt=sheet” is only applicable if you specify a single
statistic keyword.

out=name Basename for saving output. All results will be saved in
Sym matrices named using keys (“COV”, “CORR”, “SSCP”,
“TAUA”, “TAUB”, “CONC” (Kendall’s concurrences),
“DISC” (Kendall’s discordances), “CASES”, “OBS”,
“WGTS”) appended to the basename (e.g., the covariance
specified by “out=my” is saved in the Sym matrix
“MYCOV”).

prompt Force the dialog to appear from within a program.

p Print the result.

588—Chapter 1. Object Reference

displays the contemporaneous Pearson covariance matrix of SER1 using the cross-sections in
sample.

ser1.pancov corr stat prob

displays a table containing the contemporaneous Pearson correlation matrix for SER1, along
with t-statistics for testing for zero correlation, and associated p-values,.

smpl 1990 2010

ser1.pancov(period, pairwise) taub taustat tauprob

computes the between period Kendall’s tau-b, score statistic, and p-value for the score statis-
tic, for the periods in the sample “1990 2010” using samples with pairwise missing value
exclusion.

ser1.pancov(out=aa, list) cor

computes the contemporaneous Pearson correlation for the series SER1, displays it in list
form, and saves the results in the symmetric matrix object AACORR.

Cross-references

See “Covariance Analysis” on page 572 of User’s Guide I and “Panel Covariances” on
page 999 of User’s Guide II for discussion.

To display the results of the panel principal components decomposition, see Series::pan-
pcomp (p. 588).

See Group::cor (p. 304) in the Command and Programming Reference for the command to
compute these measures across series.

Panel principal components analysis.

Syntax
group_name.panpcomp(options) [indices]

where the elements to display in loadings, scores, and biplot graph form (“out=loadings”,
“out=scores” or “out=biplot”) are given by the optional indices, (e.g., “1 2 3” or “2 3”). If
indices is not provided, the first two elements will be displayed.

Basic Options

panpcomp Series Views

out=arg
(default=“table”)

Output type: eigenvector/eigenvalue table (“table”), eigen-
values graph (“graph”), loadings graph (“loadings”),
scores graph (“scores”), biplot (“biplot”).

Series::panpcomp—589

Table and Eigenvalues Plot Options

The number of elements to display in the table and eigenvalue graph form is given by the
minimum of the elements specified using the “n=”, “mineigen=” and “cproport=”
options.

The default eigenvalue graph shows a scree plot of the ordered eigenvalues. You may use the
“scree”, “cproport”, and “diff” option keywords to display any combination of the scree
plot, cumulative eigenvalue proportions plot, or eigenvalue difference plot.

Loadings, Scores, Biplot Graph Options

eigval=vec_name Specify name of vector to hold the saved the eigenvalues in
workfile.

eigvec=mat_name Specify name of matrix to hold the save the eigenvectors in
workfile.

prompt Force the dialog to appear from within a program.

p Print results.

n=arg (default=all) Maximum number of components.

mineigen=arg
(default=0)

Minimum eigenvalue.

cproport=arg
(default=1.0)

Cumulative proportion of eigenvalue total to attain.

scree Display a scree plot of the eigenvalues (if “output=graph).

diff Display a graph of the eigenvalue differences (if “out-
put=graph).

cproport Display a graph of the cumulative proportions (if “out-
put=graph).

scale=arg,
(default=
“normload”)

Diagonal matrix scaling of the loadings and the scores: nor-
malize loadings (“normload”), normalize scores (“norm-
scores”), symmetric weighting (“symmetric”), user-
specified (arg=number).

cpnorm Compute the normalization for the scores so that cross-
products match the target (by default, EViews chooses a
normalization scale so that the moments of the scores
match the target).

nocenter Do not center the elements in the graph.

mult=arg
(default=”first”)

Multiple graph options: first versus remainder (“first”),
pairwise (“pair”), all pairs arrayed in lower triangle (“lt”)

590—Chapter 1. Object Reference

Covariance Options

Examples
ser1.panpcomp(eigval=v1, eigvec=m1)

computes the principal components decomposition of the contemporaneous (between cross-
section) Pearson correlation matrix for the series SER1.

The output view is stored in a table named TAB1, the eigenvalues in a vector named V1,
and the eigenvectors in a matrix named M1.

ser1.panpcomp(out=graph)

ser2.panpcomp(out=graph, scree, cproport)

displays a screen plot of the eigenvalues, and a graph containing both a screen plot and a
plot of the cumulative eigenvalue proportions.

ser.panpcomp(period, cov=rcorr, out=loading)

labels=arg
(default=“outlier”)

Scores label options: identify outliers only (“outlier”), all
points (“all”), none (“none”).

labelprob=arg
(default=0.1)

Outlier label probability (if “labels=outlier”).

autoscale=arg
(default=1.0)

Rescaling factor for auto-scaling.

userscale=arg User-specified scaling.

period Compute period (within cross-section) panel covariances
and related statistics. The default is to compute contempo-
raneous (between cross-section) measures.

cov=arg
(default=“corr”)

Covariance calculation method: ordinary (Pearson product
moment) covariance (“cov”), ordinary correlation (“corr”),
Spearman rank covariance (“rcov”), Spearman rank cor-
relation (“rcorr”), uncentered ordinary correlation
(“ucorr”). Note that Kendall’s tau measures are not valid
methods.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
accounting for the mean (for centered specifications).
The default behavior in these cases is to perform no adjust-
ment (e.g. – compute sample covariance dividing by
rather than).

n
n 1–

Series::resample—591

displays a loadings plot for the principal component decomposition of the period (within
cross-section) Spearman rank correlation matrix, and

ser.panpcomp(period, cov=rcorr, out=biplot, scale=symmetric,

mult=lt) 1 2 3

displays a symmetric biplot of the period Spearman correlation matrix for all three pairwise
comparisons.

Cross-references

See “Principal Components” on page 590 of User’s Guide I and “Panel Principal Compo-
nents” on page 1004 of User’s Guide II for further discussion.

To compute principal components scores and save them in series in the workfile, see
Series::makepanpcomp (p. 581).

Resample from observations in a series.

Syntax
series_name.resample(options) [output_spec]

You should follow the resample keyword and options and an output_spec containing a list
of names or a wildcard expression identifying the series to hold the output. If a list is used to
identify the targets, the number of target series must match the number of names implied by
the keyword.

Options

resample Series Procs

outsmpl=
smpl_spec

Sample to fill the new series. Either provide the sample
range in double quotes or specify a named sample object.
The default is the current workfile sample.

permute Draw from rows without replacement. Default is to draw
with replacement.

weight=
series_name

Name of series to be used as weights. The weight series
must be non-missing and non-negative in the current work-
file sample. The default is equal weights.

block=integer Block length for each draw. Must be a positive integer. The
default block length is 1.

withna (default) [Draw / Do not draw] from all rows in the current sample,
including those with NAs.

592—Chapter 1. Object Reference

• You may not use this proc with an auto-series unless you provide an output_spec. For
example, resampling from X(–1) or LOG(X) without providing explicit output names
will produce an error since we will attempt to append a suffix to the original name,
producing an invalid object name.

• Block bootstrap (block length larger than 1) requires a continuous output sample.
Therefore a block length larger than 1 cannot be used together with the “fixna”
option, and the “outsmpl” should not contain any gaps.

• The “fixna” option will have an effect only if there are missing values in the overlap-
ping sample of the input sample (current workfile sample) and the output sample
specified by “outsmpl”.

• If you specify “fixna”, we first copy any missing values in the overlapping sample to
the output series. Then the input sample is adjusted to drop rows containing missing
values and the output sample is adjusted so as not to overwrite the copied values.

• If you choose “dropna” and the block length is larger than 1, the input sample may
shrink in order to ensure that there are no missing values in any of the drawn blocks.

• If you choose “permute”, the block option will be reset to 1, the “dropna” and “fixna”
options will be ignored (reset to the default “withna” option), and the “weight” option
will be ignored (reset to default equal weights).

Examples
ser1.resample

creates a new series SER1_B by drawing with replacement from the rows of SER1 in the cur-
rent workfile sample. If SER1_B already exists in the workfile, it will be overwritten if it is a
series objects, otherwise EViews will error. Note that only values of SER_B (in this case the
current workfile sample) will be overwritten.

ser1.resample(weight=wt,suffix=_2)

will append “_2” to the SER1 for the name of the new series, SER_2. The rows in the sample
will be drawn with probabilities proportional to the corresponding values in the series WT.
WT must have non-missing non-negative values in the current workfile sample.

dropna Do not draw from rows that contain missing values in the
current workfile sample.

fixna Excludes NAs from draws but copies rows containing miss-
ing values to the output series.

prompt Force the dialog to appear from within a program.

Series::seas—593

Cross-references

See “Resample” on page 439 of User’s Guide I for a discussion of the resampling procedure.
For additional discussion of wildcards, see Appendix A. “Wildcards,” on page 771 of User’s
Guide II.

See also @resample (p. 717) and @permute (p. 714) in the Command and Programming
Reference for sampling from matrices.

Seasonal adjustment.

The seas command carries out seasonal adjustment using either the ratio to moving aver-
age, or the difference from moving average technique.

EViews also performs Census X11, Census X12, and Census X-13ARIMA-SEATS seasonal
adjustment. For details, see Series::x11 (p. 623), Series::x12 (p. 625), and
Series::x13 (p. 630).

Syntax
series_name.seas(options) name_adjust [name_fac]

Options

Examples
sales.seas(m) adj_sales

seasonally adjusts the series SALES using the multiplicative method and saves the adjusted
series as ADJ_SALES.

Cross-references

See “Seasonal Adjustment” on page 444 of User’s Guide I for a discussion of seasonal adjust-
ment methods.

See also seasplot (p. 965), Series::x11 (p. 623), Series::x12 (p. 625), Series::x13
(p. 630), and Series::tramoseats (p. 612).

seas Series Procs

m Multiplicative (ratio to moving average) method.

a Additive (difference from moving average) method.

prompt Force the dialog to appear from within a program.

594—Chapter 1. Object Reference

Declare a series object.

The series command creates and optionally initializes a series, or modifies an existing
series.

Syntax
series ser_name[=formula]

The series command should be followed by either the name of a new series, or an explicit
or implicit expression for generating a series. If you create a series and do not initialize it,
the series will be filled with NAs. Rules for composing a formula are given in “Numeric
Expressions” on page 179 of User’s Guide I.

Examples
series x

creates a series named X filled with NAs.

Once a series is declared, you do not need to include the series keyword prior to entering
the formula. The following example generates a series named LOW that takes value 1 if
either INC is less than or equal to 5000 or EDU is less than 13, and 0 otherwise.

series low

low = inc<=5000 or edu<13

This example solves for the implicit relation and generates a series named Z which is the
double log of Y so that Z=log(log(Y)).

series exp(exp(z)) = y

The command:

series z = (x+y)/2

creates a series named Z which is the average of series X and Y.

series cwage = wage*(hrs>5)

generates a series named CWAGE which is equal to WAGE if HRS exceeds 5, and zero other-
wise.

series 10^z = y

generates a series named Z which is the base 10 log of Y.

The commands:

series y_t = y

series Series Declaration

Series::setattr—595

smpl if y<0

y_t = na

smpl @all

generate a series named Y_T which replaces negative values of Y with NAs.

series z = @movav(x(+2),5)

creates a series named Z which is the centered moving average of the series X with two leads
and two lags.

series z = (.5*x(6)+@movsum(x(5),11)+.5*x(-6))/12

generates a series named Z which is the centered moving average of the series X over twelve
periods.

genr y = 2+(5-2)*rnd

creates a series named Y which is a random draw from a uniform distribution between 2
and 5.

series y = 3+@sqr(5)*nrnd

generates a series named Y which is a random draw from a normal distribution with mean 3
and variance 5.

Cross-references

There is an extensive set of functions that you may use with series:

• A list of functions is presented in Chapter 13. “Operator and Function Reference,” on
page 561 of the Command and Programming Reference.

See “Numeric Expressions” on page 179 of User’s Guide I for a discussion of rules for form-
ing EViews expressions.

Set the object attribute.

Syntax
series_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

setattr Series Procs

596—Chapter 1. Object Reference

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Set frequency conversion method.

Determines the default frequency conversion method for a series when copied or linked
between different frequency workfiles.

You may override this default conversion method by specifying a frequency conversion
method as an option in the specific command (using copy (p. 332) or fetch (p. 360) in the
Command and Programming Reference or Link::linkto (p. 359)).

If you do not set a conversion method and if you do not specify a conversion method as an
option in the command, EViews will use the conversion method set in the global option.

Syntax
ser_name.setconvert [up_method down_method]

Follow the series name with a period, the keyword, and option letters to specify the fre-
quency conversion method. If either the up-conversion or down-conversion method is omit-
ted, EViews will set the corresponding method to Use EViews default.

Options

The following options control the frequency conversion method when copying series and
group objects to a workfile, converting from low to high frequency:

The following options control the frequency conversion method when copying series and
group objects to a workfile, converting from high to low frequency:

setconvert Series Procs

Low to high con-
version methods

“r” (constant match average), “d” (constant match sum),
“q” (quadratic match average), “t” (quadratic match sum),
“i” (linear match last), “c” (cubic match last).

Series::setformat—597

Examples
unemp.setconvert a

sets the default down-conversion method of the series UNEMP to take the average of non-
missing observations, and resets the up-conversion method to use the global default.

ibm_hi.setconvert xn d

sets the default down-conversion method for IBM_HI to take the largest observation of the
higher frequency observations, propagating missing values, and the default up-conversion
method to constant, match sum.

consump.setconvert

resets both methods to the global default.

Cross-references

See “Frequency Conversion” on page 170 of User’s Guide I for a discussion of frequency con-
version and the treatment of missing values.

See also copy (p. 332) and fetch (p. 360) of the Command and Programming Reference,
and Link::linkto (p. 359).

Set the display format for cells in a series object spreadsheet view.

Syntax
series_name.setformat format_arg

where format_arg is a set of arguments used to specify format settings. If necessary, you
should enclose the format_arg in double quotes.

For series, setformat operates on all of the cells in the series.

High to low con-
version methods

High to low conversion methods removing NAs: “a” (aver-
age of the nonmissing observations), “s” (sum of the non-
missing observations), “f” (first nonmissing observation),
“l” (last nonmissing observation), “x” (maximum nonmiss-
ing observation), “m” (minimum nonmissing observation).
High to low conversion methods propagating NAs: “an” or
“na” (average, propagating missings), “sn” or “ns” (sum,
propagating missings), “fn” or “nf” (first, propagating
missings), “ln” or “nl” (last, propagating missings), “xn”
or “nx” (maximum, propagating missings), “mn” or “nm”
(minimum, propagating missings).

setformat Series Procs

598—Chapter 1. Object Reference

To format numeric values, you should use one of the following format specifications:

To specify a format that groups digits into thousands using a comma separator, place a “t”
after the format character. For example, to obtain a fixed number of decimal places with
commas used to separate thousands, use “ft[.precision]”.

To use the period character to separate thousands and commas to denote decimal places,
use “..” (two periods) when specifying the precision. For example, to obtain a fixed number
of characters with a period used to separate thousands, use “ct[..precision]”.

If you wish to display negative numbers surrounded by parentheses (i.e., display the num-
ber -37.2 as “(37.2)”), you should enclose the format string in “()” (e.g., “f(.8)”).

To format numeric values using date and time formats, you may use a subset of the possible
date format strings (see “Date Formats” on page 97 of the Command and Programming Ref-
erence). The possible format arguments, along with an example of the date number
730856.944793113 (January 7, 2002 10:40:30.125 p.m) formatted using the argument are
given by:

g[.precision] significant digits

f[.precision] fixed decimal places

c[.precision] fixed characters

e[.precision] scientific/float

p[.precision] percentage

r[.precision] fraction

WF (uses current EViews workfile
period display format)

YYYY “2002”

YYYY-Mon “2002-Jan”

YYYYMon “2002 Jan”

YYYY[M]MM “2002[M]01”

YYYY:MM “2002:01”

YYYY[Q]Q “2002[Q]1”

YYYY:Q “2002:Q

YYYY[S]S “2002[S]1” (semi-annual)

YYYY:S “2002:1”

YYYY-MM-DD “2002-01-07”

YYYY Mon dd “2002 Jan 7”

YYYY Month dd “2002 January 7”

Series::setformat—599

YYYY-MM-DD HH:MI “2002-01-07 22:40”

YYYY-MM-DD HH:MI:SS “2002-01-07 22:40:30”

YYYY-MM-DD HH:MI:SS.SSS “2002-01-07 22:40:30.125”

Mon-YYYY “Jan-2002”

Mon dd YYYY “Jan 7 2002”

Mon dd, YYYY “Jan 7, 2002”

Month dd YYYY “January 7 2002”

Month dd, YYYY “January 7, 2002”

MM/DD/YYYY “01/07/2002”

mm/DD/YYYY “1/07/2002”

mm/DD/YYYY HH:MI “1/07/2002 22:40”

mm/DD/YYYY HH:MI:SS “1/07/2002 22:40:30”

mm/DD/YYYY HH:MI:SS.SSS “1/07/2002 22:40:30.125”

mm/dd/YYYY “1/7/2002”

mm/dd/YYYY HH:MI “1/7/2002 22:40”

mm/dd/YYYY HH:MI:SS “1/7/2002 22:40:30”

mm/dd/YYYY HH:MI:SS.SSS “1/7/2002 22:40:30.125”

dd/MM/YYYY “7/01/2002”

dd/mm/YYYY “7/1/2002”

DD/MM/YYYY “07/01/2002”

dd Mon YYYY “7 Jan 2002”

dd Mon, YYYY “7 Jan, 2002”

dd Month YYYY “7 January 2002”

dd Month, YYYY “7 January, 2002”

dd/MM/YYYY HH:MI “7/01/2002 22:40”

dd/MM/YYYY HH:MI:SS “7/01/2002 22:40:30”

dd/MM/YYYY HH:MI:SS.SSS “7/01/2002 22:40:30.125”

dd/mm/YYYY hh:MI “7/1/2002 22:40”

dd/mm/YYYY hh:MI:SS “7/1/2002 22:40:30”

dd/mm/YYYY hh:MI:SS.SSS “7/1/2002 22:40:30.125”

hm:MI am “10:40 pm“

hm:MI:SS am “10:40:30 pm”

hm:MI:SS.SSS am “10:40:30.125 pm”

HH:MI “22:40”

HH:MI:SS “22:40:30”

600—Chapter 1. Object Reference

Note that the “hh” formats display 24-hour time without leading zeros. In our examples
above, there is no difference between the “HH” and “hh” formats for 10 p.m.

Also note that all of the “YYYY” formats above may be displayed using two-digit year “YY”
format.

Examples

To set the format for all cells in the series to fixed 5-digit precision, simply provide the for-
mat specification:

ser1.setformat f.5

Other format specifications include:

ser1.setformat f(.7)

ser1.setformat e.5

You may use any of the date formats given above:

ser1.setformat YYYYMon

ser1.setformat "YYYY-MM-DD HH:MI:SS.SSS"

to set the series display characteristics.

Cross-references

See Series::setwidth (p. 602), Series::setindent (p. 600) and Series::setjust
(p. 601) for details on setting spreadsheet widths, indentation and justification.

Set the display indentation for cells in a series object spreadsheet view.

Syntax
series_name.setindent indent_arg

where indent_arg is an indent value specified in 1/5 of a width unit. The width unit is com-
puted from representative characters in the default font for the current spreadsheet (the
EViews spreadsheet default font at the time the spreadsheet was created), and corresponds
roughly to a single character. Indentation is only relevant for non-center justified cells.

HH:MI:SS.SSS “22:40:30.125”

hh:MI “22:40”

hh:MI:SS “22:40:30”

hh:MI:SS.SSS “22:40:30.125”

setindent Series Procs

Series::setjust—601

The default indentation setttings are taken from the Global Defaults for spreadsheet views
(“Spreadsheet Data Display” on page 868 of User’s Guide I) at the time the spreadsheet was
created.

For series, setindent operates on all of the cells in the series.

Examples

To set the indentation for a series object:

ser1.setindent 2

Cross-references

See Series::setwidth (p. 602) and Series::setjust (p. 601) for details on setting
spreadsheet widths and justification.

Set the display justification for cells in a series spreadsheet view.

Syntax
series_name.setjust format_arg

where format_arg is a set of arguments used to specify format settings. You should enclose
the format_arg in double quotes if it contains any spaces or delimiters.

For series, setjust operates on all of the cells in the series.

The format_arg may be formed using the following:

The default justification setting is taken from the Global Defaults for spreadsheet views
(“Spreadsheet Data Display” on page 868 of User’s Guide I) at the time the spreadsheet was
created.

Examples
ser1.setjust left

sets the horizontal justification to left.

Cross-references

See Series::setwidth (p. 602) and Series::setindent (p. 600) for details on setting
spreadsheet widths and indentation.

setjust Series Procs

auto / left / cen-
ter / right

Horizontal justification setting. “Auto” uses left justifica-
tion for strings, and right for numbers.

602—Chapter 1. Object Reference

Set the column width for a series spreadsheet.

Syntax
series_name.setwidth width_arg

where width_arg specifies the width unit value. The width unit is computed from represen-
tative characters in the default font for the current spreadsheet (the EViews spreadsheet
default font at the time the spreadsheet was created), and corresponds roughly to a single
character. width_arg values may be non-integer values with resolution up to 1/10 of a width
unit.

Examples
ser1.setwidth 12

sets the width of series SER1 to 12 width units.

Cross-references

See Series::setindent (p. 600) and Series::setjust (p. 601) for details on setting
spreadsheet indentation and justification.

Spreadsheet view of a series object.

Syntax
series_name.sheet(options)

Options

setwidth Series Procs

sheet Series Views

w Wide. In a panel this will switch to the unstacked form of
the panel (dates along the side, cross-sections along the
top).

t Transpose.

a All observations (ignore sample)

Series::smooth—603

Examples
ser1.sheet(p)

displays and prints the default spreadsheet view of series SER1.

ser1.sheet(t, tform=log)

displays log values of SER1 in the current sample in a wide spreadsheet.

ser1.sheet(nl, tform=diff)

shows differenced values of the series without labels.

ser1.sheet(a, tform=pc)

displays the one period percent changes for all observations in the workfile.

Cross-references

See Chapter 5. “Basic Data Handling,” on page 123 of User’s Guide I for a discussion of the
spreadsheet view of series and groups.

Exponential smoothing.

Forecasts a series using one of a number of exponential smoothing techniques. By default,
smooth estimates the damping parameters of the smoothing model to minimize the sum of
squared forecast errors, but you may specify your own values for the damping parameters.

smooth automatically calculates in-sample forecast errors and puts them into the series
RESID.

Syntax
series_name.smooth(method) smooth_name [freq]

nl Do not display labels.

tform=arg
(default=
“level”

Display transformed data: raw data (“level”), one period
difference (“dif” or “d”), annual difference (“dify” or
“dy”), one period percentage change (“pch” or “pc”),
annualized one period percentage change (“pcha” or
“pca”), annual percentage change (“pchy” or “pcy”), natu-
ral logarithm (“log”), one period difference of logged val-
ues (“dlog”).

p Print the spreadsheet view.

smooth Series Procs

604—Chapter 1. Object Reference

You should follow the smooth keyword with a name for the smoothed series. You must also
specify the smoothing method in parentheses. The optional freq may be used to override the
default for the number of periods in the seasonal cycle. By default, this value is set to the
workfile frequency (e.g. — 4 for quarterly data). For undated data, the default is 5.

Options
Smoothing method options

Other Options:

If you wish to set only some of the damping parameters and let EViews estimate the other
parameters, enter the letter “e” where you wish the parameter to be estimated.

If the number of seasons is different from the frequency of the workfile (an unusual case
that arises primarily if you are using an undated workfile for data that are not monthly or
quarterly), you should enter the number of seasons after the smoothed series name. This
optional input will have no effect on forecasts without seasonal components.

Examples
sales.smooth(s) sales_f

s[,x] Single exponential smoothing for series with no trend. You
may optionally specify a number x between zero and one
for the mean parameter.

d[,x] Double exponential smoothing for series with a trend. You
may optionally specify a number x between zero and one
for the mean parameter.

n[,x,y] Holt-Winters without seasonal component. You may
optionally specify numbers x and y between zero and one
for the mean and trend parameters, respectively.

a[,x,y,z] Holt-Winters with additive seasonal component. You may
optionally specify numbers x, y, and z, between zero and
one for the mean, trend, and seasonal parameters, respec-
tively.

m[,x,y,z] Holt-Winters with multiplicative seasonal component. You
may optionally specify numbers x, y, and z, between zero
and one for the mean, trend, and seasonal parameters,
respectively.

prompt Force the dialog to appear from within a program.

p Print a table of forecast statistics.

Series::sort—605

smooths the SALES series by a single exponential smoothing method and saves the
smoothed series as SALES_F. EViews estimates the damping (smoothing) parameter and dis-
plays it with other forecast statistics in the SALES series window.

tb3.smooth(n,e,.3) tb3_hw

smooths the TB3 series by a Holt-Winters no seasonal method and saves the smoothed
series as TB3_HW. The mean damping parameter is estimated while the trend damping
parameter is set to 0.3.

smpl @first @last-10

order.smooth(m,.1,.1,.1) order_hw

smpl @all

graph gra1.line order order_hw

show gra1

smooths the ORDER series by a Holt-Winters multiplicative seasonal method leaving the last
10 observations. The damping parameters are all set to 0.1. The last three lines plot and dis-
play the actual and smoothed series over the full sample.

Cross-references

See “Exponential Smoothing” on page 511 of User’s Guide I for a discussion of exponential
smoothing methods. See also Series::ets (p. 564).

Change display order for series spreadsheet.

The sort command changes the sort order settings for spreadsheet display of the series.

Syntax
series_name.sort([opt])

By default, EViews will sort by the value of the series, in ascending order. For purposes of
sorting, NAs are considered to be smaller than any other value.

You may modify the default sort order by providing a sort option. If you provide the integer
“0”, or the keyword “obs”, EViews will sort using the original workfile observation order. To
sort in descending order, simply include the minus sign (“-”).

Examples
ser1.sort

change the display order for the series SER1 so that spreadsheet rows are ordered from low
to high values of the series.

sort Series Procs

606—Chapter 1. Object Reference

ser1.sort(-)

sorts in descending order.

ser1.sort(obs)

returns the display order for group SER1 to the original (by observation).

Cross-references

See “Spreadsheet” on page 548 of User’s Guide II for additional discussion.

Basic statistics by classification.

The statby view displays descriptive statistics for the elements of a series classified into
categories by one or more series.

Syntax
series_name.statby(options) classifier_names

Follow the series name with a period, the statby keyword, and a name (or a list of names)
for the series or group by which to classify. The options control which statistics to display
and in what form. By default, statby displays the means, standard deviations, and counts
for the series.

Options
Options to control statistics to be displayed

statby Series Views

sum Display sums.

med Display medians.

max Display maxima.

min Display minima.

quant=arg
(default=.5)

Display quantile with value given by the argument.

q=arg
(default=“r”)

Compute quantiles using the specified definition: “b”
(Blom), “r” (Rankit-Cleveland), “o” (Ordinary), “t”
(Tukey), “v” (van der Waerden), “g” (Gumbel).

skew Display skewness.

kurt Display kurtosis.

na Display counts of NAs.

Series::statby—607

Options to control layout

Options to control binning

Other options

Examples
wage.statby(max,min) sex race

nomean Do not display means.

nostd Do not display standard deviations.

nocount Do not display counts.

l Display in list mode (for more than one classifier).

nor Do not display row margin statistics.

noc Do not display column margin statistics.

nom Do not display table margin statistics (unconditional
tables); for more than two classifier series.

nos Do not display sub-margin totals in list mode; only used
with “l” option and more than two classifier series.

sp Display sparse labels; only with list mode option, “l”.

dropna
(default),
keepna

[Drop/Keep] NA as a category.

v=integer
(default=100)

Bin categories if classification series take on more than the
specified number of distinct values.

nov Do not bin based on the number of values of the classifica-
tion series.

a=number
(default=2)

Bin categories if average cell count is less than the specified
number.

noa Do not bin based on the average cell count.

b=integer
(default=5)

Set maximum number of binned categories.

nolimt Remove protections on total number of cells.

prompt Force the dialog to appear from within a program.

p Print the descriptive statistics table.

608—Chapter 1. Object Reference

displays the mean, standard deviation, max, and min of the series WAGE by (possibly
binned) values of SEX and RACE.

Cross-references

See “By-Group Statistics” on page 580 of the Command and Programming Reference for a list
of functions to compute by-group statistics. See also “Stats by Classification” on page 405
and “Descriptive Statistics” on page 572 of User’s Guide I for discussion.

See also Series::hist (p. 574), boxplot (p. 923) and Link::linkto (p. 359).

Descriptive statistics.

Computes and displays a table of means, medians, maximum and minimum values, stan-
dard deviations, and other descriptive statistics of a series.

Syntax
series_name.stats(options)

Options

Examples
wage.stats

displays the descriptive statistics view of the series WAGE.

Cross-references

See “Descriptive Statistics & Tests” on page 402 of User’s Guide I for a discussion of the
descriptive statistics views of series.

See also boxplot (p. 923) and Series::hist (p. 574).

Seasonally adjust series using the STL decomposition method.

Unlike other seasonal adjustment methods used by EViews, this procedure works on any time
frequency.

Syntax:
series.stl(options) seas_name[trend_name]

stats Series Views

p Print the stats table.

stl Series Procs

Series::stl—609

You should follow the stl keyword with a name for the seasonally adjusted series. Option-
ally, you may also provide a name for the output trend series.

Options

Examples
Co2.stl co2_sa c02_trend

performs STL decomposition on the series C02, saving the adjusted data in the series
C02_SA and the trend in C02_TREND.

show Co2.stl(sl=20, outits=20, seasdiagnostic)

performs the same decomposition, but with a seasonal smoothing window of 20, using 20
iterations of the outer loop, and displays the seasonal diagnostics graphs.

Periodicity=arg Specify the periodicity. Use “w” to expand weekly
data to 53 weeks and “d” to expand daily data to
366 (in a 7 day week workfile) or 261 (in a 5 day
week workfile) days. Default is the number of
periods per year (expanded for weekly and daily).

Sp=integer Specify the seasonal polynomial degree. Default is
0.

tp=integer Specify the trend polynomial degree. Default is 1.

fp=integer Specify the filter polynomial degree. Default is 1.

Sl=integer Specify the length of the seasonal smoothing win-
dow (odd integers only). Default is 35.

Tl=integer Specify the length of the trend smoothing window
(odd integers only). Default is based upon the sea-
sonal smoothing window length.

Fl=integer Specify the length of the filter smoothing window
(odd integers only). Default is based upon the data
frequency.

Inits=integer Specify number of inner iterations. Default is 5.

Outits=integer Specify the number of outer iterations. Default is
15.

Estsmpl=arg Set the estimation sample.

Forclen=inte-
ger

Set the length of the forecast.

Seasdiagnostic Display seasonality diagnostics graph.

610—Chapter 1. Object Reference

Test equality of the mean, median, or variance of a series across categories classified by a
list of series or a group.

Syntax
series_name.testby(options) arg1 [arg2 arg2 …]

Follow the testby keyword by a list of the names of the series or groups to use as classifi-
ers. Specify the type of test as an option.

Options

Examples
wage.testby(med) race

Tests equality of medians of WAGE across groups classified by RACE.

Cross-references

See “Equality Tests by Classification” on page 411 of User’s Guide I for a discussion of equal-
ity tests.

testby Series Views

mean (default) Test equality of mean.

med Test equality of median.

var Test equality of variance.

dropna (default),
keepna

[Drop /Keep] NAs as a classification category.

v=integer
(default=100)

Bin categories if classification series take more than the
specified number of distinct values.

nov Do not bin based on the number of values of the classifica-
tion series.

a=number
(default=2)

Bin categories if average cell count is less than the specified
number.

noa Do not bin on the basis of average cell count.

b=integer
(default=5)

Set maximum number of binned categories.

nolimt Remove protections on total number of cells.

prompt Force the dialog to appear from within a program.

p Print the test results.

Series::teststat—611

See also Group::testbtw (p. 349), Series::teststat (p. 611).

Test simple hypotheses of whether the mean, median, or variance of a series is equal to a
specified value.

Syntax
series_name.teststat(options)

Specify the type of test and the value under the null hypothesis as an option.

Options

Examples
smpl if race=1

lwage.teststat(var=4)

tests the null hypothesis that the variance of LWAGE is equal to 4 for the subsample with
RACE=1.

Cross-references

See “Descriptive Statistics & Tests” on page 402 of User’s Guide I for a discussion of simple
hypothesis tests.

See also Group::testbtw (p. 349), Series::testby (p. 610).

teststat Series Views

mean=number Test the null hypothesis that the mean equals the specified
number.

med=number Test the null hypothesis that the median equals the speci-
fied number.

var=number Test the null hypothesis that the variance equals the speci-
fied number. The number must be positive.

std=number Test equality of mean conditional on the specified standard
deviation. The standard deviation must be positive.

prompt Force the dialog to appear from within a program.

p Print the test results.

612—Chapter 1. Object Reference

Run the external seasonal adjustment program Tramo/Seats using the data in the series.

tramoseats is available for annual, semi-annual, quarterly, and monthly series. The proce-
dure requires at least observations and can adjust up to 600 observations where:

(1.4)

Syntax
series_name.tramoseats(options) [base_name]

Enter the name of the original series followed by a dot, the keyword, and optionally provide
a base name (no more than 20 characters long) to name the saved series. The default base
name is the original series name. The saved series will have postfixes appended to the base
name.

Options

tramoseats Series Procs

runtype=arg
(default=“ts”)

Tramo/Seats Run Specification: “ts” (run Tramo fol-
lowed by Seats; the “opt=” options are passed to
Tramo, and Seats is run with the input file returned
from Tramo), “t” (run only Tramo), “s” (run only
Seats).

save=arg Specify series to save in workfile: you must use one or
more from the following key word list: “hat” (forecasts of
original series), “lin” (linearized series from Tramo), “pol”
(interpolated series from Tramo), “sa” (seasonally adjusted
series from Seats), “trd” (final trend component from
Seats), “ir” (final irregular component from Seats), “sf”
(final seasonal factor from Seats), “cyc” (final cyclical com-
ponent from Seats).
To save more than one series, separate the list of key words
with a space. Do not use commas within the list of save
series.
The special key word “save=*” will save all series in the
key word list. The five key words “sa”, “trd”, “ir”, “sf”,
“cyc” will be ignored if “runtype=t”.

opt=arg A space delimited list of input namelist. Do not use com-
mas within the list. The syntax for the input namelist is
explained in the.PDF documentation file. See also “Notes”
on page 613.

n

n
36

max 12 4s{ , }¯
®

for monthly data
for other seasonal data

Series::tramoseats—613

Notes

The command line interface to Tramo/Seats does very little error checking of the command
syntax. EViews simply passes on the options you provide “as is” to Tramo/Seats. If the syn-
tax contains an error, you will most likely to see the EViews error message “output file not
found”. If you see this error message, check the input files produced by EViews for possible
syntax errors as described in “Trouble Shooting” on page 494 of User’s Guide I.

Additionally, here are some of the more commonly encountered syntax errors.

• To replicate the dialog options from the command line, use the following input
options in the “opt=” list. See the PDF documentation file for a description of each
option.

1. data frequency: “mq=”.

2. forecast horizon: “npred=” for Tramo and “fh=” for Seats.

3. transformation: “lam=”.

4. ARIMA order search: “inic=” and “idif=”.

5. Easter adjustment: “ieast=”.

6. trading day adjustment: “itrad=”.

7. outlier detection: “iatip=” and “aio=”.

• The command option input string list must be space delimited. Do not use commas.
Options containing an equals sign should not contain any spaces around the equals;
the space will be interpreted as a delimiter by Tramo/Seats.

• If you set “rtype=ts”, you are responsible for supplying either “seats=1” or
“seats=2” in the “opt=” option list. EViews will issue the error message “Seats.itr
not found” if the option is omitted. Note that the dialog option Run Seats after Tramo
sets “seats=2”.

reg=arg A space delimited list for one line of reg namelist. Do not
use commas within the list. This option must be used in
pairs, either with another “reg=” option or “regname=”
option. The reg namelist is available only for Tramo and its
syntax is explained in the PDF documentation file. See also
“Notes” on page 613.

regname=arg Name of a series or group in the current workfile that con-
tains the exogenous regressors specified in the previous
“reg=” option. See “Notes” on page 613.

prompt Force the dialog to appear from within a program.

p Print the results of the Tramo/Seats procedure.

614—Chapter 1. Object Reference

• Each “reg=” or “regname=” option is passed to the input file as a separate line in the
order that they appear in the option argument list. Note that these options must come
in pairs. A “reg=” option must be followed by another “reg=” option that specifies
the outlier or intervention series or by a “regname=” option that provides the name
for an exogenous series or group in the current workfile. See the sample programs in
the “./Example Files” directory.

• If you specify exogenous regressors with the “reg=” option, you must set the appro-
priate “ireg=” option (for the total number of exogenous series) in the “opt=” list.

• To use the “regname=” option, the preceding “reg=” list must contain the “user=-1”
option and the appropriate “ilong=” option. Do not use “user=1” since EViews will
always write data in a separate external file. The “ilong=” option must be at least the
number of observations in the current workfile sample plus the number of forecasts.
The exogenous series should not contain any missing values in this range. Note that
Tramo may increase the forecast horizon, in which case the exogenous series is
extended by appending zeros at the end.

Examples
freeze(tab1) x.tramoseats(runtype=t, opt="lam=-1 iatip=1 aio=2

va=3.3 noadmiss=1 seats=2", save=*) x

replicates the example file EXAMPLE.1 in Tramo. The output file from Tramo is stored in a
text object named tab1. This command returns three series named X_HAT, X_LIN, X_POL.

show x.TramoSeats(runtype=t, opt="NPRED=36 LAM=1 IREG=3 INTERP=2

IMEAN=0 P=1 Q=0 D=0", reg="ISEQ=1 DELTA=1.0", reg="61 1",

reg="ISEQ=8 DELTAS=1.0", reg="138 5 150 5 162 5 174 5 186 5 198

5 210 5 222 5", reg="ISEQ=8 DELTAS=1.0", reg="143 7 155 7 167 7

179 7 191 7 203 7 215 7 227 7") x

replicates the example file EXAMPLE.2 in Tramo. This command produces an input file con-
taining the lines:

$INPUT NPRED=36 LAM=1 IREG=3 INTERP=2 IMEAN=0 P=1 Q=0 D=0, $

$REG ISEQ=1 DELTA=1.0$

61 1

$REG ISEQ=8 DELTAS=1.0$

138 5 150 5 162 5 174 5 186 5 198 5 210 5 222 5

$REG ISEQ=8 DELTAS=1.0$

143 7 155 7 167 7 179 7 191 7 203 7 215 7 227 7

Additional examples replicating many of the example files provided by Tramo/Seats can be
found in the “./Example Files” directory. You will also find files that compare seasonal
adjustments from Census X12 and Tramo/Seats.

Series::uroot—615

Cross-references

See “Tramo/Seats” on page 490 of User’s Guide I for discussion. See also the Tramo/Seats
documentation that accompanied your EViews distribution.

See Series::seas (p. 593) and Series::x12 (p. 625).

Carries out unit root tests on a series or panel structured series.

For ordinary series, computes conventional Augmented Dickey-Fuller (ADF), GLS detrended
Dickey-Fuller (DFGLS), Phillips-Perron (PP), Kwiatkowski, et. al. (KPSS), Elliot, Rothenberg,
and Stock (ERS) Point Optimal, or Ng and Perron (NP) tests for a unit root in the series or its
first or second difference.

For series in a panel structured workfile, computes Levin, Lin and Chu (LLC), Breitung, Im,
Pesaran, and Shin (IPS), Fisher - ADF, Fisher - PP, or Hadri panel unit root tests on levels,
first, or second differences of the data.

Syntax
series_name.uroot(options)

There are different options for conventional tests on an ordinary series and panel tests for
series in panel structured workfiles.

Options for Conventional Unit Root Tests
Basic Specification

You should specify the exogenous variables and order of dependent variable differencing in
the test equation using the following options:

You should specify the test type using one of the following keywords:

uroot Series Views

exog=arg
(default=“const”)

Specification of exogenous trend variables in the test equa-
tion: “const” “trend” (include a constant and a linear time
trend), “none” (do not include any exogenous regressors).

dif=integer
(default=0)

Order of differencing of the series prior to running the test.
Valid values are {0, 1, 2}.

adf (default) Augmented Dickey-Fuller.

dfgls GLS detrended Dickey-Fuller (Elliot, Rothenberg, and
Stock).

pp Phillips-Perron.

616—Chapter 1. Object Reference

Note that for backward compatibility, EViews supports older forms of the exogenous specifi-
cation:

For future compatibility we recommend that you use the “exog=” format.

Spectral Estimation Option

In addition, PP, KPSS, ERS, and NP tests all require the estimation of the long-run variance
(frequency zero spectrum). You may specify the method using the “hac=” option. The
default setting depends on the selected test.

Lag Difference Options

Applicable to ADF and DFGLS tests, and for PP, KPSS, ERS, and NP tests that use a AR spec-
tral density estimator (“hac=ar”, “hac=ardt”, or “hac=argls”). The default lag selection
method is based on a comparison of Schwarz criterion values. You may specify a fixed lag
using the “lag=” option.

kpss Kwiatkowski, Phillips, Schmidt, and Shin.

ers Elliot, Rothenberg, and Stock (Point Optimal).

np Ng and Perron.

const, c (default) Include a constant in the test equation.

trend, t Include a constant and a linear time trend in the test equa-
tion.

none, n Do not include a constant or time trend (only available for
the ADF and PP tests).

hac=arg
(default=varies)

Method of estimating the frequency zero spectrum: “bt”
(Bartlett kernel), “pr” (Parzen kernel), “qs” (Quadratic
Spectral kernel), “ar” (AR spectral), “ardt (AR spectral -
OLS detrended data), “argls” (AR spectral - GLS detrended
data).
The default settings are test specific (“bt” for PP and KPSS
tests, “ar” for ERS, “argls” for NP).

Series::uroot—617

Kernel Option

Applicable to PP, KPSS, ERS, and NP tests when using kernel estimators of the frequency
zero spectrum (where “hac=bt”, “hac=pz”, or “hac=qs”)

General Options

Options for Panel Unit Root Tests
Basic Specification

You should specify the exogenous variables, order of dependent variable differencing, and
sample handling, in the test equation using the following options:

You may use one of the following keywords to specify the test:

lagmethod=arg
(default=“sic”)

Method for selecting lag length (number of first difference
terms) to be included in the Dickey-Fuller test regression or
number of lags in the AR spectral density estimator:
“aic” (Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn),
“msaic” (Modified Akaike), “msic” (Modified Schwarz),
“mhqc” (Modified Hannan-Quinn), “tstat” (Ng-Perron first
backward significant t-statistic).

lag=integer Use-specified fixed lag.

maxlag=integer Maximum lag length to consider when performing auto-
matic lag length selection.

default=

lagpval=arg
(default=0.1)

Probability value for use in the t-statistic automatic lag
selection method (“lagmethod = tstat”).

band = arg, b=arg
(default=“nw”)

Method of selecting the bandwidth: “nw” (Newey-West
automatic variable bandwidth selection), “a” (Andrews
automatic selection), number (user specified bandwidth).

prompt Force the dialog to appear from within a program.

p Print output from the test.

exog=arg
(default=“const”)

Specification of exogenous trend variables in the test equa-
tion: “const” “trend” (include a constant and a linear time
trend), “none” (do not include any exogenous regressors).

dif=integer
(default=0)

Order of differencing of the series prior to running the test.
Valid values are {0, 1, 2}.

balance Use balanced (across cross-sections or series) data when
performing test.

int 12T 100e� �0.25()

618—Chapter 1. Object Reference

For backward compatibility, EViews supports older forms of the exogenous specification:

For future compatibility we recommend that you use the “exog=” format.

Lag Difference Options

Specifies the number of lag difference terms to be included in the test equation. Applicable
in “Summary”, LLC, Breitung, IPS, and Fisher-ADF tests. The default setting is to perform
automatic lag selection using the Schwarz criteria (“lagmethod=sic”).

sum (default) Summary of all of the panel unit root tests.

llc Levin, Lin, and Chu.

breit Breitung.

ips Im, Pesaran, and Shin.

adf Fisher - ADF.

pp Fisher - PP.

hadri Hadri.

const, c (default) Include a constant in the test equation.

trend, t Include a constant and a linear time trend in the test equa-
tion.

none, n Do not include a constant or time trend (only available for
the ADF and PP tests).

lagmethod=arg
(default=“sic”)

Method for selecting lag lengths (number of first difference
terms) to be included in the Dickey-Fuller test regressions:
“aic” (Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn),
“tstat” (Ng-Perron first backward significant t-statistic).

Series::uroot—619

Kernel Options

Specifies options for computing kernel estimates of the zero-frequency spectrum (long-run
covariance). Applicable to “Summary”, LLC, Fisher-PP, and Hadri tests.

General options

Examples

The command:

gnp.uroot(adf,exog=const,lag=3,save=mout)

performs an ADF test on the series GDP with the test equation including a constant term
and three lagged first-difference terms. Intermediate results are stored in the matrix MOUT.

ip.uroot(dfgls,exog=trend,lagmethod=sic)

runs the DFGLS unit root test on the series IP with a constant and a trend. The number of
lagged difference terms is selected automatically using the Schwarz criterion.

lag=arg Specified lag length (number of first difference terms) to be
included in the regression: integer (user-specified common
lag length), vector_name (user-specific individual lag
length, one row per cross-section).

maxlag=arg Maximum lag length to consider when performing auto-
matic lag length selection: integer (common maximum lag
length), or vector_name (individual maximum lag length,
one row per cross-section). The default setting produces
individual maximum lags of,

default=

where is the length of the cross-section.

lagpval=arg
(default=0.1)

Probability value for use in the t-statistic automatic lag
selection method (when “lagmethod = tstat”).

hac=arg
(default=“bt”)

Method of estimating the frequency zero spectrum: “bt”
(Bartlett kernel), “pr” (Parzen kernel), “qs” (Quadratic
Spectral kernel),

band = arg, b=arg
(default=“nw”)

Method of selecting the bandwidth: “nw” (Newey-West
automatic variable bandwidth selection), “a” (Andrews
automatic selection), number (user-specified common
bandwidth), vector_name (user-specified individual band-
widths, one row for each cross-section).

prompt Force the dialog to appear from within a program.

p Print output from the test.

int min 12 Ti 3e,() Ti 100e� �1 4e�()

Ti

620—Chapter 1. Object Reference

unemp.uroot(kpss,exog=const,hac=pr,b=2.3)

runs the KPSS test on the series UNEMP. The null hypothesis is that the series is stationary
around a constant mean. The frequency zero spectrum is estimated using kernel methods
(with a Parzen kernel), and a bandwidth of 2.3.

sp500.uroot(np,hac=ardt,lagmethod=maic)

runs the NP test on the series SP500. The frequency zero spectrum is estimated using the
OLS AR spectral estimator with the lag length automatically selected using the modified
AIC.

gdp.uroot(llc,hac=pr,lagmethod=aic)

runs the LLC panel unit root test on series GDP. The frequency zero spectrum is estimated
using the Parzen Kernel with lag length automatically selected using the AIC.

Cross-references

See “Unit Root Testing” on page 589 of User’s Guide II for discussion of standard unit root
tests performed on a single series, and “Panel Unit Root Testing” on page 617 of User’s Guide
II for discussion of unit roots tests performed on panel structured workfiles, groups of series,
or pooled data.

See also Series::buroot (p. 554).

Compute the Lo and MacKinlay (1988) variance ratio test using the original data, or the
Wright (2000) rank, rank-score, or sign-based forms of the test.

Multiple comparisons are handled using Wald (Richardson and Smith, 1991) or multiple
comparison variance ratio (Chow and Denning, 1993). Significance levels may be computed
using the asymptotic distribution, or the wild or permutation bootstrap.

Syntax
Series View: series_name.vratio(options) lag_specification

Series View: series_name.vratio(grid[, options]) start end [step]

In the first form of the command, lag_specification should contain the lag values to test in
the form of a list of integers, scalars, or a vector containing integer values greater than 1.

In the second form of the command, we include the “grid” option and specify a grid of lag
values in the form

start end [step]

vratio Series Views

Series::vratio—621

where start is the smallest lag, end is the largest required lag, and the optional step indicates
which intermediate lags to consider. By default, step is set to 1 so that all lags from start
through end will be included.

Options

Bootstrap Options

out=arg
(default=“table”)

Output type: “table” or “graph” of test results.

data=arg
(default=“level”)

Form of data in series: “level” (random walk or martin-
gale), “exp” (exponential random walk or martingale),
“innov” (innovations to random walk or martingale).

method=arg Test method: “orig” (Lo-MacKinlay test statistic), “rank”
(rank statistic), “rankscore” (score statistic), “sign” (sign
variance ratio statistic).

probcalc=arg
(default=“anorm”)

Probability calculation: “norm” (asymptotic normal),
“wildboot” (wild bootstrap), when “method=orig”.

biased Do not bias correct the variances.

iid Do not use heteroskedastic robust S.E.

noc Do not allow for drift / demean the data (for default
“data=level”).

stack Compute estimates for stacked panel (in panel workfiles).

rankties=arg
(default=“a”)

Tie handling for ranks: “i” (ignore), “a” (average), “r” (ran-
domize).

prompt Force the dialog to appear from within a program.

p Print results.

btreps=integer
(default=1000)

Number of bootstrap repetitions

622—Chapter 1. Object Reference

Examples

The commands

jp.vratio(data=exp, biased, iid) 2 5 10 30

jp.vratio(out=graph, data=exp, biased, iid) 2 5 10 30

compute the Lo-MacKinley and the joint Chow-Denning and Wald tests for the homoskedas-
tic random walk using periods 2, 5, 10, and 30. The results are displayed first in table, then
in graph form. The individual test z-statistics use the asymptotic normal distribution and the
Chow-Denning statistic uses the asymptotic Studentized Maximum Modulus distribution for
evaluating significance.

series logjp = log(jp)

logjp.vratio(noc, iid, grid) 2 10 2

computes the same tests using periods 2, 4, 6, 8, and 10, with the bias-corrected variances
computed without allowing for a mean/drift term.

To compute a heteroskedastic robust version of the last test, we simply remove the “iid”
option:

logjp.vratio(noc, grid) 2 10 2

To compute the significance levels using the wild bootstrap,

jp.vratio(data=exp, biased, probcalc=wildboot, btreps=5000,

btseed=1000, btrng=kn) 2 5 10 30

jp.vratio(data=exp, probcalc=wildboot, btdist=normal, btreps=5000,

btseed=1000, btrng=kn) 2 5 10 30

Both commands produce bootstrap significance levels using 5000 replications with the
Knuth generator and a seed of 1000. The second command substitutes bias corrects the vari-

btseed=positive_integer Seed the bootstrap random number generator.
If not specified, EViews will seed the bootstrap random
number generator with a single integer draw from the
default global random number generator.

btrnd=arg
(default=“kn” or
method previously set
using rndseed
(p. 474) of the Com-
mand and Program-
ming Reference)

Type of random number generator for the bootstrap:
improved Knuth generator (“kn”), improved Mersenne
Twister (“mt”), Knuth’s (1997) lagged Fibonacci generator
used in EViews 4 (“kn4”) L’Ecuyer’s (1999) combined mul-
tiple recursive generator (“le”), Matsumoto and
Nishimura’s (1998) Mersenne Twister used in EViews 4
(“mt4”).

btdist=arg
(default=“twopoint”)

Bootstrap distribution: “twopoint”, “rademacher”, “nor-
mal” (when “probcalc=wildboot”).

Series::x11—623

ance estimates and changes the bootstrap random number distribution from the default two-
step to the normal.

To perform Wright’s rank and rank-score based tests,

vector(4) periods

periods.fill 2, 5, 10, 30

jp.vratio(data=exp, method=rank, btreps=5000, btseed=1000,

btrng=kn) periods

jp.vratio(data=exp, method=rankscore, btreps=5000, btseed=1000,

btrng=mt) periods

In panel settings, you may compute the statistic on the individual cross-sections and per-
form a joint Fisher test

exchange.vratio(data=exp, biased, probcalc=wildboot, btreps=5000,

btseed=1000, btrng=kn) periods

or you may compute the statistic on the stacked data

series dexch = @dlog(exch)

dexch.vratio(stack, data=innov) periods

Cross-references

See “Variance Ratio Test” on page 627 of User’s Guide II for discussion.

Seasonally adjust series using the Census X11.2 method.

Syntax
series_name.x11(options) adj_name [fac_name]

The X11 procedure carries out Census X11.2 seasonal adjustment. Enter the name of the
original series followed by a period, the keyword, and then provide a name for the season-
ally adjusted series. You may optionally list a second series name for the seasonal factors.
The seasonal adjustment method is specified as an option in parentheses after the x11 key-
word.

The X11 procedure is available only for quarterly and monthly series. The procedure requires
at least four full years of data, and can adjust up to 20 years of monthly data and 30 years of
quarterly data.

x11 Series Procs

624—Chapter 1. Object Reference

Options

Examples
sales.x11(m,h) salesx11 salesfac

seasonally adjusts the SALES series and saves the adjusted series as SALESX11 and the sea-
sonal factors as SALESFAC. The adjustment assumes multiplicative seasonals and makes
adjustment for all holidays.

Cross-references

See “Census X11 (Historical)” on page 490 of User’s Guide I for a discussion of Census X11
seasonal adjustment method.

Note that the X11 routines are separate programs provided by the Census and are installed in
the EViews directory in the files X11Q2.EXE and X11SS.EXE. Additional documentation for
these programs can also be found in your EViews directory in the text files X11DOC1.TXT
through X11DOC3.TXT.

See also Series::seas (p. 593), Series::x12 (p. 625), Series::x13 (p. 630), and
Series::tramoseats (p. 612).

m Multiplicative seasonals.

a Additive seasonals.

s Use sliding spans.

h Adjustment for all holidays (only for monthly data speci-
fied with the m option).

i Adjustment for holidays if significant (only for monthly
data specified with the “m” option).

t Adjustment for all trading days (only for monthly data).

q Adjustment for trading days if significant (only for monthly
data).

prompt Force the dialog to appear from within a program.

p Print the X11 results.

Series::x12—625

Seasonally adjust series using the Census X12 method.

x12 is available only for quarterly and monthly series. The procedure requires at least 3 full
years of data and can adjust up to 600 observations (50 years of monthly data or 150 years
of quarterly data).

Syntax
series_name.x12(options) base_name

Enter the name of the original series followed by a dot, the keyword, and a base name (no
more than the maximum length of a series name minus 4) for the saved series. If you do not
provide a base name, the original series name will be used as a base name. See the descrip-
tion in “save=” option below for the naming convention used to save series.

x12 Series Procs

626—Chapter 1. Object Reference

Options
Commonly Used Options

mode=arg
(default=“m”)

Seasonal adjustment method: “m” (multiplicative adjust-
ment; Series must take only non-negative values), “a”
(additive adjustment), “p” (pseudo-additive adjustment),
“l” (log-additive seasonal adjustment; Series must take only
positive values).

filter=arg
(default=“msr”)

Seasonal filter: “msr” (automatic, moving seasonality
ratio), “x11” (X11 default), “stable” (stable), “s3x1” (3x1
moving average), “s3x3” (3x3 moving average), “s3x5”
(3x5 moving average), “s3x9” (3x9 moving average),
“s3x15” (3x15 moving average seasonal filter; Series must
have at least 20 years of data).

save= “arg” Optionally saved series keyword enclosed in quotes. List
the extension (given in Table 6-8, p.71 of the X12-ARIMA
Reference Manual) for the series you want to save. The
created series will use names of the form basename, fol-
lowed by a series keyword specific suffix. Commonly used
options and suffixes are: “"d10"” (final seasonal factors,
saved with suffix “_sf”), “"d11"” (final seasonally adjusted
series using “_sa”), “"d12"” (final trend-cycle component
using “_tc”), “"d13"” (final irregular component using
“_ir”).
All other options are named using the option symbol. For
example “save="d16"” will store a series named
basename_D16.
To save more than two series, separate the list with a space.
For example, “save="d10 d12"” saves the seasonal factors
and the trend-cycle series.

tf=arg Transformation for regARIMA: “logit” (Logit transforma-
tion), “auto” (automatically choose between no transfor-
mation and log transformation), number (Box-Cox power
transformation using specified parameter; use “tf=0” for
log transformation).

sspan Sliding spans stability analysis. Cannot be used along with
the “h” option.

history Historical record of seasonal adjustment revisions. Cannot
be used along with the “sspan” option.

check Check residuals of regARIMA.

outlier Outlier analysis of regARIMA.

Series::x12—627

x11reg=arg Regressors to model the irregular component in seasonal
adjustment. Regressors must be chosen from the pre-
defined list in Table 6-14, p. 88 of the X12-ARIMA Reference
Manual. To specify more than one regressor, separate by a
space within the double quotes.

reg=arg_list Regressors for the regARIMA model. Regressors must be
chosen from the predefined list in Table 6-17, pp. 100-101 of
the X12-ARIMA Reference Manual. To specify more than
one regressor, separate by a space within the double
quotes.

arima=arg ARIMA spec of the regARIMA model. Must follow the X12
ARIMA specification syntax. Cannot be used together with
the “amdl=” option.

amdl=f Automatically choose the ARIMA spec. Use forecasts from
the chosen model in seasonal adjustment. Cannot be used
together with the “arima=” option and must be used
together with the “mfile=” option.

amdl=b Automatically choose the ARIMA spec. Use forecasts and
backcasts from the chosen model in seasonal adjustment.
Cannot be used together with the “arima=” option and
must be used together with the “mfile=” option.

best Sets the method option of the auto model spec to best
(default is first). Also sets the identify option of the auto
model spec to all (default is first). Must be used together
with the “amdl=” option.

modelsmpl=arg Sets the subsample for fitting the ARIMA model. Either
specify a sample object name or a sample range. The model
sample must be a subsample of the current workfile sample
and should not contain any breaks.

mfile=arg Specifies the file name (include the extension, if any) that
contains a list of ARIMA specifications to choose from.
Must be used together with the “amdl=” option. The
default is the X12A.MDL file provided by the Census.

outsmpl Use out-of-sample forecasts for automatic model selection.
Default is in-sample forecasts. Must be used together with
the “amdl=” option.

plotspectra Save graph of spectra for differenced seasonally adjusted
series and outlier modified irregular series. The saved
graph will be named GR_seriesname_SP.

prompt Force the dialog to appear from within a program.

p Print X12 procedure results.

628—Chapter 1. Object Reference

Other Options

User provided spec file

EViews provides most of the basic options available in the X12 program. For users who need
to access the full set of options, we have provided the ability to pass your own X12 specifica-
tion file from EViews. The advantage of using this method (as opposed to running the X12

hma=integer Specifies the Henderson moving average to estimate the
final trend-cycle. The X12 default is automatically selected
based on the data. To override this default, specify an odd
integer between 1 and 101.

sigl=arg Specifies the lower sigma limit used to downweight
extreme irregulars in the seasonal adjustment. The default
is 1.5 and you can specify any positive real number.

sigh=arg Specifies the upper sigma limit used to downweight
extreme irregulars in the seasonal adjustment. The default
is 2.5 and you can specify any positive real number less
than the lower sigma limit.

ea Nonparametric Easter holiday adjustment (x11easter). Can-
not be used together with the “easter[w]” regressor in the
“reg=” or “x11reg=” options.

f Appends forecasts up to one year to some optionally saved
series. Forecasts are appended only to the following series
specified in the “save=” option: “"b1"” (original series,
adjusted for prior effects), “"d10"” (final seasonal factors),
“"d16"” (combined seasonal and trading day factors).

flead=integer Specifies the number of periods to forecast (to be used in
the seasonal adjustment procedure). The default is one
year and you can specify an integer up to 60.

fback=integer Specifies the number of periods to backcast (to be used in
the seasonal adjustment procedure). The default is 0 and
you can specify an integer up to 60. No backcasts are pro-
duced for series more than 15 years long.

aicx11 Test (based on AIC) whether to retain the regressors speci-
fied in “x11reg=”. Must be used together with the
“x11reg=” option.

aicreg Test (based on AIC) whether to retain the regressors speci-
fied in “reg=”. Must be used together with the “reg=”
option.

sfile=arg Path/name (including extension, if any) of user provided
specification file. The file must follow a specific format; see
the discussion below.

Series::x12—629

program in DOS) is that EViews will automatically handle the data in the input and output
series.

To provide your own specification file, specify the path/name of your file using the “sfile=”
option in the x12 proc. Your specification file should follow the format of an X12 specifica-
tion file as described in the X12-ARIMA Reference Manual, with the following exceptions:

• the specification file should have neither a series spec nor a composite spec.

• the x11 spec must include a save option for D11 (the final seasonally adjusted series)
in addition to any other extensions you want to store. EViews will always look for
D11, and will error if it is not found.

• to read back data for a “save” option other than D11, you must include the “save=”
option in the x12 proc. For example, to obtain the final trend-cycle series (D12) into
EViews, you must have a “save=” option for D12 (and D11) in the x11 spec of your
specification file and a “save=d12" option in the EViews x12 proc.

Note that when you use an “sfile=” option, EViews will ignore any other options in the x12
proc, except for the “save=” option.

Difference between the dialog and command line

The options corresponding to the Trading Day/Holiday and Outliers tab in the X12 dialog
should be specified by listing the appropriate regressors in the “x11reg=” and “reg=”
options.

Examples

The command:

sales.x12(mode=m,save="d10 d12") salesx12

seasonally adjusts the SALES series in multiplicative mode. The seasonal factors (d10) are
stored as SALESX12_SF and the trend-cycles series is stored as SALESX12_TC.

sales.x12(tf=0,arima="(0 0 1)",reg="const td")

specifies a regARIMA model with a constant, trading day effect variables, and MA(1) using a
log transformation. This command does not store any series.

freeze(x12out) sales.x12(tf=auto, amdl=f, mfile=

"c:\eviews\mymdl.txt")

stores the output from X12 in a text object named X12OUT. The options specify an auto-
matic transformation and an automatic model selection from the file “Mymdl.TXT”.

revenue.x12(tf=auto,sfile="c:\eviews\spec1.txt",save="d12 d13")

adjusts the series REVENUE using the options given in the “Spec1.TXT” file. Note the fol-
lowing: (1) the “tf=auto” option will be ignored (you should instead specify this option in
your specification file) and (2) EViews will save two series REVENUE_TC and REVENUE_IR

630—Chapter 1. Object Reference

which will be filled with NAs unless you provided the “save=” option for D12 and D13 in
your specification file.

freeze(x12out) sales.x12(tf=auto, amdl=f, mfile=

"c:\eviews\mymdl.txt")

stores the output from X12 in the text object X12OUT. The options specify an automatic
transformation and an automatic model selection from the file “Mymdl.TXT”. The season-
ally adjusted series is stored as SALES_SA by default.

revenue.x12(tf=auto,sfile="c:\eviews\spec1.txt",save="d12 d13")

adjusts the series REVENUE using the options given in the “Spec1.TXT” file. Note the fol-
lowing: (1) the “tf=auto” option will again be ignored (you should instead specify this in
your specification file) and (2) EViews will error if you did not specify a “save=” option for
D11, D12, and D13 in your specification file.

Cross-references

See “Census X12” on page 481 of User’s Guide I for a discussion of the Census X12 program.
The documentation for X12, X12-ARIMA Reference Manual, may be found in the “docs” sub-
directory of your EViews directory, in the PDF files “Finalpt1.PDF” and “Finalpt2.PDF”.

See also Series::seas (p. 593), Series::x11 (p. 623), Series::x13 (p. 630), and
Series::tramoseats (p. 612).

Seasonally adjust series using the Census X-13 method.

Census X-13 is available only for quarterly and monthly series. The procedure requires at least
3 full years of data and can adjust up to 600 observations (50 years of monthly data or 150
years of quarterly data).

Syntax:
series.x13(options) [@reg(regopts)] [@arima(arimaopts)] [@x11arima(x11arima-

opts)] [@tramo(tramopts)] [@x11(x11opts)] [@seats(seatsopts)]

You should follow the x13 keyword with general options and optionally, specifications for
regression (@reg), ARIMA (either manual (@arima), X-11 automatic (@x11arima), or
TRAMO automatic (@tramo)), and seasonal adjustment (either X-11 based (@x11) or SEATS
based (@seats)) components.

When using X-13, EViews calls the X-13 executable written by the US Census. Many of the
options available in the EViews x13 command closely mirror those available in the original
X-13 executable. As such in the documentation of options that follows, we often make refer-

x13 Series Procs

Series::x13—631

ence to the original Census documentation, which is included in PDF form with the rest of
your EViews documentation.

You should note that while EViews does not offer direct support for the full set of Census
X-13, most of the specification statements allow you to directly add Census X-13 options
using the extra option. For example, although EViews does not directly support the “con-
stant” or “adjust” options of the X-13 Transformation spec (see Section 7.18 of the Census X-
13 documentation), you may instruct Census X-13 to use those options by adding the option

tfextra=”constant adjust”

to your EViews X-13 command.

Specification Component Options

The regression, manual, X-11 or TRAMO automatic ARIMA, and X11 or SEATS based sea-
sonal adjustment specification components,

[@reg(regopts)] [@arima(arimaopts)] [@x11arima(x11arimaopts)]
[@tramo(tramopts)] [@x11(x11opts)] [@seats(seatsopts)]

each take various options. In this section, we outline the possible settings for each of these
components.

Regression Specification (@reg)

Include exogenous variables in the ARIMA regression. If @arima, @x11arima, and @tramo
specs are not included, a simple regression without ARIMA is performed. See Section 7.13 of
the Census X-13 documentation for details.

X-13 Equivalent
Option

regs=list Quoted, space delimited, list of X-13 built-in vari-
ables to use as regressors. For a full list of avail-
able variable types, see Table 7.27 of the X-13
documentation.

Variables=

userregs=list Quoted, space delimited, list of series to include
as user-variables in the regression. Each member
of the list should be a valid series expression (e.g.
“X” or “log(X)”).

User=

632—Chapter 1. Object Reference

Manual ARIMA (@arima)

The @arima spec allows you to specify manually an ARIMA model to be used. Note that an
@arima spec cannot be used at the same time as an @x11arima or @tramo spec. See Sec-
tion 7.1 of the X-13 documentation for details.

usertypes=list Quoted, space delimited, list of user variable
types.
The number of elements in the list must be the
same as the number of elements in the “userregs”
list, or should contain only one type, which will
apply to all variables listed in “userregs”.
Types can be “constant” (constant), “seasonal”
(seasonal), “td” (trading-day), “tdstock” (trading-
day stock), “lom” (length of month), “loq”
(length of quarter), “lpyear” (leap year), “easter”
(Easter), “thanks” (Thanks-giving), “labor”
(Labor day), “ao”, “ls”, “rp”, “so” or “tc” (outlier
effects), “transitory” (SEATS transitory), “holi-
day1”, “holiday2”, “holiday3”, “holiday4” or
“holiday5” (user-defined holidays), or “user”
(none of the above).

Usertype=

aictest=list Quoted, space delimited, list of variables to
include in the AIC based variable selection rou-
tine.
Only certain variable types may be included in
this list: “td”, “tdnolpyear”, “tdstock”, “td1coef”,
“td1nolpyear”, “tdstock1coef”, “lom”, “loq”,
“lpyear”, “easter”, “easterstock”, and “user”.
See Table 7.27 of the X-13 documentation for a
description of these variables.

AICtest=

chitest Perform a chi-squared test for inclusion of all
user-defined holiday variables.

Chi2test=yes

regextra=list A quoted, space delimited, list of any extra regres-
sion options included as part of X-13.

Series::x13—633

Automatic ARIMA Selection using X-11 (@x11arima)

Use X-11-ARIMA to automatically choose an ARIMA model. Note that an @x11arima spec
cannot be used at the same time as an @arima or @tramo spec. See Section 7.12 of the Cen-
sus X-13 documentation for more details.

X-13 Equivalent
Option

model=text Set the ARIMA model by specifying the model in
standard “(p,d,q)(P,D,Q)” format. The text argu-
ment must be surrounded by quotes.
See the Census X-13 documentation for details on
the syntax of text.

Model=

ar=list Set the starting values for the AR parameters in
the ARIMA model.
list should be a quoted, comma separated list of
AR parameters. A blank space between commas
may be used to use the default starting value for a
parameter. To fix a parameter at its starting value,
you may append the “f” character to the end of
the parameter value (e.g., to fix a parameter at
0.7, use “0.7f”)

AR=

ma=list Set the starting values for the MA parameters in
the ARIMA model.
list should be a quoted, comma separated list of
MA parameters. A blank space between commas
may be used to use a default starting value for a
parameter. To fix a parameter at its starting value,
you may append the “f” character to the end of
the parameter value (e.g., to fix a parameter at
0.7, use “0.7f”)

MA=

634—Chapter 1. Object Reference

X-13 Equivalent
Option

mfile=file Specify a file on disk containing the list of pos-
sible ARIMA models to choose from. Note that
this option cannot be used with the “max*”
options.

See the Details portion of Section 7.12 of the
Census X-13 documentation for details on how
to create a valid ARIMA model file.

File=

maxar= integer Set the maximum number of AR terms in mod-
els to be selected from. Cannot be used with the
“mfile=” option.

maxdiff= integer Set the maximum differencing order in models
to be selected from. Cannot be used with the
“mfile=” option.

maxma= integer Set the maximum number of MA in models to
be selected from. Cannot be used with the
“mfile=” option.

maxsar= integer Set the maximum number of seasonal AR terms
in models to be selected from. Cannot be used
with the “mfile=” option.

maxsdiff= integer Set the maximum seasonal differencing order in
models to be selected from. Cannot be used
with the “mfile=” option.

maxsma=integer Set the maximum number of seasonal MA in
models to be selected from. Cannot be used
with the “mfile=” option.

amdl=f Use only forecasts from the ARIMA model in
model evaluation. Without this option, both
forecasts and backcasts are used.

Mode=f

outsmpl Use out of sample forecast errors during model
evaluation

Outofsam-
ple=yes

best Model selection tests all possible models and
chooses the most likely. Without this option,
the model selection routine will chose the first
model that matches model selection criteria.

Method=best

Series::x13—635

Automatic ARIMA selection using TRAMO (@tramo)

Use TRAMO to automatically choose an ARIMA model. Note that an @tramo spec cannot be
used at the same time as an @arima or @x11arima spec. See Section 7.2 of the Census X-13
documentation for more details.

flim= number Sets the acceptance threshold for the within-
sample forecast error test.

Fcstlim=

blim= number Sets the acceptance threshold for the within-
sample backcast error test. Only applies if the
amdl=f option is not set.

Bcstlim=

x11aimaextra=list A quoted, space delimited, list of any extra X-11
automatic ARIMA options included as part of X-
13.

X-13 Equivalent
Option

maxorder=
“(int1, int2)”

Set the maximum order of AR, MA, SAR and SMA
terms in candidate models. int1 sets the maxi-
mum for AR and MA terms, and int2 sets the
maximum for seasonal AR and seasonal MA
terms.

Maxorder=

maxdiff =
“(int1, int2)”

Sets the maximum differencing and seasonal dif-
ferencing in candidate models. int1 sets the maxi-
mum differencing, and int2 sets the maximum
seasonal differencing.
Note the “maxdiff” option cannot be used along
with the “diff” option.

Maxdiff=

diff =
“(int1, int2)”

Set a fixed differencing for candidate models – i.e.
differencing will not be automatically chosen.
int1 sets differencing, and int2 sets seasonal dif-
ferencing.
Note that the “diff” option cannot be used along
with the “maxdiff” option.

Diff=

nomixed Do not allow mixed (i.e. models with both AR
and MA terms) amongst the candidate models.

Mixed=no

rejectfcst Test the out-of-sample forecast error of the final
three years of data with the identified model to
determine if forecast extension should be applied.

Rejectfcst=yes

636—Chapter 1. Object Reference

X-11 Seasonal Adjustment (@x11)

Perform an X-11 based seasonal adjustment. Note that an @x11 spec cannot be included at
the same time as an @seats spec. See Section 7.19 of the Census X-13 documentation for
details.

flim=number Sets the acceptance threshold for the within-sam-
ple forecast error test of the final identified
model. Only applies if the “rejectfcst” option is
set.

Fcstlim=

lbqlim=number Acceptance criterion for confidence coefficient of
the Ljung-Box Q statistic.

Ljungboxlimit=

acceptdef Controls whether the default model is chosen if
the Ljung-Box Q statistic for its model residuals
is acceptable.

Acceptdefault =
yes

nomu Do not check for significance of the constant term
in candidate models

Checkmu=no

tramoextra=list A quoted, space delimited, list of any extra
TRAMO automatic ARIMA options included as
part of X-13.

X-13 Equivalent
Option

mode=arg Sets the mode of seasonal adjustment decomposi-
tion: “mult” (multiplicative), “add” (additive),
“pseudoadd” (pseudo-additive), or “logadd” (log-
additive). The default is “mult”.

Mode=

type=arg Sets the type of seasonal adjustment: “sum”
(summary), “trend”, or “sa” (default). See the
Census X-13 documentation for a full description
of each.

Type=

filter=arg Specifies the seasonal moving average filter to
use: “s3x1” (3x1 moving average), “s3x3”, (3x3
moving average), “s3x5” (3x5 moving average),
“s3x9” (3x9 moving average), “s3x15” (3x15
moving average), “stable” (Stable seasonal filter),
“x11default” (3x3 followed by a 3x5), or “msr”
(default).
You can set a different filter for each MA term by
entering multiple values for key, separated by
commas and surrounded in quotes (e.g.,
filter=”s3x1, s3x3, s3x9”).

Seasonalma=

Series::x13—637

SEATS Seasonal Adjustment (@seats spec)

Perform a SEATS based seasonal adjustment. Note that an @seats spec cannot be included
at the same time as an @x11 spec. See Section 7.14 of the Census X-13 documentation for
more details.

fcast Append forecasted values to certain output series.
See the Census X-13 documentation for a list of
available series. This option must be used with
the “flen=” general option.

appendfcst

bcast Pre-pend backcasted values to certain output
series. See the Census X-13 documentation for a
list of available series. This option must be used
with the “blen=” general option.

appendbcst

trendma=
integer

Length of the Henderson moving average to use.
integer may be any odd integer between 1 and
101.

Trendma=

x11extra=list A quoted, space delimited, list of any extra X-11
seasonal adjustment options included as part of
X-13.

X-13 Equivalent
Option

fcast Append forecasted values to certain output series.
See the Census X-13 documentation for a list of
available series. This option must be used with
the “flen=” general option.

appendfcst

bcast Prepend backcasted values to certain output
series. See the Census X-13 documentation for a
list of available series. This option must be used
with the “blen=” general option.

appendbcst

hp Decompose the trend-cycle component into a
long-term component using the Hodrick-Prescott
filter.

Hpcycle=yes

nostat Do not accept any stationary seasonal ARIMA
models, and convert the seasonal part to (0, 1, 1).

Statseas=no

qmax=integer Sets a limit for the Ljung-Box Q statistic, which is
used to determine if the model provided to SEATS
is of acceptable quality.

Qmax=

seatsextra=list A quoted, space delimited, list of any extra SEATS
seasonal adjustment options included as part of
X-13.

638—Chapter 1. Object Reference

Force Annual Totals (@force spec)

Force the annual totals of the adjusted series to match those of the original series. See Sec-
tion 7.6 of the Census X-13 documentation for additional details.

Options
General Options

X-13 Equivalent
Option

type=arg Change the forcing algorithm. Arg can be "den-
ton" or "regress." Default is "denton."

type

mode=arg Change the mode of the algorithm. Arg can be
"ratio" or "diff." Default is "ratio."

mode

target=arg Specify the target for matching the annual totals.
Arg can be "cal" (Calendar Adjusted Series),
"perm" (Original series adjusted for permanent
prior adjustment factors), or "both." If this option
is not used, the original series is used as the tar-
get.

target

round Use rounded data for matching. round

rho=val Specify the value for rho. rho

lambda=val Specify the value for lambda. lambda

savespec=name Save a copy of the X-13 spec file as a text object in the
workfile. This can be useful as a template when making
your own spec file to use with the “spec=” option.

save = list Output series to save from the seasonal adjustment routine.
list should be space delimited, in quotes, and contain the
list of small identifiers from Table 7.46 (if doing X-11) or
Table 7.30 (if doing SEATS) of the Census X-13 documenta-
tion. If this option is omitted, EViews will save the season-
ally adjusted series (D11 for X-11, and S11 for SEATS).

errlog=name Save a copy of the error log as a text object in the workfile.
The error log will only be saved if the X-13 executable cre-
ated an error message.

Series::x13—639

Transformation Options:

Sets options for the transformation of data used. See the Transformation section, 7.18, of the
Census X-13 documentation for more details.

Automatic Outlier Options

Sets options for automatic outlier detection. Note that specific outliers can be included in
the optional @reg spec. See the Outlier section, 7.11, of the Census X-13 documentation for
more details.

spec=name User supplied X-13 spec file. Either a file on disk, or a text
object in the workfile. Note that this option overrides all
other options apart from “prompt”, “save”, “savespec” and
“errlog”. Note you can use the “savespec” option to gener-
ate a spec file for editing. If your spec file contains a
SERIES specification, EViews will use it. If it does not,
EViews will generate one. In general we recommend letting
EViews generate the SERIES part of your spec file.

prompt Force dialog to show in program

p Print output from the procedure.

tf=arg Employ data transformation: “logit” (logistic), “auto”
(choose between log or none), “log” (natural log), or num-
ber (where number is a Box-Cox power parameter. for the
Box-Cox transformation).

tfextra=list A quoted, space delimited, list of any extra transformation
options included as part of X-13. The full set of possible
options is provided in Section 7.18 of the X-13 documenta-
tion.

X-13 Equivalent
Option

outcrit=arg Value to which the absolute values of the outlier
t-statistics are compared to detect outliers in auto-
matic outlier detection.

Critical=

outls=arg Compute t-statistics to test the null hypotheses
that each run of 2,..., outls successive level shifts
cancel to form a temporary level shift.

Lsrun=

outall Sets the outlier detection method to all at once (as
opposed to one at a time).

Method=addall

640—Chapter 1. Object Reference

Estimation Options

Sets estimation options for the ARIMA/Regression estimation. Only relevant if a @reg,
@arima, @x11arima, or a @tramo spec are included. See the Estimation section, 7.5, of the
Census X-13 documentation for more details.

outtype=list List of types of outliers to include in outlier detec-
tion (quoted and space delimited). Members of
the list can include “ao” (additive outlier), “ls”
(level shift), “tc” (temporary change), “so” (sea-
sonal outliers).
You may use the special unquoted keyword “all”
to include all types, as in “outtype=all”.

Types=

outspan=arg Set the dates to search between. arg should be
two dates, surrounded in quotes, of the format
“YYYY.MON YYYY.MON” (for monthly data) or
“YYYY.Q YYYY.Q” (for quarterly), where MON is
a three letter month abbreviation, and Q is an
integer representing the quarter.

Span=

outextra=list A quoted, space delimited, list of any extra outlier
options included as part of X-13.

X-13 Equivalent
Option

tol=number Set the convergence tolerance Tol=

iter=integer Set the maximum number of iterations Maxiter=

exact=arg Specifies the use of an exact or a conditional like-
lihood for estimation:. “arma” (use exact likeli-
hood for both AR and MA terms), “ma” (use
conditional likelihood for AR and exact likelihood
for MA terms), and “none” (use conditional likeli-
hood for both sets of terms).

Exact=

ari-
masmpl=arg

Set the estimation sample. arg should be two
dates, surrounded in quotes, of the format
“YYYY.MON YYYY.MON” (for monthly data) or
“YYYY.Q YYYY.Q” (for quarterly), where MON is
a three letter month abbreviation, and Q is an
integer representing the quarter.

Modelspan=

(in the SERIES
spec, section
7.15).

estextra=list A quoted, space delimited, list of any extra esti-
mation options included as part of X-13.

Series::x13—641

Forecast Options

Sets forecast options for the ARIMA/Regression estimation. Only relevant if a @reg, @arima,
@x11arima, or a @tramo spec are included. See the Forecast section, 7.7, of the Census X-13
documentation for more details.

Examples

As an example of using X-13, we will seasonally adjust some data obtained from FRED. The
workfile, “X13 Macro.wf1” contains monthly non-seasonally adjusted US unemployment
data from January 2005 to June 2012 in a series called UNRATENSA.

The command:

unratensa.x13(save="d12 d10 d13 d11") @x11arima @x11

performs X-11 based seasonal adjustment using X-11-ARIMA to automatically select the
ARIMA model, using the default set of candidate models. We save the final seasonally
adjusted series (D11), the final trend series (D12), the final seasonal factors (D10), and the
irregular component (D13) as series in the workfile.

The command:

unratensa.x13(save="s12s10s13s11 afd", outtype="all", flen=24)

@tramo(maxdiff="(2,1)", maxorder="(2,1)")

@seats(fcast, seatsextra="signifsc=0.5")

Performs SEATS based seasonal adjustment, where TRAMO is used to automatically detect
the best ARIMA model (with a maximum AR and MA order of 2, a maximum SAR and SMA
order of 1, maximum differencing of 2, and a maximum seasonal differencing of 1), auto-
matic outlier detection is included, with all types of outliers detected, and 24 periods of fore-
casted values are kept. Note that we use the seatsextra option to specify the non-included
signifsc SEATS option. We save the final seasonally adjusted series (s11), the final trend

X-13 Equivalent
Option

flen=integer Length of forecast to perform. May be between 0
and 60. Note that if performing SEATS seasonal
adjustment, the forecast length will be adjusted
upwards to 2 years (24 months or 8 quarters).

Maxlead=

blen=integer Length of backcast to perform. May be between 0
and 60.

Maxback=

forclognorm Adjust forecasts to reflect that forecasts are gener-
ated from a log-normal distribution.

Lognormal

forcextra=list A quoted, space delimited, list of any extra fore-
cast options included as part of X-13.

642—Chapter 1. Object Reference

series (s12), the final seasonal factors (s10), the irregular component (s13), and the fore-
casted seasonally adjusted values (afd) as series in the workfile.

Examples

See “Census X-13” on page 444 of User’s Guide I for a discussion of the Census X-13 pro-
gram. The full documentation for the Census program, X-13ARIMA-SEATS Reference Manual,
can be found in the “docs” subdirectory of your EViews installation directory in the PDF file
“X-13 Reference Manual.pdf”.

See also Series::seas (p. 593), Series::x11 (p. 623), Series::x12 (p. 625), and
Series::tramoseats (p. 612).

References

Ravn, Morten O. and Harald Uhlig (2002). “On Adjusting the Hodrick-Prescott Filter for the Frequency of
Observations,” Review of Economics and Statistics, 84, 371-375.

Sspace::—643

Sspace

State space object. Estimation and evaluation of state space models using the Kalman filter.

Sspace Declaration
sspacecreate sspace object (p. 666).

To declare a sspace object, use the sspace keyword, followed by a valid name.

Sspace Method
ml.........................maximum likelihood estimation or filter initialization (p. 659).

Sspace Views
cellipseConfidence ellipses for coefficient restrictions (p. 647).
coefcovcoefficient covariance matrix (p. 649).
displaydisplay table, graph, or spool in object window (p. 650).
endog....................table or graph of actual signal variables (p. 651).
grads.....................examine the gradients of the log likelihood (p. 653).
labellabel information for the state space object (p. 654).
output...................table of estimation results (p. 661).
residcor.................standardized one-step ahead residual correlation matrix (p. 662).
residcovstandardized one-step ahead residual covariance matrix (p. 662).
residsone-step ahead actual, fitted, residual graph (p. 663).
results...................table of estimation and filter results (p. 663).
signalgraphs..........display graphs of signal variables (p. 664).
spectext representation of state space specification (p. 665).
statefinaldisplay the final values of the states or state covariance (p. 666).
stategraphs............display graphs of state variables (p. 667).
stateinit.................display the initial values of the states or state covariance (p. 668).
structureexamine coefficient or variance structure of the specification

(p. 669).
waldWald coefficient restriction test (p. 670).

Sspace Procs
append..................add line to the specification (p. 647).
clearhistclear the contents of the history attribute (p. 649).
displayname..........set display name (p. 650).
forecastperform state and signal forecasting (p. 651).
makeendogmake group containing actual values for signal variables (p. 655).
makefiltermake new Kalman Filter (p. 655).
makegradsmake group containing the gradients of the log likelihood (p. 656).

644—Chapter 1. Object Reference

makemodel........... make a model object containing equations in sspace (p. 656).
makesignals make group containing signal and residual series (p. 657).
makestates make group containing state series (p. 658).
olepush push updates to OLE linked objects in open applications (p. 661).
setattr................... set the value of an object attribute (p. 664).
updatecoefs update coefficient vector(s) from sspace (p. 669).

Sspace Data Members
Scalar Values

@coefcov(i,j)........ covariance of coefficients i and j.
@coefs(i) coefficient i.
@eqregobs(k)....... number of observations in signal equation k.
@linecount scalar containing the number of lines in the Sspace object.
@sddep(k) standard deviation of the signal variable in equation k.
@ssr(k)................ sum-of-squared standardized one-step ahead residuals for equation

k.
@stderrs(i)........... standard error for coefficient i.
@tstats(t) t-statistic value for coefficient i.

Scalar Values (system level data)

@aic Akaike information criterion for the system.
@hq..................... Hannan-Quinn information criterion for the system.
@logl value of the log likelihood function.
@ncoefs total number of estimated coefficients in the system.
@neqns................ number of equations for observable variables.
@regobs............... number of observations in the system.
@sc...................... Schwarz information criterion for the system.
@totalobs............. sum of “@eqregobs” from each equation.

Vectors and Matrices

@coefcov covariance matrix for coefficients of equation.
@coefs coefficient vector.
@final_state matrix of final states.
@final_statecov (sym) covariance matrix of final state covariances.
@init_state matrix of initial states.
@init_statecov...... (sym) covariance matrix of initial state covariances.
@residcov (sym) covariance matrix of the residuals.
@stderrs............... vector of standard errors for coefficients.
@tstats................. vector of t-statistic values for coefficients.

Sspace::—645

State and Signal Results

The following functions allow you to extract the filter and smoother results for the estima-
tion sample and place them in matrix objects. In some cases, the results overlap those avail-
able thorough the sspace procs, while in other cases, the matrix results are the only way to
obtain the results.

Note also that since the computations are only for the estimation sample, the one-step-
ahead predicted state and state standard error values will not match the final values dis-
played in the estimation output. The latter are the predicted values for the first out-of-esti-
mation sample period.

@pred_signalmatrix or vector of one-step ahead predicted signals.
@pred_signalcov ...matrix where every row is the @vech of the one-step ahead pre-

dicted signal covariance.
@pred_signalsematrix or vector of the standard errors of the one-step ahead pre-

dicted signals.
@pred_err.............matrix or vector of one-step ahead prediction errors.
@pred_errcov........matrix where every row is the @vech of the one-step ahead predic-

tion error covariance.
@pred_errcovinv...matrix where every row is the @vech of the inverse of the one-step

ahead prediction error covariance.
@pred_errse..........matrix or vector of the standard errors of the one-step ahead predic-

tion errors.
@pred_errstdmatrix or vector of standardized one-step ahead prediction errors.
@pred_statematrix or vector of one-step ahead predicted states.
@pred_statecovmatrix where each row is the @vech of the one-step ahead predi-

cated state covariance.
@pred_statesematrix or vector of the standard errors of the one-step ahead pre-

dicted states.
@pred_stateerr......matrix or vector of one-step ahead predicted state errors.
@curr_errmatrix or vector of filtered error estimates.
@curr_gainmatrix or vector where each row is the @vec of the Kalman gain.
@curr_statematrix or vector of filtered states.
@curr_statecovmatrix where every row is the @vech of the filtered state covari-

ance.
@curr_statesematrix or vector of the standard errors of the filtered state estimates.
@sm_signalmatrix or vector of smoothed signal estimates.
@sm_signalcovmatrix where every row is the @vech of the smoothed signal cova-

riance.
@sm_signalsematrix or vector of the standard errors of the smoothed signals.
@sm_signalerrmatrix or vector of smoothed signal error estimates.

646—Chapter 1. Object Reference

@sm_signalerrcov matrix where every row is the @vech of the smoothed signal error
covariance.

@sm_signalerrse .. matrix or vector of the standard errors of the smoothed signal error.
@sm_signalerrstd . matrix or vector of the standardized smoothed signal errors.
@sm_state............ matrix or vector of smoothed states.
@sm_statecov matrix where each row is the @vech of the smoothed state covari-

ances.
@sm_statese......... matrix or vector of the standard errors of the smoothed state.
@sm_stateerr matrix or vector of the smoothed state errors.
@sm_stateerrcov .. matrix where each row is the @vech of the smoothed state error

covariance.
@sm_stateerrse matrix or vector of the standard errors of the smoothed state errors.
@sm_stateerrstd ... matrix or vector of the standardized smoothed state errors.
@sm_crosserrcov.. matrix where each row is the @vec of the smoothed error cross-

covariance.

String Values

@attr(“arg”) string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@command.......... full command line form of the state space estimation command.
Note this is a combination of @method and @options.

@description string containing the Sspace object’s description (if available).
@detailedtype returns a string with the object type: “SSPACE”.
@displayname...... returns the Sspace object’s display name. If the Sspace has no dis-

play name set, the name is returned.
@line(i) returns a string containing the i-th line of the Sspace object.
@name returns the Sspace’s name.
@options.............. command line form of sspace estimation options.
@smpl sample used for estimation.
@svector returns an Svector where each element is a line of the Sspace

object.
@svectornb same as @svector, with blank lines removed.
@type returns a string with the object type: “SSPACE”.
@units string containing the Sspace object’s units description (if available).
@updatetime........ returns a string representation of the time and date at which the

Sspace was last updated.

Sspace Examples

The one-step-ahead state values and variances from SS01 may be saved using:

vector ss_state=ss01.@pred_state

Sspace::cellipse—647

matrix ss_statecov=ss01.@pred_statecov

Sspace Entries

The following section provides an alphabetical listing of the commands associated with the
“Sspace” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Append a specification line to a sspace.

Syntax
sspace_name.append text

Type the text to be added after the append keyword.

Examples
vector(2) svec0=0

sspace1.append @mprior svec0

appends a line in the state space object SSPACE1 instructing EViews to use the zero vector
SVEC0 as initial values for the state vector.

Cross-references

See “Specifying a State Space Model in EViews” on page 760 of User’s Guide II for a discus-
sion of specification syntax.

Confidence ellipses for coefficient restrictions.

The cellipse view displays confidence ellipses for pairs of coefficient restrictions for an
estimation object.

Syntax
sspace_name.cellipse(options) restrictions

Enter the object name, followed by a period, and the keyword cellipse. This should be fol-
lowed by a list of the coefficient restrictions. Joint (multiple) coefficient restrictions should
be separated by commas.

append Sspace Procs

cellipse Sspace Views

648—Chapter 1. Object Reference

Options

Examples

The two commands:

s1.cellipse c(1), c(2), c(3)

s1.cellipse c(1)=0, c(2)=0, c(3)=0

both display a graph showing the 0.95-confidence ellipse for C(1) and C(2), C(1) and C(3),
and C(2) and C(3).

s1.cellipse(dist=c,size="0.9 0.7 0.5") c(1), c(2)

displays multiple confidence ellipses (contours) for C(1) and C(2).

Cross-references

See “Confidence Intervals and Confidence Ellipses” on page 176 of User’s Guide II for dis-
cussion.

See also Sspace::wald (p. 670).

ind=arg Specifies whether and how to draw the individual coeffi-
cient intervals. The default is “ind=line” which plots the
individual coefficient intervals as dashed lines.
“ind=none” does not plot the individual intervals, while
“ind=shade” plots the individual intervals as a shaded
rectangle.

size=number
(default=0.95)

Set the size (level) of the confidence ellipse. You may spec-
ify more than one size by specifying a space separated list
enclosed in double quotes.

dist=arg Select the distribution to use for the critical value associ-
ated with the ellipse size. The default depends on estima-
tion object and method. If the parameter estimates are
least-squares based, the distribution is used;
if the parameter estimates are likelihood based, the
distribution will be employed. “dist=f” forces use of the F-
distribution, while “dist=c” uses the distribution.

prompt Force the dialog to appear from within a program.

p Print the graph.

F 2 n 2–,� �
x

2 2� �

x
2

Sspace::coefcov—649

Clear the contents of the history attribute for sspace objects.

Removes the sspace’s history attribute, as shown in the label view of the sspace.

Syntax
sspace_name.clearhist

Examples
s1.clearhist

s1.label

The first line removes the history from the sspace S1, and the second line displays the label
view of S1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Sspace::label (p. 654).

Coefficient covariance matrix.

Displays the covariances of the coefficient estimates for an estimated state space object.

Syntax
sspace_name.coefcov(options)

Options

Examples
ss1.coefcov

displays the coefficient covariance matrix for state space object SS1 in a window. To store
the coefficient covariance matrix as a sym object, use “@coefcov”:

sym eqcov = ss1.@coefcov

clearhist Sspace Procs

coefcov Sspace Views

p Print the coefficient covariance matrix.

650—Chapter 1. Object Reference

Cross-references

See also Coef::coef (p. 20) and Sspace::spec (p. 665).

Display table, graph, or spool output in the sspace object window.

Display the contents of a table, graph, or spool in the window of the sspace object.

Syntax
sspace_name.display object_name

Examples
sspace1.display tab1

Display the contents of the table TAB1 in the window of the object SSPACE1.

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

Display name for state space objects.

Attaches a display name to a state space object which may be used to label output in place
of the standard state space object name.

Syntax
sspace_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in state space object names.

Examples
ss1.displayname Hours Worked

ss1.label

The first line attaches a display name “Hours Worked” to the state space object SS1, and the
second line displays the label view of SS1, including its display name.

display Sspace Views

displayname Sspace Procs

Sspace::forecast—651

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Sspace::label (p. 654).

Displays a spreadsheet or graph view of the endogenous variables.

Syntax
sspace_name.endog(options)

Options

Examples
ss1.endog(g,p)

prints the graphs of the solved endogenous series.

Cross-references

See also Sspace::makeendog (p. 655) and Sspace::sspace (p. 666).

Computes (n-period ahead) dynamic forecasts of the signals and states for an estimated
state space.

forecast computes the forecast for all observations in a specified sample. In some settings,
you may instruct forecast to compare the forecasted data to actual data, and to compute
summary statistics.

Syntax
sspace_name.forecast(options) keyword1 names1 [keyword2 names2] [keyword3

names3] ...

You should enter a type-keyword followed by a list of names for the target series or a wild-
card expression, and if desired, additional type-keyword and target pairs. The following are
valid keywords: @state, @statese, @signal, @signalse. The first two keywords instruct

endog Sspace Views

g Multiple line graphs of the solved endogenous series.

p Print the table of solved endogenous series.

forecast Sspace Procs

652—Chapter 1. Object Reference

EViews to forecast the state series and the values of the state standard error series. The latter
two keywords instruct EViews to forecast the signal series and the values of the signal stan-
dard error series.

If a list is used to identify the targets, the number of target series must match the number of
names implied by the keyword. Note that wildcard expressions may not be used for forecast-
ing signal variables that contain expressions. In addition, the “*” wildcard expression may
not be used for forecasting signal variables since this would overwrite the original data.

Options

Examples

The following command performs n-step forecasting of the signals and states from a sspace
object:

ss1.forecast(m=n,n=4) @state * @signal y1f y2f

Here, we save the state forecasts in the names specified in the sspace object, and we save
the two signal forecasts in the series Y1F and Y2F.

Cross-references

State space forecasting is described in Chapter 41. “State Space Models and the Kalman Fil-
ter,” on page 755 of User’s Guide II. For additional discussion of wildcards, see Appendix A.
“Wildcards,” on page 771 of the Command and Programming Reference.

See also Sspace::makemodel (p. 656).

i=arg
(default=”o”)

State initialization options: “o” (one-step), “e” (EViews
computed), “u” (user-specified), “s” (smoothed).

m=arg
(default=“d”)

Basic forecasting method: “n” (n-step ahead forecasting),
“s” (smoothed forecasting), “d” (dynamic forecasting.

mprior =
vector_name

Name of state initialization (use if option “i=u” is speci-
fied).

n=arg
(default=1)

Number of n-step forecast periods (only relevant if n-step
forecasting is specified using the method option).

vprior=
sym_name

Name of state covariance initialization (use if option
“i=u” is specified).

prompt Force the dialog to appear from within a program.

p Print view.

Sspace::grads—653

Gradients of the objective function.

Displays the gradients of the objective function (where available) for an estimated sspace
object.

The (default) summary form shows the value of the gradient vector at the estimated param-
eter values (if valid estimates exist) or at the current coefficient values. Evaluating the gradi-
ents at current coefficient values allows you to examine the behavior of the objective
function at starting values. The tabular form shows a spreadsheet view of the gradients for
each observation. The graphical form shows this information in a multiple line graph.

Syntax
sspace_name.grads(options)

Options

Examples

To show a summary view of the gradients:

ss1.grads

To display and print the table view:

ss1.grads(t, p)

Cross-references

See also Sspace::makegrads (p. 656).

grads Sspace Views

g Display multiple graph showing the gradients of the objec-
tive function with respect to the coefficients evaluated at
each observation.

t (default) Display spreadsheet view of the values of the gradients of
the objective function with respect to the coefficients eval-
uated at each observation.

p Print results.

654—Chapter 1. Object Reference

Display or change the label view of the state space object, including the last modified date
and display name (if any).

As a procedure, label changes the fields in the state space object label.

Syntax
sspace_name.label

sspace_name.label(options) [text]

Options

The first version of the command displays the label view of the state space object. The sec-
ond version may be used to modify the label. Specify one of the following options along
with optional text. If there is no text provided, the specified field will be cleared.

Examples

The following lines replace the remarks field of SS1 with “Data from CPS 1988 March File”:

ss1.label(r)

ss1.label(r) Data from CPS 1988 March File

To append additional remarks to SS1, and then to print the label view:

ss1.label(r) Log of hourly wage

ss1.label(p)

To clear and then set the units field, use:

ss1.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Sspace::displayname (p. 650).

label Sspace Views | Sspace Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

Sspace::makefilter—655

Make a group out of the endogenous series.

Syntax
sspace_name.makeendog name

Following the keyword makeendog, you should provide a name for the group to hold the
endogenous series. If you do not provide a name, EViews will create an untitled group.

Examples
ss1.makeendog grp_v1

creates a group named GRP_V1 that contains the endogenous series in SS1.

Cross-references

See also Sspace::endog (p. 651) and Model::makegroup (p. 440).

Create a “Kalman filter” sspace object.

Creates a new sspace object with all estimated parameter values substituted out of the spec-
ification. This procedure allows you to use the structure of the sspace without reference to
estimated coefficients or the estimation sample.

Syntax
sspace_name.makefilter [filter_name]

If you provide a name for the sspace object in parentheses after the keyword, EViews will
quietly create the named object in the workfile. If you do not provide a name, EViews will
open an untitled sspace window if the command is executed from the command line.

Examples
ss1.makefilter kfilter

creates a new sspace object named KFILTER, containing the specification in SS1 with esti-
mated parameter values substituted for coefficient elements.

Cross-references

See Chapter 41. “State Space Models and the Kalman Filter,” on page 755 of User’s Guide II
for details on state space models.

makeendog Sspace Procs

makefilter Sspace Procs

656—Chapter 1. Object Reference

See also Sspace::makesignals (p. 657) and Sspace::makestates (p. 658).

Make a group containing individual series which hold the gradients of the objective func-
tion.

Syntax
sspace_name.makegrads(options) [ser1 ser2 ...]

The argument specifying the names of the series is also optional. If the argument is not pro-
vided, EViews will name the series “GRAD##” where ## is a number such that “GRAD##” is
the next available unused name. If the names are provided, the number of names must
match the number of target series.

Options

Examples
ss1.grads(n=out)

creates a group named OUT containing series named GRAD01, GRAD02, and GRAD03.

ss1.grads(n=out) g1 g2 g3

creates the same group, but names the series G1, G2 and G3.

Cross-references

See also Sspace::grads (p. 653).

Make a model from a state space object.

Syntax
sspace_name.makemodel(name) assign_statement

If you provide a name for the model in parentheses after the keyword, EViews will create the
named model in the workfile. If you do not provide a name, EViews will open an untitled
model window if the command is executed from the command line.

Examples
sspace.makemodel(sysmod) @prefix s_

makegrads Sspace Procs

n=arg Name of group object to contain the series.

makemodel Sspace Procs

Sspace::makesignals—657

makes a model named SYSMOD from the estimated system. SYSMOD includes an assign-
ment statement “ASSIGN @PREFIX S_”. Use the command “show sysmod” or “sys-
mod.spec” to open the SYSMOD window.

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of specifying and
solving models in EViews.

See also Sspace::append (p. 647), Sspace::makefilter (p. 655), and Model::solve
(p. 452).

makeresids is no longer supported for the sspace object—see Sspace::makesignals
(p. 657) for more general replacement routines.

Generate signal series or signal standard error series from an estimated sspace object.

Options allow you to choose to generate one-step ahead and smoothed values for the signals
and the signal standard errors.

Syntax
name.makesignals(options) [name_spec]

Follow the object name with a period and the makesignal keyword, options to determine
the output type, and a list of names or wildcard expression identifying the series to hold the
output. If a list is used to identify the targets, the number of target series must match the
number of states implied in the sspace. If any signal variable contain expressions, you may
not use wildcard expressions in the destination names.

makeresids Sspace Procs

makesignals Sspace Procs

658—Chapter 1. Object Reference

Options

Examples
ss1.makesignals(t=smooth) sm*

produces smoothed signals in the series with names beginning with “sm”, and ending with
the name of the signal dependent variable.

ss2.makesignals(t=pred, n=pred_sigs) sig1 sig2 sig3

creates a group named PRED_SIGS which contains the one-step ahead signal predictions in
the series SIG1, SIG2, and SIG3.

Cross-references

See Chapter 41. “State Space Models and the Kalman Filter,” on page 755 of User’s Guide II
for details on state space models. For additional discussion of wildcards, see Appendix A.
“Wildcards,” on page 771 of the Command and Programming Reference.

See also Sspace::forecast (p. 651), Sspace::makefilter (p. 655), and Sspace::mak-
estates (p. 658).

Generate state series or state standard error series from an estimated sspace object.

Options allow you to generate one-step ahead, filtered, or smoothed values for the states
and the state standard errors.

Syntax
sspace_name.makestates(options) [name_spec]

Follow the object name with a period and the makestate keyword, options to determine the
output type, and a list of names or a wildcard expression identifying the series to hold the

t=output_type
(default=“pred”)

Defines output type: one-step ahead signal predictions
(“pred”), RMSE of the one-step ahead signal predictions
(“predse”, “residse”), error in one-step ahead signal predic-
tions (“resid”), standardized one-step ahead prediction
residual (“stdresid”), smoothed signals (“smooth”), RMSE
of the smoothed signals (“smoothse”), estimate of the dis-
turbances (“disturb”), RMSE of the estimate of the distur-
bances (“disturbse”), standardized estimate of the
disturbances (“stddisturb”).

n=group_name Name of group to hold newly created series.

prompt Force the dialog to appear from within a program.

makestates Sspace Procs

Sspace::ml—659

output. If a list is used to identify the targets, the number of target series must match the
number of names implied by the keyword.

Options

Examples
ss1.makestates(t=smooth) sm*

produces smoothed states in the series with names beginning with “sm”, and ending with
the name of the state dependent variable.

ss2.makestates(t=pred, n=pred_states) sig1 sig2 sig3

creates a group named PRED_STATES which contains the one-step ahead state predictions in
series SIG1, SIG2, and SIG3.

Cross-references

See Chapter 41. “State Space Models and the Kalman Filter,” on page 755 of User’s Guide II
for details on state space models. For additional discussion of wildcards, see Appendix A.
“Wildcards,” on page 771 of the Command and Programming Reference.

See also Sspace::forecast (p. 651), Sspace::makefilter (p. 655) and
Sspace::makesignals (p. 657).

Maximum likelihood estimation of state space models.

Syntax
sspace_name.ml(options)

t=output_type
(default=“pred”)

Defines output type: one-step ahead state predictions
(“pred”), RMSE of the one-step ahead state predictions
(“predse”), error in one-step ahead state predictions
(“resid”), RMSE of the one-step ahead state prediction
(“residse”), filtered states (“filt”), RMSE of the filtered
states (“filtse”), standardized one-step ahead prediction
residual (“stdresid”), smoothed states (“smooth”), RMSE
of the smoothed states (“smoothse”), estimate of the dis-
turbances (“disturb”), RMSE of the estimate of the distur-
bances (“disturbse”), standardized estimate of the
disturbances (“stddisturb”).

n=group_name Name of group to hold newly created series.

prompt Force the dialog to appear from within a program.

ml Sspace Method

660—Chapter 1. Object Reference

Options

Examples
bvar.ml

estimates the sspace object BVAR by maximum likelihood.

Cross-references

See Chapter 41. “State Space Models and the Kalman Filter,” on page 755 of User’s Guide II
for a discussion of user specified state space models.

optmethod =
arg

Optimization method: “bfgs” (BFGS); “newton” (Newton-
Raphson), “opg” or “bhhh” (OPG or BHHH), “legacy”
(EViews legacy).
BFGS is the default method.

optstep = arg Step method: “marquardt” (Marquardt); “dogleg” (Dog-
leg); “linesearch” (Line search).
Marquardt is the default method.

cov=arg Covariance method: “ordinary” (default method based on
inverse of the estimated information matrix), “huber” or
“white” (Huber-White sandwich methods).,

covinfo = arg Information matrix method: “opg” (OPG); “hessian”
(observed Hessian).
(Applicable when non-legacy “optmethod=”.)

b Use Berndt-Hall-Hall-Hausman (BHHH) algorithm (default
is Marquardt).

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

Sspace::output—661

Push updates to OLE linked objects in open applications.

Syntax
sspace_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Display estimation output.

output changes the default object view to display the estimation output (equivalent to
using Sspace::results (p. 663)).

Syntax
sspace_name.output

Options

Examples

The output keyword may be used to change the default view of an estimation object. Enter-
ing the command:

ss1.output

displays the estimation output for state space object SS1.

Cross-references

See Sspace::results (p. 663).

olepush Sspace Procs

output Sspace Views

p Print estimation output for estimation object

662—Chapter 1. Object Reference

Residual correlation matrix.

Displays the correlations of the residuals from each equation in the sspace object. The
sspace object residuals used in the calculation are the standardized, one-step ahead signal
forecast errors.

Syntax
sspace_name.residcor(options)

Options

Examples
ss1.residcor

displays the residual correlation matrix of sspace object SS1.

Cross-references

See also Sspace::residcov (p. 662) and Sspace::makeresids (p. 657).

Residual covariance matrix.

Displays the covariances of the residuals from each equation in the sspace object. The
sspace object residuals used in the calculation are the standardized, one-step ahead signal
forecast errors.

Syntax
sspace_name.residcov(options)

Options

Examples
ss1.residcov

displays the residual covariance matrix of SS1.

residcor Sspace Views

p Print the correlation matrix.

residcov Sspace Views

p Print the covariance matrix.

Sspace::results—663

Cross-references

See also Sspace::residcor (p. 662) and Sspace::makeresids (p. 657).

Display residuals.

resids allows you to display and actual-fitted-residual graph using the one-step ahead esti-
mates.

Syntax
sspace_name.resids(options)

Options

Examples
ss1.resids

displays a graph of the actual, fitted, and residual series for the sspace object SS1.

Cross-references

See Chapter 41. “State Space Models and the Kalman Filter,” on page 755 of User’s Guide II
for a discussion of state space models.

See also Sspace::makeresids (p. 657).

Displays the results view of an estimated state space object.

Syntax
sspace_name.results(options)

Options

Examples
ss1.results(p)

displays and prints the results of the sspace object SS1.

resids Sspace Views

p Print the table/graph.

results Sspace Views

p Print the view.

664—Chapter 1. Object Reference

Cross-references

See Chapter 41. “State Space Models and the Kalman Filter,” on page 755 of User’s Guide II
for a discussion of state space models.

Set the object attribute.

Syntax
sspace_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Graph signal series.

Display graphs of a set of signal series computed using the Kalman filter.

Syntax
sspace_name.signalgraphs(options)

setattr Sspace Procs

signalgraphs Sspace Views

Sspace::spec—665

Options

Examples
ss1.signalgraphs(t=smooth)

ss1.signalgraphs(t=smoothse)

displays a graph view containing the smoothed signal values, and then displays a graph
view containing the root MSE of the smoothed states.

Cross-references

See Chapter 41. “State Space Models and the Kalman Filter,” on page 755 of User’s Guide II
for a discussion of state space models.

See also Sspace::stategraphs (p. 667), Sspace::makesignals (p. 657) and
Sspace::makestates (p. 658).

Display the text specification view for sspace objects.

Syntax
sspace_name.spec(options)

Options

Examples
ss1.spec

displays the specification of the sspace object SS1.

t=output_type
(default=“pred”)

Defines output type:“pred” (one-step ahead signal predic-
tions), “predse” (RMSE of the one-step ahead signal predic-
tions), “resid” (error in one-step ahead signal predictions),
“residse” (RMSE of the one-step ahead signal prediction;
same as “predse”), “stdresid” (standardized one-step
ahead prediction residual), “smooth” (smoothed signals),
“smoothse” (RMSE of the smoothed signals), “disturb”
(estimate of the disturbances), “disturbse” (RMSE of the
estimate of the disturbances), “stddisturb” (standardized
estimate of the disturbances).

prompt Force the dialog to appear from within a program.

spec Sspace Views

p Print the specification text.

666—Chapter 1. Object Reference

Cross-references

See also Sspace::append (p. 647).

See “Specifying a State Space Model in EViews” on page 760 of User’s Guide II for a discus-
sion of specification syntax.

Declare state space object.

Syntax
sspace sspace_name

Follow the sspace keyword with a name to be given the sspace object.

Examples
sspace stsp1

declares a sspace object named STSP1.

sspace tvp

tvp.append cs = c(1) + sv1*inc

tvp.append @state sv1 = sv1(-1) + [var=c(2)]

tvp.ml

declares a sspace object named TVP, specifies a time varying coefficient model, and esti-
mates the model by maximum likelihood.

Cross-references

See Chapter 41. “State Space Models and the Kalman Filter,” on page 755 of User’s Guide II
for a discussion of state space models.

Sspace::append (p. 647) may be used to add lines to an existing sspace object. See also
Sspace::ml (p. 659) for estimation of state space models.

Display final state values.

Show the one-step ahead state predictions or the state prediction covariance matrix at the
final values , where is the last observation in the estimation sample. By
default, EViews shows the state predictions.

sspace Sspace Declaration

statefinal Sspace Views

T 1 T�� � T

Sspace::stategraphs—667

Syntax
sspace_name.statefinal(options)

Options

Examples
ss1.statefinal(c)

displays a view containing the final state covariances (the one-step ahead covariances for
the first out-of-(estimation) sample period.

Cross-references

See Chapter 41. “State Space Models and the Kalman Filter,” on page 755 of User’s Guide II
for a discussion of state space models.

See also Sspace::stateinit (p. 668).

Display graphs of a set of state series computed using the Kalman filter.

Syntax
sspace_name.stategraph(options)

Options

Other options

c Display the state prediction covariance matrix.

p Print the view.

stategraphs Sspace Views

t=output_type
(default=“pred”)

Defines output type:“pred” (one-step ahead signal predic-
tions), “predse” (RMSE of the one-step ahead signal predic-
tions), “resid” (error in one-step ahead signal predictions),
“residse” (RMSE of the one-step ahead signal prediction;
same as “predse”), “stdresid” (standardized one-step
ahead prediction residual), “smooth” (smoothed signals),
“smoothse” (RMSE of the smoothed signals), “disturb”
(estimate of the disturbances), “disturbse” (RMSE of the
estimate of the disturbances), “stddisturb” (standardized
estimate of the disturbances).

prompt Force the dialog to appear from within a program.

p Print the view.

668—Chapter 1. Object Reference

Examples
ss1.stategraphs(t=filt)

displays a graph view containing the filtered state values.

Cross-references

See Chapter 41. “State Space Models and the Kalman Filter,” on page 755 of User’s Guide II
for a discussion of state space models.

See also Sspace::signalgraphs (p. 664), Sspace::makesignals (p. 657) and
Sspace::makestates (p. 658).

Display initial state values.

Show the state initial values or the state covariance initial values used to initialize the Kal-
man Filter. By default, EViews shows the state values.

Syntax
sspace_name.stateinit(options)

Options

Examples
ss1.stateinit

displays a view containing the initial state values (the one-step ahead predictions for the
first period).

Cross-references

See Chapter 41. “State Space Models and the Kalman Filter,” on page 755 of User’s Guide II
for a discussion of state space models.

See also Sspace::statefinal (p. 666).

stateinit Sspace Views

c Display the covariance matrix.

p Print the view.

Sspace::updatecoefs—669

Display summary of sspace specification.

Show view which summarizes the system transition matrices or the covariance structure of
the state space specification. EViews can display either the formulae (default) or the values
of the system transition matrices or covariance.

Syntax
sspace_name.structure(options) [argument]

If you choose to display the values for a time-varying system using the “v” option, you
should use the optional [argument] to specify a single date at which to evaluate the matri-
ces. If none is provided, EViews will use the first date in the current sample.

Options

Examples
ss1.structure

displays a system transition matrices.

ss1.structure 1993q4

displays the transition matrices evaluated at 1993Q4.

Cross-references

See Chapter 41. “State Space Models and the Kalman Filter,” on page 755 of User’s Guide II
for a discussion of state space models.

Update coefficient object values from state space object.

Copies coefficients from the sspace object into the appropriate coefficient vector or vectors
in the workfile.

structure Sspace Views

v Display the values of the system transition or covariance
matrices.

c Display the system covariance matrix.

p Print the view.

updatecoefs Sspace Procs

670—Chapter 1. Object Reference

Syntax
sspace_name.updatecoefs

Follow the name of the sspace object by a period and the keyword updatecoefs.

Examples
ss1.updatecoefs

places the values of the estimated coefficients from SS1 in the coefficient vector in the work-
file.

Cross-references

See also Coef::coef (p. 20).

Wald coefficient restriction test.

The wald view carries out a Wald test of coefficient restrictions for a state space object.

Syntax
sspace_name.wald restrictions

Enter the sspace name, followed by a period, and the keyword. You must provide a list of the
coefficient restrictions, with joint (multiple) coefficient restrictions separated by commas.

Options

Examples
ss1.wald c(2)=0, c(3)=0

tests the null hypothesis that the second and third coefficients in equation SS1 are jointly
zero.

ss1.wald c(2)=c(3)*c(4)

tests the non-linear restriction that the second coefficient is equal to the product of the third
and fourth coefficients.

Cross-references

See “Wald Test (Coefficient Restrictions)” on page 182 of User’s Guide II for a discussion of
Wald tests.

See also Sspace::cellipse (p. 647).

wald Sspace Views

p Print the test results.

Sspace::wald—671

672—Chapter 1. Object Reference

Spool

Spool object. Container for output objects.

Spool Declaration
spool create spool object (p. 690).

To declare a spool object, use the keyword spool, followed by the object name:

spool myspool

In addition, you may create a new spool by redirecting print jobs to the spool

output(s) mynewspool

tab1.print

Spool Views
display display the contents of the spool (p. 676).

Spool Procs
append append objects to a spool (p. 674).
clearhist clear the contents of the history attribute (p. 674).
comment assign a comment to an object in a spool (p. 675).
displayname assign a display name to an object in a spool (p. 676).
extract extract a copy of an object in a spool (p. 677).
flatten remove tree hierarchy from the spool or specified embedded spool

(p. 677).
graphmode set the display mode for graphs in the spool (p. 678).
horizindent sets the horizontal indentation for the spool (p. 679).
insert insert objects into a spool (p. 679).
label..................... label information for the spool object (p. 681).
leftmargin............. sets the left margin of the spool or a specified embedded spool

(p. 679).
move move an object in the spool (p. 683).
name.................... rename an object in a spool (p. 684).
olepush push updates to OLE linked objects in open applications (p. 684).
options set display options for a spool (p. 685).
print..................... print an object in a spool (p. 686).
remove remove objects from a spool (p. 686).
save save spool object to disk as an a tab-delimited ASCII text, CSV, RTF

or LaTeX file (p. 687).
setattr................... set the value of an object attribute (p. 688).
setfont set the font for title and comments(p. 688).

Spool::—673

tablemodeset the display mode for tables and text objects in the spool
(p. 690).

titleassign or change the title of a spool (p. 691).
topmarginsets the top margin of the spool or a specified embedded spool

(p. 691).
vertindentsets the vertical indentation for the spool (p. 692).
vertspacing............sets the amount of vertical spacing between objects in the spool

(p. 693).
widthchange or reset the width of an object in the spool (p. 693).

Spool Data Members
String Values

@attr(“arg”)..........string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description.........string containing the Spool’s description (if available).
@detailedtypestring with the object type: “SPOOL”.
@displaynamestring containing the Spool’s display name. If the Spool has no dis-

play name set, the name is returned.
@namestring containing the Spool’s name.
@objname(i).........string containing name of the i-th object in the spool.
@objtype(i)string containing type of the i-th object in the spool (“graph”,

“table”, “text”, “spool”).
@remarksstring containing the Spool’s remarks (if available).
@source................string containing the Spool’s source (if available).
@typestring with the object type: “SPOOL”.
@updatetimestring representation of the time and date at which the Spool was

last updated.

Scalar Values

@count.................number of base objects in the spool.
@totalcountnumber of objects in a flattened version of the spool.

Spool Examples
spool myspool

myspool.append ser1.line

myspool.insert(offset=first) ser2.line

myspool.displayname untitled01 "Unemployment Rate"

myspool.options displaynames

674—Chapter 1. Object Reference

Spool Entries

The following section provides an alphabetical listing of the commands associated with the
“Spool” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Append objects to a spool.

Syntax
spool_name.append(options) object_list

where object_list is a list of one or more objects to be appended to the spool. You may spec-
ify a view for each object, otherwise the default view will be used.

Options

Examples

To insert a line graph view of series SER1 and a bar graph view of SER2 as the last objects in
SPOOL01:

spool01.append ser1.line ser2.bar

To replace a preexisting object X in SPOOL01 with the line graph view of series SER1:

spool01.append(name=X, mode=overwrite) ser1.line

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I. See also Spool::insert (p. 679) and Spool::remove (p. 686).

Clear the contents of the history attribute for spool objects.

Removes the spool’s history attribute, as shown in the label view of the spool.

append Spool Procs

name=arg Set the names of the objects in the spool. arg is a space
delimited list of new names for the list of objects being
added to the spool. If this option is omitted, the names will
be UNTITLED01, UNTITLED02, etc.

mode=overwrite Will remove any existing objects with the same name when
used in conjunction with the name=arg option.

clearhist Spool Procs

Spool::comment—675

Syntax
spool_name.clearhist

Examples
s1.clearhist

s1.label

The first line removes the history from the spool S1, and the second line displays the label
view of S1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Spool::label (p. 681).

Assign a comment to an object in the spool.

Syntax
spool_name.comment object_arg new_comment

where new_comment specifies the comment for the object specified in object_arg, where
object_arg is the name or position of the object. Surround object_name with quotation marks
for multiple word comments.

Examples
spool01.comment state/tab1 "The state population of Alabama as

found\nfrom http://www.census.gov/popest/states/NST-ann-

est.html."

assigns the following comment to object TAB1 embedded in the STATE object:

“The state population of Alabama as found
from http://www.census.gov/popest/states/NST-ann-est.html.”

The “\n” is used to indicate the start of a new line in the comment.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Spool::label (p. 681).

comment Spool Procs

676—Chapter 1. Object Reference

Display contents of a spool object.

Syntax
spool_name.display

display is the default view for a spool.

Examples
spool01.display

displays the contents of SPOOL01.

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I.

Assign a display name to an object in the spool.

Syntax
spool_name.displayname object_arg new_name

where new_name specifies the display name for the object in object_arg, where object_arg is
the name or position of the object. Surround object_arg with quotation marks for multiple
word display names. Note that the case will be preserved in new_name.

Examples
spool01.displayname state/tab1 "Unemployment Rate"

assigns the “Unemployment Rate” displayname to the object TAB1, which is a child of the
STATE spool.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names. See also Spool::label (p. 681).

display Spool Views

displayname Spool Procs

Spool::flatten—677

Extracts a copy of the specified object in a spool.

Syntax
spool_name.extract(name) object_name

where object_name is the object to be extracted from the spool, and object_name is the
optional name of the new object.

Options

Examples
spool01.extract(tab1_copy) tab1

creates a copy of table TAB1 and names the copy TAB1_COPY.

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I. See also Spool::print (p. 686), Spool::insert (p. 679) and Spool::remove
(p. 686).

Removes tree hierarchy from the spool or specified embedded spool.

Syntax
spool_name.flatten [object_list]

where object_list is an optional list of one or more embedded spools to be flattened. If an
object_list is not provided, the entire spool will be flattened.

Examples
spool01.flatten

flattens the entire spool SPOOL01.

spool01.flatten myspool1

flattens only the embedded spool MYSPOOL1.

extract Spool Procs

name Optional name of the new object to be created. An untitled
copy will be created if a name is not provided.

flatten Spool Procs

678—Chapter 1. Object Reference

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I.

Set display mode for graphs in the spool.

Syntax
spool_name.graphmode(options) [size_arg]

where size_arg is an optional size argument (in virtual inches) used for the “fixed” and
“variablelimit” modes, and the options are used to specify the mode. If size_arg is not pro-
vided, the default setting will be used.

Options

The “fixed” mode specifies the width of all graph objects in the spool, while “variable”
allows graphs to be displayed at their native sizes. The “variablelimit” mode allows graphs
to be displayed at native sizes unless their widths exceed a specified limit value.

Examples
spool01.graphmode(type=fixed) 5

sets all graphs to be displayed at a fixed size of 5 virtual inches, while

spool01.graphmode(type=variable)

displays graphs at their native sizes.

spool01.graphmode(type=variablelimit)

allows graphs to be displayed at their native sizes unless they exceed the specified variable
limit. Note that native sizes for graphs are a function of the default table font.

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I. See also Spool::tablemode (p. 690).

graphmode Spool Procs

type=arg
(default=“fixed”)

where arg is “fixed”, “variable”, or “variablelimit”.

Spool::insert—679

Change the horizontal indentation size for objects in the spool.

Syntax
spool_name.horizindent object_arg size_arg

where object_arg is the name or the position of a specific object to which you wish to apply
indenting, and size_arg is an new indentation in virtual inches.

Examples
spool01.horizindent 1 0.02

spool01.horizindent tab1 0.02

changes the indentation for both the first object in the spool and for TAB1 to 0.02 virtual
inches.

To refer to a child object of a spool, you must specify the object’s path. For instance, given a
spool SPOOL01 containing the spool SP1 which in turn contains the graph G2:

spool01.horizindent sp1/g2 0.03

also changes the horizontal indentation of G2 in the embedded spool SP1 to 0.03 virtual
inches, while

spool01.horizindent sp1 0.03

sets the indentation for the object SP1 to 0.03.

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I. See also Spool::leftmargin (p. 682), Spool::topmargin (p. 691),
Spool::vertspacing (p. 693).

Insert objects into a spool.

Syntax
spool_name.insert(options) object_list

where object_list is a list of one or more objects to be inserted into the spool at the position
specified in the options. If you do not specify a view for an object in the list, the default view
will be used.

horizindent Spool Procs

insert Spool Procs

680—Chapter 1. Object Reference

If neither a location nor an offset are specified in the options, the object will be inserted at
the end of the spool.

Options

If neither a location nor an offset are specified, the object will be inserted at the end of the
spool. If an offset is provided without a location, the object will be inserted relative to the
main spool. Providing a location without an offset instructs EViews to insert the object at
the location specified, pushing all objects proceeding and including object_name down the
list of objects.

Examples

To insert a line graph view of the series SER1 as the last object in SPOOL01:

spool01.insert ser1.line

To insert TAB1 as the first object in SPOOL01:

spool01.insert(offset=first) tab1

Given a graph GR1,

spool01.insert(loc=gr1) tab1 tab2

inserts TAB1 in the current location of GR1 and TAB2 immediately following. All objects
from GR1 onward are pushed down the list of objects.

Alternately, if SP1 is a spool object,

loc = arg arg may be an integer position in the spool or the name of
an existing object in the spool. The inserted object will be
placed before or after arg, as specified by the offset option
below. An object name must include its path if it is a child
of another spool. For example, use “spool1/gr1” to specify
a graph GR1 in spool SPOOL1.

offset = arg,
(default=
“before”)

arg indicates that the object should be inserted relative to
the object specified in the “loc=” option above. arg may be
“before” or “after” (default= “before”).
In addition, if the location specified by the “loc=” option
corresponds to a spool object, arg may be “first” or “last”,
where the object will be inserted as the first or last object
in the spool object specified (default= “last”).

name=arg Set the names of the objects in the spool. arg is a space
delimited list of new names for the list of objects being
added to the spool. If this UNTITLED01, UNTITLED02, etc.

mode=over-
write

Will remove any existing objects with the same name when
used in conjunction with the name=arg option.

Spool::label—681

spool01.insert(loc=sp1,offset=last) ser1.line ser1.bar

inserts a line graph and bar graph view of series SER1 as the last objects in SP1. If “off-
set=last” is omitted, the objects will be inserted before SPOOL1.

To refer to a child object of a spool, you must specify the object’s path. For instance, given a
spool SPOOL01 containing the spool SPOOL1, which in turn contains a graph G2:

spool01.insert(loc=sp1/g2) tab1

inserts TAB1 before graph G2 in spool SPOOL1, and moves the remaining objects down.

To replace a preexisting object X in SPOOL01 with the line graph view of series SER1:

spool01.insert(name=X, mode=overwrite) ser1.line

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I. See also Spool::append (p. 674) and Spool::remove (p. 686).

Display or change the label view of a spool object, including the last modified date and dis-
play name (if any).

Syntax
spool_name.label(options) [text]

Options

When used with options or the text argument, label displays the current spool label. The
second version may be used to modify the label. Specify one of the following options along
with optional text. If there is no text provided, the specified field will be cleared.

Examples

The following lines replace the remarks field of SP1 with “Data from CPS 1988 March File”:

sp1.label(r)

label Spool Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

682—Chapter 1. Object Reference

sp1.label(r) Data from CPS 1988 March File

To append additional remarks to SP1, and then to print the label view:

sp1.label(r) Log of hourly wage

sp1.label(p)

To clear and then set the units field, use:

sp1.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels. See also
Spool::displayname (p. 676).

Changes the left margin size of the spool or of a specified embedded spool.

Syntax
spool_name.leftmargin(options) size_arg

where size_arg is the new margin value specified in virtual inches.

Options

Examples
spool01.leftmargin 0.01

sets the left margin for SPOOL01 to 0.01 virtual inch,

spool01.topmargin(obj=sp1) 0.02

changes the left margin in the embedded spool SP1 to 0.02 virtual inches.

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I. See also Spool::horizindent (p. 679), Spool::topmargin (p. 691), and
Spool::vertindent (p. 692).

leftmargin Spool Procs

obj=arg where arg is the name or position of the embedded spool
for which you wish to set a margin.

Spool::move—683

Move an object in a spool.

Syntax
spool_name.move(options) object_arg

where object_arg is the object to be moved specified as an integer position in the spool or the
name of an existing object in the spool. The options specify the destination position. If neither
a location nor offset are specified in the options, the object will be moved to the end of the
spool.

Options

Examples

To move the first object in SPOOL01 to the end of the spool:

spool01.move 1

To move TAB1 to the beginning of SPOOL01:

spool01.move(offset=first) tab1

Given objects GR1 and TAB1,

spool01.move(loc=gr1) tab1

moves TAB1 to the current location of GR1. All objects from GR1 onward are pushed down
the list of objects.

Alternately, if SP1 is an embedded spool.

spool01.move(loc=sp1, offset=last) 3

move Spool Procs

loc = arg arg may be an integer position in the spool or the name of
an existing object in the spool. The object will be moved
before or after arg, as specified by the offset option below.
An object name must include its path if it is a child of
another spool. For example, use “spool1/gr1” to specify a
graph GR1 in spool SPOOL1.

offset = arg arg indicates that the object should be inserted relative to
the object specified in the “loc=” option above. arg may be
“before” or “after” (default= “before”).
In addition, if the location specified by the “loc=” option
corresponds to a spool object, arg may be “first” or “last”,
where the object will be inserted as the first or last object
in the spool object specified (default= “last”).

684—Chapter 1. Object Reference

moves the third object to the end of SP1. If “offset=last” is omitted, the object will be
moved to just before SP1.

To refer to a child object of a spool, you must specify the object’s path. For instance, given a
spool SPOOL01 containing the spool SP1 which in turn contains the graph G2:

spool01.move(loc=sp1/g2) tab1

moves TAB1 before graph G2 in spool SP1, and moves the remaining objects down.

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I.

See also Spool::insert (p. 679).

Rename an object in a spool.

Syntax
spool_name.name object_arg new_name

where object_arg is the name or the position of the object to be renamed, and new_name
specifies the new name. new_name should follow EViews’ standard naming conventions.
Note that the case will be discarded; for case-sensitive names, use the Spool::display-
name (p. 676) command.

Examples
spool01.name untitled01 tab1

renames the object UNTITLED01 to TAB1.

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I.

See also Spool::displayname (p. 676).

Push updates to OLE linked objects in open applications.

Syntax
spool_name.olepush

name Spool Procs

olepush Spool Procs

Spool::options—685

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Set the display options for the spool object.

Syntax
spool_name.options option_list

where option_list contains one or more of the options listed below.

Options

Each option may be preceded by a “+” or “–” indicating whether to turn on or off the
option. The “+” is optional.

Examples
spool01.options -tree margins titles displaynames

removes the tree pane from the window, uses the global spool margins, turns on titles, and
uses the display name for the title.

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I. See also Spool::name (p. 684), Spool::displayname (p. 676) and
Spool::label (p. 681).

options Spool Procs

tree / -tree [Display / Hide] the tree window.

borders /
-borders

[Display / Hide] borders around the child objects.

titles / -titles [Display / Hide] the titles or names of child objects.

comments /
-comments

[Display / Hide] the comments of child objects.

displaynames /
-displaynames

Show the [display names / unique names] of child objects.

margins /
-margins

[Apply / Don’t apply] spool margins to the child objects.

686—Chapter 1. Object Reference

Print an object in a spool.

The object will be printed to the location specified by the current printer settings.

Syntax
spool_name.print object_arg

where object_arg is the name or the position of the object to be printed.

Examples
spool01.print tab1

prints the object TAB1 found in SPOOL01.

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I.

See also print (p. 465) and Spool::extract (p. 677).

Remove objects from a spool.

Syntax
spool_name.remove object_list

where object_list is a list of objects to be removed from the spool.

Examples
spool01.remove tab1 state/city

removes table object TAB1 from SPOOL01. Also removes the CITY object from the STATE
spool, which is a child of SPOOL01. Note that a path is required for child objects. For
instance, if TAB1 is a child of another object such as STATE, nothing will be removed.

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I. See also Spool::append (p. 674) and Spool::insert (p. 679).

print Spool Procs

remove Spool Procs

Spool::save—687

Save spool object to disk as a tab-delimited ASCII text, RTF, CSV, or PDF file.

Syntax
spool_name.save(options) [path]\file_name

Follow the keyword with a name for the file. file_name may include the file type extension,
or the file type may be specified using the “t=” option.

If an explicit path is not specified, the file will be stored in the default directory, as set in the
File Locations global options.

Options

PDF Options

save Spool Procs

t=file_type
(default= “txt”)

Specifies the file type, where file_type may be: “rtf” (Rich-
text format), “txt” (tab-delimited text), “csv” (comma-sep-
arated values (CSV) format), “pdf” (Portable Document
Format, PDF), “tex” (LaTeX file).
Files will be saved with the “.rtf”, “.txt”, “.csv”, or “pdf”
extensions, respectively.
If you specify a text or CSV file, graphs in the spool will not
be written to the file.

title Include object titles.

comment Include object comments.

prompt Force the dialog to appear from within a program.

mode=arg Multiple object handling: “i” (each object on individual
page), “c” (continuous), or “f” (fit to page)

landscape Save in landscape mode (the default is to save in portrait
mode).

size=arg
(default=“letter”)

Page size: “letter”, “legal”, “a4”, and “custom”.

width=number
(default=8.5)

Page width in inches if “size=custom”.

height=number
(default=11)

Page height in inches if “size=custom”.

leftmargin=number
(default=0.5)

Left margin width in inches.

688—Chapter 1. Object Reference

LaTeX Options

Examples
spool01.save(t=rtf, title) c:\temp\spool01

saves SPOOL01 to an RTF file named “spool01.rtf” in the “C:\TEMP” directory, and precedes
each object in the spool with its title.

spool01.save(comment) spool01.txt

saves SPOOL01 to a text file named “spool01.txt” in the current directory, and precedes each
object in the spool with its associated comment if one exists.

Cross-references

For additional discussion see “Saving a Spool,” on page 820 in User’s Guide I.

Set the object attribute.

Syntax
spool_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

rightmargin=number
(default = 0.5)

Right margin width in inches.

topmargin=number
(default=1)

Top margin width in inches.

bottommargin=
number (default = 1)

Bottom margin width in inches.

texspec / -texspec [Include / Do not include] the full LaTeX documentation
specification in the LaTeX output. The default behavior is
taken from the global default settings.

setattr Spool Procs

Spool::setfont—689

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Set the font for title and comments.

Syntax
spool_name.setfont font_args

where font_args may include one or more of the options listed below.

Options

Examples
spool1.setfont “Times New Roman” +i

sets the title and comment font to Times New Roman italic.

spool1.setfont 8pt

changes the font to 8 point.

spool1.setfont +b -i

removes the italic, and adds boldface.

spool1.setfont -s +u 14pt

changes the point size to 14, removes strikethrough, and adds underscoring.

spool1.setfont “Batang” 14pt +u

changes the typeface to Batang, and adds underscoring.

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I.

setfont Spool Procs

[face], [pt], [+/-
b], [+/-i], [+/-
u], [+/-s]

Set characteristics of the font for the spool titles and com-
ments. The font name (face), size (pt), and characteristics
are all optional. Face should be a valid font name, enclosed
in double quotes. pt should be the font size in points. The
remaining options specify whether to turn on/off boldface
(b), italic (i), underline (u), and strikeout (s) styles.

690—Chapter 1. Object Reference

Declare a spool object.

Syntax
spool spool_name

where spool_name is the name to be given the new object.

Examples
spool myspool

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I.

Set display mode for tables and text objects in the spool.

Syntax
spool_name.tablemode(options) [size_arg]

where size_arg is an optional size argument (in virtual inches) used for the “variablelimit”
mode, and options may be used to specify the mode. If size_arg is not provided, the default
EViews setting will be used.

Options

The “variablelimit” mode may be used to specify the maximum size of table objects in the
spool, while “variable” allows tables to be displayed at their native sizes.

Examples
spool01.tablemode(type=variablelimit) 5

sets all table to be displayed with a maximum width of 5 virtual inches, while

spool01.tablemode(type=variable)

displays tables at their original sizes.

spool Spool Declaration

tablemode Spool Procs

type=arg where arg is “variable” or “variablelimit” (default).

Spool::topmargin—691

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I. See also Spool::graphmode (p. 678).

Assign or change the title of a spool.

Syntax
spool_name.title title_arg

where title_arg is a case sensitive string which may contain spaces and carriage returns.

Examples
spool1.title Estimated Models\nfor 2017

sets a two line title for SPOOL1 where the first line is "Estimated Models" and the second
line is "for 2017."

spool1.title

clears the SPOOL1 title.

Cross-references

See also Spool::displayname (p. 676) and Spool::label (p. 681).

Changes the top margin size of the spool or of a specified embedded spool.

Syntax
spool_name.topmargin(options) size_arg

where size_arg is the new margin value specified in virtual inches.

Options

Examples
spool01.topmargin 0.01

sets the top margin for SPOOL01 to 0.01 virtual inch,

title Spool Procs

topmargin Spool Procs

obj=arg where arg is the name or position of the embedded spool
for which you wish to set a margin.

692—Chapter 1. Object Reference

spool01.topmargin(obj=sp1) 0.02

changes the top margin in the embedded spool SP1 to 0.02 virtual inches.

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I. See also Spool::vertindent (p. 692), Spool::vertspacing (p. 693), and
Spool::horizindent (p. 679).

Change the vertical indentation size for objects in the spool.

Syntax
spool_name.vertindent object_arg size_arg

where object_arg is the name or the position of a specific object to which you wish to apply
indenting, and size_arg is an new indentation in virtual inches.

Examples
spool01.vertindent 1 0.02

spool01.vertindent tab1 0.02

change the indentation for the first object and for TAB1 to 0.02 virtual inches.

To refer to a child object of a spool, you must specify the object’s path. For instance, given a
spool SPOOL01 containing the spool SP1 which in turn contains the graph G2:

spool01.vertindent sp1/g 0.03

also changes the vertical indentation of G2 in the embedded spool SP1 to 0.03 virtual inches,
while

spool01.vertindent sp1 0.03

sets the indentation for SP1 to 0.03.

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I. See also Spool::topmargin (p. 691), Spool::vertspacing (p. 693), and
Spool::horizindent (p. 679).

vertindent Spool Procs

Spool::width—693

Changes the amount of vertical spacing for objects in the spool or in a specified embedded
spool.

Syntax
spool_name.vertspacing(options) size_arg

where size_arg is an new spacing in virtual inches. By default, spacing will be set for all objects
in the spool.

Options

Examples
spool01.vertspacing 0.05

specifies the vertical spacing for all objects in the spool at 0.05 vertical inches.

spool01.vertspacing(obj=sp1) 0.05

sets the vertical spacing at 0.05 only for the objects in the embedded spool SP1.

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I. See also Spool::vertindent (p. 692), and Spool::topmargin (p. 691).

Changes the width (and height) of objects in the spool.

Syntax
spool_name.width(options) [size_arg]

where size_arg is an optional size in virtual inches. By default, widths will be set for all
objects in the spool, if possible (i.e., the graph object is not specified as fixed width, and the
width is within limits defined by the current display mode; see Spool::graphmode (p. 678)
and Spool::tablemode (p. 690), for details).

Heights are set proportional to the width to maintain the original aspect ratio.

If size_arg is not provided, the objects will be set to their default sizes.

vertspacing Spool Procs

obj=object_arg where object_arg is the name or the position of a specific
embedded spool for which you wish to set spacing.

width Spool Procs

694—Chapter 1. Object Reference

Options

If the specified object is an embedded spool, all of its objects will be sized accordingly.

Examples
spool01.width 1

resizes all objects in the spool to 1 virtual inch, while

spool01.width(obj=1) 2

spool01.width(obj=tab1) 2

changes the widths of the first object and TAB1 to 2 virtual inches. The heights of the
objects will change proportionately.

spool01.width(obj=1)

spool01.width(obj=tab1)

resets the sizes of the objects to their defaults.

To refer to a child object of a spool, you must specify the object’s path. For instance, given a
spool SPOOL01 containing the spool SP1 which in turn contains the graph G2:

spool01.width(obj=sp1/g2) 2

also changes the width of G2 in the embedded spool SP1 to 2 virtual inches, while

spool01.width(obj=sp1) 3

sets the width for all of the objects in SP1 to 3 virtual inches.

spool01.width(type=graph) 2

sets the widths of graphs to 2 virtual inches.

Cross-references

For additional discussion of spools see Chapter 17. “Spool Objects,” on page 801 in User’s
Guide I.

obj=arg where arg is the name or the position of a specific object or
embedded spool to which you wish to apply sizing.

type=arg where arg specifies a restricted subset of objects to be
resized: “graph”, “table”, “text”.

String::—695

String

String object. String objects may be used in standard EViews expressions in place of string
literals.

String Declaration
stringdeclare string object (p. 700).

To declare a string object, use the keyword string, followed by a name, an “=” sign and a
text string.

String Views
displaydisplay table, graph, or spool in object window (p. 696).
labellabel view (p. 697).
listlist view display of the string (p. 698).
stringdisplay the string (p. 699).

String Procs
clearhistclear the contents of the history attribute (p. 696).
displayname..........set display name (p. 697).
olepushpush updates to OLE linked objects in open applications (p. 699).
setattrset the value of an object attribute (p. 699).

String Data Members
String values

@attr(“arg”)..........string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description.........string containing the String object’s description (if available).
@detailedtypestring with the object type: “STRING”.
@displaynamestring containing the String object’s display name. If the String has

no display name set, the name is returned.
@namestring containing the String object’s name.
@remarksstring containing the String object’s remarks (if available).
@source................string containing the String object’s source (if available).
@typestring with the object type: “STRING”.
@units..................string containing the String object’s units description (if available).
@updatetimestring representation of the time and date at which the String was

last updated.

String Examples

You can declare a string and examine its contents:

string st="Hello world"

696—Chapter 1. Object Reference

show st

String Entries

The following section provides an alphabetical listing of the commands associated with the
“String” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Clear the contents of the history attribute.

Removes the string’s history attribute, as shown in the label view of the string.

Syntax
string_name.clearhist

Examples
s1.clearhist

s1.label

The first line removes the history from the string S1, and the second line displays the label
view of S1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also String::label (p. 697).

Display table, graph, or spool output in the string object window.

Display the contents of a table, graph, or spool in the window of the string object.

Syntax
string_name.display object_name

Examples
string1.display tab1

Display the contents of the table TAB1 in the window of the object STRING1.

clearhist String Procs

display String Views

String::label—697

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

Display name for the string objects.

Attaches a display name to a string object which may be used to label output in place of the
standard object name.

Syntax
string_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in matrix object names.

Examples
str1.displayname Patagonian Toothfish Name

str1.label

The first line attaches a display name “Patagonian Toothfish Name” to the string object
STR1, and the second line displays the label view of STR1, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also String::label (p. 697).

Display or change the label view of the string object, including the last modified date and
display name (if any).

Syntax
string_name.label

string_name.label(options) text

Options

To modify the label, you should specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared:

displayname String Views

label String Views

698—Chapter 1. Object Reference

Examples

The following lines replace the remarks field of the string S1 with “Name of Dependent Vari-
able from EQ3”:

s1.label(r)

s1.label(r) Name of Dependent Variable EQ3

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

List view of a string object.

Syntax
string_name.list(options)

Options

Examples
s01.list

displays the text of the string in S01 in list format with one word per line.

Cross-references

See String::string (p. 699) for an alternative formatted view of the string contents.

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

list String Views

p Print the list view.

String::string—699

Push updates to OLE linked objects in open applications.

Syntax
string_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Set the object attribute.

Syntax
string_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Spreadsheet view of a string object.

Syntax
string_name.string(options)

olepush String Procs

setattr String Procs

string String Views

700—Chapter 1. Object Reference

Options

Examples
s01.string

displays the text of the string in S01.

Cross-references

See String::list (p. 698) for an alternative formatted view of the string contents.

Declare a string object.

The string command declares a string object and optionally assigns text.

Syntax
string string_name[=assignment]

The string keyword should be followed by a valid name, and optionally, by an assignment.
If there is no explicit assignment, the scalar will be initialized with a value of null.

Examples
string alpha

declares a string object named ALPHA containing no text.

You may also create a string that includes quotes:

string lunch = "Apple Tuna Cookie"

string dinner = """Chicken Marsala"" ""Beef Stew"" Hamburger"

creates the string objects LUNCH and DINNER, each containing the corresponding string lit-
eral. We have used the double quote character in the DINNER string as an escape character
for double quotes.

Cross-references

See “Strings” on page 77 and “String Objects” on page 92 of the Command and Program-
ming Reference for a discussion of strings and string objects.

p Print the spreadsheet view.

string String Declaration

String::string—701

702—Chapter 1. Object Reference

Svector

String vector object.

Svector Declaration
svector declare svector object (p. 706).

To declare an svector object, use the keyword svector, followed by a name.

Svector Views
display display table, graph, or spool in object window (p. 703).
label..................... label view (p. 704).
sheet spreadsheet view of the scalar (p. 706).

Svector Procs
clearhist clear the contents of the history attribute (p. 703).
displayname set display name (p. 704).
olepush push updates to OLE linked objects in open applications (p. 705).
setattr................... set the value of an object attribute (p. 705).

Svector Data Members
String values

@attr(“arg”) string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description string containing the Svector object’s description (if available).
@detailedtype string with the object type: “SVECTOR”.
@displayname...... string containing the Svector object’s display name. If the Svector

has no display name set, the name is returned.
@name string containing the Svector object’s name.
@remarks string containing the Svector object’s remarks (if available).
@source string containing the Svector object’s source (if available).
@type string with the object type: “SVECTOR”.
@units string containing the Svector object’s units description (if avail-

able).
@updatetime........ string representation of the time and date at which the Svector was

last updated.

Svector Entries

The following section provides an alphabetical listing of the commands associated with the
“Svector” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Svector::display—703

Clear the contents of the history attribute for svector objects.

Removes the svector’s history attribute, as shown in the label view of the svector.

Syntax
svector_name.clearhist

Examples
s1.clearhist

s1.label

The first line removes the history from the svector S1, and the second line displays the label
view of S1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Svector::label (p. 704).

Display table, graph, or spool output in the svector object window.

Display the contents of a table, graph, or spool in the window of the svector object.

Syntax
svector_name.display object_name

Examples
svector1.display tab1

Display the contents of the table TAB1 in the window of the object SVECTOR1.

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

clearhist Svector Procs

display Svector Views

704—Chapter 1. Object Reference

Display name for the svector objects.

Attaches a display name to an svector object which may be used to label output in place of
the standard object name.

Syntax
svector_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in matrix object names.

Examples
svec1.displayname List of Names

svec1.label

The first line attaches a display name “List of Names” to the svector object SVEC1, and the
second line displays the label view of SVEC1, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Svector::label (p. 704).

Display or change the label view of the string vector object, including the last modified
date and display name (if any).

Syntax
svector_name.label

svector_name.label(options) text

Options

To modify the label, you should specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared:

displayname Svector Views

label Svector Views

Svector::setattr—705

Examples

The following lines replace the remarks field of the string S1 with “Name of Dependent Vari-
able from EQ3”:

s1.label(r)

s1.label(r) Name of Dependent Variable EQ3

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

Push updates to OLE linked objects in open applications.

Syntax
svector_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Set the object attribute.

Syntax
svector_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

olepush Svector Procs

setattr Svector Procs

706—Chapter 1. Object Reference

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Spreadsheet view of a string vector object.

Syntax
svector_name.sheet(options)

Options

Examples
s01.sheet

displays the spreadsheet view of S01.

Declare a string vector object.

The svector command declares a string vector object.

Syntax
svector(n) stringvector_name

The svector keyword should be followed by a valid name. n is an optional length for the
vector. If n is not provided, the resulting svector will be one element long.

Examples
svector alphavec

declares a string vector object named ALPHAVEC containing no text.

svector(20) alphavec

declares a 20 element svector.

sheet Svector Views

p Print the spreadsheet view.

svector Svector Declaration

Svector::svector—707

Cross-references

See “Strings” on page 77 and “String Vectors” on page 93 of the Command and Program-
ming Reference for a discussion of strings and string vectors.

708—Chapter 1. Object Reference

Sym::—709

Sym

Symmetric matrix (symmetric two-dimensional array).

Sym Declaration
symdeclare sym object (p. 737).

Declare by providing a name after the sym keyword, with the optionally specified dimension
in parentheses:

sym(10) symmatrix

You may optionally assign a scalar, a square matrix or another sym in the declaration. If the
square matrix is not symmetric, the sym will contain the lower triangle. The sym will be
sized and initialized accordingly.

Sym Views
corcorrelation matrix by columns (p. 712).
covcovariance matrix by columns (p. 715).
eigen.....................eigenvalues calculation for a symmetric matrix (p. 719).
labellabel information for the symmetric matrix (p. 729).
sheetspreadsheet view of the symmetric matrix (p. 736).
statsdescriptive statistics by column (p. 736).

Sym Graph Views

Graph creation views are discussed in detail in “Graph Creation Command Summary” on
page 911.

areaarea graph of the columns of the matrix (p. 913).
bandarea band graph (p. 916).
bar........................bar graph of each column against the row index (p. 918).
boxplotboxplot graph (p. 923).
distplotdistribution graph (p. 926).
dotdot plot graph (p. 934).
errbarerror bar graph view (p. 938).
hilo.......................high-low(-open-close) chart (p. 939).
lineline graph of each column against the row index (p. 941).
mixedmixed-type graph (p. 945).
piepie chart view (p. 947).
qqplotquantile-quantile graph (p. 950).
scatscatter diagrams of the columns of the sym (p. 954).
scatmatmatrix of all pairwise scatter plots (p. 959).
scatpairscatterplot pairs graph (p. 961).

710—Chapter 1. Object Reference

seasplot seasonal line graph (p. 965).
spike spike graph (p. 966).
xyarea XY area graph (p. 970).
xybar XY bar graph (p. 973).
xyline................... XY line graph (p. 975).
xypair XY pairs graph (p. 979).

Sym Procs
clearhist clear the contents of the history attribute (p. 711).
displayname set display name (p. 719).
fill fill the elements of the matrix (p. 722).
import imports data from a foreign file into the sym object (p. 723).
olepush push updates to OLE linked objects in open applications (p. 730).
read (deprecated) import data from disk (p. 730).
setattr................... set the value of an object attribute (p. 732).
setformat set the display format for the sym spreadsheet (p. 733).
setindent set the indentation for the sym spreadsheet (p. 734).
setjust set the justification for the sym spreadsheet (p. 735).
setwidth set the column width in the sym spreadsheet (p. 735).
write export data to disk (p. 738).

Sym Data Members
String values

@attr(“arg”) string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description string containing the Sym object’s description (if available).
@detailedtype string with the object type: “SCALAR”.
@displayname...... string containing the Sym object’s display name. If the Sym has no

display name set, the name is returned.
@name string containing the Sym object’s name.
@remarks string containing the Sym object’s remarks (if available).
@source string containing the Sym object’s source (if available).
@type string with the object type: “SCALAR”.
@units string containing the Sym object’s units description (if available).
@updatetime........ string representation of the time and date at which the Sym was last

updated.

Scalar values

(i,j) (i,j)-th element of the sym. Simply append “(i,j)” to the sym name
(without a “.”).

Sym::clearhist—711

Sym Examples

The declaration:

sym results(10)

results=3

creates the matrix RESULTS and initializes each value to be 3. The following
assignment statements also create and initialize sym objects:

sym copymat=results

sym covmat1=eq1.@coefcov

sym(3,3) count

count.fill 1,2,3,4,5,6,7,8,9,10

Graphs, covariances, and statistics may be generated for the columns of the matrix:

copymat.line

copymat.cov

copymat.stats

You can use explicit indices to refer to matrix elements:

scalar diagsum=cov1(1,1)+cov1(2,2)+cov(3,3)

Sym Entries

The following section provides an alphabetical listing of the commands associated with the
“Sym” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Clear the contents of the history attribute for sym objects.

Removes the sym’s history attribute, as shown in the label view of the sym.

Syntax
sym_name.clearhist

Examples
s1.clearhist

s1.label

The first line removes the history from the sym S1, and the second line displays the label
view of S1, including the now blank history field.

clearhist Sym Procs

10 10u

712—Chapter 1. Object Reference

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Sym::label (p. 729).

Compute covariances, correlations, and other measures of association for the columns in a
matrix.

You may compute measures related to Pearson product-moment (ordinary) covariances and
correlations, Spearman rank covariances, or Kendall’s tau along with test statistics for evalu-
ating whether the correlations are equal to zero.

Syntax
matrix_name.cor(options) [keywords [@partial z1 z2 z3...]]

You should specify keywords indicating the statistics you wish to display from the list below,
optionally followed by the keyword @partial and a list of conditioning series or groups (for
the group view), or the name of a conditioning matrix (for the matrix view). In the matrix
view setting, the columns of the matrix should contain the conditioning information, and
the number or rows should match the original matrix.

You may specify keywords from one of the four sets (Pearson correlation, Spearman correla-
tion, Kendall’s tau, Uncentered Pearson) corresponding the computational method you wish
to employ. (You may not select keywords from more than one set.)

If you do not specify keywords, EViews will assume “corr” and compute the Pearson correla-
tion matrix. Note that Sym::cor is equivalent to the Sym::cov (p. 715) command with a
different default setting.

Pearson Correlation

cor Sym Views

cov Product moment covariance.

corr Product moment correlation.

sscp Sums-of-squared cross-products.

stat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

prob Probability under the null for the test statistic.

cases Number of cases.

Sym::cor—713

Spearman Rank Correlation

Kendall’s tau

Uncentered Pearson

obs Number of observations.

wgts Sum of the weights.

rcov Spearman’s rank covariance.

rcorr Spearman’s rank correlation.

rsscp Sums-of-squared cross-products.

rstat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

rprob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

taub Kendall’s tau-b.

taua Kendall’s tau-a.

taucd Kendall’s concordances and discordances.

taustat Kendall’s score statistic for evaluating whether the Kend-
all’s tau-b measure is zero.

tauprob Probability under the null for the score statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

ucov Product moment covariance.

ucorr Product moment correlation.

usscp Sums-of-squared cross-products.

ustat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

uprob Probability under the null for the test statistic.

cases Number of cases.

714—Chapter 1. Object Reference

Note that cases, obs, and wgts are available for each of the methods.

Options

Examples
sym1.cor

obs Number of observations.

wgts Sum of the weights.

wgt=name
(optional)

Name of vector containing weights. The number of rows of
the weight vector should match the number of rows in the
original matrix.

wgtmethod=arg
(default =
“sstdev”)

Weighting method (when weights are specified using
“weight=”): frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations.
Weights specified by “wgt=” are frequency weights for
rank correlation and Kendall’s tau calculations.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
to account for estimated means (for centered specifica-
tions), and any partial conditioning variables.

multi=arg
(default=“none”)

Adjustment to p-values for multiple comparisons: none
(“none”), Bonferroni (“bonferroni”), Dunn-Sidak
(“dunn”).

outfmt=arg
(default= “single”)

Output format: single table (“single”), multiple table
(“mult”), list (“list”), spreadsheet (“sheet”). Note that
“outfmt=sheet” is only applicable if you specify a single
statistic keyword.

out=name Basename for saving output. All results will be saved in
Sym matrices named using keys (“COV”, “CORR”, “SSCP”,
“TAUA”, “TAUB”, “CONC” (Kendall’s concurrences),
“DISC” (Kendall’s discordances), “CASES”, “OBS”,
“WGTS”) appended to the basename (e.g., the covariance
specified by “out=my” is saved in the Sym matrix
“MYCOV”).

prompt Force the dialog to appear from within a program.

p Print the result.

Sym::cov—715

displays a Pearson correlation matrix for the columns series in MAT1.

sym1.cor corr stat prob

displays a table containing the Pearson correlation, t-statistic for testing for zero correlation,
and associated p-value, for the columns in MAT1.

sym1.cor(pairwise) taub taustat tauprob

computes the Kendall’s tau-b, score statistic, and p-value for the score statistic, using sam-
ples with pairwise missing value exclusion.

Cross-references

See also Sym::cov (p. 715). For simple forms of the calculation, see @cor (p. 688), and
@cov (p. 689) in the Command and Programming Reference.

Compute covariances, correlations, and other measures of association for the columns in a
matrix.

You may compute measures related to Pearson product-moment (ordinary) covariances and
correlations, Spearman rank covariances, or Kendall’s tau along with test statistics for evalu-
ating whether the correlations are equal to zero.

Syntax
matrix_name.cov(options) [keywords [@partial z1 z2 z3...]]

You should specify keywords indicating the statistics you wish to display from the list below,
optionally followed by the keyword @partial and a list of conditioning series or groups (for
the group view), or the name of a conditioning matrix (for the matrix view). In the matrix
view setting, the columns of the matrix should contain the conditioning information, and
the number or rows should match the original matrix.

You may specify keywords from one of the four sets (Pearson correlation, Spearman rank
correlation, Kendall’s tau, Uncentered Pearson) corresponding the computational method
you wish to employ. (You may not select keywords from more than one set.)

If you do not specify keywords, EViews will assume “cov” and compute the Pearson covari-
ance matrix. Note that Sym::cov is equivalent to the Sym::cor (p. 712) command with a
different default setting.

Pearson Correlation

cov Sym Views

cov Product moment covariance.

corr Product moment correlation.

3 3u

716—Chapter 1. Object Reference

Spearman Rank Correlation

Kendall’s tau

Uncentered Pearson

sscp Sums-of-squared cross-products.

stat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

prob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

rcov Spearman’s rank covariance.

rcorr Spearman’s rank correlation.

rsscp Sums-of-squared cross-products.

rstat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

rprob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

taub Kendall’s tau-b.

taua Kendall’s tau-a.

taucd Kendall’s concordances and discordances.

taustat Kendall’s score statistic for evaluating whether the Kend-
all’s tau-b measure is zero.

tauprob Probability under the null for the score statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

ucov Product moment covariance.

ucorr Product moment correlation.

Sym::cov—717

Note that cases, obs, and wgts are available for each of the methods.

Options

usscp Sums-of-squared cross-products.

ustat Test statistic (t-statistic) for evaluating whether the correla-
tion is zero.

uprob Probability under the null for the test statistic.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

wgt=name
(optional)

Name of vector containing weights. The number of rows of
the weight vector should match the number of rows in the
original matrix.

wgtmethod=arg
(default =
“sstdev”)

Weighting method (when weights are specified using
“weight=”): frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations.
Weights specified by “wgt=” are frequency weights for
rank correlation and Kendall’s tau calculations.

pairwise Compute using pairwise deletion of observations with
missing cases (pairwise samples).

df Compute covariances with a degree-of-freedom correction
to account for estimated means (for centered specifica-
tions), and any partial conditioning variables.

multi=arg
(default=“none”)

Adjustment to p-values for multiple comparisons: none
(“none”), Bonferroni (“bonferroni”), Dunn-Sidak
(“dunn”).

outfmt=arg
(default=“single”)

Output format: single table (“single”), multiple table
(“mult”), list (“list”), spreadsheet (“sheet”). Note that
“outfmt=sheet” is only applicable if you specify a single
statistic keyword.

718—Chapter 1. Object Reference

Examples
sym1.cov

displays a Pearson covariance matrix for the columns series in MAT1.

sym1.cov corr stat prob

displays a table containing the Pearson covariance, t-statistic for testing for zero correlation,
and associated p-value, for the columns in MAT1.

sym1.cov(pairwise) taub taustat tauprob

computes the Kendall’s tau-b, score statistic, and p-value for the score statistic, using sam-
ples with pairwise missing value exclusion.

Cross-references

See also Sym::cor (p. 712). For simple forms of the calculation, see @cor (p. 688), and
@cov (p. 689) in the Command and Programming Reference.

Display table, graph, or spool output in the sym object window.

Display the contents of a table, graph, or spool in the window of the sym object.

Syntax
sym_name.display object_name

Examples
sym1.display tab1

Display the contents of the table TAB1 in the window of the object SYM1.

out=name Basename for saving output. All results will be saved in
Sym matrices named using keys (“COV”, “CORR”, “SSCP”,
“TAUA”, “TAUB”, “CONC” (Kendall’s concurrences),
“DISC” (Kendall’s discordances), “CASES”, “OBS”,
“WGTS”) appended to the basename (e.g., the covariance
specified by “out=my” is saved in the Sym matrix
“MYCOV”).

prompt Force the dialog to appear from within a program.

p Print the result.

display Sym Views

3 3u

Sym::eigen—719

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

Display name for symmetric matrix objects.

Attaches a display name to a symmetric matrix object which may be used to label output in
place of the standard matrix object name.

Syntax
matrix_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in matrix object names.

Examples
s1.displayname Hours Worked

s1.label

The first line attaches a display name “Hours Worked” to the symmetric matrix object S1,
and the second line displays the label view of S1, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Sym::label (p. 729).

Eigenvalues calculation for a symmetric matrix.

Syntax

There are two forms of the eigen command.

The first form, which applies when displaying eigenvalue table output or graphs of the
ordered eigenvalues, has only options and no command argument.

sym_name.eigen(options)

displayname Sym Procs

eigen Sym Views

720—Chapter 1. Object Reference

The second form, which applies to the graphs of component loadings (specified with the
option “out=loadings”) uses an optional argument to determine which components to plot.
In this form:

sym_name.eigen(options) [graph_list]

where the graph_list is an optional list of integers and/or vectors containing integers identi-
fying the components to plot. Multiple pairs are handled using the method specified in the
“mult=” option.

If the list of component indices omitted, EViews will plot only first and second components.
Note that the order of elements in the list matters; reversing the order of two indices reverses
the axis on which each component is displayed.

Options

out=arg
(default=“table”)

Output: table of eigenvalue and eigenvector results
(“out=table”), graphs of ordered eigenvalues (“graph”),
graph of the eigenvectors (“loadings”).
Note: when specifying the eigenvalue graph
(“out=graph”), the option keywords “scree” (scree graph),
“diff” (difference in successive eigenvalues), and “cpro-
port” (cumulative proportion of total variance) may be
included to control the output. By default, EViews will dis-
play the scree graph.
If you specify one or more of the keywords, EViews will
construct the graph using only the specified types (i.e., if
you specify “cproport”, a scree plot will not be provided
unless requested).

n=integer Maximum number of components to retain when present-
ing table (“out=table”) or eigenvalue graph
(“out=graph”) results.
The default is to set to the number of variables.
EViews will retain the minimum number satisfying any of:
“n=”, “mineig=” or “cproport=”.

mineig=arg
(default=0)

Minimum eigenvalue threshold value: we retain compo-
nents with eigenvalues that are greater than or equal to the
threshold.
EViews will retain the minimum number satisfying any of:
“n=”, “mineig=” or “cproport=”.

n

Sym::eigen—721

Graph Options

Examples
sym s1 = @cov(g1)

freeze(tab1) s1.eigen(method=cor, eigval=v1, eigvec=m1)

The first line creates a group named G1 containing the four series X1, X2, X3, X4. The sec-
ond line computes the correlation matrix S1 from the series in G1. The final line stores the
table view of the eigenvalues and eigenvectors of S1 in a table object named TAB1, the
eigenvalues in a vector named V1, and the eigenvectors in a matrix named M1.

Cross-references

See “Principal Components” on page 590 of User’s Guide I for a discussion of principal com-
ponents analysis on a group of series, which describes a superset of the tools for eigenvalue
calculations offered by the sym matrix.

cproport=arg
(default = 1)

Cumulative proportion threshold value: we retain , the
number of components required for the sum of the first
eigenvalues exceeds the specified value for the cumulative
variance explained proportion.
EViews will retain the minimum number satisfying any of:
“n=”, “mineig=” or “cproport=”.

eigval=vec_name Specify name of vector to hold the saved the eigenvalues in
workfile.

eigvec=mat_name Specify name of matrix to hold the save the eigenvectors in
workfile.

prompt Force the dialog to appear from within a program.

p Print results.

scale=arg,
(default=“norm-
load”)

Diagonal matrix scaling of the loadings: normalize loadings
(“normload”), normalize scores (“normscores”), symmet-
ric weighting (“symmetric”), user-specified power
(arg=number).

mult =arg
(default=“first”)

Multiple series handling: plot first against remainder
(“first”), plot as x-y pairs (“pair”), lower-triangular plot
(“lt”).

nocenter Do not center graphs around the origin.

k
k

722—Chapter 1. Object Reference

Fill a symmetric matrix object with specified values.

Syntax
matrix_name.fill(options) n1[, n2, n3 …]

Follow the keyword with a list of values to place in the specified object. Each value should
be separated by a comma.

Running out of values before the object is completely filled is not an error; the remaining
cells or observations will be unaffected, unless the “l” option is specified. If, however, you
list more values than the object can hold, EViews will not modify any observations and will
return an error message.

Options

Examples

The commands,

sym(2) m1

m1.fill 0, 1, 2

create the symmetric matrix:

(1.5)

Cross-references

See Chapter 11. “Matrix Language,” on page 261 of the Command and Programming Refer-
ence for a detailed discussion of vector and matrix manipulation in EViews.

fill Sym Procs

l Loop repeatedly over the list of values as many times as it
takes to fill the object.

o=integer
(default=1)

Fill the object from the specified element. Default is the
first element.

m1 0 1
1 2

Sym::import—723

Imports data from a foreign file into the sym object.

Syntax
sym_name.import([type=]) source_description import_specification

• Source_description should contain a description of the file from which the data is to be
imported. The specification of the description is usually just the path and file name of
the file, however you can also specify more precise information. See wfopen (p. 526)
of the Command and Programming Reference for more details on the specification of
source_description.

• The optional “type=” option may be used to specify a source type. For the most part,
you should not need to specify a “type=” option as EViews will automatically deter-
mine the type from the filename. The following table summaries the various source
formats and along with the corresponding “type=” keywords:

• import_specification can be used to provide additional information about the file to be
read. The details of import_specification will depend upon the type of file being
imported.

Excel Files

The syntax for reading Excel files is:
sym_name.import(type=excel[xml]) source_description [table_description] [vari-

ables_description]

The following table_description elements may be used when reading Excel data:

• “range = arg”, where arg is a range of cells to read from the Excel workbook, follow-
ing the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the
worksheet name is omitted, the cell range is assumed to refer to the currently active
sheet. If only a top left cell is provided, a bottom right cell will be chosen automati-
cally to cover the range of non-empty cells adjacent to the specified top left cell. If

import Sym Procs

 Option Keywords

Excel (through 2003) “excel”

Excel 2007 (xml) “excelxml”

HTML “html”

Text / ASCII “text”

724—Chapter 1. Object Reference

only a sheet name is provided, the first set of non-empty cells in the top left corner of
the chosen worksheet will be selected automatically. As an alternative to specifying
an explicit range, a name which has been defined inside the excel workbook to refer
to a range or cell may be used to specify the cells to read.

• “byrow”, transpose the incoming data. This option allows you to read files where the
series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w”(EViews automatic detection). This option is rarely required.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int| all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file). Note: If a "range=" argument is not specified,
then EViews will only scan the first five rows of data to try and determine the data for-
mat for each column. Likewise, if the "na=" argument is not specified, EViews will
also try to determine possible NA values by looking for repeated values in the same
rows. If the first five rows are not enough to correctly determine the data format, use
the "scan=" argument to instruct EViews to look at more rows. In addition, you may
want to specify a the "na=" value to override any dynamic NA value that EViews may
determine on its own.

• “firstobs=int”, first observation to be imported from the data (default is 1). This
option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the data (default is last observation
of the file). This option may be used to read only part of the file, which may be useful
for testing.

Excel Examples

sym_name.import "c:\data files\data.xls"

loads the active sheet of DATA.XLSX into the SYM_NAME sym object.

sym_name.import "c:\data files\data.xls" range="GDP data"

reads the data contained in the “GDP data” sheet of “Data.XLS” into the SYM_NAME object.

Sym::import—725

HTML Files

The syntax for reading HTML pages is:
symname_name.import(type=html) source_description [table_description] [vari-

ables_description]

The following table_description elements may be used when reading an HTML file or page:

• “table = arg”, where arg specifies which HTML table to read in an HTML file/page
containing multiple tables.

When specifying arg, you should remember that tables are named automatically fol-
lowing the pattern “Table01”, “Table02”, “Table03”, etc. If no table name is specified,
the largest table found in the file will be chosen by default. Note that the table num-
bering may include trivial tables that are part of the HTML content of the file, but
would not normally be considered as data tables by a person viewing the page.

• “skip = int”, where int is the number of rows to discard from the top of the HTML
table.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w”(EViews automatic detection). This option is rarely used.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file). Note: If a "range=" argument is not specified,
then EViews will only scan the first five rows of data to try and determine the data for-
mat for each column. Likewise, if the "na=" argument is not specified, EViews will
also try to determine possible NA values by looking for repeated values in the same
rows. If the first five rows are not enough to correctly determine the data format, use
the "scan=" argument to instruct EViews to look at more rows. In addition, you may
want to specify a the "na=" value to override any dynamic NA value that EViews may
determine on its own.

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

726—Chapter 1. Object Reference

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

HTML Examples

sym01.import 01"c:\data.html"

loads into the SYM matrix object the data located in the HTML file “Data.HTML” located on
the C:\ drive

Text and Binary Files

The syntax for reading text or binary files is:
sym_name.import(type=arg) source_description [table_description] [variables_de-

scription]

If a table_description is not provided, EViews will attempt to read the file as a free-format
text file. The following table_description elements may be used when reading a text or
binary file:

• “ftype = [ascii|binary]” specifies whether numbers and dates in the file are stored in
a human readable text (ASCII), or machine readable (Binary) form.

• “rectype = [crlf|fixed|streamed]” describes the record structure of the file:

“crlf”, each row in the output table is formed using a fixed number of lines from
the file (where lines are separated by carriage return/line feed sequences). This is
the default setting.

“fixed”, each row in the output table is formed using a fixed number of charac-
ters from the file (specified in “reclen= arg”). This setting is typically used for
files that contain no line breaks.

“streamed”, each row in the output table is formed by reading a fixed number of
fields, skipping across lines if necessary. This option is typically used for files that
contain line breaks, but where the line breaks are not relevant to how rows from
the data should be formed.

• “reclines =int”, number of lines to use in forming each row when “rectype=crlf”
(default is 1).

• “reclen=int”, number of bytes to use in forming each row when “rectype=fixed”.

• “recfields=int”, number of fields to use in forming each row when “rec-
type=streamed”.

• “skip=int”, number of lines (if rectype is “crlf”) or bytes (if rectype is not “crlf”) to
discard from the top of the file.

Sym::import—727

• “comment=string“, where string is a double-quoted string, specifies one or more
characters to treat as a comment indicator. When a comment indicator is found,
everything on the line to the right of where the comment indicator starts is ignored.

• “emptylines=[keep|drop]”, specifies whether empty lines should be ignored
(“drop”), or treated as valid lines (“keep”) containing missing values. The default is
to ignore empty lines.

• “tabwidth=int”, specifies the number of characters between tab stops when tabs are
being replaced by spaces (default=8). Note that tabs are automatically replaced by
spaces whenever they are not being treated as a field delimiter.

• “fieldtype=[delim|fixed|streamed|undivided]”, specifies the structure of fields within
a record:

“Delim”, fields are separated by one or more delimiter characters

“Fixed”, each field is a fixed number of characters

“Streamed”, fields are read from left to right, with each field starting immediately
after the previous field ends.

“Undivided”, read entire record as a single series.

• “quotes=[single|double|both|none]”, specifies the character used for quoting fields,
where “single” is the apostrophe, “double” is the double quote character, and “both”
means that either single or double quotes are allowed (default is “both”). Characters
contained within quotes are never treated as delimiters.

• “singlequote“, same as “quotes = single”.

• “delim=[comma|tab|space|dblspace|white|dblwhite]”, specifies the character(s) to
treat as a delimiter. “White” means that either a tab or a space is a valid delimiter. You
may also use the abbreviation “d=” in place of “delim=”.

• “custom="arg1"”, specifies custom delimiter characters in the double quoted string.
Use the character “t” for tab, “s” for space and “a” for any character.

• “mult=[on|off]”, to treat multiple delimiters as one. Default value is “on” if “delim”
is “space”, “dblspace”, “white”, or “dblwhite”, and “off” otherwise.

• “endian = [big|little]”, selects the endianness of numeric fields contained in binary
files.

• “string = [nullterm|nullpad|spacepad]”, specifies how strings are stored in binary
files. If “nullterm”, strings shorter than the field width are terminated with a single
zero character. If “nullpad”, strings shorter than the field width are followed by extra
zero characters up to the field width. If “spacepad”, strings shorter than the field
width are followed by extra space characters up to the field width.

728—Chapter 1. Object Reference

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

A central component of the table_description element is the format statement. You may
specify the data format using the following table descriptors:

• Fortran Format:

fformat=([n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)

where Type specifies the underlying data type, and may be one of the following,

I - integer

F - fixed precision

E - scientific

A - alphanumeric

X - skip

and n1, n2, ... are the number of times to read using the descriptor (default=1). More
complicated Fortran compatible variations on this format are possible.

• Column Range Format:

rformat="[n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)"

where optional type is “$” for string or “#” for number, and n1, n2, n3, n4, etc. are the
range of columns containing the data.

• C printf/scanf Format:

cformat="fmt"

where fmt follows standard C language (printf/scanf) format rules.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w”(EViews automatic detection). This option is rarely used.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file). Note: If a "range=" argument is not specified,
then EViews will only scan the first five rows of data to try and determine the data for-
mat for each column. Likewise, if the "na=" argument is not specified, EViews will
also try to determine possible NA values by looking for repeated values in the same
rows. If the first five rows are not enough to correctly determine the data format, use

Sym::label—729

the "scan=" argument to instruct EViews to look at more rows. In addition, you may
want to specify a the "na=" value to override any dynamic NA value that EViews may
determine on its own.

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

Text and Binary File Examples (.txt, .csv, etc.)

sym2.import c:\data.csv skip=5

reads “Data.CSV” into a SYM, skipping the first 5 rows.

sym01.import(type=text, name=matrix01) c:\date.txt delim=comma

loads the comma delimited data DATE.TXT into the SYM01 matrix object.

Display or change the label view of the symmetric matrix object, including the last modi-
fied date and display name (if any).

As a procedure, label changes the fields in the symmetric matrix object label.

Syntax
sym_name.label

sym_name.label(options) [text]

Options

The first version of the command displays the label view of the symmetric matrix. The sec-
ond version may be used to modify the label. Specify one of the following options along
with optional text. If there is no text provided, the specified field will be cleared.

label Sym Views | Sym Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

730—Chapter 1. Object Reference

Examples

The following lines replace the remarks field of SYM1 with “Data from CPS 1988 March
File”:

sym1.label(r)

sym1.label(r) Data from CPS 1988 March File

To append additional remarks to SYM1, and then to print the label view:

sym1.label(r) Log of hourly wage

sym1.label(p)

To clear and then set the units field, use:

sym1.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Sym::displayname (p. 719).

Push updates to OLE linked objects in open applications.

Syntax
sym_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Import data from a foreign disk file into a symmetric matrix.

(This is a deprecated method of importing into a sym. See Sym::import (p. 723) for the
currently supported method.)

May be used to import data into an existing workfile from a text, Excel, or Lotus file on disk.

Syntax
matrix_name.read(options) [path\]file_name

olepush Sym Procs

read Sym Procs

Sym::read—731

You must supply the name of the source file. If you do not include the optional path specifi-
cation, EViews will look for the file in the default directory. Path specifications may point to
local or network drives. If the path specification contains a space, you may enclose the
entire expression in double quotation marks.

Options

File type options

If you do not specify the “t” option, EViews uses the file name extension to determine the
file type. If you specify the “t” option, the file name extension will not be used to determine
the file type.

Options for ASCII text files

prompt Force the dialog to appear from within a program.

t=dat, txt ASCII (plain text) files.

t=wk1, wk3 Lotus spreadsheet files.

t=xls Excel spreadsheet files.

t Read data organized by column (transposed). Default is to
read by row.

na=text Specify text for NAs. Default is “NA”.

d=t Treat tab as delimiter (note: you may specify multiple
delimiter options). The default is “d=c” only.

d=c Treat comma as delimiter.

d=s Treat space as delimiter.

d=a Treat alpha numeric characters as delimiter.

custom =
symbol

Specify symbol/character to treat as delimiter.

mult Treat multiple delimiters as one.

rect (default) /
norect

[Treat / Do not treat] file layout as rectangular.

skipcol =
integer

Number of columns to skip. Must be used with the “rect”
option.

skiprow =
integer

Number of rows to skip. Must be used with the “rect”
option.

comment=
symbol

Specify character/symbol to treat as comment sign. Every-
thing to the right of the comment sign is ignored. Must be
used with the “rect” option.

732—Chapter 1. Object Reference

Options for spreadsheet (Lotus, Excel) files

Examples
m1.read(t=dat,na=.) a:\mydat.raw

reads data into matrix M1 from an ASCII file MYDAT.RAW in the A: drive. The data in the
file are listed by row, and the missing value NA is coded as a “.” (dot or period).

m1.read(t,a2,s=sheet3) cps88.xls

reads data into matrix M1 from an Excel file CPS88 in the default directory. The data are
organized by column (transposed), the upper left data cell is A2, and the data is read from a
sheet named SHEET3.

m2.read(a2, s=sheet2) "\\network\dr 1\cps91.xls"

reads the Excel file CPS91 into matrix M2 from the network drive specified in the path.

Cross-references

See “Importing Data” on page 146 of User’s Guide I for a discussion and examples of import-
ing data from external files.

See also Sym::write (p. 738).

Set the object attribute.

Syntax
sym_name.setattr(attr) attr_value

singlequote Strings are in single quotes, not double quotes.

dropstrings Do not treat strings as NA; simply drop them.

negparen Treat numbers in parentheses as negative numbers.

allowcomma Allow commas in numbers (note that using commas as a
delimiter takes precedence over this option).

t Read data organized by column (transposed). Default is to
read by row.

letter_number
(default=“b2”)

Coordinate of the upper-left cell containing data.

s=sheet_name Sheet name for Excel 5–8 Workbooks.

setattr Sym Procs

Sym::setformat—733

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Set the display format for cells in a symmetric matrix object spreadsheet view.

Syntax
matrix_name.setformat format_arg

where format_arg is a set of arguments used to specify format settings. If necessary, you
should enclose the format_arg in double quotes.

For symmetric matrices, setformat operates on all of the cells in the matrix.

To format numeric values, you should use one of the following format specifications:

To specify a format that groups digits into thousands using a comma separator, place a “t”
after the format character. For example, to obtain a fixed number of decimal places with
commas used to separate thousands, use “ft[.precision]”.

To use the period character to separate thousands and commas to denote decimal places,
use “..” (two periods) when specifying the precision. For example, to obtain a fixed number
of characters with a period used to separate thousands, use “ct[..precision]”.

setformat Sym Procs

g[.precision] significant digits

f[.precision] fixed decimal places

c[.precision] fixed characters

e[.precision] scientific/float

p[.precision] percentage

r[.precision] fraction

734—Chapter 1. Object Reference

If you wish to display negative numbers surrounded by parentheses (i.e., display the num-
ber -37.2 as “(37.2)”), you should enclose the format string in “()” (e.g., “f(.8)”).

Examples

To set the format for all cells in the symmetric matrix to fixed 5-digit precision, simply pro-
vide the format specification:

m1.setformat f.5

Other format specifications include:

m1.setformat f(.7)

m1.setformat e.5

Cross-references

See Sym::setwidth (p. 735), Sym::setindent (p. 734) and Sym::setjust (p. 735) for
details on setting spreadsheet widths, indentation and justification.

Set the display indentation for cells in a symmetric matrix object spreadsheet view.

Syntax
matrix_name.setindent indent_arg

where indent_arg is an indent value specified in 1/5 of a width unit. The width unit is com-
puted from representative characters in the default font for the current spreadsheet (the
EViews spreadsheet default font at the time the spreadsheet was created), and corresponds
roughly to a single character. Indentation is only relevant for non-center justified cells.

The default indentation setttings are taken from the Global Defaults for spreadsheet views
(“Spreadsheet Data Display” on page 868 of User’s Guide I) at the time the spreadsheet was
created.

For symmetric matrices, setindent operates on all of the cells in the matrix.

Examples

To set the indentation for all the cells in a symmetric matrix object:

m1.setindent 2

Cross-references

See Sym::setwidth (p. 735) and Sym::setjust (p. 735) for details on setting spreadsheet
widths and justification.

setindent Sym Procs

Sym::setwidth—735

Set the display justification for cells in a symmetric matrix object spreadsheet view.

Syntax
matrix_name.setjust format_arg

where format_arg is a set of arguments used to specify format settings. You should enclose
the format_arg in double quotes if it contains any spaces or delimiters.

For symmetric matrices, setjust operates on all of the cells in the matrix.

The format_arg may be formed using the following:

You may enter one or both of the justification settings. The default justification settings are
taken from the Global Defaults for spreadsheet views (“Spreadsheet Data Display” on
page 868 of User’s Guide I) at the time the spreadsheet was created.

Examples
m1.setjust middle

sets the vertical justification to the middle.

m1.setjust top left

sets the vertical justification to top and the horizontal justification to left.

Cross-references

See Sym::setwidth (p. 735) and Sym::setindent (p. 734) for details on setting spread-
sheet widths and indentation.

Set the column width for all columns in a symmetric matrix object spreadsheet.

Syntax
matrix_name.setwidth width_arg

setjust Sym Procs

top / middle /
bottom]

Vertical justification setting.

auto / left / cen-
ter / right

Horizontal justification setting. “Auto” uses left justifica-
tion for strings, and right for numbers.

setwidth Sym Procs

736—Chapter 1. Object Reference

where width_arg specifies the width unit value. The width unit is computed from represen-
tative characters in the default font for the current spreadsheet (the EViews spreadsheet
default font at the time the spreadsheet was created), and corresponds roughly to a single
character. width_arg values may be non-integer values with resolution up to 1/10 of a width
unit.

Examples
mat1.setwidth 12

sets the width of all columns in symmetric matrix MAT1 to 12 width units.

Cross-references

See Sym::setindent (p. 734) and Sym::setjust (p. 735) for details on setting spread-
sheet indentation and justification.

Spreadsheet view of a symmetric matrix object.

Syntax
matrix_name.sheet(options)

Options

Examples
m1.sheet(p)

displays and prints the spreadsheet view of symmetric matrix M1.

Descriptive statistics.

Computes and displays a table of means, medians, maximum and minimum values, stan-
dard deviations, and other descriptive statistics of each column in the symmetric matrix.

Syntax
matrix_name.stats(options)

Options

sheet Sym Views

p Print the spreadsheet view.

stats Sym Views

p Print the stats table.

Sym::sym—737

Examples
mat1.stats

displays the descriptive statistics view of symmetric matrix MAT1.

Cross-references

See “Descriptive Statistics & Tests” on page 402 and “Descriptive Statistics” on page 572 of
the User’s Guide I for a discussion of the descriptive statistics views.

Declare a symmetric matrix object.

The sym command declares and optionally initializes a matrix object.

Syntax
sym(n) sym_name[=assignment]

sym takes an optional argument n specifying the row and column dimension of the matrix
and is followed by the name you wish to give the matrix.

You may also include an assignment in the sym command. The sym will be resized, if neces-
sary. Once declared, symmetric matrices may be resized by repeating the sym command for
a given matrix name.

Examples
sym mom

declares a symmetric matrix named MOM with one zero element.

sym y=@inner(x)

declares a symmetric matrix Y and assigns to it the inner product of the matrix X.

Cross-references

See “Matrix Language” on page 261 of the Command and Programming Reference for a dis-
cussion of matrix objects in EViews.

See also Matrix::matrix (p. 405).

sym Sym Declaration

738—Chapter 1. Object Reference

Write EViews data to a text (ASCII), Excel, or Lotus file on disk.

Creates a foreign format disk file containing EViews data. May be used to export EViews
data to another program.

Syntax
matrix_name.write(options) [path\filename]

Follow the name of the matrix object by a period, the keyword, and the name for the output
file. The optional path name may be on the local machine, or may point to a network drive.
If the path name contains spaces, enclose the entire expression in double quotation marks.
The entire matrix will be exported.

Note that EViews cannot, at present, write into an existing file. The file that you select will,
if it exists, be replaced.

Options

Other options are used to specify the format of the output file.

File type

If you omit the “t=” option, EViews will determine the type based on the file extension.
Unrecognized extensions will be treated as ASCII files. For Lotus and Excel spreadsheet files
specified without the “t=” option, EViews will automatically append the appropriate exten-
sion if it is not otherwise specified.

ASCII text files

write Sym Procs

prompt Force the dialog to appear from within a program.

t=dat, txt ASCII (plain text) files.

t=wk1, wk3 Lotus spreadsheet files.

t=xls Excel spreadsheet files.

na=string Specify text string for NAs. Default is “NA”.

d=arg Specify delimiter (default is tab): “s” (space), “c”
(comma).

t Write by column (transpose the data). Default is to write by
row.

Sym::write—739

Spreadsheet (Lotus, Excel) files

Examples
m1.write(t=txt,na=.) a:\dat1.csv

writes the symmetric matrix M1 into an ASCII file named DAT1.CSV on the A: drive. NAs are
coded as “.” (dot).

m1.write(t=txt,na=.) dat1.csv

writes the same file in the default directory.

m1.write(t=xls) "\\network\drive a\results"

saves the contents of M1 in an Excel file “Results.xls” in the specified directory.

Cross-references

See “Exporting to a Spreadsheet or Text File” on page 163 of the User’s Guide I for a discus-
sion.

See also Sym::read (p. 730).

letter_number Coordinate of the upper-left cell containing data.

t Write by column (transpose the data). Default is to write by
row.

740—Chapter 1. Object Reference

System::—741

System

System of equations for estimation.

System Declaration
systemdeclare system object (p. 775).

Declare a system object by entering the keyword system, followed by a name:

system mysys

To fill a system, open the system and edit the specification view, or use append. Note that
systems are not used for simulation. See “Model” (p. 420).

System Methods
3slsthree-stage least squares (p. 744).
archestimate generalized autoregressive conditional heteroskedasticity

(GARCH) models (p. 746).
fiml.......................full information maximum likelihood (p. 758).
gmmgeneralized method of moments (p. 760).
lsordinary least squares (p. 765).
surseemingly unrelated regression (p. 774).
tsls........................two-stage least squares (p. 776).
wlsweighted least squares (p. 778).
wtslsweighted two-stage least squares (p. 779).

System Views
cellipseconfidence ellipses for coefficient restrictions (p. 751).
coefcovcoefficient covariance matrix (p. 753).
correldisplay graphs or tables of residual autocorrelations and cross-cor-

relations (p. 753).
derivs....................derivatives of the system equations (p. 754).
displaydisplay table, graph, or spool in object window(p. 755).
endog....................table or graph of endogenous variables (p. 756).
estcovdisplay the covariance matrix used in estimation (p. 757).
garchconditional variance/covariance of (G)ARCH estimation (p. 759).
grads.....................examine the gradients of the objective function (p. 762).
jberamultivariate residual normality test (p. 763).
labellabel information for the system object (p. 764).
output...................table of estimation results (p. 769).
qstatsmultivariate residual autocorrelation Portmanteau tests (p. 770).
representationstext showing specification of the system (p. 771).

742—Chapter 1. Object Reference

residcor residual correlation matrix (p. 771).
residcov................ residual covariance matrix (p. 772).
resids residual graphs or spreadsheets (p. 772).
results table of estimation results (p. 773).
spec text representation of system specification (p. 774).
wald..................... Wald coefficient restriction test (p. 777).

System Procs
append add a line of text to the system specification (p. 745).
autospec automatically create system specification text (p. 750).
clearhist clear the contents of the history attribute (p. 752).
displayname set display name (p. 756).
makeendog........... make group of endogenous series (p. 766).
makegarch............ generate conditional variance series (p. 766).
makeloglike.......... create and save log likelihood contribution from system (ARCH esti-

mation) (p. 767).
makemodel........... create a model from the estimated system (p. 768).
makeresids make series containing residuals from system (p. 768).
olepush push updates to OLE linked objects in open applications (p. 769).
setattr................... set the value of an object attribute (p. 773).
updatecoefs update coefficient vector(s) from system (p. 777).

System Data Members
Scalar Values (individual equation data)

@coefcov(i, j) covariance of coefficients i and j.
@coefs(i) coefficient i.
@dw(k) Durbin-Watson statistic for equation k.
@eqncoef(k) number of estimated coefficients in equation k.
@eqregobs(k)....... number of observations in equation k.
@meandep(k) mean of the dependent variable in equation k.
@r2(k)................. R-squared statistic for equation k.
@rbar2(k) adjusted R-squared statistic for equation k.
@sddep(k) standard deviation of dependent variable in equation k.
@se(k)................. standard error of the regression in equation k.
@ssr(k)................ sum of squared residuals in equation k.
@stderrs(i)........... standard error for coefficient i.
@tstats(i) t-statistic or z-statistic for coefficient i.
c(i)....................... i-th element of default coefficient vector for system (if applicable).

System::—743

Scalar Values (system level data)

@aicAkaike information criterion for the system (if applicable).
@detresiddeterminant of the residual covariance matrix.
@hqHannan-Quinn information criterion for the system (if applicable).
@jstatJ-statistic — value of the GMM objective function (for GMM esti-

mation).
@linecountscalar containing the number of lines in the System object.
@loglvalue of the log likelihood function for the system (if applicable).
@ncoefs................total number of estimated coefficients in system.
@neqn..................number of equations.
@regobsnumber of observations in the sample range used for estimation

(“@regobs” will differ from “@eqregobs” if the unbalanced sample
is non-overlapping).

@schwarz.............Schwarz information criterion for the system (if applicable).
@totalobssum of “@eqregobs” from each equation.

Vectors and Matrices

@coefcovcovariance matrix for coefficients of equation.
@coefs..................coefficient vector.
@estcov(sym) residual covariance matrix used in estimation (see Sys-

tem::estcov (p. 757) of Object Reference).
@residcov(sym) covariance matrix of the residuals.
@stderrsvector of standard errors for coefficients.
@tstatsvector of t-statistic or z-statistic values for coefficients.

String values

@attr(“arg”)..........string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@commandfull command line form of the estimation command. Note this is a
combination of @method and @options.

@description.........string containing the System object’s description (if available).
@detailedtypereturns a string with the object type: “SYSTEM”.
@displaynamereturns the System’s display name. If the System has no display

name set, the name is returned.
@line(i)returns a string containing the i-th line of the System object.
@methodcommand line form of estimation method type (“ARCH”, “LS”,

etc....).
@namereturns the System’s name.
@optionscommand line form of estimation options.
@smplsample used for estimation.

744—Chapter 1. Object Reference

@svector returns an Svector where each element is a line of the System
object.

@svectornb same as @svector, with blank lines removed.
@type returns a string with the object type: “SYSTEM”.
@units string containing the System object’s units description (if available).
@updatetime........ returns a string representation of the time and date at which the

System was last updated.

System Examples

To estimate a system using GMM and to create residual series for the estimated system:

sys1.gmm(i,m=7,c=.01,b=v)

sys1.makeresids consres incres saveres

To test coefficients using a Wald test:

sys1.wald c(1)=c(4)

To save the coefficient covariance matrix:

sym covs=sys1.@coefcov

System Entries

The following section provides an alphabetical listing of the commands associated with the
“System” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Estimate a system of equations by three-stage least squares.

Syntax
system_name.3sls(options)

Options

3sls System Methods

i Iterate simultaneously over the weighting matrix and coef-
ficient vector.

s Iterate sequentially over the weighting matrix and coeffi-
cient vector.

o (default) Iterate the coefficient vector to convergence following one-
iteration of the weighting matrix.

System::append—745

Examples
sys1.3sls(i)

Estimates SYS1 by the 3SLS method, iterating simultaneously on the weighting matrix and
the coefficient vector.

nlsys.3sls(showopts,m=500)

Estimates NLSYS by 3SLS with up to 500 iterations. The “showopts” option displays the
starting values and other estimation options.

Cross-references

See Chapter 39. “System Estimation,” on page 645 of User’s Guide II for discussion of system
estimation.

Append a specification line to a system.

Syntax
system_name.append text

Type the text to be added after the append keyword.

c One step (iteration) of the coefficient vector following one-
iteration of the weighting matrix.

m=integer Maximum number of iterations.

c=number Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

l=number Set maximum number of iterations on the first-stage coeffi-
cient estimation to get the one-step weighting matrix.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv /
-fastderiv

[Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

prompt Force the dialog to appear from within a program.

p Print estimation results.

append System Procs

746—Chapter 1. Object Reference

Examples
system macro1

macro1.append cons=c(1)+c(2)*gdp+c(3)*cons(-1)

macro1.append inv=c(4)+c(5)*tb3+c(6)*d(gdp)

macro1.append gdp=cons+inv+gov

macro1.append inst tb3 gov cons(-1) gdp(-1)

macro1.gmm

show macro1.results

The first line declares a system. The next three lines append the specification of each endog-
enous variable in the system. The fifth line appends the list of instruments to be used in esti-
mation. The last two lines estimate the model by GMM and display the estimation results.

Cross-references

For details, see “How to Create and Specify a System” on page 648 of User’s Guide II.

Estimate generalized autoregressive conditional heteroskedasticity (GARCH) models.

Syntax
For a Diagonal VECH model:

system_name.arch(options) @diagvech c(arg) [arch(n, arg)] [tarch(n, arg)]
[garch(n, arg)] [exog(series, arg)]

Indicate a Diagonal VECH model by using the @diagvech keyword. Follow the keyword
with the constant term, c, and other optional terms to include in the variance equation:
arch, garch, tarch, or exog (exogenous variable).

n indicates the order of the term, and arg indicates the type of coefficient for the term. For
the exogenous variable, series indicates a series name.

Diagonal VECH Argument Options

arch System Methods

c(arg) where arg may be “scalar”, “diag” (diagonal), “rank1”
(rank one), “fullrank”, “indef” (indefinite - default), or “vt”
(variance target).

arch(n, arg) where n indicates the order of the term, and arg may be
“scalar”, “diag” (diagonal), “rank1” (rank one), “fullrank”,
or “indef” (indefinite - default).

garch(n, arg) where n indicates the order of the term, and arg may be
“scalar”, “diag” (diagonal), “rank1” (rank one), “fullrank”,
or “indef” (indefinite - default).

System::arch—747

For example, “c(indef)” instructs EViews to use an indefinite matrix for the constant term,
while “ARCH(1, fullrank)” includes a first order ARCH with a full rank matrix coefficient
type.

For a Constant Conditional Correlation model:
system_name.arch(options) @ccc c(arg) [arch(n[, arg])] [tarch(n[, arg])] [garch(n[,

arg])] [exog(series, arg)]

Indicate a Constant Conditional Correlation model by using the @ccc keyword. Follow the
keyword with the constant term, c, and other optional terms to include in the variance equa-
tion: arch, garch, tarch, or exog (exogenous variable).

n indicates the order of the term, and arg indicates the type of coefficient for the term. For
the exogenous variable, series indicates a series name.

Constant Conditional Correlation Argument Options

For a Diagonal BEKK model:
system_name.arch(options) @diagbekk c(arg) [arch(n[, arg])] [tarch(n[, arg])]

[garch(n[, arg])] [exog(series, arg)]

Indicate a Diagonal BEKK model by using the @diagbekk keyword. Follow the keyword
with the constant term, c, and other optional terms to include in the variance equation:
arch, garch, tarch, or exog (exogenous variable).

n indicates the order of the term, and arg indicates the type of coefficient for the term. For
the exogenous variable, series indicates a series name.

tarch(n, arg) where n indicates the order of the term, and arg may be
“scalar”, “diag” (diagonal), “rank1” (rank one), “fullrank”,
or “indef” (indefinite - default).

exog(series, arg) where series indicates a series name, and arg may be “sca-
lar”, “diag” (diagonal), “rank1” (rank one), “fullrank”, or
“indef” (indefinite - default).

c(arg) where arg may be “scalar” (default) or “vt” (variance tar-
get).

arch(n[, arg]) where n indicates the order of the term, and the optional
arg may be “scalar” (default).

garch(n[, arg]) where n indicates the order of the term, and the optional
arg may be “scalar” (default).

tarch(n[, arg]) where n indicates the order of the term, and the optional
arg may be “scalar” (default).

exog(series, arg) where series indicates a series name, and arg may be
“indiv” (individual - default) or “common”.

748—Chapter 1. Object Reference

Diagonal BEKK Argument Options

Options
General Options

c(arg) where arg may be “scalar”, “diag” (diagonal), “rank1”
(rank one), “fullrank”, “indef” (indefinite - default), or “vt”
(variance target).

arch(n[, arg]) where n indicates the order of the term, and the optional
arg may be “diag” (diagonal - default).

garch(n[, arg]) where n indicates the order of the term, and the optional
arg may be “diag” (diagonal - default).

tarch(n[, arg]) where n indicates the order of the term, and the optional
arg may be “diag” (diagonal - default).

exog(series, arg) where series indicates a series name, and arg may be “sca-
lar”, “diag” (diagonal), “rank1” (rank one), “fullrank”, or
“indef” (indefinite - default).

tdist Estimate the model assuming that the residuals follow a
conditional Student’s t-distribution (the default is the con-
ditional normal distribution).

optmethod = arg Optimization method: “bfgs” (BFGS); “newton” (Newton-
Raphson), “opg” or “bhhh” (OPG or BHHH), “legacy”
(EViews legacy).
“bfgs” is the default for new equations.

optstep = arg Step method: “marquardt” (Marquardt - default); “dogleg”
(Dogleg); “linesearch” (Line search).
(Applicable when “optmethod=bfgs”, “optmethod=new-
ton” or “optmethod=opg”.)

b Use Berndt-Hall-Hall-Hausman (BHHH) as maximization
algorithm. The default is Marquardt.
(Applicable when “optmethod=legacy”.)

cov=arg Covariance method: “ordinary” (default method based on
inverse of the estimated information matrix), “huber” or
“white” (Huber-White sandwich method), “bollerslev”
(Bollerslev-Wooldridge method).

covinfo = arg Information matrix method: “opg” (OPG); “hessian”
(observed Hessian), “
(Applicable when non-legacy “optmethod=” with
“cov=ordinary”.)

System::arch—749

Examples
system sys01

sys01.append dlog(jy)=c(1)

sys01.append dlog(bp)=c(2)

sys01.arch @diagvech c(indef) arch(1,indef) garch(1,rank1)

creates a system SYS01, appends two equations, and estimates the system using maximum
likelihood with ARCH. A Diagonal VECH model is used with the constant and order 1 ARCH
coefficient matrix indefinite and order 1 GARCH coefficient rank 1 matrix.

sys01.arch @diagbekk c(fullrank) arch(1) garch(1)

h Bollerslev-Wooldridge robust quasi-maximum likelihood
(QML) covariance/standard errors.
(Applicable for “optmethod=legacy” when estimating
assuming normal errors.)

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients.

s Use the current coefficient values in “C” as starting values
(see also param (p. 463) of the Command and Program-
ming Reference).

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv /
-fastderiv

[Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

coef=arg Specify the name of the coefficient vector of a system’s
variance component; the default behavior is to use the “C”
coefficient vector.

backcast=n Backcast weight to calculate value used as the presample
conditional variance. Weight needs to be greater than 0 and
less than or equal to 1; the default value is 0.7. Note that a
weight of 1 is equivalent to no backcasting, i.e. using the
unconditional residual variance as the presample condi-
tional variance.

prompt Force the dialog to appear from within a program.

p Print estimation results.

750—Chapter 1. Object Reference

estimates SYS01 using a Diagonal BEKK model of order (1,1), with constant coefficient a full
rank matrix.

sys01.arch(backcast=1) @ccc c arch(1) garch(1) exog(x1,indiv)

exog(x2,common)

estimates a CCC model, with each variance equation GARCH(1,1) and two exogenous vari-
ables X1 and X2. The influence of X1 on each variance equation can be varying, while X2’s
coefficient is the same across all variance equations. Presample uses the unconditional vari-
ance since the backcast parameter is set to one.

Cross-references

See Chapter 25. “ARCH and GARCH Estimation,” on page 243 of User’s Guide II for a discus-
sion of ARCH models. See also System::makegarch (p. 766) and Equation::arch
(p. 42).

Automatically create system specification text.

Syntax
system_name.autospec(options) y1 y2 y3 ... @reg x1 x2 x3 ... [@eqreg w1 w2 ...]

[@inst z1 z2 ...] [@eqinst z3 z4 ...]

Defines the specification of the system. The @reg list consists of regressors with common
coefficients in the system. The @eqreg list consists of regressors with different coefficients
in each equation. The list of variables that follow @inst are the common instruments. The
list of variables that follow @eqinst are the equation specific instruments.

Options

Examples
system sys1

sys1.autospec @regs y1 y2 y3 @regs x1 x2 c @inst z1 z2 z3

autospec System Procs

ytrans=arg Dependent variable transformation: none (default), log
(“log”), difference (“d”), difference of logs (“dlog”), one
percentage change in decimal (“pch”), one-period percent-
age change—annualized, in percent (“pcha”), one-year
percentage change in decimal (“pchy”).

prompt Force the dialog to appear from within a program.

System::cellipse—751

creates a system named SYS1 with the series Y1, Y2 and Y3 as the dependent variables and
a common intercept and coefficients on X1 and X2, with common instruments Z1, Z2, and
Z3.

Cross-references

See Chapter 39. “System Estimation,” on page 645 of User’s Guide II for a discussion of sys-
tem objects in EViews.

Confidence ellipses for coefficient restrictions.

The cellipse view displays confidence ellipses for pairs of coefficient restrictions for an
estimation object.

Syntax
system_name.cellipse(options) restrictions

Enter the object name, followed by a period, and the keyword cellipse. This should be fol-
lowed by a list of the coefficient restrictions. Joint (multiple) coefficient restrictions should
be separated by commas.

Options

cellipse System Views

ind=arg Specifies whether and how to draw the individual coeffi-
cient intervals. The default is “ind=line” which plots the
individual coefficient intervals as dashed lines.
“ind=none” does not plot the individual intervals, while
“ind=shade” plots the individual intervals as a shaded
rectangle.

size=number
(default=0.95)

Set the size (level) of the confidence ellipse. You may spec-
ify more than one size by specifying a space separated list
enclosed in double quotes.

dist=arg Select the distribution to use for the critical value associ-
ated with the ellipse size. The default depends on estima-
tion object and method. If the parameter estimates are
least-squares based, the distribution is used;
if the parameter estimates are likelihood based, the
distribution will be employed. “dist=f” forces use of the F-
distribution, while “dist=c” uses the distribution.

prompt Force the dialog to appear from within a program.

p Print the graph.

F 2 n 2–,� �
x

2 2� �

x
2

752—Chapter 1. Object Reference

Examples

The two commands:

sys1.cellipse c(1), c(2), c(3)

sys1.cellipse c(1)=0, c(2)=0, c(3)=0

both display a graph showing the 0.95-confidence ellipse for C(1) and C(2), C(1) and C(3),
and C(2) and C(3).

sys1.cellipse(dist=c,size="0.9 0.7 0.5") c(1), c(2)

displays multiple confidence ellipses (contours) for C(1) and C(2).

Cross-references

See “Confidence Intervals and Confidence Ellipses” on page 176 of User’s Guide II for dis-
cussion.

See also System::wald (p. 777).

Clear the contents of the history attribute for system objects.

Removes the system’s history attribute, as shown in the label view of the system.

Syntax
system_name.clearhist

Examples
s1.clearhist

s1.label

The first line removes the history from the system S1, and the second line displays the label
view of S1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also System::label (p. 764).

clearhist System Procs

System::correl—753

Coefficient covariance matrix.

Displays the covariances of the coefficient estimates for an estimated system.

Syntax
system_name.coefcov(options)

Options

Examples
sys1.coefcov

displays the coefficient covariance matrix for system SYS1 in a window. To store the coeffi-
cient covariance matrix as a sym object, use “@coefcov”:

sym eqcov = sys1.@coefcov

Cross-references

See also Coef::coef (p. 20) and System::spec (p. 774).

Display graphs or tables of residual autocorrelations and cross-correlations.

Displays the auto and cross-correlation functions of the estimated system residals.

Syntax
system_name.correl(n, options)

You must specify the largest lag n to use in the computations. The default is to display a
graphical view of the auto and cross-correlations.

Options

coefcov System Views

p Print the coefficient covariance matrix.

correl System Views

graph (default) Display correlograms (graphs).

bylag Display table of results grouped by lag.

bser Display table of results grouped by series.

factor=chol Factorization by the inverse of the Cholesky factor of the
residual covariance matrix (if estimated by ARCH).

754—Chapter 1. Object Reference

Examples
sys.correl(24)

Displays the correlograms of the SER1 series for up to 24 lags.

Cross-references

See “Correlogram” on page 420 and “Cross Correlations and Correlograms” on page 603 of
User’s Guide I for related discussion of autocorrelation and cross-correlation functions,
respectively. See also “Residual Tests” on page 703 for related testing in a VAR context.

Examine derivatives of the system equation specification.

Display information about the derivatives of the equation specification in tabular, graphical,
or summary form.

The (default) summary form shows information about how the derivative of the equation
specification was computed, and will display the analytic expression for the derivative, or a
note indicating that the derivative was computed numerically. The tabular form shows a
spreadsheet view of the derivatives of the regression specification with respect to each coef-
ficient (for each observation). The graphical form of the view shows this information in a
multiple line graph.

Syntax
system_name.derivs(options)

factor=cor Factorization by the inverse square root of the residual cor-
relation matrix (if estimated by ARCH; Doornik and Han-
sen, 1994).

factor=cov Factorization by the inverse square root of the residual
covariance matrix (if estimated by ARCH; Urzua, 1997).

name=arg Save matrix of results.

prompt Force the dialog to appear from within a program.

p Print the correlograms.

derivs System Views

System::display—755

Options

Note that the “g” and “t” options may not be used at the same time.

Examples

To show a table view of the derivatives:

sys1.derivs(t)

To display and print the summary view:

sys1.derivs(p)

Cross-references

See “Derivative Computation” on page 1093 of User’s Guide II for details on the computation
of derivatives.

See also Equation::makederivs (p. 125) for additional routines for examining deriva-
tives, and System::grads (p. 762), and Equation::makegrads (p. 127) for correspond-
ing routines for gradients.

Display table, graph, or spool output in the system object window.

Display the contents of a table, graph, or spool in the window of the system object.

Syntax
system_name.display object_name

Examples
system1.display tab1

Display the contents of the table TAB1 in the window of the object SYSTEM1.

g Display multiple graph showing the derivatives of the
equation specification with respect to the coefficients, eval-
uated at each observation.

t Display spreadsheet view of the values of the derivatives
with respect to the coefficients evaluated at each observa-
tion.

p Print results.

display System Views

756—Chapter 1. Object Reference

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

Display name for system objects.

Attaches a display name to a system object which may be used to label output in place of
the standard system object name.

Syntax
system_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in system object names.

Examples
hrs.displayname Hours Worked

hrs.label

The first line attaches a display name “Hours Worked” to the system object HRS, and the
second line displays the label view of HRS, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also System::label (p. 764).

Displays a spreadsheet or graph view of the endogenous variables.

Syntax
system_name.endog(options)

Options

displayname System Procs

endog System Views

g Multiple line graphs of the solved endogenous series.

p Print the table of solved endogenous series.

System::estcov—757

Examples
sys1.endog(g,p)

prints the graphs of the solved endogenous series.

Cross-references

See also System::makeendog (p. 766), System::system (p. 775).

Displays the covariance matrix used in estimation.

The estimation covariance contains:

1. the identity matrix for OLS and TSLS

2. a diagonal matrix with equation variances used to compute WOLS and WTSLS

3. the residual covariance matrix used to compute SUR and 3SLS

4. the residual covariance matrix for unrestricted FIML; diagonal residual covariance
matrix for diagonal FIML; user-specified covariance for user-covariance FIML

5. the long-run covariance of the moments used to compute the weighting matrix for
GMM estimates

6. a matrix of missing values for ARCH

Syntax
system_name.estcov(options)

Options

Examples
sys1.estcov

displays the estimation covariance.

Cross-references

See also “System Views” on page 661 of User’s Guide II.

estcov System Views

p Print the estimation covariance.

758—Chapter 1. Object Reference

Estimation by full information maximum likelihood.

fiml estimates a system of equations by full information maximum likelihood (assuming a
multivariate normal distribution).

Syntax
system_name.fiml(options)

Options

fiml System Methods

rcov = arg Restricted residual covariance matrix in estimation: “diag”
(non-zero diagonal and zero off-diagonal elements),
“usercov” (fully specified user covariance matrix), “user-
factor” user provides the matrix , such that equals
the fully specified covariance matrix).
Note that system objects estimated using a restricted FIML
estimator are not backward compatible with earlier ver-
sions of EViews, and will be dropped from the workfile if
opened in a version prior to 9.5.

rcovname= arg Name of the matrix for determining the user specified
residual covariance matrix.
(Applicable when “rcov=usercov” or “rcov=userfactor”.)

optmethod = arg Optimization method: “bfgs” (BFGS); “newton” (Newton-
Raphson), “opg” or “bhhh” (OPG or BHHH), “legacy”
(EViews legacy).
“bfgs” is the default for new equations.

optstep = arg Step method: “marquardt” (Marquardt - default); “dogleg”
(Dogleg); “linesearch” (Line search).
(Applicable when “optmethod=bfgs”, “optmethod=new-
ton” or “optmethod=opg”.)

b Use Berndt-Hall-Hall-Hausman (BHHH) as maximization
algorithm. The default is Marquardt.
(Applicable when “optmethod=legacy”.)

cov=arg Covariance method: “ordinary” (default method based on
inverse of the estimated information matrix), “huber” or
“white” (Huber-White sandwich method).

P PPc

System::garch—759

Examples
sys1.fiml

estimates SYS1 by FIML using the default settings.

sys1.fiml(rcov=diag)

estimates SYS1 by FIML with the off-diagonal residual covariances set to zero.

sys1.fiml(rcov=user, rcovname=mycov)

estimates a FIML model using MYCOV as the residual covariance matrix.

Cross-references

See Chapter 39. “System Estimation,” on page 645 of User’s Guide II for a discussion of sys-
tems in EViews.

Conditional variance/covariance of (G)ARCH estimation.

Displays the conditional variance, covariance or correlation of a system estimated by ARCH.

Syntax
system_name.garch(options) [arg1, arg2, ...]

covinfo = arg Information matrix method: “opg” (OPG); “hessian”
(observed Hessian), “
(Applicable when non-legacy “optmethod=” with
“cov=ordinary”.)

m=integer Maximum number of iterations.

c=number Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv / -fastderiv [Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

prompt Force the dialog to appear from within a program.

p Print estimation results.

garch System Views

760—Chapter 1. Object Reference

The optional arguments following the keyword indicate which endogenous variable to
include. If no argument is provided, all variables in the system will be included.

Options

Examples
sys1.garch(cor)

displays the conditional correlation graph of SYS1.

Cross-references

ARCH estimation is described in Chapter 25. “ARCH and GARCH Estimation,” on page 243
of User’s Guide II.

Estimation by generalized method of moments (GMM).

The system object must be specified with a list of instruments.

Syntax
system_name.gmm(options)

cor Display correlation.

cov (default) Display covariance.

var Display only variance.

sd Display only standard deviation.

graph (default) Display data in graph.

mat Display data in matrix format.

list Display data in list format.

smpl=arg Date to return conditional covariance value.

pre Include presample data (used with the mat option only).

prompt Force the dialog to appear from within a program.

p Print the graph

gmm System Methods

System::gmm—761

Options

Note that some options are only available for a subset of specifications.

m=integer Maximum number of iterations.

c=number Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

l=number Set maximum number of iterations on the first-stage itera-
tion to get the one-step weighting matrix.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv /
-fastderiv

[Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

w Use White’s diagonal weighting matrix (for cross section
data).

b=arg
(default=“nw”)

Specify the bandwidth: “nw” (Newey-West fixed band-
width based on the number of observations), number (user
specified bandwidth), “v” (Newey-West automatic variable
bandwidth selection), “a” (Andrews automatic selection).

q Use the quadratic kernel. Default is to use the Bartlett ker-
nel.

n Prewhiten by a first order VAR before estimation.

i Iterate simultaneously over the weighting matrix and the
coefficient vector.

s Iterate sequentially over the weighting matrix and coeffi-
cient vector.

o (default) Iterate only on the coefficient vector with one step of the
weighting matrix.

c One step (iteration) of the coefficient vector following one
step of the weighting matrix.

e TSLS estimates with GMM standard errors.

prompt Force the dialog to appear from within a program.

p Print results.

762—Chapter 1. Object Reference

Examples

For system estimation, the command:

sys1.gmm(b=a, q, i)

estimates the system SYS1 by GMM with a quadratic kernel, Andrews automatic bandwidth
selection, and iterates simultaneously over the weight and coefficient vectors until conver-
gence.

Cross-references

See Chapter 20. “Additional Regression Tools,” on page 23 and Chapter 39. “System Estima-
tion,” on page 645 of User’s Guide II for discussion of the various GMM estimation tech-
niques.

Gradients of the objective function.

Displays the gradients of the objective function (where available) for an estimated system
object.

The (default) summary form shows the value of the gradient vector at the estimated param-
eter values (if valid estimates exist) or at the current coefficient values. Evaluating the gradi-
ents at current coefficient values allows you to examine the behavior of the objective
function at starting values. The tabular form shows a spreadsheet view of the gradients for
each observation. The graphical form shows this information in a multiple line graph.

Syntax
system_name.grads(options)

Options

Examples

To show a summary view of the gradients:

sys1.grads

To print the table view:

sys1.grads(p)

Cross-references

See also System::derivs (p. 754).

grads System Views

p Print results.

System::jbera—763

Multivariate residual normality test.

Syntax
var_name.jbera(options)

You must specify a factorization method using the “factor=” option.

Options

The “name=” option stores the following matrix. Let the VAR have endogenous vari-
ables. Then the stored matrix will have dimension . The first rows contain
statistics for each orthogonal component, where the first column contains the third
moments, the second column contains the statistics for the third moments, the third col-
umn contains the fourth moments, and the fourth column holds the statistics for the
fourth moments. The sum of the second and fourth columns are the Jarque-Bera statistics
reported in the last output table.

The last row contains statistics for the joint test. The second and fourth column of the
 row is simply the sum of all the rows above in the corresponding column and are

the statistics for the joint skewness and kurtosis tests, respectively. These joint skewness
and kurtosis statistics add up to the joint Jarque-Bera statistic reported in the output table,
except for the “factor=cov” option. When this option is set, the joint Jarque-Bera statistic
includes all cross moments (in addition to the pure third and fourth moments). The overall
Jarque-Bera statistic for this statistic is stored in the first column of the row (which
will be a missing value for all other options).

jbera System Views

factor=chol Factorization by the inverse of the Cholesky factor of the
residual covariance matrix.

factor=cor Factorization by the inverse square root of the residual cor-
relation matrix (Doornik and Hansen, 1994).

factor=cov Factorization by the inverse square root of the residual
covariance matrix (Urzua, 1997).

name=arg Save the test statistics in a named matrix object. See below
for a description of the statistics contained in the stored
matrix.

prompt Force the dialog to appear from within a program.

p Print the test results.

k
k 1�� � 4u k

x1
2

x1
2

k 1�� �
xk

2

k 1�� �

764—Chapter 1. Object Reference

Examples
sys01.jbera(factor=cor,name=jb)

carries out the residual multivariate normality test using the inverse square root of the resid-
ual correlation matrix as the factorization matrix and stores the results in a matrix named
JB.

Cross-references

See Chapter 40. “Vector Autoregression and Error Correction Models,” on page 687 of User’s
Guide II for a discussion of the test in the context of VAR diagnostics.

Display or change the label view of the system object, including the last modified date and
display name (if any).

As a procedure, label changes the fields in the system object label.

Syntax
system_name.label

system_name.label(options) [text]

Options

The first version of the command displays the label view of the system. The second version
may be used to modify the label. Specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared.

Examples

The following lines replace the remarks field of system S1 with “Data from CPS 1988 March
File”:

s1.label(r)

s1.label(r) Data from CPS 1988 March File

label System Views | System Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

System::ls—765

To append additional remarks to S1, and then to print the label view:

s1.label(r) Log of hourly wage

s1.label(p)

To clear and then set the units field, use:

s1.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also System::displayname (p. 756).

Estimation by linear or nonlinear least squares regression.

Syntax
system_name.ls(options)

Options
General options

Examples
sys1.ls(m=100)

ls System Methods

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

s Use the current coefficient values in “C” as starting values
for equations with AR or MA terms (see also param
(p. 463)).

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv /
-fastderiv

[Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

766—Chapter 1. Object Reference

estimates SYS1 using least squares, with the maximum number of iterations set at 100.

Cross-references

Chapter 19. “Basic Regression Analysis,” on page 5 and Chapter 20. “Additional Regression
Tools,” on page 23 of User’s Guide II discuss the various regression methods in greater
depth.

See Chapter 16. “Special Expression Reference,” on page 621 of the Command and Program-
ming Reference for special terms that may be used in system ls specifications.

Make a group out of the endogenous series.

Syntax
system_name.makeendog name

Following the keyword makeendog, you should provide a name for the group to hold the
endogenous series. If you do not provide a name, EViews will create an untitled group.

Examples
sys1.makeendog grp_v1

creates a group named GRP_V1 that contains the endogenous series in SYS1.

Cross-references

See also System::endog (p. 756) and Model::makegroup (p. 440).

Generate conditional variance series.

Saves the estimated conditional variance (from a system estimated using ARCH) as a named
series. You may also save the conditional covariance or correlation.

Syntax
system_name.makegarch(options) [series1_name series2_name]

The optional series name arguments following the makegarch keyword indicate which
endogenous variables to include. If no argument is given, all variables in the system will be
included.

makeendog System Procs

makegarch System Procs

System::makeloglike—767

Options

Examples
sys01.makegarch

creates conditional variances and conditional covariance series using the default names
GARCH_01, GARCH_02, etc. for the conditional variance and GARCH_01_02, GARCH_01_03,
etc. for the conditional covariance.

sys01.makegarch(mat, cor, date=12/11/2000, name=cov_mat)

creates a matrix named COV_MAT that contains the conditional correlation for the date 12/
11/2000.

Cross-references

See Chapter 25. “ARCH and GARCH Estimation,” on page 243 of User’s Guide II for a discus-
sion of GARCH models.

See also System::arch (p. 746), System::arch (p. 746), Equation::archtest (p. 46),
and System::garch (p. 759).

Create and save log likelihood contribution from system (ARCH estimation).

Syntax
system_name.makeloglike [ser1]

After the keyword, provide an optional name to save the log likelihood contribution. If you
do not provide a name, EViews will name the series using the next available name of the
form “LOGLIKE##”. (If LOGLIKE01 already exists, it will be named LOGLIKE02, and so on.)

cor Generate conditional correlation.

cov (default) Generate conditional variance and covariance.

var Generate conditional variance.

mat Output as a matrix (default is to output as a series).

name=arg Base name or matrix name of the data to be saved.

date=arg Date to return conditional covariance value (used only with
the mat option).

pre Include presample data (used only with the mat option).

prompt Force the dialog to appear from within a program.

makeloglike System Procs

768—Chapter 1. Object Reference

Examples
sys1.makeloglike logl

creates a series of log likelihood contribution for the system and saves it in the series LOG1.

Make a model from a system of equations.

Syntax
system_name.makemodel(name) assign_statement

If you provide a name for the model in parentheses after the keyword, EViews will create the
named model in the workfile. If you do not provide a name, EViews will open an untitled
model window if the command is executed from the command line.

Examples
sys3.makemodel(sysmod) @prefix s_

makes a model named SYSMOD from the estimated system. SYSMOD includes an assign-
ment statement “ASSIGN @PREFIX S_”. Use the command “show sysmod” or “sys-
mod.spec” to open the SYSMOD window.

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of specifying and
solving models in EViews.

See also System::append (p. 745), Model::merge (p. 441) and Model::solve (p. 452).

Create residual series.

Creates and saves residuals in the workfile from an estimated system object.

Syntax
system_name.makeresids(options) [residual_names]

Follow the system name with a period and the makeresids keyword, then provide a list of
names to be given to the stored residuals. You should provide as many names as there are
equations. If there are fewer names than equations, EViews creates the extra residual series
with names RESID01, RESID02, and so on. If you do not provide any names, EViews will
also name the residuals RESID01, RESID02, and so on.

makemodel System Procs

makeresids System Procs

System::output—769

Options

Examples
sys1.makeresids res_sys1

creates a set of series containing the residuals from the system using RES_SYS1 to name the
first equation residual, and RESID01, RESID02, etc., to name the remaining residuals.

Cross-references

See System::resids (p. 772).

Push updates to OLE linked objects in open applications.

Syntax
system_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Display estimation output.

output changes the default object view to display the estimation output (equivalent to
using System::results (p. 773)).

n=arg Create group object to hold the residual series.

chol Standardized residuals factorized using the inverse of
Cholesky factor of the (conditional) covariance matrix (for
system ARCH).

cor Standardized residuals factorized using the inverse square
root of the (conditional) correlation matrix (for system
ARCH).

cov Standardized residuals factorized using the inverse square
root of the (conditional) covariance matrix (for system
ARCH).

bn=arg Base name used to generate the name of the residual series.

prompt Force the dialog to appear from within a program.

olepush System Procs

output System Views

770—Chapter 1. Object Reference

Syntax
system_name.output

Options

Examples

The output keyword may be used to change the default view of an estimation object. Enter-
ing the command:

sys1.output

displays the estimation output for system SYS1.

Cross-references

See System::results (p. 773).

Multivariate residual autocorrelation Portmanteau tests.

Syntax
system_name.qstats(h, options)

You must specify the highest order of lag h to test for serial correlation.

Options

p Print estimation output for estimation object

qstats System Views

maxlag=arg Maximum lag in system specification (default=0).

chol Standardized residuals factorized using the inverse of
Cholesky factor of the (conditional) covariance matrix (for
system ARCH).

cor Standardized residuals factorized using the inverse square
root of the (conditional) correlation matrix (for system
ARCH).

cov Standardized residuals factorized using the inverse square
root of the (conditional) covariance matrix (for system
ARCH).

prompt Force the dialog to appear from within a program.

p Print the Portmanteau test results.

System::residcor—771

Examples
show sys1.qstats(l0)

displays the portmanteau tests for lags up to 10.

Cross-references

See “Diagnostic Views” on page 702 of User’s Guide II for a discussion of the Portmanteau
tests and other VAR diagnostics.

See Var::arlm (p. 845) for a related multivariate residual serial correlation LM test.

Display text of specification for system objects.

Syntax
system_name.representation(options)

Options

Examples
sys1.representations

displays the specifications of the equations in SYS1.

Residual correlation matrix.

Displays the correlations of the residuals from each equation in the system.

Syntax
system_name.residcor(options)

Options

Examples
sys1.residcor

displays the residual correlation matrix of SYS1.

representations System Views

p Print the representation text.

residcor System Views

p Print the correlation matrix.

772—Chapter 1. Object Reference

Cross-references

See also System::residcov (p. 772) and System::makeresids (p. 768).

Residual covariance matrix.

Displays the covariances of the residuals from each equation in the system.

Syntax
system_name.residcov(options)

Options

Examples
sys1.residcov

displays the residual covariance matrix of SYS1.

Cross-references

See also System::residcor (p. 771) and System::makeresids (p. 768).

Display residuals.

resids displays multiple graphs or a spreadsheet of the residuals. Each graph will contain
the residuals for each equation in the system.

Syntax
system_name.resids(options)

Options

Examples
sys1.resids

displays a graph of the residual series in system SYS1.

residcov System Views

p Print the covariance matrix.

resids System Views

sheet Display residuals in spreadsheet.

p Print the table/graph.

System::setattr—773

Cross-references

See also System::makeresids (p. 768).

Displays the results view of an estimated system.

Syntax
system_name.results(options)

Options

Examples
sys1.results(p)

displays and prints the results of SYS1.

Set the object attribute.

Syntax
system_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

results System Views

p Print the view.

setattr System Procs

774—Chapter 1. Object Reference

Display the text specification view for system objects.

Syntax
system_name.spec(options)

Options

Examples
sys1.spec

displays the specification of the system object SYS1.

Cross-references

See also System::append (p. 745).

Estimate a system object using seemingly unrelated regression (SUR).

Note that the EViews procedure is more general than textbook versions of SUR since the sys-
tem of equations may contain cross-equation restrictions on parameters.

Syntax
system_name.sur(options)

Options

spec System Views

p Print the specification text.

sur System Methods

i Iterate on the weighting matrix and coefficient vector
simultaneously.

s Iterate on the weighting matrix and coefficient vector
sequentially.

o (default) Iterate only on the coefficient vector with one step of the
weighting matrix.

c One step iteration on the coefficient vector after one step of
the weighting matrix.

m=integer Maximum number of iterations.

System::system—775

Examples
sys1.sur(i)

estimates SYS1 by SUR, iterating simultaneously on the weighting matrix and coefficient
vector.

nlsys.sur(showopts,m=500)

estimates NLSYS by SUR with up to 500 iterations. The “showopts” option displays the start-
ing values.

Cross-references

See Chapter 39. “System Estimation,” on page 645 of User’s Guide II for a discussion of sys-
tem estimation.

Declare system of equations.

Syntax
system system_name

Follow the system keyword by a name for the system. If you do not provide a name, EViews
will open an untitled system object (if in interactive mode).

Examples
system mysys

creates a system named MYSYS.

c=number Set convergence criterion.The criterion will be set to the
nearest value between 1e-24 and 0.2.

l=number Set maximum number of iterations on the first-stage itera-
tion to get one-step weighting matrix.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv /
-fastderiv

[Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

prompt Force the dialog to appear from within a program.

p Print estimation results.

system System Declaration

776—Chapter 1. Object Reference

Cross-references

Chapter 39. “System Estimation,” on page 645 of User’s Guide II provides a full discussion of
system objects.

See System::append (p. 745) for adding specification lines to an existing system.

Two-stage least squares.

Syntax
system_name.tsls(options)

There must be at least as many instrumental variables as there are independent variables.
All exogenous variables included in the regressor list should also be included in the instru-
ment list. A constant is included in the list of instrumental variables even if not explicitly
specified.

Options
General options

tsls System Methods

m=integer Set maximum number of iterations.

c=number Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv /
-fastderiv

[Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

i Iterate on the weighting matrix and coefficient vector
simultaneously.

s Iterate on the weighting matrix and coefficient vector
sequentially.

o (default) Iterate only on the coefficient vector with one step of the
weighting matrix.

c One step iteration of the coefficient vector after one step of
the weighting matrix.

System::wald—777

Examples
sys1.tsls

estimates the system object using TSLS.

Cross-references

See “Two-Stage Least Squares” on page 647 of User’s Guide II for details on two-stage least
squares estimation in systems.

See also System::ls (p. 765). For estimation of weighted TSLS in systems, see Sys-
tem::wtsls (p. 779).

Update coefficient object values from system object.

Copies coefficients from the system into the appropriate coefficient vector or vectors.

Syntax
system_name.updatecoefs

Follow the name of the system object by a period and the keyword updatecoefs.

Examples
SYS1.updatecoefs

places the coefficients from SYS1 in the coefficient vectors used in the system.

Cross-references

See also Coef::coef (p. 20).

Wald coefficient restriction test.

The wald view carries out a Wald test of coefficient restrictions for a system object.

l=number Set maximum number of iterations on the first-stage itera-
tion to get one-step weighting matrix.

prompt Force the dialog to appear from within a program.

p Print estimation results.

updatecoefs System Procs

wald System Views

778—Chapter 1. Object Reference

Syntax
system_name.wald restrictions

Enter the system name, followed by a period, and the keyword. You must provide a list of
the coefficient restrictions, with joint (multiple) coefficient restrictions separated by com-
mas.

Options

Examples
sys1.wald c(2)=c(3)*c(4)

tests the non-linear restriction that the second coefficient is equal to the product of the third
and fourth coefficients in SYS1.

Cross-references

See “Wald Test (Coefficient Restrictions)” on page 182 of User’s Guide II for a discussion of
Wald tests.

See also System::cellipse (p. 751), testdrop (p. 502), testadd (p. 502).

Estimates a system of equations using weighted least squares.

Syntax
system_name.wls(options)

Options

p Print the test results.

wls System Methods

i Iterate simultaneously over the weighting matrix and coef-
ficient vector.

s Iterate sequentially over the computation of the weighting
matrix and the estimation of the coefficient vector.

o (default) Iterate the estimate of the coefficient vector to convergence
following one-iteration of the weighting matrix.

c One step (iteration) of the coefficient vector estimates fol-
lowing one iteration of the weighting matrix.

m=integer Maximum number of iterations.

System::wtsls—779

Examples
sys1.wls

estimates the system of equations in SYS1 by weighted least squares.

Cross-references

See Chapter 39. “System Estimation,” on page 645 of User’s Guide II for a discussion of sys-
tem estimation.

See also the available options for weighted least squares in System::ls (p. 765).

Perform weighted two-stage least squares estimation of a system of equations.

Syntax
system_name.wtls(options)

Options

c=number Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

l=number Set maximum number of iterations on the first-stage coeffi-
cient estimation to get one-step weighting matrix.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv /
-fastderiv

[Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

prompt Force the dialog to appear from within a program.

p Print the estimation results.

wtsls System Methods

i Iterate simultaneously over the weighting matrix and coef-
ficient vector.

s Iterate sequentially over the computation of the weighting
matrix and the estimation of the coefficient vector.

o (default) Iterate the coefficient vector to convergence following one-
iteration of the weighting matrix.

780—Chapter 1. Object Reference

Examples
sys1.wtsls

estimates the system of equations in SYS1 by weighted two-stage least squares.

Cross-references

See “Weighted Two-Stage Least Squares” on page 647 of User’s Guide II for further discus-
sion.

See also System::tsls (p. 776) for both unweighted and weighted single equation 2SLS.

c One step (iteration) of the coefficient vector following one
iteration of the weighting matrix.

m=integer Maximum number of iterations.

c=number Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

l=number Set maximum number of iterations on the first-stage itera-
tion to get the one-step weighting matrix.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv /
-fastderiv

[Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

prompt Force the dialog to appear from within a program.

p Print estimation results.

System::wtsls—781

782—Chapter 1. Object Reference

Table

Table object. Formatted two-dimensional table for output display.

Table Declaration
freeze freeze tabular view of object (p. 368).
table..................... create table object (p. 811).

To declare a table object, use the keyword table, followed by an optional row and column
dimension, and then the object name:

table onelement

table(10,5) outtable

If no dimension is provided, the table will contain a single element.

Alternatively, you may declare a table using an assignment statement. The new table will be
sized and initialized, accordingly:

table newtable=outtable

Lastly, you may use the freeze command to create tables from tabular views of other
objects:

freeze(newtab) ser1.freq

Table Views
display display table, graph, or spool in object window(p. 789).
label..................... label information for the table object (p. 791).
sheet view the table (p. 810).
table..................... view the table (p. 811).

Table Procs
clearhist clear the contents of the history attribute (p. 784).
comment adds or removes a comment in a table cell (p. 785).
copyrange............. copies a portion of the table to another table (p. 786).
copytable.............. copies the entire table to another table (p. 787).
deletecol............... Remove columns from a table (p. 787).
deleterow Remove rows from a table (p. 788).
displayname set display name (p. 789).
insertcol insert additional columns into a table (p. 790).
insertrow.............. insert additional rows into a table (p. 790).
olepush push updates to OLE linked objects in open applications (p. 792).
save save table as CSV, tab-delimited ASCII text, RTF, HTML, Enhanced

Metafile, PDF, or LaTeX file on disk (p. 792).
setattr................... set the value of an object attribute (p. 794).

Table::—783

setfillcolorset the fill (background) color of a set of table cells (p. 795).
setfont...................set the font for the text in a set of table cells (p. 797).
setformat...............set the display format of a set of table cells (p. 798).
setheightset the row height in a set of table cells (p. 802).
setindentset the indentation for a set of table cells (p. 803).
setjustset the justification for a set of table cells (p. 803).
setlinesset the line characteristics and borders for a set of table cells

(p. 804).
setmergemerge or unmerge a set of table cells (p. 806).
setprefixset the cell prefix string for the specified table cells (p. 807).
setsuffixset the cell suffix string for the specified table cells (p. 808).
settextcolorset the text color in a set of table cells (p. 808).
setwidth................set the column width for a set of table cells (p. 809).
sortsort the rows of the specified selection of cells (p. 810).
titleassign or change the title of a table (p. 812).

Table Data Members
String values

@attr(“arg”)..........string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description.........string containing the Table object’s description (if available).
@detailedtypestring with the object type: “TABLE”.
@displaynamestring containing the Table object’s display name. If the Table has

no display name set, the name is returned.
@namestring containing the Table object’s name.
@remarksstring containing the Table object’s remarks (if available).
@source................string containing the Table object’s source (if available).
@titlestring containing the Table object’s title (if available).
@typestring with the object type: “TABLE”.
@units..................string containing the Table object’s units description (if available).
@updatetimestring representation of the time and date at which the Table was

last updated.

Scalar values

(i,j)the (i,j)-th element of the table, formatted as a string.
@colsnumber of columns in the table.
@rowsnumber of rows in the table.

Table Commands
setcellformat and fill in a table cell (p. 481).

784—Chapter 1. Object Reference

setcolwidth........... set width of a table column (p. 482).
setline place a horizontal line in table (p. 483).
tabplace................ insert a table into another table (p. 501).

All of the these commands are in the Command and Programming Reference. Note that with
the exception of tabplace, these commands are supported primarily for backward compat-
iblity. There is a more extensive set of table procs for working with and customizing tables.
See “Table Procs,” on page 782.

Table Examples
table(5,5) mytable

%strval = mytable(2,3)

mytable(4,4) = "R2"

mytable(4,5) = @str(eq1.@r2)

Table Entries

The following section provides an alphabetical listing of the commands associated with the
“Table” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Clear the contents of the history attribute for table objects.

Removes the table’s history attribute, as shown in the label view of the table.

Syntax
table_name.clearhist

Examples
t1.clearhist

t1.label

The first line removes the history from the table T1, and the second line displays the label
view of T1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Table::label (p. 791).

clearhist Table Procs

Table::comment—785

Adds or removes a comment in a table cell.

Syntax
table_name.comment(cell_arg) [comment_arg]

where cell_arg, which identifies the cell, can take one of the following forms:

and where comment_arg is a string expression enclosed in double quotes. If command_arg is
omitted, a previously defined comment will be removed.

Examples

To add a comment, “hello world”, to the cell in the second row, fourth column, you may use
one of the following:

tab1.comment(d2) "hello world"

tab1.comment(r2c4) "hello world"

tab1.comment(2,d) "hello world"

tab1.comment(2,4) "hello world"

To remove a comment, simply omit the comment_arg:

tab1.comment(d2)

clears the comment (if present) from the second row, fourth column.

Cross-references

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets” in the Command and Programming Reference. See also Table::setlines
(p. 804) and Table::setmerge (p. 806).

comment Table Procs

cell Cell identifier. You can reference cells using either the col-
umn letter and row number (e.g., “A1”), or by using “R”
followed by the row number followed by “C” and the col-
umn number (e.g., “R1C2”).

row[,] col Row number, followed by column letter or number (e.g.,
“2,C”, or “2,3”), separated by “,”.

786—Chapter 1. Object Reference

Copies a portion of the table to the specified location in another table.

Syntax
table_name.copyrange s1 s2 destname d1

table_name.copyrange sr1 sc1 sr2 sc2 destname dr1 dc1

The copyrange command can be specified either using coordinates where columns are signi-
fied with a letter, and rows by a number (for example “A3” represents the first column, third
row), or by row number and column number.

The first syntax represents coordinate form, where s1 specifies the upper-left coordinate por-
tion of the section of the source table to be copied, s2 specifies the bottom-right coordinate,
destname specifies the name of the table to copy to, and d1 specifies the upper-left coordi-
nate of the destination table.

The second syntax represents the row/column number form, where sr1 specifies the source
table upper row number, sc1 specifies the source table left most column number, sr2 speci-
fies the source table bottom row number, sc2 specifies the source table right most column
number. destname specifies the name of the table to copy to, and dr1 and dr2 specify the
upper and left most row and column of the destination table, respectively.

Examples
table1.copyrange B2 D4 table2 A1

places a copy of the data from cell range B2 to D4 in TABLE1 to TABLE2 at cell A1

table1.copyrange 1 1 1 5 table2 1 3

copies 5 rows of data in the first column of data in table1 to the top of the 3rd column of
TABLE2.

Cross-references

See also Table::copytable (p. 787).

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

copyrange Table Procs

Table::deletecol—787

Copies the entire table to the specified location in another table.

Syntax
table_name.copytable destname d1

table_name.copytable destname dr1 dc1

The copytable command can be specified either using coordinates where columns are signi-
fied with a letter, and rows by a number (for example “A3” represents the first column, third
row), or by row number and column number.

The first syntax represents coordinate form, where destname specifies the name of the table
to copy to, and d1 specifies the upper-left coordinate of the destination table.

The second syntax represents the row/column number form, where destname specifies the
name of the table to copy to, and dr1 and dr2 specify the upper and left most row and col-
umn of the destination table, respectively.

Examples
table1.copytable table2 A10

copies all of the data in TABLE1 to the 1st column and 10th row of TABLE2.

table1.copytable table2 1 5

copies all of the data in TABLE1 to the 5th column and first row of TABLE2.

Cross-references

See also Table::copyrange (p. 786).

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

Removes columns from a table.

Syntax
table_name.deletecol(col_loc) [num_cols]

copytable Table Procs

deletecol Table Procs

788—Chapter 1. Object Reference

where col_loc specifies the first column to be removed. The col_loc may either be the integer
column number (e.g. “3”) or the column letter (e.g. “C”).

The num_cols specifies the number of columns to remove from the table. If num_cols is not
provided, the default is one.

Examples
tab1.deletecol(d) 2

removes two columns beginning at the “d” or fourth column.

Cross-references

For other row and columns operations, see Table::deleterow (p. 788), Table::insert-
col (p. 790), and Table::insertrow (p. 790).

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

Removes rows from a table.

Syntax
table_name.deleterow(row_loc) [num_rows]

where row_loc is an integer which specifies the first row to remove, and num_rows specifies
the number of rows to remove from the table. If num_rows is not provided, the default is
one.

Examples
tab1.deleterow(2) 5

removes five rows beginning with the second row.

Cross-references

For other row and columns operations, see Table::deletecol (p. 787), Table::insert-
col (p. 790), and Table::insertrow (p. 790).

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

deleterow Table Procs

Table::displayname—789

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

Display table, graph, or spool output in the table object window.

Display the contents of a table, graph, or spool in the window of the table object.

Syntax
table_name.display object_name

Examples
table1.display tab1

Display the contents of the table TAB1 in the window of the object TABLE1.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names. See also Table::label (p. 791).

Display name for table objects.

Attaches a display name to a table object which may be used to label output in place of the
standard table object name.

Syntax
table_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in table object names.

Examples
hrs.displayname Hours Worked

hrs.label

The first line attaches a display name “Hours Worked” to the table object HRS, and the sec-
ond line displays the label view of HRS, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

display Table Views

displayname Table Procs

790—Chapter 1. Object Reference

See also Table::label (p. 791).

Insert additional columns in a table.

Syntax
table_name.insertcol(col_loc) [num_cols]

where col_loc specifies the column location to insert the new columns. The col_loc may
either be the integer column number (e.g. “3”) or the column letter (e.g. “C”).

The num_cols specifies the number of columns to insert into the table. If num_cols is not
provided, the default is one.

Examples
tab1.insertcol(d) 2

inserts two new columns beginning at the “d” or fourth column.

Cross-references

For other row and columns operations, see Table::deleterow (p. 788), Table::delete-
col (p. 787), and Table::insertrow (p. 790).

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

Insert additional rows in a table.

Syntax
table_name.insertrow(row_loc) [num_rows]

where row_loc is an integer which specifies the row location to insert the new rows, and
num_rows specifies the number of rows to insert. If num_rows is not provided, the default is
one.

Examples
tab1.insertrow(2) 5

inserts five new rows beginning at the second row.

insertcol Table Procs

insertrow Table Procs

Table::label—791

Cross-references

For other row and columns operations, see Table::deleterow (p. 788), Table::delete-
col (p. 787), and Table::insertcol (p. 790).

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

Display or change the label view of the table object, including the last modified date and
display name (if any).

As a procedure, label changes the fields in the table label.

Syntax
table_name.label

table_name.label(options) [text]

Options

The first version of the command displays the label view of the table. The second version
may be used to modify the label. Specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared.

Examples

The following lines replace the remarks field of the table TAB1 with “Data from CPS 1988
March File”:

tab1.label(r)

tab1.label(r) Data from CPS 1988 March File

To append additional remarks to TAB1, and then to print the label view:

label Table Views | Table Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

792—Chapter 1. Object Reference

tab1.label(r) Log of hourly wage

tab1.label(p)

To clear and then set the units field, use:

tab1.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Table::displayname (p. 789).

Push updates to OLE linked objects in open applications.

Syntax
table_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Save table to disk as a CSV, tab-delimited ASCII text, RTF, HTML, Enhanced Metafile,
LaTeX, or PDF file.

Syntax
table_name.save(options) [path\]file_name

Follow the keyword with a name for the file. file_name may include the file type extension,
or the file type may be specified using the “t=” option.

If an explicit path is not specified, the file will be stored in the default directory, as set in the
File Locations global options.

olepush Table Procs

save Table Procs

Table::save—793

Options

PDF Options

t=file_type
(default=“csv”)

Specifies the file type, where file_type may be one of: “csv”
(CSV - comma-separated), “rtf” (Rich-text format), “txt”
(tab-delimited text), “html” (HTML - Hypertext Markup
Language), “emf” (Enhanced Metafile), “pdf” (PDF - Porta-
ble Document Format), or “tex” (LaTeX).
Files will be saved with the “.csv”, “.rtf”, “.txt”, “.htm”,
“emf”, and “pdf” extensions, respectively.

s=arg Scale size, where arg is from 5 to 200, representing the per-
centage of the original table size (only valid for HTML or
RTF files).

r=cell_range Range of table cells to be saved. See Table::setfill-
color (p. 795) for the cell_range syntax. If a range is not
provided, the entire table will be saved.

n=string Replace all cells that contain NA values with the specified
string. “NA” is the default.

f / -f [Use full precision values/ Do not use full precision] when
saving values to the table (only applicable to numeric
cells). By default, the values will be saved as they appear
in the currently formatted table.

prompt Force the dialog to appear from within a program.

landscape Save in landscape mode (the default is to save in portrait
mode).

size=arg
(default=“letter”)

Page size: “letter”, “legal”, “a4”, and “custom”.

width=number
(default=8.5)

Page width in inches if “size=custom”.

height=number
(default=11)

Page height in inches if “size=custom”.

leftmargin=number
(default=0.5)

Left margin width in inches.

rightmargin=number
(default = 0.5)

Right margin width in inches.

topmargin=number
(default=1)

Top margin width in inches.

bottommargin=
number (default = 1)

Bottom margin width in inches.

794—Chapter 1. Object Reference

LaTeX Options

Examples

The command:

tab1.save mytable

saves TAB1 to a CSV file named “MYTABLE.CSV” in the default directory.

tab1.save(t=csv, n="NAN") mytable

saves TAB1 to a CSV (comma separated value) file named MYTABLE.CSV and writes all NA
values as “NAN”.

tab1.save(r=B2:C10, t=html, s=50) mytable

saves from data from the second row, second column, to the tenth row, third column of
TAB1 to a HTML file named MYTABLE.HTM at half of the original size.

tab1.save(f, n=".", r=B) mytable

saves the data in the second column in full precision to a CSV file named “MYTABLE.CSV”,
and writes all NA values as “.”.

Cross-references

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See Chapter 16. “Table and Text Objects,” beginning on page 789 of User’s Guide I for a dis-
cussion of tables.

Set the object attribute.

Syntax
table_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

texspec / -texspec [Include / Do not include] the full LaTeX documentation
specification in the LaTeX output. The default behavior is
taken from the global default settings.

setattr Table Procs

Table::setfillcolor—795

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Set the fill (background) color of the specified table cells.

Syntax
table_name.setfillcolor(cell_range) color_arg

where cell_range can take one of the following forms:

The color_arg specifies the color to be applied to the text in the cells. The color may be spec-
ified using predefined color names, or by specifying the individual red-green-blue (RGB)
components using the special “@RGB” function. The latter method is obviously more diffi-
cult, but allows you to use custom colors.

setfillcolor Table Procs

@all Apply to all cells in the table.

cell Cell identifier. You can identify cells using either the col-
umn letter and row number (e.g., “A1”), or by using “R”
followed by the row number followed by “C” and the col-
umn number (e.g., “R1C2”).

row[,] col Row number, followed by column letter or number (e.g.,
“2,C”, or “2,3”), separated by “,”. Apply to cell.

row Row number (e.g., “2”). Apply to all cells in the row.

col Column letter (e.g., “B”). Apply to all cells in the column.

first_cell[:]last_cell,
first_cell[,]last_cell

Top left cell of the selection range (specified in “cell” for-
mat), followed by bottom right cell of the selection range
(specified in “cell” format), separated by a “:” or “,” (e.g.,
“A2:C10”, “A2,C10”, or “R2C1:R10C3”, “R2C1,R10C3”).
Apply to all cells in the rectangular region defined by the
first cell and last cell.

first_cell_row[,]
first_cell_col[,] last_-
cell_row[,] last_-
cell_col

Top left cell of the selection range (specified in “row[,] col”
format), followed by bottom right cell of the selection
range (specified in “row[,] col” format), separated by a “,”
(e.g., “2,A,10,C” or “2,1,10,3”). Apply to all cells in the
rectangular region defined by the first cell and last cell.

796—Chapter 1. Object Reference

The predefined colors are given by the keywords (with their RGB equivalents):

Examples

To set a purple background color for the cell in the second row and third column of TAB1,
you may use any of the following:

tab1.setfillcolor(C2) @rgb(128, 0, 128)

tab1.setfillcolor(2,C) @RGB(128, 0, 128)

tab1.setfillcolor(2,3) purple

tab1.setfillcolor(r2c3) purple

You may also specify a yellow color for the background of an entire column, or an entire
row,

tab1.setfillcolor(C) @RGB(255, 255, 0)

tab1.setfillcolor(2) yellow

or for the background of the cells in a rectangular region:

tab1.setfillcolor(R2C3:R3C6) ltgray

tab1.setfillcolor(2,C,3,F) @rgb(192, 192, 192)

tab1.setfillcolor(2,3,3,6) @rgb(192, 192, 192)

Cross-references

See Table::settextcolor (p. 808) and Table::setfont (p. 797) for details on chang-
ing text color and font, and Table::setlines (p. 804) for drawing lines between and
through cells.

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

blue @rgb(0, 0, 255)

red @rgb(255, 0, 0)

green @rgb(0, 128, 0)

black @rgb(0, 0, 0)

white @rgb(255, 255, 255)

purple @rgb(128, 0, 128)

orange @rgb(255, 128, 0)

yellow @rgb(255, 255, 0)

gray @rgb(128, 128, 128)

ltgray @rgb(192, 192, 192)

Table::setfont—797

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

Set the font for text in the specified table cells.

Syntax
table_name.setfont(cell_range) font_args

The font_args may include one or more of the following:

and type is one of “all”, “axes”, “legend”, “text”, “obs”, where “axes” refers to the axes
labels, “legend” refers to the graph legend, “text” refers to the text objects, “obs” refers to
the observation scale, and “all” refers to all of the elements.

Examples
tab1.setfont(B3:D10) "Times New Roman" +i

sets the font to Times New Roman Italic for the cells defined by the rectangle from B3 (row
3, column 2) to D10 (row 10, column 4).

tab1.setfont(3,B,10,D) 8pt

changes all of text in the region to 8 point.

tab1.setfont(4,B) +b -i

removes the italic, and adds boldface to the B4 cell (row 4, column 2).

The commands:

tab1.setfont(b) -s +u 14pt

tab1.setfont(2) "Batang" 14pt +u

modify the fonts for the column B, and row 2, respectively. The first command changes the
point size to 14, removes strikethrough and adds underscoring. The second changes the
typeface to Batang, and adds underscoring,

setfont Table Procs

type([face], [pt],
[+/- b], [+/- i],
[+/- u], [+/- s])

Set characteristics of the font for the graph element type.
The font name (face), size (pt), and characteristics are all
optional. face should be a valid font name, enclosed in dou-
ble quotes. pt should be the font size in points. The remain-
ing options specify whether to turn on/off boldface (b),
italic (i), underline (u), and strikeout (s) styles.

798—Chapter 1. Object Reference

Cross-references

See Table::settextcolor (p. 808) and Table::setfillcolor (p. 795) for details on
changing text color and font, and Table::setlines (p. 804) for drawing lines between
and through cells.

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

Set the display format for cells in a table view.

Syntax
table_name.setformat(cell_range) format_arg

where format_arg is a set of arguments used to specify format settings. If necessary, you
should enclose the format_arg in double quotes.

The cell_range option is used to describe the cells to be modified. It may take one of the fol-
lowing forms:

setformat Table Procs

@all Apply to all cells in the table.

cell Cell identifier. You can identify cells using either the column
letter and row number (e.g., “A1”), or by using “R” followed
by the row number followed by “C” and the column number
(e.g., “R1C2”).

row[,] col Row number, followed by column letter or number (e.g.,
“2,C”, or “2,3”), separated by “,”. Apply to cell.

row Row number (e.g., “2”). Apply to all cells in the row.

col Column letter (e.g., “B”). Apply to all cells in the column.

Table::setformat—799

To format numeric values, you should use one of the following format specifications:

To specify a format that groups digits into thousands using a comma separator, place a “t”
after the format character. For example, to obtain a fixed number of decimal places with
commas used to separate thousands, use “ft[.precision]”.

To use the period character to separate thousands and commas to denote decimal places,
use “..” (two periods) when specifying the precision. For example, to obtain a fixed number
of characters with a period used to separate thousands, use “ct[..precision]”.

If you wish to display negative numbers surrounded by parentheses (i.e., display the num-
ber -37.2 as “(37.2)”), you should enclose the format string in “()” (e.g., “f(.8)”).

To format numeric values using date and time formats, you may use a subset of the possible
date format strings (see “Date Formats” on page 97 of the Command and Programming Ref-
erence). The possible format arguments, along with an example of the date number
730856.944793113 (January 7, 2002 10:40:30.125 p.m) formatted using the argument are
given by:

first_cell[:]last_cell,
first_cell[,]last_cell

Top left cell of the selection range (specified in “cell” for-
mat), followed by bottom right cell of the selection range
(specified in “cell” format), separated by a “:” or “,” (e.g.,
“A2:C10”, “A2,C10”, or “R2C1:R10C3”, “R2C1,R10C3”).
Apply to all cells in the rectangular region defined by the
first cell and last cell.

first_cell_row[,]
first_cell_col[,] last_-
cell_row[,] last_-
cell_col

Top left cell of the selection range (specified in “row[,] col”
format), followed by bottom right cell of the selection range
(specified in “row[,] col” format), separated by a “,” (e.g.,
“2,A,10,C” or “2,1,10,3”). Apply to all cells in the rectangu-
lar region defined by the first cell and last cell.

g[.precision] significant digits

f[.precision] fixed decimal places

c[.precision] fixed characters

e[.precision] scientific/float

p[.precision] percentage

r[.precision] fraction

WF (uses current EViews workfile
period display format)

YYYY “2002”

YYYY-Mon “2002-Jan”

800—Chapter 1. Object Reference

YYYYMon “2002 Jan”

YYYY[M]MM “2002[M]01”

YYYY:MM “2002:01”

YYYY[Q]Q “2002[Q]1”

YYYY:Q “2002:Q

YYYY[S]S “2002[S]1” (semi-annual)

YYYY:S “2002:1”

YYYY-MM-DD “2002-01-07”

YYYY Mon dd “2002 Jan 7”

YYYY Month dd “2002 January 7”

YYYY-MM-DD HH:MI “2002-01-07 22:40”

YYYY-MM-DD HH:MI:SS “2002-01-07 22:40:30”

YYYY-MM-DD HH:MI:SS.SSS “2002-01-07 22:40:30.125”

Mon-YYYY “Jan-2002”

Mon dd YYYY “Jan 7 2002”

Mon dd, YYYY “Jan 7, 2002”

Month dd YYYY “January 7 2002”

Month dd, YYYY “January 7, 2002”

MM/DD/YYYY “01/07/2002”

mm/DD/YYYY “1/07/2002”

mm/DD/YYYY HH:MI “1/07/2002 22:40”

mm/DD/YYYY HH:MI:SS “1/07/2002 22:40:30”

mm/DD/YYYY HH:MI:SS.SSS “1/07/2002 22:40:30.125”

mm/dd/YYYY “1/7/2002”

mm/dd/YYYY HH:MI “1/7/2002 22:40”

mm/dd/YYYY HH:MI:SS “1/7/2002 22:40:30”

mm/dd/YYYY HH:MI:SS.SSS “1/7/2002 22:40:30.125”

dd/MM/YYYY “7/01/2002”

dd/mm/YYYY “7/1/2002”

DD/MM/YYYY “07/01/2002”

dd Mon YYYY “7 Jan 2002”

dd Mon, YYYY “7 Jan, 2002”

dd Month YYYY “7 January 2002”

dd Month, YYYY “7 January, 2002”

dd/MM/YYYY HH:MI “7/01/2002 22:40”

Table::setformat—801

Note that the “hh” formats display 24-hour time without leading zeros. In our examples
above, there is no difference between the “HH” and “hh” formats for 10 p.m.

Also note that all of the “YYYY” formats above may be displayed using two-digit year “YY”
format.

Examples

To set the format of a cell to fixed 5-digit precision, provide the format specification and a
valid cell specification:

tab1.setformat(A2) f.5

You may use any of the date formats given above:

tab1.setformat(A3) YYYYMon

tab1.setformat(B1) "YYYY-MM-DD HH:MI:SS.SSS"

The cell specification may be described in a variety of ways:

tab1.setformat(B2) hh:MI:SS.SSS

tab1.setformat(2,B,10,D) g(.3)

tab1.setformat(R2C2:R4C4) "dd/MM/YY HH:MI:SS.SSS"

Cross-references

See Table::settextcolor (p. 808) and Table::setfillcolor (p. 795) for details on
changing text color, and Table::setlines (p. 804) for drawing lines between and through
cells. To set other cell properties, see Table::setheight (p. 802), Table::setindent
(p. 803), Table::setjust (p. 803), and Table::setwidth (p. 809).

dd/MM/YYYY HH:MI:SS “7/01/2002 22:40:30”

dd/MM/YYYY HH:MI:SS.SSS “7/01/2002 22:40:30.125”

dd/mm/YYYY hh:MI “7/1/2002 22:40”

dd/mm/YYYY hh:MI:SS “7/1/2002 22:40:30”

dd/mm/YYYY hh:MI:SS.SSS “7/1/2002 22:40:30.125”

hm:MI am “10:40 pm“

hm:MI:SS am “10:40:30 pm”

hm:MI:SS.SSS am “10:40:30.125 pm”

HH:MI “22:40”

HH:MI:SS “22:40:30”

HH:MI:SS.SSS “22:40:30.125”

hh:MI “22:40”

hh:MI:SS “22:40:30”

hh:MI:SS.SSS “22:40:30.125”

802—Chapter 1. Object Reference

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

Set the row height of rows in a table.

Syntax
table_name.setheight(row_range) height_arg

where row_range is either a single row number (e.g., “5”), a colon delimited range of rows
(from low to high, e.g., “3:5”), or the “@ALL” keyword, and height_arg specifies the height
unit value, where height units are specified in character heights. The character height is
given by the font-specific sum of the units above and below the baseline and the leading,
where the font is given by the default font for the current table (the EViews table default
font at the time the table was created). height_arg values may be non-integer values with
resolution up to 1/10 of a height unit.

Examples
tab1.setheight(2) 1

sets the height of row 2 to match the table font character height, while:

tab1.setheight(2) 1.5

increases the row height to 1-1/2 character heights.

Similarly, the command:

tab1.setheight(2:4) 1

sets the heights for rows 2 through 4.

Cross-references

See Table::setwidth (p. 809), Table::setindent (p. 803) and Table::setjust
(p. 803) for details on setting table widths, indentation and justification.

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

setheight Table Procs

Table::setjust—803

Set the display indentation for a table view.

Syntax
table_name.setindent(cell_range) indent_arg

where indent_arg is an indent value specified in 1/5 of a width unit. The width unit is com-
puted from representative characters in the default font for the current table (the EViews
table default font at the time the table was created), and corresponds roughly to a single
character. Indentation is only relevant for non-center justified cells.

The default values are taken from the settings at the time the table is created.

The cell_range defines the cells to be modified. See Table::setformat (p. 798) for the
syntax for cell_range specifications.

Examples

To set the justification, provide a valid cell specification:

tab1.setindent(@all) 2

tab1.setindent(2,B,10,D) 4

tab1.setindent(R2C2:R4C4) 2

Cross-references

See Table::setwidth (p. 809), Table::setheight (p. 802) and Table::setjust
(p. 803) for details on setting table widths, height, and justification.

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

Set the display justification for cells in table views.

Syntax
table_name.setjust(cell_range) format_arg

where format_arg is a set of arguments used to specify format settings. You should enclose
the format_arg in double quotes if it contains any spaces or delimiters.

setindent Table Procs

setjust Table Procs

804—Chapter 1. Object Reference

The cell_range defines the cells to be modified. See Table::setformat (p. 798) for the
syntax for cell_range specifications.

The format_arg may be formed using the following:

You may enter one or both of the justification settings. The default settings are taken from
the original view when created by freezing a view, or as “middle bottom” for newly created
tables.

Examples

To set the justification, you must provide a valid cell specification:

tab1.setjust(@all) top

tab1.setjust(2,B,10,D) left bottom

tab1.setjust(R2C2:R4C4) right top

Cross-references

See Table::setwidth (p. 809), Table::setheight (p. 802), and Table::setindent
(p. 803) for details on setting table widths, height and justification.

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

Sets line characteristics and borders for a set of table cells.

Syntax
table_name.setlines(cell_range) line_args

where cell_range describes the table cells to be modified, and line_args is a set of arguments
used to modify the existing line settings. See Table::setfillcolor (p. 795) for the syntax
for cell_range.

The line_args may contain one or more of the following:

top / middle /
bottom

Vertical justification setting.

auto / left / cen-
ter / right

Horizontal justification setting. “Auto” uses left justifica-
tion for strings, and right for numbers.

setlines Table Procs

Table::setlines—805

Examples
tab1.setlines(b2:d6) +o

draws borders around the outside of the rectangle defined by B2 and D6. Note that this com-
mand is equivalent to:

tab1.setlines(b2:d6) +a -h -v

which adds borders to all of the cells in the rectangle defined by B2 and D6, then removes
the inner horizontal and vertical borders.

tab1.setlines(2,b) +o

puts a border around all four sides of the B2 cell.

tab1.setlines(2,b) -l -r +i

then removes both the left and the right border from the cell. In this example, “+i” option
has no effect; since the specification involves a single cell, there are no inner borders.

tab1.setlines(@all) -a

removes all borders from the table.

Cross-references

See Table::settextcolor (p. 808), Table::setfillcolor (p. 795), and Table::set-
font (p. 797) for details on changing text color and font.

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See also “Table Objects” on page 789 of User’s Guide I for a discussion and examples of table
formatting in EViews.

+t / -t Top border [on/off].

+b / -b Bottom border [on/off].

+l / -l Left border [on/off].

+r / -r Right border [on/off].

+i / -i Inner borders [on/off].

+o / -o Outer borders [on/off].

+v / -v Vertical inner borders [on/off].

+h / -h Horizontal inner borders [on/off].

+a / -a All borders [on/off].

+d / -d Double middle lines [on/of]f.

806—Chapter 1. Object Reference

Merges/unmerges one or more table cells.

Syntax
table_name.setmerge(cell_range)

where cell_range describes the table cells (in a single row) to be merged. The cell_range
specifications are given by:

If the first specified column is less than the last specified column (left specified before right),
the cells in the row will be merged left to right, otherwise, the cells will be merged from
right to left.The contents of the merged cell will be taken from the first non-empty cell in the
merged region. If merging from left to right, the left-most cell contents will be used; if merg-
ing from right to left, the right-most cell contents will be displayed.

If you specify a merge involving previously merged cells, EViews will unmerge all cells
within the specified range.

Examples
tab1.setmerge(a2:d2)

tab1.setmerge(2,1,2,4)

merges the cells in row 2, columns 1 to 4, from left to right.

tab2.setmerge(r2c5:r2c2)

merges the cells in row 2, columns 2 to 5, from right to left. We may then unmerge cells by
issuing the command using any of the previously merged cells:

tab2.setmerge(r2c4:r2c4)

unmerges the previously merged cells.

setmerge Table Procs

first_cell[:]last_cell,
first_cell[,]last_cell

Left (right) cell of the selection range (specified in “cell” for-
mat), followed by right (left) cell of the selection range
(specified in “cell” format), separated by a “:” or “,” (e.g.,
“A2:C2”, “A2,C2”, or “R2C1:R2C3”, “R2C1,R2C3”). Merge
all cells in the region defined by the first column and last
column for the specified row.

cell_row[,] first_-
cell_col[,] cell_row[,]
last_cell_col

Left (right) cell of the selection range (specified in “row[,]
col” format), followed by right (left) cell of the selection
range (specified in “row[,] col” format, with a fixed row),
separated by a “,” (e.g., “2,A,2,C” or “2,1,2,3”). Merge all
cells in the row defined by the first column and last column
identifier.

Table::setprefix—807

Note that in all cases, the setmerge command must be specified using cells in a single row.
The command:

tab3.setmerge(r2c1:r3c5)

generates an error since the cell specification involves rows 2 and 3.

Cross-references

See Table::setwidth (p. 809), Table::setheight (p. 802) and Table::setjust
(p. 803) for details on setting table widths, height, and justification.

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See also “Table Objects” on page 789 of User’s Guide I for a discussion and examples of table
formatting in EViews.

Set the cell prefix string for the specified table cells.

Syntax
table_name.setprefix(cell_range) prefix

where prefix is the prefix you wish to assign to the cells. To remove a prefix from a cell,
leave prefix empty.

The cell_range defines the cells to be modified. See Table::setformat (p. 798) for the
syntax for cell_range specifications.

Examples
tab1.setprefix(A1) $

prepends the dollar sign ($) to the cell A1.

tab1.setprefix(A1)

removes the prefix from cell A1.

Cross-references

See Table::setwidth (p. 809), Table::setindent (p. 803) and Table::setjust
(p. 803) for details on setting table widths, indentation and justification.

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

setprefix Table Procs

808—Chapter 1. Object Reference

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

Set the cell suffix string for the specified table cells.

Syntax
table_name.setsuffix(cell_range) suffix

where suffix is the suffix you wish to assign to the cells. To remove a suffix from a cell, leave
suffix empty.

The cell_range defines the cells to be modified. See Table::setformat (p. 798) for the
syntax for cell_range specifications.

Examples
tab1.setsuffix(A1) $

appends the dollar sign ($) to the cell A1.

tab1.setsuffix(A1)

removes the suffix from cell A1.

Cross-references

See Table::setwidth (p. 809), Table::setindent (p. 803) and Table::setjust
(p. 803) for details on setting table widths, indentation and justification.

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

Changes the text color of the specified table cells.

Syntax
table_name.settextcolor(cell_range) color_arg

where cell_range describes the table cells to be modified, and color_arg specifies the color to
be applied to the text in the cells. See Table::setfillcolor (p. 795) for the syntax for
cell_range and color_arg.

setsuffix Table Procs

settextcolor Table Procs

Table::setwidth—809

Examples

To set an orange text color for the cell in the second row and sixth column of TAB1, you may
use:

tab1.settextcolor(f2) @rgb(255, 128, 0)

tab1.settextcolor(2,f) @RGB(255, 128, 0)

tab1.settextcolor(2,6) orange

tab1.settextcolor(r2c6) orange

You may also specify a blue color for the text in an entire column, or an entire row,

tab1.settextcolor(C) @RGB(0, 0, 255)

tab1.settextcolor(2) blue

or a green color for the text in cells in a rectangular region:

tab1.settextcolor(R2C3:R3C6) green

tab1.settextcolor(r2c3,r3c6) green

tab1.settextcolor(2,C,3,F) @rgb(0, 255, 0)

tab1.settextcolor(2,3,3,6) @rgb(0, 255, 0)

Cross-references

See Table::setfont (p. 797) and Table::setfillcolor (p. 795) for details on chang-
ing the text font and cell background color.

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

Set the column width for selected columns in a table.

Syntax
table_name.setwidth(col_range) width_arg

where col_range is either a single column number or letter (e.g., “5”, “E”), a colon delimited
range of columns (from low to high, e.g., “3:5”, “C:E”), or the keyword “@ALL”, and
width_arg specifies the width unit value. The width unit is computed from representative
characters in the default font for the current table (the EViews table default font at the time
the table was created), and corresponds roughly to a single character. width_arg values may
be non-integer values with resolution up to 1/10 of a width unit.

setwidth Table Procs

810—Chapter 1. Object Reference

Examples
tab1.setwidth(2) 12

sets the width of column 2 to 12 width units.

tab1.setwidth(2:10) 20

sets the widths for columns 2 through 10 to 20 width units.

Cross-references

See Table::setheight (p. 802), Table::setindent (p. 803) and Table::setjust
(p. 803) for details on setting table height, indentation and justification.

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See also Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a discussion
and examples of table formatting in EViews.

Display a table object.

Syntax
table_name.sheet(options)

Options

Examples
tab1.sheet(p)

displays and prints table TAB1.

Sort the selected rows of a table object.

Syntax
table_name.sort(cell_range) column_arg

where column_arg is a list of columns by which to sort the cell_range. You may specify up to
three columns for sorting. The specified columns must be within the cell_range. If you list
two or more columns, sort uses the values of the second column to resolve ties in the first

sheet Table Views

p Print the spreadsheet view.

sort Table Procs

Table::table—811

column, and values of the third column to resolve ties in the first and second. By default,
EViews will sort in ascending order. To sort in descending order, precede the column name
with a minus sign (“-”).

The cell_range defines the cells to be modified. See Table::setformat (p. 798) for the
syntax for cell_range specifications.

Examples
tab1.sort(a1:c20) b

sorts the cells from the 1st column 1st row to the 3rd column 20th row by column b in
ascending order.

tab1.sort(b10:z250) –f h q

sorts the cells from the 2nd column 10th row to the 26th column 250th row by column f in
descending order, then in ascending order by column h and once again in ascending order
by column q.

Cross-references

See Table::setformat (p. 798) for the syntax for cell_range specifications.

Declare a table object.

The table command declares and optionally sizes a table object. When used as a table
view, table displays the contents of the table.

Syntax
table(rows, cols) table_name

table_name.table(options)

The table command takes two optional arguments specifying the row and column dimen-
sion of the table, and is followed by the name you wish to give the matrix. If no sizing infor-
mation is provided, the table will contain a single cell.

You may also include an assignment in the sym command. The symmetric matrix will be
resized, if necessary. Once declared, symmetric matrices may be resized by repeating the
sym command with new dimensions.

The table view displays the contents of the table. It is a synonym for sheet (p. 810).

Examples
table onelement

table Table Declaration | Table Views

812—Chapter 1. Object Reference

declares a one element table

table(10,5) outtable

creates a table OUTTABLE with 10 rows and 5 columns.

Cross-references

See also freeze (p. 368) of the Command and Programming Reference and Table::sheet
(p. 810).

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See Chapter 16. “Table and Text Objects,” on page 789 of User’s Guide I for a general discus-
sion and examples of table formatting in EViews.

Assign or change the title of a table.

Syntax
table_name.title title_arg

where title_arg is a case sensitive string which may contain spaces.

Examples
tab1.title Estimated Models

sets the TAB1 title to “Estimated Models.”

tab1.title

clears the TAB1 title.

Cross-references

See also Table::displayname (p. 789) and Table::label (p. 791).

title Table Procs

Table::title—813

814—Chapter 1. Object Reference

Text

Text object.

Object for holding arbitrary text information.

Text Declaration
text declare text object (p. 820).

To declare a text object, use the keyword text, followed by the object name:

text mytext

Text Views
label..................... label information for the text object (p. 817).
text view contents of text object (p. 820).

Text Procs
append appends text to the end of a text object (p. 815).
clear..................... clear a text object (p. 816).
clearhist clear the contents of the history attribute (p. 816).
displayname changes the display name for the text object (p. 817).
olepush push updates to OLE linked objects in open applications (p. 818).
save save text object to disk as an ASCII text, RTF, or HTML file (p. 819).
setattr................... set the value of an object attribute (p. 819).
svector make svector out of the contents of the text object (p. 820).

Text Data Members
Scalar Values

@linecount scalar containing the number of lines in a Text object.

String values

@attr(“arg”) string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description string containing the Text object’s description (if available).
@detailedtype string with the object type: “TEXT”.
@displayname...... string containing the Text object’s display name. If the object has no

display name set, the name is returned.
@line(i) returns a string containing the Text on i-th line of the Text object.
@name string containing the Text object’s name.
@remarks string containing the Text object’s remarks (if available).
@source string containing the Text object’s source (if available).
@svector returns an Svector where each element is a line of the Text object.

Text::append—815

@svectornb...........same as @svector, with blank lines removed.
@typestring with the object type: “TEXT”.
@updatetimestring representation of the time and date at which the Text object

was last updated.

Text Examples
text mytext

[add text to the object]
mytext.text

Text Entries

The following section provides an alphabetical listing of the commands associated with the
“Text” object. Each entry outlines the command syntax and associated options, and provides
examples and cross references.

Appends text or a text file to the end of a text object.

There are different forms of the command, with the syntax depending on whether you are
appending a line of text or the contents of a text file to the end of the text object.

Syntax
text_name.append“text to append”

text_name.append(file) [path\]file_name

Specify the literal text or file name after the append keyword.

Examples
tt1.append "Add this to the end"

appends the text “Add this to the end” at the end of the text object TT1.

To include quotes in the string, use the quote escape sequence, or double quotes:

tt1.append """This is a quoted string"""

appends “This is a quoted string”.

You may also use curly braces with a string object:

string s = """This is a quoted string"""

tt1.append {s}

appends “This is a quoted string”.

append Text Procs

816—Chapter 1. Object Reference

tt1.append(file) c:\myfile\file.txt

appends the contents of the text file “File.TXT” to the text object.

Cross-references

See also Text::clear (p. 816).

Clear a text object.

Syntax
text_name.clear

Examples

The following command clears all text from the text object TT1:

tt1.clear

Cross-references

See also Text::append (p. 815).

Clear the contents of the history attribute for text objects.

Removes the text’s history attribute, as shown in the label view of the text.

Syntax
text_name.clearhist

Examples
t1.clearhist

t1.label

The first line removes the history from the text T1, and the second line displays the label
view of T1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Text::label (p. 817).

clear Text Procs

clearhist Text Procs

Text::label—817

Display name for text objects.

Attaches a display name to a text object which may be used in place of the standard text
object name.

Syntax
text_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in text object names.

Examples
hrs.displayname Hours Worked

hrs.label

The first line attaches a display name “Hours Worked” to the text object HRS, and the sec-
ond line displays the label view of HRS, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Text::label (p. 817).

Display or change the label view of the text object, including the last modified date and
display name (if any).

As a procedure, label changes the fields in the text object label.

Syntax
text_name.label

text_name.label(options) [text]

Options

The first version of the command displays the label view of the text object. The second ver-
sion may be used to modify the label. Specify one of the following options along with
optional text. If there is no text provided, the specified field will be cleared.

displayname Text Procs

label Text Views | Text Procs

818—Chapter 1. Object Reference

Examples

The following lines replace the remarks field of the text object LWAGE with “Data from CPS
1988 March File”:

lwage.label(r)

lwage.label(r) Data from CPS 1988 March File

To append additional remarks to LWAGE, and then to print the label view:

lwage.label(r) Log of hourly wage

lwage.label(p)

To clear and then set the units field, use:

lwage.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Text::displayname (p. 817).

Push updates to OLE linked objects in open applications.

Syntax
text_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

olepush Text Procs

Text::setattr—819

Save text object to disk as an ASCII text, RTF, or HTML file.

Syntax
text_name.save(options) [path\]file_name

Follow the keyword with a name for the file. file_name may include the file type extension,
or the file type may be specified using the “t=” option.

If an explicit path is not specified, the file will be stored in the default directory, as set in the
File Locations global options.

Options

Examples

The command:

text1.save mytext

saves TEXT1 to an ASCII text file named “MYTEXT.TXT” in the default directory.

text1.save mytext.bat

saves TEXT1 to an ASCII text file using the explicitly provided name “MYTEXT.BAT”.

text1.save(t=rtf) mytext

saves TEXT1 to the RTF file “MYTEXT.RTF”.

Cross-references

See Chapter 16. “Table and Text Objects,” beginning on page 789 of User’s Guide I for a dis-
cussion of tables.

Set the object attribute.

Syntax
text_name.setattr(attr) attr_value

save Text Procs

t=file_type
(default= “txt”)

Specifies the file type, where file_type may be one of: “rtf”
(Rich-text format), “txt” (ASCII text), or “html” (HTML -
Hypertext Markup Language).

setattr Text Procs

820—Chapter 1. Object Reference

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Make an svector out of the contents of the text object.

Syntax
text_name.svector name

Makes an svector called name, where each row of the svector is equal to a line of the text
object.

Examples
text01.svector svec

makes an svector named SVEC.

Cross-references

See “String Vectors” on page 93 of the Command and Programming Reference for a discus-
sion of strings and string vector. See also “Svector” on page 702.

Declare a text object when used as a command, or display text representation of the text
object.

Syntax
text object_name

text_name.text(options)

svector Text Procs

text Text Declaration || Text Views

Text::text—821

When used as a command to declare a table object, follow the keyword with a name of the
text object.

Options

Examples
text notes1

declares a text object named NOTES1.

Cross-references

See “Text Objects” on page 800 of User’s Guide I for a discussion of text objects in EViews.

p Print the model text specification.

822—Chapter 1. Object Reference

Userobj

Userobj (user-defined object).

User Object Declaration
userobj declare an empty, unregistered user object (p. 829).

A simple, non-registered, user object is created by simply using the userobj command fol-
lowed by the name of the user object:

userobj myuserobject

User Object Views

Although a registered user object may have user-defined views available, all user objects
have the following built-in views.

display display table, graph, or spool output in the user object window
(p. 825).

label..................... display or change the label view of a user object (p. 827).
members display a list of the members of a user object (p. 828).

User Object Procs

Although a registered user object may have user-defined procs available, all user objects
have the following built-in procs.

add add a data or object member to the user object (p. 823).
clear..................... remove all members from the user object (p. 824).
displayname attach a display name to the user object (p. 825).
drop drop a data or object member from the user object (p. 826).
extract display or copy a data member from the user object (p. 826).
label..................... display or change the label view of a user object (p. 827).
olepush push updates to OLE linked objects in open applications (p. 828).
setattr................... set the value of an object attribute (p. 828).

User Object Data Members

Although user objects can have user-defined data members, the following built-in data
members also exist for all user objects.

String values

@attr(“arg”) string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description string containing the user object’s description (if available).
@detailedtype string with the object type: “USEROBJ”.
@displayname...... string containing the user object’s display name. If the user object

has no display name set, the name is returned.

Userobj::add—823

@members............space delimited list of all the user-defined members currently stored
inside the user object.

@namestring containing the user object’s name.
@remarksstring containing the user object’s remarks (if available).
@source................string containing the user object’s source (if available).
@typestring with the object type: “USEROBJ”.
@units..................string containing the user object’s units description (if available).
@updatetimestring representation of the time and date at which the user object

was last updated.

Scalar values

@hasmember(name)...... returns a 1 or a 0 depending on whether the user object has a
data member called name.

User Object Entries

The following section provides an alphabetical listing of the commands associated with the
“Userobj” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Add a data or object member to the user object.

Adds a new data or object member to the user object. You may either create a new string or
scalar member directly, or copy an existing object from the current workfile page. Note that
only view objects (tables, graphs, text objects or spools) or matrix objects can be copied to a
user object as members.

Syntax
userobject_name.add(options) member arg

userobject_name.add(options) [member] objname

If creating a new member inside the user object, you should specify the name of the mem-
ber with member, and then specify its value with arg. If arg is a number, the new member
will be created as a scalar, if arg is a string, the new member will be a string.

If copying the member from the current workfile page, you should use objname to specify
the name of the object in the workfile you wish to copy. If you would like to give the mem-
ber a different name inside the user object, you can specify that name with member.

add User Object Procs

824—Chapter 1. Object Reference

Options

Examples
myobj.add mymember 3

Creates a new member inside the user object MYOBJ called MYMEMBER, and sets its value
equal to 3.

myobj.add(r) mymember "hello"

Replaces the member MYMEMBER with a string value of “hello”.

myobj.add matv

Creates a new member called MATV by copying the existing workfile object MATV into the
user object.

myobj.add(d) mymat matm

Creates a new member called MYMAT by copying the workfile object MATM into the user
object. MATM is deleted from the workfile.

Cross-references

See Chapter 9. “User Objects,” on page 217 for discussion of user objects. See also Use-
robj::clear (p. 824), Userobj::drop (p. 826), and Userobj::members (p. 828).

Removes all members from the user object.

Syntax
userobject_name.clear

Examples
myuserobj.clear

Deletes all members from the user object MYUSEROBJ.

Cross-references

See Chapter 9. “User Objects,” on page 217 for discussion of user objects. See also Use-
robj::add (p. 823) and Userobj::drop (p. 826).

r Replace an existing member. If this option is not used, and
a member with the same name already exists, EViews will
error.

d When copying an object from the workfile page as the data
member, delete the object from the workfile after copying.

clear User Object Procs

Userobj::displayname—825

Display table, graph, or spool output in the user object window.

Display the contents of a table, graph, or spool in the window of the user object.

Syntax
userobject_name.display object_name

Examples
uo1.display tab1

Display the contents of the table TAB1 in the window of the object UO1.

Cross-references

See “Custom Object Output” on page 214.

Display name for user objects.

Attaches a display name to a user object.

Syntax
userobject_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in user object object names.

Examples
hrs.displayname Hours Worked

hrs.label

The first line attaches a display name “Hours Worked” to the user object HRS, and the sec-
ond line displays the label view of HRS, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

display User Object Views

displayname User Object Procs

826—Chapter 1. Object Reference

Removes a member from the user object.

Syntax
userobject_name.drop member

Removes the member member from the user object.

Examples
myuserobj.drop mymember

Deletes the member MYMEMBER from the user object MYUSEROBJ.

Cross-references

See Chapter 9. “User Objects,” on page 217 for discussion of user objects. See also Use-
robj::add (p. 823), Userobj::clear (p. 824), and Userobj::members (p. 828).

Displays or copies a member from the user object.

Syntax
userobject_name.extract member [wfname]

Copies the data member specified by member into the current workfile page. If wfname is
not specified, a new untitled object will be created, allowing you to quickly inspect the con-
tents of the data member. If wfname is given, a new object in the workfile will be created
with a name equal to wfname..

Examples
myuserobj.extract mymember

copies the data member MYMEMBER as a new untitled object in the workfile.

myuserobj.extract mymember xx

copies the data member MYMEMBER as a new object in the workfile called XX.

Cross-references

See Chapter 9. “User Objects,” on page 217 for discussion of user objects. See also Use-
robj::add (p. 823) and Userobj::members (p. 828).

drop User Object Procs

extract User Object Procs

Userobj::label—827

Display or change the label view of a user object, including the last modified date and dis-
play name (if any).

As a procedure, label changes the fields in the user object label.

Syntax
userobject_name.label

userobject_name.label(options) [text]

Options

The first version of the command displays the label view of the user object. The second ver-
sion may be used to modify the label. Specify one of the following options along with
optional text. If there is no text provided, the specified field will be cleared.

Examples

The following lines replace the remarks field of user object UO1 with “Data from CPS 1988
March File”:

UO1.label(r)

UO1.label(r) Data from CPS 1988 March File

To append additional remarks to UO1, and then to print the label view:

uo1.label(r) Log of hourly wage

uo1.label(p)

To clear and then set the units field, use:

uo1.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

label User Object Views | User Object Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

828—Chapter 1. Object Reference

Displays a list of all members currently stored inside the user object.

Syntax
userobject_name.members(options)

Options

Examples
myuserobj.members(p)

displays and prints the members view of user object MYUSEROBJ.

Cross-references

See Chapter 9. “User Objects,” on page 217 for discussion of user objects. See also Use-
robj::add (p. 823) and Userobj::drop (p. 826).

Push updates to OLE linked objects in open applications.

Syntax
userobj_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Set the object attribute.

Syntax
userobject_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

members User Object Views

p Print the spreadsheet view.

olepush User Object Procs

setattr User Object Procs

Userobj::userobj—829

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Declare an unregistered, empty user object.

The userobj command declares a new empty user object.

Syntax
userobj userobject_name

Examples
userobj uo1

creates a new empty user object called UO1.

Cross-references

See Chapter 9. “User Objects,” on page 217 for discussion of user objects.

userobj User Object Declaration

830—Chapter 1. Object Reference

Valmap::—831

Valmap

Valmap (value map). Assigns descriptive labels to values in numeric or alpha series.

Valmap Declaration
valmap..................declare valmap object (p. 837).

To declare a valmap use the keyword valmap, followed by a name

valmap mymap

Valmap Views
labellabel information for the valmap object (p. 834).
sheetview table of map definitions (p. 835).
statssummary of map definitions (p. 836).
usagelist of series and alphas which use the map (p. 836).

Valmap Procs
append..................append a definition to a valmap (p. 832).
clearhistclear the contents of the history attribute (p. 832).
displayname..........set display name (p. 833).
olepushpush updates to OLE linked objects in open applications (p. 835).
setattrset the value of an object attribute (p. 835).

Valmap Data Members
String values

@attr(“arg”)..........string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@description.........string containing the Valmap object’s description (if available).
@detailedtypestring with the object type: “VALMAP”.
@displaynamestring containing the Valmap object’s display name. If the matrix

has no display name set, the name is returned.
@namestring containing the Valmap object’s name.
@remarksstring containing the Valmap object’s remarks (if available).
@source................string containing the Valmap object’s source (if available).
@typestring with the object type: “VALMAP”.
@units..................string containing the Valmap object’s units description (if avail-

able).
@updatetimestring representation of the time and date at which the Valmap was

last updated.

Valmap Examples
valmap b

832—Chapter 1. Object Reference

b.append 0 no

b.append 1 yes

declares a valmap B, and adds two map definitions, mapping 0 to “no” and 1 to “yes”.

valmap txtmap

txtmap append "NM" "New Mexico"

txtmap append CA California

txtmap append "RI" "Rhode Island"

declares the valmap TXTMAP and adds three definitions.

Valmap Entries

The following section provides an alphabetical listing of the commands associated with the
“Valmap” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Append a specification line to a valmap.

Syntax
valmap_name.append text

Type the text to be added after the append keyword.

Examples
valmap b

b.append 0 no

b.append 1 yes

The first line declares a valmap object. The following lines set the specification for that val-
map - 0’s are mapped to “no” and 1’s are mapped to “yes”.

Cross-references

For details, see “Value Maps” on page 219 of User’s Guide I.

Clear the contents of the history attribute for valmap objects.

Removes the valmap’s history attribute, as shown in the label view of the valmap.

append Valmap Procs

clearhist Valmap Procs

Valmap::displayname—833

Syntax
valmap_name.clearhist

Examples
v1.clearhist

v1.label

The first line removes the history from the valmap V1, and the second line displays the label
view of V1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Valmap::label (p. 834).

Display name for a valmap objects.

Attaches a display name to a valmap which may be used to label output in place of the stan-
dard valmap object name.

Syntax
valmap_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in valmap object names.

Examples
hrs.displayname Valmap for Hours Worked

hrs.label

The first line attaches a display name “Valmap for Hours Worked” to the valmap object HRS,
and the second line displays the label view of HRS, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Valmap::label (p. 834).

displayname Valmap Procs

834—Chapter 1. Object Reference

Display or change the label view of a valmap, including the last modified date and display
name (if any).

As a procedure, label changes the fields in the valmap label.

Syntax
valmap_name.label

valmap_name.label(options) [text]

Options

The first version of the command displays the label view of the valmap. The second version
may be used to modify the label. Specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared.

Examples

The following lines replace the remarks field of VMAP with “Data from CPS 1988 March
File”:

vmap.label(r)

vmap.label(r) Data from CPS 1988 March File

To append additional remarks to VMAP, and then to print the label view:

vmap.label(r) Log of hourly wage

vmap.label(p)

To clear and then set the units field, use:

vmap.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

label Valmap Views | Valmap Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

Valmap::sheet—835

See also Valmap::displayname (p. 833).

Push updates to OLE linked objects in open applications.

Syntax
valmap_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Set the object attribute.

Syntax
valmap_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Spreadsheet view of a valmap object.

Syntax
valmap_name.sheet(options)

olepush Valmap Procs

setattr Valmap Procs

sheet Valmap Views

836—Chapter 1. Object Reference

Options

Examples
vm1.sheet

displays the spreadsheet view of the valmap object VM1.

Statistics for valmap usage.

Displays a description of the composition of a valmap.

Syntax
valmap_name.stats(options)

Options

Examples
map1.stats

displays the summary descriptive view of the definitions in the valmap MAP1.

Cross-references

See “Value Maps” on page 219 of User’s Guide I for a discussion of value maps.

Find series and alphas which use the valmap.

Display list of series and alpha objects which use the valmap.

Syntax
valmap_name.stats(options)

Options

p Print the spreadsheet view.

stats Valmap Views

p Print the table.

usage Valmap Views

p Print the usage table.

Valmap::valmap—837

Examples
map1.usage

displays a list of series and alphas which use the valmap MAP1.

Cross-references

For additional details, see “Value Maps” on page 219 of User’s Guide I.

See also Series::map (p. 583) and Alpha::map (p. 12).

Declare a value map object.

Syntax
valmap valmap_name

Follow the valmap keyword with a name for the object.

Examples

The commands:

valmap mymap

mymap.append 3 three

mymap.append 99 "not in universe"

declare the valmap MYMAP and add two lines mapping the values 3 and 99 to the strings
“three” and “not in universe”.

Cross-references

For additional details, see “Value Maps” on page 219 of User’s Guide I.

See also Series::map (p. 583) and Alpha::map (p. 12).

valmap Valmap Declaration

838—Chapter 1. Object Reference

Var::—839

Var

Vector autoregression and error correction object.

Var Declaration
vardeclare var estimation object (p. 882).

To declare a var use the keyword var, followed by a name and, optionally, by an estimation
specification:

var finvar

var empvar.ls 1 4 payroll hhold gdp

var finec.ec(e,2) 1 6 cp div r

Var Methods
bvarestimate a Bayesian VAR specification (p. 846).
ecestimate a vector error correction model (p. 855).
lsestimate an unrestricted VAR (p. 867).

Var Views
arlm......................serial correlation LM test (p. 845).
arrootsinverse roots of the AR polynomial (p. 845).
cointJohansen cointegration test (p. 850).
correlresidual autocorrelations (p. 852).
displaydisplay table, graph, or spool in object window (p. 854).
decompvariance decomposition (p. 853).
endog....................table or graph of endogenous variables (p. 857).
hdecompperform historical decomposition for a standard VAR (p. 860).
impulse.................impulse response functions (p. 861).
jberaresidual normality test (p. 864).
labellabel information for the var object (p. 865).
laglen....................lag order selection criteria (p. 866).
output...................table of estimation results (p. 873).
qstatsresidual portmanteau tests (p. 874).
representationstext describing var specification (p. 875).
residcor.................residual correlation matrix (p. 875).
residcovresidual covariance matrix (p. 876).
residsresidual graphs (p. 876).
results...................table of estimation results (p. 877).
testexog.................exogeneity (Granger causality) tests (p. 880).
testlags..................lag exclusion tests (p. 881).
whiteWhite heteroskedasticity test (p. 883).

840—Chapter 1. Object Reference

Var Procs
append append restriction text (p. 843).
clearhist clear the contents of the history attribute (p. 849).
cleartext clear restriction text (p. 849).
displayname set display name (p. 855).
fit......................... produce static forecasts from an estimated VAR (p. 857).
forecast produce dynamic forecasts from an estimated VAR or VEC (p. 858).
makecoint make group of cointegrating relations (p. 870).
makeendog........... make group of endogenous series (p. 871).
makemodel........... make model from the estimated VAR or VEC (p. 871).
makeresids make residual series (p. 872).
makesystem.......... make system from var (p. 873).
olepush push updates to OLE linked objects in open applications (p. 873).
setattr................... set the value of an object attribute (p. 878).
svar...................... estimate factorization matrix for structural innovations (p. 878).

Var Data Members
Scalar Values (individual level data)

@eqlogl(k)........... log likelihood for equation k.
@eqncoef(k) number of estimated coefficients in equation k.
@eqregobs(k)....... number of observations in equation k.
@meandep(k) mean of the dependent variable in equation k.
@r2(k)................. R-squared statistic for equation k.
@rbar2(k) adjusted R-squared statistic for equation k.
@sddep(k) std. dev. of dependent variable in equation k.
@se(k)................. standard error of the regression in equation k.
@ssr(k)................ sum of squared residuals in equation k.
a(i,j) adjustment coefficient for the j-th cointegrating equation in the i-th

equation of the VEC (where applicable).
b(i,j) coefficient of the j-th variable in the i-th cointegrating equation

(where applicable).
c(i,j)..................... coefficient of the j-th regressor in the i-th equation of the var, or the

coefficient of the j-th first-difference regressor in the i-th equation
of the VEC.

Scalar Values (system level data)

@aic Akaike information criterion for the system.
@detresid............. determinant of the residual covariance matrix.
@hq..................... Hannan-Quinn information criterion for the system.
@lagcount............ number of lags included in the VAR.

Var::—841

@lagorderhighest lag order included in the VAR.
@logl....................log likelihood for system.
@ncoefs................total number of estimated coefficients in the var.
@neqn..................number of equations.
@nrestrictnumber of coefficient restrictions in the system.
@regobsnumber of observations in the var.
@scSchwarz information criterion for the system.
@svarcvgtype........Returns an integer indicating the convergence type of the structural

decomposition estimation: 0 (convergence achieved), 1 (conver-
gence achieved, but first or second order conditions not met), 2
(failure to improve), 3 (maximum iterations reached), 4 (no conver-
gence—structural decomposition not estimated).

@svaroverid..........over-identification LR statistic from structural factorization.
@totalobssum of @eqregobs from each equation (“@regobs*@neqn”).

Vectors and Matrices

@coefmatcoefficient matrix (as displayed in output table).
@coefsematrix of coefficient standard errors (corresponding to the output

table).
@cointse...............standard errors of cointegrating vectors.
@cointveccointegrating vectors.
@companion.........companion matrix for the full set of lag coefficients.
@impfactfactorization matrix used in last impulse response view.
@lagcoefscoefficient matrix containing the full set of horizontally concate-

nated lag coefficient matrices.
@lagcoef(k)lag coefficient matrix for lag k.
@lagidsvector of integers containing the lags included in the VAR.
@lrrspaccumulated long-run responses from last impulse response view.
@lrrspsestandard errors of accumulated long-run responses.
@residcov(sym) covariance matrix of the residuals.
@svaramat............estimated A matrix for structural factorization.
@svarbmatestimated B matrix for structural factorization.
@svarcovabcovariance matrix of stacked A and B matrix for structural factoriza-

tion.
@svarfmatestimated F matrix for long-run impulse responses.
@svarrcov.............restricted residual covariance matrix from structural factorization.
@svarsmatestimated S matrix for short-run impulse responses.

842—Chapter 1. Object Reference

String values

@attr(“arg”) string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@command.......... full command line form of the estimation command. Note this is a
combination of @method and @options.

@description string containing the VAR object’s description (if available).
@detailedtype returns a string with the object type: “VAR”.
@displayname...... returns the VAR’s display name. If the VAR has no display name set,

the VAR’s name is returned.
@name returns the VAR’s name.
@options.............. command line form of estimation options.
@smpl sample used for estimation.
@type returns a string with the object type: “VAR”.
@updatetime........ returns a string representation of the time and date at which the

VAR was last updated.

Var Examples

To declare a var estimate a VEC specification and make a residual series:

var finec.ec(e,2) 1 6 cp div r

finec.makeresids

To estimate an ordinary var, to create series containing residuals, and to form a model based
upon the estimated var:

var empvar.ls 1 4 payroll hhold gdp

empvar.makeresids payres hholdres gdpres

empvar.makemodel(inmdl) cp fcp div fdiv r fr

To save coefficients in a scalar:

scalar coef1=empvar.b(1,2)

Var Entries

The following section provides an alphabetical listing of the commands associated with the
“Var” object. Each entry outlines the command syntax and associated options, and provides
examples and cross references.

Var::append—843

Append a specification line to a var.

Syntax
var_name.append(options) text

Type the text to be added after the append keyword. You must specify the restrictions type
option.

Options

One of the following options is required when using append as a var proc:

VEC Restrictions

SVAR Restrictions

SVAR text restriction expressions involve linear equations or use a function-like syntax to
specify restrictions on one or more matrix elements for the , , , and .

For direct restrictions on elements of the matrices, the EViews text syntax requires that the
canonical structural matrix names are preceded by “@”, as in “@A”, or “@F”, to avoid
ambiguity with workfile objects, e.g., scalars or matrix object elements.

EViews also offers function-like expressions that concisely specify popular sets of SVAR
restrictions. In the following list, the token can be substituted with any of the canonical
matrices , , , and . The canonical names should not be preceded by “@” in this
context since there is no potential workfile object ambiguity in the function argument(s).

append Var Procs

svar Text for identifying restrictions for structural VAR.

coint Text for restrictions on the cointegration relations and/or
adjustment coefficients.

@X = mat Use mat as a pattern matrix for matrix X, e.g.,
“@a=mat1”, “@b = @mat2”.

@vec(X)=n1, n2, n3, ... Restricts all elements of matrix X similar using the
specified pattern matrix (provided in list form). Ele-
ment ordering matches the vectorization of the matrix,
i.e., the elements of the first column, followed by the
second column, followed by the third column, etc.

@diag(X) Restricts X to be a diagonal matrix, i.e., off-diagonal
elements are zero. The diagonal elements are unre-
stricted.

A B S F

X
A B S F

844—Chapter 1. Object Reference

Examples
var v

v.append(coint) b(1,1)=1

v.ec(restrict) 1 4 x y

First a VEC, V, is declared, then a restriction is appended to V, finally V is estimated with
that restriction imposed.

var v

v.ls 1 3 y1 y2 y3

v.append(svar) @a(1,1) = 2.5

v.append(svar)@b(2,2) = @b(3,3) / 2

v.append(svar)@a(1,1) + @a(2,1) = 1

v.append(svar)@a(1,2) = 3 * @b(3,3)

v.append(svar)@s(1,1) + @s(2,2) - @f(3,3) = 1.5

v.svar

For an SVAR, we first estimate the VAR, then append restrictions then perform SVAR estima-
tion.

Using a text expression equivalent to a pattern matrix:

v1.append(svar) @vec(s) = na, na, na, 0, na, na, 0, 0, na

v1.svar

Using a text expression with specialized function:

v1.append(svar) @lower(s)

v1.svar

@diag(X) = n Restricts X to be a diagonal matrix with elements on
the diagonal restricted to be n.

@lower(X) Restricts X to be a lower triangular matrix, i.e., ele-
ments above the diagonal are zero.

@unitlower(X) Restricts X to be a unit lower triangular matrix, i.e.,
elements above the diagonal are zero and elements on
the diagonal are one.

@upper(X) Restricts X to be an upper triangular matrix, i.e., ele-
ments below the diagonal are zero.

@unitupper(X) Restricts X to be a unit upper triangular matrix, i.e.,
elements below the diagonal are zero and elements on
the diagonal are one.

@row(X, r) = n Restricts the elements in row r of X to equal n.

@col(X, c) = n Restricts the elements in column c of X equal n.

Var::arroots—845

Cross-references

See also Var::cleartext (p. 849).

Perform multivariate residual serial correlation LM test using an estimated Var.

Syntax
var_name.arlm(h, options)

You must specify the highest order of lag, h, for which to test.

Options

Examples
var var1.ls 1 6 lgdp lm1 lcpi

show var1.arlm(12,name=lmout)

The first line declares and estimates a VAR with 6 lags. The second line displays the serial
correlation LM tests for lags up to 12 and stores the statistics in a matrix named LMOUT.

Cross-references

See “Diagnostic Views” on page 702 of User’s Guide II for other VAR diagnostics. See also
Var::qstats (p. 874) for related multivariate residual autocorrelation Portmanteau tests.

Inverse roots of the characteristic AR polynomial.

Syntax
var_name.arroots(options)

arlm Var Views

name=arg Save LM statistics in named matrix object. The matrix has
h rows and one column.

prompt Force the dialog to appear from within a program.

p Print test output.

arroots Var Views

846—Chapter 1. Object Reference

Options

Examples
var var1.ls 1 6 lgdp lm1 lcpi

var1.arroots(graph)

The first line declares and estimates a VAR with 6 lags. The second line plots the AR roots of
the estimated VAR.

var var1.ls 1 6 lgdp lm1 lcpi

store roots

freeze(tab1) var1.arroots(name=roots)

The first line declares and estimates a VAR with 6 lags. The second line stores the roots in a
matrix named ROOTS, and the table view as a table named TAB1.

Cross-references

See “Diagnostic Views” on page 702 of User’s Guide II for other VAR diagnostics.

Estimate a Bayesian VAR specification.

Syntax:
var_name.bvar(options) lag_pairs endog_list [@ exog_list]

bvar estimates an Baysian VAR. You must specify the order of the VAR (using one or more
pairs of lag intervals), and then provide a list of series or groups to be used as endogenous
variables. You may include exogenous variables such as trends and seasonal dummies in the
VAR by including an “@-sign” followed by a list of series or groups. A constant is automati-
cally added to the list of exogenous variables; to estimate a specification without a constant,
you should use the option “noconst”.

name=arg Save roots in named matrix object. Each root is saved in a
row of the matrix, with the first column containing the real,
and the second column containing the imaginary part of
the root.

graph Plots the roots together with a unit circle. The VAR is stable
if all of the roots are inside the unit circle.

p Print table of AR roots.

bvar Var Methods

Var::bvar—847

Options
General options

noconst Do not include a constant in exogenous regressors list.

prior = keyword
(default= “lit”)

Set the files as follows for prior types: “lit” (Litterman/Min-
nesota prior), “sznw” (Sims-Zha Normal-Wishart prior),
“nw” (Normal-Wishart prior), “sznf” (Sims-Zha Normal-
flat prior).

initcov = keyword
(default = “full”)

Set the (initial) residual variance-covariance: “uni” (Uni-
variate AR estimate), “full” (full VAR estimate), “diag”
(diagonal VAR estimate).
By default, EViews uses the “initcov=uni” option so that
diagonal elements of the prior residual variance-covariance
can be obtained from the estimation of a set of univariate
AR models.

nodf Degrees of freedom correction for initial residual covari-
ance.

l0 = arg Set the residual covariance tightness hyper-parameter (for
the Litterman prior; when the “prior=” option is set to the
default “lit”).

l1 = arg Set the overall tightness hyper-parameter (for the Litterman
prior; when the “prior=” option is set to the default “lit”).

l2 = arg Set the relative cross-variable weight hyper-parameter (for
the Litterman prior; when the “prior=” option is set to the
default “lit”).

l3 = arg Set the lag decay hyper-parameter (for the Litterman prior;
when the “prior=” option is set to the default “lit”).

mu1 = arg Set the AR(1) coefficient dummies hyper-parameter (for the
Litterman prior; when the “prior=” option is set to the
default “lit”)

mu5 = arg Set the sum of coefficient dummies hyper-parameter (for
the Litterman prior; when the “prior=” option is set to the
default “lit”).

mu6 = arg Set the initial observation dummies hyper-parameter (for
the Litterman prior; when the “prior=” option is set to the
default “lit”).

userpriors Use user-specified priors as specified using the
“usercoefs=”, “usercoefcov=”, “userhmat=”, and “user-
rescov=” options.

848—Chapter 1. Object Reference

Examples
var mvar.bvar 1 3 m1 gdp

declares and estimates an unrestricted VAR named MVAR with two endogenous variables
(M1 and GDP), a constant and 3 lags (lags 1 through 3).

mvar.bvar(noconst) 1 3 ml gdp

estimates the same VAR, but with no constant.

var mvar.bvar(prior=nw) 1 3 m1 gdp

specifies the normal-Wishart prior.

var mvar.bvar(prior=nw, mu1=0.2, l1=0.2) 1 3 m1 gdp

specifies a normal-Wishart with hyper-prior values specified as mu1=0.2, lambda1=0.2.

vector(3) S0 = 1

vector(7) H0 = 1

var bvar.bvar(prior=sznw, userprior, userhmat = H0, userrescov=S0)

1 2 gdp inflation interest

declares and estimates a Bayesian VAR named BVAR with three endogenous variables (GDP,
INFLATION and INTEREST), two lagged terms (lags 1 through 2) and a constant. The Sims-
Zha Normal-Wishart (“prior=sznw”) prior is used with the user-specified parameter values
for the diagonal elements of the coefficient precision (“userhmat=H0”) and the scale matrix
(“userrescov=S0”) of the residuals.

usercoefs = name Set the user-specified prior mean values for the Minne-
sota/Litterman (“lit”) and Normal-Wishart (“nw”) priors.
It should be either a (coefficients per equation) by

(endogenous variable) matrix or a vector.

usercoefcov =
name

Set the user-specified prior variance-covariance for the
Minnesota/Litterman (“lit”) prior. It requires either a
matrix or a vector.

userhmat = name Set user-specified diagonal elements of the prior precision
matrix for the Sims-Zha Normal-Wishart (“sznw”) and
Sims-Zha Normal-flat (“sznf”) options. A vector is
required. A Minnesota-type of specification for the preci-
sion matrix is adapted and used here. In practice, the prior
precision matrix is specified as a diagonal matrix

userrescov =
name

 Set the user-specified diagonal elements of the prior scale
matrix for the the Sims-Zha Normal-Wishart (“sznw”)
option. A vector is required

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

q
k qk 1u

q ku
qk 1u

q 1u

k 1u

Var::cleartext—849

Cross-references

See Chapter 40. “Vector Autoregression and Error Correction Models,” on page 687 of User’s
Guide II for details.

See also Var::ls (p. 867) and Var::ec (p. 855) for estimation of ordinary VARs and error
correction models.

Clear the contents of the history attribute for VAR objects.

Removes the VAR’s history attribute, as shown in the label view of the VAR.

Syntax
var_name.clearhist

Examples
v1.clearhist

v1.label

The first line removes the history from the VAR V1, and the second line displays the label
view of V1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Var::label (p. 865).

Clear restriction text from a VAR object.

Syntax
var_name.cleartext(arg)

You must specify the text type you wish to clear using one of the following arguments:

clearhist Var Procs

cleartext Var Procs

svar Clear text of identifying restrictions for a structural VAR.

coint Clear text of restrictions on the cointegration relations and/
or adjustment coefficients.

850—Chapter 1. Object Reference

Examples
var1.cleartext(svar)

var1.append(svar) @lr2(@u1) = 0

The first line clears the structural VAR identifying restrictions in VAR1. The next line speci-
fies a new long-run restriction for a structural factorization.

Cross-references

See Chapter 40. “Vector Autoregression and Error Correction Models,” on page 687 of User’s
Guide II for a discussion of VARs.

See also Var::append (p. 843).

Johansen’s cointegration test.

Syntax
var_name.coint(test_option,n,option) [@ x1 x2 x3 ...]

The coint command tests for cointegration among the series in the var. By default, if the
var object contains exogenous variables, the cointegration test will use those exogenous
variables; however, if you explicitly list the exogenous variables with an “@”-sign, then only
the listed variables will be used in the test.

The output for cointegration tests displays p-values for the rank test statistics. These p-val-
ues are computed using the response surface coefficients as estimated in MacKinnon, Haug,
and Michelis (1999). The 0.05 critical values are also based on the response surface coeffi-
cients from MacKinnon-Haug-Michelis. Note: the reported critical values assume no exoge-
nous variables other than an intercept and trend.

Options

You must specify the test option followed by the number of lags n. You must choose one of
the following six test options:

coint Var Views

a No deterministic trend in the data, and no intercept or
trend in the cointegrating equation.

b No deterministic trend in the data, and an intercept but no
trend in the cointegrating equation.

c Linear trend in the data, and an intercept but no trend in
the cointegrating equation.

Var::coint—851

Other Options:

Examples
var1.coint(c,12) @

d Linear trend in the data, and both an intercept and a trend
in the cointegrating equation.

e Quadratic trend in the data, and both an intercept and a
trend in the cointegrating equation.

s Summarize the results of all 5 options (a-e).

restrict Impose restrictions as specified by the append (coint)
proc.

m=integer Maximum number of iterations for restricted estimation
(only valid if you choose the restrict option).

c scalar Convergence criterion for restricted estimation. (only valid
if you choose the restrict option).

save = mat_name Stores test statistics as a named matrix object. The save=
option stores a matrix, where is the num-
ber of endogenous variables in the VAR. The first column
contains the eigenvalues, the second column contains the
maximum eigenvalue statistics, the third column contains
the trace statistics, and the fourth column contains the log
likelihood values. The i-th row of columns 2 and 3 are the
test statistics for rank . The last row is filled with
NAs, except the last column which contains the log likeli-
hood value of the unrestricted (full rank) model.

cvtype=ol Display 0.05 and 0.01 critical values from Osterwald-
Lenum (1992).
This option reproduces the output from version 4. The
default is to display critical values based on the response
surface coefficients from MacKinnon-Haug-Michelis
(1999). Note that the argument on the right side of the
equals sign are letters, not numbers 0-1).

cvsize=arg
(default=0.05)

Specify the size of MacKinnon-Haug-Michelis (1999) criti-
cal values to be displayed. The size must be between
0.0001 and 0.9999; values outside this range will be reset to
the default value of 0.05. This option is ignored if you set
“cvtype=ol”.

prompt Force the dialog to appear from within a program.

p Print output of the test.

k 1�� � 4u k

i 1–

852—Chapter 1. Object Reference

carries out the Johansen test for the series in the var object named VAR1. The “@”-sign
without a list of exogenous variables ensures that the test does not include any exogenous
variables in VAR1.

Cross-references

See “Johansen Cointegration Test” on page 1023 of User’s Guide II for details on the Johan-
sen test.

See also Var::ec (p. 855).

Display autocorrelation and partial correlations.

Displays the autocorrelation and partial correlation functions in the specified form, together
with the Q-statistics and p-values associated with each lag.

Syntax
var_name.correl(n, options)

You must specify the largest lag n to use when computing the autocorrelations.

Options

Examples
v1.correl(24, byser)

Displays the correlograms of V1 in tabular form by series, for up to 24 lags.

Cross-references

See “Autocorrelations (AC)” on page 421 and “Partial Autocorrelations (PAC)” on page 422
of User’s Guide I for a discussion of autocorrelation and partial correlation functions, respec-
tively.

correl Var Views

graph
(default)

Display correlograms (graphs).

byser Display autocorrelations in tabular form, by series.

bylag Display autocorrelations in tabular form, by lag.

name=arg Save matrix of results.

prompt Force the dialog to appear from within a program.

p Print the correlograms.

Var::decomp—853

Variance decomposition in VARs.

Syntax
var_name.decomp(n, options) series_list [@ @ ordering]

List the series names in the VAR whose variance decomposition you would like to compute.
You may optionally specify the ordering for the factorization after two “@”-signs.

You must specify the number of periods over which to compute the variance decomposi-
tions.

Options

decomp Var Views

g (default) Display combined graphs, with the decompositions for
each variable shown in a graph.

m Display multiple graphs, with each response-shock pair
shown in a separate graph.

t Show numerical results in table.

imp=arg
(default=“chol”)

Type of factorization for the decomposition: “chol” (Chole-
sky with d.f. correction), “mlechol” (Cholesky without d.f.
correction), “struct” (structural).
The structural factorization is based on the estimated struc-
tural VAR. To use this option, you must first estimate the
structural decomposition; see Var::svar (p. 878).
The option “imp=mlechol” is provided for backward com-
patibility with EViews 3.x and earlier.

se=mc Monte Carlo standard errors. You must specify the number
of replications with the “rep=” option.
Currently available only when you have specified the
Cholesky factorization (using the “imp=chol” option).

rep=integer Number of Monte Carlo replications to be used in comput-
ing the standard errors. Must be used with the “se=mc”
option.

matbys=name Save responses by shocks (impulses) in named matrix. The
first column is the response of the first variable to the first
shock, the second column is the response of the second
variable to the first shock, and so on.

n

854—Chapter 1. Object Reference

If you use the “matbys=” or “matbyr=” options to store the results in a matrix, two matri-
ces will be returned. The matrix with the specified name contains the variance decomposi-
tions, while the matrix with “_FSE” appended to the name contains the forecast standard
errors for each response variable. If you have requested Monte Carlo standard errors, there
will be a third matrix with “_SE” appended to the name which contains the variance decom-
position standard errors.

Examples
var var1.ls 1 4 m1 gdp cpi

var1.decomp(10,t) gdp

The first line declares and estimates a VAR with three variables and lags from 1 to 4. The
second line tabulates the variance decompositions of GDP up to 10 periods using the order-
ing as specified in VAR1.

var1.decomp(10,t) gdp @ @ cpi gdp m1

performs the same variance decomposition as above using a different ordering.

Cross-references

See “Variance Decomposition” on page 710 of User’s Guide II for additional details.

See also Var::impulse (p. 861).

Display table, graph, or spool output in the VAR object window.

Display the contents of a table, graph, or spool in the window of the VAR object.

Syntax
var_name.display object_name

Examples
var1.display tab1

Display the contents of the table TAB1 in the window of the object VAR1.

matbyr=name Save responses by response series in named matrix. The
first column is the response of the first variable to the first
shock, the second column is the response of the first vari-
able to the second shock, and so on.

prompt Force the dialog to appear from within a program.

p Print results.

display Var Views

Var::ec—855

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

Display name for a var object.

Attaches a display name to a var object which may be used to label output in place of the
standard var object name.

Syntax
var_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in var object names.

Examples
hrs.displayname Hours Worked

hrs.label

The first line attaches a display name “Hours Worked” to the var object HRS, and the second
line displays the label view of HRS, including its display name.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Var::label (p. 865).

Estimate a vector error correction model (VEC).

Syntax
var_name.ec(trend, n) lag_pairs endog_list [@ exog_list]

Specify the order of the VEC by entering one or more pairs of lag intervals, then list the
series or groups to be used as endogenous variables. Note that the lag orders are those of the
first differences, not the levels. If you are comparing results to another software program, you
should be certain that the specifications for the lag orders are comparable.

displayname Var Procs

ec Var Methods

856—Chapter 1. Object Reference

You may include exogenous variables, such as seasonal dummies, in the VEC by including
an “@”-sign followed by the list of series or groups. Do not include an intercept or trend in
the VEC specification, these terms should be specified using options, as described below.

You should specify the trend option and the number of cointegrating equations n to use in
parentheses, separated by a comma (the default is n=1). You must choose the trend from
the following five alternatives:

Options

Examples
var macro1.ec 1 4 m1 gdp tb3

declares a var object MACRO1 and estimates a VEC with four lagged first differences, three
endogenous variables and one cointegrating equation using the default trend option “c”.

var term.ec(b,2) 1 2 4 4 tb1 tb3 tb6 @ d2 d3 d4

declares a var object TERM and estimates a VEC with lagged first differences of order 1, 2, 4,
three endogenous variables, three exogenous variables, and two cointegrating equations
using trend option “b”.

a No deterministic trend in the data, and no intercept or
trend in the cointegrating equation.

b No deterministic trend in the data, and an intercept but no
trend in the cointegrating equation.

c (default) Linear trend in the data, and an intercept but no trend in
the cointegrating equation.

d Linear trend in the data, and both an intercept and a trend
in the cointegrating equation.

e Quadratic trend in the data, and both an intercept and a
trend in the cointegrating equation.

restrict Impose restrictions. See Var::append (p. 843) and
Var::coint (p. 850).

m=integer Maximum number of iterations for restricted estimation
(only valid if you choose the restrict option).

c=scalar Convergence criterion for restricted estimation. (only valid
if you choose the restrict option).

prompt Force the dialog to appear from within a program.

p Print the results view.

Var::fit—857

Cross-references

See “Vector Error Correction (VEC) Models” on page 726 of User’s Guide II for a discussion
of VECs.

See Var::ls (p. 867) and Var::bvar (p. 846) for estimation of ordinary VARs and Bayes-
ian VAR models. See also, Var::coint (p. 850) and Var::append (p. 843).

Displays a spreadsheet or graph view of the endogenous variables.

Syntax
var_name.endog(options)

Options

Examples
var1.endog(g,p)

prints the graphs of the solved endogenous series.

Cross-references

See also Var::makeendog (p. 871) and Var::var (p. 882).

Computes (n-period ahead) static forecasts of the VAR or VEC equation.

fit computes the static forecast of variables and all observations in a specified sample. In
some settings, you may instruct forecast to compare the forecasted data to actual data,
and to compute summary statistics.

Syntax
var_name.fit(options) f_pattern [se_pattern]

You should enter a naming suffix for the forecast series and, optionally, a naming suffix for
the series containing the standard errors. Forecast standard errors are currently only avail-
able via simulation.

endog Var Views

g Multiple line graphs of the solved endogenous series.

p Print the table of solved endogenous series.

fit Var Procs

858—Chapter 1. Object Reference

Options

Examples

The following lines:

smpl 1970q1 1990q4

var var1.ls 1 3 con inc

smpl 1991q1 1995q4

var1.fit(m) _f _se

estimate a VAR over the period 1970Q1–1990Q4, and then computes static forecasts for the
period 1991Q1–1995Q4, and plots the forecasts as line graphs.

Cross-references

See “Forecasting” on page 712 of User’s Guide II for a discussion of forecasting from VARs
variance decompositions

See also Var::forecast (p. 858).

Computes (n-period ahead) dynamic forecasts of the VAR or VEC equation.

forecast computes the forecast for all variables and all observations in a specified sample.
In some settings, you may instruct forecast to compare the forecasted data to actual data,
and to compute summary statistics.

g Graph the forecasts in individual graphs - one per depen-
dent variable.

m Graph the forecasts in a combined graph.

e Produce the forecast evaluation table.

f = arg
(default=
“actual”)

Out-of-forecast-sample fill behavior: “actual” (fill observa-
tions outside the forecast sample with actual values for the
fitted variable), “na” (fill observations outside the forecast
sample with missing values).

streps=integer Number of simulation repetitions. Only applicable if a
se_pattern is provided.

f=number Fraction of failed repetitions before stopping. Only applica-
ble if a se_pattern is provided.

prompt Force the dialog to appear from within a program.

p Print view.

forecast Var Procs

Var::forecast—859

Syntax
var_name.forecast(options) f_pattern [se_pattern]

You should enter a naming suffix for the forecast series and, optionally, a naming suffix for
the series containing the standard errors. Forecast standard errors are currently only avail-
able via simulation.

Options

Examples

The following lines:

smpl 1970q1 1990q4

var var1.ls 1 3 con inc

smpl 1991q1 1995q4

var1.forecast(m) _f _se

estimate a VAR over the period 1970Q1–1990Q4, and then computes dynamic forecasts for
the period 1991Q1–1995Q4, and plots the forecasts as line graphs.

Cross-references

See “Forecasting” on page 712 of User’s Guide II for a discussion of forecasting from VARs
and VECS.

See also Var::fit (p. 857).

g Graph the forecasts in individual graphs - one per depen-
dent variable.

m Graph the forecasts in a combined graph.

e Produce the forecast evaluation table.

f = arg
(default=
“actual”)

Out-of-forecast-sample fill behavior: “actual” (fill observa-
tions outside the forecast sample with actual values for the
fitted variable), “na” (fill observations outside the forecast
sample with missing values).

streps=integer Number of simulation repetitions. Only applicable if a
se_pattern is provided.

f=number Fraction of failed repetitions before stopping. Only applica-
ble if a se_pattern is provided.

prompt Force the dialog to appear from within a program.

p Print view.

860—Chapter 1. Object Reference

Performs graph of historical decomposition for a standard VAR.

Syntax
var_name.hdecomp(n, options) [ser1 ser2 ser3 ...] [@ component_series [@ order-

ing_series]]

List the series names in the Var you would like to decompose in the order you wish to dis-
play the graphs. If you do not specify series, all of the series in the Var will be employed. You
may optionally specify the component series by listing the series after an “@” and, if you
are using Cholesky weighting for the decomposition, you may change the ordering by listing
the order of the series after a second “@”.

By default, EViews computes the decomposition of only the stochastic component into all
components using the ordering in the Var. You may instead elect to include the baseline in
the decomposition.

Options

hdecomp Var Views

m (default) Display multiple graphs, with the impact of each compo-
nent on a dependent variable shown in a separate graphs.

g Display combined graphs, with decomposition of each vari-
able with respect to all included components shown in one
graph.

imp=arg
(default=“chol”)

Type of factorization for the decomposition: unit impulses,
ignoring correlations among the residuals (“imp=unit”),
non-orthogonal, ignoring correlations among the residuals
(“imp=nonort”), Cholesky with d.f. correction
(“imp=chol”), Cholesky without d.f. correction
(“imp=mlechol”), Generalized (“imp=gen”), structural
(“imp=struct”), or user specified (“imp=user”).
The structural factorization is based on the estimated struc-
tural VAR. To use this option, you must first estimate the
structural decomposition; see Var::svar (p. 878).
For user-specified weights, you must specify the name of
the vector/matrix containing the impulses using the
“fname=” option.

baseline Include the baseline in the decomposition.

start= date Start date (within estimation sample) for the decomposi-
tion. By default, EViews uses the first date of the estima-
tion sample.

Var::impulse—861

Display impulse response functions of var object with an estimated VAR or VEC.

Syntax
var_name.impulse(n, options) ser1 [ser2 ser3 ...] [@ shock_series [@ ordering_series]]

You must specify the number of periods for which you wish to compute the impulse
responses.

List the series names in the var whose responses you would like to compute. You may
optionally specify the sources of shocks. To specify the shocks, list the series after an “@”.
By default, EViews computes the responses to all possible sources of shocks using the order-
ing in the Var.

If you are using impulses from the Cholesky factor, you may change the Cholesky ordering
by listing the order of the series after a second “@”.

end = date End date (within estimation sample) for the decomposi-
tion. By default, EViews uses the last date of the estimation
sample.

basename=arg Optional name fragment used in constructing the names
for the series in which to save the decomposition results. If
the basename is “base,” the total stochastic or stochastic
plus baseline will be saved in the series BASE1, BASE2,
etc... (where the numbers in the name correspond to the
ordering of the variables in the VAR specification). The
components will be saved in the series BASE1_1, BASE1_2,
…, BASE2_1, BASE2_2, …., where the numbers after the
“_” refer to the ordering of the series in the VAR. Series will
be saved only for those variables and components
requested above.

N=arg Optional name of group object to contain the series created
using the "basename=" option.

prompt Force the dialog to appear from within a program.

p Print the results.

impulse Var Views

n

862—Chapter 1. Object Reference

Options

g (default) Display combined graphs, with impulse responses of one
variable to all shocks shown in one graph. If you choose
this option, standard error bands will not be displayed.

m Display multiple graphs, with impulse response to each
shock shown in separate graphs.

t Tabulate the impulse responses.

a Accumulate the impulse responses.

imp=arg
(default=“chol”)

Type of factorization for the decomposition: unit impulses,
ignoring correlations among the residuals (“imp=unit”),
non-orthogonal, ignoring correlations among the residuals
(“imp=nonort”), Cholesky with d.f. correction
(“imp=chol”), Cholesky without d.f. correction
(“imp=mlechol”), Generalized (“imp=gen”), structural
(“imp=struct”), or user specified (“imp=user”).
The structural factorization is based on the estimated struc-
tural VAR. To use this option, you must first estimate the
structural decomposition; see Var::svar (p. 878).
For user-specified impulses, you must specify the name of
the vector/matrix containing the impulses using the
“fname=” option.
The option “imp=mlechol” is provided for backward com-
patibility with EViews 3.x and earlier.

fname=name Specify name of vector/matrix containing the impulses.
The vector/matrix must have rows and 1 or columns,
where is the number of endogenous variables.

se=arg Standard error calculations: “se=a” (analytic), “se=mc”
(Monte Carlo).
If selecting Monte Carlo, you must specify the number of
replications with the “rep=” option.
Note the following:
(1) Analytic standard errors are currently not available for
(a) VECs and (b) structural decompositions identified by
long-run restrictions. The “se=a” option will be ignored
for these cases.
(2) Monte Carlo standard errors are currently not available
for (a) VECs and (b) structural decompositions. The
“se=mc” option will be ignored for these cases.

rep=integer Number of Monte Carlo replications to be used in comput-
ing the standard errors. Must be used with the “se=mc”
option.

k k
k

Var::impulse—863

Examples
var var1.ls 1 4 m1 gdp cpi

var1.impulse(10,m) gdp @ m1 gdp cpi

The first line declares and estimates a VAR with three variables. The second line displays
multiple graphs of the impulse responses of GDP to shocks to the three series in the VAR
using the ordering as specified in VAR1.

var1.impulse(10,m) gdp @ m1 @ cpi gdp m1

displays the impulse response of GDP to a one standard deviation shock in M1 using a dif-
ferent ordering.

Cross-references

See Chapter 40. “Vector Autoregression and Error Correction Models,” on page 687 of User’s
Guide II for a discussion of variance decompositions in VARs.

See also Var::decomp (p. 853).

matbys=name Save responses ordered by shocks (impulses) in a named
matrix. The first column is the response of the first variable
to the first shock, the second column is the response of the
second variable to the first shock, and so on. The response
and shock orderings correspond to the ordering of variables
in the VAR.

matbyr=name Save responses ordered by response series in a named
matrix. The first column is the response of the first variable
to the first shock, the second column is the response of the
first variable to the second shock, and so on. The response
and shock orderings correspond to the ordering of variables
in the VAR.

smat=name Save responses ordered by shocks (impulses) in a named
matrix (akin to the “matbys=” option). The shocks and
responses are ordered according to the user-specified order
given by the “@ shock_series” and “@ ordering_series”
specifications.

rmat=name Save responses ordered by response series in a named
matrix (akin to the “matbyr=” option). The shocks and
responses are ordered according to the user-specified order
given by the “@ shock_series” and “@ ordering_series”
specifications.

prompt Force the dialog to appear from within a program.

p Print the results.

864—Chapter 1. Object Reference

Multivariate residual normality test.

Syntax
var_name.jbera(options)

You must specify a factorization method using the “factor=” option.

Options

The “name=” option stores the following matrix. Let the VAR have endogenous vari-
ables. Then the stored matrix will have dimension . The first rows contain
statistics for each orthogonal component, where the first column contains the third
moments, the second column contains the statistics for the third moments, the third col-
umn contains the fourth moments, and the fourth column holds the statistics for the
fourth moments. The sum of the second and fourth columns are the Jarque-Bera statistics
reported in the last output table.

The last row contains statistics for the joint test. The second and fourth column of the
 row is simply the sum of all the rows above in the corresponding column and are

the statistics for the joint skewness and kurtosis tests, respectively. These joint skewness
and kurtosis statistics add up to the joint Jarque-Bera statistic reported in the output table,
except for the “factor=cov” option. When this option is set, the joint Jarque-Bera statistic
includes all cross moments (in addition to the pure third and fourth moments). The overall

jbera Var Views

factor=chol Factorization by the inverse of the Cholesky factor of the
residual covariance matrix.

factor=cor Factorization by the inverse square root of the residual cor-
relation matrix (Doornik and Hansen, 1994).

factor=cov Factorization by the inverse square root of the residual
covariance matrix (Urzua, 1997).

factor=svar Factorization matrix from structural VAR. You must first
estimate the structural factorization to use this option; see
Var::svar (p. 878).

name=arg Save the test statistics in a named matrix object. See below
for a description of the statistics contained in the stored
matrix.

prompt Force the dialog to appear from within a program.

p Print the test results.

k
k 1�� � 4u k

x1
2

x1
2

k 1�� �
xk

2

Var::label—865

Jarque-Bera statistic for this statistic is stored in the first column of the row (which
will be a missing value for all other options).

Examples
var var1.ls 1 6 lgdp lm1 lcpi

show var1.jbera(factor=cor,name=jb)

The first line declares and estimates a VAR. The second line carries out the residual multi-
variate normality test using the inverse square root of the residual correlation matrix as the
factorization matrix and stores the results in a matrix named JB.

Cross-references

See Chapter 40. “Vector Autoregression and Error Correction Models,” on page 687 of User’s
Guide II for a discussion of the test and other VAR diagnostics.

Display or change the label view of a var object, including the last modified date and dis-
play name (if any).

As a procedure, label changes the fields in the var object label.

Syntax
var_name.label

var_name.label(options) [text]

Options

The first version of the command displays the label view of the var object. The second ver-
sion may be used to modify the label. Specify one of the following options along with
optional text. If there is no text provided, the specified field will be cleared.

label Var Views | Var Procs

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

k 1�� �

866—Chapter 1. Object Reference

Examples

The following lines replace the remarks field of VAR1 with “Data from CPS 1988 March
File”:

var1.label(r)

var1.label(r) Data from CPS 1988 March File

To append additional remarks to VAR1, and then to print the label view:

var1.label(r) Log of hourly wage

var1.label(p)

To clear and then set the units field, use:

var1.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels.

See also Var::displayname (p. 855).

VAR lag order selection criteria.

Syntax
var_name.laglen(m, options)

You must specify the maximum lag order m for which you wish to test.

Options

The “vname=” option stores a vector with 5 rows containing the selected lags from the fol-
lowing criteria: sequential modified LR test (row 1), final prediction error (row 2), Akaike
information criterion (row 3), Schwarz information criterion (row 4), Hannan-Quinn infor-
mation criterion (row 5).

laglen Var Views

vname=arg Save selected lag orders in named vector. See below for a
description of the stored vector.

mname=arg Save lag order criteria in named matrix. See below for a
description of the stored matrix.

prompt Force the dialog to appear from within a program.

p Print table of lag order criteria.

Var::ls—867

The “mname=” option stores a matrix, where if there are no exogenous
variables in the VAR; otherwise . The first rows contain the information
displayed in the table view, following the same order. The saved matrix has an additional
row which contains the lag order selected from each column criterion. The first column (cor-
responding to the log likelihood values) of the last row is always an NA.

Examples
var var1.ls 1 6 lgdp lm1 lcpi

show var1.laglen(12,vname=v1)

The first line declares and estimates a VAR. The second line computes the lag length criteria
up to a maximum of 12 lags and stores the selected lag orders in a vector named V1.

Cross-references

See Chapter 40. “Vector Autoregression and Error Correction Models,” on page 687 of User’s
Guide II for a discussion of the various criteria and other VAR diagnostics.

See also Var::testlags (p. 881).

Estimate VAR specification.

Syntax
var_name.ls(options) lag_pairs endog_list [@ exog_list] [@restrict restrict_list]

ls estimates an unrestricted VAR using equation-by-equation OLS. You must specify the
order of the VAR (using one or more pairs of lag intervals), and then provide a list of series
or groups to be used as endogenous variables. You may include exogenous variables such as
trends and seasonal dummies in the VAR by including an “@-sign” followed by a list of
series or groups. A constant is automatically added to the list of exogenous variables; to esti-
mate a specification without a constant, you should use the option “noconst”.

The restrict_list is a comma-separated list of text restrictions in the form described below
and in greater detail in “VARs With Linear Constraints” on page 693 of User’s Guide II.

Restriction text expressions use the following “@” keywords to refer to individual coefficient
matrix elements:

ls Var Methods

q 6u q m 1�
q m 2� q 1–� �

868—Chapter 1. Object Reference

Note that the canonical names (“L#”, “E#”, “E(X)”) that refer to lag matrices and exogenous
variable vectors are preceded by “@” to avoid ambiguity.

For example, we may have:

@L1(1,1) = 0

@L2(2,2) = @L1(3,3) / 2

@L2(1,1) + @L4(2,1) = 1

@E(C, 1) = 0

@E(X, 2) = @E(C, 2)

@E1(1) + @E1(2) = 1

In addition, you may use text expressions to refer to parts of lag coefficient matrices and to
impose specialized restrictions,

@l#(r, c) Element (r, c) of the lag # coefficient matrix.

@e#(r) Element r of the exogenous variable # coefficient vec-
tor.

@e(X, r) Element r of the exogenous variable X coefficient vec-
tor

@vec(W)=n1, n2, n3, ... Restricts all elements of matrix W similar to a pattern
matrix. Element ordering matches the vectorization of
the matrix, i.e., the elements of the first column, fol-
lowed by the second column, followed by the third col-
umn, etc.

@diag(W) Restricts W to be a diagonal matrix, i.e., off-diagonal
elements are zero. The diagonal elements are unre-
stricted.

@diag(W) = n Restricts W to be a diagonal matrix with elements on
the diagonal restricted to be n.

@lower(W) Restricts W to be a lower triangular matrix, i.e., ele-
ments above the diagonal are zero.

@unitlower(W) Restricts W to be a unit lower triangular matrix, i.e.,
elements above the diagonal are zero and elements on
the diagonal are one.

@upper(W) Restricts W to be an upper triangular matrix, i.e., ele-
ments below the diagonal are zero.

Var::ls—869

where is a reference to a canonical matrix name (e.g., “L1”, “L3”).

When a “@vec” restriction is included in the restriction list, its own list of values must be
enclosed in double quotes, as in

@vec(W) = "1, 2, 3, 4"

Options
General options

Restricted VAR options

Examples
var mvar.ls 1 3 m1 gdp

declares and estimates an unrestricted VAR named MVAR with two endogenous variables
(M1 and GDP), a constant and 3 lags (lags 1 through 3).

mvar.ls(noconst) 1 3 ml gdp

estimates the same VAR, but with no constant.

mvar.ls 1 2 dlog(invest) dlog(income) dlog(cons) @restrict

@vec(l1) = "na, 0, na, 0, na, na, na, na, na", @vec(l2) = "na,

na, na, 0, 0, na, na, na, na"

estimates a VAR with pattern restrictions on elements of the first and second lag matrices.

@unitupper(W) Restricts W to be a unit upper triangular matrix, i.e.,
elements below the diagonal are zero and elements on
the diagonal are one.

@row(W, r) = n Restricts the elements in row r of W to be n.

@col(W, c) = n Restricts the elements in column c of W to be n.

noconst Do not include a constant in exogenous regressors list for
VARs.

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

noiter Perform GLS with a single iteration.

m=integer Set maximum number of iterations. If iteration and “m=0”
then estimation will be by OLS.

c=scalar Set convergence criterion.

showopts /
-showopts

[Do / do not] display the estimation options in the estima-
tion output.

W

870—Chapter 1. Object Reference

Cross-references

See Chapter 40. “Vector Autoregression and Error Correction Models,” on page 687 of User’s
Guide II for details.

See also Var::ec (p. 855) and Var::bvar (p. 846) for estimation of error correction mod-
els and Bayesian VAR estimation.

Create group containing the estimated cointegrating relations from a VEC.

Syntax
var_name.makecoint [group_name]

The series contained in the group are given names of the form “COINTEQ##”, where ## are
numbers such that “COINTEQ##” is the next available unused name.

If you provide a name for the group in parentheses after the keyword, EViews will quietly
create the named group in the workfile. If you do not provide a name, EViews will open an
untitled group window if the command is executed from the command line, otherwise no
group will be created.

This proc will return an error message unless you have estimated an error correction model
using the var object.

Examples
var vec1.ec(b,2) 1 4 y1 y2 y3

vec1.makecoint gcoint

The first line estimates a VEC with 2 cointegrating relations. The second line creates a group
named GCOINT which contains the two estimated cointegrating relations. The two cointe-
grating relations will be stored as series named COINTEQ01 and COINTEQ02 (if these names
have not yet been used in the workfile).

Cross-references

See Chapter 40. “Vector Autoregression and Error Correction Models,” on page 687 of User’s
Guide II for details.

See also Var::coint (p. 850).

makecoint Var Procs

Var::makemodel—871

Make a group out of the endogenous series.

Syntax
var_name.makeendog name

Following the keyword makeendog, you should provide a name for the group to hold the
endogenous series. If you do not provide a name, EViews will create an untitled group.

Examples
var1.makeendog grp_v1

creates a group named GRP_V1 that contains the endogenous series in VAR1.

Cross-references

See also Var::endog (p. 857) and Model::makegroup (p. 440).

Make a model from a var object.

Syntax
var_name.makemodel(name)

If you provide a name for the model in parentheses after the keyword, EViews will create the
named model in the workfile. If you do not provide a name, EViews will open an untitled
model window if the command is executed from the command line.

Examples
var var3.ls 1 4 m1 gdp tb3

var3.makemodel(varmod)

estimates a VAR and makes a model named VARMOD from the estimated var object. Use the
command “show varmod” or “varmod.spec” to open the VARMOD window.

Cross-references

See Chapter 42. “Models,” on page 781 of User’s Guide II for a discussion of specifying and
solving models in EViews.

See also Var::append (p. 843), Model::merge (p. 441) and Model::solve (p. 452).

makeendog Var Procs

makemodel Var Procs

872—Chapter 1. Object Reference

Create residual series.

Creates and saves residuals in the workfile from an estimated VAR.

Syntax
var_name.makeresids(options) [res1 res2 res3]

Follow the VAR name with a period and the makeresids keyword, then provide a list of
names to be given to the stored residuals. You should provide as many names as there are
equations. If there are fewer names than equations, EViews creates the extra residual series
with names RESID01, RESID02, and so on. If you do not provide any names, EViews will
also name the residuals RESID01, RESID02, and so on.

Options

Examples
var macro_var.ls 1 4 y m1 r

macro_var.makeresids resay res_m1 riser

estimates an unrestricted VAR with four lags and endogenous variables Y, M1, and R, and
stores the residuals as RES_Y, RES_M1, RES_R.

Cross-references

See “Views and Procs of a VAR” on page 701 of User’s Guide II for a discussion of views and
procedures of a VAR.

makeresids Var Procs

struct Compute structural residuals.

method = arg Structural residual method (if “struct” option is provided):
unit impulses, ignoring correlations among the residuals
(“imp=unit”), non-orthogonal, ignoring correlations
among the residuals (“imp=nonort”), Cholesky with d.f.
correction (“imp=chol”), Cholesky without d.f. correction
(“imp=mlechol”), Generalized (“imp=gen”), structural
(“imp=struct”), or user specified (“imp=user”).
The structural factorization is based on the estimated struc-
tural VAR. To use this option, you must first estimate the
structural decomposition; see Var::svar (p. 878).
For user-specified weights, you must specify the name of
the vector/matrix containing the impulses using the
“fname=” option.

n=arg Create group object to hold the residual series.

Var::output—873

Create system from a var.

Syntax
var_name.makesystem(options)

You may order the equations by series (default) or by lags.

Options

Examples
var1.makesystem(n=sys1)

creates a system named SYS1 from the var object VAR1

Cross-references

See Chapter 39. “System Estimation,” on page 645 of User’s Guide II for a discussion of sys-
tem objects in EViews.

Push updates to OLE linked objects in open applications.

Syntax
var_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

Display estimation output.

output changes the default object view to display the estimation output (equivalent to
using Var::results (p. 877)).

makesystem Var Procs

bylag Specify system by lags (default is to order by variables).

n=name Specify name for the object.

olepush Var Procs

output Var Views

874—Chapter 1. Object Reference

Syntax
var_name.output

Options

Examples

The output keyword may be used to change the default view of an estimation object. Enter-
ing the command:

var1.output

displays the estimation output for VAR1.

Cross-references

See Var::results (p. 877).

Multivariate residual autocorrelation Portmanteau tests.

Syntax
var_name.qstats(h, options)

You must specify the highest order of lag h to test for serial correlation. h must be larger than
the VAR lag order.

Options

Examples
var var1.ls 1 6 lgdp lm1 lcpi

show var1.qstats(l0, name=q)

The first line declares and estimates a VAR. The second line displays the portmanteau tests
for lags up to 10, and stores the Q-statistics in a matrix named Q.

p Print estimation output for estimation object

qstats Var Views

name=arg Save Q-statistics in the named matrix object. The matrix
has two columns: the first column contains the unmodified
Q-statistic; the second column contains the modified Q-
statistics.

prompt Force the dialog to appear from within a program.

p Print the Portmanteau test results.

Var::residcor—875

Cross-references

See “Diagnostic Views” on page 702 of User’s Guide II for a discussion of the Portmanteau
tests and other VAR diagnostics.

See Var::arlm (p. 845) for a related multivariate residual serial correlation LM test.

Display text of specification for var objects.

Syntax
var_name.representation(options)

Options

Examples
var1.representations

displays the specifications of the estimation object VAR1.

Residual correlation matrix.

Displays the correlations of the residuals from each equation in the var object.

Syntax
var_name.residcor(options)

Options

Examples
var1.residcor

displays the residual correlation matrix of VAR1.

Cross-references

See also Var::residcov (p. 876) and Var::makeresids (p. 872).

representations Var Views

p Print the representation text.

residcor Var Views

p Print the correlation matrix.

876—Chapter 1. Object Reference

Residual covariance matrix.

Displays the covariances of the residuals from each equation in the var object.

Syntax
var_name.residcov(options)

Options

Examples
var1.residcov

displays the residual covariance matrix of VAR1.

Cross-references

See also Var::residcor (p. 875) and Var::makeresids (p. 872).

Display residuals.

resids displays multiple graphs of the residuals. Each graph will contain the residuals for
an equation in the VAR.

Syntax
var_name.resids(options)

residcov Var Views

p Print the covariance matrix.

resids Var Views

Var::results—877

Options

Examples
var var1.ls 1 3 m1 c

var1.resids

calculates a VAR with three lags, two endogenous variables and a constant term, and then
displays a graph of the residuals.

Cross-references

See also Var::makeresids (p. 872).

Displays the results view of an estimated VAR.

Syntax
var_name.results(options)

Options

Examples
var mvar.ls 1 4 8 8 m1 gdp tb3 @ @trend(70.4)

mvar.results(p)

struct Compute structural residuals.

method = arg Structural residual method (if “struct” option is provided):
unit impulses, ignoring correlations among the residuals
(“imp=unit”), non-orthogonal, ignoring correlations
among the residuals (“imp=nonort”), Cholesky with d.f.
correction (“imp=chol”), Cholesky without d.f. correction
(“imp=mlechol”), Generalized (“imp=gen”), structural
(“imp=struct”), or user specified (“imp=user”).
The structural factorization is based on the estimated struc-
tural VAR. To use this option, you must first estimate the
structural decomposition; see Var::svar (p. 878).
For user-specified weights, you must specify the name of
the vector/matrix containing the impulses using the
“fname=” option.

p Print the table/graph.

results Var Views

p Print the view.

878—Chapter 1. Object Reference

prints the estimation results from the estimated VAR.

Set the object attribute.

Syntax
var_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Estimate factorization matrix for structural innovations.

Syntax
var_name.svar(options)

The var object must previously have been estimated in unrestricted form.

You must specify the identifying restrictions either in text form by the append proc or by a
pattern matrix option. See “Specifying SVAR Restrictions in EViews” on page 716 of User’s
Guide II for details on specifying restrictions.

Options

You may specify any of the following options:

setattr Var Procs

svar Var Procs

a=mat Name of the pattern matrix for factorization matrix A.

b=mat Name of the pattern matrix for factorization matrix B.

Var::svar—879

Examples
var var1.ls 1 4 m1 gdp cpi

matrix(3,3) pata

pata.fill 1, na, na, 0, 1, na, 0, 0, 1

matrix(3,3) patb

pata.fill na, 0, 0, 0, na, 0, 0, 0, na

var1.svar(a=pata,b=patb)

The first line declares and estimates a VAR with three variables. We then create the factor-
ization pattern matrices and perform the estimation.

var var1.ls 1 8 dy u @

s=mat Name of the pattern matrix for short-run impulse response
matrix S.

f=mat Name of the pattern matrix for long-run impulse response
matrix F.

f0=arg
(default=0.1)

Specify the starting values for estimation free parameters: a
scalar value, or ‘s’ for user-specified values in the C coeffi-
cient object, or ‘u’ for values randomly drawn from the
uniform distribution on [0,1], or ‘n’ for values randomly
drawn from the standard normal distribution. The default
is a scalar value of 0.1.

maxiter=num,
m=num

Maximum number of optimization iterations. The default is
taken from the global option settings.

conv=num,
c=num

The convergence criterion (lower bound on optimization
step size). The default is taken from the global option set-
tings.

trace=num,
t=num
(default=0)

Summarize the ongoing optimization every num iterations.
Summary information is displayed in an unnamed text
object. The default is a trace period of 0, which disables
tracing.

fsign Do not perform sign normalization. See ““Sign Restric-
tions” on page 723” for a description of sign normaliza-
tion.

nostop Suppress “Near Singular Matrix” and other error messages
during estimation.

preset=num,
p=num

Apply a restriction preset, as described in the SVAR Options
Identifying Restrictions dialog. num may be 1 through 6,
corresponding to the first six preset options.

prompt Force the dialog to appear from within a program.

880—Chapter 1. Object Reference

var1.append(svar) @f(2,1)=0

freeze(out1) var1.svar

The first line declares and estimates a VAR with two variables without a constant. The next
two lines specify a long-run restriction and store the estimation output in a table object
named OUT1.

Cross-references

See “Structural (Identified) VARs” on page 714 of User’s Guide II for a discussion of struc-
tural VARs.

Perform exogeneity (Granger causality) tests on a VAR.

Syntax
var_name.testexog(options)

Options

The name= option stores the results in a matrix, where is the number of
endogenous variables in the VAR. In the first rows, the i-th row, j-th column contains the
Wald statistic for the joint significance of lags of the i-th endogenous variable in the j-th
equation (note that the entries in the main diagonal are not reported in the table view). The
degrees of freedom of the Wald statistics is the number of lags included in the VAR.

In the last row, the j-th column contains the Wald statistic for the joint significance of all
lagged endogenous variables (excluding lags of the dependent variable) in the j-th equation.
The degrees of freedom of the Wald statistics in the last row is times the number of
lags included in the VAR.

Examples
var var1.ls 1 6 lgdp lm1 lcpi

freeze(tab1) var1.testexog(name=exog)

The first line declares and estimates a VAR. The second line stores the exclusion test results
in a named table TAB1, and stores the Wald statistics in a matrix named EXOG.

testexog Var Views

name=arg Save the Wald test statistics in named matrix object. See
below for a description of the statistics stored in the matrix.

p Print output from the test.

k 1�� � ku k
k

k 1–� �

Var::testlags—881

Cross-references

See “Diagnostic Views” on page 702 of User’s Guide II for a discussion of other VAR diagnos-
tics.

See also Var::testlags (p. 881).

Perform lag exclusion (Wald) tests on a VAR.

Syntax
var_name.testlags(options)

Options

The “name=” option stores results in an matrix, where is the number of
lagged terms and is the number of endogenous variables in the VAR. In the first col-
umns, the i-th row, j-th column entry is the Wald statistic for the joint significance of all i-th
lagged endogenous variables in the j-th equation. These Wald statistics have a distribu-
tion with degrees of freedom under the exclusion null.

In the last column, the i-th row contains the system Wald statistic for testing the joint signif-
icance of all i-th lagged endogenous variables in the VAR system. The system Wald statistics
has a chi-square distribution with degrees of freedom under the exclusion null.

Examples
var var1.ls 1 6 lgdp lm1 lcpi

freeze(tab1) var1.testlags(name=lags)

The first line declares and estimates a VAR. The second line stores the lag exclusion test
results in a table named TAB1, and stores the Wald statistics in a matrix named LAGS.

Cross-references

See “Diagnostic Views” on page 702 of User’s Guide II for a discussion other VAR diagnos-
tics.

See also Var::laglen (p. 866) and Var::testexog (p. 880).

testlags Var Views

name=arg Save the Wald test statistics in named matrix object. See
below for a description of the statistics contained in the
stored matrix.

p Print the result of the test.

m k 1�� �u m
k k

x
2

k

k2

882—Chapter 1. Object Reference

Declare a var (Vector Autoregression) object.

Syntax
var var_name

var var_name.ls(options) lag_pairs endog_list [@ exog_list]

var var_name.ec(trend, n) lag_pairs endog_list [@ exog_list]

Declare the var as a name, or a name followed by an estimation method and specification.

The Var::ls (p. 867) method estimates an unrestricted VAR using equation-by-equation
OLS. You must specify the order of the VAR (using one or more pairs of lag intervals), and
then provide a list of series or groups to be used as endogenous variables. You may include
exogenous variables such as trends and seasonal dummies in the VAR by including an “@-
sign” followed by a list of series or groups. A constant is automatically added to the list of
exogenous variables; to estimate a specification without a constant, you should use the
option “noconst”.

See Var::ec (p. 855) for the error correction specification of a VAR.

Options

Examples
var mvar.ls 1 4 8 8 m1 gdp tb3 @ @trend

declares and estimates an unrestricted VAR named MVAR with three endogenous variables
(M1, GDP, TB3), five lagged terms (lags 1 through 4, and 8), a constant, and a linear trend.

var jvar.ec(c,2) 1 4 m1 gdp tb3

declares and estimates an error correction model named JVAR with three endogenous vari-
ables (M1, GDP, TB3), four lagged terms (lags 1 through 4), two cointegrating relations. The
“c” option assumes a linear trend in data but only a constant in the cointegrating relations.

var Var Declaration

noconst Do not include a constant in the VAR specification (when
combining declaration with Var::ls (p. 867) method).

prompt Force the dialog to appear from within a program.

p Print the estimation result if the estimation procedure is
specified.

Var::white—883

Cross-references

See Chapter 40. “Vector Autoregression and Error Correction Models,” on page 687 of User’s
Guide II for a discussion of vector autoregressions.

See Var::ls (p. 867) for standard VAR estimation, and Var::ec (p. 855) for estimation of
error correction models.

Performs White’s test for heteroskedasticity of residuals.

Carries out White’s multivariate test for heteroskedasticity of the residuals of the specified
Var object. By default, the test is computed without the cross-product terms (using only the
terms involving the original variables and squares of the original variables). You may elect
to compute the original form of the White test that includes the cross-products.

Syntax
var_name.white(options)

Options

The “name=” option stores the results in a matrix, where is the number of
unique residual cross-product terms. For a VAR with endogenous variables,

. The first rows contain statistics for each individual test equation,
where the first column is the regression R-squared, the second column is the F-statistic, the
third column is the p-value of F-statistic, the 4th column is the statistic, and the
fifth column is the p-value of the statistic.

The numerator and denominator degrees of freedom of the F-statistic are stored in the third
and fourth columns, respectively, of the -st row, while the degrees of freedom is
stored in the fifth column of the -st row.

In the -st row and first column contains the joint (system) LM chi-square statistic
and the second column contains the degrees of freedom of this statistic.

Examples
var1.white

white Var Views

c Include all possible nonredundant cross-product terms in
the test regression.

name=arg Save test statistics in named matrix object. See below for a
description of the statistics stored in the matrix.

p Print the test results.

r 1�� � 5u r
k

r k k 1�� � 2e r

T R2u x
2

x
2

r 1�� � x
2

r 1�� �

r 1�� �
x

2

884—Chapter 1. Object Reference

carries out the White test of heteroskedasticity.

Cross-references

See “White's Heteroskedasticity Test” on page 199 of User’s Guide II for a discussion of
White’s test. For the multivariate version of this test, see “White Heteroskedasticity Test” on
page 706 of User’s Guide II.

References

Doornik, Jurgen A. and Henrik Hansen (1994). “An Omnibus Test for Univariate and Multivariate Normal-
ity,” manuscript.

MacKinnon, James G., Alfred A. Haug, and Leo Michelis (1999), “Numerical Distribution Func-
tions of Likelihood Ratio Tests For Cointegration,” Journal of Applied Econometrics, 14, 563-
577.

Osterwald-Lenum, Michael (1992). “A Note with Quantiles of the Asymptotic Distribution of the Maxi-
mum Likelihood Cointegration Rank Test Statistics,” Oxford Bulletin of Economics and Statistics, 54,
461–472.

Urzua, Carlos M. (1997). “Omnibus Tests for Multivariate Normality Based on a Class of Maximum
Entropy Distributions,” in Advances in Econometrics, Volume 12, Greenwich, Conn.: JAI Press, 341-
358.

Vector::—885

Vector

Vector. (One dimensional array of numbers).

Vector Declaration
vectordeclare vector object (p. 907).

There are several ways to create a vector object. Enter the vector keyword (with an
optional dimension) followed by a name:

vector scalarmat

vector(10) results

Alternatively, you may declare a vector using an assignment statement. The vector will be
sized and initialized, accordingly:

vector(10) myvec = 3.14159

vector results = vec1

Vector Views
covcompute variance measures for the data in the vector (p. 887).
labellabel information for the vector object (p. 898).
sheetspreadsheet view of the vector (p. 906).
statsdescriptive statistics (p. 906).

Vector Graph Views

Graph creation views are discussed in detail in “Graph Creation Command Summary” on
page 911.

areaarea graph of the vector (p. 913).
bar........................bar graph of data against the row index (p. 918).
boxplotboxplot graph (p. 923).
distplotdistribution graph (p. 926).
dotdot plot graph (p. 934).
lineline graph of the data against the row index (p. 941).
qqplotquantile-quantile graph (p. 950).
seasplot.................seasonal line graph (p. 965).
spike.....................spike graph (p. 966).

Vector Procs
clearhistclear the contents of the history attribute (p. 887).
displayname..........set display name (p. 890).
fill.........................fill elements of the vector (p. 891).
getglobalccopy the contents of the workfile C coefficient vector into the vector

object (p. 892).

886—Chapter 1. Object Reference

olepush push updates to OLE linked objects in open applications (p. 899).
read (deprecated) import data from disk (p. 900).
setattr................... set the value of an object attribute (p. 902).
setformat set the display format for the vector spreadsheet (p. 902).
setglobalc copy the contents of the vector object into the workfile C coefficient

vector (p. 903).
setindent set the indentation for the vector spreadsheet (p. 904).
setjust set the justification for the vector spreadsheet (p. 904).
setwidth set the column width for the vector spreadsheet (p. 905).
write export data to disk (p. 907).

Vector Data Members
String values

@attr(“arg”) string containing the value of the arg attribute, where the argument
is specified as a quoted string.

@collabels............ string containing the column label of the vector.
@description string containing the Vector object’s description (if available).
@detailedtype string with the object type: “VECTOR”.
@displayname...... string containing the Vector object’s display name. If the Vector has

no display name set, the name is returned.
@name string containing the Vector object’s name.
@remarks string containing the Vector object’s remarks (if available).
@rowlabels string containing the row labels of the vector.
@source string containing the Vector object’s source (if available).
@type string with the object type: “VECTOR”.
@units string containing the Vector object’s units description (if available).
@updatetime........ string representation of the time and date at which the Vector was

last updated.

Scalar values

(i) i-th element of the vector. Simply append “(i)” to the vector name
(without a “.”).

@rows number of rows in the matrix.

Vector values

@droprow(i) Returns the vector with the i-th row removed. i may be a vector of
integers, in which case multiple rows are removed.

Vector::cov—887

Vector Entries

The following section provides an alphabetical listing of the commands associated with the
“Vector” object. Each entry outlines the command syntax and associated options, and pro-
vides examples and cross references.

Clear the contents of the history attribute for vector objects.

Removes the vector’s history attribute, as shown in the label view of the vector.

Syntax
vector_name.clearhist

Examples
v1.clearhist

v1.label

The first line removes the history from the vector V1, and the second line displays the label
view of V1, including the now blank history field.

Cross-references

See “Labeling Objects” on page 116 of the User’s Guide I for a discussion of labels and dis-
play names.

See also Vector::label (p. 898).

Compute variance measures for the vector. You may compute measures related to Pearson
product-moment (ordinary) variance, rank variance, or Kendall’s tau.

Syntax
vector_name.cov(options) [keywords [@partial z1 z2 z3...]]

You should specify keywords indicating the statistics you wish to display from the list below,
optionally followed by the keyword @partial and the name of a conditioning matrix. In the
matrix view setting, the columns of the matrix should contain the conditioning information,
and the number or rows should match the original matrix.

You may specify keywords from one of the four sets (Pearson correlation, Spearman correla-
tion, Kendall’s tau, Uncentered Pearson) corresponding the computational method you wish

clearhist Vector Procs

cov Vector Views

888—Chapter 1. Object Reference

to employ. (You may not select keywords from more than one set.) Note that the Kendall’s
tau measures are not particularly interesting since they generally will be equal, or nearly
equal, to 1.

If you do not specify keywords, EViews will assume “cov” and compute the Pearson vari-
ance.

Pearson Correlation

Spearman Rank Correlation

Kendall’s tau

Uncentered Pearson

cov Product moment covariance.

corr Product moment correlation.

sscp Sums-of-squared cross-products.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

rcov Spearman’s rank covariance.

rcorr Spearman’s rank correlation.

rsscp Sums-of-squared cross-products.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

taub Kendall’s tau-b.

taua Kendall’s tau-a.

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

ucov Product moment covariance.

ucorr Product moment correlation.

usscp Sums-of-squared cross-products.

Vector::cov—889

Note that cases, obs, and wgts are available for each of the methods.

Options

Examples
vec1.cov corr stat prob

displays a table containing the Pearson correlation, t-statistic for testing for zero correlation,
and associated p-value, for the vector VEC1.

vec1.cov taub taustat tauprob

cases Number of cases.

obs Number of observations.

wgts Sum of the weights.

wgt=name
(optional)

Name of series containing weights.

wgtmethod=arg
(default =
“sstdev”)

Weighting method (when weights are specified using
“weight=”): frequency (“freq”), inverse of variances
(“var”), inverse of standard deviation (“stdev”), scaled
inverse of variances (“svar”), scaled inverse of standard
deviations (“sstdev”).
Only applicable for ordinary (Pearson) calculations.
Weights specified by “wgt=” are frequency weights for
rank correlation and Kendall’s tau calculations.

df Compute covariances with a degree-of-freedom correction
for the mean (for centered specifications), and any partial
conditioning variables.

outfmt=arg
(default=
“single”)

Output format: single table (“single”), multiple table
(“mult”), list (“list”), spreadsheet (“sheet”). Note that
“outfmt=sheet” is only applicable if you specify a single
statistic keyword.

out=name Basename for saving output. All results will be saved in
Sym matrices named using keys (“COV”, “CORR”, “SSCP”,
“TAUA”, “TAUB”, “CONC” (Kendall’s concurrences),
“DISC” (Kendall’s discordances), “CASES”, “OBS”,
“WGTS”) appended to the basename (e.g., the covariance
specified by “out=my” is saved in the Sym matrix
“MYCOV”).

prompt Force the dialog to appear from within a program.

p Print the result.

890—Chapter 1. Object Reference

computes the Kendall’s tau-b, score statistic, and p-value for the score statistic.

Cross-references

For simple forms of the calculation see @cov (p. 689) in the Command and Programming
Reference.

Display table, graph, or spool output in the vector object window.

Display the contents of a table, graph, or spool in the window of the vector object.

Syntax
vector_name.display object_name

Examples
vector1.display tab1

Display the contents of the table TAB1 in the window of the object VECTOR1.

Cross-references

Most often used in constructing an EViews Add-in. See “Custom Object Output” on page 214
in the Command and Programming Reference.

Set display name for vector.

Attaches a display name to a vector which may be used to label output in tables and graphs
in place of the standard vector name.

Syntax
vector_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in object names.

Examples
v1.displayname Coef Results

v1.label

The first line attaches a display name “Coef Results” to the vector V1, and the second line
displays the label view of V1, including its display name.

display Vector Views

displayname Vector Procs

Vector::fill—891

v1.displayname Means by State

plot v1

The first line attaches a display name “Means by State” to the vector V1. The line graph
view of V1 will use the display name as the legend.

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels and display
names.

See also Vector::label (p. 898) and Graph::legend (p. 264).

Fill a vector with the specified values.

Syntax
vector_name.fill(options) n1[, n2, n3 …]

Follow the keyword with a list of values to place in the specified object. Each value should
be separated by a comma.

Running out of values before the object is completely filled is not an error; the remaining
cells or observations will be unaffected, unless the “l” (loop) option is specified. If, however,
you list more values than the vector can hold, EViews will not modify any observations and
will return an error message.

Options

Examples

The following example declares a four element vector MC, initially filled with zeros. The
second line fills MC with the specified values and the third line replaces from row 3 to the
last row with –1.

vector(4) mc

mc.fill 0.1, 0.2, 0.5, 0.5

mc.fill(o=3, l) -1

fill Vector Procs

l Loop repeatedly over the list of values as many times as it
takes to fill the vector.

o=integer
(default=1)

Fill the vector from the specified element. Default is the
first element.

892—Chapter 1. Object Reference

Cross-references

See Chapter 11. “Matrix Language,” on page 261 of the Command and Programming Refer-
ence for a detailed discussion of vector and matrix manipulation in EViews.

Copy the contents of the workfile C coefficient vector into the vector object.

Syntax
vector_name.getglobalc

This function only applies to vectors, rowvectors and coef objects. The contents of the vec-
tor will be replaced with the first N elements of the workfile C coefficient vector, where N is
the length of the vector object. This may be useful for storing starting values used in estima-
tion.

Examples
vector(5) vec1

vec1.getglobalc

Creates a vector object with 5 rows, and then copies the first 5 elements of the C vector into
it.

Imports data from a foreign file into the matrix object.

Syntax
vector_name.import([type=]) source_description import_specification

• Source_description should contain a description of the file from which the data is to be
imported. The specification of the description is usually just the path and file name of
the file, however you can also specify more precise information. See wfopen (p. 526)
of the Command and Programming Reference for more details on the specification of
source_description.

• The optional “type=” option may be used to specify a source type. For the most part,
you should not need to specify a “type=” option as EViews will automatically deter-
mine the type from the filename. The following table summaries the various source
formats and along with the corresponding “type=” keywords:

getglobalc Vector Procs

import Vector Procs

Vector::import—893

• import_specification can be used to provide additional information about the file to be
read. The details of import_specification will depend upon the type of file being
imported.

Excel Files

The syntax for reading Excel files is:
vector_name.import(type=excel[xml]) source_description [table_description] [vari-

ables_description]

The following table_description elements may be used when reading Excel data:

• “range = arg”, where arg is a range of cells to read from the Excel workbook, follow-
ing the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the
worksheet name is omitted, the cell range is assumed to refer to the currently active
sheet. If only a top left cell is provided, a bottom right cell will be chosen automati-
cally to cover the range of non-empty cells adjacent to the specified top left cell. If
only a sheet name is provided, the first set of non-empty cells in the top left corner of
the chosen worksheet will be selected automatically. As an alternative to specifying
an explicit range, a name which has been defined inside the excel workbook to refer
to a range or cell may be used to specify the cells to read.

• “byrow”, transpose the incoming data. This option allows you to read files where the
series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w”(EViews automatic detection). This option is rarely required.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

 Option Keywords

Excel (through 2003) “excel”

Excel 2007 (xml) “excelxml”

HTML “html”

Text / ASCII “text”

894—Chapter 1. Object Reference

• “scan=[int| all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the data (default is 1). This
option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the data (default is last observation
of the file). This option may be used to read only part of the file, which may be useful
for testing.

Excel Examples

matrix_name.import "c:\data files\data.xls"

loads the active sheet of DATA.XLSX into the MATRIX_NAME matrix object.

matrix_name.import "c:\data files\data.xls" range="GDP data"

reads the data contained in the “GDP data” sheet of “Data.XLS” into the MATRIX_NAME
object.

HTML Files

The syntax for reading HTML pages is:
vector_name.import(type=html) source_description [table_description] [variables_de-

scription]

The following table_description elements may be used when reading an HTML file or page:

• “table = arg”, where arg specifies which HTML table to read in an HTML file/page
containing multiple tables.

When specifying arg, you should remember that tables are named automatically fol-
lowing the pattern “Table01”, “Table02”, “Table03”, etc. If no table name is specified,
the largest table found in the file will be chosen by default. Note that the table num-
bering may include trivial tables that are part of the HTML content of the file, but
would not normally be considered as data tables by a person viewing the page.

• “skip = int”, where int is the number of rows to discard from the top of the HTML
table.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any

Vector::import—895

of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w”(EViews automatic detection). This option is rarely used.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

HTML Examples

vec1.import "c:\data.html"

loads into the VEC1 matrix object the data located in the HTML file “Data.HTML” located on
the C:\ drive

forexmat.import(type=html) "http://www.tradingroom.com.au/apps/

mkt/forex.ac" colhead=3

loads into a vector object called FOREXMAT the data with the given URL located on the
website site “http://www.tradingroom.com.au”. The column header is set to three rows.

Text and Binary Files

The syntax for reading text or binary files is:
vector_name.import(type=arg) source_description [table_description] [variables_de-

scription]

If a table_description is not provided, EViews will attempt to read the file as a free-format
text file. The following table_description elements may be used when reading a text or
binary file:

• “ftype = [ascii|binary]” specifies whether numbers and dates in the file are stored in
a human readable text (ASCII), or machine readable (Binary) form.

• “rectype = [crlf|fixed|streamed]” describes the record structure of the file:

“crlf”, each row in the output table is formed using a fixed number of lines from
the file (where lines are separated by carriage return/line feed sequences). This is
the default setting.

“fixed”, each row in the output table is formed using a fixed number of charac-
ters from the file (specified in “reclen= arg”). This setting is typically used for
files that contain no line breaks.

896—Chapter 1. Object Reference

“streamed”, each row in the output table is formed by reading a fixed number of
fields, skipping across lines if necessary. This option is typically used for files that
contain line breaks, but where the line breaks are not relevant to how rows from
the data should be formed.

• “reclines =int”, number of lines to use in forming each row when “rectype=crlf”
(default is 1).

• “reclen=int”, number of bytes to use in forming each row when “rectype=fixed”.

• “recfields=int”, number of fields to use in forming each row when “rec-
type=streamed”.

• “skip=int”, number of lines (if rectype is “crlf”) or bytes (if rectype is not “crlf”) to
discard from the top of the file.

• “comment=string“, where string is a double-quoted string, specifies one or more
characters to treat as a comment indicator. When a comment indicator is found,
everything on the line to the right of where the comment indicator starts is ignored.

• “emptylines=[keep|drop]”, specifies whether empty lines should be ignored
(“drop”), or treated as valid lines (“keep”) containing missing values. The default is
to ignore empty lines.

• “tabwidth=int”, specifies the number of characters between tab stops when tabs are
being replaced by spaces (default=8). Note that tabs are automatically replaced by
spaces whenever they are not being treated as a field delimiter.

• “fieldtype=[delim|fixed|streamed|undivided]”, specifies the structure of fields within
a record:

“Delim”, fields are separated by one or more delimiter characters

“Fixed”, each field is a fixed number of characters

“Streamed”, fields are read from left to right, with each field starting immediately
after the previous field ends.

“Undivided”, read entire record as a single series.

• “quotes=[single|double|both|none]”, specifies the character used for quoting fields,
where “single” is the apostrophe, “double” is the double quote character, and “both”
means that either single or double quotes are allowed (default is “both”). Characters
contained within quotes are never treated as delimiters.

• “singlequote“, same as “quotes = single”.

• “delim=[comma|tab|space|dblspace|white|dblwhite]”, specifies the character(s) to
treat as a delimiter. “White” means that either a tab or a space is a valid delimiter. You
may also use the abbreviation “d=” in place of “delim=”.

Vector::import—897

• “custom="arg1"”, specifies custom delimiter characters in the double quoted string.
Use the character “t” for tab, “s” for space and “a” for any character.

• “mult=[on|off]”, to treat multiple delimiters as one. Default value is “on” if “delim”
is “space”, “dblspace”, “white”, or “dblwhite”, and “off” otherwise.

• “endian = [big|little]”, selects the endianness of numeric fields contained in binary
files.

• “string = [nullterm|nullpad|spacepad]”, specifies how strings are stored in binary
files. If “nullterm”, strings shorter than the field width are terminated with a single
zero character. If “nullpad”, strings shorter than the field width are followed by extra
zero characters up to the field width. If “spacepad”, strings shorter than the field
width are followed by extra space characters up to the field width.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

A central component of the table_description element is the format statement. You may
specify the data format using the following table descriptors:

• Fortran Format:

fformat=([n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)

where Type specifies the underlying data type, and may be one of the following,

I - integer

F - fixed precision

E - scientific

A - alphanumeric

X - skip

and n1, n2, ... are the number of times to read using the descriptor (default=1). More
complicated Fortran compatible variations on this format are possible.

• Column Range Format:

rformat="[n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)"

where optional type is “$” for string or “#” for number, and n1, n2, n3, n4, etc. are the
range of columns containing the data.

• C printf/scanf Format:

cformat="fmt"

where fmt follows standard C language (printf/scanf) format rules.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

898—Chapter 1. Object Reference

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w”(EViews automatic detection). This option is rarely used.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

Text and Binary File Examples (.txt, .csv, etc.)

vec2.import c:\data.csv skip=5

reads “Data.CSV” into a VEC2, skipping the first 5 rows.

vector01.import(type=text, name=matrix01) c:\date.txt delim=comma

loads the comma delimited data DATE.TXT into the VECTOR01 matrix object.

Display or change the label view of the vector, including the last modified date and display
name (if any).

Used as a procedure, label changes the fields in the vector label.

Syntax
vector_name.label

vector_name.label(options) [text]

Options

The first version of the command displays the label view of the vector. The second version
may be used to modify the label. Specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared.

label Vector Views | Vector Procs

Vector::olepush—899

Examples

The following lines replace the remarks field of LWAGE with “Data from CPS 1988 March
File”:

lwage.label(r)

lwage.label(r) Data from CPS 1988 March File

To append additional remarks to LWAGE, and then to print the label view:

lwage.label(r) Log of hourly wage

lwage.label(p)

To clear and then set the units field, use:

lwage.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 116 of User’s Guide I for a discussion of labels. See also Vec-
tor::displayname (p. 890).

Push updates to OLE linked objects in open applications.

Syntax
vector_name.olepush

Cross-references

See “Object Linking and Embedding (OLE)” on page 827 of User’s Guide I for a discussion of
using OLE with EViews.

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

olepush Vector Procs

900—Chapter 1. Object Reference

Import data from a foreign disk file into a vector.

(This is a deprecated method of importing into a vector. See Vector::import (p. 892) for
the currently supported method.)

May be used to import data into an existing workfile from a text, Excel, or Lotus file on disk.

Syntax
vector_name.read(options) [path\]file_name

You must supply the name of the source file. If you do not include the optional path specifi-
cation, EViews will look for the file in the default directory. Path specifications may point to
local or network drives. If the path specification contains a space, you may enclose the
entire expression in double quotation marks.

Options

File type options
:

If you do not specify the “t” option, EViews uses the file name extension to determine the
file type. If you specify the “t” option, the file name extension will not be used to determine
the file type.

Options for ASCII text files

read Vector Procs

prompt Force the dialog to appear from within a program.

t=dat, txt ASCII (plain text) files.

t=wk1, wk3 Lotus spreadsheet files.

t=xls Excel spreadsheet files.

na=text Specify text for NAs. Default is “NA”.

d=t Treat tab as delimiter (note: you may specify multiple
delimiter options). The default is “d=c” only.

d=c Treat comma as delimiter.

d=s Treat space as delimiter.

d=a Treat alpha numeric characters as delimiter.

custom =
symbol

Specify symbol/character to treat as delimiter.

mult Treat multiple delimiters as one.

Vector::read—901

Options for spreadsheet (Lotus, Excel) files

Examples
v1.read(t=dat,na=.) a:\mydat.raw

reads data into vector V1 from an ASCII file MYDAT.RAW in the A: drive. The missing value
NA is coded as a “.” (dot or period).

v1.read(s=sheet2) "\\network\dr 1\cps91.xls"

reads the Excel file CPS91 into vector V1 from the network drive specified in the path.

Cross-references

See “Importing Data” on page 146 of User’s Guide I for a discussion and examples of import-
ing data from external files.

See also Vector::write (p. 907).

rect (default) /
norect

[Treat / Do not treat] file layout as rectangular.

skipcol =
integer

Number of columns to skip. Must be used with the “rect”
option.

skiprow =
integer

Number of rows to skip. Must be used with the “rect”
option.

comment=
symbol

Specify character/symbol to treat as comment sign. Every-
thing to the right of the comment sign is ignored. Must be
used with the “rect” option.

singlequote Strings are in single quotes, not double quotes.

dropstrings Do not treat strings as NA; simply drop them.

negparen Treat numbers in parentheses as negative numbers.

allowcomma Allow commas in numbers (note that using commas as a
delimiter takes precedence over this option).

letter_number
(default=“b2”)

Coordinate of the upper-left cell containing data.

s=sheet_name Sheet name for Excel 5–8 Workbooks.

902—Chapter 1. Object Reference

Set the object attribute.

Syntax
vector_name.setattr(attr) attr_value

Sets the attribute attr to attr_value. Note that quoting the arguments may be required. Once
added to an object, the attribute may be extracted using the @attr data member.

Examples
a.setattr(revised) never

String s = a.@attr("revised")

sets the “revised” attribute in the object A to the string “never”, and extracts the attribute
into the string object S.

Cross-references

See “Adding Custom Attributes in the Label View” on page 117 and “Adding Your Own Label
Attributes” on page 65 of User’s Guide I.

Set the display format for cells in a vector spreadsheet view.

Syntax
vector_name.setformat format_arg

where format_arg is a set of arguments used to specify format settings. If necessary, you
should enclose the format_arg in double quotes.

For vectors, setformat operates on all of the cells in the vector.

You should use one of the following format specifications:

setattr Vector Procs

setformat Vector Procs

g[.precision] significant digits

f[.precision] fixed decimal places

c[.precision] fixed characters

e[.precision] scientific/float

p[.precision] percentage

r[.precision] fraction

Vector::setglobalc—903

To specify a format that groups digits into thousands using a comma separator, place a “t”
after the format character. For example, to obtain a fixed number of decimal places with
commas used to separate thousands, use “ft[.precision]”.

To use the period character to separate thousands and commas to denote decimal places,
use “..” (two periods) when specifying the precision. For example, to obtain a fixed number
of characters with a period used to separate thousands, use “ct[..precision]”.

If you wish to display negative numbers surrounded by parentheses (i.e., display the num-
ber -37.2 as “(37.2)”), you should enclose the format string in “()” (e.g., “f(.8)”).

Examples

To set the format for all cells in the vector to fixed 5-digit precision, simply provide the for-
mat specification:

v1.setformat f.5

Other format specifications include:

v1.setformat f(.7)

v1.setformat e.5

Cross-references

See Vector::setwidth (p. 905), Vector::setindent (p. 904) and Vector::setjust
(p. 904) for details on setting spreadsheet widths, indentation and justification.

Copy the contents of the vector object into the workfile C coefficient vector.

Syntax
vector_name.setglobalc

This function only applies to vectors, rowvectors and coef objects. The contents of the vec-
tor will be copied into the first N elements of the workfile C coefficient vector, where N is
the length of the vector object. This may be useful for re-specifying starting values for esti-
mation.

Examples
vec1.setglobalc

Copies the contents of VEC1 into the workfile C vector.

setglobalc Vector Procs

904—Chapter 1. Object Reference

Cross-references

Set the display indentation for cells in vector spreadsheet views.

Syntax
view_name.setindent indent_arg

where indent_arg is an indent value specified in 1/5 of a width unit. The width unit is com-
puted from representative characters in the default font for the current spreadsheet (the
EViews spreadsheet default font at the time the spreadsheet was created), and corresponds
roughly to a single character. Indentation is only relevant for non-center justified cells.

The default indentation setttings are taken from the Global Defaults for spreadsheet views
(“Spreadsheet Data Display” on page 868 of User’s Guide I) at the time the spreadsheet was
created.

Examples
v1.setindent 2

sets the indentation for the vector spreadsheet view to 2.

Cross-references

See Vector::setwidth (p. 905) and Vector::setjust (p. 904) for details on setting
spreadsheet widths and justification.

Set the display justification for cells in a vector spreadsheet view.

Syntax
vector_name.setjust format_arg

where format_arg is a set of arguments used to specify format settings. You should enclose
the format_arg in double quotes if it contains any spaces or delimiters.

The format_arg may be formed using the following:

setindent Vector Procs

setjust Vector Procs

top / middle /
bottom]

Vertical justification setting.

auto / left / cen-
ter / right

Horizontal justification setting. “Auto” uses left justifica-
tion for strings, and right for numbers.

Vector::setwidth—905

You may enter one or both of the justification settings. The default justification settings are
taken from the Global Defaults for spreadsheet views (“Spreadsheet Data Display” on
page 868 of User’s Guide I) at the time the spreadsheet was created.

Examples
v1.setjust middle

sets the vertical justification to the middle.

v1.setjust top left

sets the vertical justification to top and the horizontal justification to left.

Cross-references

See Vector::setwidth (p. 905) and Vector::setindent (p. 904) for details on setting
spreadsheet widths and indentation.

Set the column width in a vector spreadsheet view.

Syntax
vector_name.setwidth width_arg

where width_arg specifies the width unit value. The width unit is computed from represen-
tative characters in the default font for the current spreadsheet (the EViews spreadsheet
default font at the time the spreadsheet was created), and corresponds roughly to a single
character. width_arg values may be non-integer values with resolution up to 1/10 of a width
unit.

Examples
v1.setwidth 12

sets the width of the vector to 12 width units.

Cross-references

See Vector::setindent (p. 904) and Vector::setjust (p. 904) for details on setting
spreadsheet indentation and justification.

setwidth Vector Procs

906—Chapter 1. Object Reference

Spreadsheet view of vector object.

Syntax
vector_name.sheet(options)

Options

Examples
v1.sheet(p)

displays and prints the spreadsheet view of vector V1.

Descriptive statistics for the vector.

Computes and displays a table of means, medians, maximum and minimum values, stan-
dard deviations, and other descriptive statistics for the data in the vector object.

Syntax
vector_name.stats(options)

Options

Examples
v1.stats(p)

displays and prints the descriptive statistics view of the vector V1.

Cross-references

See “Descriptive Statistics & Tests” on page 402 and “Descriptive Statistics” on page 572 of
User’s Guide I for a discussion of the descriptive statistics views of series and groups.

sheet Vector Views

p Print the spreadsheet view.

stats Vector Views

p Print the stats table.

Vector::write—907

Declare a vector object.

The vector command declares and optionally initializes a (column) vector object.

Syntax
vector(size) vector_name [=assignment]

The keyword vector should be followed by the name you wish to give the vector. You may
also provide an optional argument specifying the size of the vector. If you do not provide a
size, EViews will create a single element vector. Once declared, vectors may be resized by
repeating the command with a new size.

You may combine vector declaration and assignment. If there is no assignment statement,
the vector will initially be filled with zeros.

Examples
vector vec1

vector(10) col3 = 3

rowvector(10) row3 = 3

vector vec3 = row3

VEC1 is declared as a single element vector initialized to 0. COL3 is a 10 element column
vector containing the value 3. ROW3 is declared as a row vector of size 10 containing the
value 3. Although declared as a column vector, VEC3 is reassigned as a row vector of size 10
with all elements equal to 3.

Cross-references

See Chapter 11. “Matrix Language,” on page 261 of the Command and Programming Refer-
ence for a discussion of matrices and vectors in EViews.

See also Coef::coef (p. 20) and Rowvector::rowvector (p. 521).

Write EViews data to a text (ASCII), Excel, or Lotus file on disk.

Creates a foreign format disk file containing data in a vector object. May be used to export
EViews data to another program.

vector Vector Declaration

write Vector Procs

908—Chapter 1. Object Reference

Syntax
vector_name.write(options) [path\filename]

Follow the name of the vector object by a period, the keyword, and the name for the output
file. The optional path name may be on the local machine, or may point to a network drive.
If the path name contains spaces, enclose the entire expression in double quotation marks.
The entire vector will be exported.

Note that EViews cannot, at present, write into an existing file. The file that you select will,
if it exists, be replaced.

Options

File type

If you omit the “t=” option, EViews will determine the type based on the file extension.
Unrecognized extensions will be treated as ASCII files. For Lotus and Excel spreadsheet files
specified without the “t=” option, EViews will automatically append the appropriate exten-
sion if it is not otherwise specified.

ASCII text files

Spreadsheet (Lotus, Excel) files

Examples
v1.write(t=txt,na=.) a:\dat1.csv

Writes the vector V1 into an ASCII file named DAT1.CSV on the A: drive. NAs are coded as
“.” (dot).

v1.write(t=txt,na=.) dat1.csv

writes the same file in the default directory.

v1.write(t=xls) "\\network\drive a\results"

prompt Force the dialog to appear from within a program.

t=dat, txt ASCII (plain text) files.

t=wk1, wk3 Lotus spreadsheet files.

t=xls Excel spreadsheet files.

na=string Specify text string for NAs. Default is “NA”.

d=arg Specify delimiter (default is tab): “s” (space), “c”
(comma).

letter_number Coordinate of the upper-left cell containing data.

Vector::write—909

saves the contents of V1 in an Excel file “Results.xls” in the specified directory.

Cross-references

See “Exporting to a Spreadsheet or Text File” on page 163 of User’s Guide I for a discussion.
See also Vector::read (p. 900).

910—Chapter 1. Object Reference

Appendix A. Graph Creation Commands

This chapter contains reference material for commands that display graph views of various
EViews data objects. The chapter differs in structure from the earlier object reference
(Chapter 1. “Object View and Procedure Reference,” on page 2) in that instead of focusing
on specific objects, it describes the ways in which the graph commands may be used with
multiple objects. For details on commands to customize existing graphs, see the graph object
reference: “Graph” on page 236.

The remainder of the chapter consists of alphabetical listings of the graph view commands
in three distinct formats:

• the first listing provides a basic summary of the available graph commands, with a
reference to the detailed description for that command.

• the second listing repeats the summary of graph commands, pairing each entry with a
list of the EViews objects with which it may be used.

• the third listing, which constitutes the main portion of this chapter, consists of a
detailed description of each graph command, including basic syntax and options, as
well as examples and cross-references.

Graph Creation Command Summary

The following view commands may be used to display graphs of various EViews data
objects:

areaarea graph (p. 913).
bandarea band graph (p. 916).
bar........................bar graph (p. 918).
boxplotboxplot graph (p. 923).
bubblebubble graph (p. 923).
bubbletripbubble triplet graph (p. 923).
distplotdistribution graph (p. 926).
dotdot plot graph (p. 934).
errbarerror bar graph (p. 938).
hilo.......................high-low(-open-close) graph (p. 939).
lineline-symbol graph (p. 941).
mixedmixed-type graph (p. 945).
piepie chart (p. 947).
qqplotquantile-quantile graph (p. 950).
scatscatterplot (p. 954).
scatmatmatrix of scatterplots (p. 959).

912—Appendix A. Graph Creation Commands

scatpair scatterplot pairs graph (p. 961).
seasplot seasonal line graph (p. 965).
spike spike graph (p. 966).
xyarea XY area graph (p. 970).
xybar XY bar graph (p. 973).
xyline................... XY line graph (p. 975).
xypair XY line pairs graph (p. 979).

Graph Creation Object Summary

The graph creation commands may be used with the following EViews data objects:
area...................... coef (p. 18), group (p. 290), matrix (p. 384), series (p. 541), sym

(p. 709), vector (p. 885).
band group (p. 290), matrix (p. 384), sym (p. 709).
bar coef (p. 18), group (p. 290), matrix (p. 384), rowvector (p. 507),

series (p. 541), sym (p. 709), vector (p. 885).
boxplot................. coef (p. 18), group (p. 290), matrix (p. 384), rowvector (p. 507),

series (p. 541), sym (p. 709), vector (p. 885).
distplot................. coef (p. 18), group (p. 290), matrix (p. 384), rowvector (p. 507),

series (p. 541), sym (p. 709), vector (p. 885).
dot coef (p. 18), group (p. 290), matrix (p. 384), rowvector (p. 507),

series (p. 541), sym (p. 709), vector (p. 885).
errbar................... group (p. 290), matrix (p. 384), rowvector (p. 507), sym (p. 709).
hilo group (p. 290), matrix (p. 384), sym (p. 709).
line coef (p. 18), group (p. 290), matrix (p. 384), series (p. 541), sym

(p. 709), vector (p. 885).
pie group (p. 290), matrix (p. 384), rowvector (p. 507), sym (p. 709).
qqplot coef (p. 18), group (p. 290), matrix (p. 384), rowvector (p. 507),

series (p. 541), sym (p. 709), vector (p. 885).
scat group (p. 290), matrix (p. 384), rowvector (p. 507), sym (p. 709).
scatmat group (p. 290), matrix (p. 384), rowvector (p. 507), sym (p. 709).
scatpair group (p. 290), matrix (p. 384), rowvector (p. 507), sym (p. 709).
seasplot coef (p. 18), group (p. 290), matrix (p. 384), rowvector (p. 507),

series (p. 541), sym (p. 709), vector (p. 885).
spike coef (p. 18), group (p. 290), matrix (p. 384), rowvector (p. 507),

series (p. 541), sym (p. 709), vector (p. 885).
xyarea group (p. 290), matrix (p. 384), sym (p. 709).
xybar group (p. 290), matrix (p. 384), rowvector (p. 507), sym (p. 709).
xyline................... group (p. 290), matrix (p. 384), sym (p. 709).
xypair group (p. 290), matrix (p. 384), rowvector (p. 507), sym (p. 709).

area—913

Graph Creation Entries

The following section provides an alphabetical listing of the graph creation commands. Each
entry outlines the command syntax and associated options, and includes examples and
cross references.

Display an area graph view.

Syntax
area(options) o1 [o2 o3 ...]

object_name.area(options) [categorical_spec(arg)]

where o1, o2, ..., are series or group objects. Following the area keyword, you may specify
general graph characteristics using options. Available options include multiple graph han-
dling, dual scaling, template application, data contraction, adding axis extensions, and rota-
tion.

The optional categorical_spec allows you to specify a categorical graph (see “Categorical
Spec,” on page 982).

Options
Scale options

area Command || Coef View | Graph Command | Group View | Matrix View |
Series View | Sym View | Vector View

a (default) Automatic single scale.

d Dual scaling with no crossing. The first series or column is
scaled on the left and all other series or columns are scaled
on the right.

x Dual scaling with possible crossing. See the “d” option.

n Normalized scale (zero mean and unit standard deviation).
May not be used with the “s” option.

rotate Rotate the graph so the observation axis is on the left.

ab=type Add axis border along data scale, where type may be “hist”
or “h” (histogram), “boxplot” or “b”, “kernel” or “k”.
(Note: axis borders are not available for panel graphs with
“panel=” options that involve summaries: mean, median,
etc.)

914—Appendix A. Graph Creation Commands

Multiple series options (categorical graph settings will override these options)

Template and printing options

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Graph data options

The following option is available in non-panel or categorical graph settings:

Panel options

The following option applies when graphing panel structured data:

m Plot areas in multiple graphs (will override the “s” option).

s Stacked area graph. Each area represents the cumulative
total of the series listed. The difference between areas cor-
responds to the value of a series.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

contract=key Contract the data as specified by key, where key may be:
“mean”, “median”, “max”, “min”, “sum”, “var” - variance,
“sd” - standard deviation, “sumsq” - sum of the squared
values, “skew” - skewness, “kurt” - kurtosis, “nas” - num-
ber of missing values, “obs” - number of observations,
“unique” - error if the series is not identical for all observa-
tions in a given group, “first” - first observation in category
using workfile order, “last” - last observation in category
using workfile order, “quant(quantile)” - where quantile is
a number between 0 and 1.

area—915

Categorical graph options

These options only apply to categorical graphs (“Categorical Spec,” on page 982) where the
graph has one or more within factors and a contraction method other than raw data (see the
contract option above).

Examples

Basic examples

area ser1 ser2 ser3

displays area graphs of SER1, SER2, and SER3.

group g1 ser1 ser2 ser3

g1.area(s)

defines a group G1 containing the three series SER1, SER2 and SER3, then plots a stacked
area graph of the series in the group.

area(l, o=gra1) s1 gdp cons

creates an area graph of series S1, together with line graphs of GDP and CONS. The graph
uses options from graph GRA1 as a template.

g1.area(o=midnight, b, w)

creates an area graph of the group G1, using the settings of the predefined template “mid-
night,” applying the bold and wide modifiers.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“median” (plot median across cross-sections).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

favorlegend Favor the use of legends over axis labels to describe catego-
ries.

elemcommon =
int

Specifies the number of within factors for which the graph
uses common area colors. For example, with multiple
within dimensions, if “elemcommon=1”, then only catego-
ries defined by the first within factor will have common
colors. If “elemcommon=2”, then categories defined by
the first two within factors will have common colors. If
“elemcommon=0”, all areas will have different colors.
The default is one less than the number of within factors.

916—Appendix A. Graph Creation Commands

Panel examples

ser1.area(panel=individual)

displays area graphs with a separate graph for each cross-section, while,

ser1.area(panel=mean)

displays an area graph of the means for each period computed across cross-sections.

Categorical spec examples

ser1.area across(firm, dispname)

displays a categorical area graph of SER1 using distinct values of FIRM to define the catego-
ries. The graphs in multiple frames with the display names used as labels.

ser1.area across(firm, dispname, iscale)

shows the same graph with individual scaling for each of the frames.

ser1.area within(firm, inctot)

displays a graph with the same categorization (along with a category for the total), but with
all of the graphs in a single frame.

Cross-references

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

Display an area band graph view (if possible).

An area band graph fills the area between pairs of series or columns of a matrix.

Syntax
band(options) o1 [o2 o3 ...]

object_name.band(options)

where o1, o2, ..., are series or group objects. Following the band keyword, you may specify
general graph characteristics using options. Available options include axis settings and tem-
plate application.

band Command || Graph Command | Group View | Matrix View | Sym View

band—917

Options
Scale options

Template and printing options

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Panel options

The following option applies when graphing panel structured data:

a (default) Automatic single scale.

d Dual scaling with no crossing. The first series or column is
scaled on the left and all other series or columns are scaled
on the right.

x Dual scaling with possible crossing. See the “d” option.

n Normalized scale (zero mean and unit standard deviation).

rotate Rotate the graph so the observation axis is on the left.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“median” (plot median across cross-sections).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

918—Appendix A. Graph Creation Commands

Examples

Basic examples

band upper1 lower1

displays a band graph using UPPER1 and LOWER1.

group g1 upper1 lower1 upper2 lower2

g1.band

plots a band graph with the UPPER1 and LOWER1 defining one band, and UPPER2 and
LOWER2 defining as second band, both displayed in the same frame.

g1.band(o=midnight, l)

plots the band graph defined by UPPER1 and LOWER1 along with line graphs for UPPER2
and LOWER2, using the settings of the predefined template “midnight.”

Panel examples

g1.band

shows the band graph for the stacked data in a panel workfile.

g1.band(panel=individual)

displays band graphs for each cross-section in separate frames, while,

g1.band(panel=mean)

constructs a band graph using the means for each period computed across cross-sections.

Cross-references

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

Display a bar graph.

(Note: when the individual bars in a bar graph become too thin to be distinguished, the
graph will automatically be converted into an area graph; see area (p. 913).)

Syntax
bar(options) o1 [o2 o3 ...]

object_name.bar(options) [categorical_spec(arg)]

bar Command || Coef View | Graph Command | Group View | Matrix View |
Rowvector View | Series View | Sym View | Vector View

bar—919

where o1, o2, ..., are series or group objects. Following the bar keyword, you may specify
general graph characteristics using options. Available options include multiple graph han-
dling, dual scaling, template application, data contraction, adding axis extensions, and rota-
tion.

The optional categorical_spec allows you to specify a categorical graph (see “Categorical
Spec,” on page 982).

Options
Scale options

Multiple series options (categorical graph settings will override these options)

Template and printing options

a (default) Automatic single scale.

d Dual scaling with no crossing. The first series or column is
scaled on the left and all other series or columns are scaled
on the right.

x Dual scaling with possible crossing. See the “d” option.

n Normalized scale (zero mean and unit standard deviation).
May not be used with the “s” option.

rotate Rotate the graph so the observation axis is on the left.

ab=type Add axis border along data scale, where type may be “hist”
or “h” (histogram), “boxplot” or “b”, “kernel” or “k”.
(Note: axis borders are not available for panel graphs with
“panel=” options that involve summaries: mean, median,
etc.)

m Plot bars in multiple graphs (will override the “s” option).

s Stacked bar graph. Each bar represents the cumulative total
of the series or columns listed. The difference between bars
corresponds to the value of a series or column.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

920—Appendix A. Graph Creation Commands

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Graph data options

The following option is available in non-panel or categorical graph settings:

Panel options

The following option applies when graphing panel structured data:

Categorical graph options

These options only apply to categorical graphs (“Categorical Spec,” on page 982) where the
graph has one or more within factors and a contraction method other than raw data (see the
contract option above).

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

contract=key Contract the data as specified by key, where key may be:
“mean”, “median”, “max”, “min”, “sum”, “var” - variance,
“sd” - standard deviation, “sumsq” - sum of the squared
values, “skew” - skewness, “kurt” - kurtosis, “nas” - num-
ber of missing values, “obs” - number of observations,
“unique” - error if the series is not identical for all observa-
tions in a given group, “first” - first observation in category
using workfile order, “last” - last observation in category
using workfile order, “quant(quantile)” - where quantile is
a number between 0 and 1.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“median” (plot median across cross-sections).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

bar—921

Examples

Basic examples

bar(p,rotate) oldsales newsales

displays and prints a rotated bar graph of the series OLDSALES and NEWSALES.

pop.bar

displays a bar graph of the series POP.

group mygrp oldsales newsales

mygrp.bar(s)

displays a stacked bar graph view of the series in the group MYGRP.

mygrp.bar(l, x, o=mybar1)

plots a bar graph of OLDSALES together with a line graph of NEWSALES. The bar graph is
scaled on the left, while the line graph is scaled on the right. The graph uses options from
graph MYBAR1 as a template.

mygrp.bar(o=midnight, b)

creates a bar graph of MYGRP, using the settings of the predefined template “midnight,”
applying the bold modifier.

mygrp.bar(rotate, contract=mean)

displays a rotated bar graph of the means of OLDSALES and NEWSALES.

Panel examples

ser1.bar(panel=individual)

displays bar graphs for each cross-section in a separate frame, while,

ser1.bar(panel=median)

displays a bar graph of the medians of SER1 computed for each period across cross-sections.

favorlegend Favor the use of legends over axis labels to describe catego-
ries.

elemcommon =
int

Specifies the number of within factors for which the graph
uses common area colors. For example, with multiple
within dimensions, if “elemcommon=1”, then only catego-
ries defined by the first within factor will have common
colors. If “elemcommon=2”, then categories defined by
the first two within factors will have common colors. If
“elemcommon=0”, all areas will have different colors.
The default is one less than the number of within factors.

922—Appendix A. Graph Creation Commands

Categorical spec examples

ser1.bar across(firm, dispname)

displays a categorical bar graph of SER1 using distinct values of FIRM to define the catego-
ries, and displaying the resulting graphs in multiple frames.

ser1.bar across(firm, dispname, iscale)

shows the same graph with individual scaling for each of the frames.

ser1.bar within(contract=mean, firm, inctot, label=value)

displays a graph of mean values of SER1 categorized by firm (along with an added category
for the total), with all of the graphs in a single frame and the FIRM category value used as
labels.

ser1.bar(contract=sum) across(firm, dispname) within(income,

bintype=quant, bincount=4)

constructs a categorical bar graph of the sum of SER1 values within a category. Different
firms are displayed in different graph frames, using the display name as labels, with each
frame containing bars depicting the sum of SER1 for each income quartiles.

ser1.bar(contract=mean, elemcommon=1) within(sex) within(union)

creates a bar graph of mean values of within categories based on both SEX and UNION. Cat-
egories for the distinct elements of UNION will be depicted using different bar colors, with
the color assignment repeated for different values of SEX.

group mygrp oldsales newsales

mygrp.bar(contract=min) within(@series) within(age)

displays bar graphs of the minimum values for categories defined by distinct values of AGE
(and the two series). All of the bars will be displayed in a single frame with the bars for
OLDSALES grouped together followed by the bars for NEWSALES.

mygrp.bar(contract=median, elemcommon=2) across(firm)

across(@series) across(age)

also adds an additional categorization using the FIRM identifiers. The observations for a
given firm are grouped together. Within a firm, the bars for the OLDSALES and NEWSALES,
which will be depicted using different colors, will be grouped within each age category. The
color assignment to OLDSALES and NEWSALES will be repeated across firms and ages (note
that @SERIES is treated as the last across factor).

Cross-references

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

boxplot—923

You may assign labels to the bars in (frozen) graph objects using the Graph::options
(p. 268) command.

Display boxplots for each series or column.

Syntax
boxplot(options) o1 [o2 o3 ...]

object_name.boxplot(options) [categorical_spec(arg)]

where o1, o2, ..., are series or group objects. You may specify general options after the box-
plot keyword.

The optional categorical_spec allows you to specify a categorical graph (see “Categorical
Spec,” on page 982).

Options

Multiple series options (categorical graph settings will override these options)

Panel options

The following option applies when graphing panel structured data:

Examples

Basic examples

wage.boxplot

displays boxplots for the series WAGE.

boxplot Command || Coef View | Graph Command | Group View | Matrix View |
Rowvector View | Series View | Sym View | Vector View

q=arg Set the quantile method, where arg can be: “r” - Rankit-
Cleveland, “o” - Ordinary, “v” - van der Waerden, “b” -
Blom, “t” - Tukey, “g” - Gumbel.

rotate Rotate the graph so the observation axis is on the left.

m Plot boxplots in multiple graphs.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (compute cross-section graphs in a single
frame).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

924—Appendix A. Graph Creation Commands

group g1 wage sex race

g1.boxplot

displays boxplots for WAGES, SEX and RACE in a single graph frame.

g1.boxplot(m, rotate)

places the rotated boxplots for each series in a separate frame.

Panel examples

ser1.boxplot(panel=individual)

displays boxplots for each cross-section in a separate frame, while,

ser1.boxplot(panel=stack)

displays a single boxplot computed from the stacked panel data.

ser1.boxplot(panel=combined, rotate)

shows rotated boxplots computed for each period (across cross-sections) in a single frame.

Categorical spec examples

ser1.boxplot across(firm, dispname)

displays a categorical boxplot graph of SER1 using distinct values of FIRM to define the cat-
egories, and displaying the resulting graphs in multiple frames with common scaling. Each
frame is labeled using the FIRM display name.

ser1.boxplot across(firm, dispname, iscale)

constructs the same graph with individual scaling.

ser1.boxplot within(firm, label=value)

constructs a boxplot for each value of FIRM and displays the results in a single frame. The
individual boxplots are labeled using the value of FIRM associated with the category.

ser1.boxplot across(firm) within(income, bintype=quant,

bincount=4)

constructs a categorical boxplot with FIRM defining the across dimension, and INCOME
defining the within dimension. Boxplots for each INCOME quartile of a given firm will be
contained in a single frame, with different firms displayed in different frames.

grp1.boxplot within(sex) within(union)

creates an boxplot for within categories based on both SEX and UNION. Since we have not
specified behavior for the implicit @SERIES in GRP1, each series in the group will be dis-
played in a separate frame, with individual scaling.

bubble—925

Cross-referencesC

See “Boxplot” on page 701 of User’s Guide I for a discussion of boxplots. See Chapter 13.
“Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of graphs in
EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph templates.

See Graph::graph (p. 261) for graph declaration and other graph types, and
Graph::setbpelem (p. 276) for a discussion of boxplot customization.

Displays a XY..YZ bubble plot.

At least three series must be present in the group. The first series will be plotted on the hor-
izontal axis. The remaining series, aside from the last, will be plotted on the vertical axis.
The last series will be used to determine the size of the bubbles.

Syntax
group_name.bubble(options)

Options
Multiple Y-Series options

Examples
group g1 x ser1 ser2 ser3 ser4 z

g1.bubble

defines a group G1 containing the six series X, SER1, SER2, SER3, SER4, and Z, and then
plots a bubble graph of the series in the group. X is on the horizontal axis, SER1, SER2,
SER3, and SER4 are on the vertical axis, and the bubble size is determined by Z.

Cross-references

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::Graph (p. 236) for graph declaration and other graph types.

bubble Group View | Matrix View

m Place bubble plots in multiple graphs (for groups contain-
ing more than three series).

926—Appendix A. Graph Creation Commands

Display a bubble triplet plot.

Groups should contain series in multiples of three (triplets). Series not part of a triplet will
be ignored. The first series of each triplet will be plotted on the horizontal axis. The second
series of the triplet will be plotted on the vertical axis. The last series of the triplet will be
used to determine the size of the bubbles.

Syntax
group_name.bubbletrip(options)

Options
Multiple Series Triplet Options

Examples
group g1 x1 ser1 z1 x2 ser2 z2

g1.bubbletrip

defines a group G1 containing the two triplets or six series X1, SER1, Z1 and X2, SER2, Z2. It
then plots a bubble graph X1 vs SER1, where Z1 is the bubble size, and X2 vs SER2, where
Z2 is the bubble size.

Cross-references

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::Graph (p. 236) for graph declaration and other graph types.

Display a distribution graph.

Syntax
distplot(options) o1 [o2 o3 ...]

object_name.distplot(options) analytical_spec(arg) [categorical_spec(arg)]

where o1, o2, ..., are series or group objects.

bubbletrip Group View | Matrix View

m Place bubble plots in multiple graphs. (for groups contain-
ing more than two triplets or six series).

distplot Command || Coef View | Graph Command | Group View | Matrix View |
Rowvector View | Series View | Sym View | Vector View

distplot—927

When used as a command, distplot only allows you to display the default histogram
view.

When used as an object view, you must specify the type of distribution graph you wish to
create in the analytical_spec. You may select from: histogram, histogram polygon, histogram
edge polygon, average shifted histogram, kernel density, theoretical distribution, empirical
CDF, empirical survivor, empirical log survivor, or empirical quantile (see “Analytical Spec,”
on page 951).

The optional categorical_spec allows you to specify a categorical graph (see “Categorical
Spec,” on page 982)

Options
Multiple series options

Template and printing options

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Panel options

The following option applies when graphing panel structured data.

s Plot in a single graph. (Categorical graph settings will over-
ride this option.)

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

928—Appendix A. Graph Creation Commands

Analytical Spec

Specify the distribution graph you wish to create in the analytical spec. For a description of
distribution graphs, see “Analytical Graph Types,” on page 685 of User’s Guide I. The analyt-
ical spec contains components of the form:

dist_type(dist_options)

where dist_type may be one of the following keywords:

hist, freqpoly, edgefreqpoly, ash, kernel, and theory graphs may be combined in a single
graph frame by providing multiple components.

Each distribution type has its own set of options, to be entered in dist_options:

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

hist Histogram.

freqpoly Histogram Polygon.

edgefreqpoly Histogram Edge Polygon.

ash Average Shifted Histogram.

kernel Kernel Density

theory Theoretical Distribution.

cdf Empirical cumulative distribution function.

survivor Empirical survivor function.

logsurvivor Empirical log survivor function.

quantile Empirical quantile function.

distplot—929

Histogram, Histogram Polygon, Histogram Edge Polygon, and Avg. Shifted Histogram Options

Histogram, Histogram Polygon, Histogram Edge Polygon, and Avg. Shifted Histogram Examples

inf.distplot hist

displays the default histogram view of the frequencies in each bin.

inf.distplot hist(scale=dens, anchor=100, binw=sigma)

constructs a density histogram computed using anchor position 100 and binwidth deter-
mined by the normal reference rule using as the measure of dispersion.

group g1 inf unemp

g1.distplot hist(scale=relfreq)

displays a relative frequency histogram for the series in INF and UNEMP, each in their own
graph frame, while:

g1.distplot(s) histpoly

displays the two frequency histograms in the same graph frame.

g1.distplot freqpoly(fill)

constructs filled frequency polygons for the series in G1, displayed in individual frames.

scale=arg arg specifies the scaling size, and may be “dens”, “freq”, or
“relfreq”.
(Note that the scaling setting is overridden if the histogram
is displayed alongside a density, e.g., kernel density or the-
oretical distribution, plot.)

binw=arg arg specifies the bin width, and may be “eviews” (default),
“sigma” (normal reference rule with as the measure of
dispersion), “iqr” (normal reference rule based on the
interquartile range), “silverman” (normal reference rule
with Silverman’s robust measure of dispersion), “freed-
man” (Freedman-Diaconis), “user” (user-specifed).

binval=arg arg specifies the numeric value of the bin width, when the
option “binw=user” is specified.

anchor=arg arg specifies the anchor position.

rightclosed Right-closed bin intervals.

nshifts=int
(default=25)

Specifies the number of shift evaluations. (Only applies to
average shifted histograms.)

fill Fill the graph. (Does not apply to the hist type.)

nofill Don’t fill the graph. (Does not apply to the hist type.)

leg=arg Specify the legend display settings, where arg can be: “def”
- default, “n” - none, “s” - short, “det”- detailed.

ĵ

ĵ

930—Appendix A. Graph Creation Commands

inf.distplot edgefreqpoly(leg=detailed)

shows the edge frequency polygon for INF with detailed legend entries.

g1.distplot ash(scale=dens, rightclosed, nshifts=100)

constructs average shifted density histograms using 100 shifts, with right-closed bins.

Kernel Options

Kernel Examples

group gg weight height

gg.distplot kernel(ngrid=200, fill)

constructs kernel density estimates of HEIGHT and WEIGHT using 200 grid points and lin-
ear binning, and displays filled graphs in individual graph frames.

gg.displot(s) kernel(k=u, x)

computes the estimates using a uniform kernel with exact evaluation at each of the grid
points, and displays the graphs in the same frame.

gg.displot kernel(leg=det)

displays the kernel plots along with detailed legend information.

Theory Options

k=arg
(default=“e”)

Kernel type: “e” (Epanechnikov), “r” (Triangular), “u”
(Uniform), “n” (Normal–Gaussian), “b” (Biweight–Quar-
tic), “t” (Triweight), “c” (Cosinus).

b=number Specify a number for the bandwidth.

b Bracket bandwidth.

ngrid=integer
(default=100)

Number of grid points to evaluate.

x Exact evaluation.

fill Fill the area.

nofill Don’t fill the area.

leg=arg Specify the legend display settings, where arg can be: “def”
- default, “n” - none, “s” - short, “det”- detailed.

dist=arg arg can be: “normal”, “exp” - exponential, “logit” - logistic,
“uniform” - uniform, “xman” - extreme max, “xmin” -
extreme min, “chisq” - chi-squared, “pareto” - Pareto,
“weibull” - Weibull, “gamma” - gamma, “tdist” - Student’s
t-distribution.

p1=int Set first parameter.

distplot—931

Theory Examples

gdp50.distplot theory(leg=det)

displays a normal density plot fitted to the data in GDP50 with detailed legend information.

gdp50.distplot theory(p1=0)

fits a normal density using GDP50, restricting the mean of the distribution to be zero.

group gro1 weight height

gro1.distplot theory(dist=exp, fill)

constructs filled plots of the exponential densities fitted to the data in WEIGHT and HEIGHT,
and displays them in separate frames.

gro1.distplot(s) theory(dist=weibull, p1=5, c=1e-5)

fits weibull densities to the data in the series setting the first parameter to 5 and estimating
the second with a convergence tolerance of 1e-5. The graphs are displayed in a single frame.

Empirical CDF, Survivor, Log Survivor, and Quantile Options

p2=int Set second parameter.

p3=int Set third parameter.

fill Fill the area.

nofill Don’t fill the area.

leg=arg Specify the legend display settings, where arg can be: “def”
- default, “n” - none, “s” - short, “det”- detailed.

m=int Set the iterations maximum. (Applies to logistic, extreme
max, extreme min, chi-squared, Weibull, gamma or t-distri-
butions.)

c =int Sets the convergence criterion. (Applies to logistic, extreme
max, extreme min, chi-squared, Weibull, gamma or t-distri-
butions.)

s Use user-specified starting values supplied in the C coeffi-
cient vector in the workfile (default uses EViews supplied
starting values). (Applies to logistic, extreme max, extreme
min, chi-squared, Weibull, gamma, or t-distributions.)

q=arg Set the quantile method, where arg can be: “r” - Rankit-
Cleveland, “o” - Ordinary, “v” - van der Waerden, “b” -
Blom, “t” - Tukey, “g” - Gumbel.

n or noci Do not include confidence intervals.

932—Appendix A. Graph Creation Commands

Empirical CDF, Survivor, Log Survivor, and Quantile Examples

gdp50.distplot cdf

shows the cumulative distribution plot for GDP50, along with the default 95% confidence
intervals.

gdp50.distplot survivor(noci)

displays the survivor plot for GDP50 without displaying confidence intervals.

group gro1 weight height

gro1.distplot logsurvivor(ci=0.9, leg=det)

displays the log-survivor plots for WEIGHT and HEIGHT along with 90% confidence inter-
vals, and a detailed legend. The plots will be displayed in individual graph frames.

gro1.distplot(s) quantile

shows the quantile plots for WEIGHT and HEIGHT in the same graph frame.

Examples

Basic examples

distplot height weight length

displays default histograms for the three series.

group g1 age height weight length

g1.distplot hist(scale=dens, binw=sigma, leg=short) kernel theory

displays distribution plots for AGE, HEIGHT, WEIGHT, and LENGTH in separate frames,
along with a short legend identifying each distribution plot. Each frame contains a histo-
gram constructed using the -normal reference rule, a kernel density plot, and a plot of the
theoretical normal distribution fitted to the data. (Note that the “scale=dens” option in the
hist specification is redundant since combining a histogram with either the kernel or theory
plot automatically sets the scaling.)

height.distplot theory theory(dist=weibull)

plots theoretical normal and weibull densities fit to the data in HEIGHT.

height.distplot quantile

displays a plot of the quantiles of height along with the confidence intervals.

g1.displot(s) cdf

ci=number
(default=0.95)

Set confidence interval levels.

leg=arg Specify the legend display settings, where arg can be: “def”
- default, “n” - none, “s” - short, “det”- detailed.

ĵ

distplot—933

plots the empirical CDF of the AGE, HEIGHT, WEIGHT, and LENGTH, and displays them in
a single frame.

Panel examples

height.distplot(panel=individual) hist

displays histograms for each cross-section in separate frames while,

weight.distplot kern ash

displays a kernel density graph and average shifted histogram using the panel stacked
WEIGHT data.

Categorical spec examples

height.distplot hist across(firm, dispname)

displays a categorical histogram graph of SER1 using distinct values of FIRM to define the
categories, and displaying the resulting graphs in multiple frames.

height.distplot hist across(firm, dispname, iscale)

shows the same graph with individual scaling for each of the frames.

weight.distplot kernel ash within(firm, inctot, label=value)

displays kernel and average shifted histograms categorized by firm (with an added category
for the total), with all of the graphs in a single frame and the category value used as labels.

length.distplot cdf across(firm, dispname) within(income,

bintype=quant, bincount=4)

constructs a categorical cdf graph with FIRM defining the across dimension, and INCOME
defining the within dimension. Observations will be classified in the within dimension using
the quartiles of INCOME.

Cross-references

For a description of distribution graphs, see “Analytical Graph Types,” on page 685 of User’s
Guide I.

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

To save the data from a distribution plot, see Series::distdata (p. 561) and
Group::distdata (p. 320).

934—Appendix A. Graph Creation Commands

Display a dot plot graph view.

A dot plot is a symbol only version of the line and symbol graph that uses circles to repre-
sent the value of each observation.

Syntax
dot(options) o1 [o2 o3 ...]

object_name.dot(options) [categorical_spec(arg)]

where o1, o2, ..., are series or group objects.

Following the dot keyword, you may specify general graph characteristics using options.
Available options include multiple graph handling, dual scaling, template application, data
contraction, adding axis extensions, and rotation.

The optional categorical_spec allows you to specify a categorical graph (see “Categorical
Spec,” on page 982).

Options
Scale options

dot Command || Coef View | Graph Command | Group View | Matrix View |
Rowvector View | Series View | Sym View | Vector View

a (default) Automatic single scale.

d Dual scaling with no crossing. The first series or column is
scaled on the left and all other series or columns are scaled
on the right.

x Dual scaling with possible crossing. See the “d” option.

n Normalized scale (zero mean and unit standard deviation).
May not be used with the “s” option.

rotate Rotate the graph so the observation axis is on the left.

ab=type Add axis border along data scale, where type may be “hist”
or “h” (histogram), “boxplot” or “b”, “kernel” or “k”.
(Note: axis borders are not available for panel graphs with
“panel=” options that involve summaries: mean, median,
etc.)

dot—935

Multiple series options (categorical graph settings will override these options)

Template and printing options

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Graph data options

The following option is available in non-panel or categorical graph settings:

Panel options

The following option applies when graphing panel structured data:

m Plot dot plots in multiple graphs (will override the “s”
option).

s Stacked dot plot. Each dot represents the cumulative total
of the series or columns listed. The difference between dots
corresponds to the value of a series or column.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

contract=key Contract the data as specified by key, where key may be:
“mean”, “median”, “max”, “min”, “sum”, “var” - variance,
“sd” - standard deviation, “sumsq” - sum of the squared
values, “skew” - skewness, “kurt” - kurtosis, “nas” - num-
ber of missing values, “obs” - number of observations,
“unique” - error if the series is not identical for all observa-
tions in a given group, “first” - first observation in category
using workfile order, “last” - last observation in category
using workfile order, “quant(quantile)” - where quantile is
a number between 0 and 1.

936—Appendix A. Graph Creation Commands

Categorical graph options

These options only apply to categorical graphs (“Categorical Spec,” on page 982) where the
graph has one or more within factors and a contraction method other than raw data (see the
“contract” option above).

Examples

Basic examples

dot(rotate) oldsales newsales

displays rotated dotplots of OLDSALES and NEWSALES.

pop.dot

displays a dotplot graph of the series POP.

group mygrp oldsales newsales

mygrp.dot(m)

displays dotplots of each series in MYGRP, each in its own frame.

mygrp.dot(o=midnight, b)

creates a bar graph of MYGRP, using the settings of the predefined template “midnight”,
applying the bold modifier.

mygrp.dot(rotate, contract=median)

displays a rotated dotplot of the medians of OLDSALES and NEWSALES.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“median” (plot median across cross-sections).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

favorlegend Favor the use of legends over axis labels to describe catego-
ries.

elemcommon =
int

Specifies the number of within factors for which the graph
uses common area colors. For example, with multiple
within dimensions, if “elemcommon=1”, then only catego-
ries defined by the first within factor will have common
colors. If “elemcommon=2”, then categories defined by
the first two within factors will have common colors. If
“elemcommon=0”, all areas will have different colors.
The default is one less than the number of within factors.

dot—937

Panel examples

ser1.dot(panel=individual)

displays dotplots for each cross-section in a separate frame, while,

ser1.dot(panel=mean)

displays a dotplot of the means for each period computed across cross-sections.

ser1.dot(panel=combine)

shows the dotplots for each cross-section in the same graph frame, with different symbols
and colors for each cross-section.

Categorical spec examples

ser1.dot across(firm, dispname)

displays a categorical dotplot graph of SER1 using distinct values of FIRM to define the cate-
gories, and displaying the resulting graphs in multiple frames.

ser1.dot across(firm, dispname, iscale)

shows the same graph with individual scaling for each of the frames.

ser1.dot within(firm, inctot, label=value)

displays a graph categorized by firm (with an added category for the total), with all of the
graphs in a single frame and the category value used as labels.

ser1.dot across(firm, dispname) within(income, bintype=quant,

bincount=4)

constructs a categorical dotplot graph with FIRM defining the across dimension, and
INCOME defining the within dimension. Observations will be classified in the within dimen-
sion using the quartiles of INCOME.

ser1.dot(contract=mean, elemcommon=1) within(sex) within(union)

creates a dotplot of mean values of within categories based on both SEX and UNION. Cate-
gories within the more slowly varying SEX factor will be drawn using the same symbol and
color, while the distinct elements of UNION will employ different symbols and colors.

Cross-references

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

938—Appendix A. Graph Creation Commands

Display an error bar graph view (if possible).

If there are two series or columns, the error bar will show the high and low values in the
bar. The optional third series or column will be plotted as a symbol.

Syntax
errbar(options) o1 o2 [o3 ...]

object_name.errbar(options)

where o1, o2, ..., are series or group objects.

Options

Template and printing options

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Panel options

The following option applies when graphing panel structured data:

errbar Command || Graph Command | Group View | Matrix View | Rowvector View
| Sym View

rotate Rotate the graph so the observation axis is on the left.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

hilo—939

Examples

Basic examples

errbar xhigh xlow xval

displays an error bar graph using the series XLOW, XHIGH, and XVAL.

group g1 xhigh xlow xval

g1.errbar

creates an error bar graph view of the three series in G1.

g1.errbar(o=midnight, w)

displays an errbar bar graph using the settings of the predefined template “midnight”, apply-
ing the wide modifier.

Panel examples

g1.errbar(panel=individual)

displays error bars for each cross-section in a separate frame, while,

g1.errbar(panel=mean)

displays error bars formed by computing the means for the series across cross-sections.

Cross-references

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

Display a high-low[-open-close] graph view (if possible).

Syntax
hilo(options) o1 o2 [o3 ...]

object_name.hilo(options)

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“median” (plot median across cross-sections).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

hilo Command || Graph Command | Group View | Matrix View | Sym View

940—Appendix A. Graph Creation Commands

where o1, o2, ..., are series or group objects. For a high-low[-open-close] graph, EViews uses
the first series or column as the high series, the second series or column as the low series,
and an optional third series or column as the close series. If four series or columns are pro-
vided, EViews will use them in the following order: high-low-open-close.

Note that if you wish to display a high-low-open graph, you should use an “NA”-series for
the close values.

Options

Template and printing options

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Panel options

The following option applies when graphing panel structured data:

rotate Rotate the graph so the observation axis is on the left.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“median” (plot median across cross-sections).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

line—941

Examples

Basic examples

hilo mshigh mslow msclose

displays a high-low-close graph using the series MSHIGH, MSLOW, and MSCLOSE.

group stockprice mshigh mslow msclose

stockprice.hilo(t=templt1)

displays a high-low-close graph of the series in STOCKPRICE, using the settings of the graph
object TEMPLT1 as a template.

group g1 mshigh mslow msopen msclose

g1.hilo(p)

plots and prints the high-low-open-close graph of the four series in G1.

Panel examples

stockprice.hilo

displays the high-low-close graph for the stacked panel data.

stockprice.hilo(panel=individual)

displays high-low-close graphs for each cross-section in separate frames.

g1.hilo(panel=mean)

plots the high-low-open-close graph using the means for the series in every period computed
across cross-sections.

Cross-references

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

Display a line graph view.

Syntax
line(options) o1 [o2 o3 ...]

object_name.line(options) [categorical_spec(arg)]

where o1, o2, ..., are series or group objects. Following the line keyword, you may specify
general graph characteristics using options. Available options include multiple graph han-

line Command || Coef View | Graph Command | Group View | Matrix View |
Series View | Sym View | Vector View

942—Appendix A. Graph Creation Commands

dling, dual scaling, template application, data contraction, adding axis extensions, and rota-
tion.

The optional categorical_spec allows you to specify a categorical graph (see “Categorical
Spec,” on page 982).

Options
Scale options

Multiple series options (categorical graph settings will override these options)

Template and printing options

a (default) Automatic single scale.

d Dual scaling with no crossing. The first series or column is
scaled on the left and all other series or columns are scaled
on the right.

x Dual scaling with possible crossing. See the “d” option.

n Normalized scale (zero mean and unit standard deviation).
May not be used with the “s” option.

rotate Rotate the graph so the observation axis is on the left.

ab=type Add axis border along data scale, where type may be “hist”
or “h” (histogram), “boxplot” or “b”, “kernel” or “k”.
(Note: axis borders are not available for panel graphs with
“panel=” options that involve summaries: mean, median,
etc.)

wf Use workfile frequency for linked series.

m Plot lines in multiple graphs (will override the “s” option).

s Stacked line graph. Each line represents the cumulative
total of the series or columns listed. The difference
between lines corresponds to the value of a series or col-
umn.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

line—943

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Graph data options

The following option is available in non-panel or categorical graph settings:

Panel options

The following option applies when graphing panel structured data:

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

contract=key Contract the data as specified by key, where key may be:
“mean”, “median”, “max”, “min”, “sum”, “var” - variance,
“sd” - standard deviation, “sumsq” - sum of the squared
values, “skew” - skewness, “kurt” - kurtosis, “nas” - num-
ber of missing values, “obs” - number of observations,
“unique” - error if the series is not identical for all observa-
tions in a given group, “first” - first observation in category
using workfile order, “last” - last observation in category
using workfile order, “quant(quantile)” - where quantile is
a number between 0 and 1.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“mean1se” (plot mean and +/- 1 standard deviation sum-
maries), “mean2sd” (plot mean and +/- 2 s.d. summa-
ries), “mean3sd” (plot mean and +/- 3 s.d. summaries),
“median” (plot median across cross-sections), “med25”
(plot median and +/- 0.25 quantiles), “med10” (plot
median and +/- 0.10 quantiles), “med05” (plot median +/
- 0.05 quantiles), “med025” (plot median +/- 0.025 quan-
tiles), “med005” (plot median +/- 0.005 quantiles), “med-
mxmn” (plot median, max and min).
(Note: more flexible versions of the non-s.d. and on-quan-
tile graphs may be constructed as categorical graphs.)

944—Appendix A. Graph Creation Commands

Categorical graph options

These options only apply to categorical graphs (“Categorical Spec,” on page 982) where the
graph has one or more within factors and a contraction method other than raw data (see the
contract option above).

Examples

Basic examples

line gdp cons m1

displays line graphs of the series GDP, CONST, and M1.

group g1 gdp cons m1

g1.line(d)

plots line graphs of the three series in group G1 with dual scaling (no crossing). The latter
two series will share the same scale.

g1.line(m)

plots line graphs of the three series in group G1, with each plotted separately.

g1.line(o=midnight, b, w)

creates a line graph of the group G1, using the settings of the predefined template “mid-
night”, applying the bold and wide modifiers.

gdp.line(ab=boxplot)

displays the line graph with a boxplot displayed along the data dimension.

Panel examples

ser1.line(panel=individual)

displays area graphs with a separate graph for each cross-section, while,

ser1.line(panel=mean)

displays a line graph of the means for each period computed across cross-sections.

favorlegend Favor the use of legends over axis labels to describe catego-
ries.

elemcommon =
int

Specifies the number of within factors for which the graph
uses common area colors. For example, with multiple
within dimensions, if “elemcommon=1”, then only catego-
ries defined by the first within factor will have common
colors. If “elemcommon=2”, then categories defined by
the first two within factors will have common colors. If
“elemcommon=0”, all areas will have different colors.
The default is one less than the number of within factors.

mixed—945

Categorical spec examples

ser1.line across(firm, dispname)

displays a categorical line graph of SER1 using distinct values of FIRM to define the catego-
ries, and displaying the resulting graphs in multiple frames using the display name in the
labels.

ser1.line across(firm, dispname, iscale)

shows the same graph with individual scaling for each of the frames.

Cross-references

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

Plots a graph with various graph types.

Syntax
group_name.mixed(options) type_list

The type_list argument controls the types of graphs included. Include a space delimited list
of graph type keywords along with the series attached to that type. Available graph types are
“line”, “bar”, “area”, “spike”, “band”, “stackedline”, “stackedbar”, “stackedarea”, and
“stackedspike”.

Each keyword should be followed by parenthesis containing a comma separated list of series
which will be graphed with that type. Series can be specified by name or by a number corre-
sponding to their position in the group.

Options

mixed Command | Graph Command | Group View | Matrix View | Rowvector View
| Sym View

llast/-llast Draw all line types on top of all fill types (llast) or below all
fill types (-llast).

ab=type Add axis border along data scale, where type may be “hist”
or “h” (histogram), “boxplot” or “b”, “kernel” or “k”.
(Note: axis borders are not available for panel graphs with
“panel=” options that involve summaries: mean, median,
etc.)

946—Appendix A. Graph Creation Commands

Template and printing options

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Graph data options

The following option is available in non-panel or categorical graph settings:

Panel options

The following option applies when graphing panel structured data:

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

contract=key Contract the data as specified by key, where key may be:
“mean”, “median”, “max”, “min”, “sum”, “var” - variance,
“sd” - standard deviation, “sumsq” - sum of the squared
values, “skew” - skewness, “kurt” - kurtosis, “nas” - num-
ber of missing values, “obs” - number of observations,
“unique” - error if the series is not identical for all observa-
tions in a given group, “first” - first observation in category
using workfile order, “last” - last observation in category
using workfile order, “quant(quantile)” - where quantile is
a number between 0 and 1.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“median” (plot median across cross-sections).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

pie—947

Examples
group g1 ser1 ser2 ser3 ser4

g1.mixed line(1,3) bar(2,4)

defines a group G1 containing the four series SER1, SER2, SER3, and SER4 then plots a
mixed type graph of the series in the group, with SER1 and SER3 being shown in line graph
form, and SER2 and SER4 in bar graph form.

g1.mixed(o=midnight,-lline) stackedarea(ser1, ser2) line(ser3)

bar(4)

creates a mixed type graph of the group G1, using the settings of the predefined template
“midnight,” applying the bold and wide modifiers. Series SER1 and SER2 are stacked into an
area graph, whereas series SER3 is shown as a line and SER4 as a bar. The lines of SER3 are
drawn behind the fill areas of SER1, SER2, and SER4.

Cross-references

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

Display a pie chart view.

In the default setting, there will be one pie for each date or observation number. Each series
or column of data is shown as a wedge in a different color/pattern, where the width of the
wedge equals the percentage contribution of the series or column to the total of all listed
series or columns. Negative and missing values are treated as zeros.

Syntax
pie(options) o1 o2 [o3 ...]

object_name.pie(options) [categorical_spec(arg)]

where o1, o2, ..., are series or group objects. You may specify general graph characteristics
by including options following the pie keyword.

The optional categorical_spec allows you to specify a categorical graph (see “Categorical
Spec,” on page 982).

pie Command || Graph Command | Group View | Matrix View | Rowvector View
| Sym View

948—Appendix A. Graph Creation Commands

Options
Template and printing options

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Graph data options

The following option is available in non-panel or categorical graph settings:

Panel options

The following option applies when graphing panel structured data.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

contract=key Contract the data as specified by key, where key may be:
“mean”, “median”, “max”, “min”, “sum”, “var” - variance,
“sd” - standard deviation, “sumsq” - sum of the squared
values, “skew” - skewness, “kurt” - kurtosis, “nas” - num-
ber of missing values, “obs” - number of observations,
“unique” - error if the series is not identical for all observa-
tions in a given group, “first” - first observation in category
using workfile order, “last” - last observation in category
using workfile order, “quant(quantile)” - where quantile is
a number between 0 and 1.

pie—949

Examples

Basic examples

pie const inv gov

displays pie charts for each period, each showing the relative sizes of CONS, INV, and GOV.

group g1 cons inv gov

g1.pie

displays the equivalent pie graph of the data in G1.

g1.pie(o=midnight, b, w)

displays the pie graph using the settings of the predefined template “midnight”, applying the
bold and wide modifiers.

g1.pie(contract=mean)

displays a single pie graph with slices depicting the mean values for each series.

Panel examples

g1.pie(panel=individual)

displays pie graphs using the series in G1 with each cross-section displayed in a separate
frame, while,

g1.pie(panel=mean)

displays a single pie graph showing, for each period, the pie graph formed using the means
of the series computed across cross-sections.

Categorical examples

g1.pie(contract=mean) within(id)

constructs three pie graphs, one each for CONS, INV, and GOV, where the slices are deter-
mined by the relative sizes of the means of the respective series for each value of ID. There
will be 10 slices for each pie.

g1.pie(contract=sum) within(id) within(@series)

displays a single pie graph with slices formed by the relative sizes of the sums of the series
for each ID. If there are 10 distinct values of ID, the pie will have 30 slices.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“median” (plot median across cross-sections).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

950—Appendix A. Graph Creation Commands

for each value of ID using the sums of values of the series in the group G1 to determine the
size of the pie slices. Each pie graph will be displayed in a separate frame. Alternately,

g1.pie(contract=mean) across(id) within(@series)

constructs one pie graph for each cross-section, where the slices are given by the mean val-
ues of CONS, INV, and GOV for the cross-section.

Cross-references

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

Display a quantile-quantile graph.

Plots the (empirical) quantiles of a series or matrix column against either the quantiles of a
theoretical distribution or the empirical quantiles of other series or columns in the group or
matrix. You may specify the theoretical distribution and/or the method used to compute the
empirical quantiles as options.

Syntax
qqplot(options) o1 [o2 o3 ...]

object_name.qqplot(options) analytical_spec(arg) [categorical_spec(arg)]

where o1, o2, ..., are series or group objects.

When used as a command, qqplot displays the theoretical qq-plot against a fitted normal
distribution.

When used to display the view of an object, you must specify a theoretical or empirical
quantile graph in the analytical_spec (see “Analytical Spec,” on page 951).

The optional categorical_spec allows you to specify a categorical graph (see “Categorical
Spec,” on page 982).

qqplot Command || Coef View | Graph Command | Group View | Matrix View |
Rowvector View | Series View | Sym View | Vector View

qqplot—951

Options
Multiple series pair options (categorical graph settings will override these options)

Template and printing options

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Panel options

The following option applies when graphing panel structured data.

Analytical Spec

Specify the type of quantile-quantile graph you wish to create in the analytical spec. For a
description of quantile-quantile graphs, see “Analytical Graph Types,” on page 685 of User’s
Guide I. The analytical spec should be in the form:

qq_type(type_options)

s Plot in a single graph (applies only to theoretical QQ and
symmetry Q-Q graphs).

mult= mat_type Multiple series or column handling: where mat_type may
be: “pairs” or “p” - pairs, “mat” or “m” - scatterplot matrix,
“lower” or “l” - lower triangular matrix.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

952—Appendix A. Graph Creation Commands

where qq_type may be one of the following keywords:

You may provide multiple theoretical qq-plot elements, but may not have more than one
empirical qq-plot, nor may you mix the two.

Each type has its own set of options, to be entered in type_options:

Theoretical Options

theory Theoretical quantile-quantile plot.

empirical Empirical quantile-quantile plot (requires at least two
series or columns of a matrix)

symmetry Quantile quantile symmetry plot.

dist=arg arg can be: “normal”, “exp” - exponential, “logit” - logistic,
“uniform” - uniform, “xman” - extreme max, “xmin” -
extreme min, “chisq” - chi-squared, “pareto” - Pareto,
“weibull” - Weibull, “gamma” - gamma, “tdist” - Student’s
t-distribution.

p1=int Set first parameter.

p2=int Set second parameter.

p3=int Set third parameter.

q = arg Set the quantile method, where arg can be: “r” - Rankit-
Cleveland, “o” - Ordinary, “v” - van der Waerden, “b” -
Blom, “t” - Tukey, “g” - Gumbel.

noline Don’t display a fit line.

m=int Set the iterations maximum. (Applies to logistic, extreme
max, extreme min, chi-squared, Weibull, gamma, or t-dis-
tributions.)

c =int Sets the convergence criterion. (Applies to logistic, extreme
max, extreme min, chi-squared, Weibull, gamma, or t-dis-
tributions.)

s Use user-specified starting values, supplied in the C coeffi-
cient vector in the workfile (default uses EViews supplied
starting values). (Applies to logistic, extreme max, extreme
min, chi-squared, Weibull, gamma, or t-distributions.)

leg=arg Specify the legend display settings, where arg can be: “def”
- default, “n” - none, “s” - short, “det”- detailed.

qqplot—953

Empirical Options

Examples
Theoretical examples

qqplot(s) inf unemp

displays theoretical qq-plots for INF and UNEMP against fitted normal distributions in a sin-
gle frame.

group g1 inf unemp

g1.qqplot theory

displays theoretical qqplots of INF and UNEMP compared with normal distributions fitted to
the data in each series. The graphs include fit lines and are displayed in separate frames.

g1.qqplot(s) theory(dist=exp)

compares INF and UNEMP with fitted exponential distributions, and displays the graphs in a
single frame.

g1.qqplot(s) theory(dist=exp, p1=5)

plots the series against the quantiles of an exponential distribution with parameter 5 in a
single frame.

Empirical Examples

group g2 ser1 ser2 ser3 ser4

g2.qqplot empirical

displays empirical qqplots for pairs of series in G2. The default behavior is to plot the first
series in the group (SER1) against the remaining series (SER2, SER3, and SER4). The graphs
include fit lines and are displayed in separate graph frames.

g1.qqplot(mult=pair) empirical(noline)

displays qqplots of SER1 versus SER2 and SER3 versus SER4 in separate graph frames, with-
out a regression line.

Categorical examples

g1.qqplot theory within(age)

q=arg Set the quantile method, where arg can be: “r” - Rankit-
Cleveland, “o” - Ordinary, “v” - van der Waerden, “b” -
Blom, “t” - Tukey, “g” - Gumbel.

noline Don’t display a regression line.

leg=arg Specify the legend display settings, where arg can be: “def”
- default, “n” - none, “s” - short, “det”- detailed.

954—Appendix A. Graph Creation Commands

displays theoretical qq-plots with the series in G1 treated as the within factor and @SERIES
treated as the across factor. The qq-plots for each series in G1 will be displayed in separate
frames, with multiple qq-plots for each AGE category shown in each frame.

g1.qqplot(mult=p) empirical across(age)

displays empirical qq-plots for categories of AGE in separate graph frames.

Cross-references

For a description of quantile-quantile graphs, see “Analytical Graph Types,” on page 685 of
User’s Guide I.

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

Display a scatterplot (if possible).

A scatterplot graph plots the values of one series or column against another using symbols.

There must be at least two series or columns to create a scatterplot. By default, the first
series or column will be located along the horizontal axis, and the remaining data on the
vertical axis. You may optionally choose to plot the data in pairs, where the first two series
or columns are plotted against each other, the second two series or columns are plotted
against each other, and so forth, or to construct graphs using all possible pairs (or the lower
triangular set of pairs).

Scatterplots are simply XY-line plots with symbols turned on and lines turned off (see
Graph::setelem (p. 277)).

Syntax
scat(options) o1 o2 [o3 ...]

object_name.scat(options) [auxiliary_spec(arg)] [categorical_spec(arg)]

where o1, o2, ..., are series or group objects.

Following the scat keyword, you may specify general graph characteristics using options.
Available options include plotting the data in pairs or in multiple graphs, template applica-
tion, and adding axis extensions.

The optional auxilary_spec allows you to add fit lines to the scatterplot (regression lines,
kernel fit, nearest neighbor fit, orthogonal regression, and confidence ellipses; see “Auxiliary
Spec,” on page 985).

scat Command || Graph Command | Group View | Matrix View | Rowvector View
| Sym View

scat—955

The optional categorical_spec allows you to specify a categorical graph (see “Categorical
Spec,” on page 982).

Options
Scale options

Multiple series pair options (categorical graph settings will override these options)

Template and printing options

a (default) Automatic single scale.

b Plot series or columns in pairs (the first two against each
other, the second two against each other, and so forth).

d Dual scaling with no crossing.

x Dual scaling with possible crossing.

n Normalized scale (zero mean and unit standard deviation).
May not be used with the “s” option.

ab=type Add axis border along data scales, where type may be
“hist” or “h” (histogram), “boxplot” or “b”, “kernel” or
“k”.
(Note: axis borders are not available for panel graphs with
“panel=” options that involve summaries: mean, median,
etc.)

m Place scatterplots in multiple graphs.

mult=mat_type Multiple series or column handling: where mat_type may
be: “pairs” or “p” - pairs, “mat” or “m” - scatterplot matrix,
“lower” or “l” - lower triangular matrix. (Using the “mat”
or “lower” options is the same as using the scatmat
(p. 959) command; using the “pairs” option is the same as
using scatpair (p. 961).)

s Stacked scatterplot graph. Each symbol represents the
cumulative total of the series or columns listed. The differ-
ence between symbols corresponds to the value of a series
or column.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

956—Appendix A. Graph Creation Commands

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Note that use of the template option will override the symbol setting.

Graph data options

The following option is available in categorical graph settings:

Panel options

The following option applies when graphing panel structured data.

Categorical graph options

These options only apply to categorical graphs (“Categorical Spec,” on page 982) where the
graph has one or more within factors and a contraction method other than raw data (see the
contract option above).

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

contract=key Contract the data as specified by key, where key may be:
“mean”, “median”, “max”, “min”, “sum”, “var” - variance,
“sd” - standard deviation, “sumsq” - sum of the squared
values, “skew” - skewness, “kurt” - kurtosis, “nas” - num-
ber of missing values, “obs” - number of observations,
“unique” - error if the series is not identical for all observa-
tions in a given group, “first” - first observation in category
using workfile order, “last” - last observation in category
using workfile order, “quant(quantile)” - where quantile is
a number between 0 and 1.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“median” (plot median across cross-sections).

scat—957

Examples

Basic examples

scat(m) age height weight length

displays scatterplots with AGE on the horizontal and HEIGHT, WEIGHT and LENGTH on the
vertical axis in multiple frames.

group g1 age height weight length

g1.scat

displays the same scatterplots in a single frame.

g1.scat(m, ab=hist)

displays the same information in multiple frames with histograms along the data axes.

g1.scat(mult=pairs) linefit

plots AGE against HEIGHT and WEIGHT against LENGTH (along with a regression fit line)
in a single graph frame.

g1.scat(s, t=scat2)

displays a stacked scatterplot, using the graph object SCAT2 as a template.

g1.scat(d, ab=kernel)

shows a scatterplot with dual scales and no crossing, with kernel density plots along the
borders.

Panel examples

g1.scat(panel=combined)

displays a scatterplot for the series in G1 in a single frame with observations for different
cross-sections identified using different symbols and colors.

g1.scat(panel=individual)

draws each cross-section scatter in a different graph frame.

favorlegend Favor the use of legends over axis labels to describe catego-
ries.

elemcommon =
int

Specifies the number of within factors for which the graph
uses common area colors. For example, with multiple
within dimensions, if “elemcommon=1”, then only catego-
ries defined by the first within factor will have common
colors. If “elemcommon=2”, then categories defined by
the first two within factors will have common colors. If
“elemcommon=0”, all areas will have different colors.
The default is one less than the number of within factors.

958—Appendix A. Graph Creation Commands

g1.scat(panel=stacked)

displays the same plot, but with observations drawn with common color and symbol.

g1.scat(panel=stacked, contract=mean) linefit kernfit

constructs a scatterplot using the mean values computed across cross-sections (for a given
period) and displays it in a single graph frame, along with regression and kernel regression
fits. The “panel=-stacked” option instructs EViews to display the observations using a sin-
gle symbol type and color, and to fit lines using all of the data depicted in the graph.

Categorical examples

group cgrp income consumption

cgrp.scat within(sex)

displays a scatterplot categorized by values of sex, with both categories displayed in the
same graph frame using different symbol types and colors.

cgrp.scat within(sex) kernfit linefit

displays the same graph along with linear and kernel regression fits for each category.

cgrp.scat(contract=mean) nnfit within(state)

computes mean values for the series in CGRP for each STATE category, and displays the
results in a single graph frame along with a line depicting the linear regression fit to the
mean values.

cgrp.scat across(state) within(sex) nnfit

displays scatterplots for data with each STATE value in different frames. Within each frame,
the data for each value of SEX are depicted using different symbol types and colors, and a
nearest neighbor regression is fit to observations in each category.

Cross-references

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

For a description of the available fit lines, see “Auxiliary Graph Types,” on page 704 of User’s
Guide I.

See xyline (p. 975) for a description of XY graphs.

scatmat—959

Display a matrix of scatterplots.

The scatmat view forms pairs using all possible pairwise combinations for the series or col-
umns and constructs a plot for each pair, using specialized positioning and axis labeling.

Scatterplots are simply XY-line plots with symbols turned on and lines turned off (see
Graph::setelem (p. 277)). The scatmat graph type is equivalent to using scat (p. 954)
with the “mult=mat” or “mult=lower” option indicating that the data should be graphed
using the full or lower-triangular matrix of pairs.

Syntax
scatmat(options) o1 o2 [o3 ...]

object_name.scatmat(options) [auxiliary_spec(arg)]

where o1, o2, ..., are series or group objects.

Following the scatmat keyword, you may specify general graph characteristics using
options. Available options include template application and adding axis extensions.

The optional auxilary_spec allows you to add fit lines to the scatterplot (regression lines,
kernel fit, nearest neighbor fit, orthogonal regression, and confidence ellipses; see “Auxiliary
Spec,” on page 985).

Options
Scale options

Multiple graph options

scatmat Command || Graph Command | Group View | Matrix View | Rowvector View
| Sym View

a (default) Automatic single scale.

d Dual scaling with no crossing.

x Dual scaling with possible crossing.

n Normalized scale (zero mean and unit standard deviation).

ab=type Add axis border along data scales, where type may be
“hist” or “h” (histogram), “boxplot” or “b”, “kernel” or
“k”.
(Note: axis borders are not available for panel graphs with
“panel=” options that involve summaries: mean, median,
etc.)

l Plot lower triangular scatterplot matrix.

960—Appendix A. Graph Creation Commands

Template and printing options

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Note that use of the template option will override the symbol setting.

Panel options

The following option applies when graphing panel structured data.

Examples

Basic examples

scatmat weight height age

displays a matrix of scatter plots for all pairs of the three series

group g1 weight height age

g1.scatmat

displays the same graph using the named group G1.

g1.scatmat(l)

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“median” (plot median across cross-sections).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

3 3u

scatpair—961

shows the portion of the matrix below the diagonal.

g1.scatmat(l, ab=hist, o=midnight)

displays the lower triangular matrix with histograms along the borders using the graph set-
tings in the pre-defined template “midnight.”

Panel examples

g1.scatmat(panel=combined)

displays a scatterplot matrix using the series in G1 with observations for different cross-sec-
tions identified using different symbols and colors.

g1.scatmat(panel=stacked)

displays the same matrix, but with a common color and symbol.

g1.scatmat(panel=individual, l) linefit

displays a lower-triangular scatterplot matrix with regression fit for each cross-section, each
in an individual frame.

Cross-references

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

For a description of the available fit lines, see “Auxiliary Graph Types,” on page 704 of User’s
Guide I.

See xyline (p. 975) for XY graphs.

Display a scatterplot pairs graph (if possible).

The data will be plotted in pairs, where the first two series or columns are plotted against
each other, the second two series or columns are plotted against each other, and so forth. If
the number of series or columns is odd, the last one will be ignored.

Scatterplots are simply XY plots with symbols turned on and lines turned off (see
Graph::setelem (p. 277)). The scatpair graph type is equivalent to using scat (p. 954)
with the “mult=pairs” option indicating that the data should be graphed in pairs.

Syntax
scatpair(options) o1 o2 [o3 ...]

object_name.scatpair(options) [auxiliary_spec(arg)]

scatpair Command || Graph Command | Group View | Matrix View | Rowvector View
| Sym View

962—Appendix A. Graph Creation Commands

where o1, o2, ..., are series or group objects.

Following the scatpair keyword, you may specify general graph characteristics using
options. Available options include plotting the data in multiple graphs, template application,
and adding axis extensions.

The optional auxilary_spec allows you to add fit lines to the scatterplot (regression lines,
kernel fit, nearest neighbor fit, orthogonal regression, and confidence ellipses; see “Auxiliary
Spec,” on page 985).

Options
Scale options

Multiple series pair options

Template and printing options

a (default) Automatic single scale.

d Dual scaling with no crossing.

x Dual scaling with possible crossing.

n Normalized scale (zero mean and unit standard deviation).

ab=type Add axis border along data scales, where type may be
“hist” or “h” (histogram), “boxplot” or “b”, “kernel” or
“k”.
(Note: axis borders are not available for panel graphs with
“panel=” options that involve summaries: mean, median,
etc.)

m Place scatterplots in multiple graphs.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

scatpair—963

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Note that use of the template option will override the symbol setting.

Graph data options

The following option is available in categorical graph settings:

Panel options

The following option applies when graphing panel structured data.

Examples

Basic examples

scatpair weight height age length

displays a combined scatterplot with AGE on the horizontal and HEIGHT on the vertical
axis, and with WEIGHT on the horizontal and LENGTH on the vertical axis.

group g1 weight height age length

g1.scatpair

displays the same graph using the named group G1.

g1.scatpair(m, ab=kern)

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

contract=key Contract the data as specified by key, where key may be:
“mean”, “median”, “max”, “min”, “sum”, “var” - variance,
“sd” - standard deviation, “sumsq” - sum of the squared
values, “skew” - skewness, “kurt” - kurtosis, “nas” - num-
ber of missing values, “obs” - number of observations,
“unique” - error if the series is not identical for all observa-
tions in a given group, “first” - first observation in category
using workfile order, “last” - last observation in category
using workfile order, “quant(quantile)” - where quantile is
a number between 0 and 1.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“median” (plot median across cross-sections).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

964—Appendix A. Graph Creation Commands

displays each scatterplot in a separate frame with kernel density plots along the borders.

g1.scatpair(t=scat2)

displays the pairwise scatterplots, using the graph object SCAT2 as a template.

g1.scatpair(d)

shows a scatterplot for the pairs with dual scales and no crossing.

Panel examples

g1.scatpair kernfit

shows the scatterplot of the stacked panel data for pairs of series in G1. The scatterplot will
be drawn with a common symbol type and color for all observations, and the kernel fit will
use all of the observations.

g1.scatpair(panel=individual) linefit

displays, in individual frames, scatterplot pairs with fitted regression lines for each of the
cross-sections.

g1.scatpair(panel=combined) linefit

displays the cross-section scatterplots and regression lines in a single graph frame. Different
symbols and colors will be used for each cross-section series pair in the graph.

g1.scatpair(panel=stacked, contract=mean) nnfit kernfit

displays a scatterplot matrix of the mean values for each period (computed across cross-sec-
tions) in a single graph frame, along with nearest neighbor and kernel regression fits for the
means.

Categorical examples

group cgrp income consumption interest savings

cgrp.scatpair(d) within(sex)

displays a scatterplot pair graph (CONSUMPTION versus INCOME; and SAVINGS and
INTEREST) categorized by values of sex, with observations displayed in the same graph
frame using different symbols and colors to denote cross-sections, and dual scaling.

cgrp.scatpair(d) within(sex) kernfit linefit

displays the same scatterplot but with linear regression and kernel regression fits for the
observations in each category for each pair of series.

cgrp.scatpair(d) across(state) within(sex) nnfit

displays scatterplots for observations in each STATE in different frames. Within each frame,
observations are depicted using different symbols and colors to denote SEX, and a nearest
neighbor regression is fit to observations in each category.

cgrp.scatpair(d, contract=mean) nnfit within(state)

seasplot—965

computes mean values for the series in CGRP for each STATE, and displays paired scatter-
plots of the means, along with a line depicting the nearest neighbor regression fit to the
means, in a single graph frame.

Cross-references

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

For a description of the available fit lines, see “Auxiliary Graph Types,” on page 704 of User’s
Guide I.

See xyline (p. 975) for a description of XY graphs.

Display a seasonal line graph view.

seasplot displays a paneled line graph view of a series or column ordered by season. This
view is only available for workfiles with quarterly, monthly, or semi-annual frequencies.

Syntax
seasplot(options) o1 [o2 o3 ...]

object_name.seasplot(options)

where o1, o2, ..., are series or group objects.

Options

Template and printing options

seasplot Command || Coef View | Graph Command | Group View | Matrix View |
Rowvector View | Series View | Sym View | Vector View

m Plot seasons using multiple overlayed lines.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

966—Appendix A. Graph Creation Commands

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Examples
seasplot ipnsa ipnsb

displays a paneled seasonal plot of the series IPNSA and IPNSB.

freeze(gra_ip) ipnsa.seasplot

creates a graph object named GAR_IP that contains the paneled seasonal line graph view of
the series IPNSA.

freeze(gra_ip2) ipnsa.seasplot(m)

creates GRA_IP2 containing the multiple line seasonal graph view of the series.

Cross-references

See “Seasonal Graphs” on page 683 of User’s Guide I for a brief discussion of seasonal line
graphs.

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

See also Series::seas (p. 593), Series::x11 (p. 623) and Series::x12 (p. 625).

Display a spike graph view.

Syntax
spike(options) o1 [o2 o3 ...]

object_name.spike(options) [categorical_spec(arg)]

where o1, o2, ..., are series or group objects.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the bar graph.

spike Command || Coef View | Graph Command | Group View | Matrix View |
Rowvector View | Series View | Sym View | Vector View

spike—967

Following the spike keyword, you may specify general graph characteristics using options.
Available options include multiple graph handling, dual scaling, template application, data
contraction, adding axis extensions, and rotation.

The optional categorical_spec allows you to specify a categorical graph (see “Categorical
Spec,” on page 982).

Options
Scale options

Multiple series options (categorical graph settings will override these options)

Template and printing options

a (default) Automatic single scale.

d Dual scaling with no crossing. The first series or column is
scaled on the left and all other series or columns are scaled
on the right.

x Dual scaling with possible crossing. See the “d” option.

n Normalized scale (zero mean and unit standard deviation).

rotate Rotate the graph so the observation axis is on the left.

ab=type Add axis border along data scale, where type may be “hist”
or “h” (histogram), “boxplot” or “b”, “kernel” or “k”.
(Note: axis borders are not available for panel graphs with
“panel=” options that involve summaries: mean, median,
etc.)

m Plot spikes in multiple graphs.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

968—Appendix A. Graph Creation Commands

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Graph data options

The following option is available in non-panel or categorical graph settings:

Panel options

The following option applies when graphing panel structured data:

Categorical graph options

These options only apply to categorical graphs, which are described below and specified by
the within and across categorical spec. The graph must have one or more within factors and
a contraction method other than raw data (see the contract option above).

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the spike graph.

contract=key Contract the data as specified by key, where key may be:
“mean”, “median”, “max”, “min”, “sum”, “var” - variance,
“sd” - standard deviation, “sumsq” - sum of the squared
values, “skew” - skewness, “kurt” - kurtosis, “nas” - num-
ber of missing values, “obs” - number of observations,
“unique” - error if the series is not identical for all observa-
tions in a given group, “first” - first observation in category
using workfile order, “last” - last observation in category
using workfile order, “quant(quantile)” - where quantile is
a number between 0 and 1.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“median” (plot median across cross-sections).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

spike—969

Examples

Basic examples

spike(rotate, m) pop oldsales newsales

displays a rotated spike graph of the series POP, OLDSALES, and NEWSALES, with each
series in a separate frame.

pop.spike

displays a spike graph of the series POP.

group mygrp oldsales newsales

mygrp.spike(l, x, o=mytpt)

plot a spike graph of OLDSALES together with a line graphs of NEWSALES. The spike graph
is scaled on the left, while the line graph is scaled on the right. The graph uses options from
the graph MYTPT as a template.

mygrp.spike(o=midnight, b)

creates a spike graph of MYGRP, using the settings of the predefined template “midnight.”

mygrp.spike(rotate, contract=mean)

displays a rotated spike graph of the means of the series in MYGRP.

Panel examples

ser1.spike(panel=individual)

displays spike graphs for each cross-section in a separate frame, while,

ser1.spike(panel=median)

displays a spike graph of the medians for each period computed across cross-sections.

Categorical spec examples

ser1.spike across(firm, dispname)

favorlegend Favor the use of legends over axis labels to describe catego-
ries.

elemcommon =
int

Specifies the number of within factors for which the graph
uses common area colors. For example, with multiple
within dimensions, if “elemcommon=1”, then only catego-
ries defined by the first within factor will have common
colors. If “elemcommon=2”, then categories defined by
the first two within factors will have common colors. If
“elemcommon=0”, all areas will have different colors.
The default is one less than the number of within factors.

970—Appendix A. Graph Creation Commands

displays a categorical spike graph of SER1 using distinct values of FIRM to define the catego-
ries, and displaying the resulting graphs in multiple frames.

ser1.spike across(firm, dispname, iscale)

shows the same graph with individual scaling for each of the frames.

ser1.spike within(contract=mean, firm, inctot, label=value)

displays a spike graph of mean values of SER1 categorized by firm (along with an added cat-
egory for the total), with all of the graphs in a single frame and the FIRM category value
used as labels.

ser1.spike(contract=sum) across(firm, dispname) within(income,

bintype=quant, bincount=4)

constructs a categorical spike graph of the sum of SER1 values within a category. Different
firms are displayed in different graph frames, using the display name as labels, with each
frame containing spikes depicting the sum of SER1 for each income quartiles.

group mygrp oldsales newsales

mygrp.spike(contract=min) within(@series) within(age)

displays spike graphs of the minimum values for categories defined by distinct values of
AGE (and the two series). All of the spike will be displayed in a single frame with the spikes
for OLDSALES grouped together followed by the spikes for NEWSALES.

g1.spike(o=midnight, b, w)

creates a spike graph of the group G1, using the settings of the predefined template “mid-
night”, applying the bold and wide modifiers.

Cross-references

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

Display an XY area graph view (if possible).

An XY area graph plots the values of one series or column against another. It is similar to a
XY line, but with the region between the line and the zero horizontal axis filled.

(Note that XY area graphs are typically employed only when data along the horizontal axis
are ordered.)

There must be at least two series or columns to create an XY area graph. By default, the first
series or column will be located along the horizontal axis, with the remaining data on the

xyarea Command || Graph Command | Group View | Matrix View | Sym View

xyarea—971

vertical axis. You may optionally choose to plot the data in pairs, where the first two series
or columns are plotted against each other, the second two series or columns are plotted
against each other, and so forth, or to construct graphs using all possible pairs (or the lower
triangular set of pairs).

Syntax
xyarea(options) o1 o2 [o3 ...]

object_name.xyarea(options)

where o1, o2, ..., are series or group objects.

Options
Scale options

Multiple series pair options (categorical graph settings will override these options)

Template and printing options

a (default) Automatic single scale.

b Plot series or columns in pairs (the first two against each
other, the second two against each other, and so forth).

d Dual scaling with no crossing.

x Dual scaling with possible crossing.

n Normalized scale (zero mean and unit standard deviation).

ab=type Add axis border along data scales, where type may be
“hist” or “h” (histogram), “boxplot” or “b”, “kernel” or
“k”.
(Note: axis borders are not available for panel graphs with
“panel=” options that involve summaries: mean, median,
etc.)

m Plot areas in multiple graphs.

s Stacked graph. Each line represents the cumulative total of
the series or columns listed. The difference between lines
corresponds to the value of a series or column.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

972—Appendix A. Graph Creation Commands

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Panel options

The following option applies when graphing panel structured data:

Examples

Basic examples

xyarea income sales

displays an XY-area graph with INCOME on the horizontal and SALES on the vertical axis.

group g1 income sales

g1.xyarea

plots the same graph using the named object G1.

g1.xyarea(ab=boxplot, t=gr1)

displays the graph with boxplots along the axes, using the template settings from the graph
GR1.

Panel examples

g1.xyarea

displays an XY-area graph for the stacked panel data.

g1.xyarea(panel=individual)

displays XY-area graphs for each cross-section in separate graph frames.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“median” (plot median across cross-sections).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

xybar—973

g1.xyarea(panel=mean)

computes means for each period across cross-sections, then displays the XY-area graph for
the mean data in a single graph frame. Note that only in a very narrow set of circumstances
is this latter command likely to yield a sensible graph.

Cross-references

scat (p. 954) and xyline (p. 975) are specialized forms of XY graphs.

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

Display an XY bar graph view (if possible).

An XY bar graph displays the data in sets of three series or columns as a vertical bar. For a
given observation, the values in the first two series or columns define a region along the
horizontal axis, while the value in the third series or column defines the vertical height of
the bar.

XY bar graphs may, for example, be used to construct variable width histograms.

Syntax
xybar(options) o1 o2 [o3 ...]

object_name.xybar(options)

where o1, o2, ..., are series or group objects.

Options

Template and printing options

xybar Command || Graph Command | Group View | Matrix View | Rowvector View
| Sym View

n Normalized scale (zero mean and unit standard deviation).

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

974—Appendix A. Graph Creation Commands

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Panel options

The following option applies when graphing panel structured data:

Examples

Basic examples

xybar lowbin highbin height

plots an XY-bar graph using LOWBIN and HIGHBIN to define the bin ranges and HEIGHT to
draw the corresponding bar height.

group g1 lowbin highbin height

g1.xybar

plots the same graph using the named object G1.

g1.xybar(t=t1)

displays the graph using the template settings from the graph object T1.

Panel examples

g1.xybar(panel=individual)

displays an XY-bar graph for each cross-section in an individual graph frame.

g1.xybar(panel=mean)

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame in single graph frame), “mean” (plot means across
cross-sections), “median” (plot median across cross-sec-
tions).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

xyline—975

displays an XY-bar graph for the data formed by taking means across cross-sections for each
period. Note that only in a very narrow set of circumstances is this latter command likely to
yield a sensible graph.

Cross-references

scat (p. 954), xyarea (p. 970), xyline (p. 975), and xypair (p. 979) are specialized
forms of XY graphs.

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

Display an XY line graph view (if possible).

There must be at least two series or columns to create an XY line graph. By default, the first
series or column will be located along the horizontal axis, with the remaining data on the
vertical axis. You may optionally choose to plot the data in pairs, where the first two series
or columns are plotted against each other, the second two series or columns are plotted
against each other, and so forth, or to construct graphs using all possible pairs (or the lower
triangular set of pairs).

XY line graphs are simply XY plots with lines turned on and symbols turned off (see
Graph::setelem (p. 277)).

Syntax
xyline(options) o1 o2 [o3 ...]

object_name.xyline(options) [auxiliary_spec(arg)] [categorical_spec(arg)]

where o1, o2, ..., are series or group objects.

Following the xyline keyword, you may specify general graph characteristics using options.
Available options include plotting the data in pairs or in multiple graphs, template applica-
tion, and adding axis extensions.

The optional auxilary_spec allows you to add fit lines to the scatterplot (regression lines,
kernel fit, nearest neighbor fit, orthogonal regression, and confidence ellipses; see “Auxiliary
Spec,” on page 985).

The optional categorical_spec allows you to specify a categorical graph (see “Categorical
Spec,” on page 982).

xyline Command || Graph Command | Group View | Matrix View | Sym View

976—Appendix A. Graph Creation Commands

Options
Scale options

Multiple series pair options (categorical graph settings will override these options)

Template and printing options

a (default) Automatic single scale.

b Plot series or columns in pairs (the first two against each
other, the second two against each other, and so forth).

d Dual scaling with no crossing.

x Dual scaling with possible crossing.

n Normalized scale (zero mean and unit standard deviation).
May not be used with the “s” option.

ab=type Add axis border along data scales, where type may be
“hist” or “h” (histogram), “boxplot” or “b”, “kernel” or
“k”.
(Note: axis borders are not available for panel graphs with
“panel=” options that involve summaries: mean, median,
etc.)

m Plot XY lines in multiple graphs.

mult=mat_type Multiple series or column handling: where mat_type may
be: “pairs” or “p” - pairs, “mat” or “m” - scatterplot matrix,
“lower” or “l” - lower triangular matrix. (Using the “pairs”
options is the same as using the xypair (p. 979) com-
mand.)

s Stacked XY line graph. Each line represents the cumulative
total of the series or columns listed. The difference
between lines corresponds to the value of a series or col-
umn.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

xyline—977

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Note that use of the template option will override the lines setting.

Graph data options

The following option is available in categorical graph settings:

Panel options

The following option applies when graphing panel structured data.

Examples

Basic examples

xyline age height weight length

displays XY-line plots with AGE on the horizontal and HEIGHT, WEIGHT and LENGTH on
the vertical axis.

group g1 age height weight length

g1.xyline

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

contract=key Contract the data as specified by key, where key may be:
“mean”, “median”, “max”, “min”, “sum”, “var” - variance,
“sd” - standard deviation, “sumsq” - sum of the squared
values, “skew” - skewness, “kurt” - kurtosis, “nas” - num-
ber of missing values, “obs” - number of observations,
“unique” - error if the series is not identical for all observa-
tions in a given group, “first” - first observation in category
using workfile order, “last” - last observation in category
using workfile order, “quant(quantile)” - where quantile is
a number between 0 and 1.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“median” (plot median across cross-sections).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

978—Appendix A. Graph Creation Commands

displays the same graph using the named object G1.

g1.xyline(m, ab=hist)

displays the same information in multiple frames with histograms along the borders.

g1.xyline(s, t=scat2)

displays a stacked XY-line graph, using the graph object SCAT2 as a template.

g1.xyline(d)

shows XY-line plots with dual scales and no crossing.

Panel examples

g1.xyline(panel=combined)

displays XY-line for series in G1 in a single frame with lines for different cross-sections for a
given pair identified using different symbols and colors.

g1.xyline(panel=individual)

displays the graphs for each of the cross-sections in a different frame.

g1.xyline(panel=stacked)

displays the same plot, but with lines drawn from the beginning of the stacked panel to the
end.

Categorical examples

group cgrp income consumption

cgrp.xyline within(sex)

displays a scatterplot categorized by values of sex, with both categories displayed in the
same graph frame using different symbols and colors.

cgrp.xyline(contract=mean) within(state)

computes mean values for the series in CGRP for each STATE category, and displays the
results in a single graph frame using a single line to connect the mean values.

cgrp.xyline across(state) within(sex)

displays line plots for data with each STATE value in different frames. Within each frame,
the data for each value of SEX are drawn as a separate line.

Cross-references

scat (p. 954) is a specialized form of an XY graph.

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

xypair—979

Display an XY pairs graph (if possible).

The data will be plotted in pairs, where the first two series or columns are plotted against
each other, the second two series or columns are plotted against each other, and so forth. If
the number of series or columns is odd, the last one will be ignored.

XY line graphs are simply XY plots with lines turned on and symbols turned off (see
Graph::setelem (p. 277)). The xypair graph type is equivalent to using xyline (p. 975)
with the “mult=pairs” option indicating that the data should be graphed in pairs.

Syntax
xypair(options) o1 o2 [o3 ...]

object_name.xypair(options) [auxiliary_spec(arg)]

Following the xypair keyword, you may specify general graph characteristics using options.
Available options include plotting the data in multiple graphs, template application, and
adding axis extensions.

The optional auxilary_spec allows you to add fit lines to the scatterplot (regression lines,
kernel fit, nearest neighbor fit, orthogonal regression, and confidence ellipses; see “Auxiliary
Spec,” on page 985).

Options
Scale options

Multiple series pair options

xypair Command || Graph Command | Group View | Matrix View | Rowvector View
| Sym View

a (default) Automatic single scale.

d Dual scaling with no crossing.

x Dual scaling with possible crossing.

n Normalized scale (zero mean and unit standard deviation).

ab=type Add axis border along data scales, where type may be
“hist” or “h” (histogram), “boxplot” or “b”, “kernel” or
“k”.
(Note: axis borders are not available for panel graphs with
“panel=” options that involve summaries: mean, median,
etc.)

m Plot XY lines in multiple graphs.

980—Appendix A. Graph Creation Commands

Template and printing options

The options which support the “–” may be preceded by a “+” or “–” indicating whether to
turn on or off the option. The “+” is optional.

Note that use of the template option will override the pair and line settings.

Graph data options

The following option is available in categorical graph settings:

Panel options

The following option applies when graphing panel structured data.

o=template Use appearance options from the specified template. tem-
plate may be a predefined template keyword (“default” -
current global defaults, “classic”, “modern”, “reverse”,
“midnight”, “spartan”, “monochrome”) or a graph in the
workfile.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

b / -b [Apply / Remove] bold modifiers of the base template style
specified using the “o=” option above.

w / -w [Apply / Remove] wide modifiers of the base template style
specified using the “o=” option above.

reset Resets all graph options to the global defaults. May be used
to remove existing customization of the graph.

p Print the graph.

contract=key Contract the data as specified by key, where key may be:
“mean”, “median”, “max”, “min”, “sum”, “var” - variance,
“sd” - standard deviation, “sumsq” - sum of the squared
values, “skew” - skewness, “kurt” - kurtosis, “nas” - num-
ber of missing values, “obs” - number of observations,
“unique” - error if the series is not identical for all observa-
tions in a given group, “first” - first observation in category
using workfile order, “last” - last observation in category
using workfile order, “quant(quantile)” - where quantile is
a number between 0 and 1.

xypair—981

Basic examples

xypair age height weight length

displays XY-line plots with AGE on the horizontal and HEIGHT on the vertical axis, and
WEIGHT on the horizontal and LENGTH on the vertical axis.

group g1 age height weight length

g1.xypair

plots the same graph using the named object G1.

g1.xypair(m, ab=boxplot)

displays the same information in multiple frames with boxplots along the axes.

g1.xypair(t=scat2)

displays the XY-line pair graphs, using the graph object SCAT2 as a template.

g1.xypair(d, ab=hist)

shows the paired XY-line plots with dual scales and no crossing, and histograms along the
borders.

Panel examples

g1.xypair(panel=combined)

displays XY-line graphs in a single frame, with different lines types and colors for different
cross-sections pairs.

g1.xypair(panel=individual)

displays the graphs for each of each cross-section in a different frame.

g1.xypair(panel=stacked)

constructs a single frame graph with lines drawn from the beginning of the stacked panel to
the end.

g1.xypair(panel=mean)

constructs line graphs for pairs of series using the mean values computed across cross-sec-
tions (for a given period), and displays them in a single frame.

panel=arg
(default taken
from global set-
tings)

Panel data display: “stack” (stack the cross-sections), “indi-
vidual” or “i” (separate graph for each cross-section),
“combine” or “c” (combine cross-section graphs in a single
frame), “mean” (plot means across cross-sections),
“median” (plot median across cross-sections).
(Note: more general versions of these panel graphs may be
constructed as categorical graphs.)

982—Appendix A. Graph Creation Commands

Categorical examples

group cgrp income consumption sales revenue

cgrp.xypair within(sex)

displays a paired data line graphs categorized by values of sex, with both categories dis-
played in the same graph frame using different line types and colors.

cgrp.xypair(contract=mean) within(state)

computes mean values for the series in CGRP for each STATE category, and displays the
results in a single graph frame.

cgrp.xypair across(state) within(sex)

displays line plots for data with each STATE value in different frames. Within each frame,
the data for each value of SEX are drawn as a separate line.

Cross-references

scat (p. 954) and xyline (p. 975) are specialized forms of XY graphs.

See Chapter 13. “Graphing Data,” on page 617 of User’s Guide I for a detailed discussion of
graphs in EViews, and “Templates” on page 778 of User’s Guide I for a discussion of graph
templates. See Graph::graph (p. 261) for graph declaration and other graph types.

Optional Graph Components

The following sections describe optional components that may be used as part of a graph
specification:

• A categorical spec may be added to most graph commands to create a categorical
graph.

• An auxiliary spec may be added to an XY graph command (scat (p. 954), scatmat
(p. 959), scatpair (p. 961), xyarea (p. 970), xybar (p. 973), xyline (p. 975),
xypair (p. 979)) to add fit lines (or confidence ellipses) to the graph.

Categorical Spec

Adding a categorical spec to a graph commands produces a categorical graph. For example,
adding a categorical spec to a bar graph generates a categorical bar graph using the factors
defined by the spec; adding a categorical spec to an XY-line graph creates a categorical XY-
line graph.

The categorical spec is used to specify the factors used in categorization. It may include one
or more within and across factors of the following form:

within(factor_name[, factor_options])

Optional Graph Components—983

or
across(factor_name[, factor_options])

where factor_name is the name of a series used to define a category along with the fac-
tor_options. Multiple factors of a given type should be listed in order from most slowly to
fastest varying.

Categorical graphs are not supported for matrix object views. Note also that use of a categor-
ical specification will override any panel options.

Factor options

Categorical spec examples

profit.boxplot across(firm)

incna include NA category

inctot include total category

iscale, cscale individua/common scale for this factor.
The default is individual for the “@series” factor, and com-
mon for all others.

iscalex, cscalex individual/common X axis scale for this factor.
The default is individual for the “@series” factor, and com-
mon for all others.

iscaley, cscalex individual/common Y axis scale for this factor.
The default is individual for the “@series” factor, and com-
mon for all others.

bintype=type bin type, where type can be: “auto” (default), “quant” -
quantile binning, “value” - value binning, “none” - forces
no binning.

bincount=int int is the number of quantile bins or maximum number of
value bins.

dispname use display name in labels

label=key key can be: “auto” (default), “value” - factor value only,
“both” - factor name and value.

ncase=key sets the capitalization for factor names in labels, where key
can be: “upper”, “lower”, “title”. The default is to preserve
case.

vcase=key sets the capitalization for factor values in labels, where key
can be: “upper”, “lower”, “title”. The default is to preserve
case.

984—Appendix A. Graph Creation Commands

displays a categorical boxplot graph of PROFITS using distinct values of FIRM to define the
categories, and displaying the graphs in multiple frames.

profit.boxplot across(firm, dispname, iscale)

shows the same graph with individual scaling for each of the frames, using the displayname
in labels.

profit.boxplot within(firm, inctot, label=value)

displays a boxplot graph categorized by firm (with an added category for the total), with all
of the graphs in a single frame and the category value used as labels.

ser1.bar(contract=sum) across(firm, dispname) within(income,

bintype=quant, bincount=4)

constructs a categorical bar graph of the sum of SER1 values within a category. Different
firms are displayed in different graph frames, using the display name as labels, with each
frame containing bars depicting the sum of SER1 for each income quartiles.

ser1.bar(contract=mean, elemcommon=1) within(sex) within(union)

creates a bar graph of mean values of within categories based on both SEX and UNION. Cat-
egories for the distinct elements of UNION will be depicted using different bar colors, with
the color assignment repeated for different values of SEX.

By default, the multiple series in a group are treated as the first (most slowly varying) across
factor. To control the treatment of this implicit factor, you may use the “@series” keyword in
a within or across specification; if the factor is not the first one of its type listed, it will be
treated as the last factor. Thus:

g1.boxplot within(sex) within(union)

creates an boxplot for within categories based on both SEX and UNION. Since we have not
specified behavior for the implicit series factor in GRP1, the series in the group will be
treated as the first across factor and will be displayed in a separate frame.

g1.qqplot theory within(age)

displays theoretical qq-plots with the series in G1 treated as the within factor and @SERIES
treated as the across factor. The qq-plots for each series in G1 will be displayed in separate
frames, with multiple qq-plots for each AGE category shown in each frame.

g1.distplot hist kernel across(sex) across(@series) across(age)

displays histograms and kernel density plots where the implicit factor is the last across fac-
tor.

group mygrp oldsales newsales

mygrp.bar(contract=min) within(@series) within(age)

Optional Graph Components—985

displays bar graphs of the minimum values for categories defined by distinct values of AGE
(and the two series). All of the bars will be displayed in a single frame with the bars for
OLDSALES grouped together followed by the bars for NEWSALES.

mygrp.bar(contract=median, elemcommon=2) across(firm)

across(@series) across(age)

also adds an additional categorization using the FIRM identifiers. The observations for a
given firm are grouped together. Within a firm, the bars for the OLDSALES and NEWSALES,
which will be depicted using different colors, will be grouped within each age category. The
color assignment to OLDSALES and NEWSALES will be repeated across firms and ages (note
that @SERIES is treated as the last across factor).

Auxiliary Spec

You may add one or more fit lines or confidence ellipses to your XY graph using an auxiliary
spec. (Note that auxiliary specs are not allowed with stacked XY graphs.)

For a description of the available fit line types, see “Auxiliary Graph Types,” on page 704 of
User’s Guide I.

The auxiliary spec should be in the form:
fitline_type(type_options)

where fitline_type is one of the following keywords:

Each fit line type has its own set of options, to be entered in type_options:

To save the data from selected auxiliary graph types in the workfile, see Group::distdata
(p. 320).

Linefit Options

linefit Add a regression line.

kernfit Add a kernel fit line.

nnfit Add a nearest neighbor (local) fit line.

orthreg Add an orthogonal regression line.

cellipse Add a confidence ellipse.

user Add a user-specified line.

yl Take the natural log of first series or column, .

yi Take the inverse of .

yp=number Take y to the power of the specified number.

yb=number Take the Box-Cox transformation of with the specified
parameter.

y

y

y

986—Appendix A. Graph Creation Commands

If the polynomial degree of leads to singularities in the regression, EViews will automati-
cally drop high order terms to avoid collinearity.

Linefit Examples

group g1 x y z w

g1.scatpair linefit(yl,xl)

displays a scatterplot of Y against X and W against Z, together with the fitted values from a
regression of log Y on log X and log W on log Z.

g1.scat linefit linefit(yb=0.5,m=10)

shows scatterplots of Y, Z, and W along the vertical axis and X along the horizontal axis, and
superimposes both a simple linear regression fit and a fit of the Box-Cox transformation of
the vertical axis variable against X, with 10 iterations of bisquare weights,.

Kernfit Options

xl Take the natural log of .

xi Take the inverse of .

xp=number Take to the power of the specified number.

xb=number Take the Box-Cox transformation of with the specified
parameter.

xd=integer Fit a polynomial of up to the specified power.

m=integer Set number of robustness iterations.

leg=arg Specify the legend display settings, where arg can be: “def”
- default, “n” - none, “s” - short, “det”- detailed.

k=arg
(default=“e”)

Kernel type: “e” (Epanechnikov), “r” (Triangular), “u”
(Uniform), “n” (Normal–Gaussian), “b” (Biweight–Quar-
tic), “t” (Triweight), “c” (Cosinus).

b=number Specify a number for the bandwidth.

b Bracket bandwidth.

ngrid=integer
(default=100)

Number of grid points to evaluate.

x Exact evaluation of the polynomial fit.

d=integer
(default=1)

Degree of polynomial to fit. Set “d=0” for Nadaraya-Wat-
son regression.

leg = arg Specify the legend display settings, where arg can be: “def”
- default, “n” - none, “s” - short, “det”- detailed.

x

x

x

x

x

x

Optional Graph Components—987

Kernfit Examples

group gg weight height length volume

gg.scat kernfit kernfit(d=2, b)

displays scatterplots with HEIGHT, LENGTH, and VOLUME on the vertical axis and WEIGHT
on the horizontal axis, along with the default kernel regression fit, and a second-degree
polynomial fit with bracketed bandwidths.

gg.scatmat kernfit(ngrid=200)

displays a scatterplot matrix of the series in GG and fits a kernel regression of the Y-axis vari-
able on the X-axis variable using 200 grid points.

Nnfit Options

Nnfit Examples

group gr1 gdp90 cons90 gdp70 cons70

gr1.scatpair nnfit(x,m=3)

displays the nearest neighbor fit of CONS90 on GDP90 and of CONS70 on GDP70 with exact
(full) sampling and 3 robustness iterations. Each local regression fits the default linear
regression, with tricube weighting and a bandwidth of span 0.3.

gr1.scatpair nnfit nnfit(neval=50,d=2,m=3)

computes both the default nearest neighbor fit and a custom fit that fits a quadratic at 50
data points, using tricube robustness weights with 3 robustness iterations.

d=integer
(default=1)

Degree of polynomial to fit.

b=fraction
(default=0.3)

Bandwidth as a fraction of the total sample. The larger the
fraction, the smoother the fit.

b Bracket bandwidth span.

s Symmetric neighbors. Default is nearest neighbors.

u No local weighting. Default is local weighting using tricube
weights.

m=integer Set number of robustness iterations.

x Exact (full) sampling. Default is Cleveland subsampling.

neval=integer
(default=100)

Approximate number of data points at which to compute
the fit (if performing Cleveland subsampling).

leg=arg Specify the legend display settings, where arg can be: “def”
- default, “n” - none, “s” - short, “det”- detailed.

988—Appendix A. Graph Creation Commands

Orthreg Options

Orthreg Examples

group gg weight height length volume

gro1.scatmat(l) orthreg

displays the orthogonal regression fit for each pair in the lower-triangle scatterplot matrix.

Cellipse Options

Cellipse Examples

group gro1 age income cons taxes

gro1.scat cellipse

displays the 95% confidence ellipse around the means of the plots of INCOME, CONS, and
TAXES against AGE.

gro1.scat cellipse(size=0.95 0.85 0.75)

displays the 95%, 85%, and 75% confidence ellipses, computed using the chi-square distri-
bution

vector(3) sizes

sizes.fill 0.95, 0.85, 0.75

gro1.scat cellipse(size=sizes)

displays the same graph.

User Options

A user specified line can be specified either using a pair of data points (where you specify
the X and Y values for each point, or using a simple line specification with a Y-intercept,
slope and, optionally, transformation value. Entering data point values overrides and simple
line options.

leg=arg Specify the legend display settings, where arg can be: “def”
- default, “n” - none, “s” - short, “det”- detailed.

size=arg Specify the confidence levels.

c Use distribution to compute the confidence ellipses.
The default is to use the F-distribution.

leg=arg Specify the legend display settings, where arg can be: “def”
- default, “n” - none, “s” - short, “det”- detailed.

x1=arg Set the X (horizontal) value for the first data point.

y1=arg Set the Y (vertical) value for the first data point.

x2=arg Set the X (horizontal) value for the second data point.

x
2

Optional Graph Components—989

User Examples

group gro1 age income

gro1.scat user(x1=3, y1=4, x2=10, y2=15)

Draws a user specified straight line joining the two points (4,3) and (15,10).

gro1.scat user(icept=5, slope=0.5, xp=2)

Draws a user specified line with an intercept of 5, a slope of 0.5 and a power transformation
on the X series.

y2=arg Set the Y (vertical) value for the second data point.

icept=arg Set simple line Y-intercept of value. Default is 0

slope=arg Set simple line slope. Default is 0.

xl Use a logarithmic transformation on the X series.

yl Use a logarithmic transformation on the Y series.

xi Use an inverse transformation on the X series.

yi Use an inverse transformation on the Y series.

xp=arg Use a power transformation, with power equal to arg on
the X series.

yp=arg Use a power transformation, with power equal to arg on
the Y series.

xb=arg Use a Box-Cox transformation of order arg on the X series.

yb=arg Use a Box-Cox transformation of order arg on the Y series.

xd=arg Use a polynomial transformation of order arg on the X
series.

990—Appendix A. Graph Creation Commands

Appendix B. Object Command Summary

This chaptercontains an alphabetical listing of the object commands, pairing each entry with
a list of the EViews objects with which it may be used.

Object Summary

3slsSystem (p. 741).
abtest....................Equation (p. 33).
addGroup (p. 290), Pool (p. 460), Userobj (p. 822).
addarrow...............Graph (p. 236).
addassignModel (p. 420).
addellipse..............Graph (p. 236).
addinitModel (p. 420).
addover.................Model (p. 420).
addrect..................Graph (p. 236).
addtext..................Graph (p. 236).
adjust....................Series (p. 541), Model (p. 420).
alignGraph (p. 236).
alphaAlpha (p. 4).
anticov..................Factor (p. 185).
append..................Logl (p. 367), Model (p. 420), Spool (p. 672), Sspace (p. 643),

System (p. 741), Text (p. 814), Valmap (p. 831), Var (p. 839).
archEquation (p. 33), System (p. 741).
archtestEquation (p. 33).
ardlEquation (p. 33).
areaCoef (p. 18), Group (p. 290), Matrix (p. 384), Series (p. 541),

Sym (p. 709), Vector (p. 885).
arlm......................Var (p. 839).
armaEquation (p. 33).
arrootsVar (p. 839).
autoEquation (p. 33).
autoarma...............Series (p. 541).
axis.......................Graph (p. 236).
bandGroup (p. 290), Matrix (p. 384), Sym (p. 709).
bar........................Coef (p. 18), Group (p. 290), Matrix (p. 384), Rowvector

(p. 507), Series (p. 541), Sym (p. 709), Vector (p. 885).
bdstestSeries (p. 541).

992—Appendix B. Object Command Summary

binary Equation (p. 33).
block Model (p. 420).
boundstest Equation (p. 33).
boxplot................. Coef (p. 18), Group (p. 290), Matrix (p. 384), Rowvector

(p. 507), Series (p. 541), Sym (p. 709), Vector (p. 885).
bpf Series (p. 541).
breakls Equation (p. 33).
breakspec Equation (p. 33).
breaktest............... Equation (p. 33).
bubble.................. Group (p. 290), Matrix (p. 384), Rowvector (p. 507), Sym

(p. 709).
bubbletrip............. Group (p. 290), Matrix (p. 384), Rowvector (p. 507), Sym

(p. 709).
buroot Series (p. 541).
bvar Var (p. 839).
cause.................... Group (p. 290).
cdtest Equation (p. 33), Series (p. 541).
cellipse Equation (p. 33), Logl (p. 367), Pool (p. 460), Sspace (p. 643),

System (p. 741).
censored............... Equation (p. 33).
checkbounds......... Model (p. 420).
checkderivs........... Logl (p. 367).
chow.................... Equation (p. 33).
cinterval Equation (p. 33).
classify Series (p. 541).
clear..................... Text (p. 814), Userobj (p. 822).
clearhist Alpha (p. 4), Coef (p. 18), Equation (p. 33), Factor (p. 185),

Graph (p. 236), Group (p. 290), Link (p. 355), Logl (p. 367),
Matrix (p. 384), Model (p. 420), Pool (p. 460), Rowvector
(p. 507), Sample (p. 528), Series (p. 541), Spool (p. 672),
Sspace (p. 643), String (p. 695), Svector (p. 702), Sym (p. 709),
System (p. 741), Table (p. 782), Text (p. 814), Valmap (p. 831),
Var (p. 839), Vector (p. 885).

cleartext Var (p. 839).
coef Coef (p. 18).
coefcov................. Equation (p. 33), Logl (p. 367), Pool (p. 460), Sspace (p. 643),

System (p. 741).
coefscale............... Equation (p. 33).
coint..................... Equation (p. 33), Group (p. 290), Pool (p. 460), Var (p. 839).

Object Summary—993

cointgraph.............Equation (p. 33).
cointreg.................Equation (p. 33).
cointrep.................Equation (p. 33).
comment...............Spool (p. 672), Table (p. 782).
compareModel (p. 420).
controlModel (p. 420).
copyrange..............Table (p. 782).
copytableTable (p. 782).
corGroup (p. 290), Matrix (p. 384), Sym (p. 709), Vector (p. 885).
correlEquation (p. 33), Group (p. 290), Series (p. 541), Var (p. 839).
correlsqEquation (p. 33).
countEquation (p. 33).
covGroup (p. 290), Matrix (p. 384), Sym (p. 709), Vector (p. 885).
crossGroup (p. 290).
cvardecomp...........Equation (p. 33).
datelabelGraph (p. 236).
ddloadtmpl............Group (p. 290),
ddrowoptsGroup (p. 290).
ddsavetmpl............Group (p. 290).
ddtaboptsGroup (p. 290).
decompVar (p. 839).
define....................Pool (p. 460).
delete....................Pool (p. 460).
deletecol................Table (p. 782).
deleterowTable (p. 782).
depfreqEquation (p. 33).
derivs....................Equation (p. 33), System (p. 741).
describePool (p. 460).
displayAlpha (p. 4), Coef (p. 18), Equation (p. 33), Factor (p. 185),

Graph (p. 236), Group (p. 290), Link (p. 355), Logl (p. 367),
Matrix (p. 384), Model (p. 420), Pool (p. 460), Rowvector
(p. 507), Sample (p. 528), Series (p. 541), Spool (p. 672),
Sspace (p. 643), String (p. 695), Svector (p. 702), Sym (p. 709),
System (p. 741), Table (p. 782), Text (p. 814), Userobj (p. 822),
Valmap (p. 831), Var (p. 839), Vector (p. 885).

displaynameAlpha (p. 4), Coef (p. 18), Equation (p. 33), Factor (p. 185),
Graph (p. 236), Group (p. 290), Link (p. 355), Logl (p. 367),
Matrix (p. 384), Model (p. 420), Pool (p. 460), Rowvector
(p. 507), Sample (p. 528), Series (p. 541), Spool (p. 672),

994—Appendix B. Object Command Summary

Sspace (p. 643), String (p. 695), Svector (p. 702), Sym (p. 709),
System (p. 741), Table (p. 782), Text (p. 814), Userobj (p. 822),
Valmap (p. 831), Var (p. 839), Vector (p. 885).

distdata Group (p. 290), Series (p. 541).
distplot Coef (p. 18), Group (p. 290), Matrix (p. 384), Rowvector

(p. 507), Series (p. 541), Sym (p. 709), Vector (p. 885).
dot Coef (p. 18), Group (p. 290), Matrix (p. 384), Rowvector

(p. 507), Series (p. 541), Sym (p. 709), Vector (p. 885).
draw..................... Graph (p. 236).
drawdefault Graph (p. 236).
drop Group (p. 290), Model (p. 420), Pool (p. 460), Userobj (p. 822).
droplink................ Model (p. 420).
dtable................... Group (p. 290).
ec......................... Var (p. 839).
edftest Series (p. 541).
effects Equation (p. 33).
eigen Factor (p. 185), Sym (p. 709).
endog Sspace (p. 643), System (p. 741), Var (p. 839).
endogtest.............. Equation (p. 33).
eqs Model (p. 420).
equation Equation (p. 33).
errbar Group (p. 290), Matrix (p. 384), Rowvector (p. 507), Sym

(p. 709).
estcov................... System (p. 741).
ets........................ Series (p. 541).
exclude................. Model (p. 420).
extract Spool (p. 672), Userobj (p. 822).
facbreak Equation (p. 33).
factnames Factor (p. 185).
factor Factor (p. 185).
fetch..................... Pool (p. 460).
fill Coef (p. 18), Matrix (p. 384), Rowvector (p. 507), Series

(p. 541), Sym (p. 709), Vector (p. 885).
fiml System (p. 741).
fit Equation (p. 33), Var (p. 839).
fitstats Factor (p. 185).
fitted Factor (p. 185).
fixedtest................ Equation (p. 33), Pool (p. 460).
flatten................... Spool (p. 672).

Object Summary—995

forcavg..................Series (p. 541).
forcevalSeries (p. 541).
forecastEquation (p. 33), Var (p. 839), Sspace (p. 643).
freeze....................Graph (p. 236), Table (p. 782).
freq.......................Alpha (p. 4), Group (p. 290), Series (p. 541).
frmlAlpha (p. 4), Series (p. 541).
garch.....................Equation (p. 33), System (p. 741).
genrAlpha (p. 4), Pool (p. 460), Series (p. 541).
getblobalc..............Vector (p. 885).
glmEquation (p. 33).
gls.........................Factor (p. 185).
gmmEquation (p. 33), System (p. 741).
grads.....................Equation (p. 33), Logl (p. 367), Sspace (p. 643), System

(p. 741).
graphGraph (p. 236).
graphmodeSpool (p. 672).
groupGroup (p. 290).
hdecompVar (p. 839).
heckit....................Equation (p. 33).
hettest...................Equation (p. 33).
hiloGroup (p. 290), Matrix (p. 384), Sym (p. 709).
histEquation (p. 33), Series (p. 541).
horizindent............Spool (p. 672).
hpf........................Series (p. 541).
icgraph..................Equation (p. 33).
ictableEquation (p. 33).
impulseVar (p. 839).
infbetasEquation (p. 33).
infstatsEquation (p. 33).
innovModel (p. 420).
insertSpool (p. 672).
insertcolTable (p. 782).
insertobsGroup (p. 290), Series (p. 541).
insertrow...............Table (p. 782).
instsum.................Equation (p. 33).
ipolate...................Series (p. 541).
ipf.........................Factor (p. 185).
jberaSystem (p. 741), Var (p. 839).

996—Appendix B. Object Command Summary

label Alpha (p. 4), Coef (p. 18), Equation (p. 33), Factor (p. 185),
Graph (p. 236), Group (p. 290), Link (p. 355), Logl (p. 367),
Matrix (p. 384), Model (p. 420), Pool (p. 460), Rowvector
(p. 507), Sample (p. 528), Series (p. 541), Spool (p. 672),
Sspace (p. 643), String (p. 695), Svector (p. 702), Sym (p. 709),
System (p. 741), Table (p. 782), Text (p. 814), Userobj (p. 822),
Valmap (p. 831), Var (p. 839), Vector (p. 885).

laglen Var (p. 839).
leftmargin Spool (p. 672).
legend Graph (p. 236).
liml Equation (p. 33).
line Coef (p. 18), Group (p. 290), Matrix (p. 384), Series (p. 541),

Sym (p. 709), Vector (p. 885).
link Link (p. 355).
linkto Link (p. 355).
list........................ String (p. 695).
loadings................ Factor (p. 185).
logit Equation (p. 33).
logl....................... Logl (p. 367).
lrcov..................... Group (p. 290).
lrvar Series (p. 541).
ls.......................... Equation (p. 33), Pool (p. 460), System (p. 741), Var (p. 839).
lvageplot............... Equation (p. 33).
makecoint............. Equation (p. 33), Var (p. 839).
makederivs Equation (p. 33).
makeendog Sspace (p. 643), System (p. 741), Var (p. 839).
makefilter Sspace (p. 643).
makegarch Equation (p. 33), System (p. 741).
makegrads Equation (p. 33), Logl (p. 367), Sspace (p. 643).
makegraph............ Model (p. 420).
makegroup Model (p. 420), Pool (p. 460).
makelimits............ Equation (p. 33).
makeloglike System (p. 741).
makemap.............. Alpha (p. 4).
makemodel........... Equation (p. 33), Logl (p. 367), Pool (p. 460), Sspace (p. 643),

System (p. 741), Var (p. 839).
makepanpcomp Series (p. 541).
makepcomp Group (p. 290).
makeregs Equation (p. 33).

Object Summary—997

makeresidsEquation (p. 33), Pool (p. 460), System (p. 741), Var (p. 839).
makergmprobs.......Equation (p. 33).
makescores............Factor (p. 185).
makesignals...........Sspace (p. 643).
makestatesSspace (p. 643).
makestatsPool (p. 460).
makestrwgtsEquation (p. 33).
makesystem...........Group (p. 290), Pool (p. 460), Var (p. 839).
maketransprobsEquation (p. 33).
makewhiten...........Group (p. 290), Series (p. 541).
mapAlpha (p. 4), Series (p. 541).
matrixMatrix (p. 384).
maxcor..................Factor (p. 185).
meansEquation (p. 33).
membersUserobj (p. 822).
merge....................Graph (p. 236), Model (p. 420).
midas....................Equation (p. 33).
mixed....................Group (p. 290), Matrix (p. 384), Sym (p. 709).
ml.........................Factor (p. 185), Logl (p. 367), Sspace (p. 643).
modelModel (p. 420).
move.....................Spool (p. 672).
moveregSeries (p. 541).
msa.......................Factor (p. 185).
msg.......................Model (p. 420).
multibreak.............Equation (p. 33).
nameGraph (p. 236), Spool (p. 672).
observedFactor (p. 185).
olepushAlpha (p. 4), Coef (p. 18), Equation (p. 33), Factor (p. 185),

Graph (p. 236), Group (p. 290), Link (p. 355), Logl (p. 367),
Matrix (p. 384), Model (p. 420), Pool (p. 460), Rowvector
(p. 507), Sample (p. 528), Series (p. 541), Spool (p. 672),
Sspace (p. 643), String (p. 695), Svector (p. 702), Sym (p. 709),
System (p. 741), Table (p. 782), Text (p. 814), Userobj (p. 822),
Valmap (p. 831), Var (p. 839), Vector (p. 885).

options..................Graph (p. 236), Spool (p. 672).
orderedEquation (p. 33).
orthogtest..............Equation (p. 33).
outputEquation (p. 33), Factor (p. 185), Logl (p. 367), Pool (p. 460),

Sspace (p. 643), System (p. 741), Var (p. 839).

998—Appendix B. Object Command Summary

override................ Model (p. 420).
pace Factor (p. 185).
pancov Series (p. 541).
pancomp Series (p. 541).
partcor Factor (p. 185).
pcomp.................. Group (p. 290), Matrix (p. 384).
pf Factor (p. 185).
pie Group (p. 290), Matrix (p. 384), Rowvector (p. 507), Sym

(p. 709).
pool Pool (p. 460).
predict.................. Equation (p. 33).
print..................... Spool (p. 672).
probit Equation (p. 33).
qqplot Coef (p. 18), Group (p. 290), Matrix (p. 384), Rowvector

(p. 507), Series (p. 541), Sym (p. 709), Vector (p. 885).
qreg...................... Equation (p. 33).
qrprocess.............. Equation (p. 33).
qrslope Equation (p. 33).
qrsymm................ Equation (p. 33).
qstats System (p. 741), Var (p. 839).
ranhaus Equation (p. 33), Pool (p. 460).
rcomptest Equation (p. 33).
read...................... Coef (p. 18), Matrix (p. 384), Pool (p. 460), Rowvector (p. 507),

Sym (p. 709), Vector (p. 885).
reduced Factor (p. 185).
reinclude Model (p. 420).
remove Spool (p. 672).
replace Model (p. 420).
replacelink............ Model (p. 420).
replacevar............. Model (p. 420).
representations Equation (p. 33), Pool (p. 460), Var (p. 839).
resample............... Group (p. 290), Series (p. 541).
reset Equation (p. 33).
residcor Pool (p. 460), Sspace (p. 643), System (p. 741), Var (p. 839).
residcov................ Pool (p. 460), Sspace (p. 643), System (p. 741), Var (p. 839).
resids Equation (p. 33), Factor (p. 185), Pool (p. 460), Sspace

(p. 643), System (p. 741), Var (p. 839).
results Equation (p. 33), Logl (p. 367), Pool (p. 460), Sspace (p. 643),

System (p. 741), Var (p. 839).

Object Summary—999

revertModel (p. 420).
rgmprobs...............Equation (p. 33).
rlsEquation (p. 33).
robustlsEquation (p. 33).
rotateFactor (p. 185).
rotateclearFactor (p. 185).
rotateoutFactor (p. 185).
rowvectorRowvector (p. 507).
sampleSample (p. 528).
saveGraph (p. 236), Spool (p. 672), Table (p. 782).
scalarScalar (p. 535).
scat.......................Group (p. 290), Matrix (p. 384), Rowvector (p. 507), Sym

(p. 709).
scatmatGroup (p. 290), Matrix (p. 384), Rowvector (p. 507), Sym

(p. 709).
scatpairGroup (p. 290), Matrix (p. 384), Rowvector (p. 507), Sym

(p. 709).
scenarioModel (p. 420).
scores....................Factor (p. 185).
seasSeries (p. 541).
seasplot.................Coef (p. 18), Group (p. 290), Matrix (p. 384), Rowvector

(p. 507), Series (p. 541), Sym (p. 709), Vector (p. 885).
seriesSeries (p. 541).
setSample (p. 528).
setattrAlpha (p. 4), Coef (p. 18), Equation (p. 33), Factor (p. 185),

Graph (p. 236), Group (p. 290), Link (p. 355), Logl (p. 367),
Matrix (p. 384), Model (p. 420), Pool (p. 460), Rowvector
(p. 507), Sample (p. 528), Series (p. 541), Spool (p. 672),
Sspace (p. 643), String (p. 695), Svector (p. 702), Sym (p. 709),
System (p. 741), Table (p. 782), Text (p. 814), Userobj (p. 822),
Valmap (p. 831), Var (p. 839), Vector (p. 885).

setbounds..............Model (p. 420).
setbpelem..............Graph (p. 236).
setcellTable (p. 782).
setcollabels............Matrix (p. 384).
setcolwidth............Table (p. 782).
setconvertSeries (p. 541).
setelemGraph (p. 236).
setfillcolorTable (p. 782).

1000—Appendix B. Object Command Summary

setfont Graph (p. 236), Table (p. 782).
setformat Coef (p. 18), Group (p. 290), Matrix (p. 384), Rowvector

(p. 507), Series (p. 541), Sym (p. 709), Table (p. 782), Vector
(p. 885).

setglobalc Vector (p. 885).
setheight............... Table (p. 782).
setindent Alpha (p. 4), Coef (p. 18), Group (p. 290), Matrix (p. 384),

Rowvector (p. 507), Series (p. 541), Sym (p. 709), Table
(p. 782), Vector (p. 885)

setjust Alpha (p. 4), Coef (p. 18), Group (p. 290), Matrix (p. 384),
Rowvector (p. 507), Series (p. 541), Sym (p. 709), Table
(p. 782), Vector (p. 885)

setlines Table (p. 782).
setmerge............... Table (p. 782).
setobslabel............ Graph (p. 236).
setprefix Table (p. 782).
setrowlabels.......... Matrix (p. 384).
setsuffix................ Table (p. 782).
settextcolor Table (p. 782).
settrace................. Model (p. 420).
setupdate.............. Graph (p. 236).
setwidth Coef (p. 18), Group (p. 290), Matrix (p. 384), Rowvector

(p. 507), Series (p. 541), Sym (p. 709), Table (p. 782), Vector
(p. 885).

sheet Alpha (p. 4), Coef (p. 18), Group (p. 290), Matrix (p. 384), Pool
(p. 460), Rowvector (p. 507), Series (p. 541), String (p. 695),
Svector (p. 702), Sym (p. 709), Table (p. 782), Valmap (p. 831),
Vector (p. 885).

signalgraphs Sspace (p. 643).
smc Factor (p. 185).
smooth Series (p. 541).
solve Model (p. 420).
solveopt................ Model (p. 420).
sort Graph (p. 236), Group (p. 290), Series (p. 541), Table (p. 782).
spec Logl (p. 367), Model (p. 420), Sspace (p. 643), System (p. 741).
spike Coef (p. 18), Group (p. 290), Matrix (p. 384), Rowvector

(p. 507), Series (p. 541), Sym (p. 709), Vector (p. 885).
spool Spool (p. 672).
sspace Sspace (p. 643).

Object Summary—1001

statby....................Series (p. 541).
statefinalSspace (p. 643).
stategraphsSspace (p. 643).
stateinitSspace (p. 643).
statsCoef (p. 18), Group (p. 290), Matrix (p. 384), Rowvector

(p. 507), Series (p. 541), Sym (p. 709), Valmap (p. 831), Vector
(p. 885).

steplsEquation (p. 33).
stlSeries (p. 541).
stochasticModel (p. 420).
stomGroup (p. 290), Series (p. 541).
stomna..................Group (p. 290), Series (p. 541).
storePool (p. 460).
strconstantEquation (p. 33).
stringString (p. 695).
strlinearEquation (p. 33).
strnonlinEquation (p. 33).
structure................Factor (p. 185), Sspace (p. 643).
strwgtsEquation (p. 33).
surSystem (p. 741).
svarVar (p. 839).
svector.Svector (p. 702).
switchregEquation (p. 33).
sym.......................Sym (p. 709).
system...................System (p. 741).
tableTable (p. 782).
tablemodeSpool (p. 672).
template................Graph (p. 236).
testaddEquation (p. 33), Pool (p. 460).
testbtw..................Group (p. 290).
testby....................Series (p. 541).
testdrop.................Equation (p. 33), Pool (p. 460).
testexog.................Var (p. 839).
testfitEquation (p. 33).
testlags..................Var (p. 839).
teststatSeries (p. 541).
textModel (p. 420), Text (p. 814).
textdefaultGraph (p. 236).
threshold...............Equation (p. 33).

1002—Appendix B. Object Command Summary

title Table (p. 782).
topmargin............. Spool (p. 672).
trace..................... Model (p. 420).
track..................... Model (p. 420).
tramoseats Series (p. 541).
transprobs Equation (p. 33).
tsls Equation (p. 33), Pool (p. 460), System (p. 741).
ubreak.................. Equation (p. 33).
uls........................ Factor (p. 185).
unlink Model (p. 420).
update.................. Graph (p. 236), Model (p. 420).
updatecoefs Equation (p. 33), Logl (p. 367), Pool (p. 460), Sspace (p. 643),

System (p. 741).
uroot Group (p. 290), Pool (p. 460), Series (p. 541).
usage.................... Valmap (p. 831).
valmap Valmap (p. 831).
var Var (p. 839).
varinf Equation (p. 33).
vars...................... Model (p. 420).
vector................... Vector (p. 885).
vertindent............. Spool (p. 672).
vertspacing Spool (p. 672).
vratio Series (p. 541).
wald..................... Equation (p. 33), Logl (p. 367), Pool (p. 460), Sspace (p. 643),

System (p. 741).
weakinst............... Equation (p. 33).
white.................... Equation (p. 33), Var (p. 839).
width Spool (p. 672).
wls....................... System (p. 741).
write Coef (p. 18), Matrix (p. 384), Pool (p. 460), Rowvector (p. 507),

Sym (p. 709), Vector (p. 885).
wtsls System (p. 741).
x11 Series (p. 541).
x12....................... Series (p. 541).
x13....................... Series (p. 541).
xyarea Group (p. 290), Matrix (p. 384), Sym (p. 709).
xybar.................... Group (p. 290), Matrix (p. 384), Rowvector (p. 507), Sym

(p. 709).
xyline Group (p. 290), Matrix (p. 384), Sym (p. 709).

Object Summary—1003

xypairGroup (p. 290), Matrix (p. 384), Rowvector (p. 507), Sym
(p. 709).

1004—Appendix B. Object Command Summary

Index

Symbols
 554

Numerics
1-step GMM

single equation 100
2sls (Two-Stage Least Squares) 174, 496, 776

instrument orthogonality test 140
instrument summary 114
regressor endogeneity test 86
weak instruments 182

3sls (Three Stage Least Squares) 744

A
abtest 41
add 294, 463, 823
Add arrow to graph 239
Add ellipse to graph 243
Add factor

assign 423
initialize 424

Add rectangles to graph 245
Add text to graph 247
addarrow 239
addassign 423
addellipse 243
addinit 424
addover 426
addrect 245
addtext 247
ADF

See also Unit root tests.
adjust 426, 545
Akaike criterion

equation data member 37
pool data member 462
system data member 743
VAR data member 840

align 250
Align multiple graphs 250
Alpha

sort 16
alpha 6

Alpha series 4
attribute setting 13
auto-updating 9
command entries 6
create 10
data members 4
declare 6
element functions 5
genr 10
indentation 14
make valmap 12
procs 4
spreadsheet view 15
views 4

Analysis of variance 349, 610
by ranks 610

Anderson-Darling test 563
Andrew’s automatic bandwidth

cointegrating regression 73, 76
GMM estimation 101
robust standard errors 56, 120, 172

Andrews test 168
Andrews-Quandt breakpoint test 179
ANOVA 349, 610

by ranks 610
anticov 189
Anti-image covariance 189
append

logl 369
model 427
spool 674
sspace 647
system 745
valmap 832
var 843

Append specification line. See append.
AR specification

inverse roots of polynomial in VAR 845
ARCH

 See also GARCH.
LM test 108

arch 746
ARCH test 108
ARCH-M 43

1006—Index

archtest 46
ARDL

panel
pooled mean group estimation

ardl 47
area 913
Area graph 913
Arellano-Bond serial correlation test 41
ARIMA models

automatic forecasting 548
automatic selection 548
automatic selection using X-13 633, 636
frequency spectrum 49
impulse response 49
roots 49
structure 49

arlm 845
arma 49
arroots 845
Arrows

adding to a graph 239
ASCII file

save table to file 792
save text object to file 819

Attributes
setting in alpha series 13
setting in coef 26
setting in equations 159
setting in factor objects 226
setting in graphs 275
setting in groups 340
setting in links 364
setting in logls 380
setting in matrices 412
setting in models 450
setting in pools 492
setting in rowvectors 521
setting in samples 533
setting in scalars 538
setting in series 595
setting in spools 688
setting in state spaces 664
setting in string objects 699
setting in svectors 705
setting in syms 732
setting in systems 773
setting in tables 794
setting in text objects 819
setting in user objects 828

setting in valmaps 835
setting in VARs 878
setting in vectors 902

Augmented Dickey-Fuller test 350, 499, 615
auto 50
autoarma 548
Autocorrelation

compute and display 79, 307, 560, 753, 852
multivariate VAR residual test 770, 874

Automatic bandwidth selection
cointegrating regression 73, 76
GMM estimation 101
long-run covariance estimation 330
robust standard errors 56, 120, 172

Automatic forecast
ARIMA 548
ETS smoothing 566
using X-13 641

Autoregressive conditional heteroskedasticity
See ARCH and GARCH.

Autoregressive distributed lag models
See ARDL.

autospec 750
Auto-updating graph 283
Average shifted histogram 926
Axis

rename label 267
set scaling in graph 275

axis 251
@axismax 238
@axismin 238
@axispos 238

B
Backcast

in GARCH models 44
MA terms 118

Background color 795
Bai Perron breakpoint test 136
Bai sequential breakpoint

test 137
Baltagi, Fend and Kao test 58, 556
band 916
Band graph 916
Band-Pass filter 551
Bandwidth

cointegrating regression 73, 76
GMM estimation 56, 101, 120, 172

C—1007

long-run covariance estimation 330
bar 918
Bar graph 918
Bartlett kernel

cointegrating regression 73, 75, 76
GMM estimation 101
long-run covariance estimation 330
robust standard errors 56, 120, 172

Bartlett test 610
Baxter-King band-pass filter 551
Bayesian VAR See BVAR
BDS test 550
bdstest 550
Bin width

histograms 929
binary 51
Binary dependent variable 51

categorical regressors stats 133
model prediction table 142

Binary estimation
dependent variable frequencies 83

block 428
Block structure of model 428
Bohman kernel

cointegrating regression 73, 75, 76
GMM estimation 101
long-run covariance estimation 330
robust standard errors 56, 120, 172

Bollerslev-Wooldridge
See ARCH.

Boxplot 923
customize individual elements 276

boxplot 923
bpf 551
breakls 54
Breakpoint estimation 54
Breakpoint test 62, 88, 179

 See also Breakpoint estimation
2sls 58
Bai and Perron 136
estimation after 54
for unit roots 554
GMM 58
multiple 136

breaktest 58
Breitung 615
Breusch-Godfrey test

See Serial correlation.

Breusch-Pagan test 108
cross-section dependence 58, 556

Brown-Forsythe test 610
Broyden’s method 453
bubble 925
Bubble graph 925
Bubble triplet graph 926
bubbletrip 926
BVAR 846

Litterman/Minnesota prior 847
normal-Wishart prior 847
priors 847
Sims-Zha prior 847

BVAR 846

C
Canonical cointegrating regression 71
Categorical graphs

command specification 982
Categorical regressor stats 133
Categorize 557
Causality

Dumitrescu-Hurlin 295
Granger’s test 294

cause 294
CD test 58, 556
cdtest 58, 556
Cell

background color 795
borders 804
display format See Display format
font selection 797
height 802
indentation See Indentation
justification See Justification
merging multiple 806
set text color 808
width See Column width

censored 61
Censored dependent variable 61
Census X-11

historical 623
using X-12 625

Census X-12 625
Census X-13 630
checkbounds 428
checkderivs 371
Chi-square

1008—Index

independence test in tabulation 323
test for independence in n-way table 323
test for the median 610

chow 62
Chow test 62
Christiano-Fitzgerald band-pass filter 551
cinterval 64
Classification

from series 557
classify 557
clear 824
Clear history

alpha 7, 356, 509, 696
coef 20
equation 64
factor 190
graph 254, 295, 465
logl 371
matrix 387
model 429, 451
sample 529
scalar 536
series 559
spool 674
sspace 649
svector 703
sym 711
system 752
table 784
text 816
valmap 832
VAR 849
vector 887

clearhist 7, 20, 64, 190, 254, 295, 356, 371,
387, 429, 451, 465, 509, 529, 536, 559, 649,
674, 696, 703, 711, 752, 784, 816, 832, 849,
887

cleartext 849
Coef 18

attribute setting 26
command entries 20
data members 19
declare 20
display name 22
fill values 22, 567
graph views 18
indentation 28
procs 19
spreadsheet view 30

views 18
coef 20
coefcov 65, 372, 465, 649, 753
Coefficient

covariance matrix 65, 372, 465, 649, 753
elasticity at means 66
scaled 66
See coef.
standardized 66
update default coef vector 180, 381, 499, 669,

777
variance decomposition 83

Coefficient restrictions
confidence ellipse 59, 370, 464, 647, 751

coefscale 66
coint 296, 466, 850
Cointegrating regression 71
Cointegration

Engle-Granger test 66, 296
Hansen instability test 66
Johansen test 850
make cointegrating relations from VEC 870
Park added variable test 66
Phillips-Ouliaris test 66, 296
residual tests 66
test 296, 466
test from a VAR 850

cointreg 71
Collinearity

coefficient variance decomposition 83
test of 83, 180
variance inflation factors 180

Color
keywords for specifying 796
@RGB specification 796

Column
matrix headers 412
width See also Column width

Column width
coef 29
group 346
matrix 416
rowvector 524
series 602
sym 735
table 809
vector 905

comment 675, 785
Comments

D—1009

spool 675
tables 785

compare 430
Component GARCH 43
Component plots 335, 588
Conditional standard deviation

display graph of 94, 759
Conditional variance

make series from ARCH 126, 766
Confidence ellipses 59, 370, 464, 647, 751
Confidence interval 64
Continuously updating GMM

single equation 100
control 431
Convergence criterion 52, 61, 118, 119, 135, 869
Coordinates for legend in graph 264
copyrange 786
copytable 787
cor 304
correl 79, 307, 560, 753, 852
Correlation

cross 311, 753
from matrix 388
from sym 712
matrix 304

Correlogram 79, 307, 311, 560, 753, 852
squared residuals 80

correlsq 80
count 81
Count models 81

dependent variable frequencies 83
cov 308, 388, 391, 712, 715, 887
Covariance

from matrix 391
from sym 715
from vector 887
matrix 308
matrix for panel data 585

Cragg-Donald 182
Cramer’s V 323
Cramer-von Mises test 563
cross 311
Cross correlation 311
Cross correlogram 307
Cross section dependence test 58, 556
Cross section member

add to pool 294, 463
define list of in a pool 468

text identifier 461
@crossidest 461
@crossids 461
Cross-tabulation 323
CSV

save table to file 792
C-test 140
Cumulative distribution function 926
CUSUM

sum of recursive residuals test 156
sum of recursive squared residuals test 156

cvardecomp 83

D
Daniell kernel

cointegrating regression 73, 75, 76
GMM estimation 101
long-run covariance estimation 330
robust standard errors 56, 120, 172

Data
import as matrix 396, 511, 723, 892

Data members
alpha series 4
coef 19
equation 37
factor 186
graph 238, 355
group 292
link 355
logl 368
matrix 385
model 422
pool 461
rowvector 508
sample 528
scalar 535
series 543
spool 673
sspace 644
string 695
svector 702
sym 710
system 742
table 783
text 814
user objects 822
valmap 831
VAR 840

1010—Index

vector 886
Database

fetch using pool 472
store pool in 493

Dated data table 322, 440
customization 312
fonts 313
formatting options 313, 317
frequency conversion 313, 317
row options 313
table options 316
templates 312
transformation methods 313, 316

datelabel 255
Dates

format in a spreadsheet See Display format
ddrowopts 313
ddtabopts 316
decomp 853
define 468
Delete

columns in tables 787
objects using pool identifiers 468
rows in tables 788

delete 468
deletecol 787
deleterow 788
Dependent variable

frequencies 83
depfreq 83
Derivatives

examine derivs of specification 84, 754
make series or group containing 125

derivs 84, 754
describe 469
Descriptive statistics 574, 906

by classification 606
by group 606
equation residuals 110
make series from pool 482
pool series 469
See also stats

DFBetas 113
Dickey-Fuller test 350, 499, 615
digraph 436
Display

action 2
spreadsheet tables See sheet

display 7, 21, 85, 190, 319, 372, 394, 432,
471, 510, 560, 650, 676, 696, 703, 718, 755,
825, 854, 890

Display format
coef 27
group 341
matrix 413
rowvector 522
series 597
sym 733
table 798
vector 902

Display mode
spools 678, 690

Display name
alpha 8
coef 22
equation 85
factor 191
graph 256, 257
group 320
link 357
logl 373
matrix 395
model 432
pool 471
rowvector 510
sample 529
series 561
spool 676
sspace 650
sym 697, 704, 719
system 756
table 789
text 817
user object 825
valmap 833
var 855
vector 890

Display output
alpha 7, 432, 755
coef 21
equation 85
factor 190
group 319
logl 372
matrix 394
pool 471
rowvector 510

E—1011

series 560
sspace 650
string 696
svector 703
sym 718
user object 825
VAR 854
vector 890

displayname 8, 22, 85, 191, 256, 257, 320,
357, 373, 395, 432, 471, 510, 529, 561, 650,
676, 697, 704, 719, 756, 789, 817, 825, 833,
855, 890

distdata 320, 561
distplot 926
Distribution

empirical distribution function tests 563
tests 563

Distribution plot 926
save data 561

dot 934
Dot plot 934
Double exponential smoothing 603
draw 257
Draw arrows in a graph 239
Draw ellipse in a graph 243
Draw lines in graph 257
Draw rectangles in a graph 245
drawdefault 259
Drop

cross-section from pool definition 472
series from group 322

drop 322, 433, 472, 826
droplink 433
dtable 322
Dumitrescu-Hurlin test 295
Durbin-Watson statistic 37
Durbin-Wu-Hausman test 86
Dynamic forecasting 92, 651
Dynamic OLS (DOLS) 71
Dynamic switching regression 164

E
ec 855
edftest 563
EGARCH 42

See also GARCH
EHS test 140
Eigenvalues 191, 719

Elasticity at means 66
Elliot, Rothenberg, and Stock point optimal test 616

See also Unit root tests.
Ellipse

adding to a graph 243
Empirical CDF 926
Empirical distribution tests 563
endog 434, 651, 756, 857
Endogeneity

test of 86
Endogenous variables

dropping from models 433
make series or group in model 438
make series or group in state space 655
make series or group in system 766
make series or group in VAR 871
of specification 434, 651
of specification in system 756
of specification in VAR 857
replacing in a model 445

endogtest 86
Engle-Granger cointegration test 66
eqs 434
Equation 33

attribute setting 159
coefficient covariance matrix 39, 65
coefficient covariance scalar 39
coefficient standard error vector 39
coefficient t-statistic scalar 39
coefficient t-statistic vector 39
coefficient vector 39
command entries 41
data members 37
declare 87
derivatives 84
display gradients 106
methods 33
procs 36
r-squared 38
stepwise regression 160
views 34

equation 87
Equation view

of model 434
Ergodic probabilities 164
errbar 938
Error bar graph 938
Error correction model

See VEC and VAR.

1012—Index

Error-trend-seasonal smoothing
 See ETS smoothing

Estimation
 See also Estimation methods
cointegrating regression 71
panel

Estimation methods
2sls 174, 496, 776
3sls 744
ARMA 117
cointegrating regression 71
for factor 185
for pool 460
for system 741
for var 839
generalized least squares 117, 134, 477, 765
GMM 99, 760
least squares 107, 117, 134, 477, 765, 846, 867
maximum likelihood 208, 367, 377, 659
nonlinear least squares 107, 117, 134, 477, 765,

846, 867
stepwise 160

ets 564
ETS smoothing 564

forecast 566
Evaluating forecasts 570
Excel file

export coef vector to file 31
export matrix to file 417
export pool data to file 503
export rowvector to file 526
export sym to file 738
export vector to file 907
importing data into coef vector 24
importing data into matrix 396, 410, 511, 723,

892
importing data into pool 486
importing data into rowvector 519
importing data into sym 730
importing data into vector 900

exclude 434
Exclude variables from model solution 434
Expectation-prediction table 142
Exponential GARCH (EGARCH) 42

See also GARCH
Exponential smoothing 564, 603

 See also ETS smoothing
Holt-Winters additive 604
Holt-Winters multiplicative 604

Holt-Winters no seasonal 604
Export

coef vector 31
matrix 417
pool data 503
rowvector 526
sym 738
vector 907

extract 677, 826

F
facbreak 88
factnames 193
factor 193
Factor analysis 185

command entries 189
residual covariance 221
See also Factor object.

Factor breakpoint test 88
Factor object 185

anti-image covariance 189
attribute setting 226
data members 186
declare 193
eigenvalue display 191
estimation output 213
factor names 193
fitted covariance 194
generalized least squares 195
goodness of fit 194
iterated principal factors 199
Kaiser’s measure of sampling adequacy 211
loadings 204
maximum absolute correlation 207
maximum likelihood 208
model 185
number of observations 212
observed covariance 212
partial correlation 216
partitioned covariance estimation 213
principal factors 217
reduced covariance 220
See also Factor rotation.
See also Factor scores.
squared multiple correlation 230
structure matrix 230
unweighted least squares 231

Factor rotation 221

G—1013

clear 225
display rotation output 226

Factor scores 227
saving results 205

Fetch
object 472

fetch 472
Fill

object 511, 567, 722
fill 395, 511, 567, 722, 891
Filter

Hodrick-Prescott 575
FIML 758
fiml 758
Fisher-ADF 615
Fisher-Johansen 301
Fisher-PP 615
fit 89
fitted 194
Fitted covariance 194
Fitted index 89
Fitted values 89
Fixed effects

test of joint significance in panel 91
test of joint significance in pool 474
view 86

fixedtest 91, 474
flatten 677
Fonts

graph 281
selection in tables 797

forcavg 568
forceval 570
Forecast

ARIMA 548
ARIMA using X-13 641
automatic with ARIMA models 548
automatic with ETS smoothing 566
averaging 568
combining 568
dynamic (multi-period) 92, 651
ETS smoothing 566
evaluation 570
static (one-period ahead) 89
VAR/VEC 858

forecast 92, 651, 858
Formula series 573

alpha 9

freq 8, 323, 571
Frequency (Band-Pass) filter 551
Frequency conversion 358, 472

dated data table 313, 317
default method for series 596
panel data 360
using links 359

Frequency table
one-way 8, 323, 571

frml 9, 573
Full information maximum likelihood 758
Fully modified OLS (FMOLS) 71

G
GARCH

display conditional standard deviation 94, 759
estimate equation 42
exponential GARCH (EGARCH) 43
generate conditional variance series 126, 766
Integrated GARCH (IGARCH) 45
Power ARCH (PARCH) 43
test for 46

garch 94, 759
Gauss-Newton 52, 61, 118
Generalized autoregressive conditional heteroske-

dasticity
See ARCH and GARCH.

Generalized least squares See GLS
Generalized linear models
Generalized residual 130
Generate series 574

for pool 475
genr 10, 475, 574

See also series.
getglobalc 892
Glejser heteroskedasticity test 108
GLM

See Generalized linear models.
GLM standard errors 52, 81, 82, 97, 139
GLS 117, 477, 765

factor estimation 195
gls 195
GMM

breakpoint test 58
continuously updating (single equation) 100
estimate single equation by 99
estimate system by 760
instrument orthogonality test 140

1014—Index

instrument summary 114
iterate to convergence (single equation) 100
one-step (single equation) 100
regressor endogeneity test 86
weak instruments 182

gmm 99, 760
Godfrey heteroskedasticity test 108
Gompit models 51
Goodness-of-fit 38

adjusted R-squared 38
Andrews test 168
binary models 168
factor analysis 194
Hosmer-Lemeshow test 168

Gradients
display 106, 374, 653, 762
saving in series 127, 376, 656

grads 106, 374, 653, 762
Granger causality test 294

VAR 880
Graph 236

add text 247
align multiple graphs 250
area graph 913
arrows 239
attribute setting 275
auto-updating 283
axis 251
axis labeling 255, 281
band graph 916
bar graph 918
boxplot 923
bubble graph 925
bubble triplet graph 926
change legend or axis name 267
commands 236, 239
create by command 913
create group from 266
data members 238, 355
declaring 261
distribution graph 926
dot plot 934
drawing lines and shaded areas 257, 259
ellipse 243
error bar 938
extract from spool 677
fit lines command specification 985
font 281
high-low-open-close 939

insert in spool 679
legend appearance and placement 264
line graph 941
merge multiple 266, 441
merging graphs 261
mixed line 945
options for individual elements 277
options for individual elements of a boxplot 276
pie graph 947
place text in 287
procs 237
quantile-quantile graph 950
rectangles 245
save to disk 273
scatterplot (pairs) graph 961
scatterplot graph 954
set axis scale 275
set options 268
sort 284
spike graph 966
templates 285
update 288
update settings 283
views 237
XY area 970
XY bar 973
XY line 975
XY pairs 979

graph 261
graphmode 678
Group 290

add series 294
attribute setting 340
command entries 294
count of 292
data members 292
declare 325
define members 335
descriptive statistics 348
drop series 322
from series in graph 266
graph views 291
indentation 344
members 335
procs 291
series names 293
sort 347
summaries 313, 316
views 290

I—1015

group 325

H
HAC

GMM estimation 101
robust standard errors 56, 119, 171

Hadri 615
Hannan-Quinn criterion

equation data member 37
system data member 743
VAR data member 840

Hansen instability test 66
Harvey heteroskedasticity test 108
Hat matrix 113
Hausman test 151, 486
Heteroskedasticity 108

quantile slope test 147
tests of 108
White test in VAR 883

Heteroskedasticity consistent covariances
finite sample 119

hetttest 108
High-low-open-close graph 939
hilo 939
hist 110, 574
Histogram 574, 926

equation residuals 110
save data 561
variable width 973

Hodrick-Prescott filter 575
Holt-Winters 603
Honda random effects test 151
horizindent 679
Hosmer-Lemeshow test 168
hpf 575
HTML

save table to file 792
save text object to file 819

Huber covariance 157
Huber M-estimator 158
Huber/White standard errors 44, 52, 61, 62, 81,

82, 97, 107, 119, 135, 139, 165, 378, 660,
748, 758

Hypothesis tests
 See also Test.
Levene test 610
Wilcoxon signed ranks test 611

I
@idname 461
@idnameest 461
IGARCH 45
Im, Pesaran and Shin 615
import 396
Import data

as matrix 396, 511, 723, 892
importmat 396, 511, 723, 892
impulse 861
Impulse response 861

ARMA models 49
Indentation

alpha series 14
coef 28
groups 344
matrix 414
rowvector 523
series 600
sym 734
table 803
vector 904

Independence test 550
Index

fitted from binary models 89
fitted from censored models 89
fitted from truncated models 89

Influence statistics 113
Information criterion

Akaike 37
Hannan-Quinn 37

infstats 113
Initialize

add factor 424
matrix object 395, 722, 891
series 567

innov 436
Insert

columns in tables 790
rows in tables 790

insert 679
insertcol 790
insertrow 790
Instrumental variable 174

in systems 776
summary of 114
weak instruments 182

instsum 114

1016—Index

Interpolate 546, 577
ipf 199
ipolate 577
Iterate to convergence GMM

single equation 100
Iterated principal factors 199
Iteration 52, 61, 118

optimization method 52, 61, 118

J
Jarque-Bera statistic 574

multivariate normality test for a System 763
multivariate normality test for a VAR 864

jbera 763, 864
Johansen cointegration test 296, 466

from a VAR 850
J-statistic

retrieve from equation 38
Justification

alpha 14
coef 29
group 345
matrix 414
rowvector 524
series 601
sym 735
table 803
vector 904

K
Kaiser’s measure of sampling adequacy 211
Kalman filter 655
Kao panel cointegration test 301
K-class 115

estimation of 115
kdensity 577
Kendall’s tau

from group 304, 308
from matrix 388, 391
from sym 712, 715
from vector 887
panel data 585

kerfit 328
Kernel

bivariate regression 328
cointegrating regression 73, 75, 76
density 577, 926
GMM estimation 101

robust standard errors 56, 120, 172
Kernel density graph

save data 561
Kernel regression

save data 320
Kolmogorov-Smirnov test 563
KPSS unit root test 350, 499, 615
Kruskal-Wallis test 610
Kwiatkowski, Phillips, Schmidt, and Shin test 615

L
label 11, 23, 114, 203, 263, 328, 357, 375, 402,

437, 476, 517, 530, 536, 578, 654, 681, 697,
704, 729, 764, 791, 817, 827, 834, 865, 898

Label object
alpha 11
coef 23
equation 114
factor 203
graph 263
group 328
logl 375
matrix 402
model 437
pool 476
rowvector 517
sample 530
scalar 536
series 578
spool 681
sspace 654
string 697
svector 704
sym 729
system 764
table 791
text 817
user object 827
valmap 834
var 865
vector 898

Label values 583
alpha 12

Lag
exclusion test 881
VAR lag order selection 866

laglen 866
Lagrange multiplier

M—1017

test for ARCH in residuals 108
test for serial correlation 50

LaTeX
save graph as 273
save spool as 687
save table as 793

Least squares
stepwise 160

leftmargin 682
Legend

appearance and placement 264
rename 267

legend 264
Levene test 610
Leverage plots 124
Levin, Lin and Chu 615
Lilliefors test 563
Limited information maximum likelihood (LIML)

See LIML
LIML 115

estimation of 115
instrument summary 114
weak instruments 182

liml 115
line 941
Line drawing 257
Line graph 941
Linear

interpolation 577
linefit 329
Link 355

attribute setting 364
command entries 356
data members 355
declare 358
procs 355
specification 359

link 358
linkto 359
list 698
Litterman/Minnesota prior 847
Ljung-Box Q-statistic 560
LMMP test for random effects 151
Lo and MacKinlay variance ratio test 620
Loadings 204
Local regression

save data 320
LOESS

save data 320
logit 117
Logit models 51, 117
Logl 367

append specification line 369
attribute setting 380
check user-supplied derivatives 371
coefficient covariance 372
command entries 369
data members 368
declare 376
display gradients 374
method 367
procs 186, 367
statements 367
views 185, 367

logl 376
Long-run covariance 329, 579
Lotus file

export coef vector to file 31
export matrix to file 417
export pool data to file 503
export rowvector to file 526
export sym to file 738
export vector to file 907

LOWESS
save data 320

LR statistic 38
lrcov 329
lrvar 579
ls 107, 117, 477, 765, 846, 867
lvageplot 124

M
Make model object 128, 377, 481, 656, 768, 871
makecoint 870
makederivs 125
makeendog 438, 655, 766, 871
makefilter 655
makegarch 126, 766
makegrads 127, 376, 656
makegraph 438
makegroup 266, 440, 480
makelimits 128
makemap 12
makemodel 128, 377, 481, 656, 768, 871
makepanpcomp 581
makepcomp 331

1018—Index

makeregs 129
makeresids 129, 481, 657, 768, 872
makesignals 657
makestates 658
makestats 482
makesystem 333, 483, 873
Mann-Whitney test 610
map 12, 583
Markov switching 163

expected durations 164, 173
initial probabilities 164
regime probabilities 155
transition probabilities 164, 173
transition results 164, 173

Match merge 358, 359
Matrix

attribute setting 412
column headers 412
command entries See Matrix commands and func-

tions
convert to/from series or group 290, 541
data members 385
declare 405
descriptive statistics 417
fill values 395, 567
graph views 384
indentation 414
initialize 395
procs 385
row headers 415
spreadsheet view 416
views 384

matrix 405
Matrix commands and functions 387
Maximum absolute correlation 207
Maximum likelihood 377, 659

factor 208
logl 367
state space 643

Mean
equality test 349, 610

means 133
Median

equality test 349, 610
members 828
Merge

graph objects 261, 266, 441
into model 266, 441
using links 359

merge 266, 441
Messages

model solution 442
M-estimation 158

tuning constants 158
weight functions 158

MIDAS
regression 134

Missing values
interpolate 577

mixed 945
Mixed data sampling

regression 134
Mixed line graph 945
ml 208, 377, 659
Model

scenario list 450
model 442
Model (object) 420

command entries 423
data members 422
declare 442
procs 420
See Models.
views 420

Model averaging 568
Model selection

ARIMA using X-13 633, 636
TAR estimation 169

Models
add factor assignment and removal 423
add factor initialization 424
append specification line 427
attribute setting 450
block structure 428
break all model links 457
check boundaries for variables after solve 428
comparing solutions 430
dependency graph 436
dropping endogenous variables 433
dropping linked objects 433
editing scenario data 426
equation view 434
exclude variables from solution 434
make from equation object 128
make from logl object 377
make from pool object 481
make from sspace object 656
make from system object 768

O—1019

make from var object 871
make graph of model series 438
make group of model series 440
merge into 266, 441
options for solving 453
options for stochastic simulation 436
options for stochastic solving 455
override add factors 426
overrides in model solution 443
print view 444
reincluding variables 445
replacing endogenous variables 445
replacing linked objects 446
replacing variables 447
reverting variables to initial values 447
scenarios 448
solution messages 442
solve 452
solve control to match target 431
text representation 456, 820
trace endogenous 451
trace iteration history 456
track 457
update specification 458
variable view 459

move 683
movereg 584
movereg 584
msa 211
msg 442
multibreak 136

N
name 267, 684
Nearest neighbor regression 335
Negative binomial count model 81
Newey-West automatic bandwidth

cointegrating regression 73, 76
GMM estimation 101
robust standard errors 56, 120, 172

Newton-Raphson 52, 61, 118
nnfit 335
Nonlinear least squares

pool estimation 477
single equation estimation 117, 134
system estimation 765
var estimation 107, 846, 867

Normality test 574

System 763
VAR 864

Normal-Wishart prior 847
Nowcasting 134
N-step GMM

single equation 100
Number format

See Display format
N-way table 323

O
Object

display name See Display name.
display output in window 7
fetch from database or databank 472
store pool 493

observed 212
OLE

push updates from alpha 13
push updates from coef 24
push updates from equation 138
push updates from factor 212
push updates from graph 268
push updates from group 331
push updates from link object 364
push updates from logl 379
push updates from matrix object 406
push updates from model 443
push updates from pool 484
push updates from rowvector 518
push updates from sample object 531
push updates from scalar object 537
push updates from series 585
push updates from spool 684
push updates from sspace 661
push updates from string object 699
push updates from svector 705
push updates from sym 730
push updates from system 769
push updates from table 792
push updates from text object 818
push updates from user object 828
push updates from valmap 835
push updates from VAR 873
push updates from vector 899

olepush 13, 24, 138, 212, 268, 331, 364, 379,
406, 443, 484, 518, 531, 537, 585, 661, 684,
699, 705, 730, 769, 792, 818, 828, 835, 873,

1020—Index

899
OLS (ordinary least squares)

pool estimation 477
single equation estimation 117
stepwise 160
system estimation 765
var estimation 107, 846, 867

Omitted variables test 167, 494
One-step GMM

single equation 100
One-way frequency table 8, 323, 571
Open

foreign data as matrix 396, 511, 723, 892
Optimization

methods 52, 61, 118
Optimization algorithms

Gauss-Newton 52, 61, 118
Newton-Raphson 52, 61, 118

options 268, 685
ordered 138
Ordered dependent variable

estimating models with 138
make vector of limit points from equation 128
variable frequencies 83

orthogtest 140
Outliers

detection of 113, 124
detection of in X-13 639

Output
display estimation results 141, 661
display factor results 213
display logl results 379
display pool results 484
display system results 769
display VAR results 873

output 141, 213, 379, 484, 661, 769, 873
override 443
Override variables in model solution 443

P
PACE 213
pace 213
Panel

random components test 151
residual cross section dependence test 58, 556

Panel cointegrating regression
PMG models

Panel data

estimation See Panel estimation.
unit root tests 350, 499, 615

Panel estimation 33
view effectseffects 86

panelcov 585
panpcomp 588
PARCH 43
Park added variable test 66
partcor 216
Partial autocorrelation 79, 307, 560, 852
Partial correlation 79, 216, 307, 560, 852
Partial covariance analysis

from group 308
Partitioned covariance estimation 213
Parzen kernel

cointegrating regression 73, 75, 76
GMM estimation 101
long-run covariance estimation 330
robust standard errors 56, 120, 172

Parzen-Cauchy kernel
cointegrating regression 73, 75, 76
GMM estimation 101
long-run covariance estimation 330
robust standard errors 56, 120, 172

Parzen-Geometric kernel
cointegrating regression 73, 75, 76
GMM estimation 101
long-run covariance estimation 330
robust standard errors 56, 120, 172

Parzen-Riesz kernel
cointegrating regression 73, 75, 76
GMM estimation 101
long-run covariance estimation 330
robust standard errors 56, 120, 172

PDF
save graph as 273
save spool as 687
save table as 792

Pearson correlation
from group 304
from matrix 388
from sym 712
from vector 887

Pearson covariance
from group 308
from matrix 391
from sym 715
panel data 585

Pedroni panel cointegration test 301

R—1021

Perron unit root test 554
Pesaran scaled LM test 58, 556
Pesaran, Shin and Smith
pf 217
Phillips-Ouliaris cointegration test 66
Phillips-Perron test 350, 499, 615
pie 947
Pie graph 947
PMG
Poisson count model 81
Pool 460

add cross section member 294, 463
attribute setting 492
coefficient covariance 465
command entries 463
cross-section IDs 461
data members 461
declare 485
delete using identifiers 468
generate series using identifiers 475
make group of pool series 440, 480
members 460
procs 460
views 460

pool 485
Pooled Mean Group estimation
Portmanteau test

VAR 874
predict 142
Prediction table 142
Presentation table 322
Prewhitening

long-run covariance estimation 329
Principal components 335, 403, 406, 581

make scores 331
panels 588

Principal factors 217
iterated 199

print 686
printview 444
probit 142
Probit models 51

Q
QQ-plot

save data 320, 561
qqplot 950
qreg 143

qrprocess 145
qrslope 147
qrsymm 149
Q-statistic 79, 307, 560, 753, 852
qstats 770, 874
Quadratic spectral kernel

cointegrating regression 73, 75, 76
GMM estimation 101
long-run covariance estimation 330
robust standard errors 56, 120, 172

Quandt breakpoint test 179
Quantile 557, 926
Quantile regression 143

process estimation 145
slope equality test 147
symmetric quantiles test 149

Quantile-Quantile 926
Quantile-Quantile graph 950

R
Ramsey RESET test 153
Random components test 151
Random effects

LM test for 151
test for correlated effects (Hausman) 151, 486
view 86

ranhaus 151, 486
rcomptest 151
Read 396, 511, 723, 892

data from foreign file as matrix 396, 511, 723,
892

data from foreign file into coef vector 24
data from foreign file into matrix 410
data from foreign file into pool 486
data from foreign file into rowvector 519
data from foreign file into sym 730
data from foreign file into vector 900

read 24, 410, 486, 519, 730, 900
Rectangles

adding to a graph 245
Recursive least squares 156

CUSUM 156
CUSUM of squares 156

Redirect output to file
equation 141
logl 379
pool 484
sspace 661

1022—Index

system 769
var 873

reduced 220
Reduced covariance 220
Redundant fixed effects test 91

pool 474
Redundant variables test 167, 495
Regime probabilities

outputting 155
Regression

breakpoint estimation 54
Regressors

make group containing from equation 129
reinclude 445
remove 686
replace 445
replacelink 446
replacevar 447
Representations view

equation 152
pool 489
system 771
VAR 875

Reproduced covariance 194
Resample

observations 338, 591
resample 338, 591
reset 153
RESET test 153
residcor 489, 662, 771, 875
residcov 490, 662, 772, 876
resids 153, 221, 490, 663, 772, 876
Residuals

correlation matrix of 489, 662
system 771
VAR 875
covariance matrix (pool) 490
covariance matrix of 221, 662
covariance matrix of in system 772
covariance matrix of in VAR 876
display of in equation 153
display of in pool 490
display of in sspace 663
display of in system 772
display of in VAR 876
make series or group containing 129, 481, 657,

768, 872
plots of 124

studentized 113
Restricted VAR

clear restriction text 849
set restriction text 843

Results
display or retrieve 154, 380, 491, 663, 773, 877

results 154, 380, 491, 663, 773, 877
revert 447
@RGB specification of colors 796
rgmprobs 155
rls 156
Robust least squares 157

covariance 157
M-estimation 158
MM-estimation 158
S-estimation 158
weight functions 158

Robust regression
See also Robust least squares.

robustls 157
Roots of the AR polynomial in VAR 845
Rotate

factors 221
rotate 221
rotateclear 225
rotateout 226
Rotation of factors 221
Row

matrix headers 415
Rowvector 507

attribute setting 521
command entries 509
data members 508
declare 521
graph views 507
indentation 523
procs 508
views 507

rowvector 521
R-squared

retrieve from equation 38
retrieve from system 742
retrieve from VAR 840

RTF
save table to file 792
save text object to file 819

S—1023

S
Sample

attribute setting 533
command entries 529
data members 528
declare 531
display sample specification in 533
procs 528
set sample specification in 532
views 528

sample 531
save 273, 792, 819
Scalar 535

attribute setting 538
command entries 536
data members 535
declare 537
procs 535
spreadsheet view 538
views 535

scalar 537
scale 275
Scaled coefficients 66
scat 954
scatmat 959
scatpair 961
Scatterplot 954

matrix of 959
pairs graph 961
with kernel fit 328
with nearest neighbor fit 335
with regression line fit 329

scenario 448
Scenarios 448
scenlist 450
Schwarz criterion

equation data member 38
pool data member 462
system data member 743
VAR data member 841

scores 205, 227
Scree plot 191
seas 593
Seasonal

graphs 965
Seasonal adjustment

Census X-13 630
movereg 584

moving average 593
STL 608
Tramo/Seats 612
X-11 623
X-12 625

seasplot 965
Seemingly unrelated regression See SUR.
Selection model

Heckman selection equation 107
Sequential breakpoint

tests 137
Serial correlation

Breusch-Godfrey LM test 50
multivariate VAR LM test 845

Serial correlation test
panels 41

Series 541
adjust values 545
alpha formula 9
attribute setting 595
auto-updating 573
bin recoding 557
categorize 557
command entries 545
data members 543
declare 594
descriptive statistics 608
element function 544
fill values 545, 567
formula 573
frequency conversion default method 596
graph views 542
indentation 600
initialize 567
interpolate 577
procs 542
smoothing 603
sort 605
value maps 583
views 541

series 594
@seriesname 293
S-estimation 158
set 532
SETAR 169
setattr 13, 26, 159, 226, 275, 340, 364, 380,

412, 450, 492, 521, 533, 538, 595, 664, 688,
699, 705, 732, 773, 794, 819, 828, 835, 878,
902

1024—Index

setbpelem 276
setcollabels 412
setconvert 596
setelem 277
setfillcolor 795
setfont 281, 689, 797
setformat 27, 341, 413, 522, 597, 733, 798,

902
setglobalc 903
setheight 802
setindent 14, 28, 344, 414, 523, 600, 734,

803, 904
setjust 14, 29, 345, 414, 524, 601, 735, 803,

904
setlines 804
setmerge 806
setobslabel 281
setrowlabels 415
settextcolor 808
setupdate 283
setwidth 29, 346, 416, 524, 602, 735, 809, 905
Shade region of graph 257
sheet

alpha 15
coef 30
group 346
matrix 416
pool 492
rowvector 525
scalar 538
series 602
svector 706
sym 736
table 810
valmap 835
vector 906

Siegel-Tukey test 610
Sign test 611
Signal variables

display graphs 664
saving 657

signalgraph 664
Sims-Zha prior 847
Slope equality test 147
smooth 603
Smooth threshold autoregression 169
Smoothing

ETS model 564

exponential smooth series 603
likelihood based 564
signal series 657
state series 658

Solve
See also Models.
simultaneous equations model 452

solve 452
solveopt 453
Sort 16, 284, 347, 605

table rows 810
sort 16, 284, 347, 605, 810
Spearman covariance

panel data 585
Spearman rank correlation

from group 304
from matrix 388
from sym 712
from vector 887

Spearman rank covariance
from group 308
from matrix 391
from sym 715

spec 381, 454, 533, 665, 774
Specification

of equation 152
of pool 489
of system 771
of VAR 875

Specification view
logl 381
model 454
sspace 665
system 774

spike 966
Spike graph 966
Spool 672

add/append objects 674
attribute setting 688
command entries 674
comment setting 689
comments 675
data members 673
declare spool object 690
display contents 676
display mode 678, 690
extract 677
flatten tree hierarchy 677
font setting 689

S—1025

graph display mode 678
horizontal indentation 679
insert object 679
left margin 682
move object 683
name object 684
options 685
print object 686
procs 672
remove object 686
saving 687
table and text display mode 690
title 691
top margin 691
vertical indentation 692
vertical spacing 693
views 672
widths 693

Spreadsheet
file import as matrix 396, 511, 723, 892
sort display order 16, 347, 605

Spreadsheet view
alpha 15
coef 30
group 346
matrix 416
pool 492
rowvector 525
scalar 538
series 602
svector 706
sym 736
table 810
valmap 835
vector 906

Squared multiple correlation 230
Sspace 643

append specification line 647
attribute setting 664
coefficient covariance 649
command entries 647
data members 644
declare 666
display signal graphs 664
make Kalman filter from 655
method 643
procs 643
specification display 669
state graphs 667

views 643
sspace 666
Stability test

Bai Perron tests 136
Chow breakpoint 62
factor 88
Quandt-Andrews 179
unknown breakpoint 179

Standard error
retrieve from equation 38
retrieve from system 742
retrieve from VAR 840

Standardized coefficients 66
STAR 169
statby 606
State space

specification 669
State variables

display graphs of 667
final one-step ahead predictions 666
initial values 668
smoothed series 658

statefinal 666
stategraphs 667
stateinit 668
Static forecast 89
Statistics

compute for subgroups 606
pool 469

stats

coef 30
group 348
matrix 417
rowvector 525
series 608
sym 736
valmap 836

stepls 160
Stepwise 160
STL 608
stl 608
stochastic 455
Store

from pool 493
store 493
String 695

attribute setting 699
command entries 696

1026—Index

data members 695
declare 700
display list view 698
display view of string 699
views 695

string 700
string 699

String series 4
Structural change

 See also Breakpoint test.
estimation in the presence of 54
tests of 136

Structural VAR 843
structure 669
Studentized residual 113
Subtitle

Friedman test 152
Pearson CD test 152

Summarizing data
 See Dated data table.

SUR
estimating by command 774

sur 774
Survivor 926
Survivor function

save data 561
svar 878
Svector 702

attribute setting 705
command entries 702
data members 702
declare 706
make from text object 820
spreadsheet view 706
views 702

svector 706
Switching regression 163

dynamic models 164
expected durations 164, 173
regime probabilities 155
transition probabilities 164, 173
transition results 164, 173

switchreg 163
Sym 709

attribute setting 732
command entries 711
data members 710
declare 737
descriptive statistics 736

graph views 709
indentation 734
initialize 722
procs 710
spreadsheet view 736
views 709

sym 737
Symmetric matrix

See Sym.
Symmetry test 149
System 741

3SLS 744
append specification line 745
attribute setting 773
coefficient covariance 753
command entries 744
create from group 333
create from pool 483
create from var 873
data members 742
declare 775
derivatives 754
display gradients 762
estimation covariance 757
FIML estimation 758
methods 741
procs 742
specify 750
views 741
weighted least squares 778

system 775

T
Table 782

add comment to cell 785
attribute setting 794
borders and lines 804
column width See Column width.
command entries 783, 784
copy 787
copy range of cells 786
data members 783
declare 811
delete column 787
delete row 788
display format for cells See Display format
extract from spool 677
fill (background) color for cells 795

T—1027

font 797
indentation for cells See Indentation
insert column 790
insert in spool 679
insert row 790
justification for cells See Justification
merging 806
procs 782
row heights 802
save to disk 792
sort rows 810
text color for cells 808
title 812
views 782

table 811
tablemode 690
Tabulation

n-way 323
one-way 571

TAR 169
TARCH

See ARCH.
Template

by command 312
dated data tables 312
graphs 285

template 285
Test

adding variables 167
ARCH 108
Arrelano-Bond serial correlation 41
breakpoint 136
Chow 62
correlated random effects 151, 486
cross-section dependence 58, 556
CUSUM 156
CUSUM of squares 156
Durbin-Wu-Hausman 86
Engle-Granger 66
exogeneity 880
for serial correlation 50
for serial correlation in VAR 845
Goodness-of-fit 168
Granger causality 294
Hansen instability 66
heteroskedasticity 108
heteroskedasticity in VAR 883
Johansen cointegration 296, 466
Johansen cointegration from a VAR 850

lag exclusion (Wald) 881
mean, median, variance equality 349
mean, median, variance equality by classification

610
multiple breakpoint 136
omitted variables 167, 494
Park added variable test 66
Phillips-Ouliaris 66
redundant fixed effects 91
pool 474
redundant variables 167, 495
RESET 153
simple mean, median, variance hypotheses 611
unit root 350, 499, 615
unit root with break 554
variance ratio 620
Wald 181, 382, 502, 670, 777
White 108

testadd 167, 494
testbtw 349
testby 610
testdrop 167, 495
testexog 880
testfit 168
testlags 881
teststat 611
Text 814

append 815
attribute setting 819
clear 816
command entries 815
data members 814
declare 456, 820
extract from spool 677
insert in spool 679
procs 814
views 814

text 456, 820
Text file

import as matrix 396, 511, 723, 892
Text object

save to disk 819
Text series 4
textdefault 287
Theoretical distribution graph

save data 561
Three stage least squares See 3sls (Three Stage Least

Squares)
threshold 169

1028—Index

Threshold autoregression 169
Threshold regression

smooth 169
Thresold regression 169
title 691, 812
Tobit 61
topmargin 691
trace 451, 456
track 457
Tramo/Seats 612
tramoseats 612
Transition results

Markov switching 164, 173
switching regression 164, 173

transprobs 173
Truncated dependent variable 61
tsls

pool 496
single equation 174
system 776

t-statistics
retrieve from equation 39
retrieve from pool 462
retrieve from system 743

Tukey-Hamming kernel
cointegrating regression 73, 75, 76
GMM estimation 101
long-run covariance estimation 330
robust standard errors 56, 120, 172

Tukey-Hanning kernel
cointegrating regression 73, 75, 76
GMM estimation 101
long-run covariance estimation 330
robust standard errors 56, 120, 172

Tukey-Parzen kernel
cointegrating regression 73, 75, 76
GMM estimation 101
long-run covariance estimation 330
robust standard errors 56, 120, 172

Tuning constants
M-estimation 158

Two-stage least squares
See 2sls (Two-Stage Least Squares).

U
ubreak 179
uls 231
UMP random effects test 151

Unit root test 350, 499, 615
Elliot, Rothenberg, and Stock 616
KPSS 615
with breakpoints 554

Unknown breakpoint test 179
unlink 457
Unweighted least squares 231
update 288, 458
updatecoefs 180, 381, 499, 669, 777
Updating graphs 283
uroot 350, 499, 615
usage 836
User objects

adding data members 823
attribute setting 828
clearing data members 824
command entries 823
creation 829
data members 822
drop a data member 826
extract data members 826
list data members 828

Userobj 822
userobj 829

V
Valmap 831

append specification line 832
apply to alpha series 12
apply to series 583
attribute setting 835
command entries 832
data members 831
declare 837
descriptive statistics 836
find series that use map 836
make from alpha series 12
procs 831
views 831

valmap 837
Van der Waerden test 610
VAR 839

append specification line 843
attribute setting 878
clear restrictions 849
command entries 842
companion matrix 841
data members 840

X—1029

declare 882
estimate factorization matrix 878
forecasting 858
impulse response 861
lag coefficient matrices 841
lag coefficient matrix 841
lag exclusion test 881
lag length test 866
methods 839
multivariate autocorrelation test 770, 874
procs 840
variance decomposition 853
views 839

var 882
Variance

equality test 349, 610
Variance decomposition 83, 853
Variance equation

See ARCH and GARCH.
Variance inflation factor (VIF) 180
Variance ratio test 620
varinf 180
vars 459
VEC

estimating 855
Vector 885

attribute setting 902
command entries 887
copy to global C vector 903
data members 886
declare 907
fill values 891
graph views 885
indentation 904
initialize 891
procs 885
spreadsheet view 906
update from global C vector 892
views 885

vector 906, 907
Vector autoregression

See VAR.
Vector error correction model

See VEC and VAR.
vertindent 692
vertspacing 693
Vogelsang-Perron unit root tests 554

W
wald 181, 382, 502, 670, 777
Wald test 181, 382, 502, 670, 777
Watson test 563
Weak instruments 182
weakinst 182
Weight functions

M-estimation 158
Weighted least squares 778
Weighted two-stage least squares 779
white 182, 883
White heteroskedasticity test 108
Whitening 334, 582
width 693
Wilcoxon test 611

rank sum 610
signed ranks 611

Windmeijer standard errors 102
wls 778
Write

coef vector to file 31
matrix to text file 417
pool data to text file 503
rowvector to text file 526
sym to text file 738
vector to text file 907

write 31, 417, 503
rowvector 526
sym 738
vector 907

wtsls 779

X
X-11

using X-13 633, 636
x11 623
x12 625
X-13 630

ARIMA forcasting 641
automatic outliers 639
transformations 639
X-11 based ARIMA 633, 636

x13 630
XY (area) graph 970
XY (bar) graph 973
XY (line) graph 975
XY (pairs) graph 979

1030—Index

xyarea 970
xybar 973
xyline 975
xypair 979

Z
Zivot-Andrews unit root test 554

	Introduction
	Chapter 1. Object View and Procedure Reference
	Alpha
	alpha
	clearhist
	display
	displayname
	freq
	frml
	genr
	label
	makemap
	map
	olepush
	setattr
	setindent
	setjust
	sheet
	sort

	Coef
	clearhist
	coef
	display
	displayname
	fill
	label
	olepush
	read
	setattr
	setformat
	setindent
	setjust
	setwidth
	sheet
	stats
	write

	Equation
	abtest
	arch
	archtest
	ardl
	arma
	auto
	binary
	boundstest
	breakls
	breakspec
	breaktest
	cdtest
	cellipse
	censored
	chow
	cinterval
	clearhist
	coefcov
	coefscale
	coint
	cointgraph
	cointreg
	cointrep
	correl
	correlsq
	count
	cvardecomp
	depfreq
	derivs
	display
	displayname
	effects
	endogtest
	equation
	facbreak
	fit
	fixedtest
	forecast
	garch
	glm
	gmm
	grads
	heckit
	hettest
	hist
	icgraph
	ictable
	infbetas
	infstats
	instsum
	label
	liml
	logit
	ls
	lvageplot
	makecoint
	makederivs
	makegarch
	makegrads
	makelimits
	makemodel
	makeregs
	makeresids
	makergmprobs
	makestrwgts
	maketransprobs
	means
	midas
	multibreak
	olepush
	ordered
	orthogtest
	output
	predict
	probit
	qreg
	qrprocess
	qrslope
	qrsymm
	ranhaus
	rcomptest
	representations
	reset
	resids
	results
	rgmprobs
	rls
	robustls
	setattr
	stepls
	strconstant
	strlinear
	strnonlin
	strwgts
	switchreg
	testadd
	testdrop
	testfit
	threshold
	transprobs
	tsls
	ubreak
	updatecoefs
	varinf
	wald
	weakinst
	white

	Factor
	anticov
	clearhist
	display
	displayname
	eigen
	factnames
	factor
	fitstats
	fitted
	gls
	ipf
	label
	loadings
	makescores
	maxcor
	ml
	msa
	observed
	olepush
	output
	pace
	partcor
	pf
	reduced
	resids
	rotate
	rotateclear
	rotateout
	setattr
	scores
	smc
	structure
	uls

	Graph
	addarrow
	addellipse
	addrect
	addtext
	align
	axis
	bplabel
	clearhist
	datelabel
	dates
	display
	displayname
	draw
	drawdefault
	graph
	label
	legend
	makegroup
	merge
	metafile
	name
	olepush
	options
	save
	scale
	setattr
	setbpelem
	setelem
	setfont
	setobslabel
	setupdate
	sort
	template
	textdefault
	update

	Group
	add
	cause
	cdfplot
	clearhist
	coint
	cor
	correl
	cov
	cross
	ddloadtmpl
	ddrowopts
	ddsavetmpl
	ddtabopts
	display
	displayname
	distdata
	drop
	dtable
	freq
	group
	insertobs
	kerfit
	label
	linefit
	lrcov
	olepush
	makepcomp
	makesystem
	makewhiten
	members
	nnfit
	pcomp
	resample
	setattr
	setformat
	setindent
	setjust
	setwidth
	sheet
	sort
	stats
	testbtw
	uroot

	Link
	clearhist
	displayname
	label
	link
	linkto
	olepush
	setattr

	Logl
	append
	cellipse
	checkderivs
	clearhist
	coefcov
	display
	displayname
	grads
	label
	logl
	makegrads
	makemodel
	ml
	olepush
	output
	results
	setattr
	spec
	updatecoefs
	wald

	Matrix
	clearhist
	cor
	cov
	display
	displayname
	fill
	import
	label
	makepcomp
	matrix
	olepush
	pcomp
	read
	setattr
	setcollabels
	setformat
	setindent
	setjust
	setrowlabels
	setwidth
	sheet
	stats
	write

	Model
	addassign
	addinit
	addover
	adjust
	append
	block
	checkbounds
	clearhist
	compare
	control
	display
	displayname
	drop
	droplink
	endog
	eqs
	exclude
	digraph
	innov
	label
	makeendog
	makegraph
	makegroup
	merge
	model
	msg
	olepush
	override
	printview
	reinclude
	replace
	replacelink
	replacevar
	revert
	scenario
	scenlist
	setattr
	setbounds
	settrace
	solve
	solveopt
	spec
	stochastic
	text
	trace
	track
	unlink
	update
	vars

	Pool
	add
	cellipse
	clearhist
	coefcov
	coint
	define
	delete
	describe
	display
	displayname
	drop
	fetch
	fixedtest
	genr
	label
	ls
	makegroup
	makemodel
	makeresids
	makestats
	makesystem
	olepush
	output
	pool
	ranhaus
	read
	representations
	residcor
	residcov
	resids
	results
	setattr
	sheet
	store
	testadd
	testdrop
	tsls
	updatecoefs
	uroot
	wald
	write

	Rowvector
	clearhist
	display
	displayname
	fill
	import
	label
	olepush
	read
	rowvector
	setattr
	setformat
	setindent
	setjust
	setwidth
	sheet
	stats
	write

	Sample
	clearhist
	displayname
	label
	olepush
	sample
	set
	setattr
	spec

	Scalar
	clearhist
	label
	olepush
	scalar
	setattr
	sheet

	Series
	adjust
	autoarma
	bdstest
	boxplotby
	bpf
	buroot
	cdfplot
	cdtest
	classify
	clearhist
	correl
	display
	displayname
	distdata
	edftest
	ets
	fill
	forcavg
	forceval
	freq
	frml
	genr
	hist
	hpf
	insertobs
	ipolate
	kdensity
	label
	lrvar
	makepanpcomp
	makewhiten
	map
	movereg
	olepush
	pancov
	panpcomp
	resample
	seas
	series
	setattr
	setconvert
	setformat
	setindent
	setjust
	setwidth
	sheet
	smooth
	sort
	statby
	stats
	stl
	testby
	teststat
	tramoseats
	uroot
	vratio
	x11
	x12
	x13

	Sspace
	append
	cellipse
	clearhist
	coefcov
	display
	displayname
	endog
	forecast
	grads
	label
	makeendog
	makefilter
	makegrads
	makemodel
	makeresids
	makesignals
	makestates
	ml
	olepush
	output
	residcor
	residcov
	resids
	results
	setattr
	signalgraphs
	spec
	sspace
	statefinal
	stategraphs
	stateinit
	structure
	updatecoefs
	wald

	Spool
	append
	clearhist
	comment
	display
	displayname
	extract
	flatten
	graphmode
	horizindent
	insert
	label
	leftmargin
	move
	name
	olepush
	options
	print
	remove
	save
	setattr
	setfont
	spool
	tablemode
	title
	topmargin
	vertindent
	vertspacing
	width

	String
	clearhist
	display
	displayname
	label
	list
	olepush
	setattr
	string
	string

	Svector
	clearhist
	display
	displayname
	label
	olepush
	setattr
	sheet
	svector

	Sym
	clearhist
	cor
	cov
	display
	displayname
	eigen
	fill
	import
	label
	olepush
	read
	setattr
	setformat
	setindent
	setjust
	setwidth
	sheet
	stats
	sym
	write

	System
	3sls
	append
	arch
	autospec
	cellipse
	clearhist
	coefcov
	correl
	derivs
	display
	displayname
	endog
	estcov
	fiml
	garch
	gmm
	grads
	jbera
	label
	ls
	makeendog
	makegarch
	makeloglike
	makemodel
	makeresids
	olepush
	output
	qstats
	representations
	residcor
	residcov
	resids
	results
	setattr
	spec
	sur
	system
	tsls
	updatecoefs
	wald
	wls
	wtsls

	Table
	clearhist
	comment
	copyrange
	copytable
	deletecol
	deleterow
	display
	displayname
	insertcol
	insertrow
	label
	olepush
	save
	setattr
	setfillcolor
	setfont
	setformat
	setheight
	setindent
	setjust
	setlines
	setmerge
	setprefix
	setsuffix
	settextcolor
	setwidth
	sheet
	sort
	table
	title

	Text
	append
	clear
	clearhist
	displayname
	label
	olepush
	save
	setattr
	svector
	text

	Userobj
	add
	clear
	display
	displayname
	drop
	extract
	label
	members
	olepush
	setattr
	userobj

	Valmap
	append
	clearhist
	displayname
	label
	olepush
	setattr
	sheet
	stats
	usage
	valmap

	Var
	append
	arlm
	arroots
	bvar
	clearhist
	cleartext
	coint
	correl
	decomp
	display
	displayname
	ec
	endog
	fit
	forecast
	hdecomp
	impulse
	jbera
	label
	laglen
	ls
	makecoint
	makeendog
	makemodel
	makeresids
	makesystem
	olepush
	output
	qstats
	representations
	residcor
	residcov
	resids
	results
	setattr
	svar
	testexog
	testlags
	var
	white

	Vector
	clearhist
	cov
	display
	displayname
	fill
	getglobalc
	import
	label
	olepush
	read
	setattr
	setformat
	setglobalc
	setindent
	setjust
	setwidth
	sheet
	stats
	vector
	write

	Appendix A. Graph Creation Commands
	Graph Creation Command Summary
	Graph Creation Object Summary
	area
	band
	bar
	boxplot
	bubble
	bubbletrip
	distplot
	dot
	errbar
	hilo
	line
	mixed
	pie
	qqplot
	scat
	scatmat
	scatpair
	seasplot
	spike
	xyarea
	xybar
	xyline
	xypair

	Optional Graph Components

	Appendix B. Object Command Summary
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

