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Preface

The first volume of the EViews User’s Guide describes the basics of using EViews and 
describes a number of tools for basic statistical analysis using series and group objects.

The second volume of the EViews User’s Guide, offers a description of EViews’ interactive 
tools for advanced statistical and econometric analysis. The material in User’s Guide II may 
be divided into several parts:

• Part V. “Basic Single Equation Analysis” on page 3 discusses the use of the equation 
object to perform standard regression analysis, ordinary least squares, weighted least 
squares, nonlinear least squares, basic time series regression, specification testing and 
forecasting.

• Part VI. “Advanced Single Equation Analysis,” beginning on page 241 documents two-
stage least squares (TSLS) and generalized method of moments (GMM), autoregres-
sive conditional heteroskedasticity (ARCH) models, single-equation cointegration 
equation specifications, discrete and limited dependent variable models, generalized 
linear models (GLM), robust least squares, least squares regression with breakpoints, 
threshold regression, switching regression, quantile regression, and user-specified 
likelihood estimation.

• Part VII. “Advanced Univariate Analysis,” on page 587 describes advanced tools for 
univariate time series analysis, including unit root tests in both conventional and 
panel data settings, variance ratio tests, and the BDS test for independence.

• Part VIII. “Multiple Equation Analysis” on page 643 describes estimation and forecast-
ing with systems of equations (least squares, weighted least squares, SUR, system 
TSLS, 3SLS, FIML, GMM, multivariate ARCH), vector autoregression and error correc-
tion models (VARs and VECs), state space models and model solution.

• Part IX. “Panel and Pooled Data” on page 841 documents working with and estimat-
ing models with time series, cross-sectional data. The analysis may involve small 
numbers of cross-sections, with series for each cross-section variable (pooled data) or 
large numbers systems of cross-sections, with stacked data (panel data).

• Part X. “Advanced Multivariate Analysis,” beginning on page 1021 describes tools for 
testing for cointegration and for performing Factor Analysis.
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Part V.  Basic Single Equation Analysis

The following chapters describe the EViews features for basic single equation and single 
series analysis.

• Chapter 19. “Basic Regression Analysis,” beginning on page 5 outlines the basics of 
ordinary least squares estimation in EViews.

• Chapter 20. “Additional Regression Tools,” on page 23 discusses special equation 
terms such as PDLs and automatically generated dummy variables, robust standard 
errors, weighted least squares, and nonlinear least square estimation techniques.

• Chapter 21. “Instrumental Variables and GMM,” on page 69 describes estimation of 
single equation Two-stage Least Squares (TSLS), Limited Information Maximum Like-
lihood (LIML) and K-Class Estimation, and Generalized Method of Moments (GMM) 
models.

• Chapter 22. “Time Series Regression,” on page 99 describes a number of basic tools 
for analyzing and working with time series regression models: testing for serial cor-
relation, estimation of ARMAX and ARIMAX models, and diagnostics for equations 
estimated using ARMA terms.

• Chapter 23. “Forecasting from an Equation,” beginning on page 147 outlines the fun-
damentals of using EViews to forecast from estimated equations.

• Chapter 24. “Specification and Diagnostic Tests,” beginning on page 175 describes 
specification testing in EViews.

The chapters describing advanced single equation techniques for autoregressive conditional 
heteroskedasticity, and discrete and limited dependent variable models are listed in Part VI. 
“Advanced Single Equation Analysis”.

Multiple equation estimation is described in the chapters listed in Part VIII. “Multiple Equa-
tion Analysis”. 

Part IX. “Panel and Pooled Data” on page 841 describes estimation in pooled data settings 
and panel structured workfiles.
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Chapter 19.  Basic Regression Analysis

Single equation regression is one of the most versatile and widely used statistical tech-
niques. Here, we describe the use of basic regression techniques in EViews: specifying and 
estimating a regression model, performing simple diagnostic analysis, and using your esti-
mation results in further analysis.

Subsequent chapters discuss testing and forecasting, as well as advanced and specialized 
techniques such as weighted least squares, nonlinear least squares, ARIMA/ARIMAX mod-
els, two-stage least squares (TSLS), generalized method of moments (GMM), GARCH mod-
els, and qualitative and limited dependent variable models. These techniques and models all 
build upon the basic ideas presented in this chapter.

You will probably find it useful to own an econometrics textbook as a reference for the tech-
niques discussed in this and subsequent documentation. Standard textbooks that we have 
found to be useful are listed below (in generally increasing order of difficulty): 

• Pindyck and Rubinfeld (1998), Econometric Models and Economic Forecasts, 4th edition.

• Johnston and DiNardo (1997), Econometric Methods, 4th Edition.

• Wooldridge (2013), Introductory Econometrics: A Modern Approach, 5th Edition.

• Greene (2008), Econometric Analysis, 6th Edition.

• Davidson and MacKinnon (1993), Estimation and Inference in Econometrics.

Where appropriate, we will also provide you with specialized references for specific topics.

Equation Objects

Single equation regression estimation in EViews is performed using the equation object. To 
create an equation object in EViews: select Object/New Object.../Equation or Quick/Esti-
mate Equation… from the main menu, or simply type the keyword equation in the com-
mand window. 

Next, you will specify your equation in the Equation Specification dialog box that appears, 
and select an estimation method. Below, we provide details on specifying equations in 
EViews. EViews will estimate the equation and display results in the equation window. 

The estimation results are stored as part of the equation object so they can be accessed at 
any time. Simply open the object to display the summary results, or to access EViews tools 
for working with results from an equation object. For example, you can retrieve the sum-of-
squares from any equation, or you can use the estimated equation as part of a multi-equa-
tion model.
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Specifying an Equation in EViews

When you create an equation object, a specification dialog box is displayed.

You need to specify three things 
in this dialog: the equation 
specification, the estimation 
method, and the sample to be 
used in estimation.

In the upper edit box, you can 
specify the equation: the depen-
dent (left-hand side) and inde-
pendent (right-hand side) 
variables and the functional 
form. There are two basic ways 
of specifying an equation: “by 
list” and “by formula” or “by 
expression”. The list method is 
easier but may only be used 
with unrestricted linear specifi-
cations; the formula method is more general and must be used to specify nonlinear models 
or models with parametric restrictions.

Specifying an Equation by List

The simplest way to specify a linear equation is to provide a list of variables that you wish to 
use in the equation. First, include the name of the dependent variable or expression, fol-
lowed by a list of explanatory variables. For example, to specify a linear consumption func-
tion, CS regressed on a constant and INC, type the following in the upper field of the 
Equation Specification dialog:

cs c inc

Note the presence of the series name C in the list of regressors. This is a built-in EViews 
series that is used to specify a constant in a regression. EViews does not automatically 
include a constant in a regression so you must explicitly list the constant (or its equivalent) 
as a regressor. The internal series C does not appear in your workfile, and you may not use 
it outside of specifying an equation. If you need a series of ones, you can generate a new 
series, or use the number 1 as an auto-series.

You may have noticed that there is a pre-defined object C in your workfile. This is the 
default coefficient vector—when you specify an equation by listing variable names, EViews 
stores the estimated coefficients in this vector, in the order of appearance in the list. In the 
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example above, the constant will be stored in C(1) and the coefficient on INC will be held in 
C(2).

Lagged series may be included in statistical operations using the same notation as in gener-
ating a new series with a formula—put the lag in parentheses after the name of the series. 
For example, the specification:

cs cs(-1) c inc

tells EViews to regress CS on its own lagged value, a constant, and INC. The coefficient for 
lagged CS will be placed in C(1), the coefficient for the constant is C(2), and the coefficient 
of INC is C(3).

You can include a consecutive range of lagged series by using the word “to” between the 
lags. For example:

cs c cs(-1 to -4) inc

regresses CS on a constant, CS(-1), CS(-2), CS(-3), CS(-4), and INC. If you don't include the 
first lag, it is taken to be zero. For example: 

cs c inc(to -2) inc(-4)

regresses CS on a constant, INC, INC(-1), INC(-2), and INC(-4). 

You may include auto-series in the list of variables. If the auto-series expressions contain 
spaces, they should be enclosed in parentheses. For example:

log(cs) c log(cs(-1)) ((inc+inc(-1)) / 2)

specifies a regression of the natural logarithm of CS on a constant, its own lagged value, and 
a two period moving average of INC.

Typing the list of series may be cumbersome, especially if you are working with many 
regressors. If you wish, EViews can create the specification list for you. First, highlight the 
dependent variable in the workfile window by single clicking on the entry. Next, CTRL-click 
on each of the explanatory variables to highlight them as well. When you are done selecting 
all of your variables, double click on any of the highlighted series, and select Open/Equa-
tion…, or right click and select Open/as Equation.... The Equation Specification dialog 
box should appear with the names entered in the specification field. The constant C is auto-
matically included in this list; you must delete the C if you do not wish to include the con-
stant.

Specifying an Equation by Formula

You will need to specify your equation using a formula when the list method is not general 
enough for your specification. Many, but not all, estimation methods allow you to specify 
your equation using a formula.
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An equation formula in EViews is a mathematical expression involving regressors and coef-
ficients. To specify an equation using a formula, simply enter the expression in the dialog in 
place of the list of variables. EViews will add an implicit additive disturbance to this equa-
tion and will estimate the parameters of the model using least squares.

When you specify an equation by list, EViews converts this into an equivalent equation for-
mula. For example, the list,

log(cs) c log(cs(-1)) log(inc)

is interpreted by EViews as:

log(cs) = c(1) + c(2)*log(cs(-1)) + c(3)*log(inc)

Equations do not have to have a dependent variable followed by an equal sign and then an 
expression. The “=” sign can be anywhere in the formula, as in:

log(urate) - c(1)*dmr = c(2)

The residuals for this equation are given by: 

. (19.1)

EViews will minimize the sum-of-squares of these residuals.

If you wish, you can specify an equation as a simple expression, without a dependent vari-
able and an equal sign. If there is no equal sign, EViews assumes that the entire expression 
is the disturbance term. For example, if you specify an equation as:

c(1)*x + c(2)*y + 4*z

EViews will find the coefficient values that minimize the sum of squares of the given expres-
sion, in this case (C(1)*X+C(2)*Y+4*Z). While EViews will estimate an expression of this 
type, since there is no dependent variable, some regression statistics (e.g. R-squared) are not 
reported and the equation cannot be used for forecasting. This restriction also holds for any 
equation that includes coefficients to the left of the equal sign. For example, if you specify:

x + c(1)*y = c(2)*z 

EViews finds the values of C(1) and C(2) that minimize the sum of squares of (X+C(1)*Y–
C(2)*Z). The estimated coefficients will be identical to those from an equation specified 
using:

x = -c(1)*y + c(2)*z

but some regression statistics are not reported.

The two most common motivations for specifying your equation by formula are to estimate 
restricted and nonlinear models. For example, suppose that you wish to constrain the coeffi-
cients on the lags on the variable X to sum to one. Solving out for the coefficient restriction 
leads to the following linear model with parameter restrictions:

e urate log c 1 dmr– c 2 –
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y = c(1) + c(2)*x + c(3)*x(-1) + c(4)*x(-2) + (1-c(2)-c(3)-c(4)) 
*x(-3)

To estimate a nonlinear model, simply enter the nonlinear formula. EViews will automati-
cally detect the nonlinearity and estimate the model using nonlinear least squares. For 
details, see “Nonlinear Least Squares” on page 51.

One benefit to specifying an equation by formula is that you can elect to use a different coef-
ficient vector. To create a new coefficient vector, choose Object/New Object… and select 
Matrix-Vector-Coef from the main menu, type in a name for the coefficient vector, and click 
OK. In the New Matrix dialog box that appears, select Coefficient Vector and specify how 
many rows there should be in the vector. The object will be listed in the workfile directory 
with the coefficient vector icon (the little ).

You may then use this coefficient vector in your specification. For example, suppose you cre-
ated coefficient vectors A and BETA, each with a single row. Then you can specify your 
equation using the new coefficients in place of C:

log(cs) = a(1) + beta(1)*log(cs(-1))

Estimating an Equation in EViews

Estimation Methods

Having specified your equation, you now need to choose an estimation method. Click on the 
Method: entry in the dialog and you will see a drop-down menu listing estimation methods.

Standard, single-equation regression is per-
formed using least squares. The other meth-
ods are described in subsequent chapters. 

Equations estimated by cointegrating regres-
sion, GLM or stepwise, or equations includ-
ing MA terms, may only be specified by list 
and may not be specified by expression. All 
other types of equations (among others, ordi-
nary least squares and two-stage least 
squares, equations with AR terms, GMM, and 
ARCH equations) may be specified either by list or expression. Note that some equations, 
such as quantile regression may be specified by expression, but only linear specifications are 
permitted.

Estimation Sample

You should also specify the sample to be used in estimation. EViews will fill out the dialog 
with the current workfile sample, but you can change the sample for purposes of estimation 

b
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by entering your sample string or object in the edit box (see “Samples” on page 136 of 
User’s Guide I for details). Changing the estimation sample does not affect the current work-
file sample.

If any of the series used in estimation contain missing data, EViews will temporarily adjust 
the estimation sample of observations to exclude those observations (listwise exclusion). 
EViews notifies you that it has adjusted the sample by reporting the actual sample used in 
the estimation results:

Here we see the top of an equation output view. EViews reports that it has adjusted the sam-
ple. Out of the 372 observations in the period 1959M01–1989M12, EViews uses the 340 
observations with valid data for all of the relevant variables.

You should be aware that if you include lagged variables in a regression, the degree of sam-
ple adjustment will differ depending on whether data for the pre-sample period are available 
or not. For example, suppose you have nonmissing data for the two series M1 and IP over 
the period 1959M01–1989M12 and specify the regression as:

m1 c ip ip(-1) ip(-2) ip(-3)

If you set the estimation sample to the period 1959M01–1989M12, EViews adjusts the sam-
ple to:

since data for IP(–3) are not available until 1959M04. However, if you set the estimation 
sample to the period 1960M01–1989M12, EViews will not make any adjustment to the sam-
ple since all values of IP(-3) are available during the estimation sample. 

Some operations, most notably estimation with MA terms and ARCH, do not allow missing 
observations in the middle of the sample. When executing these procedures, an error mes-
sage is displayed and execution is halted if an NA is encountered in the middle of the sam-
ple. EViews handles missing data at the very start or the very end of the sample range by 
adjusting the sample endpoints and proceeding with the estimation procedure.

Estimation Options

EViews provides a number of estimation options. These options allow you to weight the esti-
mating equation, to compute heteroskedasticity and auto-correlation robust covariances, 

Dependent Variable: Y 
Method: Least Squares 
Date: 08/08/09   Time: 14:44 
Sample (adjusted): 1959M01 1989M12 
Included observations: 340 after adjustments 

Dependent Variable: M1 
Method: Least Squares 
Date: 08/08/09   Time: 14:45 
Sample: 1960M01 1989M12 
Included observations: 360 
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and to control various features of your estimation algorithm. These options are discussed in 
detail in “Estimation Options” on page 54.

Equation Output

When you click OK in the Equation Specification dialog, EViews displays the equation win-
dow displaying the estimation output view (the examples in this chapter are obtained using 
the workfile “Basics.WF1”):

Using matrix notation, the standard regression may be written as:

(19.2)

where  is a -dimensional vector containing observations on the dependent variable,  
is a  matrix of independent variables,  is a -vector of coefficients, and  is a 

-vector of disturbances.  is the number of observations and  is the number of right-
hand side regressors. 

In the output above,  is log(M1), consists of three variables C, log(IP), and TB3, where 
 and .

Coefficient Results

Regression Coefficients

The column labeled “Coefficient” depicts the estimated coefficients. The least squares 
regression coefficients  are computed by the standard OLS formula:

(19.3)

Dependent Variable: LOG(M1)   
Method: Least Squares   
Date: 08/08/09   Time: 14:51   
Sample: 1959M01 1989M12   
Included observations: 372   

Variable Coefficient Std. Error t-Statistic Prob.  

C -1.699912 0.164954 -10.30539 0.0000
LOG(IP) 1.765866 0.043546 40.55199 0.0000

TB3 -0.011895 0.004628 -2.570016 0.0106

R-squared 0.886416    Mean dependent var 5.663717
Adjusted R-squared 0.885800    S.D. dependent var 0.553903
S.E. of regression 0.187183    Akaike info criterion -0.505429
Sum squared resid 12.92882    Schwarz criterion -0.473825
Log likelihood 97.00979    Hannan-Quinn criter. -0.492878
F-statist ic 1439.848    Durbin-W atson stat 0.008687
Prob(F-s tat istic) 0.000000    

y Xb e

y T X
T k b k e

T T k

y X
T 372 k 3

b

b XX  1–
Xy



12—Chapter 19. Basic Regression Analysis
If your equation is specified by list, the coefficients will be labeled in the “Variable” column 
with the name of the corresponding regressor; if your equation is specified by formula, 
EViews lists the actual coefficients, C(1), C(2), etc.

For the simple linear models considered here, the coefficient measures the marginal contri-
bution of the independent variable to the dependent variable, holding all other variables 
fixed. If you have included “C” in your list of regressors, the corresponding coefficient is the 
constant or intercept in the regression—it is the base level of the prediction when all of the 
other independent variables are zero. The other coefficients are interpreted as the slope of 
the relation between the corresponding independent variable and the dependent variable, 
assuming all other variables do not change. 

Standard Errors

The “Std. Error” column reports the estimated standard errors of the coefficient estimates. 
The standard errors measure the statistical reliability of the coefficient estimates—the larger 
the standard errors, the more statistical noise in the estimates. If the errors are normally dis-
tributed, there are about 2 chances in 3 that the true regression coefficient lies within one 
standard error of the reported coefficient, and 95 chances out of 100 that it lies within two 
standard errors. 

The covariance matrix of the estimated coefficients is computed as:

(19.4)

where  is the residual. The standard errors of the estimated coefficients are the square 
roots of the diagonal elements of the coefficient covariance matrix. You can view the whole 
covariance matrix by choosing View/Covariance Matrix.

t-Statistics

The t-statistic, which is computed as the ratio of an estimated coefficient to its standard 
error, is used to test the hypothesis that a coefficient is equal to zero. To interpret the t-statis-
tic, you should examine the probability of observing the t-statistic given that the coefficient 
is equal to zero. This probability computation is described below.

In cases where normality can only hold asymptotically, EViews will often report a z-statistic 
instead of a t-statistic.

Probability

The last column of the output shows the probability of drawing a t-statistic (or a z-statistic) 
as extreme as the one actually observed, under the assumption that the errors are normally 
distributed, or that the estimated coefficients are asymptotically normally distributed.

This probability is also known as the p-value or the marginal significance level. Given a p-
value, you can tell at a glance if you reject or accept the hypothesis that the true coefficient 

var b  s
2

XX  1–
     s

2 ê ê T k–       ê y Xb–  

ê
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is zero against a two-sided alternative that it differs from zero. For example, if you are per-
forming the test at the 5% significance level, a p-value lower than 0.05 is taken as evidence 
to reject the null hypothesis of a zero coefficient. If you want to conduct a one-sided test, the 
appropriate probability is one-half that reported by EViews. 

For the above example output, the hypothesis that the coefficient on TB3 is zero is rejected 
at the 5% significance level but not at the 1% level. However, if theory suggests that the 
coefficient on TB3 cannot be positive, then a one-sided test will reject the zero null hypothe-
sis at the 1% level.

The p-values for t-statistics are computed from a t-distribution with  degrees of free-
dom. The p-value for z-statistics are computed using the standard normal distribution.

Summary Statistics

R-squared

The R-squared ( ) statistic measures the success of the regression in predicting the values 
of the dependent variable within the sample. In standard settings, may be interpreted as 
the fraction of the variance of the dependent variable explained by the independent vari-
ables. The statistic will equal one if the regression fits perfectly, and zero if it fits no better 
than the simple mean of the dependent variable. It can be negative for a number of reasons. 
For example, if the regression does not have an intercept or constant, if the regression con-
tains coefficient restrictions, or if the estimation method is two-stage least squares or ARCH.

EViews computes the (centered)  as:

(19.5)

where  is the mean of the dependent (left-hand) variable. 

Adjusted R-squared

One problem with using as a measure of goodness of fit is that the will never 
decrease as you add more regressors. In the extreme case, you can always obtain an of 
one if you include as many independent regressors as there are sample observations. 

The adjusted , commonly denoted as , penalizes the for the addition of regressors 
which do not contribute to the explanatory power of the model. The adjusted is com-
puted as:

(19.6)

The is never larger than the , can decrease as you add regressors, and for poorly fit-
ting models, may be negative.
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y y–  y y– 
-------------------------------------      y– yt

t 1

T

 T 

y

R
2

R
2

R2

R
2

R
2

R
2

R
2

R
2

1 1 R2– T 1–
T k–
-------------–

R
2

R
2



14—Chapter 19. Basic Regression Analysis
Standard Error of the Regression (S.E. of regression)

The standard error of the regression is a summary measure based on the estimated variance 
of the residuals. The standard error of the regression is computed as:

(19.7)

Sum-of-Squared Residuals

The sum-of-squared residuals can be used in a variety of statistical calculations, and is pre-
sented separately for your convenience:

(19.8)

Log Likelihood

EViews reports the value of the log likelihood function (assuming normally distributed 
errors) evaluated at the estimated values of the coefficients. Likelihood ratio tests may be 
conducted by looking at the difference between the log likelihood values of the restricted 
and unrestricted versions of an equation.

The log likelihood is computed as:

(19.9)

When comparing EViews output to that reported from other sources, note that EViews does 
not ignore constant terms in the log likelihood.

Durbin-Watson Statistic

The Durbin-Watson statistic measures the serial correlation in the residuals. The statistic is 
computed as

(19.10)

See Johnston and DiNardo (1997, Table D.5) for a table of the significance points of the dis-
tribution of the Durbin-Watson statistic.

As a rule of thumb, if the DW is less than 2, there is evidence of positive serial correlation. 
The DW statistic in our output is very close to one, indicating the presence of serial correla-
tion in the residuals. See “Background,” beginning on page 99, for a more extensive discus-
sion of the Durbin-Watson statistic and the consequences of serially correlated residuals. 
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There are better tests for serial correlation. In “Testing for Serial Correlation” on page 107, 
we discuss the Q-statistic, and the Breusch-Godfrey LM test, both of which provide a more 
general testing framework than the Durbin-Watson test.

Mean and Standard Deviation (S.D.) of the Dependent Variable

The mean and standard deviation of  are computed using the standard formulae:

(19.11)

Akaike Information Criterion

The Akaike Information Criterion (AIC) is computed as:

(19.12)

where  is the log likelihood (given by Equation (19.9) on page 14).

The AIC is often used in model selection for non-nested alternatives—smaller values of the 
AIC are preferred. For example, you can choose the length of a lag distribution by choosing 
the specification with the lowest value of the AIC. See Appendix E. “Information Criteria,” 
on page 1111, for additional discussion.

Schwarz Criterion

The Schwarz Criterion (SC) is an alternative to the AIC that imposes a larger penalty for 
additional coefficients:

(19.13)

Hannan-Quinn Criterion

The Hannan-Quinn Criterion (HQ) employs yet another penalty function:

(19.14)

F-Statistic

The F-statistic reported in the regression output is from a test of the hypothesis that all of 
the slope coefficients (excluding the constant, or intercept) in a regression are zero. For ordi-
nary least squares models, the F-statistic is computed as:

(19.15)

Under the null hypothesis with normally distributed errors, this statistic has an F-distribu-
tion with  numerator degrees of freedom and  denominator degrees of freedom. 
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The p-value given just below the F-statistic, denoted Prob(F-statistic), is the marginal sig-
nificance level of the F-test. If the p-value is less than the significance level you are testing, 
say 0.05, you reject the null hypothesis that all slope coefficients are equal to zero. For the 
example above, the p-value is essentially zero, so we reject the null hypothesis that all of the 
regression coefficients are zero. Note that the F-test is a joint test so that even if all the t-sta-
tistics are insignificant, the F-statistic can be highly significant. 

Note that since the F-statistic depends only on the sums-of-squared residuals of the esti-
mated equation, it is not robust to heterogeneity or serial correlation. The use of robust esti-
mators of the coefficient covariances (“Robust Standard Errors” on page 32) will have no 
effect on the F-statistic. If you do choose to employ robust covariance estimators, EViews 
will also report a robust Wald test statistic and p-value for the hypothesis that all non-inter-
cept coefficients are equal to zero.

Working With Equation Statistics

The regression statistics reported in the estimation output view are stored with the equation. 
These equation data members are accessible through special “@-functions”. You can retrieve 
any of these statistics for further analysis by using these functions in genr, scalar, or matrix 
expressions. If a particular statistic is not computed for a given estimation method, the func-
tion will return an NA.

There are three kinds of “@-functions”: those that return a scalar value, those that return 
matrices or vectors, and those that return strings.

Selected Keywords that Return Scalar Values

@aic Akaike information criterion

@coefcov(i,j) covariance of coefficient estimates  and 

@coefs(i) i-th coefficient value

@dw Durbin-Watson statistic

@f F-statistic

@fprob F-statistic probability.

@hq Hannan-Quinn information criterion

@jstat J-statistic — value of the GMM objective function (for 
GMM)

@logl value of the log likelihood function

@meandep mean of the dependent variable

@ncoef number of estimated coefficients

@r2 R-squared statistic

@rbar2 adjusted R-squared statistic

i j
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Selected Keywords that Return Vector or Matrix Objects

Selected Keywords that Return Strings

See also “Equation” (p. 33) in the Object Reference for a complete list.

Functions that return a vector or matrix object should be assigned to the corresponding 
object type. For example, you should assign the results from @tstats to a vector:

vector tstats = eq1.@tstats

and the covariance matrix to a matrix:

matrix mycov = eq1.@cov

You can also access individual elements of these statistics:

scalar pvalue = 1-@cnorm(@abs(eq1.@tstats(4)))

scalar var1 = eq1.@covariance(1,1)

For documentation on using vectors and matrices in EViews, see Chapter 11. “Matrix Lan-
guage,” on page 261 of the Command and Programming Reference.

@rlogl retricted (constant only) log-likelihood.

@regobs number of observations in regression

@schwarz Schwarz information criterion

@sddep standard deviation of the dependent variable

@se standard error of the regression

@ssr sum of squared residuals

@stderrs(i) standard error for coefficient 

@tstats(i) t-statistic value for coefficient 

c(i) i-th element of default coefficient vector for equation (if 
applicable)

@coefcov matrix containing the coefficient covariance matrix

@coefs vector of coefficient values

@stderrs vector of standard errors for the coefficients

@tstats vector of t-statistic values for coefficients

@pvals vector of p-values for coefficients

@command full command line form of the estimation command

@smpl description of the sample used for estimation

@updatetime string representation of the time and date at which the 
equation was estimated

i

i
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Working with Equations

The follow description outlines common views and procedures that are available for an esti-
mated equation. Specialized estimators may support only a subset of these views and procs, 
while perhaps offering others.

Views of an Equation
• Representations. Displays the equation in three basic forms: EViews command form 

showing the command associated with the equation, as an algebraic equation with 
symbolic coefficients, and as an equation with a text representation of the estimated 
values of the coefficients.

You can cut-and-paste 
from the representations 
view into any application 
that supports the Windows 
clipboard.

• Estimation Output. Dis-
plays the equation output 
results described above. 

• Actual, Fitted, Residual. 
These views display the 
actual and fitted values of 
the dependent variable and the residuals from the regression in tabular and graphical 
form. Actual, Fitted, Residual Table displays these values in table form.

Note that the actual value 
is always the sum of the 
fitted value and the resid-
ual. Actual, Fitted, Resid-
ual Graph displays a 
standard EViews graph of 
the actual values, fitted 
values, and residuals, 
along with dotted lines 
showing at plus and minus 
one estimated standard 
error. Residual Graph 
plots only the residuals, while the Standardized Residual Graph plots the residuals 
divided by the estimated residual standard deviation. 
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• ARMA structure.... Provides views which describe the estimated ARMA structure of 
your residuals. Details on these views are provided in “ARMA Structure” on page 128.

• Gradients and Derivatives. Provides views which describe the gradients of the objec-
tive function and the information about the computation of any derivatives of the 
regression function. Details on these views are provided in Appendix D. “Gradients 
and Derivatives,” on page 1103.

• Covariance Matrix. Displays the covariance matrix of the coefficient estimates as a 
spreadsheet view. To save this covariance matrix as a matrix object, use the @coef-
cov member of the equation, as in

sym mycov = eq1.@coefcov 

• Coefficient Diagnostics, Residual Diagnostics, and Stability Diagnostics. These are 
views for specification and diagnostic tests and are described in detail in Chapter 24. 
“Specification and Diagnostic Tests,” beginning on page 175.

Procedures of an Equation
• Specify/Estimate…. Brings up the Equation Specification dialog box so that you can 

modify your specification. You can edit the equation specification, or change the esti-
mation method or estimation sample.

• Forecast…. Forecasts or fits values using the estimated equation. Forecasting using 
equations is discussed in Chapter 23. “Forecasting from an Equation,” on page 147.

• Make Residual Series…. Saves the residuals from the regression as a series in the 
workfile. Depending on the estimation method, you may choose from three types of 
residuals: ordinary, standardized, and generalized. For ordinary least squares, only 
the ordinary residuals may be saved.

• Make Regressor Group. Creates an untitled group comprised of all the variables used 
in the equation (with the exception of the constant). 

• Make Gradient Group. Creates a group containing the gradients of the objective func-
tion with respect to the coefficients of the model.

• Make Derivative Group. Creates a group containing the derivatives of the regression 
function with respect to the coefficients in the regression function.

• Make Model. Creates an untitled model containing a link to the estimated equation if 
a named equation or the substituted coefficients representation of an untitled equa-
tion. This model can be solved in the usual manner. See Chapter 42. “Models,” on 
page 781 for information on how to use models for forecasting and simulations.

• Update Coefs from Equation. Places the estimated coefficients of the equation in the 
coefficient vector. You can use this procedure to initialize starting values for various 
estimation procedures.
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Residuals from an Equation

The residuals from the default equation are stored in a series object called RESID. RESID 
may be used directly as if it were a regular series, except in estimation.

RESID will be overwritten whenever you estimate an equation and will contain the residuals 
from the latest estimated equation. To save the residuals from a particular equation for later 
analysis, you should save them in a different series so they are not overwritten by the next 
estimation command. For example, you can copy the residuals into a regular EViews series 
called RES1 using the command:

series res1 = resid

There is an even better approach to saving the residuals. Even if you have already overwrit-
ten the RESID series, you can always create the desired series using EViews’ built-in proce-
dures if you still have the equation object. If your equation is named EQ1, open the equation 
window and select Proc/Make Residual Series..., or enter:

eq1.makeresid res1

to create the desired series.

Storing and Retrieving an Equation 

As with other objects, equations may be stored to disk in data bank or database files. You 
can also fetch equations from these files. 

Equations may also be copied-and-pasted to, or from, workfiles or databases. 

EViews even allows you to access equations directly from your databases or another work-
file. You can estimate an equation, store it in a database, and then use it to forecast in sev-
eral workfiles.

See Chapter 4. “Object Basics,” beginning on page 101 and Chapter 10. “EViews Databases,” 
beginning on page 317, both in User’s Guide I, for additional information about objects, 
databases, and object containers.

Using Estimated Coefficients

The coefficients of an equation are listed in the representations view. By default, EViews will 
use the C coefficient vector when you specify an equation, but you may explicitly use other 
coefficient vectors in defining your equation. 

These stored coefficients may be used as scalars in generating data. While there are easier 
ways of generating fitted values (see “Forecasting from an Equation” on page 147), for pur-
poses of illustration, note that we can use the coefficients to form the fitted values from an 
equation. The command:

series cshat = eq1.c(1) + eq1.c(2)*gdp
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forms the fitted value of CS, CSHAT, from the OLS regression coefficients and the indepen-
dent variables from the equation object EQ1.

Note that while EViews will accept a series generating equation which does not explicitly 
refer to a named equation:

series cshat = c(1) + c(2)*gdp

and will use the existing values in the C coefficient vector, we strongly recommend that you 
always use named equations to identify the appropriate coefficients. In general, C will con-
tain the correct coefficient values only immediately following estimation or a coefficient 
update. Using a named equation, or selecting Proc/Update Coefs from Equation, guaran-
tees that you are using the correct coefficient values.

An alternative to referring to the coefficient vector is to reference the @coefs elements of 
your equation (see “Selected Keywords that Return Scalar Values” on page 16). For example, 
the examples above may be written as:

series cshat=eq1.@coefs(1)+eq1.@coefs(2)*gdp

EViews assigns an index to each coefficient in the order that it appears in the representations 
view. Thus, if you estimate the equation:

equation eq01.ls y=c(10)+b(5)*y(-1)+a(7)*inc

where B and A are also coefficient vectors, then:

• eq01.@coefs(1) contains C(10)

• eq01.@coefs(2) contains B(5)

• eq01.@coefs(3) contains A(7) 

This method should prove useful in matching coefficients to standard errors derived from 
the @stderrs elements of the equation (see “Equation Data Members” on page 37 of the 
Object Reference). The @coefs elements allow you to refer to both the coefficients and the 
standard errors using a common index.

If you have used an alternative named coefficient vector in specifying your equation, you 
can also access the coefficient vector directly. For example, if you have used a coefficient 
vector named BETA, you can generate the fitted values by issuing the commands:

equation eq02.ls cs = beta(1) + beta(2)*gdp

series cshat = beta(1) + beta(2)*gdp

where BETA is a coefficient vector. Again, however, we recommend that you use the @coefs 
elements to refer to the coefficients of EQ02. Alternatively, you can update the coefficients in 
BETA prior to use by selecting Proc/Update Coefs from Equation from the equation win-
dow. Note that EViews does not allow you to refer to the named equation coefficients 
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EQ02.BETA(1) and EQ02.BETA(2). You must instead use the expressions, EQ02.@COEFS(1) 
and EQ02.@COEFS(2).

Estimation Problems

Exact Collinearity

If the regressors are very highly collinear, EViews may encounter difficulty in computing the 
regression estimates. In such cases, EViews will issue an error message “Near singular 
matrix.” When you get this error message, you should check to see whether the regressors 
are exactly collinear. The regressors are exactly collinear if one regressor can be written as a 
linear combination of the other regressors. Under exact collinearity, the regressor matrix  
does not have full column rank and the OLS estimator cannot be computed.

You should watch out for exact collinearity when you are using dummy variables in your 
regression. A set of mutually exclusive dummy variables and the constant term are exactly 
collinear. For example, suppose you have quarterly data and you try to run a regression with 
the specification:

y c x @seas(1) @seas(2) @seas(3) @seas(4)

EViews will return a “Near singular matrix” error message since the constant and the four 
quarterly dummy variables are exactly collinear through the relation:

c = @seas(1) + @seas(2) + @seas(3) + @seas(4)

In this case, simply drop either the constant term or one of the dummy variables. 

The textbooks listed above provide extensive discussion of the issue of collinearity.
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Chapter 20.  Additional Regression Tools

This chapter describes additional tools that may be used to augment the techniques 
described in Chapter 19. “Basic Regression Analysis,” beginning on page 5.

• This first portion of this chapter describes special EViews expressions that may be 
used in specifying and estimating models with Polynomial Distributed Lags (PDLs) or 
dummy variables.

• In the second section, we describe methods for heteroskedasticity consistent, het-
eroskedasticity and autocorrelation consistent, and cluster robust covariance estima-
tion. 

• Next, we describe weighted least squares and nonlinear least squares estimation.

• Lastly, we document tools for performing variable selection using stepwise regression.

Note that parts of this chapter refer to estimation of models which have autoregressive (AR) 
and moving average (MA) error terms. These concepts are discussed in greater depth in 
Chapter 22. “Time Series Regression,” on page 99.

Special Equation Expressions

EViews provides you with special expressions that may be used to specify and estimate 
equations with PDLs, dummy variables, or ARMA errors. We consider here terms for incor-
porating PDLs and dummy variables into your equation, and defer the discussion of ARMA 
estimation to “Time Series Regression” on page 99.

Polynomial Distributed Lags (PDLs)

A distributed lag is a relation of the type:

(20.1)

The coefficients  describe the lag in the effect of  on . In many cases, the coefficients 
can be estimated directly using this specification. In other cases, the high collinearity of cur-
rent and lagged values of  will defeat direct estimation. 

You can reduce the number of parameters to be estimated by using polynomial distributed 
lags (PDLs) to impose a smoothness condition on the lag coefficients. Smoothness is 
expressed as requiring that the coefficients lie on a polynomial of relatively low degree. A 
polynomial distributed lag model with order  restricts the  coefficients to lie on a -th 
order polynomial of the form,

(20.2)

for , where  is a pre-specified constant given by:
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(20.3)

The PDL is sometimes referred to as an Almon lag. The constant  is included only to avoid 
numerical problems that can arise from collinearity and does not affect the estimates of . 

This specification allows you to estimate a model with  lags of  using only  parameters 
(if you choose , EViews will return a “Near Singular Matrix” error). 

If you specify a PDL, EViews substitutes Equation (20.2) into (20.1), yielding,

(20.4)

where:

(20.5)

Once we estimate  from Equation (20.4), we can recover the parameters of interest , and 
their standard errors using the relationship described in Equation (20.2). This procedure is 
straightforward since  is a linear transformation of . 

The specification of a polynomial distributed lag has three elements: the length of the lag , 
the degree of the polynomial (the highest power in the polynomial) , and the constraints 
that you want to apply. A near end constraint restricts the one-period lead effect of  on  
to be zero:

. (20.6)

A far end constraint restricts the effect of  on  to die off beyond the number of specified 
lags:

. (20.7)

If you restrict either the near or far end of the lag, the number of  parameters estimated is 
reduced by one to account for the restriction; if you restrict both the near and far end of the 
lag, the number of  parameters is reduced by two. 

By default, EViews does not impose constraints.

How to Estimate Models Containing PDLs

You specify a polynomial distributed lag by the pdl term, with the following information in 
parentheses, each separated by a comma in this order:

c k  2 if k is even

k 1–  2 if k is odd





c
b

k x p
p k

yt wtd g1z1 g2z2  gp 1 zp 1 et    

z1 xt xt 1–  xt k–  

z2 cxt– 1 c– xt 1–  k c– xt k–  



zp 1 c– pxt 1 c– pxt 1–  k c– pxt k–  

g b

b g

k
p

x y

b 1– g1 g2 1– c–   gp 1 1– c– p   0 

x y

bk 1 g1 g2 k 1 c–   gp 1 k 1 c– p   0 

g

g
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• The name of the series. 

• The lag length (the number of lagged values of the series to be included).

• The degree of the polynomial.

• A numerical code to constrain the lag polynomial (optional):

You may omit the constraint code if you do not want to constrain the lag polynomial. Any 
number of pdl terms may be included in an equation. Each one tells EViews to fit distrib-
uted lag coefficients to the series and to constrain the coefficients to lie on a polynomial. 

For example, the commands:

ls sales c pdl(orders,8,3)

fits SALES to a constant, and a distributed lag of current and eight lags of ORDERS, where 
the lag coefficients of ORDERS lie on a third degree polynomial with no endpoint con-
straints. Similarly:

ls div c pdl(rev,12,4,2)

fits DIV to a distributed lag of current and 12 lags of REV, where the coefficients of REV lie 
on a 4th degree polynomial with a constraint at the far end.

The pdl specification may also be used in two-stage least squares. If the series in the pdl is 
exogenous, you should include the PDL of the series in the instruments as well. For this pur-
pose, you may specify pdl(*) as an instrument; all pdl variables will be used as instru-
ments. For example, if you specify the TSLS equation as,

sales c inc pdl(orders(-1),12,4) 

with instruments:

fed fed(-1) pdl(*)

the distributed lag of ORDERS will be used as instruments together with FED and FED(–1). 

Polynomial distributed lags cannot be used in nonlinear specifications.

Example

We may estimate a distributed lag model of industrial production (IP) on money (M1) in the 
workfile “Basics.WF1” by entering the command:

ls ip c m1(0 to -12)

1 constrain the near end of the lag to zero.

2 constrain the far end.

3 constrain both ends.
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which yields the following results:

Taken individually, none of the coefficients on lagged M1 are statistically different from zero. 
Yet the regression as a whole has a reasonable with a very significant F-statistic (though 
with a very low Durbin-Watson statistic). This is a typical symptom of high collinearity 
among the regressors and suggests fitting a polynomial distributed lag model.

To estimate a fifth-degree polynomial distributed lag model with no constraints, set the sam-
ple using the command,

smpl 1959m01 1989m12

then estimate the equation specification:

ip c pdl(m1,12,5)

by entering the expression in the Equation Estimation dialog and estimating using Least 
Squares.

The following result is reported at the top of the equation window:

Dependent Variable: IP   
Method: Least Squares   
Date: 08/08/09   Time: 15:27   
Sample (adjusted): 1960M01 1989M12   
Included observations: 360 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.  

C 40.67568 0.823866 49.37171 0.0000
M1 0.129699 0.214574 0.604449 0.5459

M1(-1) -0.045962 0.376907 -0.121944 0.9030
M1(-2) 0.033183 0.397099 0.083563 0.9335
M1(-3) 0.010621 0.405861 0.026169 0.9791
M1(-4) 0.031425 0.418805 0.075035 0.9402
M1(-5) -0.048847 0.431728 -0.113143 0.9100
M1(-6) 0.053880 0.440753 0.122245 0.9028
M1(-7) -0.015240 0.436123 -0.034944 0.9721
M1(-8) -0.024902 0.423546 -0.058795 0.9531
M1(-9) -0.028048 0.413540 -0.067825 0.9460

M1(-10) 0.030806 0.407523 0.075593 0.9398
M1(-11) 0.018509 0.389133 0.047564 0.9621
M1(-12) -0.057373 0.228826 -0.250728 0.8022

R-squared 0.852398    Mean dependent var 71.72679
Adjusted R-squared 0.846852    S.D. dependent var 19.53063
S.E. of regression 7.643137    Akaike info criterion 6.943606
Sum squared resid 20212.47    Schwarz criterion 7.094732
Log likelihood -1235.849    Hannan-Quinn criter. 7.003697
F-statist ic 153.7030    Durbin-W atson stat 0.008255
Prob(F-s tat istic) 0.000000    

R2
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This portion of the view reports the estimated coefficients  of the polynomial in 
Equation (20.2) on page 23. The terms PDL01, PDL02, PDL03, …, correspond to  
in Equation (20.4). 

The implied coefficients of interest  in equation (1) are reported at the bottom of the 
table, together with a plot of the estimated polynomial:

The Sum of Lags reported at the bottom of the table is the sum of the estimated coefficients 
on the distributed lag and has the interpretation of the long run effect of M1 on IP, assuming 
stationarity. 

Dependent Variable: IP    
Method: Least Squares    
Date: 08/08/09   T ime: 15:35   
Sample (adjusted): 1960M01 1989M12   
Included observations: 360 after adjustments   

Variable Coefficient Std. Error t-Statistic Prob.  

C 40.67311  0.815195 49.89374 0.0000
PDL01 -4.66E-05  0.055566 -0.000839 0.9993
PDL02 -0.015625  0.062884 -0.248479 0.8039
PDL03 -0.000160  0.013909 -0.011485 0.9908
PDL04 0.001862  0.007700 0.241788 0.8091
PDL05 2.58E-05  0.000408 0.063211 0.9496
PDL06 -4.93E-05  0.000180 -0.273611 0.7845

R-squared 0.852371  Mean dependent var 71.72679
Adjusted R-squared 0.849862  S.D. dependent var 19.53063
S.E. of regression 7.567664  Akaike info criterion 6.904899
Sum squared resid 20216.15  Schwarz criterion 6.980462
Log likelihood -1235.882  Hannan-Quinn criter. 6.934944
F-statist ic 339.6882  Durbin-Watson stat 0.008026
Prob(F-stat is tic) 0.000000     

g

z1 z2 , ,

bj
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Note that selecting View/Coefficient Diagnostics for an equation estimated with PDL terms 
tests the restrictions on , not on . In this example, the coefficients on the fourth- 
(PDL05) and fifth-order (PDL06) terms are individually insignificant and very close to zero. 
To test the joint significance of these two terms, click View/Coefficient Diagnostics/Wald 
Test-Coefficient Restrictions… and enter:

c(6)=0, c(7)=0

in the Wald Test dialog box (see “Wald Test (Coefficient Restrictions)” on page 182 for an 
extensive discussion of Wald tests in EViews). EViews displays the result of the joint test:

There is no evidence to reject the null hypothesis, suggesting that you could have fit a lower 
order polynomial to your lag structure.

Automatic Categorical Dummy Variables

EViews equation specifications support expressions of the form:

@expand(ser1[, ser2, ser3, ...][, drop_spec])

When used in an equation specification, @expand creates a set of dummy variables that 
span the unique integer or string values of the input series.

For example consider the following two variables:

• SEX is a numeric series which takes the values 1 and 0.

• REGION is an alpha series which takes the values “North”, “South”, “East”, and 
“West”.

The equation list specification

income age @expand(sex)

g b

Wald Test:   
Equation: Untitled   
Null Hypothesis: C(6)=0, C(7)=0  

Test Statistic Value df Probability

F-statistic  0.039852 (2, 353)  0.9609 
Chi-square  0.079704  2  0.9609 

    
Null Hypothesis Summary:  

Normalized Restriction (= 0) Value Std. Err. 

C(6)  2.58E-05  0.000408 
C(7) -4.93E-05  0.000180 

Restrictions are linear in coefficients.  
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is used to regress INCOME on the regressor AGE, and two dummy variables, one for 
“SEX=0” and one for “SEX=1”.

Similarly, the @expand statement in the equation list specification,

income @expand(sex, region) age

creates 8 dummy variables corresponding to:

sex=0, region="North"

sex=0, region="South"

sex=0, region="East"

sex=0, region="West"

sex=1, region="North"

sex=1, region="South"

sex=1, region="East"

sex=1, region="West"

Note that our two example equation specifications did not include an intercept. This is 
because the default @expand statements created a full set of dummy variables that would 
preclude including an intercept. 

You may wish to drop one or more of the dummy variables. @expand takes several options 
for dropping variables. 

The option @dropfirst specifies that the first category should be dropped so that:

@expand(sex, region, @dropfirst)

no dummy is created for “SEX=0, REGION="North"”.

Similarly, @droplast specifies that the last category should be dropped. In:

@expand(sex, region, @droplast)

no dummy is created for “SEX=1, REGION="WEST"”.

You may specify the dummy variables to be dropped, explicitly, using the syntax 
@drop(val1[, val2, val3,...]), where each argument specified corresponds to a successive 
category in @expand. For example, in the expression:

@expand(sex, region, @drop(0,"West"), @drop(1,"North"))

no dummy is created for “SEX=0, REGION="West"” and “SEX=1, REGION="North"”.

When you specify drops by explicit value you may use the wild card “*” to indicate all val-
ues of a corresponding category. For example:

@expand(sex, region, @drop(1,*))
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specifies that dummy variables for all values of REGION where “SEX=1” should be 
dropped.

We caution you to take some care in using @expand since it is very easy to generate exces-
sively large numbers of regressors.

@expand may also be used as part of a general mathematical expression, for example, in 
interactions with another variable as in:

2*@expand(x)

log(x+y)*@expand(z)

a*@expand(x)/b

Also useful is the ability to renormalize the dummies

@expand(x)-.5

Somewhat less useful (at least its uses may not be obvious) but supported are cases like:

log(x+y*@expand(z))

(@expand(x)-@expand(y))

As with all expressions included on an estimation or group creation command line, they 
should be enclosed in parentheses if they contain spaces. Thus, the following expressions 
are valid,

a*expand(x)

(a  *  @expand(x))

while this last expression is not,

a  *  @expand(x)

Example

Following Wooldridge (2000, Example 3.9, p. 106), we regress the log median housing price, 
LPRICE, on a constant, the log of the amount of pollution (LNOX), and the average number 
of houses in the community, ROOMS, using data from Harrison and Rubinfeld (1978). The 
data are available in the workfile “Hprice2.WF1”.

We expand the example to include a dummy variable for each value of the series RADIAL, 
representing an index for community access to highways. We use @expand to create the 
dummy variables of interest, with a list specification of:

lprice lnox rooms @expand(radial)

We deliberately omit the constant term C since the @expand creates a full set of dummy 
variables. The top portion of the results is depicted below:
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Note that EViews has automatically created dummy variable expressions for each distinct 
value in RADIAL. If we wish to renormalize our dummy variables with respect to a different 
omitted category, we may include the C in the regression list, and explicitly exclude a value. 
For example, to exclude the category RADIAL=24, we use the list:

lprice c lnox rooms @expand(radial, @drop(24))

Estimation of this specification yields:

Dependent Variable: LPRICE   
Method: Least Squares   
Date: 08/08/09   Time: 22:11   
Sample: 1 506    
Included observations: 506   

Variable Coefficient Std. Error t-Statistic Prob.  

LNOX -0.487579 0.084998 -5.736396 0.0000
ROOMS 0.284844 0.018790 15.15945 0.0000

RADIAL=1 8.930255 0.205986 43.35368 0.0000
RADIAL=2 9.030875 0.209225 43.16343 0.0000
RADIAL=3 9.085988 0.199781 45.47970 0.0000
RADIAL=4 8.960967 0.198646 45.11016 0.0000
RADIAL=5 9.110542 0.209759 43.43330 0.0000
RADIAL=6 9.001712 0.205166 43.87528 0.0000
RADIAL=7 9.013491 0.206797 43.58621 0.0000
RADIAL=8 9.070626 0.214776 42.23297 0.0000
RADIAL=24 8.811812 0.217787 40.46069 0.0000
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Robust Standard Errors

In the linear least squares regression model, the variance-covariance matrix of the estimated 
coefficients may be written as:

(20.8)

where . 

If the error terms, , are homoskedastic and uncorrelated so that , the cova-
riance matrix simplifies to the familiar expression

. (20.9)

By default, EViews estimates the coefficient covariance matrix under the assumptions 
underlying Equation (20.9), so that

(20.10)

and

(20.11)

Dependent Variable: LPRICE   
Method: Least Squares   
Date: 08/08/09   Time: 22:15   
Sample: 1 506    
Included observations: 506   

Variable Coefficient Std. Error t-Statistic Prob.  

C 8.811812 0.217787 40.46069 0.0000
LNOX -0.487579 0.084998 -5.736396 0.0000

ROOMS 0.284844 0.018790 15.15945 0.0000
RADIAL=1 0.118444 0.072129 1.642117 0.1012
RADIAL=2 0.219063 0.066055 3.316398 0.0010
RADIAL=3 0.274176 0.059458 4.611253 0.0000
RADIAL=4 0.149156 0.042649 3.497285 0.0005
RADIAL=5 0.298730 0.037827 7.897337 0.0000
RADIAL=6 0.189901 0.062190 3.053568 0.0024
RADIAL=7 0.201679 0.077635 2.597794 0.0097
RADIAL=8 0.258814 0.066166 3.911591 0.0001

R-squared 0.573871    Mean dependent var 9.941057
Adjusted R-squared 0.565262    S.D. dependent var 0.409255
S.E. of regression 0.269841    Akaike info criterion 0.239530
Sum squared resid 36.04295    Schwarz criterion 0.331411
Log likelihood -49.60111    Hannan-Quinn criter. 0.275566
F-statist ic 66.66195    Durbin-W atson stat 0.671010
Prob(F-s tat istic) 0.000000    
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where  is the standard degree-of-freedom corrected estimator of the residual variance.

We may instead employ robust estimators of the coefficient variance  which relax the 
assumptions of heteroskedasticity and/or zero correlation. Broadly speaking, EViews offers 
three classes of robust variance estimators that are:

• Robust in the presence of heteroskedasticity. Estimators in this first class are termed 
Heteroskedasticity Consistent (HC) Covariance estimators. 

• Robust in the presence of correlation between observations in different groups or clus-
ters. This second class consists of the family of Cluster Robust (CR) variance estima-
tors.

• Robust in the presence of heteroskedasticity and serial correlation. Estimators in the 
third class are referred to as Heteroskedasticity and Autocorrelation Consistent Covari-
ance (HAC) estimators.

All of these estimators are special cases of sandwich estimators of the coefficient covari-
ances. The name follows from the structure of the estimators in which different estimates of 

 are sandwiched between two instances of an outer moment matrix.

It is worth emphasizing all three of these approaches alter the estimates of the coefficient 
standard errors of an equation but not the point estimates themselves.

Lastly, our discussion here focuses on the linear model. The extension to nonlinear regres-
sion is described in “Nonlinear Least Squares” on page 51. 

Heteroskedasticity Consistent Covariances 

First, we consider coefficient covariance estimators that are robust to the presence of het-
eroskedasticity.

We divide our discussion of HC covariance estimation into two groups: basic estimators, 
consisting of White (1980) and degree-of-freedom corrected White (Davidson and 
MacKinnon 1985), and more general estimators that account for finite samples by adjusting 
the weights given to residuals on the basis of leverage (Long and Ervin, 2000; Cribari-Neto 
and da Silva, 2011).

Basic HC Estimators

White (1980) derives a heteroskedasticity consistent covariance matrix estimator which pro-
vides consistent estimates of the coefficient covariances in the presence of (conditional) het-
eroskedasticity of unknown form, where

(20.12)

Recall that the coefficient variance in question is 
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Under the basic White approach. we estimate the central matrix  using either 
the d.f. corrected form

(20.13)

or the uncorrected form

(20.14)

where  are the estimated residuals,  is the number of observations,  is the number of 
regressors, and  is the conventional degree-of-freedom correction.

The estimator of  is then used to form the heteroskedasticity consistent coefficient covari-
ance estimator. For example, the degree-of-freedom White heteroskedasticity consistent 
covariance matrix estimator is given by

(20.15)

Estimates using this approach are typically referred to as White or Huber-White or (for the 
d.f. corrected case) White-Hinkley covariances and standard errors.

Example

To illustrate the computation of White covariance estimates in EViews, we employ an exam-
ple from Wooldridge (2000, p. 251) of an estimate of a wage equation for college professors. 
The equation uses dummy variables to examine wage differences between four groups of 
individuals: married men (MARRMALE), married women (MARRFEM), single women (SIN-
GLEFEM), and the base group of single men. The explanatory variables include levels of 
education (EDUC), experience (EXPER) and tenure (TENURE). The data are in the workfile 
“Wooldridge.WF1”.

To select the White covariance estimator, specify the equation 
as before, then select the Options tab and select Huber-White 
in the Covariance method drop-down. You may, if desired, 
use the checkbox to remove the default d.f. Adjustment, but 
in this example, we will use the default setting. (Note that the 
Information matrix combo setting is not important in linear 
specifications).

The output for the robust covariances for this regression are shown below:
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As Wooldridge notes, the heteroskedasticity robust standard errors for this specification are 
not very different from the non-robust forms, and the test statistics for statistical significance 
of coefficients are generally unchanged. While robust standard errors are often larger than 
their usual counterparts, this is not necessarily the case, and indeed in this example, there 
are some robust standard errors that are smaller than their conventional counterparts.

Notice that EViews reports both the conventional residual-based F-statistic and associated 
probability and the robust Wald test statistic and p-value for the hypothesis that all non-
intercept coefficients are equal to zero. 

Recall that the familiar residual F-statistic for testing the null hypothesis depends only on 
the coefficient point estimates, and not their standard error estimates, and is valid only 
under the maintained hypotheses of no heteroskedasticity or serial correlation. For ordinary 
least squares with conventionally estimated standard errors, this statistic is numerically 
identical to the Wald statistic. When robust standard errors are employed, the numerical 
equivalence between the two breaks down, so EViews reports both the non-robust conven-
tional residual and the robust Wald F-statistics.

EViews reports the robust F-statistic as the Wald F-statistic in equation output, and the cor-
responding p-value as Prob(Wald F-statistic). In this example, both the non-robust F-statis-

Dependent Variable: LOG(WAGE)   
Method: Least Squares 
Date: 31/05/17   Time: 12:15   
Sample: 1 526    
Included observations: 526   
White-Hinkley (HC1) heteroskedasticity consistent standard errors 
        and covariance   

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.321378 0.109469 2.935791 0.0035 
MARRMALE 0.212676 0.057142 3.721886 0.0002 
MARRFEM -0.198268 0.058770 -3.373619 0.0008 
SINGFEM -0.110350 0.057116 -1.932028 0.0539 

EDUC 0.078910 0.007415 10.64246 0.0000 
EXPER 0.026801 0.005139 5.215010 0.0000 

EXPER^2 -0.000535 0.000106 -5.033361 0.0000 
TENURE 0.029088 0.006941 4.190731 0.0000 

TENURE^2 -0.000533 0.000244 -2.187835 0.0291 

R-squared 0.460877    Mean dependent var 1.623268 
Adjusted R-squared 0.452535    S.D. dependent var 0.531538 
S.E. of regression 0.393290    Akaike info criterion 0.988423 
Sum squared resid 79.96799    Schwarz criterion 1.061403 
Log likelihood -250.9552    Hannan-Quinn criter. 1.016998 
F-statistic 55.24559    Durbin-Watson stat 1.784785 
Prob(F-statistic) 0.000000    Wald F-statistic 51.69553 
Prob(Wald F-statistic) 0.000000    



36—Chapter 20. Additional Regression Tools
tic and the robust Wald show that the non-intercept coefficients are jointly statistically 
significant.

Alternative HC Estimators

The two familiar White covariance estimators described in “Basic HC Estimators” on 
page 33 are two elements of a wider class of HC methods (Long and Ervin, 2000; Cribari-
Neto and da Silva, 2011). 

This general class of heteroskedasticity consistent sandwich covariance estimators may be 
written as:

(20.16)

where  are observation-specific weights that are chosen to improve finite sample perfor-
mance.

The various members of the class are obtained through different choices for the weights. For 
example, the standard White and d.f. corrected White estimators are obtained by setting 

 and  for all , respectively.

EViews allows you to estimate your covariances using several choices for . In addition to 
the standard White covariance estimators from above, EViews supports the bias-correcting 
HC2, pseudo-jackknife HC3 (MacKinnon and White, 1985), and the leverage weighting HC4, 
HC4m, and HC5 (Cribari-Neto, 2004; Cribaro-Neto and da Silva, 2011; Cribari-Neto, Souza, 
and Vasconcellos, 2007 and 2008). 

The weighting functions for the various HC estimators supported by EViews are provided 
below:

Method

HC0 – White 1

HC1 – White with d.f. correction

HC2 – bias corrected

HC3 – pseudo-jackknife

HC4 – relative leverage
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where  are the diagonal elements of the familiar “hat matrix” 
.

Note that the HC0 and HC1 methods correspond to the basic White estimators outlined ear-
lier.

Note that HC4, HC4m, and HC5 all depend on an exponential discounting factor  that dif-
fers across methods:

• For HC4,

 

is a truncated function of the ratio between  and the mean  (Cribari-Neto, 2004; 
p. 230).

• For HC4m,

where  and  are pre-specified parameters (Cribari-Neto and da Silva, 2011). Fol-
lowing Cribari-Neto and da Silva, 

EViews chooses default values of  and .

• For HC5,

 

is similar to the HC4 version of , but with observation specific truncation that 
depends on the maximal leverage and a pre-specified parameter  (Cribari-Neto, 
Souza, and Vasconcellos, 2007 and 2008). 

EViews employs a default value of .

Lastly, to allow for maximum flexibility, EViews allows you to provide user-specified  in 
the form of a series containing those values.

Each of the weight choices modifies the effects of high leverage observations on the calcula-
tion of the covariance. See Cribari-Neto (2004), Cribari-Neto and da Silva (2011), and Crib-
ari-Neto, Souza, and Vasconcellos (2007, 2008) for discussion of the effects of these choices.

HC4m

HC5

User – user-specified arbitrary
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dt min Tht k max 4 kTh, max k( ),( )

dt

k
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dt
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Note that the full set of HC estimators is only available for linear regression models. For non-
linear regression models, the leverage based methods are not available and only user-speci-
fied may be computed.

Example

To illustrate the use of the alternative HC estimators, we continue with the Wooldridge 
example (“Example” on page 34) considered above. We specify the equation variables as 
before, then select the Options tab and click on the Covariance method drop-down and 
select HC (Various):

The dialog will change to show you additional options for selecting the HC method:

Note that the HC0 (ordinary) and HC1 (d.f. adjusted) items replicate the Huber-White 
option from the original Covariance method dropdown and are included in this list for com-
pleteness. If desired, change the method from the default HC2 (bias adjusted), and if neces-
sary, specify values for the parameters. For example, if you select User-specified, you will be 
prompted to provide the name of a series in the workfile containing the values of the 
weights .

Continuing with our example, we use the Covariance method dropdown to select the HC5 
method, and retain the default value  . Click on OK to estimate the model with 
these settings producing the following results:

dt

k 0.7



Robust Standard Errors—39
The effects on statistical inference resulting from a different HC estimator are minor, though 
the quadratic effect of TENURE is no longer significant at conventional test levels.

Cluster-Robust Covariances

In many settings, observations may be grouped into different groups or “clusters” where 
errors are correlated for observations in the same cluster and uncorrelated for observations 
in different clusters. EViews offers support for consistent estimation of coefficient covari-
ances that are robust to either one and two-way clustering.

We begin with a single clustering classifier and assume that

(20.17)

for all  and  in the same cluster, and all  and  that are in different clusters. If we 
assume that the number of clusters  goes to infinity, we may compute a cluster-robust 
(CR) covariance estimate that is robust to both heteroskedasticity and to within-cluster cor-
relation (Liang and Zeger, 1986; Wooldridge, 2003; Cameron and Miller, 2015).

Dependent Variable: LOG(WAGE)   
Method: Least Squares 
Date: 31/05/17   Time: 12:11   
Sample: 1 526    
Included observations: 526   
Cribari-Neto et al. (H5) heteroskedasticity-consistent standard errors 
        & covariance (k=.7)   

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.321378 0.110175 2.916988 0.0037 
MARRMALE 0.212676 0.057869 3.675129 0.0003 
MARRFEM -0.198268 0.059220 -3.347974 0.0009 
SINGFEM -0.110350 0.057236 -1.927970 0.0544 

EDUC 0.078910 0.007502 10.51918 0.0000 
EXPER 0.026801 0.005147 5.206623 0.0000 

EXPER^2 -0.000535 0.000107 -4.995281 0.0000 
TENURE 0.029088 0.009312 3.123691 0.0019 

TENURE^2 -0.000533 0.000387 -1.378837 0.1685 

R-squared 0.460877    Mean dependent var 1.623268 
Adjusted R-squared 0.452535    S.D. dependent var 0.531538 
S.E. of regression 0.393290    Akaike info criterion 0.988423 
Sum squared resid 79.96799    Schwarz criterion 1.061403 
Log likelihood -250.9552    Hannan-Quinn criter. 1.016998 
F-statistic 55.24559    Durbin-Watson stat 1.784785 
Prob(F-statistic) 0.000000    Wald F-statistic 51.54430 
Prob(Wald F-statistic) 0.000000    

E eiej  0

E eieh  0

i j i h
G
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As with the HC and HAC estimators, the cluster-robust estimator is based upon a sandwich 
form with an estimator the central matrix :

(20.18)

where  is the  matrix of regressors for the  observations in the g-th cluster,  
is a  vector of errors, and  is a  diagonal matrix of weights for the observa-
tions in the cluster. The resulting family of CR variance estimators is given by:

(20.19)

The EViews supported weighting functions for the various CR estimators are analogues to 
those available for HC estimation:

where  are the diagonal elements of . For further 
discussion and detailed definitions of the discounting factor  in the various methods, see 
“Alternative HC Estimators” on page 36. See Cameron and Miller (CM 2015, p. 342) for dis-
cussion of bias adjustments in the context of cluster robust estimation. 

Note that the EViews CR3 differs slightly from the CR3 described by CM in not including the 
 factor, and that we have defined the CR4, CR4m and CR5 estimators which 

employ weights that are analogues to those defined for HC covariance estimation.

Method

CR0 – Ordinary 1

CR1 – finite sample corrected 
(default)

CR2 – bias corrected

CR3 – pseudo-jackknife

CR4 – relative leverage

CR4m

CR5

User – user-specified arbitrary
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We may easily extend the robust variance calculation to two-way clustering to handle cases 
where observations are correlated within two different clustering dimensions (Petersen 
2009, Thompson 2011, Cameron, Gelbach, and Miller 2015). 

It is easily shown that the variance estimator for clustering by  and  may be written as:

(20.20)

where the  is used to indicate the estimator obtained assuming clustering along the 
given dimension. Thus, the estimator is formed by adding the covariances obtained by clus-
tering along each of the two dimensions individually, and subtracting off the covariance 
obtained by defining clusters for the intersection of the two dimensions.

Note that EViews does not perform the eigenvalue adjustment in cases where the resulting 
estimate is not positive semidefinite.

If you elect to compute cluster-robust covariance estimates, EViews will adjust the t-statistic 
probabilities in the main estimation output to account for the clustering and will note this 
adjustment in the output comments. Following Cameron and Miller (CM, 2015), the proba-
bilities are computed using the t-distribution with  degrees-of-freedom in the one-way 
cluster case, and by  degrees-of-freedom under two-way clustering. Bear 
in mind that CM note that even with these adjustments, the tests tend to overreject the null.

Furthermore, when cluster-robust covariances are computed, EViews will not display the 
residual-based F-statistic for the test of significance of the non-intercept regressors. The 
robust Wald-based F-statistic will be displayed.

Example

We illustrate the computation of cluster-robust covariance estimation in EViews using the 
test data provided by Petersen via his website:

http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.htm

The data are provided as an EViews workfile “Petersen_cluster.WF1”. There are 5000 obser-
vations on four variables in the workfile, the dependent variable Y, independent variable X, 
and two cluster variables, a firm identifier (FIRMID), and time identifier (YEAR). There are 
500 firms, and 10 periods in the balanced design.

First, create the equation object in EViews by selecting Object/New Object.../Equation or 
Quick/Estimate Equation… from the main menu, or simply type the keyword equation in 
the command window. Enter, the regression specification “Y C X” in the Specification edit 
field, and click on OK to estimate the equation using standard covariance settings. 

The results of this estimation are given below:
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Next, to estimate the equation with FIRMID cluster-robust covariances, click on the Esti-
mate button on the equation toolbar to display the estimation dialog, and then click on the 
Options tab to show the Coefficient covariance options.

Select Cluster robust in the Covariance method dropdown, enter “FIRMID” in the Cluster 
series edit field, and select a CR method. Here, we choose the CR1 (finite sample) method 
which employs a simple d.f. style adjustment to the basic cluster covariance estimate. Click 
on OK to estimate the equation using these settings.

Dependent Variable: Y
Method: Least Squares   
Date: 30/05/17   Time: 15:44 
Sample: 1 5000    
Included observations: 5000 

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.029680 0.028359 1.046560 0.2954
X 1.034833 0.028583 36.20414 0.0000

R-squared 0.207766     Mean dependent var 0.035238
Adjusted R-squared 0.207607     S.D. dependent var 2.252704
S.E. of regression 2.005277     Akaike info criterion 4.229841
Sum squared resid 20097.64     Schwarz criterion 4.232448
Log likelihood -10572.60     Hannan-Quinn criter. 4.230755
F-statistic 1310.740     Durbin-Watson stat 1.096121
Prob(F-statistic) 0.000000    
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The results are displayed below:

The top portion of the equation output describes both the cluster method (CR1) and the 
cluster series (FIRMID), along with the number of clusters (500) observed in the estimation 
sample. In addition, EViews indicates that the reported coefficient standard errors, and t-sta-
tistic probabilities have been adjusted for the clustering. As noted earlier, the probabilities 
are computed using the t-distribution with  degrees-of-freedom.

Note also that EViews no longer displays the ordinary F-statistic and associated probability, 
but instead shows the robust Wald F-statistic and probability. 

Dependent Variable: Y   
Method: Least Squares   
Date: 30/05/17   Time: 15:50   
Sample: 1 5000    
Included observations: 5000   
CR1 (finite sample adjusted) cluster-robust standard errors &
        covariance    
Cluster series: FIRMID (500 clusters)   
Standard errors and t-statistic probabilities adjusted for clustering 

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.029680 0.067013 0.442897 0.6580 
X 1.034833 0.050596 20.45298 0.0000 

R-squared 0.207766    Mean dependent var 0.035238 
Adjusted R-squared 0.207607    S.D. dependent var 2.252704 
S.E. of regression 2.005277    Akaike info criterion 4.229841 
Sum squared resid 20097.64    Schwarz criterion 4.232448 
Log likelihood -10572.60    Hannan-Quinn criter. 4.230755 
Durbin-Watson stat 1.096121    Wald F-statistic 418.3244 
Prob(Wald F-statistic) 0.000000    

G 1– 499
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For two-way clustering, we create an equation with the same regression specification, click 
on the Options tab, and enter the two cluster series identifiers “FIRMID YEAR” in the Clus-
ter series edit field. Leaving the remaining options at their current settings, click on OK to 
compute and display the estimation results:

Dependent Variable: Y   
Method: Least Squares   
Date: 30/05/17   Time: 15:50   
Sample: 1 5000
Included observations: 5000   
CR1 (finite sample adjusted) cluster-robust standard errors &  
        covariance    
Cluster series: FIRMID (500 clusters), YEAR (10 clusters)  
Standard errors and t-statistic probabilities adjusted for clustering

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.029680 0.065064 0.456163 0.6591
X 1.034833 0.053558 19.32173 0.0000

R-squared 0.207766     Mean dependent var 0.035238
Adjusted R-squared 0.207607     S.D. dependent var 2.252704
S.E. of regression 2.005277     Akaike info criterion 4.229841
Sum squared resid 20097.64     Schwarz criterion 4.232448
Log likelihood -10572.60     Hannan-Quinn criter. 4.230755
Durbin-Watson stat 1.096121     Wald F-statistic 373.3291
Prob(Wald F-statistic) 0.000000    

Dependent Variable: Y   
Method: Least Squares   
Date: 30/05/17   Time: 15:23   
Sample: 1 5000    
Included observations: 5000   
CR1 (finite sample adjusted) cluster-robust standard errors &
        covariance    
Cluster series: FIRMID (500 clusters), YEAR (10 clusters)  
Standard errors and t-statistic probabilities adjusted for clustering 

Variable Coefficient Std. Error t-Statistic Prob.  

X 1.034833 0.053558 19.32173 0.0000
C 0.029680 0.065064 0.456163 0.6591

R-squared 0.207766     Mean dependent var 0.035238
Adjusted R-squared 0.207607     S.D. dependent var 2.252704
S.E. of regression 2.005277     Akaike info criterion 4.229841
Sum squared resid 20097.64     Schwarz criterion 4.232448
Log likelihood -10572.60     Hannan-Quinn criter. 4.230755
Durbin-Watson stat 1.096121     Wald F-statistic 373.3291
Prob(Wald F-statistic) 0.000000    
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The output shows that the cluster-robust covariance computation is now based on two-way 
clustering using the 500 clusters in FIRMID and the 10 clusters in YEAR. The t-statistic prob-
abilities are now based on the t-distribution with  degrees-of-free-
dom.

Notice in all of these examples that the coefficient point estimates and basic fit measures are 
unchanged. The only changes in results are in the estimated standard errors, and the associ-
ated t-statistics, probabilities, and the F-statistics and probabilities. 

Lastly, we note that the standard errors and corresponding statistics in the EViews two-way 
results differ slightly from those reported on the Petersen website. These differences appear 
to be the result of slightly different finite sample adjustments in the computation of the three 
individual matrices used to compute the two-way covariance. When you select the CR1 
method, EViews adjusts each of the three matrices using the CR1 finite sample adjustment; 
Petersen’s example appears to apply CR1 to the one-way cluster covariances, while the joint 
two-way cluster results are computing using CR0.

HAC Consistent Covariances (Newey-West)

The White covariance matrix described above assumes that the residuals of the estimated 
equation are serially uncorrelated. 

Newey and West (1987b) propose a covariance estimator that is consistent in the presence 
of both heteroskedasticity and autocorrelation (HAC) of unknown form, under the assump-
tion that the autocorrelations between distant observations die out. NW advocate using ker-
nel methods to form an estimate of the long-run variance, . 

EViews incorporates and extends the Newey-West approach by allowing you to estimate the 
HAC consistent coefficient covariance estimator given by:

(20.21)

where  is any of the LRCOV estimators described in Appendix F. “Long-run Covariance 
Estimation,” on page 1115.

To use the Newey-West HAC method, select the Options tab 
and select HAC (Newey-West) in the Coefficient covariance 
matrix drop-down. As before, you may use the checkbox to 
remove the default d.f. Adjustment.

Press the HAC options button to change the options for the 
LRCOV estimate.

min 500 10,( ) 1– 9
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We illustrate the computation of HAC covariances 
using an example from Stock and Watson (2007, 
p. 620). In this example, the percentage change of 
the price of orange juice is regressed upon a con-
stant and the number of days the temperature in 
Florida reached zero for the current and previous 
18 months, using monthly data from 1950 to 2000 
The data are in the workfile “Stock_wat.WF1”.

Stock and Watson report Newey-West standard 
errors computed using a non pre-whitened Bartlett 
Kernel with a user-specified bandwidth of 8 (note 
that the bandwidth is equal to one plus what 
Stock and Watson term the “truncation parame-
ter” ).

The results of this estimation are shown below:

m
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Note in particular that the top of the equation output documents the use of HAC covariance 
estimates along with relevant information about the settings used to compute the long-run 
covariance matrix.

The HAC robust Wald p-value is slightly higher than the corresponding non-robust F-statis-
tic p-value, but are significant at conventional test levels.

Weighted Least Squares

Suppose that you have heteroskedasticity of known form, where the conditional error vari-
ances are given by . The presence of heteroskedasticity does not alter the bias or consis-

Dependent Variable: 100*D(LOG(POJ))   
Method: Least Squares   
Date: 02/10/13   Time: 06:44   
Sample: 1950M01 2000M12   
Included observations: 612   
HAC standard errors & covariance (Bartlett kernel, User bandwidth = 
        8.0000)    

Variable Coefficient Std. Error t-Statistic Prob.   

FDD 0.503798 0.139563 3.609818 0.0003 
FDD(-1) 0.169918 0.088943 1.910407 0.0566 
FDD(-2) 0.067014 0.060693 1.104158 0.2700 
FDD(-3) 0.071087 0.044894 1.583444 0.1139 
FDD(-4) 0.024776 0.031656 0.782679 0.4341 
FDD(-5) 0.031935 0.030763 1.038086 0.2997 
FDD(-6) 0.032560 0.047602 0.684014 0.4942 
FDD(-7) 0.014913 0.015743 0.947323 0.3439 
FDD(-8) -0.042196 0.034885 -1.209594 0.2269 
FDD(-9) -0.010300 0.051452 -0.200181 0.8414 
FDD(-10) -0.116300 0.070656 -1.646013 0.1003 
FDD(-11) -0.066283 0.053014 -1.250288 0.2117 
FDD(-12) -0.142268 0.077424 -1.837518 0.0666 
FDD(-13) -0.081575 0.042992 -1.897435 0.0583 
FDD(-14) -0.056372 0.035300 -1.596959 0.1108 
FDD(-15) -0.031875 0.028018 -1.137658 0.2557 
FDD(-16) -0.006777 0.055701 -0.121670 0.9032 
FDD(-17) 0.001394 0.018445 0.075584 0.9398 
FDD(-18) 0.001824 0.016973 0.107450 0.9145 

C -0.340237 0.273659 -1.243289 0.2143 

R-squared 0.128503    Mean dependent var -0.115821 
Adjusted R-squared 0.100532    S.D. dependent var 5.065300 
S.E. of regression 4.803944    Akaike info criterion 6.008886 
Sum squared resid 13662.11    Schwarz criterion 6.153223 
Log likelihood -1818.719    Hannan-Quinn criter. 6.065023 
F-statistic 4.594247    Durbin-Watson stat 1.821196 
Prob(F-statistic) 0.000000    Wald F-statistic 2.257876 
Prob(Wald F-statistic) 0.001769    

jt
2
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tency properties of ordinary least squares estimates, but OLS is no longer efficient and 
conventional estimates of the coefficient standard errors are not valid.

If the variances  are known up to a positive scale factor, you may use weighted least 
squares (WLS) to obtain efficient estimates that support valid inference. Specifically, if

(20.22)

and we observe , the WLS estimator for  minimizes the weighted sum-of-
squared residuals:

(20.23)

with respect to the -dimensional vector of parameters , where the weights  
are proportional to the inverse conditional variances. Equivalently, you may estimate the 
regression of the square-root weighted transformed data  on the trans-
formed .

In matrix notation, let  be a diagonal matrix containing the scaled  along the diagonal 
and zeroes elsewhere, and let  and  be the matrices associated with  and . The 
WLS estimator may be written,

(20.24)

and the default estimated coefficient covariance matrix is:

(20.25)

where 

(20.26)

is a d.f. corrected estimator of the weighted residual variance. 

To perform WLS in EViews, open the equation estimation dialog and select a method that 
supports WLS such as LS—Least Squares (NLS and ARMA), then click on the Options tab. 
(You should note that weighted estimation is not offered in equations containing ARMA 
specifications, nor is it available for some equation methods, such as those estimated with 
ARCH, binary, count, censored and truncated, or ordered discrete choice techniques.)
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You will use the three parts of the Weights section of the Options tab to specify your 
weights. 

The Type dropdown is used to specify the form in which the weight data 
are provided. If, for example, your weight series VARWGT contains values 
proportional to the conditional variance, you should select Variance. 
Alternately, if your series INVARWGT contains the values proportional to 
the inverse of the standard deviation of the residuals you should choose Inverse std. dev. 

Next, you should enter an expression for your weight series in the Weight series edit field.

Lastly, you should choose a scaling method for the weights. There are 
three choices: Average, None, and (in some cases) EViews default. If you 
select Average, EViews will, prior to use, scale the weights prior so that 
the  sum to . The EViews default specification scales the weights so the square roots 
of the  sum to . (The latter square root scaling, which offers backward compatibility to 
EViews 6 and earlier, was originally introduced in an effort to make the weighted residuals 

 comparable to the unweighted residuals.) Note that the EViews default 
method is only available if you select Inverse std. dev. as weighting Type.

Unless there is good reason to do so, we recommend that you employ Inverse std. 
dev. weights with EViews default scaling, even if it means you must transform your 
weight series. The other weight types and scaling methods were introduced in EViews 
7, so equations estimated using the alternate settings may not be read by prior ver-
sions of EViews.

We emphasize the fact that  and  are almost always invariant to the scaling of 
weights. One important exception to this invariance occurs in the special case where some 
of the weight series values are non-positive since observations with non-positive weights 
will be excluded from the analysis unless you have selected EViews default scaling, in 
which case only observations with zero weights are excluded.

As an illustration, we consider a simple example taken from Gujarati (2003, Example 11.7, p. 
416) which examines the relationship between compensation (Y) and index for employment 
size (X) for nine nondurable manufacturing industries. The data, which are in the workfile 
“Gujarati_wls.WF1”, also contain a series SIGMA believed to be proportional to the standard 
deviation of each error. 

To estimate WLS for this specification, open an equation dialog and enter

y c x

as the equation specification. 

wi T
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Click on the Options tab, and fill out the Weights section as 
depicted here. We select Inverse std. dev. as our Type, and spec-
ify “1/SIGMA” for our Weight series. Lastly, we select EViews 
default as our Scaling method.

Click on OK to estimate the specified equation. The results are 
given by:

The top portion of the output displays the estimation settings which show both the specified 
weighting series and the type of weighting employed in estimation. The middle section 
shows the estimated coefficient values and corresponding standard errors, t-statistics and 
probabilities.

The bottom portion of the output displays two sets of statistics. The Weighted Statistics 
show statistics corresponding to the actual estimated equation. For purposes of discussion, 
there are two types of summary statistics: those that are (generally) invariant to the scaling 
of the weights, and those that vary with the weight scale.

Dependent Variable: Y   
Method: Least Squares   
Date: 06/17/09   Time: 10:01   
Sample: 1 9    
Included observations: 9   
Weighting series: 1/SIGMA   
Weight type: Inverse standard deviation (EViews default scaling) 

Variable Coefficient Std. Error t-Statistic Prob.  

C 3406.640 80.98322 42.06600 0.0000
X 154.1526 16.95929 9.089565 0.0000

 Weighted Statistics   

R-squared 0.921893    Mean dependent var 4098.417
Adjusted R-squared 0.910734    S.D. dependent var 629.1767
S.E. of regression 126.6652    Akaike info criterion 12.71410
Sum squared resid 112308.5    Schwarz criterion 12.75793
Log likelihood -55.21346    Hannan-Quinn criter. 12.61952
F-statistic 82.62018    Durbin-Watson stat 1.183941
Prob(F-statistic) 0.000040    Weighted mean dep. 4039.404

 Unweighted Statistics   

R-squared 0.935499    Mean dependent var 4161.667
Adjusted R-squared 0.926285    S.D. dependent var 420.5954
S.E. of regression 114.1939    Sum squared resid 91281.79
Durbin-Watson stat 1.141034    
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The “R-squared”, “Adjusted R-squared”, “F-statistic” and “Prob(F-stat)”, and the “Durbin-
Watson stat”, are all invariant to your choice of scale. Notice that these are all fit measures 
or test statistics which involve ratios of terms that remove the scaling. 

One additional invariant statistic of note is the “Weighted mean dep.” which is the weighted 
mean of the dependent variable, computed as:

, (20.27)

The weighted mean is the value of the estimated intercept in the restricted model, and is 
used in forming the reported F-test.

The remaining statistics such as the “Mean dependent var.”, “Sum squared resid”, and the 
“Log likelihood” all depend on the choice of scale. They may be thought of as the statistics 
computed using the weighted data,  and . For example, the 
mean of the dependent variable is computed as , and the sum-of-squared resid-
uals is given by . These values should not be compared across equa-
tions estimated using different weight scaling.

Lastly, EViews reports a set of Unweighted Statistics. As the name suggests, these are statis-
tics computed using the unweighted data and the WLS coefficients.

Nonlinear Least Squares

Suppose that we have the regression specification:

, (20.28)

where  is a general function of the explanatory variables  and the parameters . Least 
squares estimation chooses the parameter values that minimize the sum of squared residu-
als:

(20.29)

We say that a model is linear in parameters if the derivatives of  with respect to the param-
eters do not depend upon ; if the derivatives are functions of , we say that the model is 
nonlinear in parameters.

For example, consider the model given by:

. (20.30)

It is easy to see that this model is linear in its parameters, implying that it can be estimated 
using ordinary least squares.

In contrast, the equation specification:
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(20.31)

has derivatives that depend upon the elements of . There is no way to rearrange the terms 
in this model so that ordinary least squares can be used to minimize the sum-of-squared 
residuals. We must use nonlinear least squares techniques to estimate the parameters of the 
model. 

Nonlinear least squares minimizes the sum-of-squared residuals with respect to the choice 
of parameters . While there is no closed form solution for the parameters, estimates my be 
obtained from iterative methods as described in “Optimization Algorithms,” beginning on 
page 1095.

Estimates of the coefficient covariance take the general form:

(20.32)

where  is an estimate of the information,  is the variance of the residual weighted gradi-
ents, and  is a scale parameter.

For the ordinary covariance estimator, we assume that . Then we have

(20.33)

where  is an estimator of the residual variance (with or without degree-of-freedom correc-
tion).

As in Amemiya (1983), we may estimate  using the outer-product of the gradients (OPG) 
so we have

(20.34)

where the derivatives are evaluated at .

Similarly, we may set  to the one-half of the Hessian matrix of second derivatives of the 
sum-of-squares function:

(20.35)

evaluated at .

Alternately, we may assume distinct  and  and employ a White or HAC sandwich esti-
mator for the coefficient covariance as in “Robust Standard Errors,” beginning on page 32. 
In this case,  is estimated using the OPG or Hessian, and the  is a robust estimate of the 
variance of the gradient weighted residuals. In this case,  is a scalar representing the 
degree-of-freedom correction, if employed.
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For additional discussion of nonlinear estimation, see Pindyck and Rubinfeld (1998, p. 265-
273), Davidson and MacKinnon (1993), or Amemiya(1983).

Estimating NLS Models in EViews

It is easy to tell EViews that you wish to estimate the parameters of a model using nonlinear 
least squares. EViews automatically applies nonlinear least squares to any regression equa-
tion that is nonlinear in its coefficients. Simply select Object/New Object.../Equation, enter 
the equation in the equation specification dialog box, and click OK. EViews will do all of the 
work of estimating your model using an iterative algorithm.

A full technical discussion of iterative estimation procedures is provided in Appendix C. 
“Estimation and Solution Options,” beginning on page 1089.

Specifying Nonlinear Least Squares 

For nonlinear regression models, you will have to enter your specification in equation form 
using EViews expressions that contain direct references to coefficients. You may use ele-
ments of the default coefficient vector C (e.g. C(1), C(2), C(34), C(87)), or you can define 
and use other coefficient vectors. For example:

y = c(1) + c(2)*(k^c(3)+l^c(4))

is a nonlinear specification that uses the first through the fourth elements of the default 
coefficient vector, C. 

To create a new coefficient vector, select Object/New Object.../Matrix-Vector-Coef in the 
main menu and provide a name. You may now use this coefficient vector in your specifica-
tion. For example, if you create a coefficient vector named CF, you can rewrite the specifica-
tion above as:

y = cf(11) + cf(12)*(k^cf(13)+l^cf(14))

which uses the eleventh through the fourteenth elements of CF. 

You can also use multiple coefficient vectors in your specification:

y = c(11) + c(12)*(k^cf(1)+l^cf(2))

which uses both C and CF in the specification.

It is worth noting that EViews implicitly adds an additive disturbance to your specification. 
For example, the input

y = (c(1)*x + c(2)*z + 4)^2

is interpreted as , and EViews will minimize:

(20.36)
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If you wish, the equation specification may be given by a simple expression that does not 
include a dependent variable. For example, the input,

(c(1)*x + c(2)*z + 4)^2

is interpreted by EViews as , and EViews will minimize:

(20.37)

While EViews will estimate the parameters of this last specification, the equation cannot be 
used for forecasting and cannot be included in a model. This restriction also holds for any 
equation that includes coefficients to the left of the equal sign. For example, if you specify,

x + c(1)*y = z^c(2)

EViews will find the values of C(1) and C(2) that minimize the sum of squares of the 
implicit equation:

(20.38)

The estimated equation cannot be used in forecasting or included in a model, since there is 
no dependent variable.

Estimation Options

Clicking on the Options tab displays the nonlinear least squares estimation options:

Coefficient Covariance

EViews allows you to compute ordinary coefficient covariances using the inverse of either 
the OPG of the mean function or the observed Hessian of the objective function, or to com-
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pute robust sandwich estimators for the covariance matrix using White or HAC (Newey-
West) estimators.

• The topmost Covariance method dropdown menu should be used to choose between 
the default Ordinary or the robust Huber-White or HAC (Newey-West) methods. 

• In the Information matrix menu you should choose between the OPG and the Hes-
sian - observed estimators for the information. 

• If you select HAC (Newey-West), you will be presented with a HAC options button 
that, if pressed, brings up a dialog to allow you to control the long-run variance com-
putation.

See “Robust Standard Errors,” beginning on page 32 for a discussion of White and HAC 
standard errors.

You may use the d.f. Adjustment checkbox to enable or disable the degree-of-freedom cor-
rection for the coefficient covariance. For the Ordinary method, this setting amounts to 
determining whether the residual variance estimator is or is not degree-of-freedom cor-
rected. For the sandwich estimators, the degree-of-freedom correction is applied to the entire 
matrix.

Optimization

You may control the iterative process by specifying the optimization method, convergence 
criterion, and maximum number of iterations. 

The Optimization method dropdown menu lets you choose between the default Gauss-
Newton and BFGS, Newton-Raphson, and EViews legacy methods. 

In general, the differences between the estimates should be small for well-behaved nonlin-
ear specifications, but if you are experiencing trouble, you may wish to experiment with 
methods. Note that EViews legacy is a particular implementation of Gauss-Newton with 
Marquardt or line search steps, and is provided for backward estimation compatibility.
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The Step method allow you to choose the approach for choosing candidate iterative steps. 
The default method is Marquardt, but you may instead select Dogleg or Line Search.

See “Optimization Method” on page 1090, and “Optimization Algorithms” on page 1095 for 
related discussion.

EViews will report that the estimation procedure has converged if the convergence test value 
is below your convergence tolerance. See for details. While there is no best choice of conver-
gence tolerance, and the choice is somewhat individual, as a guideline note that we gener-
ally set ours something on the order of 1e-8 or so and then adjust it upward if necessary for 
models with difficult to compute numeric derivatives.

See “Iteration and Convergence” on page 1090 for additional discussion.

In most cases, you need not change the maximum number of iterations. However, for some 
difficult to estimate models, the iterative procedure may not converge within the maximum 
number of iterations. If your model does not converge within the allotted number of itera-
tions, simply click on the Estimate button, and, if desired, increase the maximum number of 
iterations. Click on OK to accept the options, and click on OK to begin estimation. EViews 
will start estimation using the last set of parameter values as starting values.

These options may also be set from the global options dialog. See Appendix A, “Estimation 
Defaults” on page 871 for details.

Derivative Methods

Estimation in EViews requires computation of the derivatives of the regression function with 
respect to the parameters.

In most cases, you need not worry about the settings for the derivative computation. The 
EViews estimation engine will employ analytic expressions for the derivatives, if possible, or 
will compute high numeric derivatives, switching between lower precision computation 
early in the iterative procedure and higher precision computation for later iterations and 
final computation. You may elect to use only numeric derivatives.

See “Derivative Computation” on page 1093 for additional discussion.

Starting Values

Iterative estimation procedures require starting values for the coefficients of the model. The 
closer to the true values the better, so if you have reasonable guesses for parameter values, 
these can be useful. In some cases, you can obtain good starting values by estimating a 
restricted version of the model using least squares. In general, however, you may need to 
experiment in order to find starting values.

There are no general rules for selecting starting values for parameters so there are no set-
tings in this page for choosing values. EViews uses the values in the coefficient vector at the 
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time you begin the estimation procedure as starting values for the iterative procedure. It is 
easy to examine and change these coefficient starting values. To see the current starting val-
ues, double click on the coefficient vector in the workfile directory. If the values appear to 
be reasonable, you can close the window and proceed with estimating your model. 

If you wish to change the starting values, first make certain that the spreadsheet view of 
your coefficients is in edit mode, then enter the coefficient values. When you are finished 
setting the initial values, close the coefficient vector window and estimate your model. 

You may also set starting coefficient values from the command window using the PARAM 
command. Simply enter the PARAM keyword, following by each coefficient and desired 
value. For example, if your default coefficient vector is C, the statement:

param c(1) 153 c(2) .68 c(3) .15

sets C(1)=153, C(2)=.68, and C(3)=.15.

See Appendix C, “Estimation and Solution Options” on page 1089, for further details.

Output from NLS

Once your model has been estimated, EViews displays an equation output screen showing 
the results of the nonlinear least squares procedure. Below is the output from a regression of 
LOG(CS) on C, and the Box-Cox transform of GDP using the data in the workfile “Chow_-
var.WF1”:

Dependent Variable: LOG(CS)   
Method: Least Squares (Gauss-Newton / Marquardt steps)  
Date: 03/09/15   Time: 11:25   
Sample: 1947Q1 1994Q4
Included observations: 192   
Convergence achieved after 68 iterations   
Coefficient covariance computed using outer product of gradients 
LOG(CS)=C(1)+C(2)*(GDP^C(3)-1)/C(3)   

 Coefficient Std. Error t-Statistic Prob.   

C(1) 2.839332 0.281733 10.07810 0.0000 
C(2) 0.259119 0.041680 6.216837 0.0000 
C(3) 0.182315 0.020335 8.965475 0.0000 

R-squared 0.997260    Mean dependent var 7.472280 
Adjusted R-squared 0.997231    S.D. dependent var 0.463744 
S.E. of regression 0.024403    Akaike info criterion -4.572707 
Sum squared resid 0.112552    Schwarz criterion -4.521808 
Log likelihood 441.9798    Hannan-Quinn criter. -4.552093 
F-statistic 34393.45    Durbin-Watson stat 0.136871 
Prob(F-statistic) 0.000000    
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If the estimation procedure has converged, EViews will report this fact, along with the num-
ber of iterations that were required. If the iterative procedure did not converge, EViews will 
report “Convergence not achieved after” followed by the number of iterations attempted.

Below the line describing convergence, and a description of the method employed in com-
puting the coefficient covariances, EViews will repeat the nonlinear specification so that you 
can easily interpret the estimated coefficients of your model. 

EViews provides you with all of the usual summary statistics for regression models. Pro-
vided that your model has converged, the standard statistical results and tests are asymptot-
ically valid.

NLS with ARMA errors

EViews will estimate nonlinear regression models with autoregressive error terms. Simply 
select Object/New Object.../Equation… or Quick/Estimate Equation… and specify your 
model using EViews expressions, followed by an additive term describing the AR correction 
enclosed in square brackets. The AR term should consist of a coefficient assignment for each 
AR term, separated by commas. For example, if you wish to estimate,

(20.39)

you should enter the specification:

cs = c(1) + gdp^c(2) + [ar(1)=c(3), ar(2)=c(4)]

See “Initializing the AR Errors,” on page 142 for additional details. EViews does not cur-
rently estimate nonlinear models with MA errors, nor does it estimate weighted models with 
AR terms—if you add AR terms to a weighted nonlinear model, the weighting series will be 
ignored.

Weighted NLS

Weights can be used in nonlinear estimation in a manner analogous to weighted linear least 
squares in equations without ARMA terms. To estimate an equation using weighted nonlin-
ear least squares, enter your specification, press the Options button and fill in the weight 
specification.

EViews minimizes the sum of the weighted squared residuals:

(20.40)

with respect to the parameters , where  are the values of the weight series and  is 
the diagonal matrix of weights. The first-order conditions are given by,
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(20.41)

and the default OPG d.f. corrected covariance estimate is computed as:

(20.42)

and the corresponding Hessian estimate is

(20.43)

for the weighted objective function given in Equation (20.41).

One may elect, of course, to compute a White or HAC sandwich estimator for the coefficient 
covariance as in “Robust Standard Errors,” beginning on page 32.

Solving Estimation Problems

EViews may not be able to estimate your nonlinear equation on the first attempt. Some-
times, the nonlinear least squares procedure will stop immediately. Other times, EViews 
may stop estimation after several iterations without achieving convergence. EViews might 
even report that it cannot improve the sums-of-squares. While there are no specific rules on 
how to proceed if you encounter these estimation problems, there are a few general areas 
you might want to examine.

Starting Values

If you experience problems with the very first iteration of a nonlinear procedure, the prob-
lem is almost certainly related to starting values. See the discussion in “Starting Values” on 
page 56 for details on how to examine and change your starting values. 

Model Identification

If EViews goes through a number of iterations and then reports that it encounters a “Near 
Singular Matrix”, you should check to make certain that your model is identified. Models are 
said to be non-identified if there are multiple sets of coefficients which identically yield the 
minimized sum-of-squares value. If this condition holds, it is impossible to choose between 
the coefficients on the basis of the minimum sum-of-squares criterion.

For example, the nonlinear specification:

(20.44)

is not identified, since any coefficient pair  is indistinguishable from the pair 
 in terms of the sum-of-squared residuals. 
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For a thorough discussion of identification of nonlinear least squares models, see Davidson 
and MacKinnon (1993, Sections 2.3, 5.2 and 6.3). 

Optimization Algorithm

In general, the choice of optimization algorithm should have little effect on the computation 
of estimates. That said, if you are experiencing trouble, you may wish to experiment with 
different methods. In addition, you may wish to experiment with different optimizers to 
ensure that your estimates are robust to the choice of optimization method.

Note that EViews legacy is a particular implementation of Gauss-Newton with Marquardt or 
line search steps, and is provided for backward estimation compatibility.

See “Optimization” on page 55 for discussion.

Convergence Criterion

EViews may report that it is unable to improve the sums-of-squares. This result may be evi-
dence of non-identification or model misspecification. Alternatively, it may be the result of 
setting your convergence criterion too low, which can occur if your nonlinear specification is 
particularly complex.

If you wish to change the convergence criterion, enter the new value in the Options tab. Be 
aware that increasing this value increases the possibility that you will stop at a local mini-
mum, and may hide misspecification or non-identification of your model. 

See “Setting Estimation Options” on page 1089, for related discussion.

Stepwise Least Squares Regression

EViews allows you to perform automatic variable selection using stepwise regression. Step-
wise regression allows some or all of the variables in a standard linear multivariate regres-
sion to be chosen automatically, using various statistical criteria, from a set of variables.

There is a fairly large literature describing the benefits and the pitfalls of stepwise regres-
sion. Without making any recommendations ourselves, we refer the user to Derksen and 
Keselman (1992), Roecker (1991), Hurvich and Tsai (1990).

Stepwise Least Squares Estimation in EViews

To perform a Stepwise selection procedure (STEPLS) in EViews select Object/New Object/
Equation, or press Estimate from the toolbar of an existing equation. From the Equation 
Specification dialog choose Method: STEPLS - Stepwise Least Squares. EViews will display 
the following dialog:
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The Specification page allows 
you to provide the basic 
STEPLS regression specifica-
tion. In the upper edit field you 
should first specify the depen-
dent variable followed by the 
always included variables you 
wish to use in the final regres-
sion. Note that the STEPLS 
equation must be specified by 
list.

You should enter a list of vari-
ables to be used as the set of 
potentially included variables 
in the second edit field. 

Next, you may use the Options 
tab to control the stepwise estimation method.

The Selection Method portion 
of the Options page is used to 
specify the STEPLS method.

By default, EViews will esti-
mate the stepwise specifica-
tion using the Stepwise-
Forwards method. To change 
the basic method, change the 
Selection Method dropdown 
menu; the dropdown allows 
you to choose between: Uni-
directional, Stepwise, Swap-
wise, and Combinatorial.

The other items on this dialog 
tab will change depending 
upon which method you 
choose. For the Uni-directional 
and Stepwise methods you may specify the direction of the method using the Forwards and 
Backwards radio buttons. These two methods allow you to provide a Stopping Criteria 
using either a p-value or t-statistic tolerance for adding or removing variables. You may also 
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choose to stop the procedures once they have added or removed a specified number of 
regressors by selecting the Use number of regressors option and providing a number of the 
corresponding edit field.

You may also set the maximum number of steps taken by the procedure. To set the maxi-
mum number of additions to the model, change the Forwards steps, and to set the maxi-
mum number of removals, change the Backwards steps. You may also set the total number 
of additions and removals. In general it is best to leave these numbers at a high value. Note, 
however, that the Stepwise routines have the potential to repetitively add and remove the 
same variables, and by setting the maximum number of steps you can mitigate this behav-
ior.

The Swapwise method lets you choose whether you wish to use Max R-squared or Min R-
squared, and choose the number of additional variables to be selected. The Combinatorial 
method simply prompts you to provide the number of additional variables. By default both 
of these procedures have the number of additional variables set to one. In both cases this 
merely chooses the single variable that will lead to the largest increase in R-squared.

For additional discussion, see “Selection Methods,” beginning on page 64. 

Lastly, each of the methods lets you choose a Weight series to perform weighted least 
squares estimation. Simply check the Use weight series option, then enter the name of the 
weight series in the edit field. See “Weighted Least Squares” on page 47 for details.

Example

As an example we use the following code to generate a workfile with 40 independent vari-
ables (X1–X40), and a dependent variable, Y, which is a linear combination of a constant, 
variables X11–X15, and a normally distributed random error term.

create u 100

rndseed 1

group xs

for !i=1 to 40

series x!i=nrnd

%name="x"+@str(!i)

xs.add {%name}

next

series y = nrnd + 3

for !i=11 to 15

y = y + !i*x{!i}

next

The 40 independent variables are contained in the group XS.
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Given this data we can use a forwards stepwise routine to choose the “best” 5 regressors, 
after the constant, from the group of 40 in XS. We do this by entering “Y C” in the first Spec-
ification box of the estimation dialog, and “XS” in the List of search regressors box. In the 
Stopping Criteria section of the Options tab we check Use Number of Regressors, and 
enter “5” as the number of regressors. Estimating this specification yields the results:

The top portion of the output shows the equation specification and information about the 
stepwise method. The next section shows the final estimated specification along with coeffi-
cient estimates, standard errors and t-statistics, and p-values. Note that the stepwise routine 
chose the “correct” five regressors, X11–X15. The bottom portion of the output shows a sum-
mary of the steps taken by the selection method. Specifications with a large number of steps 
may show only a brief summary.

Dependent Variable: Y   
Method: Stepwise Regress ion   
Date: 08/08/09   Time: 22:39   
Sample: 1 100    
Included observations: 100   
Number of always included regressors: 1   
Number of search regressors: 40   
Selection method: Stepwise forwards   
Stopping criterion: p-value forwards/backwards = 0.5/0.5  
Stopping criterion: Number of search regressors = 5  

Variable Coefficient Std. Error t-Statistic Prob.*  

C 2.973731 0.102755 28.93992 0.0000
X15 14.98849 0.091087 164.5517 0.0000
X14 14.01298 0.091173 153.6967 0.0000
X12 11.85221 0.101569 116.6914 0.0000
X13 12.88029 0.102182 126.0526 0.0000
X11 11.02252 0.102758 107.2664 0.0000

R-squared 0.999211    Mean dependent var -0.992126
Adjusted R-squared 0.999169    S.D. dependent var 33.58749
S.E. of regression 0.968339    Akaike info criterion 2.831656
Sum squared resid 88.14197    Schwarz criterion 2.987966
Log likelihood -135.5828    Hannan-Quinn criter. 2.894917
F-statist ic 23802.50    Durbin-W atson stat 1.921653
Prob(F-s tat istic) 0.000000    

 Selection Summary   

Added X15    
Added X14    
Added X12    
Added X13    
Added X11    

*Note: p-values and subsequent tests  do not account for stepwise 
        selection.    
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Selection Methods

EViews allows you to specify variables to be included as regressors along with a set of vari-
ables from which the selection procedure will choose additional regressors. The first set of 
variables are termed the “always included” variables, and the latter are the set of potential 
“added variables”. EViews supports several procedures for selecting the added variables.

Uni-directional-Forwards

The Uni-directional-Forwards method uses either a lowest p-value or largest t-statistic crite-
rion for adding variables. 

The method begins with no added regressors. If using the p-value criterion, we select the 
variable that would have the lowest p-value were it added to the regression. If the p-value is 
lower than the specified stopping criteria, the variable is added. The selection continues by 
selecting the variable with the next lowest p-value, given the inclusion of the first variable. 
The procedure stops when the lowest p-value of the variables not yet included is greater 
than the specified forwards stopping criterion, or the number of forward steps or number of 
added regressors reach the optional user specified limits.

If using the largest t-statistic criterion, the same variables are selected, but the stopping cri-
terion is specified in terms of the statistic value instead of the p-value.

Uni-directional-Backwards

The Uni-directional-Backwards method is analogous to the Uni-directional-Forwards 
method, but begins with all possible added variables included, and then removes the vari-
able with the highest p-value. The procedure continues by removing the variable with the 
next highest p-value, given that the first variable has already been removed. This process 
continues until the highest p-value is less than the specified backwards stopping criteria, or 
the number of backward steps or number of added regressors reach the optional user speci-
fied limits.

The largest t-statistic may be used in place of the lowest p-value as a selection criterion.

Stepwise-Forwards

The Stepwise-Forwards method is a combination of the Uni-directional-Forwards and Back-
wards methods. Stepwise-Forwards begins with no additional regressors in the regression, 
then adds the variable with the lowest p-value. The variable with the next lowest p-value 
given that the first variable has already been chosen, is then added. Next both of the added 
variables are checked against the backwards p-value criterion. Any variable whose p-value 
is higher than the criterion is removed. 

Once the removal step has been performed, the next variable is added. At this, and each suc-
cessive addition to the model, all the previously added variables are checked against the 
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backwards criterion and possibly removed. The Stepwise-Forwards routine ends when the 
lowest p-value of the variables not yet included is greater than the specified forwards stop-
ping criteria (or the number of forwards and backwards steps or the number of added 
regressors has reached the corresponding optional user specified limit).

You may elect to use the largest t-statistic in place of the lowest p-value as the selection cri-
terion.

Stepwise-Backwards

The Stepwise-Backwards procedure reverses the Stepwise-Forwards method. All possible 
added variables are first included in the model. The variable with the highest p-value is first 
removed. The variable with the next highest p-value, given the removal of the first variable, 
is also removed. Next both of the removed variables are checked against the forwards p-
value criterion. Any variable whose p-value is lower than the criterion is added back in to 
the model. 

Once the addition step has been performed, the next variable is removed. This process con-
tinues where at each successive removal from the model, all the previously removed vari-
ables are checked against the forwards criterion and potentially re-added. The Stepwise-
Backwards routine ends when the largest p-value of the variables inside the model is less 
than the specified backwards stopping criterion, or the number of forwards and backwards 
steps or number of regressors reaches the corresponding optional user specified limit.

The largest t-statistic may be used in place of the lowest p-value as a selection criterion.

Swapwise-Max R-Squared Increment

The Swapwise method starts with no additional regressors in the model. The procedure 
starts by adding the variable which maximizes the resulting regression R-squared. The vari-
able that leads to the largest increase in R-squared is then added. Next each of the two vari-
ables that have been added as regressors are compared individually with all variables not 
included in the model, calculating whether the R-squared could be improved by swapping 
the “inside” with an “outside” variable. If such an improvement exists then the “inside” 
variable is replaced by the “outside” variable. If there exists more than one swap that would 
improve the R-squared, the swap that yields the largest increase is made.

Once a swap has been made the comparison process starts again. Once all comparisons and 
possible swaps are made, a third variable is added, with the variable chosen to produce the 
largest increase in R-squared. The three variables inside the model are then compared with 
all the variables outside the model and any R-squared increasing swaps are made. This pro-
cess continues until the number of variables added to the model reaches the user-specified 
limit.
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Swapwise-Min R-Squared Increment

The Min R-squared Swapwise method is very similar to the Max R-squared method. The dif-
ference lies in the swapping procedure. Whereas the Max R-squared swaps the variables that 
would lead to the largest increase in R-squared, the Min R-squared method makes a swap 
based on the smallest increase. This can lead to a more lengthy selection process, with a 
larger number of combinations of variables compared.

Combinatorial

For a given number of added variables, the Combinatorial method evaluates every possible 
combination of added variables, and selects the combination that leads to the largest R-
squared in a regression using the added and always included variables as regressors. This 
method is more thorough than the previous methods, since those methods do not compare 
every possible combination of variables, and obviously requires additional computation. 
With large numbers of potential added variables, the Combinatorial approach can take a 
very long time to complete.

Issues with Stepwise Estimation

The set of search variables may contain variables that are linear combinations of other vari-
ables in the regression (either in the always included list, or in the search set). EViews will 
drop those variables from the search set. In a case where two or more of the search variables 
are collinear, EViews will select the variable listed first in the list of search variables.

Following the Stepwise selection process, EViews reports the results of the final regression, 
i.e. the regression of the always-included and the selected variables on the dependent vari-
able. In some cases the sample used in this equation may not coincide with the regression 
that was used during the selection process. This will occur if some of the omitted search 
variables have missing values for some observations that do not have missing values in the 
final regression. In such cases EViews will print a warning in the regression output.

The p-values listed in the final regression output and all subsequent testing procedures do 
not account for the regressions that were run during the selection process. One should take 
care to interpret results accordingly. 

Invalid inference is but one of the reasons that stepwise regression and other variable selec-
tion methods have a large number of critics amongst statisticians. Other problems include 
an upwardly biased final R-squared, possibly upwardly biased coefficient estimates, and nar-
row confidence intervals. It is also often pointed out that the selection methods themselves 
use statistics that do not account for the selection process.
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Chapter 21.  Instrumental Variables and GMM

This chapter describes EViews tools for estimating a single equation using Two-stage Least 
Squares (TSLS), Limited Information Maximum Likelihood (LIML) and K-Class Estimation, 
and Generalized Method of Moments (GMM).

There are countless references for the techniques described in this chapter. Notable textbook 
examples include Hayashi (2000), Hamilton (1994), Davidson and MacKinnon (1993). Less 
technical treatments may be found in Stock and Watson (2007) and Johnston and DiNardo 
(1997).

Background

A fundamental assumption of regression analysis is that the right-hand side variables are 
uncorrelated with the disturbance term. If this assumption is violated, both OLS and 
weighted LS are biased and inconsistent.

There are a number of situations where some of the right-hand side variables are correlated 
with disturbances. Some classic examples occur when:

• There are endogenously determined variables on the right-hand side of the equation.

• Right-hand side variables are measured with error.

For simplicity, we will refer to variables that are correlated with the residuals as endogenous, 
and variables that are not correlated with the residuals as exogenous or predetermined.

The standard approach in cases where right-hand side variables are correlated with the 
residuals is to estimate the equation using instrumental variables regression. The idea 
behind instrumental variables is to find a set of variables, termed instruments, that are both 
(1) correlated with the explanatory variables in the equation, and (2) uncorrelated with the 
disturbances. These instruments are used to eliminate the correlation between right-hand 
side variables and the disturbances.

There are many different approaches to using instruments to eliminate the effect of variable 
and residual correlation. EViews offers three basic types of instrumental variable estimators: 
Two-stage Least Squares (TSLS), Limited Information Maximum Likelihood and K-Class Esti-
mation (LIML), and Generalized Method of Moments (GMM).

Two-stage Least Squares

Two-stage least squares (TSLS) is a special case of instrumental variables regression. As the 
name suggests, there are two distinct stages in two-stage least squares. In the first stage, 
TSLS finds the portions of the endogenous and exogenous variables that can be attributed to 
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the instruments. This stage involves estimating an OLS regression of each variable in the 
model on the set of instruments. The second stage is a regression of the original equation, 
with all of the variables replaced by the fitted values from the first-stage regressions. The 
coefficients of this regression are the TSLS estimates. 

You need not worry about the separate stages of TSLS since EViews will estimate both stages 
simultaneously using instrumental variables techniques. More formally, let  be the matrix 
of instruments, and let  and  be the dependent and explanatory variables. The linear 
TSLS objective function is given by:

(21.1)

Then the coefficients computed in two-stage least squares are given by,

, (21.2)

and the standard estimated covariance matrix of these coefficients may be computed using:

, (21.3)

where is the estimated residual variance (square of the standard error of the regression). 
If desired,  may be replaced by the non-d.f. corrected estimator. Note also that EViews 
offers both White and HAC covariance matrix options for two-stage least squares.

Estimating TSLS in EViews 

To estimate an equation using 
Two-stage Least Squares, open 
the equation specification box 
by choosing Object/New 
Object.../Equation… or 
Quick/Estimate Equation… 
Choose TSLS from the Method: 
dropdown menu and the dialog 
will change to include an edit 
window where you will list the 
instruments.

Alternately, type the tsls key-
word in the command window 
and hit ENTER.

In the Equation specification 
edit box, specify your depen-
dent variable and independent 
variables and enter a list of instruments in the Instrument list edit box.
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There are a few things to keep in mind as you enter your instruments:

• In order to calculate TSLS estimates, your specification must satisfy the order condi-
tion for identification, which says that there must be at least as many instruments as 
there are coefficients in your equation. There is an additional rank condition which 
must also be satisfied. See Davidson and MacKinnon (1993) and Johnston and 
DiNardo (1997) for additional discussion.

• For econometric reasons that we will not pursue here, any right-hand side variables 
that are not correlated with the disturbances should be included as instruments. 

• EViews will, by default, add a constant to the instrument list. If you do not wish a 
constant to be added to the instrument list, the Include a constant check box should 
be unchecked.

To illustrate the estimation of two-stage least squares, we use an example from Stock and 
Watson 2007 (p. 438), which estimates the demand for cigarettes in the United States in 
1995. (The data are available in the workfile “Sw_cig.WF1”.) The dependent variable is the 
per capita log of packs sold LOG(PACKPC). The exogenous variables are a constant, C, and 
the log of real per capita state income LOG(PERINC). The endogenous variable is the log of 
real after tax price per pack LOG(RAVGPRC). The additional instruments are average state 
sales tax RTAXSO, and cigarette specific taxes RTAXS. Stock and Watson use the White cova-
riance estimator for the standard errors.

The equation specification is then,

log(packpc) c log(ravgprs) log(perinc)

and the instrument list is:

c log(perinc) rtaxso rtaxs

This specification satisfies the order condition for identification, which requires that there 
are at least as many instruments (four) as there are coefficients (three) in the equation spec-
ification. Note that listing C as an instrument is redundant, since by default, EViews auto-
matically adds it to the instrument list.

To specify the use of White heteroskedasticity robust standard 
errors, we will select White in the Coefficient covariance matrix 
dropdown menu on the Options tab. By default, EViews will esti-
mate the using the Ordinary method with d.f. Adjustment as specified in Equation (21.3).

Output from TSLS

Below we show the output from a regression of LOG(PACKPC) on a constant and 
LOG(RAVGPRS) and LOG(PERINC), with instrument list “LOG(PERINC) RTAXSO RTAXS”. 
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EViews identifies the estimation procedure, as well as the list of instruments in the header. 
This information is followed by the usual coefficient, t-statistics, and asymptotic p-values.

The summary statistics reported at the bottom of the table are computed using the formulae 
outlined in “Summary Statistics” on page 13. Bear in mind that all reported statistics are 
only asymptotically valid. For a discussion of the finite sample properties of TSLS, see John-
ston and DiNardo (1997, p. 355–358) or Davidson and MacKinnon (1993, p. 221–224).

Three other summary statistics are reported: “Instrument rank”, the “J-statistic” and the 
“Prob(J-statistic)”. The Instrument rank is simply the rank of the instrument matrix, and is 
equal to the number of instruments used in estimation. The J-statistic is calculated as:

(21.4)

where  are the regression residuals. See “Generalized Method of Moments,” beginning on 
page 81 for additional discussion of the J-statistic.

EViews uses the structural residuals  in calculating the summary statis-
tics. For example, the default estimator of the standard error of the regression used in the 
covariance calculation is:

. (21.5)

These structural, or regression, residuals should be distinguished from the second stage 
residuals that you would obtain from the second stage regression if you actually computed 
the two-stage least squares estimates in two separate stages. The second stage residuals are 

Dependent Variable: LOG(PACKPC)   
Method: Two-Stage Least Squares   
Date: 04/15/09   Time: 14:17   
Sample: 1 48    
Included observations: 48   
White heteroskedasticity-consistent standard errors & covariance 
Instrument specification: LOG(PERINC) RTAXSO RTAXS  
Constant added to instrument list   

Variable Coefficient Std. Error t-Statistic Prob.  

C 9.894956 0.959217 10.31566 0.0000
LOG(RAVGPRS) -1.277424 0.249610 -5.117680 0.0000
LOG(PERINC) 0.280405 0.253890 1.104436 0.2753

R-squared 0.429422    Mean dependent var 4.538837
Adjusted R-squared 0.404063    S.D. dependent var 0.243346
S.E. of regression 0.187856    Sum squared resid 1.588044
F-statistic 13.28079    Durbin-Watson stat 1.946351
Prob(F-statistic) 0.000029    Second-Stage SSR 1.845868
Instrument rank 4     J-statistic 0.311833
Prob(J-statistic) 0.576557    
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given by , where the  and  are the fitted values from the first-stage 
regressions.

We caution you that some of the reported statistics should be interpreted with care. For 
example, since different equation specifications will have different instrument lists, the 
reported  for TSLS can be negative even when there is a constant in the equation.

TSLS with AR errors

You can adjust your TSLS estimates to account for serial correlation by adding AR terms to 
your equation specification. EViews will automatically transform the model to a nonlinear 
least squares problem, and estimate the model using instrumental variables. Details of this 
procedure may be found in Fair (1984, p. 210–214). The output from TSLS with an AR(1) 
specification using the default settings with a tighter convergence tolerance looks as follows:

The Options button in the estimation box may be used to change the iteration limit and con-
vergence criterion for the nonlinear instrumental variables procedure.

First-order AR errors

Suppose your specification is:

(21.6)

ũt ŷt x̂tbTSLS– ŷt x̂t

R
2

Dependent Variable: LOG(PACKPC)   
Method: Two-Stage Least Squares   
Date: 08/25/09   Time: 15:04   
Sample (adjusted) : 2 48   
Included observations: 47 after adjustments  
White heteroskedasticity-consistent standard errors & covariance 
Instrument specification: LOG(PERINC) RTAXSO RTAXS  
Constant added to instrument list   
Lagged dependent variable & regressors added to instrument 
list  

Variable Coefficient Std. Error t-Statistic Prob.  

C 10.02006 0.996752 10.05272 0.0000
LOG(RAVGPRS) -1.309245 0.271683 -4.819022 0.0000
LOG(PERINC) 0.291047 0.290818 1.000785 0.3225

AR(1) 0.026532 0.133425 0.198852 0.8433

R-squared 0.431689    Mean dependent var 4.537196
Adjusted R-squared 0.392039    S.D. dependent var 0.245709
S.E. of regression 0.191584    Sum squared resid 1.578284
Durbin-Watson stat 1.951380    Instrument rank 7
J-statistic 1.494632    Prob(J-statistic) 0.683510

Inverted AR Roots       .03   
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where  is a vector of endogenous variables, and  is a vector of predetermined vari-
ables, which, in this context, may include lags of the dependent variable . is a vector of 
instrumental variables not in  that is large enough to identify the parameters of the 
model. 

In this setting, there are important technical issues to be raised in connection with the 
choice of instruments. In a widely cited result, Fair (1970) shows that if the model is esti-
mated using an iterative Cochrane-Orcutt procedure, all of the lagged left- and right-hand 
side variables  must be included in the instrument list to obtain consis-
tent estimates. In this case, then the instrument list should include:

. (21.7)

EViews estimates the model as a nonlinear regression model so that Fair’s warning does not 
apply. Estimation of the model does, however, require specification of additional instru-
ments to satisfy the instrument order condition for the transformed specification. By default, 
the first-stage instruments employed in TSLS are formed as if one were running Cochrane-
Orcutt using Fair’s prescription. Thus, if you omit the lagged left- and right-hand side terms 
from the instrument list, EViews will, by default, automatically add the lagged terms as 
instruments. This addition will be noted in your output.

You may instead instruct EViews not to add the lagged left- and right-hand side terms as 
instruments. In this case, you are responsible for adding sufficient instruments to ensure the 
order condition is satisfied.

Higher Order AR errors

The AR(1) results extend naturally to specifications involving higher order serial correlation. 
For example, if you include a single AR(4) term in your model, the natural instrument list 
will be:

(21.8)

If you include AR terms from 1 through 4, one possible instrument list is:

(21.9)

Note that while conceptually valid, this instrument list has a large number of overidentifying 
instruments, which may lead to computational difficulties and large finite sample biases 
(Fair (1984, p. 214), Davidson and MacKinnon (1993, p. 222-224)). In theory, adding instru-
ments should always improve your estimates, but as a practical matter this may not be so in 
small samples.

In this case, you may wish to turn off the automatic lag instrument addition and handle the 
additional instrument specification directly.
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Examples

Suppose that you wish to estimate the consumption function by two-stage least squares, 
allowing for first-order serial correlation. You may then use two-stage least squares with the 
variable list,

cons c gdp ar(1)

and instrument list:

c gov log(m1) time cons(-1) gdp(-1)

Notice that the lags of both the dependent and endogenous variables (CONS(–1) and GDP(–
1)), are included in the instrument list.

Similarly, consider the consumption function:

cons c cons(-1) gdp ar(1) 

A valid instrument list is given by:

c gov log(m1) time cons(-1) cons(-2) gdp(-1)

Here we treat the lagged left and right-hand side variables from the original specification as 
predetermined and add the lagged values to the instrument list.

Lastly, consider the specification:

cons c gdp ar(1 to 4)

Adding all of the relevant instruments in the list, we have:

c gov log(m1) time cons(-1) cons(-2) cons(-3) cons(-4) gdp(-1) 
gdp(-2) gdp(-3) gdp(-4)

TSLS with MA errors

You can also estimate two-stage least squares variable problems with MA error terms of var-
ious orders. To account for the presence of MA errors, simply add the appropriate terms to 
your specification prior to estimation.

Illustration

Suppose that you wish to estimate the consumption function by two-stage least squares, 
accounting for first-order moving average errors. You may then use two-stage least squares 
with the variable list,

cons c gdp ma(1)

and instrument list:

c gov log(m1) time

EViews will add both first and second lags of CONS and GDP to the instrument list.



76—Chapter 21. Instrumental Variables and GMM
Technical Details

Most of the technical details are identical to those outlined above for AR errors. EViews 
transforms the model that is nonlinear in parameters (employing backcasting, if appropri-
ate) and then estimates the model using nonlinear instrumental variables techniques.

Recall that by default, EViews augments the instrument list by adding lagged dependent and 
regressor variables corresponding to the AR lags. Note however, that each MA term involves 
an infinite number of AR terms. Clearly, it is impossible to add an infinite number of lags to 
the instrument list, so that EViews performs an ad hoc approximation by adding a truncated 
set of instruments involving the MA order and an additional lag. If for example, you have an 
MA(5), EViews will add lagged instruments corresponding to lags 5 and 6.

Of course, you may instruct EViews not to add the extra instruments. In this case, you are 
responsible for adding enough instruments to ensure the instrument order condition is satis-
fied.

Nonlinear Two-stage Least Squares

Nonlinear two-stage least squares refers to an instrumental variables procedure for estimat-
ing nonlinear regression models involving functions of endogenous and exogenous variables 
and parameters. Suppose we have the usual nonlinear regression model:

, (21.10)

where  is a -dimensional vector of parameters, and  contains both exogenous and 
endogenous variables. In matrix form, if we have  instruments , nonlinear two-
stage least squares minimizes:

(21.11)

with respect to the choice of .

While there is no closed form solution for the parameter estimates, the parameter estimates 
satisfy the first-order conditions:

(21.12)

with estimated covariance given by:

. (21.13)

How to Estimate Nonlinear TSLS in EViews

To estimate a Nonlinear equation using TSLS simply select Object/New Object.../Equa-
tion… or Quick/Estimate Equation… Choose TSLS from the Method dropdown menu, 
enter your nonlinear specification and the list of instruments. Click OK.
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With nonlinear two-stage least squares estimation, you have a great deal of flexibility with 
your choice of instruments. Intuitively, you want instruments that are correlated with the 
derivatives . Since  is nonlinear, you may begin to think about using more than just 
the exogenous and predetermined variables as instruments. Various nonlinear functions of 
these variables, for example, cross-products and powers, may also be valid instruments. One 
should be aware, however, of the possible finite sample biases resulting from using too 
many instruments.

Nonlinear Two-stage Least Squares with ARMA errors

While we will not go into much detail here, note that EViews can estimate non-linear TSLS 
models where there are ARMA error terms.

To estimate your model, simply open your equation specification window, and enter your 
nonlinear specification, including all ARMA terms, and provide your instrument list. For 
example, you could enter the regression specification:

cs = exp(c(1) + gdp^c(2)) + [ar(1)=c(3), ma(1)=c(4)]

with the instrument list:

c gov

EViews will transform the nonlinear regression model as described in “Specifying AR 
Terms” on page 112, and then estimate nonlinear TSLS on the transformed specification. For 
nonlinear models with AR errors, EViews uses a Gauss-Newton algorithm. See “Optimiza-
tion Algorithms” on page 1095 for further details.

Weighted Nonlinear Two-stage Least Squares

Weights may be used in nonlinear two-stage least squares estimation, provided there are no 
ARMA terms. Simply add weighting to your nonlinear TSLS specification above by pressing 
the Options button and entering the weight specification (see “Weighted Least Squares” on 
page 47).

The objective function for weighted TSLS is,

. (21.14)

The default reported standard errors are based on the covariance matrix estimate given by:

(21.15)

where .

Limited Information Maximum Likelihood and K-Class Estimation

Limited Information Maximum Likelihood (LIML) is a form of instrumental variable estima-
tion that is quite similar to TSLS. As with TSLS, LIML uses instruments to rectify the prob-
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lem where one or more of the right hand side variables in the regression are correlated with 
residuals. 

LIML was first introduced by Anderson and Rubin (1949), prior to the introduction of two-
stage least squares. However traditionally TSLS has been favored by researchers over LIML 
as a method of instrumental variable estimation. If the equation is exactly identified, LIML 
and TSLS will be numerically identical. Recent studies (for example, Hahn and Inoue 2002) 
have, however, found that LIML performs better than TSLS in situations where there are 
many “weak” instruments.

The linear LIML estimator minimizes

(21.16)

with respect to , where y is the dependent variable, X are explanatory variables, and Z are 
instrumental variables. 

Computationally, it is often easier to write this minimization problem in a slightly different-
form. Let  and . Then the linear LIML objective function can be 
written as:

(21.17)

Let  be the smallest eigenvalue of . The LIML estimator of  
is the eigenvector corresponding to , with a normalization so that the first element of the 
eigenvector equals -1.

The non-linear LIML estimator maximizes the concentrated likelihood function:

(21.18)

where  are the regression residuals and .

The default estimate of covariance matrix of instrumental variables estimators is given by 
the TSLS estimate in Equation (21.3).

K-Class

K-Class estimation is a third form of instrumental variable estimation; in fact TSLS and LIML 
are special cases of K-Class estimation. The linear K-Class objective function is, for a fixed 

, given by:

(21.19)

The corresponding K-Class estimator may be written as:

(21.20)
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where  and .

If , then the K-Class estimator is the TSLS estimator. If , then the K-Class esti-
mator is OLS. LIML is a K-Class estimator with , the minimum eigenvalue described 
above.

The obvious K-Class covariance matrix estimator is given by:

(21.21)

Bekker (1994) offers a covariance matrix estimator for K-Class estimators with normal error 
terms that is more robust to weak instruments. The Bekker covariance matrix estimate is 
given by:

(21.22)

where

(21.23)

for

 and .

Hansen, Hausman and Newey (2006) offer an extension to Bekker’s covariance matrix esti-
mate for cases with non-normal error terms.

Estimating LIML and K-Class in EViews

To estimate a LIML or K-Class equation in EViews, create an equation by choosing Object/
New Object…/Equation... or Quick/Estimate Equation, and choose LIML from the 
Method box.

Alternately, you may enter the keyword liml in the command window then hit ENTER.
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In the Equation specifica-
tion edit box, specify your 
dependent variable and 
exogenous variables, and 
in the Instrument list edit 
box, provide a list of 
instruments. Endogenous 
variables should be entered 
in both the Equation speci-
fication box and the 
Instrument list box.

For K-Class estimation, 
enter the value of  in the 
box labeled K (leave blank 
for LIML). If no value is 
entered in this box, LIML is 
performed.

If you wish to estimate a 
non-linear equation, then 
enter the expression for the non-linear equation in the Equation specification box. Note 
that non-linear K-Class estimation is currently not permitted; only non-linear LIML may be 
performed.

If you do not wish to include a constant as one of the instruments, uncheck the Include a 
Constant checkbox. 

Different standard error calculations may be chosen by changing the Standard Errors drop-
down menu on the Options tab of the estimation dialog. Note that if your equation was non-
linear, only IV based standard errors may be calculated. For linear estimation you may also 
choose K-Class based, Bekker, or Hansen, Hausman and Newey standard errors.

As an example of LIML estimation, we estimate part of Klein’s Model I, as published in 
Greene (2008, p. 385). We estimate the Consumption equation, where consumption (CONS) 
is regressed on a constant, private profits (Y), lagged private profits (Y(-1)), and wages (W) 
using data in the workfile “Klein.WF1”. The instruments are a constant, lagged corporate 
profits (P(-1)), lagged capital stock (K(-1)), lagged GNP (X(-1)), a time trend (TM), Govern-
ment wages (WG), Government spending (G) and taxes (T). In his reproduction of the Klein 
model, Greene uses K-Class standard errors. The results of this estimation are as follows:

k
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EViews identifies the LIML estimation procedure, along with the choice of covariance matrix 
type and the list of instruments in the header. This information is followed by the usual 
coefficient, t-statistics, and asymptotic p-values. 

The standard summary statistics reported at the bottom of the table are computed using the 
formulae outlined in “Summary Statistics” on page 13. Along with the standard statistics, 
the LIML minimum eigenvalue is also reported, if the estimation type was LIML.

Generalized Method of Moments

We offer here a brief description of the Generalized Method of Moments (GMM) estimator, 
paying particular attention to issues of weighting matrix estimation and coefficient covari-
ance calculation. Or treatment parallels the excellent discussion in Hayashi (2000). Those 
interested in additional detail are encouraged to consult one of the many comprehensive 
surveys of the subject.

The GMM Estimator

The starting point of GMM estimation is the assumption that there are a set of  moment 
conditions that the -dimensional parameters of interest,  should satisfy. These moment 
conditions can be quite general, and often a particular model has more specified moment 
conditions than parameters to be estimated. Thus, the vector of  moment conditions 
may be written as:

. (21.24)

Dependent Variable: CONS   
Method: LIML / K-Class   
Date: 05/27/09   Time: 11:16   
Sample (adjusted) : 1921 1941   
Included observations: 21 after adjustments  
Covariance type: K-Class   
Instrument specification: C P(-1) K(-1) X(-1) TM WG G T  

Variable Coefficient Std. Error t-Statistic Prob.  

C 17.14765 1.840295 9.317882 0.0000
Y -0.222513 0.201748 -1.102927 0.2854

Y(-1) 0.396027 0.173598 2.281293 0.0357
W 0.822559 0.055378 14.85347 0.0000

R-squared 0.956572    Mean dependent var 53.99524
Adjusted R-squared 0.948909    S.D. dependent var 6.860866
S.E. of regression 1.550791    Sum squared resid 40.88419
Durbin-Watson stat 1.487859    LIML min. eigenvalue 1.498746

L
K b

L K

E m yt b,   0
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In EViews (as in most econometric applications), we restrict our attention to moment condi-
tions that may be written as an orthogonality condition between the residuals of an equa-
tion, , and a set of  instruments :

(21.25)

The traditional Method of Moments estimator is defined by replacing the moment conditions 
in Equation (21.24) with their sample analog:

(21.26)

and finding the parameter vector  which solves this set of  equations.

When there are more moment conditions than parameters ( ), the system of equations 
given in Equation (21.26) may not have an exact solution. Such as system is said to be ove-
ridentified. Though we cannot generally find an exact solution for an overidentified system, 
we can reformulate the problem as one of choosing a  so that the sample moment  
is as “close” to zero as possible, where “close” is defined using the quadratic form:

(21.27)

as a measure of distance. The possibly random, symmetric and positive-definite  
matrix  is termed the weighting matrix since it acts to weight the various moment con-
ditions in constructing the distance measure. The Generalized Method of Moments estimate 
is defined as the  that minimizes Equation (21.27).

As with other instrumental variable estimators, for the GMM estimator to be identified, there 
must be at least as many instruments as there are parameters in the model. In models where 
there are the same number of instruments as parameters, the value of the optimized objec-
tive function is zero. If there are more instruments than parameters, the value of the opti-
mized objective function will be greater than zero. In fact, the value of the objective 
function, termed the J-statistic, can be used as a test of over-identifying moment conditions. 

Under suitable regularity conditions, the GMM estimator is consistent and  asymptoti-
cally normally distributed,

(21.28)

The asymptotic covariance matrix  of  is given by

(21.29)
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1–
Zu b 

L L
ŴT
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(21.30)

where  is both the asymptotic variance of  and the long-run covariance matrix 
of the vector process .

In the leading case where the  are the residuals from a linear specification so that 
, the GMM objective function is given by

(21.31)

and the GMM estimator yields the unique solution . 
The asymptotic covariance matrix is given by Equation (21.27), with 

(21.32)

It can be seen from this formation that both two-stage least squares and ordinary least 
squares estimation are both special cases of GMM estimation. The two-stage least squares 
objective is simply the GMM objective function multiplied by  using weighting matrix 

. Ordinary least squares is equivalent to two-stage least squares objec-
tive with the instruments set equal to the derivatives of , which in the linear case are 
the regressors.

Choice of Weighting Matrix

An important aspect of specifying a GMM estimator is the choice of the weighting matrix, 
. While any sequence of symmetric positive definite weighting matrices  will yield 

a consistent estimate of , Equation (21.29) implies that the choice of  affects the 
asymptotic variance of the GMM estimator. Hansen (1992) shows that an asymptotically effi-
cient, or optimal GMM estimator of  may be obtained by choosing  so that it con-
verges to the inverse of the long-run covariance matrix :

(21.33)

Intuitively, this result follows since we naturally want to assign less weight to the moment 
conditions that are measured imprecisely. For a GMM estimator with an optimal weighting 
matrix, the asymptotic covariance matrix of  is given by

(21.34)
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Implementation of optimal GMM estimation requires that we obtain estimates of . 
EViews offers four basic methods for specifying a weighting matrix:

• Two-stage least squares: the two-stage least squares weighting matrix is given by 
 where  is an estimator of the residual variance based on an 

initial estimate of . The estimator for the variance will be  or the no d.f. corrected 
equivalent, depending on your settings for the coefficient covariance calculation.

• White: the White weighting matrix is a heteroskedasticity consistent estimator of the 
long-run covariance matrix of  based on an initial estimate of .

• HAC - Newey-West: the HAC weighting matrix is a heteroskedasticity and autocor-
relation consistent estimator of the long-run covariance matrix of  based 
on an initial estimate of .

• User-specified: this method allows you to provide your own weighting matrix (speci-
fied as a sym matrix containing a scaled estimate of the long-run covariance 

).

For related discussion of the White and HAC - Newey West robust standard error estima-
tors, see “Robust Standard Errors” on page 32.

Weighting Matrix Iteration

As noted above, both the White and HAC weighting matrix estimators require an initial con-
sistent estimate of . (Technically, the two-stage least squares weighting matrix also 
requires an initial estimate of , though these values are irrelevant since the resulting  
does not affect the resulting estimates).

Accordingly, computation of the optimal GMM estimator with White or HAC weights often 
employs a variant of the following procedure:

1. Calculate initial parameter estimates  using TSLS

2. Use the  estimates to form residuals 

3. Form an estimate of the long-run covariance matrix of , , and use 
it to compute the optimal weighting matrix 

4. Minimize the GMM objective function with weighting matrix 

(21.35)

with respect to  to form updated parameter estimates. 

We may generalize this procedure by repeating steps 2 through 4 using  as our initial 
parameter estimates, producing updated estimates . This iteration of weighting matrix 
and coefficient estimation may be performed a fixed number of times, or until the coeffi-
cients converge so that  to a sufficient degree of precision.
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2
ZZ T  ĵ
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An alternative approach due to Hansen, Heaton and Yaron (1996) notes that since the opti-
mal weighting matrix is dependent on the parameters, we may rewrite the GMM objective 
function as

(21.36)

where the weighting matrix is a direct function of the  being estimated. The estimator 
which minimizes Equation (21.36) with respect to  has been termed the Continuously 
Updated Estimator (CUE).

Linear Equation Weight Updating

For equations that are linear in their coefficients, EViews offers three weighting matrix 
updating options: the N-step Iterative, the Iterate to Convergence, and the Continuously 
Updating method. 

As the names suggests, the N-Step Iterative method repeats steps 2-5 above  times, while 
the Iterate to Convergence repeats the steps until the parameter estimates converge. The 
Continuously Updating approach is based on Equation (21.36).

Somewhat confusingly, the N-Step Iterative method with a single weight step is sometimes 
referred to in the literature as the 2-step GMM estimator, the first step being defined as the 
initial TSLS estimation. EViews views this as a 1-step estimator since there is only a single 
optimal weight matrix computation.

Non-linear Equation Weight Updating

For equations that are non-linear in their coefficients, EViews offers five different updating 
algorithms: Sequential N-Step Iterative, Sequential Iterate to Convergence, Simultaneous 
Iterate to Convergence, 1-Step Weight Plus 1 Iteration, and Continuously Updating. The 
methods for non-linear specifications are generally similar to their linear counterparts, with 
differences centering around the fact that the parameter estimates for a given weighting 
matrix in step 4 must now be calculated using a non-linear optimizer, which itself involves 
iteration.

All of the non-linear weighting matrix update methods begin with  obtained from two-
stage least squares estimation in which the coefficients have been iterated to convergence.

The Sequential N-Step Iterative procedure is analogous to the linear N-Step Iterative proce-
dure outlined above, but with the non-linear optimization for the parameters in each step 4 
iterated to convergence. Similarly, the Sequential Iterate to Convergence method follows 
the same approach as the Sequential N-Step Iterative method, with full non-linear optimi-
zation of the parameters in each step 4. 

The Simultaneous Iterate to Convergence method differs from Sequential Iterate to Con-
vergence in that only a single iteration of the non-linear optimizer, rather than iteration to 
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convergence, is conducted in step 4. The iterations are therefore simultaneous in the sense 
that each weight iteration is paired with a coefficient iteration.

1-Step Weight Plus 1 Iteration performs a single weight iteration after the initial two-stage 
least squares estimates, and then a single iteration of the non-linear optimizer based on the 
updated weight matrix.

The Continuously Updating approach is again based on Equation (21.36).

Coefficient Covariance Calculation

Having estimated the coefficients of the model, all that is left is to specify a method of com-
puting the coefficient covariance matrix. We will consider two basic approaches, one based 
on a family of estimators of the asymptotic covariance given in Equation (21.29), and a sec-
ond, due to Windmeijer (2000, 2005), which employs a bias-corrected estimator which take 
into account the variation of the initial parameter estimates.

Conventional Estimators

Using Equation (21.29) and inserting estimators and sample moments, we obtain an estima-
tor for the asymptotic covariance matrix of :

(21.37)

where 

(21.38)

Notice that the estimator depends on both the final coefficient estimates  and the  
used to form the estimation weighting matrix, as well as an additional estimate of the long-
run covariance matrix . For weight update methods which iterate the weights until the 
coefficients converge the two sets of coefficients will be identical.

EViews offers six different covariance specifications of this form, Estimation default, Esti-
mation updated, Two-stage Least Squares, White, HAC (Newey-West), and User defined, 
each corresponding to a different estimator for . 

Of these, Estimation default and Estimation update are the most commonly employed 
coefficient covariance methods. Both methods compute  using the estimation weighting 
matrix specification (i.e. if White was chosen as the estimation weighting matrix, then 
White will also be used for estimating ).

• Estimation default uses the previously computed estimate of the long-run covariance 
matrix to form . The asymptotic covariance matrix simplifies consider-
ably in this case so that .
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Ŝ

Ŝ
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• Estimation updated performs one more step 3 in the iterative estimation procedure, 
computing an estimate of the long-run covariance using the final coefficient estimates 
to obtain . Since this method relies on the iterative estimation proce-
dure, it is not available for equations estimated by CUE.

In cases, where the weighting matrices are iterated to convergence, these two approaches 
will yield identical results.

The remaining specifications compute estimates of  at the final parameters  using the 
indicated long-run covariance method. You may use these methods to estimate your equa-
tion using one set of assumptions for the weighting matrix , while you com-
pute the coefficient covariance using a different set of assumptions for .

The primary application for this mixed weighting approach is in computing robust standard 
errors. Suppose, for example, that you want to estimate your equation using TSLS weights, 
but with robust standard errors. Selecting Two-stage least squares for the estimation 
weighting matrix and White for the covariance calculation method will instruct EViews to 
compute TSLS estimates with White coefficient covariances and standard errors. Similarly, 
estimating with Two-stage least squares estimation weights and HAC - Newey-West covari-
ance weights produces TSLS estimates with HAC coefficient covariances and standard 
errors.

Note that it is possible to choose combinations of estimation and covariance weights that, 
while reasonable, are not typically employed. You may, for example, elect to use White esti-
mation weights with HAC covariance weights, or perhaps HAC estimation weights using one 
set of HAC options and HAC covariance weights with a different set of options. It is also pos-
sible, though not recommended, to construct odder pairings such as HAC estimation weights 
with TSLS covariance weights.

Windmeijer Estimator

Various Monte Carlo studies (e.g. Arellano and Bond 1991) have shown that the above cova-
riance estimators can produce standard errors that are downward biased in small samples. 
Windmeijer (2000, 2005) observes that part of this downward bias is due to extra variation 
caused by the initial weight matrix estimation being itself based on consistent estimates of 
the equation parameters.

Following this insight it is possible to calculate bias-corrected standard error estimates 
which take into account the variation of the initial parameter estimates. Windmeijer pro-
vides two forms of bias corrected standard errors; one for GMM models estimated in a one-
step (one optimal GMM weighting matrix) procedure, and one for GMM models estimated 
using an iterate-to-convergence procedure. 

The Windmeijer corrected variance-covariance matrix of the one-step estimator is given by:

(21.39)
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where:

, the estimation default covariance estimator

, the updated weighting matrix (at final parameter estimates)

, the estimation updated covariance estimator where 

, the estimation weighting matrix (at initial parameter estimates)

, the initial weighting matrix

 is a matrix whose th column is given by :

The Windmeijer iterate-to-convergence variance-covariance matrix is given by:

(21.40)

where:

, the estimation default covariance estimator

, the GMM weighting matrix at converged parameter estimates

Weighted GMM

Weights may also be used in GMM estimation. The objective function for weighted GMM is,

(21.41)

where  is the long-run covariance of  where we now use  to indicate the diag-
onal matrix with observation weights .

The default reported standard errors are based on the covariance matrix estimate given by:

(21.42)

where .

Estimation by GMM in EViews

To estimate an equation by GMM, either create a new equation object by selecting Object/
New Object.../Equation, or press the Estimate button in the toolbar of an existing equation. 
From the Equation Specification dialog choose Estimation Method: GMM. The estimation 
specification dialog will change as depicted below.
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Ŵj
1–

 Ŵ1T
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Ŵ2T

1–
Zu b̂1 – V–

V̂WIC I DC–  1–
V̂C I DC–  1–

VC u b̂  Z ŴCT
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To obtain GMM estimates in 
EViews, you need to write the 
moment condition as an orthog-
onality condition between an 
expression including the param-
eters and a set of instrumental 
variables. There are two ways 
you can write the orthogonality 
condition: with and without a 
dependent variable. 

If you specify the equation 
either by listing variable names 
or by an expression with an 
equal sign, EViews will inter-
pret the moment condition as 
an orthogonality condition 
between the instruments and 
the residuals defined by the 
equation. If you specify the equation by an expression without an equal sign, EViews will 
orthogonalize that expression to the set of instruments. 

You must also list the names of the instruments in the Instrument list edit box. For the 
GMM estimator to be identified, there must be at least as many instrumental variables as 
there are parameters to estimate. EViews will, by default, add a constant to the instrument 
list. If you do not wish a constant to be added to the instrument list, the Include a constant 
check box should be unchecked.

For example, if you type,

Equation spec: y c x

Instrument list: c z w

the orthogonality conditions are given by:

(21.43)

If you enter the specification,

Equation spec: c(1)*log(y)+x^c(2)

Instrument list: c z z(-1)

yt c 1 – c 2 xt–  0

yt c 1 – c 2 xt– zt 0

yt c 1 – c 2 xt– wt 0
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the orthogonality conditions are:

(21.44)

Beneath the Instrument list box there are two dropdown menus that let you set the Estima-
tion weighting matrix and the Weight updating. 

The Estimation weight matrix dropdown specifies the type of GMM weighting matrix that 
will be used during estimation. You can choose from Two-stage least squares, White, HAC 
(Newey-West), and User-specified. If you select HAC (Newey West) then a button appears 
that lets you set the weighting matrix computation options. If you select User-specified you 
must enter the name of a symmetric matrix in the workfile containing an estimate of the 
weighting matrix (long-run covariance) scaled by the number of observations ). 
Note that the matrix must have as many columns as the number of instruments specified.

The  matrix can be retrieved from any equation estimated by GMM using the @instwgt 
data member (see “Equation Data Members” on page 37 of the Command and Programming 
Reference). @instwgt returns  which is an implicit estimator of the long-run covariance 
scaled by the number of observations. 

For example, for GMM equations estimated using the Two-stage least squares weighting 
matrix, will contain  (where the estimator for the variance will use  or the no 
d.f. corrected equivalent, depending on your options for coefficient covariance calculation). 
Equations estimated with a White weighting matrix will return . 

Storing the user weighting matrix from one equation, and using it during the estimation of a 
second equation may prove useful when computing diagnostics that involve comparing J-
statistics between two different equations.

The Weight updating dropdown menu lets you set the estimation algorithm type. For linear 
equations, you can choose between N-Step Iterative, Iterate to Convergence, and Continu-
ously Updating. For non-linear equations, the choice is between Sequential N-Step Itera-
tive, Sequential Iterate to Convergence, Simultaneous Iterate to Convergence, 1-Step 
Weight Plus 1 Iteration, and Continuously Updating.

To illustrate estimation of GMM models in EViews, we estimate the same Klein model intro-
duced in “Estimating LIML and K-Class in EViews,” on page 79, as again replicated by 
Greene 2008 (p. 385). We again estimate the Consumption equation, where consumption 
(CONS) is regressed on a constant, private profits (Y), lagged private profits (Y(-1)), and 
wages (W) using data in “Klein.WF1”. The instruments are a constant, lagged corporate 
profits (P(-1)), lagged capital stock (K(-1)), lagged GNP (X(-1)), a time trend (TM), Govern-
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ment wages (WG), Government spending (G) and taxes (T). Greene uses the White weight-
ing matrix, and an N-Step Iterative updating procedure, with N set to 2. The results of this 
estimation are shown below:

The EViews output header shows a summary of the estimation type and settings, along with 
the instrument specification. Note that in this case the header shows that the equation was 
linear, with a 2 step iterative weighting update performed. It also shows that the weighing 
matrix type was White, and this weighting matrix was used for the covariance matrix, with 
no degree of freedom adjustment.

Following the header the standard coefficient estimates, standard errors, t-statistics and 
associated p-values are shown. Below that information are displayed the summary statistics. 
Apart from the standard statistics shown in an equation, the instrument rank (the number of 
linearly independent instruments used in estimation) is also shown (8 in this case), and the 
J-statistic and associated p-value is also shown.

As a second example, we also estimate the equation for Investment. Investment (I) is 
regressed on a constant, private profits (Y), lagged private profits (Y(-1)) and lagged capital 
stock (K-1)). The instruments are again a constant, lagged corporate profits (P(-1)), lagged 
capital stock (K(-1)), lagged GNP (X(-1)), a time trend (TM), Government wages (WG), Gov-
ernment spending (G) and taxes (T).

Unlike Greene, we will use a HAC weighting matrix, with pre-whitening (fixed at 1 lag), a 
Tukey-Hanning kernel with Andrews Automatic Bandwidth selection. We will also use the 

Dependent Variable: CONS   
Method: Generalized Method of Moments   
Date: 04/21/09   Time: 12:17   
Sample (adjusted) : 1921 1941   
Included observations: 21 after adjustments  
Linear estimation with 2 weight updates   
Estimation weighting matrix: White   
Standard errors & covariance computed using estimation weighting 
        matrix    
No d.f. adjustment for standard errors & covariance  
Instrument specification: C P(-1) K(-1) X(-1) TM WG G T  

Variable Coefficient Std. Error t-Statistic Prob.  

C 14.31902 0.896606 15.97025 0.0000
Y 0.090243 0.061598 1.465032 0.1612

Y(-1) 0.143328 0.065493 2.188443 0.0429
W 0.863930 0.029250 29.53616 0.0000

R-squared 0.976762    Mean dependent var 53.99524
Adjusted R-squared 0.972661    S.D. dependent var 6.860866
S.E. of regression 1.134401    Sum squared resid 21.87670
Durbin-Watson stat 1.420878    Instrument rank 8
J-statistic 3.742084    Prob(J-statistic) 0.442035
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Continuously Updating weighting updating procedure. The output from this equation is 
show below:

Note that the header information for this equation shows slightly different information from 
the previous estimation. The inclusion of the HAC weighting matrix yields information on 
the prewhitening choice (lags = 1), and on the kernel specification, including the band-
width that was chosen by the Andrews procedure (2.1803). Since the CUE procedure is 
used, the number of optimization iterations that took place is reported (39).

IV Diagnostics and Tests

EViews offers several IV and GMM specific diagnostics and tests.

Instrument Summary

The Instrument Summary view of an equation is available for non-panel equations esti-
mated by GMM, TSLS or LIML. The summary will display the number of instruments speci-
fied, the instrument specification, and a list of the instruments that were used in estimation. 

For most equations, the instruments used will be the same as the instruments that were 
specified in the equation, however if two or more of the instruments are collinear, EViews 
will automatically drop instruments until the instrument matrix is of full rank. In cases 
where instruments have been dropped, the summary will list which instruments were 
dropped.

Dependent Variable: I   
Method: Generalized Method of Moments   
Date: 08/10/09   Time: 10:48   
Sample (adjusted) : 1921 1941   
Included observations: 21 after adjustments  
Continuously updating weights & coefficients  
Estimation weighting matrix: HAC (Prewhitening with  lags = 1, Tukey 
        -Hanning kernel, Andrews bandwidth = 2.1803)  
Standard errors & covariance computed using estimation weighting 
        matrix    
Convergence achieved after 30 iterations   
No d.f. adjustment for standard errors & covariance  
Instrument specification: C P(-1) K(-1) X(-1) TM WG G T  

Variable Coefficient Std. Error t-Statistic Prob.  

C 22.20609 5.693625 3.900168 0.0012
Y -0.261377 0.277758 -0.941024 0.3599

Y(-1) 0.935801 0.235666 3.970878 0.0010
K(-1) -0.157050 0.024042 -6.532236 0.0000

R-squared 0.659380    Mean dependent var 1.266667
Adjusted R-squared 0.599271    S.D. dependent var 3.551948
S.E. of regression 2.248495    Sum squared resid 85.94740
Durbin-Watson stat 1.804037    Instrument rank 8
J-statistic 1.949180    Prob(J-statistic) 0.745106
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The Instrument Summary view may be found under View/IV Diagnostics & Tests/Instru-
ment Summary.

Instrument Orthogonality Test

The Instrument Orthogonality test, also known as the C-test or Eichenbaum, Hansen and 
Singleton (EHS) Test, evaluates the othogonality condition of a sub-set of the instruments. 
This test is available for non-panel equations estimated by TSLS or GMM.

Recall that the central assumption of instrumental variable estimation is that the instru-
ments are orthogonal to a function of the parameters of the model:

(21.45)

The Instrument Orthogonality Test evaluates whether this condition possibly holds for a 
subset of the instruments but not for the remaining instruments

(21.46)

Where , and  are instruments for which the condition is assumed to hold.

The test statistic, , is calculated as the difference in J-statistics between the original 
equation and a secondary equation estimated using only  as instruments:

(21.47)

where  are the parameter estimates from the original TSLS or GMM estimation, and  
is the original weighting matrix,  are the estimates from the test equation, and  is the 
matrix for the test equation formed by taking the subset of  corresponding to the instru-
ments in . The test statistic is Chi-squared distributed with degrees of freedom equal to 
the number of instruments in .

To perform the Instrumental Orthogonality Test in EViews, click on View/IV Diagnostics 
and Tests/Instrument Orthogonality Test. A dialog box will the open up asking you to 
enter a list of the  instruments for which the orthogonality condition may not hold. Click 
on OK and the test results will be displayed.

Regressor Endogeneity Test

The Regressor Endogeneity Test, also known as the Durbin-Wu-Hausman Test, tests for the 
endogeneity of some, or all, of the equation regressors. This test is available for non-panel 
equations estimated by TSLS or GMM.

A regressor is endogenous if it is explained by the instruments in the model, whereas exoge-
nous variables are those which are not explained by instruments. In EViews’ TSLS and GMM 
estimation, exogenous variables may be specified by including a variable as both a regressor 
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and an instrument, whereas endogenous variable are those which are specified in the 
regressor list only.

The Endogeneity Test tests whether a subset of the endogenous variables are actually exoge-
nous. This is calculated by running a secondary estimation where the test variables are 
treated as exogenous rather than endogenous, and then comparing the J-statistic between 
this secondary estimation and the original estimation:

(21.48)

where  are the parameter estimates from the original TSLS or GMM estimation obtained 
using weights , and  are the estimates from the test equation estimated using , the 
instruments augmented by the variables which are being tested, and  is the weighting 
matrix from the secondary estimation.

Note that in the case of GMM estimation, the matrix  should be a sub-matrix of  
to ensure positivity of the test statistic. Accordingly, in computing the test statistic, EViews 
first estimates the secondary equation to obtain , and then forms a new matrix , 
which is the subset of  corresponding to the original instruments . A third estimation 
is then performed using the subset matrix for weighting, and the test statistic is calculated 
as:

(21.49)

The test statistic is distributed as a Chi-squared random variable with degrees of freedom 
equal to the number of regressors tested for endogeneity.

To perform the Regressor Endogeneity Test in EViews, click on View/IV Diagnostics and 
Tests/Regressor Endogeneity Test. A dialog box will the open up asking you to enter a list 
of regressors to test for endogeneity. Once you have entered those regressors, hit OK and the 
test results are shown.

Weak Instrument Diagnostics

The Weak Instrument Diagnostics view provides diagnostic information on the instruments 
used during estimation. This information includes the Cragg-Donald statistic, the associated 
Stock and Yugo critical values, and Moment Selection Criteria (MSC). The Cragg-Donald sta-
tistic and its critical values are available for equations estimated by TSLS, GMM or LIML, 
but the MSC are available for equations estimated by TSLS or GMM only.

The Cragg-Donald statistic is proposed by Stock and Yugo as a measure of the validity of the 
instruments in an IV regression. Instruments that are only marginally valid, known as weak 
instruments, can lead to biased inferences based on the IV estimates, thus testing for the 
presence of weak instruments is important. For a discussion of the properties of IV estima-
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ŴT b̃ Z̃
W̃T
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tion when the instruments are weak, see, for example, Moreira 2001, Stock and Yugo 2004 or 
Stock, Wright and Yugo 2002.

Although the Cragg-Donald statistic is only valid for TSLS and other K-class estimators, 
EViews also reports for equations estimated by GMM for comparative purposes. 

The Cragg-Donald statistic is calculated as:

(21.50)

where:

 = instruments that are not in the regressor list

 = exogenous regressors (regressors in both the regressor and instrument lists)

 = endogenous regressors (regressors that are not in instrument list)

 = number of columns of 

 = number of columns of 

The statistic does not follow a standard distribution, however Stock and Yugo provide a 
table of critical values for certain combinations of instruments and endogenous variable 
numbers. EViews will report these critical values if they are available for the specified num-
ber of instruments and endogenous variables in the equation.

Moment Selection Criteria (MSC) are a form of Information Criteria that can be used to com-
pare different instrument sets. Comparison of the MSC from equations estimated with differ-
ent instruments can help determine which instruments perform the best. EViews reports 
three different MSCs: two proposed by Andrews (1999)—a Schwarz criterion based, and a 
Hannan-Quinn criterion based, and the third proposed by Hall, Inoue, Jana and Shin 
(2007)—the Relevant Moment Selection Criterion. They are calculated as follows:
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where  = the number of instruments,  = the number of regressors,  = the number of 
observations,  = the estimation covariance matrix,

and  is equal 1 for TSLS and White GMM estimation, and equal to the bandwidth used in 
HAC GMM estimation.

To view the Weak Instrument Diagnostics in EViews, click on View/IV Diagnostics & Tests/
Weak Instrument Diagnostics.

GMM Breakpoint Test

The GMM Breakpoint test is similar to the Chow Breakpoint Test, but it is geared towards 
equations estimated via GMM rather than least squares. 

EViews calculates three different types of GMM breakpoint test statistics: the Andrews-Fair 
(1988) Wald Statistic, the Andrews-Fair LR-type Statistic, and the Hall and Sen (1999) O-Sta-
tistic. The first two statistics test the null hypothesis that there are no structural breaks in 
the equation parameters. The third statistic tests the null hypothesis that the over-identifying 
restrictions are stable over the entire sample.

All three statistics are calculated in a similar fashion to the Chow Statistic – the data are par-
titioned into different subsamples, and the original equation is re-estimated for each of these 
subsamples. However, unlike the Chow Statistic, which is calculated on the basis that the 
variance-covariance matrix of the error terms remains constant throughout the entire sample 
(i.e . is the same between subsamples), the GMM breakpoint statistic lets the variance-
covariance matrix of the error terms vary between the subsamples.

The Andrews-Fair Wald Statistic is calculated, in the single breakpoint case, as:

(21.51)

Where  refers to the coefficient estimates from subsample ,  refers to the number of 
observations in subsample , and  is the estimate of the variance-covariance matrix for 
subsample .

The Andrews-Fair LR-type statistic is a comparison of the J-statistics from each of the subsa-
mple estimations:

(21.52)

Where  is a J-statistic calculated with the original equation’s residuals, but a GMM 
weighting matrix equal to the weighted (by number of observations) sum of the estimated 
weighting matrices from each of the subsample estimations.
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The Hall and Sen O-Statistic is calculated as:

(21.53)

The first two statistics have an asymptotic  distribution with  degrees of free-
dom, where m is the number of subsamples, and k is the number of coefficients in the orig-
inal equation. The O-statistic also follows an asymptotic  distribution, but with 

 degrees of freedom.

To apply the GMM Breakpoint test, click on View/Breakpoint Test…. In the dialog box that 
appears simply enter the dates or observation numbers of the breakpoint you wish to test.
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Chapter 22.  Time Series Regression

In this chapter, we turn our attention to the analysis of single equation models for time 
series data, focusing on the estimation of Autoregressive-Moving Average (ARMA), Autore-
gressive-Integrated-Moving Average (ARIMA), and Autoregressive-Fractionally Integrated-
Moving Average (ARFIMA) specifications, and the computation of equation diagnostics for 
these models.

Before turning to the EViews implementation of these features, we provide brief background 
for the models and related diagnostics. Those desiring additional detail are encouraged to 
consult one or more of the many book length treatments of time series methods (Box, Jen-
kins, and Reinsel, 2008; Hamilton, 1994).

Related topics are discussed elsewhere in this volume; see, for example, Chapter 38. “Uni-
variate Time Series Analysis,” on page 589, Chapter 40. “Vector Autoregression and Error 
Correction Models,” on page 687, Chapter 41. “State Space Models and the Kalman Filter,” 
on page 755 for material on additional time series topics.

Background

A common occurrence in time series regression is the presence of correlation between resid-
uals and their lagged values. This serial correlation violates the standard assumption of 
regression theory which requires uncorrelated regression disturbances. Among the problems 
associated with unaccounted for serial correlation in a regression framework are:

• OLS is no longer efficient among linear estimators. Intuitively, since prior residuals 
help to predict current residuals, we can take advantage of this information to form a 
better prediction of the dependent variable.

• Standard errors computed using the textbook OLS formula are not correct, and are 
generally understated.

• If there are lagged dependent variables on the right-hand side of the equation specifi-
cation, OLS estimates are biased and inconsistent.

A popular framework for modeling serial dependence is the Autoregressive-Moving Average 
(ARMA) and Autoregressive-Integrated-Moving Average (ARIMA) models popularized by 
Box and Jenkins (1976) and generalized to Autoregressive-Fractionally Integrated-Moving 
Average (ARFIMA) specifications.

(Note that ARMA and ARIMA models which allow for explanatory variables in the mean are 
sometimes termed ARIMAX and ARIMAX. We will generally use ARMA to refer to models 
both with and without explanatory variables unless there is a specific reason to distinguish 
between the two types.)
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Autoregressive (AR) Models 

An autoregressive model of order , denoted AR( ) has the form

(22.1)

where  are the independent and identically distributed innovations for the process and the 
autoregressive parameters  characterize the nature of the dependence. Note that the auto-
correlations of a stationary AR( ) are infinite, but decline geometrically so they die off 
quickly, and the partial autocorrelations for lags greater than  are zero. 

It will be convenient for the discussion to follow to define a lag operator  such that:

(22.2)

and to rewrite the AR( ) as

(22.3)

where 

(22.4)

is a lag polynomial that characterizes the AR process.If we add a mean to the model, we 
obtain:

(22.5)

The AR(1) Model

The simplest and most widely used regression model with serial correlation is the first-order 
autoregressive, or AR(1), model. If the mean  is a linear combination of regres-
sors  and parameters , the AR(1) model may be written as:

(22.6)

The parameter  is the first-order serial correlation coefficient. 

Substituting the second equation into the first, we obtain the regression form
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(22.7)

In the representation it is easy to see that the AR(1) model incorporates the residual from 
the previous observation into the regression model for the current observation. 

Rearranging terms and using the lag operator, we have the polynomial form

(22.8)

Higher-Order AR Models

A regression model with an autoregressive process of order , AR( ), is given by:

(22.9)

Substituting and rearranging terms, we get the regression

(22.10)

and the polynomial form

(22.11)

Moving Average (MA) Models

A moving average model of order , denoted MA( ) has the form

(22.12)

where  are the innovations, and

(22.13)

is the moving average polynomial with parameters  that characterize the MA process. 
Note that the autocorrelations of an MA model are zero for lags greater than .
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You should pay particular attention to the definition of the lag polynomial when comparing 
results across different papers, books, or software, as the opposite sign convention is some-
times employed for the  coefficients.

Adding a mean to the model, we get the mean adjusted form:

(22.14)

The MA(1) Model

The MA(1) model assumes that the current disturbance term  is a weighted sum of the 
current and lagged innovations  and :

(22.15)

The parameter  is the first-order moving average coefficient. Substituting, the MA(1) may 
be written as

(22.16)

and

(22.17)

Autoregressive Moving Average (ARMA) Models

We may combine the AR and the MA specifications to define an autoregressive model mov-
ing average (ARMA) model:

(22.18)

We term this model an ARMA( ) to indicate that there are  lags in the AR and  terms 
in the MA.

The ARMA(1, 1) Model

The simplest ARMA model is first-order autoregressive with a first-order moving average 
error:

(22.19)

The parameter  is the first-order serial correlation coefficient, and the  is the moving 
average coefficient. Substituting, the ARMA(1, 1) may be written as

(22.20)

or equivalently,
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(22.21)

Seasonal ARMA Terms

Box and Jenkins (1976) recommend the use of seasonal autoregressive (SAR) and seasonal 
moving average (SMA) terms for monthly or quarterly data with systematic seasonal move-
ments. Processes with SAR and SMA terms are ARMA models constructed using products of 
lag polynomials. These products produce higher order ARMA models with nonlinear restric-
tions on the coefficients.

Seasonal AR Terms

A SAR( ) term is a seasonal autoregressive term with lag . A SAR adds to an existing AR 
specification a polynomial with a lag of :

(22.22)

The SAR is not intended to be used alone. The SAR allows you to form the product of lag 
polynomials, with the resulting lag structure defined by the product of the AR and SAR lag 
polynomials.

For example, a second-order AR process without seasonality is given by,

, (22.23)

which can be represented using the lag operator  as:

(22.24)

For quarterly data, we might wish to add a SAR(4) term because we believe that there is cor-
relation between a quarter and the quarter the year previous. Then the resulting process 
would be:

. (22.25)

Expanded terms, we see that the process is equivalent to:

. (22.26)

The parameter  is associated with the seasonal part of the process. Note that this is an 
AR(6) process with nonlinear restrictions on the coefficients.

Seasonal MA Terms

Similarly, SMA( ) can be included in your specification to specify a seasonal moving aver-
age term with lag . The resulting the MA lag structure is obtained from the product of the 
lag polynomial specified by the MA terms and the one specified by any SMA terms.

For example, second-order MA process without seasonality may be written as
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, (22.27)

or using lag operators:

. (22.28)

To take account of seasonality in a quarterly workfile you may wish to add an SMA(4). Then 
the resulting process is:

(22.29)

The process is equivalent to:

. (22.30)

The parameter  is associated with the seasonal part of an MA(6) process which has non-
linear restrictions on the coefficients.

Integrated Models

A time series  is said to be integrated of order 0 or , if it may be written as a MA pro-
cess , with coefficients such that

(22.31)

Roughly speaking, an  process is a moving average with autocovariances that die off 
sufficiently quickly, a condition which is necessary for stationarity (Hamilton, 2004).

 is said to be integrated of order  or , if its -th integer difference,  is 
, and the  difference is not. 

Typically, one assumes that  is an integer and that  or  so that first or sec-
ond differencing the original series yields a stationary series. We will consider both integer 
and non-integer integration in turn.

ARIMA Model

An ARIMA( ) model is defined as an  process whose -th integer difference fol-
lows a stationary ARMA( ) process. In polynomial form we have:

(22.32)

Example

The ARIMA(1,1,1) Model

An ARIMA(1,1,1) model for  assumes that the first difference of  is an ARMA(1,1).

(22.33)
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Rearranging, and noting that  and  we may write this 
specification as

(22.34)

or 

(22.35)

ARFIMA Model

Stationary processes are said to have long memory when autocorrelations are persistent, 
decaying more slowly than the rate associated with ARMA models. Modeling long term 
dependence is difficult for standard ARMA specifications as it requires non-parsimonious, 
large-order ARMA representations that are generally accompanied by undesirable short-run 
dynamics (Sowell, 1992).

One popular approach to modeling long memory processes is to employ the notion of frac-
tional integration (Granger and Joyeux, 1980; Hosking, 1981). A fractionally integrated 
series is one with long-memory that is not . 

Following Granger and Joyeux (1981) and Hosking (1981), we may define a discrete time 
fractional difference operator which depends on the parameter :

(22.36)

for  and  the gamma function.

If the fractional -difference operator applied to a process produces a random walk we say 
that the process is an ARFIMA(0, , 0). Hosking notes that for an ARFIMA(0, , 0):

• when , the process is non-stationary but invertible

• when , the process has long memory but is stationary and invertible

• when , the process has short memory, with all negative auto-correla-
tions and partial auto correlations, and is invertible

• when , the process is white noise

More generally, if -th order fractional differencing results in an ARMA( ), the process is 
said to be ARFIMA( ). In polynomial form we have:

(22.37)

Notice that the ARFIMA specification is identical to the standard Box-Jenkins ARIMA formu-
lation in Equation (22.32), but allowing for non-integer . Note also that the range restric-
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tion on  is non-binding as we may apply integer differencing or summing until  is in the 
desired range.

By combining fractional differencing with a traditional ARMA specification, the ARFIMA 
model allows for flexible dynamic patterns. Crucially, when , the autocor-
relations and partial autocorrelations of the ARFIMA process decay more slowly (hyperboli-
cally) than the rates associated with ARMA specifications. Thus, the ARFIMA model allows 
you to model slowing decaying long-run dependence using the  parameter and more rap-
idly decaying short-run dynamics using a parsimonious ARMA( ). 

The Box-Jenkins (1976) Approach to ARIMA Modeling

In Box-Jenkins ARIMA modeling and forecasting, you assemble a complete forecasting 
model by using combinations of the three ARIMA building blocks described above. The first 
step in forming an ARIMA model for a series of residuals is to look at its autocorrelation 
properties. You can use the correlogram view of a series for this purpose, as outlined in 
“Correlogram” on page 420 of User’s Guide I.

This phase of the ARIMA modeling procedure is called identification (not to be confused 
with the same term used in the simultaneous equations literature). The nature of the cor-
relation between current values of residuals and their past values provides guidance in 
selecting an ARIMA specification.

The autocorrelations are easy to interpret—each one is the correlation coefficient of the cur-
rent value of the series with the series lagged a certain number of periods. The partial auto-
correlations are a bit more complicated; they measure the correlation of the current and 
lagged series after taking into account the predictive power of all the values of the series 
with smaller lags. The partial autocorrelation for lag 6, for example, measures the added pre-
dictive power of  when  are already in the prediction model. In fact, the 
partial autocorrelation is precisely the regression coefficient of  in a regression where 
the earlier lags are also used as predictors of .

If you suspect that there is a distributed lag relationship between your dependent (left-hand) 
variable and some other predictor, you may want to look at their cross correlations before 
carrying out estimation.

The next step is to decide what kind of ARIMA model to use. If the autocorrelation function 
dies off smoothly at a geometric rate, and the partial autocorrelations were zero after one 
lag, then a first-order autoregressive model is appropriate. Alternatively, if the autocorrela-
tions were zero after one lag and the partial autocorrelations declined geometrically, a first-
order moving average process would seem appropriate. If the autocorrelations appear to 
have a seasonal pattern, this would suggest the presence of a seasonal ARMA structure. 
Along these lines, Box and Jenkins (1976) recommend the use of seasonal autoregressive 
(SAR) and seasonal moving average (SMA) terms for monthly or quarterly data with system-
atic seasonal movements.
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For example, we can examine the correlogram of the DRI Basics housing series in the 
“Hs.WF1” workfile by setting the sample to “1959m01 1984m12” then selecting View/Cor-
relogram… from the HS series toolbar. Click on OK to accept the default settings and dis-
play the result.

The “wavy” cyclical correlogram 
with a seasonal frequency suggests 
fitting a seasonal ARMA model to 
HS.

The goal of ARIMA analysis is a par-
simonious representation of the pro-
cess governing the residual. You 
should use only enough AR and MA 
terms to fit the properties of the 
residuals. The Akaike information 
criterion and Schwarz criterion pro-
vided with each set of estimates may 
also be used as a guide for the appro-
priate lag order selection.

After fitting a candidate ARIMA spec-
ification, you should verify that there 
are no remaining autocorrelations 
that your model has not accounted for. Examine the autocorrelations and the partial auto-
correlations of the innovations (the residuals from the ARIMA model) to see if any important 
forecasting power has been overlooked. EViews provides several views for diagnostic checks 
after estimation.

Testing for Serial Correlation

Before you use an estimated equation for statistical inference (e.g. hypothesis tests and fore-
casting), you should generally examine the residuals for evidence of serial correlation. 
EViews provides several methods of testing a specification for the presence of serial correla-
tion.

The Durbin-Watson Statistic

EViews reports the Durbin-Watson (DW) statistic as a part of the standard regression output. 
The Durbin-Watson statistic is a test for first-order serial correlation. More formally, the DW 
statistic measures the linear association between adjacent residuals from a regression model. 
The Durbin-Watson is a test of the hypothesis  in the specification:

. (22.38)

r 0

ut rut 1– et



108—Chapter 22. Time Series Regression
If there is no serial correlation, the DW statistic will be around 2. The DW statistic will fall 
below 2 if there is positive serial correlation (in the worst case, it will be near zero). If there 
is negative correlation, the statistic will lie somewhere between 2 and 4. 

Positive serial correlation is the most commonly observed form of dependence. As a rule of 
thumb, with 50 or more observations and only a few independent variables, a DW statistic 
below about 1.5 is a strong indication of positive first order serial correlation. See Johnston 
and DiNardo (1997, Chapter 6.6.1) for a thorough discussion on the Durbin-Watson test and 
a table of the significance points of the statistic.

There are three main limitations of the DW test as a test for serial correlation. First, the dis-
tribution of the DW statistic under the null hypothesis depends on the data matrix . The 
usual approach to handling this problem is to place bounds on the critical region, creating a 
region where the test results are inconclusive. Second, if there are lagged dependent vari-
ables on the right-hand side of the regression, the DW test is no longer valid. Lastly, you 
may only test the null hypothesis of no serial correlation against the alternative hypothesis 
of first-order serial correlation. 

Two other tests of serial correlation—the Q-statistic and the Breusch-Godfrey LM test—over-
come these limitations, and are preferred in most applications.

Correlograms and Q-statistics 

If you select View/Residual Diagnostics/Correlogram-Q-statistics on the equation toolbar, 
EViews will display the autocorrelation and partial autocorrelation functions of the residu-
als, together with the Ljung-Box Q-statistics for high-order serial correlation. If there is no 
serial correlation in the residuals, the autocorrelations and partial autocorrelations at all lags 
should be nearly zero, and all Q-statistics should be insignificant with large p-values. 

Note that the p-values of the Q-statistics will be computed with the degrees of freedom 
adjusted for the inclusion of ARMA terms in your regression. There is evidence that some 
care should be taken in interpreting the results of a Ljung-Box test applied to the residuals 
from an ARMAX specification (see Dezhbaksh, 1990, for simulation evidence on the finite 
sample performance of the test in this setting).

Details on the computation of correlograms and Q-statistics are provided in greater detail in 
Chapter 11. “Series,” on page 422 of User’s Guide I.

Serial Correlation LM Test 

Selecting View/Residual Diagnostics/Serial Correlation LM Test… carries out the 
Breusch-Godfrey Lagrange multiplier test for general, high-order, ARMA errors. In the Lag 
Specification dialog box, you should enter the highest order of serial correlation to be 
tested. 

x
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The null hypothesis of the test is that there is no serial correlation in the residuals up to the 
specified order. EViews reports a statistic labeled “F-statistic” and an “Obs*R-squared” 
( —the number of observations times the R-square) statistic. The statistic has an 
asymptotic distribution under the null hypothesis. The distribution of the F-statistic is 
not known, but is often used to conduct an informal test of the null.

See “Serial Correlation LM Test” on page 195 for further discussion of the serial correlation 
LM test.

Example

As an example of the application of serial correlation testing procedures, consider the fol-
lowing results from estimating a simple consumption function by ordinary least squares 
using data in the workfile “Uroot.WF1”:

A quick glance at the results reveals that the coefficients are statistically significant and the 
fit is very tight. However, if the error term is serially correlated, the estimated OLS standard 
errors are invalid and the estimated coefficients will be biased and inconsistent due to the 
presence of a lagged dependent variable on the right-hand side. The Durbin-Watson statistic 
is not appropriate as a test for serial correlation in this case, since there is a lagged depen-
dent variable on the right-hand side of the equation. 

Selecting View/Residual Diagnostics/Correlogram-Q-statistics for the first 12 lags from 
this equation produces the following view:

NR2 NR2

x
2

Dependent Variable: CS   
Method: Least Squares   
Date: 08/10/09   Time: 11:06   
Sample: 1948Q3 1988Q4   
Included observations: 162   

Variable Coefficient Std. Error t-Statistic Prob.  

C -9.227624 5.898177 -1.564487 0.1197
GDP 0.038732 0.017205 2.251193 0.0257

CS(-1) 0.952049 0.024484 38.88516 0.0000

R-squared 0.999625    Mean dependent var 1781.675
Adjusted R-squared 0.999621    S.D. dependent var 694.5419
S.E. of regression 13.53003    Akaike info criterion 8.066046
Sum squared resid 29106.82    Schwarz criterion 8.123223
Log likelihood -650.3497    Hannan-Quinn criter. 8.089261
F-statistic 212047.1    Durbin-Watson stat 1.672255
Prob(F-statistic) 0.000000    
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The correlogram has spikes at lags up to three and at lag eight. The Q-statistics are signifi-
cant at all lags, indicating significant serial correlation in the residuals. 

Selecting View/Residual Diagnostics/Serial Correlation LM Test… and entering a lag of 4 
yields the following result (top portion only): 

The test rejects the hypothesis of no serial correlation up to order four. The Q-statistic and 
the LM test both indicate that the residuals are serially correlated and the equation should 
be re-specified before using it for hypothesis tests and forecasting.

Estimating ARIMA and ARFIMA Models in EViews

EViews estimates ARIMA models for linear and nonlinear equations specifications defined 
by list or expression, and ARFIMA models for linear specifications defined by list.

Before you use the tools described in this section, you may first wish to examine your model 
for other signs of misspecification. Serial correlation in the errors may be evidence of serious 
problems with your specification. In particular, you should be on guard for an excessively 
restrictive specification that you arrived at by experimenting with ordinary least squares. 
Sometimes, adding improperly excluded variables to your regression will eliminate the serial 
correlation. For a discussion of the efficiency gains from the serial correlation correction and 
some Monte-Carlo evidence, see Rao and Griliches (l969).

Breusch-Godfrey Serial Correlation LM Test:  

F-statistic 3.654696    Prob. F(4,155) 0.0071
Obs*R-squared 13.96215    Prob. Chi-Square(4) 0.0074
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To estimate an ARMA, ARIMA, or ARFIMA model in EViews, open an equation object by 
clicking on Quick/Estimate Equation… or Object/New Object.../Equation in the main 
EViews menu, or type equation in the command line:

Putting aside the Equation specification for a moment, consider the Estimation settings 
section at the bottom of the dialog

• When estimating ARMA models, you may choose LS – Least Squares (NLS and 
ARMA), TSLS – Two-Stage Least Squares (TSNLS and ARMA), or GMM - General-
ized Method of Moments in the estimation Method dropdown menu.

Note that some estimation techniques and methods (notable maximum likelihood and 
fractional integration) are only available under the least squares option. 

• Enter the sample specification in the Sample edit dialog.

As the focus of our discussion will be on the equation specification for standard ARIMA and 
ARFIMA models and on the corresponding settings on the Options tab, the remainder of our 
discussion will assume you have selected the LS – Least Squares (NLS and ARMA) method 
in the dropdown menu. We will make brief comments about other specifications when 
appropriate.

Equation Specification

EViews estimates general ARIMA and ARFIMA specifications that allow for right-hand side 
explanatory variables (ARIMAX and ARFIMAX). 

You should enter your equation specification in the top edit field. As with other equation 
specifications, you may enter your equation by listing the dependent variable followed by 
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explanatory variables and special keywords, or you may provide an explicit expression for 
the equation.

To specify your ARIMA model, you will:

• Difference your dependent variable, if necessary, to account for the integer order of 
integration.

• Describe your structural regression model (dependent variables and mean regressors) 
and add AR, SAR, MA, SMA terms, as necessary.

To specify your ARFIMA model you will:

• Difference your dependent variable, if necessary, to account for an integer order of 
integration.

• Describe your structural regression model (dependent variables and regressors) and 
add any ordinary and seasonal ARMA terms, if desired.

• Add the d keyword to the specification to indicate that you would like to estimate and 
use a fractional difference parameter .

Specifying AR Terms 

To specify an AR term in EViews, you will use the keyword ar, followed by the desired lag 
or lag range enclosed in parentheses. You must explicitly instruct EViews to use each AR lag 
you wish to include.

First-Order AR

For specifications defined by list, simply add the ar keywords to the list. For example, to 
estimate a simple consumption function with AR(1) errors, and enter your list of variables 
as usual, adding the keyword expression AR(1) to the end of your list. 

For the specification:

(22.39)

with the series CS and GDP in the workfile, you may specify your equation as:

cs c gdp ar(1)

For specifications defined by expression, specify your model using EViews expressions, fol-
lowed by an additive term describing the AR lag coefficient assignment enclosed in square 
brackets. For the revised specification:

(22.40)
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CSt c1 GDPt
c2 ut 

ut rut 1– et
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you would enter

cs = c(1) + gdp^c(2) + [ar(1)=c(3)]

Higher-Order AR

Estimating higher order AR models is only slightly more complicated. To estimate an AR( ), 
you should enter your specification, followed by expressions for each AR lag you wish to 
include. You may use the to keyword to define a lag range.

If you wish to estimate a model with autocorrelations from one to five:

(22.41)

you may define your specification using:

cs c gdp ar(1) ar(2) ar(3) ar(4) ar(5)

or more concisely

cs c gdp ar(1 to 5)

The latter form specifies a lag range from 1 to 5 using the to keyword.

We emphasize the fact that you must explicitly list AR lags that you wish to include. By 
requiring that you enter all of the desired AR terms, EViews allows you the flexibility to 
restrict lower order correlations to be zero. For example, if you have quarterly data and want 
only to include a single term to account for seasonal autocorrelation, you could enter

cs c gdp ar(4)

For specifications defined by expression, you must list the coefficient assignment for each of 
the lags separately, separated by commas:

(22.42)

you would enter

cs = c(1) + gdp^c(2) + [ar(1)=c(3), ar(2)=c(4), ar(3)=c(5), 
ar(4)=c(6), ar(5)=c(7)]

Seasonal AR

Seasonal AR terms may be added using the sar keyword, followed by a lag or lag range 
enclosed in parentheses. The specification

cs c gdp ar(1) sar(4)

will define an AR(5) model with coefficient restrictions as described above (“Seasonal 
ARMA Terms” on page 102).

k

CSt c1 c2GDPt ut 

ut r1ut 1– r2ut 2–   r5ut 5– et

CSt c1 GDPt
c2 ut 

ut r1ut 1– r2ut 2–   r5ut 5– et
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Note that in the absence ordinary AR terms, the sar is equivalent to an ar. Thus, 

cs c gdp ar(4)

cs c gdp sar(4)

are equivalent specifications.

Specifying MA Terms

To specify an MA term in EViews, you will use the keyword ma, followed by the desired lag 
or lag range enclosed in parentheses. You must explicitly instruct EViews to use each MA lag 
you wish to include. You may use the to keyword to define a lag range.

For specifications defined by list,:

(22.43)

you would specify the equation as

cs c gdp ma(1) ma(2)

or more concisely as

cs c gdp ma(1 to 2)

For specifications defined by expression, the MA keywords require coefficient assignments 
for each lag so that they must be entered individually. Thus, for

(22.44)

you would enter

cs = c(1) + gdp^c(2) + [ma(1)=c(3), ma(2)=c(4)]

Seasonal MA terms may be added using the sma keyword, followed by a lag enclosed in 
parentheses. The specification

cs c gdp ma(1) ma(4)

will define an MA(5) model with coefficient restrictions as described above (“Seasonal 
ARMA Terms” on page 102). Note that in the absence of ordinary MA terms, the sma is 
equivalent to an ma. Thus, 

cs c gdp ma(4)

cs c gdp sma(4)

are equivalent specifications.

CSt c1 c2GDPt ut 

ut et v1et 1– v2et 2– 

CSt c1 GDPt
c2 ut 

ut et v1et 1– v2et 2– 
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Specifying Differencing

There are two distinct methods of specifying differencing in EViews:

• For integer differencing, you will apply the difference operator to the dependent and 
explanatory variables either before estimation, or by using series expressions in the 
equation specification.

• For fractional differencing, you will, include the d keyword in the by-list equation 
specification to indicate that the dependent and explanatory variables should be frac-
tionally differenced.

Integer Differencing

The d operator may be used to specify integer differences of series. To specify first differenc-
ing, simply include the series name in parentheses after d. For example, d(gdp) specifies 
the first difference of GDP, or GDP–GDP(–1).

Higher-order and seasonal differencing may be specified using the two optional parameters, 
 and . d(x,n) specifies the -th order difference of the series X:

, (22.45)

where  is the lag operator. For example, d(gdp,2) specifies the second order difference of 
GDP:

d(gdp,2) = gdp – 2*gdp(–1) + gdp(–2)

d(x,n,s) specifies -th order ordinary differencing of X with a multiplicative seasonal dif-
ference at lag : 

. (22.46)

For example, d(gdp,0,4) specifies zero ordinary differencing with a seasonal difference at 
lag 4, or GDP–GDP(–4).

If you need to work in logs, you can also use the dlog operator, which returns differences in 
the log values. For example, dlog(gdp) specifies the first difference of log(GDP) or 
log(GDP)–log(GDP(–1)). You may also specify the  and  options as described for the sim-
ple d operator, dlog(x,n,s).

There are two ways to estimate ARIMA models in EViews. First, you may generate a new 
series containing the differenced data, and then estimate an ARMA model using the new 
data. For example, to estimate a Box-Jenkins ARIMA(1, 1, 1) model for M1 you can first cre-
ate the difference series by typing in the command line:

series dm1 = d(m1)

and then use this series when you enter your equation specification:

dm1 c ar(1) ma(1)

n s n

d x n,  1 L– nx

L

n
s

d x n s, ,  1 L– n 1 Ls– x

n s
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Alternatively, you may include the difference operator d directly in the estimation specifica-
tion. For example, the same ARIMA(1,1,1) model can be estimated using the command:

d(m1) c ar(1) ma(1)

The latter method should generally be employed for an important reason. If you define a 
new variable, such as DM1 above, and use it in your estimation procedure, then when you 
forecast from the estimated model, EViews will produce forecasts of the dependent variable 
DM1. That is, you will get a forecast of the differenced series. If you are really interested in 
forecasts of the level variable, in this case M1, you will have to manually transform the fore-
casted value and adjust the computed standard errors accordingly. 

Furthermore, if any other transformation or lags of the original series M1 are included as 
regressors, EViews will not know that they are related to DM1. If, however, you specify the 
model using the difference operator expression for the dependent variable, d(m1), the fore-
casting procedure will provide you with the option of forecasting the level variable, in this 
case M1.

The difference operator may also be used in specifying exogenous variables and can be used 
in equations with or without ARMA terms. Simply include the series expression in the list of 
regressors. For example:

d(cs, 2) c d(gdp,2) d(gdp(-1),2) d(gdp(-2),2) time 

is a valid specification that employs the difference operator on both the left-hand and right-
hand sides of the equation.

Fractional Differencing

If you wish to perform fractional differencing as part of ARFIMA estimation, simply add the 
d keyword to the existing specification.

Note that fractional integration models may only be estimated in equations specified by list. 
You may not specify an ARFIMA model using expression. 

Specification Examples

For example, to estimate a second-order autoregressive and first-order moving average error 
process ARMA(2, 1), you would include expressions for the AR(1), AR(2), and MA(1) terms 
along with the dependent variable (INC) and your other regressors (in this case C and GOV):

inc c gov ar(1 to 2) ma(1)

Once again, you need not use AR and MA terms consecutively. For example, if you want to 
fit a fourth-order autoregressive model, you could use AR(4) by itself, resulting in a 
restricted ARMA(4, 0):

inc c gov ar(4)

You may also specify a pure moving average model by using only MA terms. Thus:
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inc c gov ma(1) ma(2)

indicates an ARMA(0, 2) model for the errors of the INC equation.

The traditional Box-Jenkins or ARMA models do not have right-hand side variables except 
for the constant. In this case, your list of regressors would just contain a C in addition to the 
AR and MA terms. For example:

log(inc) c ar(1) ar(2) ma(1) ma(2)

is a standard Box-Jenkins ARIMA (2, 1, 2) model for log INC.

You may specify an range of MA terms to include using the to keyword. The following 
ARFIMA(0, 1, 5) specification includes all of the MA terms from 1 to 5, along with the mean 
regressor DLOG(GDP):

dlog(inc) dlog(cs) c dlog(gdp) ma(1 to 5)

For equations specified by expression, simply enter the explicit equation involving the possi-
bly differenced dependent variable, and add any expressions for AR and MA terms in square 
brackets:

dlog(cs) = c(1) + dlog(gdp)^c(2) + [ar(1)=c(3), ar(2)=c(4), 
ma(1)=c(5), ma(2)=c(6)]

To estimate an ARFIMA(2, , 1) (fractionally integrated second-order autoregressive, first-
order moving average error model), you would include expressions for the AR(1), AR(2), 
and MA(1) terms and the d keyword along with the dependent variable (INC) and other 
regressors (C and GOV):

log(inc) c log(gov) ar(1 to 2) ma(1) d

Estimation Options

Clicking on the Options tab displays a variety of estimation options. The available options 
will differ depending on whether your equation is specified by list or by expression and 
whether there are ARMA and fractional differencing components. For the remainder of this 
discussion, we will assume that you have included ARMA or fractional differencing in the 
equation specification, and we discuss in turn the settings available for each specification 
method.

Equations Specified By List

If your equation is specified by list, clicking on the Options tab displays a dialog page that 
offers settings for controlling the ARMA estimation, for computing the coefficient covari-
ance, for optimization, and for setting the default coefficient name.

d
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ARMA

The ARMA section of the page controls the method for estimating your ARMA components 
and setting starting values.

ARMA Method

The Method dropdown specifies the objective function used in the estimation method:

• For models without fractional differencing, you may choose between the default ML 
(maximum likelihood), GLS (generalized least squares), and CLS (conditional least 
squares) estimation.

• For models with fractional differencing, you may choose between the default ML and 
GLS estimation (CLS is not available for ARFIMA models).

See “Estimation Method Details” on page 140 for discussion of these objective functions.

Starting Values

The nonlinear estimation techniques used to estimate ARMA and ARFIMA models require 
starting values for all coefficient estimates. Normally, EViews determines its own starting 
values and for the most part this is an issue with which you need not be concerned. There 
are, however, occasions where you may want to override the default starting values. 

First, estimation will sometimes halt when the maximum number of iterations is reached, 
despite the fact that convergence is not achieved. Resuming the estimation with starting val-
ues left over from previous estimation instructs EViews to continue from where it left off 
instead of starting over. You may also want to try different starting values to ensure that the 
estimates are a global rather than a local minimum. You might also want to supply starting 
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values if you have a rough idea of what the answers should be, and want to speed up the 
estimation process. 

The Starting ARMA coefficient values dropdown will offer choices for overriding the 
default EViews starting values. The available starting value options will differ depending on 
the ARMA method selected above:

• If you select ML or GLS estimation as your method, you will be presented with the 
choice of Automatic, EViews fixed, Random, and User-specified.

For User-specified, all of the coefficients are taken from the values in the coefficient 
vector in the workfile as described below.

For each of the remaining methods, the mean coefficients are obtained from simple 
OLS regression.

The default EViews Automatic initializes the ARMA coefficients using least squares 
regression of residuals against lagged residuals (for AR terms) and innovations (for 
MA terms), where innovations are obtained by first regressing residuals against many 
lags of residuals. EViews fixed sets the ARMA coefficients to arbitrary fixed values of 
0.0025 for ordinary ARMA and 0.01 for seasonal ARMA terms. Random generates ran-
domized ARMA coefficients.

For ARFIMA estimation, the fractional difference parameter is initialized using the 
Geweke and Porter-Hundlak (1983) log periodogram regression (Automatic), a fixed 
value of 0.1 (EViews fixed), or a randomly generated uniform  (Ran-
dom).

• If you select the CLS estimation method, the starting values dropdown will let you 
choose between OLS/TLS, .8 x OLS/TSLS, .5 x OLS/TSLS, .3 x OLS/TSLS, Zero, and 
User-specified.

For the User-specified selection, all of the coefficients are initialized from the values 
in the coefficient vector in the workfile as described below.

0.5 0.5, –
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For the variants of OLS/TSLS, EViews will initialize the mean coefficients at the spec-
ified fraction of the simple OLS or TSLS estimates while Zero sets the mean coeffi-
cients to zero. 

Coefficients for ARMA terms are always set to arbitrary fixed values of 0.0025 for ordi-
nary ARMA and 0.01 for seasonal ARMA terms.

For you to usefully set user-specified starting values, you will need a little more information 
about how EViews assigns coefficients for the ARMA terms. 

EViews assigns coefficient numbers to the variables in the following order:

• First are the coefficients of the variables, in order of entry.

• Next is the ARFIMA coefficient.

• Next come the AR terms in the order of entry.

• The SAR, MA, and SMA coefficients follow, in that order.

(Following estimation, you can always see the assignment of coefficients by looking at the 
Representations view of your equation.)

Thus the following two specifications will have their coefficients in the same order:

y c x ma(2) ma(1) sma(4) ar(1)

y sma(4) c ar(1) ma(2) x ma(1)

By default EViews uses the built-in C coefficient vector, but this may be overridden (see 
“Coefficient Name” on page 122). To set initial values, you may edit the corresponding ele-
ments of the coefficient vector in the workfile, or you may also assign values in the vector 
using the param command:

param c(1) 50 c(2) .8 c(3) .2 c(4) .6 c(5) .1 c(6) .5

The starting values will be 50 for the constant, 0.8 for X, 0.2 for AR(1), 0.6 for MA(2), 0.1 
for MA(1) and 0.5 for SMA(4).

Backcasting

If your specification includes MA terms and the ARMA estimation method is CLS, EViews 
will display a checkbox for whether or not to use backcasting to initialize the MA innova-
tions. By default, EViews performs backcasting as described in “Initializing MA Innova-
tions” on page 144, but you can unselect this option to set the presample innovations to 
their unconditional expectation of zero.

Coefficient Covariance

The Coefficient covariance section of the page controls the computation of the estimates of 
the precision of your coefficient estimates.
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The options that are available will depend on the ARMA estimation method.

• For ML or GLS estimation, covariances are always calculated by taking the inverse of 
the an estimate of the information matrix.

The default setting for Information matrix estimation uses the outer product of the 
gradients (OPG), but you may instead use the dropdown to use the observed Hessian 
(Hessian - observed). 

• For CLS estimation, you may choose a Covariance method using the dropdown 
menu. 

The default Ordinary method takes the inverse of the estimate of the information 
matrix. Alternately you may choose to compute Huber-White or HAC (Newey-West) 
sandwich covariances.

In the latter case, EViews will display a HAC options button which you may use to 
access various settings for controlling the long-run covariance estimation.

The Information matrix dropdown menu will offer you the choice between comput-
ing the information matrix estimate using the outer product of the gradients (OPG) or 
the observed Hessian (Hessian - observed).

If you select GLS or CLS estimation, the covariance matrix will, by default, employ a degree-
of-freedom correction. If you select ML estimation the default computation will not employ 
degree-of-freedom correction. In all three cases, the d.f. Adjustment checkbox may be used 
to modify the computation.

Estimation Algorithm 

EViews provides a number of options that allow you to control the iterative procedure of the 
estimation algorithm. In general, you can rely on the EViews choices, but on occasion you 
may wish to override the default settings. 

The Estimation algorithm section of the dialog contains settings for the numeric optimiza-
tion of your likelihood or least squares objective function. 
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By default, EViews estimates ARMA and ARFIMA models using the Broyden, Fletcher, Gold-
farb and Shanno (BFGS) algorithm. You may use the Optimization method dropdown to 
select a different method:

• For models estimated using ML and GLS, you may choose to estimate your model 
using BFGS, OPG-BHHH (Gauss-Newton using the outer-product of the gradient), 
Kohn-Ansley (transformation to pseudo-GLS regression model), and Newton-Raph-
son.

• For models estimated using CLS, you may choose between BFGS, Gauss-Newton, 
Newton-Raphson, and EViews. The latter employs OPG/BHHH with a Marquardt 
diagonal adjustment.

• For all but EViews, the Step method combo lets you choose between the default Mar-
quardt, Dogleg, and Line Search determined steps. The default method is Mar-
quardt.

In addition, you can use the Maximum iterations and Convergence tolerance edit fields to 
change the stopping rules from their global default settings. Checking the Display settings 
in output box instructs EViews to put information about starting values and other optimiza-
tion settings at the top of your equation output.

Coefficient Name

For equations specified by list EViews will, by default, use the built-in C vector to hold coef-
ficient estimates. You may change this assignment by entering the name of a coefficient 
object in the Coefficient name edit field. 

If the coefficient does not exist, EViews will create it and size it appropriately. If the coeffi-
cient already exists, it will be resized if necessary so that it is large enough to hold the 
results. If an object of a different type with that name is present in the workfile, EViews will 
issue an error message.

Equation Specified By Expression

If your equation is specified by expression, clicking on the Options tab displays a dialog 
page that offers a subset of the settings that are available for equations specified by list.
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You may use the page to control the computation of the coefficient covariance, the optimiza-
tion method, the ARMA starting coefficient values, and the default coefficient name.

Coefficient Covariance

The Coefficient covariance section of the page allows you to specify a Covariance method 
using the dropdown menu. You may choose to compute the default Ordinary, or the Huber-
White, or HAC (Newey-West) sandwich covariances. If you select HAC (Newey-West), 
EViews will display a HAC options button which you may use to access various settings for 
controlling the long-run covariance estimation.

As before, the Information matrix dropdown menu will offer you the choice between com-
puting the information matrix estimate using the outer product of the gradients (OPG) or the 
observed Hessian (Hessian - observed).

By default, EViews will apply a degree-of-freedom correction to the estimated covariance 
matrix. You may uncheck the d.f. Adjustment checkbox to remove this correction.

Estimation Algorithm

By default, EViews estimates by-expression ARMA and ARFIMA models using BFGS. You 
may use the Optimization method dropdown to choose between BFGS, Gauss-Newton, 
Newton-Raphson, and EViews, the latter of which employs Gauss-Newton with a Mar-
quardt diagonal adjustment.

Where appropriate, the Step method combo lets you choose between the default Mar-
quardt, Dogleg, and Line Search determined steps.
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The Maximum iterations and Convergence tolerance edit fields may be used to limit the 
number of iterations and to set the algorithm stopping rule. Checking the Display settings 
in output box instructs EViews to put information about starting values and other optimiza-
tion settings at the top of your equation output.

ARMA Method

You will not be able to specify an ARMA method as ARMA equations specified by expression 
may only use the CLS objective.

Starting Values 

The starting value dropdown menu lets you choose between the default OLS/TLS, and .8 x 
OLS/TSLS, .5 x OLS/TSLS, .3 x OLS/TSLS, Zero, and User-specified.

For the variants of OLS/TSLS, EViews will initialize the mean coefficients at the specified 
fraction of the simple OLS or TSLS estimates (ignoring ARMA terms), while Zero sets the 
mean coefficients to zero. Coefficients for ARMA terms are always set to arbitrary fixed val-
ues of 0.0025 for ordinary ARMA and 0.01 for seasonal ARMA terms.

For the User-specified selection, the coefficients are initialized from the values in the coeffi-
cient vector in the workfile.

Estimation Output

EViews displays a variety of results in the output view following estimation.

The top portion of the output displays information about the optimization technique, ARMA 
estimation method, the coefficient covariance calculation, and if requested, the starting val-
ues used to initialize the optimization procedure.

The next section shows the estimated coefficients, coefficient standard errors, and t-statis-
tics. In addition to the estimates of the ARMA coefficients, EViews will display estimates of 
the fractional integration parameter for ARFIMA models, and the estimate of the error vari-
ance if the ARMA estimation method is maximum likelihood, labeled SIGMASQ.

Dependent Variable: DLOG(GNP)  
Method: ARMA Maximum Likelihood (BFGS) 
Date: 02/06/15   Time: 10:20  
Sample: 1947Q2 1989Q4  
Included observations: 171  
Convergence achieved after 8 iterations 
Coefficient covariance computed using outer product of gradients 
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All of these results may be interpreted in the usual manner.

In the section directly below the coefficient estimates are the usual descriptive statistics for 
the dependent variable, along with a variety of summary and descriptive statistics for the 
estimated equation. 

Note that all of the equation summary results involving residuals differ from those com-
puted in standard OLS settings so that some care should be taken in interpreting results. To 
understand the issues, keep in mind that there are two different residuals associated with an 
ARMA model. The first are the estimated unconditional residuals: 

, (22.47)

which are computed using the original explanatory variables and the estimated coefficients, 
. These residuals are the errors that you would obtain if you made a prediction of the 

value of  using contemporaneous information while ignoring the information contained 
in the lagged residuals. 

Generally, there is little reason to examine the unconditional residuals, and EViews does not 
automatically compute them following estimation.

The second set of residuals are the estimated one-period ahead forecast errors, . As the 
name suggests, these residuals represent the forecast errors you would make if you com-
puted forecasts using a prediction of the residuals based upon past values of your data, in 
addition to the contemporaneous information. In essence, you improve upon the uncondi-
tional forecasts and residuals by taking advantage of the predictive power of the lagged 
residuals.

For ARMA models, the computed residuals, and all of the residual-based regression statis-
tics—such as the , the standard error of regression, and the Durbin-Watson statistic— 
reported by EViews are based on the estimated one-period ahead forecast errors, .

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.008051 0.003814 2.111053 0.0362 
D 0.288756 0.057164 5.051407 0.0000 

R-squared 0.099981     Mean dependent var 0.008032 
Adjusted R-squared 0.094656     S.D. dependent var 0.010760 
S.E. of regression 0.010238     Akaike info criterion -6.312490 
Sum squared resid 0.017713     Schwarz criterion -6.275746 
Log likelihood 541.7179     Hannan-Quinn criter. -6.297581 
F-statistic 18.77385     Durbin-Watson stat 1.824729 
Prob(F-statistic) 0.000025    

ût Yt Xtb̂–

b̂

Yt

e
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Lastly, to aid in the interpretation of the results for ARMA and ARFIMA models, EViews dis-
plays a the reciprocal roots of the AR and MA polynomials in the lower block of the results. 
EViews reports these roots as Inverted AR Roots and Inverted MA Roots at the bottom of 
the regression output. For our general ARMA model with the lag polynomials  and 

, the reported roots are the roots of the polynomials:

. (22.48)

The roots, which may be imaginary, should have modulus no greater than one. The output 
will display a warning message if any of the roots violate this condition.

If  has a real root whose absolute value exceeds one or a pair of complex reciprocal roots 
outside the unit circle (that is, with modulus greater than one), it means that the autoregres-
sive process is explosive. 

For example, in the simple AR(1) model, the estimated parameter  is the serial correlation 
coefficient of the unconditional residuals. For a stationary AR(1) model, the true  lies 
between –1 (extreme negative serial correlation) and +1 (extreme positive serial correla-
tion). 

If  has reciprocal roots outside the unit circle, we say that the MA process is noninvertible, 
which makes interpreting and using the MA results difficult. However, noninvertibility poses 
no substantive problem, since as Hamilton (1994a, p. 65) notes, there is always an equiva-
lent representation for the MA model where the reciprocal roots lie inside the unit circle. 
Accordingly, you should try to re-estimate your model with different starting values until 
you get a moving average process that satisfies invertibility. Alternatively, you may wish to 
turn off MA backcasting (see “Initializing MA Innovations” on page 144).

If the estimated MA process has roots with modulus close to one, it is a sign that you may 
have over-differenced the data, which introduced an MA unit root. The process will be diffi-
cult to estimate and even more difficult to forecast. If possible, you should re-estimate with 
one less round of differencing, perhaps using ARFIMA to account for long-run dependence.

Consider the following example output from ARMA estimation:

r L 
v L 

r x
1–  0 and v x

1–  0

r

r̂

r
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This estimation result corresponds to the following specification,

(22.49)

or equivalently, to:

(22.50)

Note the signs of the MA terms, which may be reversed from those in some textbooks. Note 
also that the inverted AR roots have moduli very close to one, which is typical for many 
macro time series models. 

Equation Diagnostics

In addition to the usual views and procs for an equation such as coefficient confidence 
ellipses, Wald tests, omitted and redundant variables tests, EViews offers diagnostics for 
examining the properties of your ARMA model and the properties of the estimated innova-
tions.

Dependent Variable: CP  
Method: ARMA Maximum Likelihood (BFGS) 
Date: 03/01/15   Time: 15:25  
Sample: 1954M01 1993M07  
Included observations: 475  
Convergence achieved after 117 iterations 
Coefficient covariance computed using outer product of gradients 

Variable Coefficient Std. Error t-Statistic Prob.   

C 5.836704 1.750241 3.334801 0.0009 
AR(1) 0.973815 0.007755 125.5649 0.0000 

SAR(4) 0.225555 0.049713 4.537146 0.0000 
MA(1) 0.466481 0.016635 28.04168 0.0000 
MA(4) -0.344940 0.043602 -7.911135 0.0000 

SIGMASQ 0.249337 0.007393 33.72769 0.0000 

R-squared 0.974433     Mean dependent var 6.331116 
Adjusted R-squared 0.974161     S.D. dependent var 3.126173 
S.E. of regression 0.502520     Akaike info criterion 1.483257 
Sum squared resid 118.4349     Schwarz criterion 1.535846 
Log likelihood -346.2736     Hannan-Quinn criter. 1.503938 
F-statistic 3575.030     Durbin-Watson stat 1.986429 
Prob(F-statistic) 0.000000    

Inverted AR Roots       .97           .69    .00-.69i -.00+.69i 
      -.69   

Inverted MA Roots       .67     -.11+.74i   -.11-.74i      -.92 

yt 5.84 ut

1 0.97L–  1 0.23L4– ut 1 0.47L  1 0.34L4– et

yt 0.118 0.97yt 1– 0.23yt 4– 0.22yt 5–– et
0.47et 1– 0.34et 4–– 0.17et 5––
  


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ARMA Structure

This set of views provides access to several diagnostic views that help you assess the struc-
ture of the ARMA portion of the estimated equation. The view is currently available only for 
models specified by list that includes at least one AR or MA term and estimated by least 
squares. There are three views available: roots, correlogram, and impulse response.

To display the ARMA structure, select View/
ARMA Structure... from the menu of an 
estimated equation. If the equation type 
supports this view and there are no ARMA 
components in the specification, EViews 
will open the ARMA Diagnostic Views dia-
log:

On the left-hand side of the dialog, you will 
select one of the three types of diagnostics. 
When you click on one of the types, the 
right-hand side of the dialog will change to show you the options for each type.

Roots

The roots view displays the inverse roots of the AR and/or MA characteristic polynomial. 
The roots may be displayed as a graph or as a table by selecting the appropriate radio but-
ton. 

The graph view plots the roots in the complex plane where the horizontal axis is the real 
part and the vertical axis is the imaginary part of each root.

If the estimated ARMA process is 
(covariance) stationary, then all AR 
roots should lie inside the unit circle. 
If the estimated ARMA process is 
invertible, then all MA roots should lie 
inside the unit circle. The table view 
displays all roots in order of decreas-
ing modulus (square root of the sum 
of squares of the real and imaginary 
parts). 

For imaginary roots (which come in 
conjugate pairs), we also display the 
cycle corresponding to that root. The 
cycle is computed as , where 2p a
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, and  and  are the imaginary and real parts of the root, respectively. 
The cycle for a real root is infinite and is not reported.

Correlogram

The correlogram view compares the autocor-
relation pattern of the structural residuals 
and that of the estimated model for a speci-
fied number of periods (recall that the struc-
tural residuals are the residuals after 
removing the effect of the fitted exogenous 
regressors but not the ARMA terms). For a 
properly specified model, the residual and 
theoretical (estimated) autocorrelations and 
partial autocorrelations should be “close”. 

To perform the comparison, simply select the Correlogram diagnostic, specify a number of 
lags to be evaluated, and a display format (Graph or Table).

a i r atan i r

Inverse Roots of AR/MA Polynomial(s) 
Specification: R C AR(1) SAR(4) MA(1) MA(4) 
Date: 03/01/15   Time: 16:19 
Sample: 1954M01 1994M12 
Included observations: 470 

AR Root(s) Modulus Cycle 

  0.987785  0.987785  
  0.617381  0.617381  
 -0.617381  0.617381  
  2.60e-17 ±  0.617381i  0.617381  4.000000 

 No root lies outside the unit circle. 
 ARMA model is stationary. 

MA Root(s) Modulus Cycle 

 -0.815844  0.815844  
-0.112642 ±  0.619634i 0.629790 3.589119
  0.557503  0.557503  

 No root lies outside the unit circle. 
 ARMA model is invertible. 
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Here, we have specified a graphical 
comparison over 24 periods/lags. The 
graph view plots the autocorrelations 
and partial autocorrelations of the 
sample structural residuals and those 
that are implied from the estimated 
ARMA parameters. If the estimated 
ARMA model is not stationary, only 
the sample second moments from the 
structural residuals are plotted.

The table view displays the numerical 
values for each of the second 
moments and the difference between 
from the estimated theoretical. If the 
estimated ARMA model is not station-
ary, the theoretical second moments 
implied from the estimated ARMA parameters will be filled with NAs.

Note that the table view starts from lag zero, while the graph view starts from lag one. 

Impulse Response

The ARMA impulse response view traces the response of the ARMA part of the estimated 
equation to shocks in the innovation.

An impulse response function traces the response to a one-time shock in the innovation. 
The accumulated response is the accumulated sum of the impulse responses. It can be inter-
preted as the response to step impulse where the same shock occurs in every period from 
the first. 

To compute the impulse response (and accu-
mulated responses), select the Impulse 
Response diagnostic, enter the number of 
periods, and display type, and define the 
shock. For the latter, you have the choice of 
using a one standard deviation shock (using 
the standard error of the regression for the 
estimated equation), or providing a user speci-
fied value. Note that if you select a one stan-
dard deviation shock, EViews will take 
account of innovation uncertainty when estimating the standard errors of the responses.
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If the estimated ARMA model is sta-
tionary, the impulse responses will 
asymptote to zero, while the accu-
mulated responses will asymptote to 
its long-run value. These asymptotic 
values will be shown as dotted hori-
zontal lines in the graph view.

For a highly persistent near unit root 
but stationary process, the asymp-
totes may not be drawn in the graph 
for a short horizon. For a table view, 
the asymptotic values (together with 
its standard errors) will be shown at 
the bottom of the table. If the esti-
mated ARMA process is not station-
ary, the asymptotic values will not be 
displayed since they do not exist. 

ARMA Frequency Spectrum

The ARMA frequency spectrum view of an ARMA equation shows the spectrum of the esti-
mated ARMA terms in the frequency domain, rather than the typical time domain. Whereas 
viewing the ARMA terms in the time domain lets you view the autocorrelation functions of 
the data, viewing them in the frequency domain lets you observe more complicated cyclical 
characteristics.

The spectrum of an ARMA process can be written as a function of its frequency, , where 
 is measured in radians, and thus takes values from  to . However since the spec-

trum is symmetric around 0, it is EViews displays it in the range .

To show the frequency spectrum, select View/ARMA Structure... from the equation toolbar, 
choose Frequency spectrum from the Select a diagnostic list box, and then select a display 
format (Graph or Table).

If a series is white noise, the frequency spectrum should be flat, that is a horizontal line. 
Here we display the graph of a series generated as random normals, and indeed, the graph is 
approximately a flat line.

l

l p– p

0 p, 
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If a series has strong AR components, the shape of the frequency spectrum will contain 
peaks at points of high cyclical frequencies. Here we show a typical AR(2) model, where the 
data were generated such that  and .

Q-statistics

If your ARMA model is correctly specified, the residuals from the model should be nearly 
white noise. This means that there should be no serial correlation left in the residuals. The 
Durbin-Watson statistic reported in the regression output is a test for AR(1) in the absence of 
lagged dependent variables on the right-hand side. As discussed in “Correlograms and Q-sta-
tistics” on page 108, more general tests for serial correlation in the residuals may be carried 
out with View/Residual Diagnostics/Correlogram-Q-statistic and View/Residual Diag-
nostics/Serial Correlation LM Test….

r1 0.7 r2 0.5–
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For the example seasonal ARMA model, the 12-period residual correlogram looks as follows:

The correlogram has a significant spike at lag 5, and all subsequent Q-statistics are highly 
significant. This result clearly indicates the need for respecification of the model. 

Examples

To illustrate the estimation of ARIMA and ARFIMA specifications in EViews we consider 
examples from Sowell (1992a) which model the natural logarithm of postwar quarterly U.S. 
real GDP from 1947q1 to 1989q4. Sowell estimates a number of models which are compared 
using AIC and SIC. We will focus on the ARMA(3, 2) and ARFIMA(3, , 2) specifications 
(Table 2, p. 288 and Table 3, p. 289).

To estimate the ARMA(3, 2) we open an equation dialog by selecting Object/New Object/
Equation, by selecting Quick/Estimate Equation..., or by typing the command keyword 
equation in the command line. EViews will display the least squares dialog:

d
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We enter the expression for the dependent variable, followed by the AR and MA terms using 
ranges that include all of the desired terms, and C to indicate that we wish to include an 
intercept. Next, we click on the Options tab to display the estimation settings.

First, we instruct EViews to compute coefficient standard errors using the observed Hessian 
by setting the Information matrix dropdown to Hessian - observed. In addition, we set the 
Optimization method to BFGS, the Convergence tolerance to “1e-8”, and the ARMA 
Method to ML. Click on OK to estimate the model.
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EViews will perform the iterative maximum likelihood estimation using BFGS and will dis-
play the estimation results:

The top portion of the output displays information about the estimation method, optimiza-
tion, and covariance calculation.

The next section contains the coefficient estimates, standard errors, t-statistics and corre-
sponding p-value. (It is worth pointing out that the reported ARMA coefficients use a differ-
ent sign convention than those in Sowell so that the ARMA coefficients all have the opposite 
sign). 

Notice that since we estimated the model using ML, EViews displays the estimate of the 
error variance as one of the estimated coefficients. You should be aware that the EViews 
reported p-value for SIGMASQ is for the two-sided test, despite the fact that SIGMASQ must 
be non-negative. (If desired, you may use the reported coefficient, standard error, and the 
@CTDIST function to compute the appropriate one-sided p-value.)

The final section shows the inverted AR and MA roots.

It may be instructive to compare these results to those obtained from an alternative condi-
tional least squares approach to estimating the specification. To reestimate your equation 
using CLS, click on the Estimate button to bring up the dialog, then on the Options tab to 
show the estimation options. In the ARMA section of the page, we have:

Dependent Variable: DLOG(GNP)  
Method: ARMA Maximum Likelihood (BFGS) 
Date: 03/01/15   Time: 20:18  
Sample: 1947Q2 1989Q4  
Included observations: 171  
Convergence achieved after 18 iterations 
Coefficient covariance computed using observed Hessian 

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.008008 0.001189 6.732176 0.0000 
AR(1) 0.599278 0.148087 4.046797 0.0001 
AR(2) -0.671335 0.178976 -3.750983 0.0002 
AR(3) 0.137677 0.104632 1.315814 0.1901 
MA(1) -0.277643 0.121744 -2.280545 0.0239 
MA(2) 0.793977 0.118172 6.718800 0.0000 

SIGMASQ 9.24E-05 9.99E-06 9.245754 0.0000 

R-squared 0.197098     Mean dependent var 0.008032 
Adjusted R-squared 0.167724     S.D. dependent var 0.010760 
S.E. of regression 0.009816     Akaike info criterion -6.366372 
Sum squared resid 0.015801     Schwarz criterion -6.237766 
Log likelihood 551.3248     Hannan-Quinn criter. -6.314189 
F-statistic 6.709856     Durbin-Watson stat 1.998281 
Prob(F-statistic) 0.000002    

Inverted AR Roots       .24      .18+.74i    .18-.74i 
Inverted MA Roots  .14+.88i      .14-.88i 
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Select CLS in the Method dropdown, and click on OK to estimate the new specification.

Click on OK to accept the changes and re-estimate the model.

The top of the new equation output now reports that estimation was performed using CLS 
and that the MA errors were initialized using backcasting. Despite the different objectives, 
we see that the CLS ARMA coefficient estimates are generally quite similar to those obtained 
from exact ML estimation. Lastly, we note that the estimate of the variance is not reported as 
part of the coefficient output for CLS estimation. 

Next, following Sowell, we estimate an ARFIMA(3, , 2). Once again, click on the Estimate 
button to bring up the dialog:

Dependent Variable: DLOG(GNP)  
Method: ARMA Conditional Least Squares (BFGS / Marquardt steps) 
Date: 03/01/15   Time: 21:00  
Sample (adjusted): 1948Q1 1989Q4 
Included observations: 168 after adjustments 
Convergence achieved after 38 iterations 
Coefficient covariance computed using observed Hessian 
MA Backcast: 1947Q3 1947Q4  

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.007994 0.001254 6.373517 0.0000
AR(1) 0.563811 0.176602 3.192556 0.0017
AR(2) -0.673101 0.161797 -4.160159 0.0001
AR(3) 0.158506 0.108283 1.463812 0.1452
MA(1) -0.242197 0.153644 -1.576346 0.1169
MA(2) 0.814550 0.098533 8.266750 0.0000

R-squared 0.200837     Mean dependent var 0.008045
Adjusted R-squared 0.176172     S.D. dependent var 0.010845
S.E. of regression 0.009844     Akaike info criterion -6.368908
Sum squared resid 0.015698     Schwarz criterion -6.257337
Log likelihood 540.9882     Hannan-Quinn criter. -6.323627
F-statistic 8.142440     Durbin-Watson stat 1.994105
Prob(F-statistic) 0.000001    

Inverted AR Roots       .27      .15-.76i    .15+.76i 
Inverted MA Roots  .12-.89i      .12+.89i 

d
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and add the special d keyword to the list of regressors to tell EViews that you wish to esti-
mate the fractional integration parameter. Click on OK to estimate the updated equation.

Dependent Variable: DLOG(GNP)  
Method: ARMA Maximum Likelihood (BFGS) 
Date: 03/01/15   Time: 21:18  
Sample: 1947Q2 1989Q4  
Included observations: 171  
Convergence achieved after 29 iterations 
Coefficient covariance computed using observed Hessian 

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.007886 0.000373 21.15945 0.0000 
D -0.606793 0.306851 -1.977481 0.0497 

AR(1) 1.195165 0.351233 3.402768 0.0008 
AR(2) -0.939049 0.295641 -3.176311 0.0018 
AR(3) 0.516754 0.178254 2.898971 0.0043 
MA(1) -0.291411 0.125001 -2.331272 0.0210 
MA(2) 0.811038 0.114772 7.066532 0.0000 

SIGMASQ 9.02E-05 9.76E-06 9.239475 0.0000 

R-squared 0.216684     Mean dependent var 0.008032 
Adjusted R-squared 0.183044     S.D. dependent var 0.010760 
S.E. of regression 0.009725     Akaike info criterion -6.373358 
Sum squared resid 0.015416     Schwarz criterion -6.226380 
Log likelihood 552.9221     Hannan-Quinn criter. -6.313720 
F-statistic 6.441378     Durbin-Watson stat 1.995509 
Prob(F-statistic) 0.000001    

Inverted AR Roots       .82      .19+.77i    .19-.77i 
Inverted MA Roots  .15-.89i      .15+.89i 
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Notice first that EViews has switched from CLS estimation to ML since ARFIMA models may 
only be estimated using ML or GLS.

Turning to the estimate of the fractional differencing parameter, we see that it is negative 
and statistically significantly different from zero at the 5% level. Thus, we can reject the unit 
root hypothesis under this specification. Alternately, we cannot reject the time trend null 
hypothesis that . 

(Note: the results reported in Sowell differ slightly, presumably due to differences in the 
nonlinear optimization procedure in general, and the estimate of the observed Hessian in 
particular—for what it is worth, the EViews likelihood is slightly higher than the likelihood 
reported by Sowell. Notably, Sowell’s conclusions differ slightly from than those outlined 
here, as he finds that the unit root and trend hypotheses are both consistent with the 
ARFIMA estimates. Sowell does not reject the zero null at the 5% level, but does reject at the 
10% level. See Sowell for detailed interpretation of results.)

Additional Topics

Dealing with Estimation Problems

Since EViews uses nonlinear estimation algorithms to estimate ARMA models, all of the dis-
cussion in Chapter 20, “Solving Estimation Problems” on page 59, is applicable, especially 
the advice to try alternative starting values.

There are a few other issues to consider that are specific to estimation of ARMA and 
ARFIMA models.

First, MA models are notoriously difficult to estimate. In particular, you should avoid high 
order MA terms unless absolutely required for your model as they are likely to cause estima-
tion difficulties. For example, a single large autocorrelation spike at lag 57 in the correlogram 
does not necessarily require you to include an MA(57) term in your model unless you know 
there is something special happening every 57 periods. It is more likely that the spike in the 
correlogram is simply the product of one or more outliers in the series. By including many 
MA terms in your model, you lose degrees of freedom, and may sacrifice stability and reli-
ability of your estimates.

If the underlying roots of the MA process have modulus close to one, you may encounter 
estimation difficulties, with EViews reporting that it cannot improve the sum-of-squares or 
that it failed to converge in the maximum number of iterations. This behavior may be a sign 
that you have over-differenced the data. You should check the correlogram of the series to 
determine whether you can re-estimate with one less round of differencing.

Lastly, if you continue to have problems, you may wish to turn off MA backcasting.

d 1.0–
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For a discussion of how to estimate TSLS specifications with ARMA errors, see “Nonlinear 
Two-stage Least Squares” on page 76.

Nonlinear Models with ARMA errors

EViews will estimate nonlinear ordinary and two-stage least squares models with autore-
gressive error terms. For details, see the discussion in “Nonlinear Least Squares,” beginning 
on page 51.

Weighted Models with ARMA errors

EViews does not offer built-in procedures to automatically estimate weighted models with 
ARMA error terms. You can, of course, always construct weighted series and then perform 
estimation using the weighted data and ARMA terms. Note that this procedure implies a 
very specific assumption about the properties of your data.

Two-Stage Regression Models with Serial Correlation

By combining two-stage least squares or two-stage nonlinear least squares with AR terms, 
you can estimate models where there is correlation between regressors and the innovations 
as well as serial correlation in the residuals.

If the original regression model is linear, EViews uses the Marquardt algorithm to estimate 
the parameters of the transformed specification. If the original model is nonlinear, EViews 
uses Gauss-Newton to estimate the AR corrected specification.

For further details on the algorithms and related issues associated with the choice of instru-
ments, see the discussion in “TSLS with AR errors,” beginning on page 73.

Nonlinear Models with ARMA Errors

EViews can estimate nonlinear regression models with ARMA errors. For example, suppose 
you wish to estimate the following nonlinear specification with an AR(2) error:

(22.51)

Simply specify your model using EViews expressions, followed by an additive term describ-
ing the AR correction enclosed in square brackets. The AR term should contain a coefficient 
assignment for each AR lag, separated by commas:

cs = c(1) + gdp^c(2) + [ar(1)=c(3), ar(2)=c(4)]

EViews transforms this nonlinear model by differencing, and estimates the transformed non-
linear specification using a Gauss-Newton iterative procedure (see “Initializing the AR 
Errors” on page 142).

CSt c1 GDPt
c2 ut 

ut c3ut 1– c4ut 2– et 
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Estimation Method Details

In “ARMA Method” on page 118 we described how EViews lets you choose between maxi-
mum likelihood (ML), generalized least squares (GLS), and conditional least squares (CLS) 
estimation for ARIMA and ARFIMA estimation.

Recall that for the general ARIMA( ) model we have

(22.52)

for the unconditional residuals 

(22.53)

and innovations

(22.54)

We will use the expressions for the unconditional residuals and innovations to describe 
three objective functions that may be used to estimate the ARIMA model.

(For simplicity of notation our discussion abstracts from SAR and SMA terms and coeffi-
cients. It is straightforward to allow for the inclusion of these seasonal terms).

Maximum Likelihood (ML)

Estimation of ARIMA and ARFIMA models is often performed by exact maximize likelihood 
assuming Gaussian innovations.

The exact Gaussian likelihood function for an ARIMA or ARFIMA model is given by

(22.55)

where  and , where  is the symmetric 
Toeplitz covariance matrix for the  draws from the ARMA/ARFIMA process for the uncon-
ditional residuals (Doornik and Ooms 2003). Note that direct evaluation of this function 
requires the inversion of a large  matrix  which is impractical for large  for both 
storage and computational reasons.

The ARIMA model restricts  to be a known integer. The ARFIMA model treats  as an esti-
mable parameter.
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ARIMA ML

It is well-known that for ARIMA models where  is a known integer, we may employ the 
Kalman filter to efficiently evaluate the likelihood. The Kalman filter works with the state 
space prediction error decomposition form of the likelihood, which eliminates the need to 
invert the large matrix .

See Hamilton (2004, Chapter 13, p. 372) or Box, Jenkins, and Reinsel (2008, 7.4, p. 275) for 
extensive discussion.

ARFIMA ML

Sowell (1992) and Doornik and Ooms (2003) offer detailed descriptions of the evaluation of 
the likelihood for ARFIMA models. In particular, practical evaluation of Equation (22.55) 
requires that we address several computational issues.

First, we must compute the autocovariances of the ARFIMA process that appear in the  
which an involve an infinite order MA representation. Fortunately, Hosking (1981) and Sow-
ell (1992) describe closed-form alternatives and Sowell (1992) derives efficient recursive 
algorithms using hypergeometric functions.

Second, we must compute the determinant of the variance matrix and generalized (inverse 
variance weighted) residuals in a manner that is computationally and storage efficient. 
Doornik and Ooms (2003) describe a Levinson-Durbin algorithm for efficiently performing 
this operation with minimal operation count while eliminating the need to store the full 

 matrix .

Third, where possible we follow Doornik and Ooms (2003) in concentrate the likelihood 
with respect to the regression coefficients  and the scale parameter .

Generalized Least Squares (GLS)

Since the exact likelihood function in Equation (22.55) depends on the data, and the mean 
and ARMA parameters only through the last term in the expression, we may ignore the ines-
sential constants and the log determinant term to define a generalized least squares objec-
tive function

(22.56)

and the ARFIMA estimates may be obtained by minimizing .

Conditional Least Squares (CLS)

Box and Jenkins (1976) and Box, Jenkins, and Reinsel (2008, Section 7.1.2 p 232.) point out 
that conditional on pre-sample values for the AR and MA errors, the normal conditional like-
lihood function may be maximized by minimizing the sum of squares of the innovations.
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The recursive innovation equation in Equation (22.54) is easy to evaluate given parameter 
values, lagged values of the differenced , , and estimates of the lagged innovations. 
Note, however that neither the  nor the can be substituted in the first period as they are 
not available until we start up the difference equation.

We discuss below methods for starting up the recursion by specifying presample values of 
 and . Given these presample values, the conditional likelihood function for normally 

distributed innovations is given by

(22.57)

Notice that the conditional likelihood function depends on the data and the mean and 
ARMA parameters only through the conditional least squares function , so that 
the conditional likelihood may be maximized by minimizing .

Coefficient standard errors for the CLS estimation are the same as those for any other non-
linear least squares routine: ordinary inverse of the estimate of the information matrix, or a 
White robust or Newey-West HAC sandwich covariance estimator. In all three cases, one can 
use either the Gauss-Newton outer-product of the Jacobians, or the Newton-Raphson nega-
tive of the Hessian to estimate the information matrix.

In the remainder of this section we discuss the initialization of the recursion. EViews initial-
izes the AR errors using lagged data (adjusting the estimation sample if necessary), and ini-
tializes the MA innovations using backcasting or the unconditional (zero) expectation.

Initializing the AR Errors

Consider an AR( ) regression model of the form:

(22.58)

for . Estimation of this model using conditional least squares requires com-
putation of the innovations  for each period in the estimation sample. 

We can rewrite out model as

(22.59)

so we can see that we require  pre-sample values to evaluate the AR process at 
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Typically conditional least squares employs lagged values of the variables in the model to 
initialize the process. For example, to estimate an AR(1) model, one may transforms the lin-
ear model,

(22.60)

into a nonlinear model by substituting the second equation into the first, writing  in 
terms of observables and rearranging terms:

(22.61)

so that the innovation recursion written in terms of observables is given by

(22.62)

Notice that we require observation on the  and  in the period before the start of the 
recursion. If these values are not available, we must adjust the period of interest to begin at 

 so that the values of the observed data in  may be substituted into the equa-
tion to obtain an expression for .

Higher order AR specifications are handled analogously. For example, a nonlinear AR(3) is 
estimated using nonlinear least squares on the innovations given by:

(22.63)

It is important to note that textbooks often describe techniques for estimating linear AR 
models like Equation (22.58). The most widely discussed approaches, the Cochrane-Orcutt, 
Prais-Winsten, Hatanaka, and Hildreth-Lu procedures, are multi-step approaches designed 
so that estimation can be performed using standard linear regression. These approaches pro-
ceed by obtaining an initial consistent estimate of the AR coefficients  and then estimating 
the remaining coefficients via a second-stage linear regression.

All of these approaches suffer from important drawbacks which occur when working with 
models containing lagged dependent variables as regressors, or models using higher-order 
AR specifications; see Davidson and MacKinnon (1993, p. 329–341), Greene (2008, p. 648–
652).

In contrast, the EViews conditional least squares estimates the coefficients  and  are esti-
mated simultaneously by minimizing the nonlinear sum-of-squares function  
(which maximizes the conditional likelihood). The nonlinear least squares approach has the 
advantage of being easy-to-understand, generally applicable, and easily extended to models 
that contain endogenous right-hand side variables and to nonlinear mean specifications.
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Thus, for a nonlinear mean AR(1) specification, EViews transforms the nonlinear model,

(22.64)

into the alternative nonlinear regression form

(22.65)

yielding the innovation specification:

(22.66)

Similarly, for higher order ARs, we have:

(22.67)

For additional detail, see Fair (1984, p. 210–214), and Davidson and MacKinnon (1993, p. 
331–341).

Initializing MA Innovations

Consider an MA( ) regression model of the form:

(22.68)

for . Estimation of this model using conditional least squares requires com-
putation of the innovations  for each period in the estimation sample.

Computing the innovations is a straightforward process. Suppose we have an initial estimate 
of the coefficients, , and estimates of the pre-estimation sample values of :

(22.69)

Then, after first computing the unconditional residuals , we may use for-
ward recursion to solve for the remaining values of the innovations:

(22.70)

for . 

All that remains is to specify a method of obtaining estimates of the pre-sample values of :

(22.71)

One may employ backcasting to obtain the pre-sample innovations (Box and Jenkins, 1976). 
As the name suggests, backcasting uses a backward recursion method to obtain estimates of 

 for this period. 
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To start the recursion, the  values for the innovations beyond the estimation sample are set 
to zero:

(22.72)

EViews then uses the actual results to perform the backward recursion:

(22.73)

for . The final  values, , which we 
use as our estimates, may be termed the backcast estimates of the pre-sample innovations. 
(Note that if your model also includes AR terms, EViews will -difference the  to elimi-
nate the serial correlation prior to performing the backcast.)

Alternately, one obvious method is to turn backcasting off and to set the pre-sample  to 
their unconditional expected values of 0:

, (22.74)

Whichever methods is used to initialize the presample values, the sum-of-squared residuals 
(SSR) is formed recursively as a function of the  and , using the fitted values of the 
lagged innovations:

. (22.75)

and the expression is minimized with respect to  and . 

The backcast step, forward recursion, and minimization procedures are repeated until the 
estimates of  and  converge.
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Chapter 23.  Forecasting from an Equation

This chapter describes procedures for forecasting and computing fitted values from a single 
equation. The techniques described here are for forecasting with equation objects estimated 
using regression methods. Forecasts from equations estimated by specialized techniques, 
such as ARCH, binary, ordered, tobit, and count methods, are discussed in the correspond-
ing chapters. 

Forecasting from a series using exponential smoothing methods is explained in “Exponential 
Smoothing” on page 511 of User’s Guide I, and forecasting using multiple equations and 
models is described in Chapter 42. “Models,” on page 781. Additional tools for performing 
forecast evaluation are described in “Forecast Evaluation” on page 424 of User’s Guide I.

Forecasting from Equations in EViews

To illustrate the process of forecasting from an estimated equation, we begin with a simple 
example. Suppose we have data on the logarithm of monthly housing starts (HS) and the 
logarithm of the S&P index (SP) over the period 1959M01–1996M0. The data are contained 
in the workfile “House1.WF1” which contains observations for 1959M01–1998M12 so that 
we may perform out-of-sample forecasts.

We estimate a regression of HS on a constant, SP, and the lag of HS, with an AR(1) to correct 
for residual serial correlation, using data for the period 1959M01–1990M01, and then use the 
model to forecast housing starts under a variety of settings. Following estimation, the equa-
tion results are held in the equation object EQ01:
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Note that the estimation sample is adjusted by two observations to account for the first dif-
ference of the lagged endogenous variable used in deriving AR(1) estimates for this model.

To get a feel for the fit of the model, select View/Actual, Fitted, Residual…, then choose 
Actual, Fitted, Residual Graph:

The actual and fitted values depicted on the upper portion of the graph are virtually indistin-
guishable. This view provides little control over the process of producing fitted values, and 
does not allow you to save your fitted values. These limitations are overcome by using 
EViews built-in forecasting procedures to compute fitted values for the dependent variable.

Dependent Variable: HS   
Method: Least Squares   
Date: 08/09/09   Time: 07:45   
Sample (adjusted): 1959M03 1990M01   
Included observations: 371 after adjustments  
Convergence achieved after 6 iterations   

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.321924 0.117278 2.744973 0.0063
HS(-1) 0.952653 0.016218 58.74151 0.0000

SP 0.005222 0.007588 0.688248 0.4917
AR(1) -0.271254 0.052114 -5.205025 0.0000

R-squared 0.861373    Mean dependent var 7.324051
Adjusted R-squared 0.860240    S.D. dependent var 0.220996
S.E. of regression 0.082618    Akaike info criterion -2.138453
Sum squared resid 2.505050    Schwarz criterion -2.096230
Log likelihood 400.6830    Hannan-Quinn criter. -2.121683
F-statist ic 760.1338    Durbin-W atson stat 2.013460
Prob(F-s tat istic) 0.000000    

Inverted AR Roots      -.27   
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How to Perform a Forecast

To forecast HS from this equation, push the Forecast button on the equation toolbar, or 
select Proc/Forecast….

At the top of the Forecast dialog, 
EViews displays information about 
the forecast. Here, we show a basic 
version of the dialog showing that 
we are forecasting values for the 
dependent series HS using the esti-
mated EQ01. More complex settings 
are described in “Forecasting from 
Equations with Expressions” on 
page 167.

You should provide the following 
information:

• Forecast name. Fill in the edit 
box with the series name to be 
given to your forecast. EViews suggests a name, but you can change it to any valid 
series name. The name should be different from the name of the dependent variable, 
since the forecast procedure will overwrite data in the specified series.

• S.E. (optional). If desired, you may provide a name for the series to be filled with the 
forecast standard errors. If you do not provide a name, no forecast errors will be 
saved. 

• GARCH (optional). For models estimated by ARCH, you will be given a further option 
of saving forecasts of the conditional variances (GARCH terms). See Chapter 25. 
“ARCH and GARCH Estimation,” on page 243 for a discussion of GARCH estimation.

• Forecasting method. You have a choice between Dynamic and Static forecast meth-
ods. Dynamic calculates dynamic, multi-step forecasts starting from the first period in 
the forecast sample. In dynamic forecasting, previously forecasted values for the 
lagged dependent variables are used in forming forecasts of the current value (see 
“Forecasts with Lagged Dependent Variables” on page 160 and “Forecasting with 
ARMA Errors” on page 162). This choice will only be available when the estimated 
equation contains dynamic components, e.g., lagged dependent variables or ARMA 
terms. Static calculates a sequence of one-step ahead forecasts, using the actual, 
rather than forecasted values for lagged dependent variables, if available.

You may elect to always ignore coefficient uncertainty in computing forecast standard 
errors (when relevant) by unselecting the Coef uncertainty in S.E. calc box.
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In addition, in specifications that contain ARMA terms, you can set the Structural 
option, instructing EViews to ignore any ARMA terms in the equation when forecast-
ing. By default, when your equation has ARMA terms, both dynamic and static solu-
tion methods form forecasts of the residuals. If you select Structural, all forecasts will 
ignore the forecasted residuals and will form predictions using only the structural part 
of the ARMA specification.

• Sample range. You must specify the sample to be used for the forecast. By default, 
EViews sets this sample to be the workfile sample. By specifying a sample outside the 
sample used in estimating your equation (the estimation sample), you can instruct 
EViews to produce out-of-sample forecasts. 

Note that you are responsible for supplying the values for the independent variables 
in the out-of-sample forecasting period. For static forecasts, you must also supply the 
values for any lagged dependent variables.

• Output. You can choose to see the forecast output as a graph (with either just the 
forecast values, or forecast values alongside actuals) or a numerical forecast evalua-
tion, or both. Forecast evaluation is only available if the forecast sample includes 
observations for which the dependent variable is observed.

• Insert actuals for out-of-sample observations. By default, EViews will fill the fore-
cast series with the values of the actual dependent variable for observations not in the 
forecast sample. This feature is convenient if you wish to show the divergence of the 
forecast from the actual values; for observations prior to the beginning of the forecast 
sample, the two series will contain the same values, then they will diverge as the fore-
cast differs from the actuals. In some contexts, however, you may wish to have fore-
casted values only for the observations in the forecast sample. If you uncheck this 
option, EViews will fill the out-of-sample observations with missing values.

Note that when performing forecasts from equations specified using expressions or auto-
updating series, you may encounter a version of the Forecast dialog that differs from the 
basic dialog depicted above. See “Forecasting from Equations with Expressions” on page 167 
for details.

An Illustration

Suppose we produce a dynamic forecast using EQ01 over the sample 1959M01 to 1996M01. 
The forecast values will be placed in the series HSF, and EViews will display a graph of the 
forecasts and the plus and minus two standard error bands, as well as a forecast evaluation:
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This is a dynamic forecast for the period from 1959M01 through 1996M01. For every period, 
the previously forecasted values for HS(-1) are used in forming a forecast of the subsequent 
value of HS. As noted in the output, the forecast values are saved in the series HSF. Since 
HSF is a standard EViews series, you may examine your forecasts using all of the standard 
tools for working with series objects.

For example, we may examine the actual versus fitted values by creating a group containing 
HS and HSF, and plotting the two series. Select HS and HSF in the workfile window, then 
right-mouse click and select Open/as Group. Then select View/Graph... and select Line & 
Symbol in the Graph Type/Basic type page to display a graph of the two series:

Note the considerable difference between this actual and fitted graph and the Actual, Fitted, 
Residual Graph depicted above.
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To perform a series of one-step ahead forecasts, click on Forecast on the equation toolbar, 
and select Static forecast. Make certain that the forecast sample is set to “1959m01 
1995m06”. Click on OK. EViews will display the forecast results:

We may also compare the actual and fitted values from the static forecast by examining a 
line graph of a group containing HS and the new HSF.

The one-step ahead static forecasts are more accurate than the dynamic forecasts since, for 
each period, the actual value of HS(-1) is used in forming the forecast of HS. These one-step 
ahead static forecasts are the same forecasts used in the Actual, Fitted, Residual Graph dis-
played above.

Lastly, we construct a dynamic forecast beginning in 1990M02 (the first period following the 
estimation sample) and ending in 1996M01. Keep in mind that data are available for SP for 
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this entire period. The plot of the actual and the forecast values for 1989M01 to 1996M01 is 
given by:

Since we use the default settings for out-of-forecast sample values, EViews backfills the fore-
cast series prior to the forecast sample (up through 1990M01), then dynamically forecasts 
HS for each subsequent period through 1996M01. This is the forecast that you would have 
constructed if, in 1990M01, you predicted values of HS from 1990M02 through 1996M01, 
given knowledge about the entire path of SP over that period.

The corresponding static forecast is displayed below:

Again, EViews backfills the values of the forecast series, HSF1, through 1990M01. This fore-
cast is the one you would have constructed if, in 1990M01, you used all available data to 
estimate a model, and then used this estimated model to perform one-step ahead forecasts 
every month for the next six years.
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The remainder of this chapter focuses on the details associated with the construction of 
these forecasts, the corresponding forecast evaluations, and forecasting in more complex set-
tings involving equations with expressions or auto-updating series.

Forecast Basics

EViews stores the forecast results in the series specified in the Forecast name field. We will 
refer to this series as the forecast series. 

The forecast sample specifies the observations for which EViews will try to compute fitted or 
forecasted values. If the forecast is not computable, a missing value will be returned. In 
some cases, EViews will carry out automatic adjustment of the sample to prevent a forecast 
consisting entirely of missing values (see “Adjustment for Missing Values” on page 155, 
below). Note that the forecast sample may or may not overlap with the sample of observa-
tions used to estimate the equation.

For values not included in the forecast sample, there are two options. By default, EViews fills 
in the actual values of the dependent variable. If you turn off the Insert actuals for out-of-
sample option, out-of-forecast-sample values will be filled with NAs.

As a consequence of these rules, all data in the forecast series will be overwritten during the 
forecast procedure. Existing values in the forecast series will be lost.

Computing Point Forecasts

For each observation in the forecast sample, EViews computes the fitted value of the depen-
dent variable using the estimated parameters, the right-hand side exogenous variables, and 
either the actual or estimated values for lagged endogenous variables and residuals. The 
method of constructing these forecasted values depends upon the estimated model and user-
specified settings.

To illustrate the forecasting procedure, we begin with a simple linear regression model with 
no lagged endogenous right-hand side variables, and no ARMA terms. Suppose that you 
have estimated the following equation specification:

y c x z

Now click on Forecast, specify a forecast period, and click OK.

For every observation in the forecast period, EViews will compute the fitted value of Y using 
the estimated parameters and the corresponding values of the regressors, X and Z:

. (23.1)

You should make certain that you have valid values for the exogenous right-hand side vari-
ables for all observations in the forecast period. If any data are missing in the forecast sam-
ple, the corresponding forecast observation will be an NA.

ŷt ĉ 1  ĉ 2 xt ĉ 3 zt 
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Adjustment for Missing Values

There are two cases when a missing value will be returned for the forecast value. First, if 
any of the regressors have a missing value, and second, if any of the regressors are out of the 
range of the workfile. This includes the implicit error terms in AR models.

In the case of forecasts with no dynamic components in the specification (i.e. with no lagged 
endogenous or ARMA error terms), a missing value in the forecast series will not affect sub-
sequent forecasted values. In the case where there are dynamic components, however, a sin-
gle missing value in the forecasted series will propagate throughout all future values of the 
series.

As a convenience feature, EViews will move the starting point of the sample forward where 
necessary until a valid forecast value is obtained. Without these adjustments, the user 
would have to figure out the appropriate number of presample values to skip, otherwise the 
forecast would consist entirely of missing values. For example, suppose you wanted to fore-
cast dynamically from the following equation specification:

y c y(-1) ar(1)

If you specified the beginning of the forecast sample to the beginning of the workfile range, 
EViews will adjust forward the forecast sample by 2 observations, and will use the pre-fore-
cast-sample values of the lagged variables (the loss of 2 observations occurs because the 
residual loses one observation due to the lagged endogenous variable so that the forecast for 
the error term can begin only from the third observation.)

Forecast Errors and Variances

Suppose the “true” model is given by:

, (23.2)

where  is an independent, and identically distributed, mean zero random disturbance, 
and  is a vector of unknown parameters. Below, we relax the restriction that the ’s be 
independent.

The true model generating  is not known, but we obtain estimates  of the unknown 
parameters . Then, setting the error term equal to its mean value of zero, the (point) fore-
casts of are obtained as:

. (23.3)

Forecasts are made with error, where the error is simply the difference between the actual 
and forecasted value . Assuming that the model is correctly specified, there 
are two sources of forecast error: residual uncertainty and coefficient uncertainty.
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Residual Uncertainty

The first source of error, termed residual or innovation uncertainty, arises because the inno-
vations  in the equation are unknown for the forecast period and are replaced with their 
expectations. While the residuals are zero in expected value, the individual values are non-
zero; the larger the variation in the individual residuals, the greater the overall error in the 
forecasts. 

The standard measure of this variation is the standard error of the regression (labeled “S.E. 
of regression” in the equation output). Residual uncertainty is usually the largest source of 
forecast error.

In dynamic forecasts, innovation uncertainty is compounded by the fact that lagged depen-
dent variables and ARMA terms depend on lagged innovations. EViews also sets these equal 
to their expected values, which differ randomly from realized values. This additional source 
of forecast uncertainty tends to rise over the forecast horizon, leading to a pattern of increas-
ing forecast errors. Forecasting with lagged dependent variables and ARMA terms is dis-
cussed in more detail below.

Coefficient Uncertainty

The second source of forecast error is coefficient uncertainty. The estimated coefficients  of 
the equation deviate from the true coefficients  in a random fashion. The standard error of 
the estimated coefficient, given in the regression output, is a measure of the precision with 
which the estimated coefficients measure the true coefficients. 

The effect of coefficient uncertainty depends upon the exogenous variables. Since the esti-
mated coefficients are multiplied by the exogenous variables  in the computation of fore-
casts, the more the exogenous variables deviate from their mean values, the greater is the 
forecast uncertainty.

Forecast Variability

The variability of forecasts is measured by the forecast standard errors. For a single equation 
without lagged dependent variables or ARMA terms, the forecast standard errors are com-
puted as:

(23.4)

where  is the standard error of regression. These standard errors account for both innova-
tion (the first term) and coefficient uncertainty (the second term). Point forecasts made from 
linear regression models estimated by least squares are optimal in the sense that they have 
the smallest forecast variance among forecasts made by linear unbiased estimators. More-
over, if the innovations are normally distributed, the forecast errors have a t-distribution and 
forecast intervals can be readily formed.
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If you supply a name for the forecast standard errors, EViews computes and saves a series of 
forecast standard errors in your workfile. You can use these standard errors to form forecast 
intervals. If you choose the Do graph option for output, EViews will plot the forecasts with 
plus and minus two standard error bands. These two standard error bands provide an 
approximate 95% forecast interval; if you (hypothetically) make many forecasts, the actual 
value of the dependent variable will fall inside these bounds 95 percent of the time.

Additional Details

EViews accounts for the additional forecast uncertainty generated when lagged dependent 
variables are used as explanatory variables (see “Forecasts with Lagged Dependent Vari-
ables” on page 160).

There are cases where coefficient uncertainty is ignored in forming the forecast standard 
error. For example, coefficient uncertainty is always ignored in equations specified by 
expression, for example, nonlinear least squares, and equations that include PDL (polyno-
mial distributed lag) terms (“Forecasting with Nonlinear and PDL Specifications” on 
page 173). 

In addition, forecast standard errors do not account for GLS weights in estimated panel 
equations.

Forecast Evaluation

Suppose we construct a dynamic forecast for HS over the period 1990M02 to 1996M01 using 
our estimated housing equation. If the Forecast evaluation option is checked, and there are 
actual data for the forecasted variable for the forecast sample, EViews reports a table of sta-
tistical results evaluating the forecast:

Note that EViews cannot compute a forecast evaluation if there are no data for the depen-
dent variable for the forecast sample.

The forecast evaluation is saved in one of two formats. If you turn on the Do graph option, 
the forecasts are included along with a graph of the forecasts. If you wish to display the eval-

Forecast: HSF 
Actual: HS 
Sample: 1990M02 1996M01 
Include observations: 72  

Root Mean Squared Error  0.318700
Mean Absolute Error  0.297261
Mean Absolute Percentage Error  4.205889
Theil Inequality Coefficient  0.021917
      Bias Proportion  0.869982
      Variance Proportion  0.082804
      Covariance Proportion  0.047214
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uations in their own table, you should turn off the Do graph option in the Forecast dialog 
box.

Suppose the forecast sample is , and denote the actual and 
forecasted value in period  as  and , respectively. The reported forecast error statistics 
are computed as follows:

The first two forecast error statistics depend on the scale of the dependent variable. These 
should be used as relative measures to compare forecasts for the same series across different 
models; the smaller the error, the better the forecasting ability of that model according to 
that criterion. The remaining two statistics are scale invariant. The Theil inequality coeffi-
cient always lies between zero and one, where zero indicates a perfect fit.

The mean squared forecast error can be decomposed as:

(23.5)

where , , ,  are the means and (biased) standard deviations of  and , 
and  is the correlation between  and . The proportions are defined as: 
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• The bias proportion tells us how far the mean of the forecast is from the mean of the 
actual series.

• The variance proportion tells us how far the variation of the forecast is from the vari-
ation of the actual series.

• The covariance proportion measures the remaining unsystematic forecasting errors.

Note that the bias, variance, and covariance proportions add up to one.

If your forecast is “good”, the bias and variance proportions should be small so that most of 
the bias should be concentrated on the covariance proportions. For additional discussion of 
forecast evaluation, see Pindyck and Rubinfeld (1998, p. 210-214).

For the example output, the bias proportion is large, indicating that the mean of the forecasts 
does a poor job of tracking the mean of the dependent variable. To check this, we will plot 
the forecasted series together with the actual series in the forecast sample with the two stan-
dard error bounds. Suppose we saved the forecasts and their standard errors as HSF and 
HSFSE, respectively. Then the plus and minus two standard error series can be generated by 
the commands:

smpl 1990m02 1996m01

series hsf_high = hsf + 2*hsfse

series hsf_low = hsf - 2*hsfse

Create a group containing the four series. You can highlight the four series HS, HSF, 
HSF_HIGH, and HSF_LOW, double click on the selected area, and select Open Group, or you 
can select Quick/Show… and enter the four series names. Once you have the group open, 
select View/Graph... and select Line & Symbol from the left side of the dialog.

Variance Proportion

Covariance Proportion

sy sy– 2

ŷt yt– 2 h
-------------------------------------

2 1 r– sŷsy
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The forecasts completely miss the downturn at the start of the 1990’s, but, subsequent to the 
recovery, track the trend reasonably well from 1992 to 1996.

Forecasts with Lagged Dependent Variables

Forecasting is complicated by the presence of lagged dependent variables on the right-hand 
side of the equation. For example, we can augment the earlier specification to include the 
first lag of Y:

y c x z y(-1)

and click on the Forecast button and fill out the series names in the dialog as above. There 
is some question, however, as to how we should evaluate the lagged value of Y that appears 
on the right-hand side of the equation. There are two possibilities: dynamic forecasting and 
static forecasting.

Dynamic Forecasting

If you select dynamic forecasting, EViews will perform a multi-step forecast of Y, beginning 
at the start of the forecast sample. For our single lag specification above:

• The initial observation in the forecast sample will use the actual value of lagged Y. 
Thus, if  is the first observation in the forecast sample, EViews will compute:

, (23.6)

where  is the value of the lagged endogenous variable in the period prior to the 
start of the forecast sample. This is the one-step ahead forecast.

• Forecasts for subsequent observations will use the previously forecasted values of Y:

. (23.7)
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• These forecasts may differ significantly from the one-step ahead forecasts.

If there are additional lags of Y in the estimating equation, the above algorithm is modified 
to account for the non-availability of lagged forecasted values in the additional period. For 
example, if there are three lags of Y in the equation:

• The first observation ( ) uses the actual values for all three lags, , , and 
.

• The second observation ( ) uses actual values for  and,  and the fore-
casted value  of the first lag of .

• The third observation ( ) will use the actual values for , and forecasted val-
ues  and  for the first and second lags of .

• All subsequent observations will use the forecasted values for all three lags.

The selection of the start of the forecast sample is very important for dynamic forecasting. 
The dynamic forecasts are true multi-step forecasts (from the start of the forecast sample), 
since they use the recursively computed forecast of the lagged value of the dependent vari-
able. These forecasts may be interpreted as the forecasts for subsequent periods that would 
be computed using information available at the start of the forecast sample.

Dynamic forecasting requires that data for the exogenous variables be available for every 
observation in the forecast sample, and that values for any lagged dependent variables be 
observed at the start of the forecast sample (in our example, , but more generally, any 
lags of ). If necessary, the forecast sample will be adjusted.

Any missing values for the explanatory variables will generate an NA for that observation 
and in all subsequent observations, via the dynamic forecasts of the lagged dependent vari-
able.

Lastly, we note that for non-linear dynamic forecasting, EViews produces what Tong and 
Lim (1980) term the “eventual forecasting function” in which the lagged forecasted values 
are substituted recursively into the one-step ahead function. This approach differs from the 
simulation based approaches to multi-step forecasting which employs stochastic simulation. 
If you wish to obtain the latter forecasts, click on the Stochastic simulation checkbox and 
enter the number of Repetitions and Failed reps prop. before halting as desired.

Static Forecasting

Static forecasting performs a series of one-step ahead forecasts of the dependent variable:

• For each observation in the forecast sample, EViews computes:

(23.8)

always using the actual value of the lagged endogenous variable.
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Static forecasting requires that data for both the exogenous and any lagged endogenous vari-
ables be observed for every observation in the forecast sample. As above, EViews will, if 
necessary, adjust the forecast sample to account for pre-sample lagged variables. If the data 
are not available for any period, the forecasted value for that observation will be an NA. The 
presence of a forecasted value of NA does not have any impact on forecasts for subsequent 
observations.

A Comparison of Dynamic and Static Forecasting

Both methods will always yield identical results in the first period of a multi-period forecast. 
Thus, two forecast series, one dynamic and the other static, should be identical for the first 
observation in the forecast sample.

The two methods will differ for subsequent periods only if there are lagged dependent vari-
ables or ARMA terms.

Forecasting with ARMA Errors

Forecasting from equations with ARMA components involves some additional complexities. 
When you use the AR or MA specifications, you will need to be aware of how EViews han-
dles the forecasts of the lagged residuals which are used in forecasting.

Structural Forecasts

By default, EViews will forecast values for the residuals using the estimated ARMA struc-
ture, as described below.

For some types of work, you may wish to assume that the ARMA errors are always zero. If 
you select the structural forecast option by checking Structural (ignore ARMA), EViews 
computes the forecasts assuming that the errors are always zero. If the equation is estimated 
without ARMA terms, this option has no effect on the forecasts.

Forecasting with AR Errors

For equations with AR errors, EViews adds forecasts of the residuals from the equation to 
the forecast of the structural model that is based on the right-hand side variables. 

In order to compute an estimate of the residual, EViews requires estimates or actual values 
of the lagged residuals. For the first observation in the forecast sample, EViews will use pre-
sample data to compute the lagged residuals. If the pre-sample data needed to compute the 
lagged residuals are not available, EViews will adjust the forecast sample, and backfill the 
forecast series with actual values (see the discussion of “Adjustment for Missing Values” on 
page 155).



Forecasting with ARMA Errors—163
If you choose the Dynamic option, both the lagged dependent variable and the lagged resid-
uals will be forecasted dynamically. If you select Static, both will be set to the actual lagged 
values. For example, consider the following AR(2) model:

(23.9)

Denote the fitted residuals as , and suppose the model was estimated using 
data up to . Then, provided that the  values are available, the static and 
dynamic forecasts for , are given by:

where the residuals  are formed using the forecasted values of . For subse-
quent observations, the dynamic forecast will always use the residuals based upon the 
multi-step forecasts, while the static forecast will use the one-step ahead forecast residuals.

Forecasting with MA Errors

In general, you need not concern yourselves with the details of MA forecasting, since 
EViews will do all of the work for you. However, for those of you who are interested in the 
details of dynamic forecasting, the following discussion should aid you in relating EViews 
results with those obtained from other sources.

We begin by noting that the key step in computing forecasts using MA terms is to obtain fit-
ted values for the innovations in the pre-forecast sample period. For example, if you are per-
forming dynamic forecasting of the values of , beginning in period , with a simple 
MA( ) process:

, (23.10)

you will need values for the pre-forecast sample innovations, . Simi-
larly, constructing a static forecast for a given period will require estimates of the  lagged 
innovations at every period in the forecast sample.

If your equation is estimated with backcasting turned on, EViews will perform backcasting 
to obtain these values. If your equation is estimated with backcasting turned off, or if the 
forecast sample precedes the estimation sample, the initial values will be set to zero.
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Backcast Sample

The first step in obtaining pre-forecast innovations is obtaining estimates of the pre-estima-
tion sample innovations: . (For notational convenience, we normalize 
the start and end of the estimation sample to  and , respectively.) 

EViews offers two different approaches for obtaining esti-
mates—you may use the MA backcast dropdown menu to 
choose between the default Estimation period and the Fore-
cast available (v5) methods.

The Estimation period method uses data for the estimation sample to compute backcast 
estimates. Then as in estimation (“Initializing MA Innovations” on page 144), the  values 
for the innovations beyond the estimation sample are set to zero:

(23.11)

EViews then uses the unconditional residuals to perform the backward recursion:

(23.12)

for  to obtain the pre-estimation sample residuals. Note that 
absent changes in the data, using Estimation period produces pre-forecast sample innova-
tions that match those employed in estimation (where applicable).

The Forecast available (v5) method offers different approaches for dynamic and static fore-
casting:

• For dynamic forecasting, EViews applies the backcasting procedure using data from 
the beginning of the estimation sample to either the beginning of the forecast period, 
or the end of the estimation sample, whichever comes first.

• For static forecasting, the backcasting procedure uses data from the beginning of the 
estimation sample to the end of the forecast period.

For both dynamic and static forecasts, the post-backcast sample innovations are initialized 
to zero and the backward recursion is employed to obtain estimates of the pre-estimation 
sample innovations. Note that Forecast available (v5) does not guarantee that the pre-sam-
ple forecast innovations match those employed in estimation.

Pre-Forecast Innovations

Given the backcast estimates of the pre-estimation sample residuals, forward recursion is 
used to obtain values for the pre-forecast sample innovations.

For dynamic forecasting, one need only obtain innovation values for the  periods prior to 
the start of the forecast sample; all subsequent innovations are set to zero. EViews obtains 
estimates of the pre-sample  using the recursion:
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ẽt ût v̂1 ẽt 1– – v̂q ẽt q–
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(23.13)

for , where  is the beginning of the forecast period

Static forecasts perform the forward recursion through the end of the forecast sample so that 
innovations are estimated through the last forecast period. Computation of the static forecast 
for each period uses the  lagged estimated innovations. Extending the recursion produces a 
series of one-step ahead forecasts of both the structural model and the innovations.

Additional Notes

Note that EViews computes the residuals used in backcast and forward recursion from the 
observed data and estimated coefficients. If EViews is unable to compute values for the 
unconditional residuals for a given period, the sequence of innovations and forecasts will 
be filled with NAs. In particular, static forecasts must have valid data for both the dependent 
and explanatory variables for all periods from the beginning of estimation sample to the end 
of the forecast sample, otherwise the backcast values of the innovations, and hence the fore-
casts will contain NAs. Likewise, dynamic forecasts must have valid data from the beginning 
of the estimation period through the start of the forecast period.

Example

As an example of forecasting from ARMA models, consider forecasting the monthly new 
housing starts (HS) series. The estimation period is 1959M01–1984M12 and we forecast for 
the period 1985M01–1991M12. We estimated the following simple multiplicative seasonal 
autoregressive model,

hs c ar(1) sar(12)

yielding:
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To perform a dynamic forecast from this estimated model, click Forecast on the equation 
toolbar, enter “1985m01 1991m12” in the Forecast sample field, then select Forecast evalu-
ation and unselect Forecast graph. The forecast evaluation statistics for the model are 
shown below:

Dependent Variable: HS   

Method: Least Squares   

Date: 08/08/06   Time: 17:42   

Sample (adjusted): 1960M02 1984M12   

Included observations: 299 after adjustments  

Convergence achieved after 5 iterations   

 Coefficient Std. Error t-Statistic Prob.  

C 7.317283 0.071371 102.5243 0.0000

AR(1) 0.935392 0.021028 44.48403 0.0000

SAR(12) -0.113868 0.060510 -1.881798 0.0608

R-squared 0.862967     Mean dependent var 7.313496

Adjusted R-squared 0.862041     S.D. dependent var 0.239053

S.E. of regression 0.088791     Akaike info criterion -1.995080

Sum squared resid 2.333617     Schwarz criterion -1.957952

Log likelihood 301.2645     Hannan-Quinn criter. -1.980220

F-statistic 932.0312     Durbin-Watson stat 2.452568

Prob(F-statistic) 0.000000    

Inverted AR Roots       .94      .81-.22i    .81+.22i  .59-.59i 

  .59+.59i      .22+.81i    .22-.81i -.22+.81i 

 -.22-.81i     -.59+.59i   -.59-.59i -.81-.22i 

 -.81+.22i   
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The large variance proportion indicates that the forecasts are not tracking the variation in 
the actual HS series. To plot the actual and forecasted series together with the two standard 
error bands, you can type:

smpl 1985m01 1991m12

plot hs hs_f hs_f+2*hs_se hs_f-2*hs_se 

where HS_F and HS_SE are the forecasts and standard errors of HS.

As indicated by the large variance proportion, the forecasts track the seasonal movements in 
HS only at the beginning of the forecast sample and quickly flatten out to the mean forecast 
value.

Forecasting from Equations with Expressions

One of the most useful EViews innovations is the ability to estimate and forecast from equa-
tions that are specified using expressions or auto-updating series. You may, for example, 
specify your dependent variable as LOG(X), or use an auto-updating regressor series EXPZ 
that is defined using the expression EXP(Z). Using expressions or auto-updating series in 
equations creates no added complexity for estimation since EViews simply evaluates the 
implicit series prior to computing the equation estimator.

The use of expressions in equations does raise issues when computing forecasts from equa-
tions. While not particularly complex or difficult to address, the situation does require a 
basic understanding of the issues involved, and some care must be taken when specifying 
your forecast. 
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In discussing the relevant issues, we distinguish between specifications that contain only 
auto-series expressions such as LOG(X), and those that contain auto-updating series such as 
EXPZ.

Forecasting using Auto-series Expressions

When forecasting from an equation that contains only ordinary series or auto-series expres-
sions such as LOG(X), issues arise only when the dependent variable is specified using an 
expression.

Point Forecasts

EViews always provides you with the option to forecast the dependent variable expression. 
If the expression can be normalized (solved for the first series in the expression), EViews 
also provides you with the option to forecast the normalized series. 

For example, suppose you estimated an equation with the specification:

(log(hs)+sp) c hs(-1) 

If you press the Forecast button, EViews will open a dialog prompting you for your forecast 
specification.

The resulting Forecast dialog is a 
slightly more complex version of the 
basic dialog, providing you with a 
new section allowing you to choose 
between two series to forecast: the 
normalized series, HS, or the equa-
tion dependent variable, 
LOG(HS)+SP. 

Simply select the radio button for the 
desired forecast series. Note that you 
are not provided with the opportu-
nity to forecast SP directly since HS, 
the first series that appears on the 
left-hand side of the estimation 
equation, is offered as the choice of 
normalized series.

It is important to note that the Dynamic forecast method is available since EViews is able to 
determine that the forecast equation has dynamic elements, with HS appearing on the left-
hand side of the equation (either directly as HS or in the expression LOG(HS)+SP) and on 
the right-hand side of the equation in lagged form. If you select dynamic forecasting, previ-
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ously forecasted values for HS(-1) will be used in forming forecasts of either HS or 
LOG(HS)+SP.

If the formula can be normalized, EViews will compute the forecasts of the transformed 
dependent variable by first forecasting the normalized series and then transforming the fore-
casts of the normalized series. This methodology has important consequences when the for-
mula includes lagged series. For example, consider the following two models:

series dhs = d(hs)

equation eq1.ls d(hs) c sp

equation eq2.ls dhs c sp

The dynamic forecasts of the first difference D(HS) from the first equation will be numeri-
cally identical to those for DHS from the second equation. However, the static forecasts for 
D(HS) from the two equations will not be identical. In the first equation, EViews knows that 
the dependent variable is a transformation of HS, so it will use the actual lagged value of HS 
in computing the static forecast of the first difference D(HS). In the second equation, EViews 
simply views DY as an ordinary series, so that only the estimated constant and SP are used 
to compute the static forecast.

One additional word of caution–when you have dependent variables that use lagged values 
of a series, you should avoid referring to the lagged series before the current series in a 
dependent variable expression. For example, consider the two equation specifications:

d(hs) c sp

(-hs(-1)+hs) c sp

Both specifications have the first difference of HS as the dependent variable and the estima-
tion results are identical for the two models. However, if you forecast HS from the second 
model, EViews will try to calculate the forecasts of HS using leads of the actual series HS. 
These forecasts of HS will differ from those produced by the first model, which may not be 
what you expected.

In some cases, EViews will not be able to normalize the dependent variable expression. In 
this case, the Forecast dialog will only offer you the option of forecasting the entire expres-
sion. If, for example, you specify your equation as:

log(hs)+1/log(hs) = c(1) + c(2)*hs(-1)

EViews will not be able to normalize the dependent variable for forecasting. The corre-
sponding Forecast dialog will reflect this fact.
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This version of the dialog only allows 
you to forecast the dependent vari-
able expression, since EViews is 
unable to normalize and solve for 
HS. Note also that only static fore-
casts are available for this case since 
EViews is unable to solve for lagged 
values of HS on the right hand-side. 

Plotted Standard Errors

When you select Forecast graph in 
the forecast dialog, EViews will plot 
the forecasts, along with plus and 
minus two standard error bands. 
When you estimate an equation with an expression for the left-hand side, EViews will plot 
the standard error bands for either the normalized or the unnormalized expression, depend-
ing upon which term you elect to forecast.

If you elect to predict the normalized dependent variable, EViews will automatically account 
for any nonlinearity in the standard error transformation. The next section provides addi-
tional details on the procedure used to normalize the upper and lower error bounds.

Saved Forecast Standard Errors

If you provide a name in this edit box, EViews will store the standard errors of the underly-
ing series or expression that you chose to forecast. 

When the dependent variable of the equation is a simple series or an expression involving 
only linear transformations, the saved standard errors will be exact (except where the fore-
casts do not account for coefficient uncertainty, as described below). If the dependent vari-
able involves nonlinear transformations, the saved forecast standard errors will be exact if 
you choose to forecast the entire formula. If you choose to forecast the underlying endoge-
nous series, the forecast uncertainty cannot be computed exactly, and EViews will provide a 
linear (first-order) approximation to the forecast standard errors.

Consider the following equations involving a formula dependent variable:

d(hs) c sp

log(hs) c sp

For the first equation, you may choose to forecast either HS or D(HS). In both cases, the 
forecast standard errors will be exact, since the expression involves only linear transforma-
tions. The two standard errors will, however, differ in dynamic forecasts since the forecast 
standard errors for HS take into account the forecast uncertainty from the lagged value of 
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HS. In the second example, the forecast standard errors for LOG(HS) will be exact. If, how-
ever, you request a forecast for HS itself, the standard errors saved in the series will be the 
approximate (linearized) forecast standard errors for HS.

Note that when EViews displays a graph view of the forecasts together with standard error 
bands, the standard error bands are always exact. Thus, in forecasting the underlying depen-
dent variable in a nonlinear expression, the standard error bands will not be the same as 
those you would obtain by constructing series using the linearized standard errors saved in 
the workfile.

Suppose in our second example above that you store the forecast of HS and its standard 
errors in the workfile as the series HSHAT and SE_HSHAT. Then the approximate two stan-
dard error bounds can be generated manually as:

series hshat_high1 = hshat + 2*se_hshat

series hshat_low1 = hshat - 2*se_hshat

These forecast error bounds will be symmetric about the point forecasts HSHAT.

On the other hand, when EViews plots the forecast error bounds of HS, it proceeds in two 
steps. It first obtains the forecast of LOG(HS) and its standard errors (named, say, LHSHAT 
and SE_LHSHAT) and forms the forecast error bounds on LOG(HS):

lhshat + 2*se_lhshat

lhshat - 2*se_lhshat

It then normalizes (inverts the transformation) of the two standard error bounds to obtain 
the prediction interval for HS:

series hshat_high2 = exp(hshat + 2*se_hshat)

series hshat_low2 = exp(hshat - 2*se_hshat)

Because this transformation is a non-linear transformation, these bands will not be symmet-
ric around the forecast. 

To take a more complicated example, suppose that you generate the series DLHS and LHS, 
and then estimate three equivalent models:

series dlhs = dlog(hs)

series lhs = log(hs)

equation eq1.ls dlog(hs) c sp

equation eq2.ls d(lhs) c sp

equation eq3.ls dlhs c sp

The estimated equations from the three models are numerically identical. If you choose to 
forecast the underlying dependent (normalized) series from each model, EQ1 will forecast 
HS, EQ2 will forecast LHS (the log of HS), and EQ3 will forecast DLHS (the first difference of 
the logs of HS, LOG(HS)–LOG(HS(–1)). The forecast standard errors saved from EQ1 will be 
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linearized approximations to the forecast standard error of HS, while those from the latter 
two will be exact for the forecast standard error of LOG(HS) and the first difference of the 
logs of HS.

Static forecasts from all three models are identical because the forecasts from previous peri-
ods are not used in calculating this period's forecast when performing static forecasts. For 
dynamic forecasts, the log of the forecasts from EQ1 will be identical to those from EQ2 and 
the log first difference of the forecasts from EQ1 will be identical to the first difference of the 
forecasts from EQ2 and to the forecasts from EQ3. For static forecasts, the log first difference 
of the forecasts from EQ1 will be identical to the first difference of the forecasts from EQ2. 
However, these forecasts differ from those obtained from EQ3 because EViews does not 
know that the generated series DLY is actually a difference term so that it does not use the 
dynamic relation in the forecasts.

Forecasting with Auto-updating series

When forecasting from an equation that contains auto-updating series defined by formulae, 
the central question is whether EViews interprets the series as ordinary series, or whether it 
treats the auto-updating series as expressions. 

Suppose for example, that we have defined auto-updating series LOGHS and LOGHSLAG, for 
the log of HAS and the log of HS(-1), respectively,

frml loghs = log(hs)

frml loghslag = log(hs(-1))

and that we employ these auto-updating series in estimating an equation specification:

loghs c loghslag

It is worth pointing out this specification yields results that are identical to those obtained 
from estimating an equation using the expressions directly using LOG(HS) and LOG(HS(-
1)):

log(hs) c log(hs(-1))

The Forecast dialog for the first equation specification (using LOGHS and LOGHSLAG) con-
tains an additional dropdown menu allowing you to specify whether to interpret the auto-
updating series as ordinary series, or whether to look inside LOGHS and LOGHSLAG to use 
their expressions.
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By default, the dropdown menu is 
set to Ignore formulae within 
series, so that LOGHS and 
LOGHSLAG are viewed as ordinary 
series. Note that since EViews 
ignores the expressions underlying 
the auto-updating series, you may 
only forecast the dependent series 
LOGHS, and there are no dynamics 
implied by the equation.

Alternatively, you may instruct 
EViews to use the expressions in 
place of all auto-updating series by 
changing the dropdown menu set-
ting to Substitute formulae within 
series.

If you elect to substitute the formu-
lae, the Forecast dialog will change 
to reflect the use of the underlying 
expressions as you may now choose 
between forecasting HS or LOG(HS). 
We also see that when you use the 
substituted expressions you are able 
to perform either dynamic or static 
forecasting. 

It is worth noting that substituting 
expressions yields a Forecast dialog 
that offers the same options as if you 
were to forecast from the second 
equation specification above—using 
LOG(HS) as the dependent series 
expression, and LOG(HS(-1)) as an independent series expression.

Forecasting with Nonlinear and PDL Specifications

As explained above, forecast errors can arise from two sources: coefficient uncertainty and 
innovation uncertainty. For linear regression models, the forecast standard errors account for 
both coefficient and innovation uncertainty. However, if the model is specified by expression 
(or if it contains a PDL specification), then the standard errors ignore coefficient uncertainty. 



174—Chapter 23. Forecasting from an Equation
EViews will display a message in the status line at the bottom of the EViews window when 
forecast standard errors only account for innovation uncertainty. 

For example, consider the three specifications:

log(y) c x

y = c(1) + c(2)*x

y = exp(c(1)*x)

y c x pdl(z, 4, 2)

Forecast standard errors from the first model account for both coefficient and innovation 
uncertainty since the model is specified by list, and does not contain a PDL specification. 
The remaining specifications have forecast standard errors that account only for residual 
uncertainty.

Note also that for non-linear dynamic forecasting, EViews produces what Tong and Lim 
(1980) term the “eventual forecasting function” in which the lagged forecasted values are 
substituted recursively into the one-step ahead function. If you wish to obtain simulation-
based multi-step forecasting, you may create a model from your equation using Proc/Make 
Model, and then use the resulting model to perform the dynamic stochastic simulation.
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Chapter 24.  Specification and Diagnostic Tests

Empirical research is usually an interactive process. The process begins with a specification 
of the relationship to be estimated. Selecting a specification usually involves several choices: 
the variables to be included, the functional form connecting these variables, and if the data 
are time series, the dynamic structure of the relationship between the variables.

Inevitably, there is uncertainty regarding the appropriateness of this initial specification. 
Once you estimate your equation, EViews provides tools for evaluating the quality of your 
specification along a number of dimensions. In turn, the results of these tests influence the 
chosen specification, and the process is repeated.

This chapter describes the extensive menu of specification test statistics that are available as 
views or procedures of an equation object. While we attempt to provide you with sufficient 
statistical background to conduct the tests, practical considerations ensure that many of the 
descriptions are incomplete. We refer you to standard statistical and econometric references 
for further details.

Background

Each test procedure described below involves the specification of a null hypothesis, which is 
the hypothesis under test. Output from a test command consists of the sample values of one 
or more test statistics and their associated probability numbers (p-values). The latter indi-
cate the probability of obtaining a test statistic whose absolute value is greater than or equal 
to that of the sample statistic if the null hypothesis is true. Thus, low p-values lead to the 
rejection of the null hypothesis. For example, if a p-value lies between 0.05 and 0.01, the 
null hypothesis is rejected at the 5 percent but not at the 1 percent level. 

Bear in mind that there are different assumptions and distributional results associated with 
each test. For example, some of the test statistics have exact, finite sample distributions 
(usually t or F-distributions). Others are large sample test statistics with asymptotic dis-
tributions. Details vary from one test to another and are given below in the description of 
each test. 

The View button on the equation toolbar gives you a choice among three categories of tests 
to check the specification of the equation. For some equations estimated using particular 
methods, only a subset of these categories will be available.

Additional tests are discussed elsewhere in the User’s Guide. 
These tests include unit root tests (“Performing Unit Root Tests 
in EViews” on page 590), the Granger causality test (“Granger 
Causality” on page 610 of User’s Guide I), tests specific to 

x
2
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binary, order, censored, and count models (Chapter 29. “Discrete and Limited Dependent 
Variable Models,” on page 331), and the tests for cointegration (“Testing for Cointegration” 
on page 282). 

Coefficient Diagnostics 

These diagnostics provide information and evaluate restrictions on the estimated coeffi-
cients, including the special case of tests for omitted and redundant variables.

Scaled Coefficients

The Scaled Coefficients view displays the coeffi-
cient estimates, the standardized coefficient esti-
mates and the elasticity at means. The 
standardized coefficients are the point estimates of 
the coefficients standardized by multiplying by the 
standard deviation of the dependent variable 
divided by the standard deviation of the regressor.

The elasticity at means are the point estimates of 
the coefficients scaled by the mean of the dependent variable divided by the mean of the 
regressor.

Confidence Intervals and Confidence Ellipses

The Confidence Intervals view displays a table of confidence intervals for each of the coef-
ficients in the equation.

The Confidence Intervals dialog allows you to enter the 
size of the confidence levels. These can be entered a space 
delimited list of decimals, or as the name of a scalar or vec-
tor in the workfile containing confidence levels. You can 
also choose how you would like to display the confidence 
intervals. By default they will be shown in pairs where the 
low and high values for each confidence level are shown 
next to each other. By unchecking the Arrange in pairs checkbox you can choose to display 
the confidence intervals concentrically.

The Confidence Ellipse view plots the joint confidence region of any two functions of esti-
mated parameters from an EViews estimation object. Along with the ellipses, you can 
choose to display the individual confidence intervals.

We motivate our discussion of this view by pointing out that the Wald test view (View/Coef-
ficient Diagnostics/Wald - Coefficient Restrictions...) allows you to test restrictions on the 
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estimated coefficients from an estimation object. When you perform a Wald test, EViews 
provides a table of output showing the numeric values associated with the test.

An alternative approach to displaying the results of a Wald test is to display a confidence 
interval. For a given test size, say 5%, we may display the one-dimensional interval within 
which the test statistic must lie for us not to reject the null hypothesis. Comparing the reali-
zation of the test statistic to the interval corresponds to performing the Wald test.

The one-dimensional confidence interval may be generalized to the case involving two 
restrictions, where we form a joint confidence region, or confidence ellipse. The confidence 
ellipse may be interpreted as the region in which the realization of two test statistics must lie 
for us not to reject the null.

To display confidence ellipses in EViews, simply select View/Coefficient Diagnostics/Confi-
dence Ellipse... from the estimation object toolbar. EViews will display a dialog prompting 
you to specify the coefficient restrictions and test size, and to select display options.

The first part of the dialog is identical to that found in 
the Wald test view—here, you will enter your coeffi-
cient restrictions into the edit box, with multiple 
restrictions separated by commas. The computation 
of the confidence ellipse requires a minimum of two 
restrictions. If you provide more than two restrictions, 
EViews will display all unique pairs of confidence 
ellipses. 

In this simple example depicted here using equation 
EQ01 from the workfile “Cellipse.WF1”, we provide a 
(comma separated) list of coefficients from the esti-
mated equation. This description of the restrictions 
takes advantage of the fact that EViews interprets any expression without an explicit equal 
sign as being equal to zero (so that “C(1)” and “C(1)=0” are equivalent). You may, of 
course, enter an explicit restriction involving an equal sign (for example, “C(1)+C(2) = 
C(3)/2”).

Next, select a size or sizes for the confidence ellipses. Here, we instruct EViews to construct 
a 95% confidence ellipse. Under the null hypothesis, the test statistic values will fall outside 
of the corresponding confidence ellipse 5% of the time.

Lastly, we choose a display option for the individual confidence intervals. If you select Line 
or Shade, EViews will mark the confidence interval for each restriction, allowing you to see, 
at a glance, the individual results. Line will display the individual confidence intervals as 
dotted lines; Shade will display the confidence intervals as a shaded region. If you select 
None, EViews will not display the individual intervals.
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The output depicts three confidence ellipses that result from pairwise tests implied by the 
three restrictions (“C(1)=0”, “C(2)=0”, and “C(3)=0”).

Notice first the presence of the dot-
ted lines showing the corresponding 
confidence intervals for the individ-
ual coefficients.

The next thing that jumps out from 
this example is that the coefficient 
estimates are highly correlated—if 
the estimates were independent, the 
ellipses would be exact circles. 

You can easily see the importance of 
this correlation. For example, focus-
ing on the ellipse for C(1) and C(3) 
depicted in the lower left-hand cor-
ner, an estimated C(1) of –.65 is suf-
ficient reject the hypothesis that 
C(1)=0 (since it falls below the end 
of the univariate confidence interval). If C(3)=.8, we cannot reject the joint null that 
C(1)=0, and C(3)=0 (since C(1)=-.65, C(3)=.8 falls within the confidence ellipse).

EViews allows you to display more than one size for your confidence ellipses. This feature 
allows you to draw confidence contours so that you may see how the rejection region 
changes at different probability values. To do so, simply enter a space delimited list of confi-
dence levels. Note that while the coefficient restriction expressions must be separated by 
commas, the contour levels must be separated by spaces.
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Here, the individual confidence intervals are depicted with shading. The individual intervals 
are based on the largest size confidence level (which has the widest interval), in this case, 
0.9.

Computational Details

Consider two functions of the parameters  and , and define the bivariate func-
tion .

The size  joint confidence ellipse is defined as the set of points  such that:

(24.1)

where  are the parameter estimates,  is the covariance matrix of , and  is the 
size  critical value for the related distribution. If the parameter estimates are least-squares 
based, the  distribution is used; if the parameter estimates are likelihood based, 
the  distribution will be employed.

The individual intervals are two-sided intervals based on either the t-distribution (in the 
cases where  is computed using the F-distribution), or the normal distribution (where  
is taken from the  distribution).

Variance Inflation Factors

Variance Inflation Factors (VIFs) are a method of measuring the level of collinearity 
between the regressors in an equation. VIFs show how much of the variance of a coefficient 
estimate of a regressor has been inflated due to collinearity with the other regressors. They 
can be calculated by simply dividing the variance of a coefficient estimate by the variance of 
that coefficient had other regressors not been included in the equation. 

There are two forms of the Variance Inflation Factor: centered and uncentered. The centered 
VIF is the ratio of the variance of the coefficient estimate from the original equation divided 
by the variance from a coefficient estimate from an equation with only that regressor and a 
constant. The uncentered VIF is the ratio of the variance of the coefficient estimate from the 
original equation divided by the variance from a coefficient estimate from an equation with 
only one regressor (and no constant). Note that if you original equation did not have a con-
stant only the uncentered VIF will be displayed.

The VIF view for EQ01 from the “Cellipse.WF1” workfile contains:

f1 b  f2 b 
f b  f1 b  f2 b , 

a b
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The centered VIF is numerically identical to  where is the R-squared from 
the regression of that regressor on all of the other regressors in the equation.

Note that since the VIFs are calculated from the coefficient variance-covariance matrix, any 
robust standard error options will be present in the VIFs.

Coefficient Variance Decomposition

The Coefficient Variance Decomposition view of an equation provides information on the 
eigenvector decomposition of the coefficient covariance matrix. This decomposition is a use-
ful tool to help diagnose potential collinearity problems amongst the regressors. The decom-
position calculations follow those given in Belsley, Kuh and Welsch (BKW) 2004 (Section 
3.2). Note that although BKW use the singular-value decomposition as their method to 
decompose the variance-covariance matrix, since this matrix is a square positive semi-defi-
nite matrix, using the eigenvalue decomposition will yield the same results.

In the case of a simple linear least squares regression, the coefficient variance-covariance 
matrix can be decomposed as follows:

(24.2)

where  is a diagonal matrix containing the eigenvalues of , and  is a matrix whose 
columns are equal to the corresponding eigenvectors.

The variance of an individual coefficient estimate is then:

(24.3)

where  is the j-th eigenvalue, and  is the (i,j)-th element of .

We term the j-th condition number of the covariance matrix, :

(24.4)

Variance Inflation Factors  
Date: 08/10/09   Time: 14:35  
Sample: 1968 1982   
Included observations: 15  

 Coefficient Uncentered  
Variable Variance VIF  

X1  0.002909  1010.429  
X2  3.72E-06  106.8991  
X3  0.002894  1690.308  
X4  1.43E-06  31.15205  
X5  1.74E-06  28.87596  
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If we let:

(24.5)

and

(24.6)

then we can term the variance-decomposition proportion as:

(24.7)

These proportions, together with the condition numbers, can then be used as a diagnostic 
tool for determining collinearity between each of the coefficients.

Belsley, Kuh and Welsch recommend the following procedure:

• Check the condition numbers of the matrix. A condition number smaller than 1/900 
(0.001) could signify the presence of collinearity. Note that BKW use a rule of any 
number greater than 30, but base it on the condition numbers of , rather than 

.

• If there are one or more small condition numbers, then the variance-decomposition 
proportions should be investigated. Two or more variables with values greater than 
0.5 associated with a small condition number indicate the possibility of collinearity 
between those two variables.

To view the coefficient variance decomposition in EViews, select View/Coefficient Diagnos-
tics/Coefficient Variance Decomposition. EViews will then display a table showing the 
Eigenvalues, Condition Numbers, corresponding Variance Decomposition Proportions and, 
for comparison purposes, the corresponding Eigenvectors.

As an example, we estimate an equation using data from Longley (1967), as republished in 
Greene (2008). The workfile “Longley.WF1” contains macro economic variables for the US 
between 1947 and 1962, and is often used as an example of multicollinearity in a data set. 
The equation we estimate regresses Employment on Year (YEAR), the GNP Deflator 
(PRICE), GNP, and Armed Forces Size (ARMED). The coefficient variance decomposition for 
this equation is show below.
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The top line of the table shows the eigenvalues, sorted from largest to smallest, with the 
condition numbers below. Note that the final condition number is always equal to 1. Three 
of the four eigenvalues have condition numbers smaller than 0.001, with the smallest condi-
tion number being very small: 1.09E-11, which would indicate a large amount of collinearity.

The second section of the table displays the decomposition proportions. The proportions 
associated with the smallest condition number are located in the first column. Three of these 
values are larger than 0.5, indeed they are very close to 1. This indicates that there is a high 
level of collinearity between those three variables, YEAR, PRICE and GNP.

Wald Test (Coefficient Restrictions)

The Wald test computes a test statistic based on the unrestricted regression. The Wald statis-
tic measures how close the unrestricted estimates come to satisfying the restrictions under 
the null hypothesis. If the restrictions are in fact true, then the unrestricted estimates should 
come close to satisfying the restrictions. 

Coefficient Variance Decomposition   
Date: 07/16/09   Time: 12:42   
Sample: 1947 1962    
Included observations: 16   

     

Eigenvalues  17208.87  0.208842  0.054609  1.88E-07 
Condition  1.09E-11  9.02E-07  3.45E-06  1.000000 

     
Variance Decomposition Proportions 

 Associated Eigenvalue 
Variable 1 2 3 4 

YEAR  0.988939  0.010454  0.000607  2.60E-13 
PRICE  1.000000  9.20E-09  5.75E-10  7.03E-19 
GNP  0.978760  0.002518  0.017746  0.000975 

ARMED  0.037677  0.441984  0.520339  9.31E-11 

     
Eigenvectors    

 Associated Eigenvalue 
Variable 1 2 3 4 

YEAR  0.030636 -0.904160 -0.426067 -0.004751 
PRICE -0.999531 -0.027528 -0.013451 -0.000253 
GNP  0.000105  0.001526  0.007921 -0.999967 

ARMED  0.000434  0.426303 -0.904557 -0.006514 
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How to Perform Wald Coefficient Tests

To demonstrate the calculation of Wald tests in EViews, we consider simple examples. Sup-
pose a Cobb-Douglas production function has been estimated in the form:

, (24.8)

where ,  and  denote value-added output and the inputs of capital and labor respec-
tively. The hypothesis of constant returns to scale is then tested by the restriction: 

.

Estimation of the Cobb-Douglas production function using annual data from 1947 to 1971 in 
the workfile “Coef_test.WF1” provided the following result:

The sum of the coefficients on LOG(L) and LOG(K) appears to be in excess of one, but to 
determine whether the difference is statistically relevant, we will conduct the hypothesis test 
of constant returns.

To carry out a Wald test, choose View/Coefficient Diagnostics/Wald-Coefficient Restric-
tions… from the equation toolbar. Enter the restrictions into the edit box, with multiple 
coefficient restrictions separated by commas. The restrictions should be expressed as equa-
tions involving the estimated coefficients and constants. The coefficients should be referred 
to as C(1), C(2), and so on, unless you have used a different coefficient vector in estimation.

If you enter a restriction that involves a series name, EViews will prompt you to enter an 
observation at which the test statistic will be evaluated. The value of the series will at that 
period will be treated as a constant for purposes of constructing the test statistic.

To test the hypothesis of constant returns to scale, type the following restriction in the dialog 
box:

Qlog A a Llog b Klog e  

Q K L

a b 1

Dependent Variable: LOG(Q)   
Method: Least Squares   
Date: 08/10/09   Time: 11:46   
Sample: 1947 1971    
Included observations: 25   

Variable Coefficient Std. Error t-Statistic Prob.  

C -2.327939 0.410601 -5.669595 0.0000
LOG(L) 1.591175 0.167740 9.485970 0.0000
LOG(K) 0.239604 0.105390 2.273498 0.0331

R-squared 0.983672    Mean dependent var 4.767586
Adjusted R-squared 0.982187    S.D. dependent var 0.326086
S.E. of regression 0.043521    Akaike info criterion -3.318997
Sum squared resid 0.041669    Schwarz criterion -3.172732
Log likelihood 44.48746    Hannan-Quinn criter. -3.278429
F-statistic 662.6819    Durbin-Watson stat 0.637300
Prob(F-statistic) 0.000000    



184—Chapter 24. Specification and Diagnostic Tests
c(2) + c(3) = 1

and click OK. EViews reports the following result of the Wald test:

EViews reports an F-statistic and a Chi-square statistic with associated p-values. In cases 
with a single restriction, EViews reports the t-statistic equivalent of the F-statistic. See 
“Wald Test Details” on page 187 for a discussion of these statistics. In addition, EViews 
reports the value of the normalized (homogeneous) restriction and an associated standard 
error. In this example, we have a single linear restriction so the F-statistic and Chi-square 
statistic are identical, with the p-value indicating that we can decisively reject the null 
hypothesis of constant returns to scale.

To test more than one restriction, separate the restrictions by commas. For example, to test 
the hypothesis that the elasticity of output with respect to labor is 2/3 and the elasticity with 
respect to capital is 1/3, enter the restrictions as,

c(2)=2/3, c(3)=1/3

and EViews reports:

Wald Test:   
Equation: EQ1   
Null Hypothesis: C(2) + C(3) = 1  

Test Statistic Value df Probability

t-statistic  10.95526  22  0.0000 
F-statistic  120.0177 (1, 22)  0.0000 
Chi-square  120.0177  1  0.0000 

    
Null Hypothesis Summary:  

Normalized Restriction (= 0) Value Std. Err. 

-1 + C(2) + C(3)  0.830779  0.075834 

Restrictions are linear in coefficients.  
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Note that in addition to the test statistic summary, we report the values of both of the nor-
malized restrictions, along with their standard errors (the square roots of the diagonal ele-
ments of the restriction covariance matrix).

As an example of a nonlinear model with a nonlinear restriction, we estimate a general pro-
duction function of the form:

(24.9)

and test the constant elasticity of substitution (CES) production function restriction 
. This is an example of a nonlinear restriction. To estimate the (unrestricted) 

nonlinear model, you may initialize the parameters using the command

param c(1) -2.6 c(2) 1.8 c(3) 1e-4 c(4) -6

then select Quick/Estimate Equation… and then estimate the following specification:

log(q) = c(1) + c(2)*log(c(3)*k^c(4)+(1-c(3))*l^c(4))

to obtain

Wald Test:   
Equation: EQ1   
Null Hypothesis: C(2)=2/3, C(3)=1/3  

Test Statistic Value df Probability

F-statistic  106.6113 (2, 22)  0.0000 
Chi-square  213.2226  2  0.0000 

    
Null Hypothesis Summary:  

Normalized Restriction (= 0) Value Std. Err. 

-2/3 + C(2)  0.924508  0.167740 
-1/3 + C(3) -0.093729  0.105390 

Restrictions are linear in coefficients.  

Qlog b1 b2 b3K
b4 1 b3– L

b4 log e 

b2 1 b4
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To test the nonlinear restriction , choose View/Coefficient Diagnostics/Wald-
Coefficient Restrictions… from the equation toolbar and type the following restriction in 
the Wald Test dialog box:

c(2)=1/c(4)

The results are presented below:

We focus on the p-values for the statistics which show that we fail to reject the null hypoth-
esis. Note that EViews reports that it used the delta method (with analytic derivatives) to 
compute the Wald restriction variance for the nonlinear restriction.

Dependent Variable: LOG(Q)   
Method: Least Squares   
Date: 08/10/09   Time: 13:39   
Sample: 1947 1971    
Included observations: 25   
Convergence achieved after 288 iterations   
LOG(Q)=C(1)+C(2)*LOG( C(3)*K^C(4)+(1-C(3))*L^C(4) )  

 Coefficient Std. Error t-Statistic Prob.  

C(1) -2.655953 0.337610 -7.866935 0.0000
C(2) -0.301579 0.245596 -1.227944 0.2331
C(3) 4.37E-05 0.000318 0.137553 0.8919
C(4) -6.121195 5.100604 -1.200092 0.2435

R-squared 0.985325    Mean dependent var 4.767586
Adjusted R-squared 0.983229    S.D. dependent var 0.326086
S.E. of regression 0.042229    Akaike info criterion -3.345760
Sum squared resid 0.037450    Schwarz criterion -3.150740
Log likelihood 45.82200    Hannan-Quinn criter. -3.291670
F-statistic 470.0092    Durbin-Watson stat 0.725156
Prob(F-statistic) 0.000000    

b2 1 b4

Wald Test:   
Equation: Untitled   
Null Hypothesis: C(2) = 1/C(4)  

Test Statistic Value df Probability

t-statistic -1.259105  21  0.2218 
F-statistic  1.585344 (1, 21)  0.2218 
Chi-square  1.585344  1  0.2080 

    
Null Hypothesis Summary:  

Normalized Restriction (= 0) Value Std. Err. 

C(2) - 1/C(4) -0.138212  0.109770 

Delta method computed using analytic derivatives. 



Coefficient Diagnostics—187
It is well-known that nonlinear Wald tests are not invariant to the way that you specify the 
nonlinear restrictions. In this example, the nonlinear restriction  may equiva-
lently be written as  or  (for nonzero  and ). For example, 
entering the restriction as,

c(2)*c(4)=1

yields:

so that the test now decisively rejects the null hypothesis. We hasten to add that this type of 
inconsistency in results is not unique to EViews, but is a more general property of the Wald 
test. Unfortunately, there does not seem to be a general solution to this problem (see David-
son and MacKinnon, 1993, Chapter 13).

Wald Test Details

Consider a general nonlinear regression model:

(24.10)

where  and  are -vectors and  is a -vector of parameters to be estimated. Any 
restrictions on the parameters can be written as:

, (24.11)

where  is a smooth function, , imposing  restrictions on . The Wald statis-
tic is then computed as:

 (24.12)

b2 1 b4
b2b4 1 b4 1 b2 b2 b4

Wald Test:   
Equation: Untitled   
Null Hypothesis: C(2)*C(4)=1  

Test Statistic Value df Probability

t-statistic  11.11048  21  0.0000 
F-statistic  123.4427 (1, 21)  0.0000 
Chi-square  123.4427  1  0.0000 

    
Null Hypothesis Summary:  

Normalized Restriction (= 0) Value Std. Err. 

-1 + C(2)*C(4)   0.846022  0.076146 

Delta method computed using analytic derivatives. 
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where  is the number of observations and  is the vector of unrestricted parameter esti-
mates, and where  is an estimate of the  covariance. In the standard regression case,  
is given by:

(24.13)

where  is the vector of unrestricted residuals, and  is the usual estimator of the unre-
stricted residual variance, , but the estimator of  may differ. For 
example,  may be a robust variance matrix estimator computing using White or Newey-
West techniques.

More formally, under the null hypothesis , the Wald statistic has an asymptotic  
distribution, where  is the number of restrictions under . 

For the textbook case of a linear regression model,

(24.14)

and linear restrictions:

, (24.15)

where  is a known  matrix, and  is a -vector, respectively. The Wald statistic in 
Equation (24.12) reduces to:

, (24.16)

which is asymptotically distributed as  under . 

If we further assume that the errors  are independent and identically normally distributed, 
we have an exact, finite sample F-statistic:

, (24.17)

where  is the vector of residuals from the restricted regression. In this case, the F-statistic 
compares the residual sum of squares computed with and without the restrictions imposed. 

We remind you that the expression for the finite sample F-statistic in (24.17) is for standard 
linear regression, and is not valid for more general cases (nonlinear models, ARMA specifi-
cations, or equations where the variances are estimated using other methods such as 
Newey-West or White). In non-standard settings, the reported F-statistic (which EViews 
always computes as ), does not possess the desired finite-sample properties. In these 
cases, while asymptotically valid, F-statistic (and corresponding t-statistic) results should be 
viewed as illustrative and for comparison purposes only.
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Omitted Variables

This test enables you to add a set of variables to an existing equation and to ask whether the 
set makes a significant contribution to explaining the variation in the dependent variable. 
The null hypothesis  is that the additional set of regressors are not jointly significant. 

The output from the test is an F-statistic and a likelihood ratio (LR) statistic with associated 
p-values, together with the estimation results of the unrestricted model under the alterna-
tive. The F-statistic is based on the difference between the residual sums of squares of the 
restricted and unrestricted regressions and is only valid in linear regression based settings. 
The LR statistic is computed as:

(24.18)

where  and  are the maximized values of the (Gaussian) log likelihood function of the 
unrestricted and restricted regressions, respectively. Under , the LR statistic has an 
asymptotic distribution with degrees of freedom equal to the number of restrictions (the 
number of added variables).

Bear in mind that:

• The omitted variables test requires that the same number of observations exist in the 
original and test equations. If any of the series to be added contain missing observa-
tions over the sample of the original equation (which will often be the case when you 
add lagged variables), the test statistics cannot be constructed.

• The omitted variables test can be applied to equations estimated with linear LS, ARCH 
(mean equation only), binary, ordered, censored, truncated, and count models. The 
test is available only if you specify the equation by listing the regressors, not by a for-
mula.

• Equations estimated by Two-Stage Least Squares and GMM offer a variant of this test 
based on the difference in J-statistics.

To perform an LR test in these settings, you can estimate a separate equation for the unre-
stricted and restricted models over a common sample, and evaluate the LR statistic and p-
value using scalars and the @cchisq function, as described above.

How to Perform an Omitted Variables Test

To test for omitted variables, select View/Coefficient Diagnostics/Omitted Variables-Like-
lihood Ratio… In the dialog that opens, list the names of the test variables, each separated 
by at least one space. Suppose, for example, that the initial regression specification is: 

log(q) c log(l) log(k)

If you enter the list:

log(l)^2 log(k)^2
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in the dialog, then EViews reports the results of the unrestricted regression containing the 
two additional explanatory variables, and displays statistics testing the hypothesis that the 
coefficients on the new variables are jointly zero. The top part of the output depicts the test 
results (the bottom portion shows the estimated test equation):

The F-statistic has an exact finite sample F-distribution under  for linear models if the 
errors are independent and identically distributed normal random variables. The numerator 
degrees of freedom is the number of additional regressors and the denominator degrees of 
freedom is the number of observations less the total number of regressors. The log likeli-
hood ratio statistic is the LR test statistic and is asymptotically distributed as a with 
degrees of freedom equal to the number of added regressors.

In our example, neither test rejects the null hypothesis that the two series do not belong to 
the equation at a 5% significance level. 

Redundant Variables

The redundant variables test allows you to test for the statistical significance of a subset of 
your included variables. More formally, the test is for whether a subset of variables in an 
equation all have zero coefficients and might thus be deleted from the equation. The redun-
dant variables test can be applied to equations estimated by linear LS, TSLS, ARCH (mean 
equation only), binary, ordered, censored, truncated, and count methods. The test is avail-
able only if you specify the equation by listing the regressors, not by a formula.

How to Perform a Redundant Variables Test

To test for redundant variables, select View/Coefficient Diagnostics/Redundant Variables-
Likelihood Ratio… In the dialog that appears, list the names of each of the test variables, 

Omitted Variables Test   
Equation: EQ1    
Specification: LOG(Q) C LOG(L) LOG(K)   
Omitted Variables: LOG(L)^2 LOG(K)^2   

 Value df Probability  

F-statistic  2.490982 (2, 20)   0.1082  
Likelihood ratio  5.560546  2  0.0620  

F-test summary:    

 Sum of Sq. df 
Mean 

Squares  

Test SSR  0.008310  2  0.004155  
Restricted SSR  0.041669  22  0.001894  
Unrestricted SSR  0.033359  20  0.001668  
Unrestricted SSR  0.033359  20  0.001668  

LR test summary:    
 Value df   

Restricted LogL  44.48746  22   
Unrestricted LogL  47.26774  20   

H0

x
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separated by at least one space. Suppose, for example, that the initial regression specifica-
tion is: 

log(q) c log(l) log(k) log(l)^2 log(k)^2

If you type the list:

log(l)^2 log(k)^2

in the dialog, then EViews reports the results of the restricted regression dropping the two 
regressors, followed by the statistics associated with the test of the hypothesis that the coef-
ficients on the two variables are jointly zero. The top portion of the output is:

The reported test statistics are the F-statistic and the Log likelihood ratio. The F-statistic has 
an exact finite sample F-distribution under  if the errors are independent and identically 
distributed normal random variables and the model is linear. The numerator degrees of free-
dom are given by the number of coefficient restrictions in the null hypothesis. The denomi-
nator degrees of freedom are given by the total regression degrees of freedom. The LR test is 
an asymptotic test, distributed as a with degrees of freedom equal to the number of 
excluded variables under . In this case, there are two degrees of freedom.

Factor Breakpoint Test

The Factor Breakpoint test splits an estimated equation's sample into a number of subsam-
ples classified by one or more variables and examines whether there are significant differ-
ences in equations estimated in each of those subsamples. A significant difference indicates 
a structural change in the relationship. For example, you can use this test to examine 

Redundant Variables Test   
Equation: EQ1    
Specification: LOG(Q) C LOG(L) LOG(K) LOG(L)^2 LOG(K)^2  
Redundant Variables: LOG(L)^2 LOG(K)^2   

 Value df Probability  

F-statistic  2.490982 (2, 20)   0.1082  
Likelihood ratio  5.560546  2  0.0620  

F-test summary:    

 Sum of Sq. df 
Mean 

Squares  

Test SSR  0.008310  2  0.004155  
Restricted SSR  0.041669  22  0.001894  
Unrestricted SSR  0.033359  20  0.001668  
Unrestricted SSR  0.033359  20  0.001668  

LR test summary:    
 Value df   

Restricted LogL  44.48746  22   
Unrestricted LogL  47.26774  20   
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whether the demand function for energy differs between the different states of the USA. The 
test may be used with least squares and two-stage least squares regressions.

By default the Factor Breakpoint test tests whether there is a structural change in all of the 
equation parameters. However if the equation is linear EViews allows you to test whether 
there has been a structural change in a subset of the parameters.

To carry out the test, we partition the data by splitting the estimation sample into subsam-
ples of each unique value of the classification variable. Each subsample must contain more 
observations than the number of coefficients in the equation so that the equation can be 
estimated. The Factor Breakpoint test compares the sum of squared residuals obtained by fit-
ting a single equation to the entire sample with the sum of squared residuals obtained when 
separate equations are fit to each subsample of the data. 

EViews reports three test statistics for the Factor Breakpoint test. The F-statistic is based on 
the comparison of the restricted and unrestricted sum of squared residuals and in the sim-
plest case involving two subsamples, is computed as:

(24.19)

where  is the restricted sum of squared residuals,  is the sum of squared residuals 
from subsample ,  is the total number of observations, and  is the number of parame-
ters in the equation. This formula can be generalized naturally to more than two subsam-
ples. The F-statistic has an exact finite sample F-distribution if the errors are independent 
and identically distributed normal random variables.

The log likelihood ratio statistic is based on the comparison of the restricted and unrestricted 
maximum of the (Gaussian) log likelihood function. The LR test statistic has an asymptotic 

distribution with degrees of freedom equal to  under the null hypothesis of no 
structural change, where  is the number of subsamples.

The Wald statistic is computed from a standard Wald test of the restriction that the coeffi-
cients on the equation parameters are the same in all subsamples. As with the log likelihood 
ratio statistic, the Wald statistic has an asymptotic distribution with  degrees of 
freedom, where  is the number of subsamples.

For example, suppose we have estimated an equation specification of 

lwage c grade age high

using data from the “Cps88.WF1” workfile. 

F
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From this equation we can investigate whether 
the coefficient estimates on the wage equation 
differ by union membership and marriage status 
by using the UNION and MARRIED variables in a 
factor breakpoint test. To apply the breakpoint 
test, push View/Coefficient Diagnostics/Factor 
Breakpoint Test… on the equation toolbar. In the 
dialog that appears, list the series that will be 
used to classify the equation into subsamples. 
Since UNION contains values representing either 
union or non-union and MARRIED contains val-
ues for married and single, entering “union mar-
ried” will specify 4 subsamples: non-union/
married, non-union/single, union/married, and union/single. In the bottom portion of the 
dialog we indicate the names of the regressors that should be allowed to vary across break-
points. By default, all of the variables will be allowed to vary.

This test yields the following result:

Note all three statistics decisively reject the null hypothesis.

Residual Diagnostics

EViews provides tests for serial correlation, normality, heteroskedasticity, and autoregressive 
conditional heteroskedasticity in the residuals from your estimated equation. Not all of these 
tests are available for every specification.

Correlograms and Q-statistics 

This view displays the autocorrelations and partial autocor-
relations of the equation residuals up to the specified number 

Factor  Breakpoint Test: UNION MARRIED  
Null Hypothesis: No breaks at specified breakpoin ts  
Varying regressors: All equation variables  
Equation Sample: 1 1000   

F-statistic 6.227078  Prob. F(12,984) 0.0000
Log likelihood ratio  73.19468  Prob. Chi-Square(12) 0.0000
Wald Statistic  74.72494  Prob. Chi-Square(12) 0.0000

Factor  values: UNION = non-union, MARRIED = single  

 
UNION = non-union, MARRIED = 
married  

 UNION = union, MARRIED = single  
 UNION = union, MARRIED = married  
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of lags. Further details on these statistics and the Ljung-Box Q-statistics that are also com-
puted are provided in “Q-Statistics” on page 422 in User’s Guide I.

This view is available for the residuals from least squares, two-stage least squares, nonlinear 
least squares and binary, ordered, censored, and count models. In calculating the probability 
values for the Q-statistics, the degrees of freedom are adjusted to account for estimated 
ARMA terms.

To display the correlograms and Q-statistics, push View/Residual Diagnostics/Correlo-
gram-Q-statistics on the equation toolbar. In the Lag Specification dialog box, specify the 
number of lags you wish to use in computing the correlogram.

Correlograms of Squared Residuals

This view displays the autocorrelations and partial autocorrelations of the squared residuals 
up to any specified number of lags and computes the Ljung-Box Q-statistics for the corre-
sponding lags. The correlograms of the squared residuals can be used to check autoregres-
sive conditional heteroskedasticity (ARCH) in the residuals; see also “ARCH LM Test” on 
page 198, below. 

If there is no ARCH in the residuals, the autocorrelations and partial autocorrelations should 
be zero at all lags and the Q-statistics should not be significant; see “Q-Statistics” on 
page 422 of User’s Guide I, for a discussion of the correlograms and Q-statistics. 

This view is available for equations estimated by least squares, two-stage least squares, and 
nonlinear least squares estimation. In calculating the probability for Q-statistics, the degrees 
of freedom are adjusted for the inclusion of ARMA terms.

To display the correlograms and Q-statistics of the squared residuals, push View/Residual 
Diagnostics/Correlogram Squared Residuals on the equation toolbar. In the Lag Specifica-
tion dialog box that opens, specify the number of lags over which to compute the correlo-
grams.

Histogram and Normality Test 

This view displays a histogram and descriptive statistics of the residuals, including the 
Jarque-Bera statistic for testing normality. If the residuals are normally distributed, the histo-
gram should be bell-shaped and the Jarque-Bera statistic should not be significant; see “His-
togram and Stats” on page 402 of User’s Guide I, for a discussion of the Jarque-Bera test.

To display the histogram and Jarque-Bera statistic, select View/Residual Diagnostics/Histo-
gram-Normality. The Jarque-Bera statistic has a distribution with two degrees of free-
dom under the null hypothesis of normally distributed errors.

x
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Serial Correlation LM Test 

This test is an alternative to the Q-statistics for testing serial correlation. The test belongs to 
the class of asymptotic (large sample) tests known as Lagrange multiplier (LM) tests. 

Unlike the Durbin-Watson statistic for AR(1) errors, the LM test may be used to test for 
higher order ARMA errors and is applicable whether there are lagged dependent variables or 
not. Therefore, we recommend its use (in preference to the DW statistic) whenever you are 
concerned with the possibility that your errors exhibit autocorrelation.

The null hypothesis of the LM test is that there is no serial correlation up to lag order , 
where  is a pre-specified integer. The local alternative is ARMA( ) errors, where the 
number of lag terms =max( ). Note that this alternative includes both AR( ) and 
MA( ) error processes, so that the test may have power against a variety of alternative 
autocorrelation structures. See Godfrey (1988), for further discussion.

The test statistic is computed by an auxiliary regression as follows. First, suppose you have 
estimated the regression;

(24.20)

where  are the estimated coefficients and  are the errors. The test statistic for lag order  
is based on the auxiliary regression for the residuals :

. (24.21)

Following the suggestion by Davidson and MacKinnon (1993), EViews sets any presample 
values of the residuals to 0. This approach does not affect the asymptotic distribution of the 
statistic, and Davidson and MacKinnon argue that doing so provides a test statistic which 
has better finite sample properties than an approach which drops the initial observations.

This is a regression of the residuals on the original regressors  and lagged residuals up to 
order . EViews reports two test statistics from this test regression. The F-statistic is an 
omitted variable test for the joint significance of all lagged residuals. Because the omitted 
variables are residuals and not independent variables, the exact finite sample distribution of 
the F-statistic under  is still not known, but we present the F-statistic for comparison 
purposes.

The Obs*R-squared statistic is the Breusch-Godfrey LM test statistic. This LM statistic is 
computed as the number of observations, times the (uncentered) from the test regres-
sion. Under quite general conditions, the LM test statistic is asymptotically distributed as a 

.

The serial correlation LM test is available for residuals from either least squares or two-stage 
least squares estimation. The original regression may include AR and MA terms, in which 
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case the test regression will be modified to take account of the ARMA terms. Testing in 2SLS 
settings involves additional complications, see Wooldridge (1990) for details. 

To carry out the test, push View/Residual Diagnostics/Serial 
Correlation LM Test… on the equation toolbar and specify the 
highest order of the AR or MA process that might describe the 
serial correlation. If the test indicates serial correlation in the 
residuals, LS standard errors are invalid and should not be used 
for inference.

To illustrate, consider the macroeconomic data in our 
“Basics.WF1” workfile. We begin by regressing money supply M1 on a constant, contempo-
raneous industrial production IP and three lags of IP using the equation specification

m1 c ip(0 to -3)

The serial correlation LM test results for this equation with 2 lags in the test equation 
strongly reject the null of no serial correlation:

Breusch-Godfrey Serial Correlation LM Test:  

F-statistic 25280.60    Prob. F(2,353) 0.0000
Obs*R-squared 357.5040    Prob. Chi-Square(2) 0.0000

     
Test Equation:    
Dependent Variable: RESID   
Method: Least Squares   
Date: 08/10/09   Time: 14:58   
Sample: 1960M01 1989M12   
Included observations: 360   
Presample missing value lagged residuals set to zero.  

Variable Coefficient Std. Error t-Statistic Prob.  

C -0.584837 1.294016 -0.451955 0.6516
IP -11.36147 0.599613 -18.94800 0.0000

IP(-1) 17.13281 1.110223 15.43187 0.0000
IP(-2) -5.029158 1.241122 -4.052107 0.0001
IP(-3) -0.717490 0.629348 -1.140054 0.2550

RESID(-1) 1.158582 0.051233 22.61410 0.0000
RESID(-2) -0.156513 0.051610 -3.032587 0.0026

R-squared 0.993067    Mean dependent var -6.00E-15
Adjusted R-squared 0.992949    S.D. dependent var 76.48159
S.E. of regression 6.422212    Akaike info criterion 6.576655
Sum squared resid 14559.42    Schwarz criterion 6.652218
Log likelihood -1176.798    Hannan-Quinn criter. 6.606700
F-statistic 8426.868    Durbin-Watson stat 1.582614
Prob(F-statistic) 0.000000    
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Heteroskedasticity Tests

This set of tests allows you to test for a range of specifications of heteroskedasticity in the 
residuals of your equation. Ordinary least squares estimates are consistent in the presence of 
heteroskedasticity, but the conventional computed standard errors are no longer valid. If you 
find evidence of heteroskedasticity, you should either choose the robust standard errors 
option to correct the standard errors (see “Heteroskedasticity Consistent Covariances” on 
page 33) or you should model the heteroskedasticity to obtain more efficient estimates using 
weighted least squares.

EViews lets you employ a number of different heteroskedasticity tests, or to use our custom 
test wizard to test for departures from heteroskedasticity using a combination of methods. 
Each of these tests involve performing an auxiliary regression using the residuals from the 
original equation. These tests are available for equations estimated by least squares, two-
stage least squares, and nonlinear least squares. The individual tests are outlined below.

Breusch-Pagan-Godfrey (BPG)

The Breusch-Pagan-Godfrey test (see Breusch-Pagan, 1979, and Godfrey, 1978) is a Lagrange 
multiplier test of the null hypothesis of no heteroskedasticity against heteroskedasticity of 
the form , where  is a vector of independent variables. Usually this vec-
tor contains the regressors from the original least squares regression, but it is not necessary. 

The test is performed by completing an auxiliary regression of the squared residuals from 
the original equation on . The explained sum of squares from this auxiliary regres-
sion is then divided by  to give an LM statistic, which follows a -distribution with 
degrees of freedom equal to the number of variables in  under the null hypothesis of no 
heteroskedasticity. Koenker (1981) suggested that a more easily computed statistic of Obs*R-
squared (where  is from the auxiliary regression) be used. Koenker's statistic is also dis-
tributed as a  with degrees of freedom equal to the number of variables in . Along with 
these two statistics, EViews also quotes an F-statistic for a redundant variable test for the 
joint significance of the variables in  in the auxiliary regression.

As an example of a BPG test suppose we had an original equation of

log(m1) = c(1) + c(2)*log(ip) + c(3)*tb3

and we believed that there was heteroskedasticity in the residuals that depended on a func-
tion of LOG(IP) and TB3, then the following auxiliary regression could be performed

resid^2 = c(1) + c(2)*log(ip) + c(3)*tb3

Note that both the ARCH and White tests outlined below can be seen as Breusch-Pagan-God-
frey type tests, since both are auxiliary regressions of the squared residuals on a set of 
regressors and a constant.
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Harvey

The Harvey (1976) test for heteroskedasticity is similar to the Breusch-Pagan-Godfrey test. 
However Harvey tests a null hypothesis of no heteroskedasticity against heteroskedasticity 
of the form of , where, again,  is a vector of independent variables.

To test for this form of heteroskedasticity, an auxiliary regression of the log of the original 
equation's squared residuals on  is performed. The LM statistic is then the explained 
sum of squares from the auxiliary regression divided by , the derivative of the log 
gamma function evaluated at 0.5. This statistic is distributed as a  with degrees of free-
dom equal to the number of variables in . EViews also quotes the Obs*R-squared statistic, 
and the redundant variable F-statistic.

Glejser

The Glejser (1969) test is also similar to the Breusch-Pagan-Godfrey test. This test tests 
against an alternative hypothesis of heteroskedasticity of the form  with 

. The auxiliary regression that Glejser proposes regresses the absolute value of 
the residuals from the original equation upon . An LM statistic can be formed by 
dividing the explained sum of squares from this auxiliary regression by . As 
with the previous tests, this statistic is distributed from a chi-squared distribution with 
degrees of freedom equal to the number of variables in . EViews also quotes the Obs*R-
squared statistic, and the redundant variable F-statistic.

ARCH LM Test

The ARCH test is a Lagrange multiplier (LM) test for autoregressive conditional heteroske-
dasticity (ARCH) in the residuals (Engle 1982). This particular heteroskedasticity specifica-
tion was motivated by the observation that in many financial time series, the magnitude of 
residuals appeared to be related to the magnitude of recent residuals. ARCH in itself does not 
invalidate standard LS inference. However, ignoring ARCH effects may result in loss of effi-
ciency; see Chapter 25. “ARCH and GARCH Estimation,” on page 243 for a discussion of esti-
mation of ARCH models in EViews. 

The ARCH LM test statistic is computed from an auxiliary test regression. To test the null 
hypothesis that there is no ARCH up to order  in the residuals, we run the regression:

, (24.22)

where  is the residual. This is a regression of the squared residuals on a constant and 
lagged squared residuals up to order . EViews reports two test statistics from this test 
regression. The F-statistic is an omitted variable test for the joint significance of all lagged 
squared residuals. The Obs*R-squared statistic is Engle’s LM test statistic, computed as the 
number of observations times the from the test regression. The exact finite sample distri-
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bution of the F-statistic under  is not known, but the LM test statistic is asymptotically 
distributed as a  under quite general conditions.

White's Heteroskedasticity Test 

White’s (1980) test is a test of the null hypothesis of no heteroskedasticity against heteroske-
dasticity of unknown, general form. The test statistic is computed by an auxiliary regression, 
where we regress the squared residuals on all possible (nonredundant) cross products of the 
regressors. For example, suppose we estimated the following regression:

(24.23)

where the  are the estimated parameters and  the residual. The test statistic is then based 
on the auxiliary regression:

. (24.24)

Prior to EViews 6, White tests always included the level values of the regressors (i.e. the 
cross product of the regressors and a constant) whether the original regression included a 
constant term. This is no longer the case—level values are only included if the original 
regression included a constant.

EViews reports three test statistics from the test regression. The F-statistic is a redundant 
variable test for the joint significance of all cross products, excluding the constant. It is pre-
sented for comparison purposes.

The Obs*R-squared statistic is White’s test statistic, computed as the number of observa-
tions times the centered  from the test regression. The exact finite sample distribution of 
the F-statistic under  is not known, but White’s test statistic is asymptotically distributed 
as a with degrees of freedom equal to the number of slope coefficients (excluding the 
constant) in the test regression.

The third statistic, an LM statistic, is the explained sum of squares from the auxiliary regres-
sion divided by . This, too, is distributed as chi-squared distribution with degrees of 
freedom equal to the number of slope coefficients (minus the constant) in the auxiliary 
regression.

White also describes this approach as a general test for model misspecification, since the 
null hypothesis underlying the test assumes that the errors are both homoskedastic and 
independent of the regressors, and that the linear specification of the model is correct. Fail-
ure of any one of these conditions could lead to a significant test statistic. Conversely, a non-
significant test statistic implies that none of the three conditions is violated.

When there are redundant cross-products, EViews automatically drops them from the test 
regression. For example, the square of a dummy variable is the dummy variable itself, so 
EViews drops the squared term to avoid perfect collinearity.
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Performing a test for Heteroskedasticity in EViews

To carry out any of the heteroskedasticity tests, select View/Residual Diagnostics/Het-
eroskedasticity Tests. This will bring you to the following dialog:

You may choose which type of test to perform by clicking on the name in the Test type box. 
The remainder of the dialog will change, allowing you to specify various options for the 
selected test.

The BPG, Harvey and Glejser tests allow you to specify which variables to use in the auxil-
iary regression. Note that you may choose to add all of the variables used in the original 
equation by pressing the Add equation regressors button. If the original equation was non-
linear this button will add the coefficient gradients from that equation. Individual gradients 
can be added by using the @grad keyword to add the i-th gradient (e.g., “@grad(2)”).

The ARCH test simply lets you specify the number of lags to include for the ARCH specifica-
tion. 

The White test lets you choose whether to include cross terms or no cross terms using the 
Include cross terms checkbox. The cross terms version of the test is the original version of 
White's test that includes all of the cross product terms. However, the number of cross-prod-
uct terms increases with the square of the number of right-hand side variables in the regres-
sion; with large numbers of regressors, it may not be practical to include all of these terms. 
The no cross terms specification runs the test regression using only squares of the regres-
sors.

The Custom Test Wizard lets you combine or specify in greater detail the various tests. The 
following example, using EQ1 from the “Basics.WF1” workfile, shows how to use the Cus-
tom Wizard. The equation has the following specification:

log(m1) = c(1) + c(2)*log(ip) + c(3)*tb3
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The first page of the wizard allows you to choose which transformation of the residuals you 
want to use as the dependent variable in the auxiliary regression. Note this is really a choice 
between doing a Breusch-Pagan-Godfrey, a Harvey, or a Glejser type test. In our example we 
choose to use the LOG of the squared residuals:

Once you have chosen a dependent variable, click on Next. Step two of the wizard lets you 
decide whether to include a White specification. If you check the Include White specifica-
tion checkbox and click on Next, EViews will display the White Specification page which 
lets you specify options for the test. If you do not elect to include a White specification and 
click on Next, EViews will skip the White Specification page, and continue on to the next 
section of the wizard.
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There are two parts to the dialog. In the upper section you may use the Type of White Test 
dropdown menu to select the basic test. 

You may choose to include cross terms or not, whether to run 
an EViews 5 compatible test (as noted above, the auxiliary 
regression run by EViews differs slightly in Version 6 and 
later when there is no constant in the original equation), or, 
by choosing Custom, whether to include a set of variables not identical to those used in the 
original equation. The custom test allows you to perform a test where you include the 
squares and cross products of an arbitrary set of regressors. Note if you when you provide a 
set of variables that differs from those in the original equation, the test is no longer a White 
test, but could still be a valid test for heteroskedasticity. For our example we choose to 
include C and LOG(IP) as regressors, and choose to use cross terms. 

Click on Next to continue to the next section of the wizard. EViews prompts you for whether 
you wish to add any other variables as part of a Harvey (Breusch-Pagan-Godfrey/Harvey/
Glejser) specification. If you elect to do so, EViews will display a dialog prompting you to 
add additional regressors. Note that if you have already included a White specification and 
your original equation had a constant term, your auxiliary regression will already include 
level values of the original equation regressors (since the cross-product of the constant term 
and those regressors is their level values). In our example we choose to add the variable Y to 
the auxiliary regression:
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Next we can add ARCH terms to the auxiliary regression. The ARCH specification lets you 
specify a lag structure. You can either specify a number of lags, so that the auxiliary regres-
sion will include lagged values of the squared residuals up to the number you choose, or 
you may provide a custom lag structure. Custom structures are entered in pairs of lags. In 
our example we choose to include lags of 1, 2, 3 and 6:

The final step of the wizard is to view the final specification of the auxiliary regression, with 
all the options you have previously chosen, and make any modifications. For our choices, 
the final specification looks like this:
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Our ARCH specification with lags of 1, 2, 3, 6 is shown first, followed by the White specifica-
tion, and then the additional term, Y. Upon clicking Finish the main Heteroskedasticity 
Tests dialog has been filled out with our specification:

Note, rather than go through the wizard, we could have typed this specification directly into 
the dialog.

This test results in the following output:
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This output contains both the set of test statistics, and the results of the auxiliary regression 
on which they are based. All three statistics reject the null hypothesis of homoskedasticity.

Stability Diagnostics

EViews provides several test statistic views that examine whether the parameters of your 
model are stable across various subsamples of your data.

One common approach is to split the  observations in your data set of observations into 
 observations to be used for estimation, and  observations to be used for 

testing and evaluation. In time series work, you will usually take the first  observations 
for estimation and the last  for testing. With cross-section data, you may wish to order 
the data by some variable, such as household income, sales of a firm, or other indicator vari-
ables and use a subset for testing. 

Heteroskedasticity Test: Harvey   

F-statistic 203.6910    Prob. F(10,324) 0.0000
Obs*R-squared 289.0262    Prob. Chi-Square(10) 0.0000
Scaled explained SS 160.8560    Prob. Chi-Square(10) 0.0000

     
Test Equation:    
Dependent Variable: LRESID2   
Method: Least Squares   
Date: 08/10/09   Time: 15:06   
Sample (adjusted) : 1959M07 1989M12   
Included observations: 335 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.  

C 2.320248 10.82443 0.214353 0.8304
LRESID2(-1) 0.875599 0.055882 15.66873 0.0000
LRESID2(-2) 0.061016 0.074610 0.817805 0.4141
LRESID2(-3) -0.035013 0.061022 -0.573768 0.5665
LRESID2(-6) 0.024621 0.036220 0.679761 0.4971

LOG(IP) -1.622303 5.792786 -0.280056 0.7796
(LOG(IP))^2 0.255666 0.764826 0.334280 0.7384

(LOG(IP))*TB3 -0.040560 0.154475 -0.262566 0.7931
TB3 0.097993 0.631189 0.155252 0.8767

TB3^2 0.002845 0.005380 0.528851 0.5973
Y -0.023621 0.039166 -0.603101 0.5469

R-squared 0.862765    Mean dependent var -4.046849
Adjusted R-squared 0.858529    S.D. dependent var 1.659717
S.E. of regression 0.624263    Akaike info criterion 1.927794
Sum squared resid 126.2642    Schwarz criterion 2.053035
Log likelihood -311.9056    Hannan-Quinn criter. 1.977724
F-statistic 203.6910    Durbin-Watson stat 2.130511
Prob(F-statistic) 0.000000    

T
T1 T2 T T1–

T1

T2
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Note that the alternative of using all available sample observations for estimation promotes 
a search for a specification that best fits that specific data set, but does not allow for testing 
predictions of the model against data that have not been used in estimating the model. Nor 
does it allow one to test for parameter constancy, stability and robustness of the estimated 
relationship. 

There are no hard and fast rules for determining the relative sizes of  and . In some 
cases there may be obvious points at which a break in structure might have taken place—a 
war, a piece of legislation, a switch from fixed to floating exchange rates, or an oil shock. 
Where there is no reason a priori to expect a structural break, a commonly used rule-of-
thumb is to use 85 to 90 percent of the observations for estimation and the remainder for 
testing.

EViews provides built-in procedures which facilitate vari-
ations on this type of analysis.

Chow's Breakpoint Test

The idea of the breakpoint Chow test is to fit the equation 
separately for each subsample and to see whether there 
are significant differences in the estimated equations. A 
significant difference indicates a structural change in the 
relationship. For example, you can use this test to examine whether the demand function for 
energy was the same before and after the oil shock. The test may be used with least squares 
and two-stage least squares regressions; equations estimated using GMM offer a related test 
(see “GMM Breakpoint Test” on page 96).

By default the Chow breakpoint test tests whether there is a structural change in all of the 
equation parameters. However if the equation is linear EViews allows you to test whether 
there has been a structural change in a subset of the parameters.

To carry out the test, we partition the data into two or more subsamples. Each subsample 
must contain more observations than the number of coefficients in the equation so that the 
equation can be estimated. The Chow breakpoint test compares the sum of squared residu-
als obtained by fitting a single equation to the entire sample with the sum of squared residu-
als obtained when separate equations are fit to each subsample of the data.

EViews reports three test statistics for the Chow breakpoint test. The F-statistic is based on 
the comparison of the restricted and unrestricted sum of squared residuals and in the sim-
plest case involving a single breakpoint, is computed as:

, (24.25)

where  is the restricted sum of squared residuals,  is the sum of squared residuals 
from subsample ,  is the total number of observations, and  is the number of parame-
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ters in the equation. This formula can be generalized naturally to more than one breakpoint. 
The F-statistic has an exact finite sample F-distribution if the errors are independent and 
identically distributed normal random variables.

The log likelihood ratio statistic is based on the comparison of the restricted and unrestricted 
maximum of the (Gaussian) log likelihood function. The LR test statistic has an asymptotic 

distribution with degrees of freedom equal to  under the null hypothesis of no 
structural change, where  is the number of subsamples.

The Wald statistic is computed from a standard Wald test of the restriction that the coeffi-
cients on the equation parameters are the same in all subsamples. As with the log likelihood 
ratio statistic, the Wald statistic has an asymptotic distribution with  degrees of 
freedom, where  is the number of subsamples.

One major drawback of the breakpoint test is that each subsample requires at least as many 
observations as the number of estimated parameters. This may be a problem if, for example, 
you want to test for structural change between wartime and peacetime where there are only 
a few observations in the wartime sample. The Chow forecast test, discussed below, should 
be used in such cases. 

To apply the Chow breakpoint test, push View/
Stability Diagnostics/Chow Breakpoint Test… 
on the equation toolbar. In the dialog that 
appears, list the dates or observation numbers for 
the breakpoints in the upper edit field, and the 
regressors that are allowed to vary across break-
points in the lower edit field.

For example, if your original equation was esti-
mated from 1950 to 1994, entering: 

1960

in the dialog specifies two subsamples, one from 
1950 to 1959 and one from 1960 to 1994. Typing:

1960 1970

specifies three subsamples, 1950 to 1959, 1960 to 1969, and 1970 to 1994.

The results of a test applied to EQ1 in the workfile “Coef_test.WF1”, using the settings 
above are:

x
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Indicating that the coefficients are not stable across regimes.

Quandt-Andrews Breakpoint Test

The Quandt-Andrews Breakpoint Test tests for one or more unknown structural breakpoints 
in the sample for a specified equation. The idea behind the Quandt-Andrews test is that a 
single Chow Breakpoint Test is performed at every observation between two dates, or obser-
vations,  and . The  test statistics from those Chow tests are then summarized into 
one test statistic for a test against the null hypothesis of no breakpoints between  and .

By default the test tests whether there is a structural change in all of the original equation 
parameters. For linear specifications, EViews also allows you to test whether there has been 
a structural change in a subset of the parameters.

From each individual Chow Breakpoint Test two statistics are retained, the Likelihood Ratio 
F-statistic and the Wald F-statistic. The Likelihood Ratio F-statistic is based on the compar-
ison of the restricted and unrestricted sums of squared residuals. The Wald F-statistic is 
computed from a standard Wald test of the restriction that the coefficients on the equation 
parameters are the same in all subsamples. Note that in linear equations these two statistics 
will be identical. For more details on these statistics, see “Chow's Breakpoint Test” on 
page 206.

The individual test statistics can be summarized into three different statistics; the Sup or 
Maximum statistic, the Exp Statistic, and the Ave statistic (see Andrews, 1993 and Andrews 
and Ploberger, 1994). The Maximum statistic is simply the maximum of the individual Chow 
F-statistics:

(24.26)

The Exp statistic takes the form:

(24.27)

The Ave statistic is the simple average of the individual F-statistics:

Chow Breakpoint Test: 1960M01 1970M01   
Null Hypothesis: No breaks at specified breakpoin ts  
Varying regressors: All equation variables  
Equation Sample: 1959M01 1989M12  

F-statistic 186.8638  Prob. F(6,363) 0.0000
Log likelihood ratio  523.8566  Prob. Chi-Square(6)  0.0000
Wald Statistic  1121.183  Prob. Chi-Square(6)  0.0000
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(24.28)

The distribution of these test statistics is non-standard. Andrews (1993) developed their true 
distribution, and Hansen (1997) provided approximate asymptotic p-values. EViews reports 
the Hansen p-values. The distribution of these statistics becomes degenerate as  
approaches the beginning of the equation sample, or  approaches the end of the equation 
sample. To compensate for this behavior, it is generally suggested that the ends of the equa-
tion sample not be included in the testing procedure. A standard level for this “trimming” is 
15%, where we exclude the first and last 15% of the observations. EViews sets trimming at 
15% by default, but also allows the user to choose other levels. Note EViews only allows 
symmetric trimming, i.e. the same number of observations are removed from the beginning 
of the estimation sample as from the end.

The Quandt-Andrews Break-
point Test can be evaluated 
for an equation by selecting 
View/Stability Diagnostics/
Quandt-Andrews Break-
point Test… from the equa-
tion toolbar. The resulting 
dialog allows you to choose 
the level of symmetric obser-
vation trimming for the test, 
and, if your original equa-
tion was linear, which vari-
ables you wish to test for the unknown break point. You may also choose to save the 
individual Chow Breakpoint test statistics into new series within your workfile by entering a 
name for the new series.

As an example we estimate a consumption function, EQ02 in the workfile “DEMO.WF1”, 
using quarterly data from 1952Q1 to 1992Q4. To test for an unknown structural break point 
amongst all the original regressors we run the Quandt-Andrews test with 15% trimming. 
This test gives the following results:

Note all three of the summary statistic measures fail to reject the null hypothesis of no struc-
tural breaks at the 1% level within the 113 possible dates tested. The maximum statistic was 
in 1982Q2, and that is the most likely breakpoint location. Also, since the original equation 
was linear, note that the p-value for the LR F-statistic is identical to the Wald F-statistic.
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Multiple Breakpoint Tests

Tests for parameter instability and structural change in regression models have been an 
important part of applied econometric work dating back to Chow (1960), who tested for 
regime change at a priori known dates using an F-statistic. To relax the requirement that the 
candidate breakdate be known, Quandt (1960) modified the Chow framework to consider 
the F-statistic with the largest value over all possible breakdates. Andrews (1993) and 
Andrews and Ploberger (1994) derived the limiting distribution of the Quandt and related 
test statistics. The EViews tools for performing these tests are described in “Chow's Break-
point Test” on page 206 and “Quandt-Andrews Breakpoint Test” on page 208.

More recently, Bai (1997) and Bai and Perron (1998, 2003a) provide theoretical and compu-
tational results that further extend the Quandt-Andrews framework by allowing for multiple 
unknown breakpoints. The remainder of this section offers a brief outline of the Bai and Bai-
Perron approach to structural break testing as implemented in EViews. Perron (2006) offers 
a useful survey of the literature and provides references for those requiring additional dis-
cussion.

Background

We consider a standard multiple linear regression model with  periods and  potential 
breaks (producing  regimes). For the observations  in 
regime  we have the regression model

(24.29)

for the regimes . Note that the regressors are divided into two groups. The  
variables are those whose parameters do not vary across regimes, while the  variables 
have coefficients that are regime specific.

While it is slightly more convenient to define breakdates to be the last date of a regime, we 
follow EViews’s convention in defining the breakdate to be the first date of the subsequent 
regime. We tie down the endpoints by setting  and .

The multiple breakpoint tests that we consider may broadly be divided into three categories: 
tests that employ global maximizers for the breakpoints, test that employ sequentially deter-
mined breakpoints, and hybrid tests, which combine the two approaches.

Global Maximizer Tests

Bai and Perron (1998) describe global optimization procedures for identifying the  multi-
ple breaks which minimize the sums-of-squared residuals of the regression model 
Equation (24.29).

Briefly, for a specific set of  breakpoints, say , we may minimize 
the sum-of-squared residuals:
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(24.30)

using standard least squares regression to obtain estimates . The global -break 
optimizers are the set of breakpoints and corresponding coefficient estimates that minimize 
sum-of-squares across all possible sets of -break partitions. 

Note that the number of comparison models increases rapidly in both  and  so that effi-
cient algorithms for computing the optimizers are required. Practical algorithms for comput-
ing the global optimizers for multiple breakpoint models are outlined in Bai and Perron 
(2003a).

These global breakpoint estimates are then used as the basis for several breakpoint tests. 
EViews supports both the Bai and Perron (1998) tests of -breaks versus none test (along 
with the double maximum variants of this test in which  is determined as part of the test-
ing procedure), and information criterion methods (Yao, 1988 and Liu, Wi, and Zidek, 1997) 
for determining the number of breaks.

Global L Breaks vs. None

Bai and Perron (1998) describe a generalization of the Quandt-Andrews test (Andrews, 
1993) in which we test for equality of the  across multiple regimes. For a test of the null of 
no breaks against an alternative of  breaks, we employ an F-statistic to evaluate the null 
hypothesis that . The general form of the statistic (Bai-Perron 2003a) 
is:

(24.31)

where  is the optimal -break estimate of , , and 
 is an estimate of the variance covariance matrix of  which may be robust to serial 

correlation and heteroskedasticity, whose form depends on assumptions about the distribu-
tion of the data and the errors across segments. (We do not reproduce the formulae for the 
estimators of the variance matrices here as there are a large number of cases to consider; 
Bai-Perron (2003a) offer detailed descriptions of the various cases.)

A single test of no breaks against an alternative of  breaks assumes that the alternative 
number of breakpoints  is pre-specified. In cases where  is not known, we may test the 
null of no structural change against an unknown number of breaks up to some upper-
bound, . This type of testing is termed double maximum since it involves maximization 
both for a given  and across various values of the test statistic for .

The equal-weighted version of the test, termed  chooses the alternative that maxi-
mizes the statistic across the number of breakpoints. An alternative approach, denoted 
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 applies weights to the individual statistics so that the implied marginal -values 
are equal prior to taking the maximum.

The distributions of these test statistics are non-standard, but Bai and Perron (2003b) pro-
vide critical value and response surface computations for various trimming parameters 
(minimum sample sizes for estimating a break), numbers of regressors, and numbers of 
breaks.

Information Criteria

Yao (1988) shows that under relatively strong conditions, the number of breaks  that mini-
mizes the Schwarz criterion is a consistent estimator of the true number of breaks in a 
breaking mean model. 

More generally, Liu, Wu, and Zidek (1997) propose use of modified Schwarz criterion for 
determining the number of breaks in a regression framework. LWZ offer theoretical results 
showing consistency of the estimated number of breakpoints, and provide simulation results 
to guide the choice of the modified penalty criterion.

Sequential Testing Procedures

Bai (1997) describes an intuitive approach for detecting more than one break. The procedure 
involves sequential application of breakpoint tests. 

• Begin with the full sample and perform a test of parameter constancy with unknown 
break. 

• If the test rejects the null hypothesis of constancy, determine the breakdate, divide the 
sample into two samples and perform single unknown breakpoint tests in each subsa-
mple. Each of these tests may be viewed as a test of the alternative of  ver-
sus the null hypothesis of  breaks. Add a breakpoint whenever a subsample 
null is rejected. (Alternately, one could test only the single subsample which shows 
the greatest improvement in the sum-of-squared residuals.)

• Repeat the procedure until all of the subsamples do not reject the null hypothesis, or 
until the maximum number of breakpoints allowed or maximum subsample intervals 
to test is reached. 

If the number of breakpoints is pre-specified, we simply estimate the specified number of 
breakpoints using the one-at-a-time method.

Once the sequential breakpoints have been determined, Bai recommends a refinement pro-
cedure whereby breakpoints are re-estimated if they are obtained from a subsample contain-
ing more than one break. This procedure is required so that the breakpoint estimates have 
the same limiting distribution as those obtained from the global optimization procedure.

Note that EViews uses the (potentially robust) F-statistic in Equation (24.31) for the test in 
place of the difference in sums-of-squared residuals described in Bai (1997) and Bai and Per-
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ron (1998). Critical value and response surface computations are again provided by Bai and 
Perron (2003b).

Global Plus Sequential Testing

Bai and Perron (1998) describe a modified Bai (1997) approach in which, at each test step, 
the  breakpoints under the null are obtained by global minimization of the sum-of-squared 
residuals. We may therefore view this approach as an  versus  test procedure that 
combines the global and sequential testing approaches.

Each test begins with the set of  global optimizing breakpoints and performs a single test of 
parameter constancy using the subsample break that most reduces the-sum-of-squared 
residuals. Note that in this case, we only test for constancy in a single subsample.

Computing Multiple Breakpoint Tests in EViews

To use the EViews tools for testing for multiple breaks, you must use an equation that is 
specified by list and estimated by least squares. Note in particular that this latter restriction 
means that models with AR and MA terms are not eligible for multiple break testing.

From an estimated equation, bring up the multiple break testing dialog, by clicking on 
View/Stability Diagnostics/Multiple Breakpoint Test...

The dialog is divided into the Test specification, Breakpoint variables, and Options sec-
tions.

Test Specification

The Test specification section contains a Method drop-
down where you may specify the type of test you wish to 
perform. You may choose between: 

• Sequential L+1 breaks vs. L

• Sequential tests all subsets

l
l 1 l

l
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• Global L breaks vs. none

• L+1 breaks vs. global L

• Global information criteria

The two sequential tests are based on the Bai sequential methodology as described in 
“Sequential Testing Procedures” on page 212 above. The methods differ in whether, for a 
given  breakpoints, we test for an additional breakpoint in each of the  segments 
(Sequential tests all subsets), or whether we test for the single added breakpoint that most 
reduces the sum-of-squares (Sequential L+1 breaks vs. L).

The Global L breaks vs. none choice implements the Bai-Perron tests of  globally opti-
mized breaks against the null of no structural breaks, along with the corresponding 

 and  tests (“Global L Breaks vs. None” on page 211).

The L+1 breaks vs. global L choice implements the Bai-Perron  vs.  testing proce-
dure outlined in “Global Plus Sequential Testing” on page 213.

The Global information criteria uses the information criteria computed from the global 
optimizers to determine the number of breaks (“Information Criteria” on page 212).

Breakpoint Variables 

EViews supports the testing of partial structural change models in which only a subset of the 
variables in the regression are subject to change across regimes. The variables which have 
regime specific coefficients should be listed in the Regressors to vary across breakpoints 
edit field.

By default, all of the variables in your specification will be included in this list. To treat some 
of these variables as non-varying ‘s, you may simply delete them from the list. Note that 
there must be at least one variable in the list.

Options

The Options section of the dialog allow you to specify the maxi-
mum number of breaks or break levels to consider, the trimming 
percentage of the sample, the significance level for any test com-
putations (if relevant), and assumptions regarding the computa-
tion of the variance matrices used in testing (if relevant):

• The Maximum breaks limits the number of breakpoints 
allowed via global testing and in sequential or mixed  vs. 

 testing. If you have selected the Sequential tests all 
subsets method, the edit field will be labeled Maximum levels to indicate that the 
restriction is on the maximum number of break levels allowed. This change in label-
ing reflects the fact that the Bai all subsets approach potentially adds  breaks for 
a given set of  breaks.

l l 1

l

UDmax WDmax

l l 1

X

l
l 1

l 1
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• The Trimming percentage,  implicitly determines , the minimum 
segment length permitted when constructing a test. Small values of the trimming per-
centage can lead to estimates of coefficients and variances which are based on very 
few observations.

In testing settings, you will be prompted to specify a test size, and to make assumptions 
about the distribution of the errors across segments which determine the form for the esti-
mator  in Equation (24.31) on page 211.

• The Significance level drop-down menu should be used to choose between test size 
values of (0.01, 0.025, 0.05, and 0.10). This menu is not relevant for tests which select 
between models using information criteria.

• The Allow error distributions to differ across breaks lets you specify different error 
distributions for different regimes (which in turn implies using different estimators for 

; see Bai and Perron, 2003b for details). Selecting this option will provide 
robustness of the test to error distribution variation at the cost of power if the error 
distributions are the same across regimes.

We remind you that EViews will employ the coefficient covariance settings in the original 
equation when determining whether to allow for heteroskedasticity alone or heteroskedas-
ticity and serial correlation. Thus, if you estimated your original equation using White stan-
dard errors, EViews will compute the breakpoint tests using an statistic which is robust to 
heteroskedasticity. Similarly, if you estimated your original equation with Newey-West stan-
dard errors, EViews will compute the breakpoint tests using a HAC robust test statistic.

One final note. EViews will, by default, estimate the robust specification assuming heteroge-
neous distributions for the . Bai and Perron (2003a) who, with one exception, do not 
impose the restriction that the distribution of the  is the same across regimes. In cases 
where you are testing using robust variances, EViews will offer you a choice of whether to 
assume a common distribution for the data across regimes. 

Bai and Perron do impose the homogeneity data restriction when 
computing heteroskedasticity and HAC robust variances estima-
tors assuming homogeneous errors. To match the Bai-Perron 
common error assumptions, you will have to select the Assume 
common data distribution checkbox.

(Note that EViews does not allow you to specify heterogeneous 
error distributions and robust covariances in partial switching 
models.)

Examples

To illustrate the use of these tools in practice, we consider a simple model of the U.S. ex-post 
real interest rate from Garcia and Perron (1996) that is used as an example by Bai and Perron 

e 100 h T  h

V̂ d̂ 

V̂ d̂ 

Zt

Zt
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(2003a). The data, which consist of observations for the three-month treasury rate deflated 
by the CPI for the period 1961q1–1983q3, are provided in the series RATES in the workfile 
“realrate.WF1”. The regression model consists of a constant regressor, and allows for serial 
correlation that differs across regimes through the use of HAC covariance estimation. We 
allow up to 5 breaks in the model, and employ a trimming percentage of 15% . 
Since there are 103 observations in the sample, the trimming value implies that regimes are 
restricted to have at least 15 observations.

Following Bai and Perron 
(2003a), we begin by estimat-
ing the equation specification 
using least squares. Our equa-
tion specification consists of 
the dependent variable and a 
single (constant) regressor, so 
we enter 

rate c

in the specification dialog

Since we wish to allow for 
serial correlation in the errors, 
we specify a quadratic spectral 
kernel based HAC covariance 
estimation using prewhitened 
residuals. The kernel bandwith is determined automatically using the Andrews AR(1) 
method. 

The covariance options may be specified in the Equation Estimation dialog by selecting the 
Options tab, clicking on the HAC options button and filling out the dialog as shown:

e 15 
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Click on OK to accept the HAC settings, and then on OK to estimate the equation. The esti-
mation results should be as depicted below:

To construct multiple breakpoint tests for this equation, select View/Stability Diagnostics/
Multiple Breakpoint Test... from the equation dialog. We consider examples for three differ-
ent approaches for multiple breakpoint testing with this equation.

Sequential Bai-Perron

The default Method setting (Sequential L+1 breaks vs. L) instructs EViews to perform 
sequential testing of  versus  breaks using the methods outlined by Bai (1997) and Bai 
and Perron (1998).

Dependent Variable: RATES   
Method: Least Squares   
Date: 12/03/12   Time: 14:09   
Sample: 1961Q1 1986Q3   
Included observations: 103   
HAC standard errors & covariance (Prewhitening with lags = 1,  
       Quadratic-Spectral kernel, Andrews bandwidth = 1.9610)

Variable Coefficient Std. Error t-Statistic Prob.  

C 1.375142 0.599818 2.292600 0.0239

R-squared 0.000000    Mean dependent var 1.375142
Adjusted R-squared 0.000000    S.D. dependent var 3.451231
S.E. of regression 3.451231    Akaike info criterion 5.325001
Sum squared resid 1214.922    Schwarz criterion 5.350580
Log likelihood -273.2375    Hannan-Quinn criter. 5.335361
Durbin-Watson stat 0.745429    

l 1 l
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There is a single regressor “C” which we require to be in the list of breaking variables.

By default, the tests allow for a maximum number of 5 breaks, employ a trimming percent-
age of 15%, and use the 0.05 significance level for the sequential testing. We will leave these 
options at their default settings. We do, however, select the Allow error distributions to dif-
fer across breaks checkbox to allow for error heterogeneity. 

Click on OK to accept the test specification and display the test results. The top portion of 
the dialog shows the test settings, including the test method, breakpoint variables, test 
options, and method of computing test covariances. Note that the test employs the same 
HAC covariance settings used in the original equation but assume regime specific error dis-
tributions:

The middle section of the table presents the actual sequential test results:

Multiple breakpoint tests   
Bai-Perron tests of L+1 vs. L sequentially determined 
        breaks   
Date: 12/03/12   Time: 14:09  
Sample: 1961Q1 1986Q3   
Included observations: 103  
Breakpoint variables: C   
Break test options: Trimming 0.15, Max. breaks 5, Sig. level 
        0.05   
Test statistics employ HAC covariances (Prewhitening with 
        lags = 1, Quadratic-Spectral kernel, Andrews 
        bandwidth)   
Allow heterogeneous error distributions across breaks 
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EViews displays the F-statistic, along with the F-statistic scaled by the number of varying 
regressors (which is the same in this case, since we only have the single, varying regressor), 
and the Bai-Perron critical value for the scaled statistic. The sequential test results indicate 
that there are three breakpoints: we reject the nulls of 0, 1, and 2 breakpoints in favor of the 
alternatives of 1, 2, and 3 breakpoints, but the test of 4 versus 3 breakpoints does not reject 
the null.

The bottom portion of the output shows the estimated breakdates:

EViews displays both the breakdates obtained from the original sequential procedure, and 
those obtained following the repartition procedure. In this case, the dates do not change. 
Again bear in mind that the results follow the EViews convention in defining breakdates to 
be the first date of the subsequent regime.

Global Bai-Perron L Breaks vs. None

To perform the Bai-Perron tests of  globally optimized breaks against the null of no struc-
tural breaks, along with the corresponding  and  tests, simply call up the 
dialog and change the Method drop-down to Global L breaks vs. none:

Sequential F-statistic determined breaks: 3

  Scaled Critical
Break Test   F-statistic F-statistic Value** 

0 vs. 1 * 57.90582 57.90582 8.58 
1 vs. 2 * 33.92749 33.92749 10.13 
2 vs. 3 * 14.72464 14.72464 11.14 
3 vs. 4 0.033044 0.033044 11.83 

* Significant at the 0.05 level.  
** Bai-Perron (Econometric Journal, 2003) critical values. 

Break dates:
 Sequential Repartition  
1 1980Q4 1967Q1  
2 1972Q4 1972Q4
3 1967Q1 1980Q4  

l
UDmax WDmax
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We again leave the remaining settings at their default values with the exception of the Allow 
error distributions to differ across breaks checkbox which is selected. Click on OK to per-
form the test.

The top portion of the output, which shows the test settings, is almost identical to the out-
put for the previous example. The only difference is a line identifying the test method as 
being “Bai-Perron tests of 1 to M globally determined breaks.”

The middle portion of the output contains the test results:

The first four lines summarize the results for different approaches to determining the num-
ber of breaks. The “Sequential” result is obtained by performing tests from 1 to the maxi-
mum number until we cannot reject the null; the “Significant” result chooses the largest 
statistically significant breakpoint. In both cases, the multiple breakpoint test indicates that 
there are 5 breaks. The “UDmax” and “WDmax” results show the number of breakpoints as 

Sequential F-statistic determined breaks:  5  
Significant F-statistic largest breaks:   5  
UDmax determined breaks:   1  
WDmax determined breaks:   1  

  Scaled Weighted Critical  
Breaks F-statistic F-statistic F-statistic Value  

1 * 57.90582 57.90582 57.90582 8.58
2 * 43.01429 43.01429 51.11671 7.22  
3 * 33.32281 33.32281 47.97143 5.96  
4 * 24.77054 24.77054 42.59143 4.99
5 * 18.32587 18.32587 40.21381 3.91  

UDMax statistic*  57.90582 UDMax critical value**  8.88 
WDMax statistic*  57.90582 WDMax critical value**  9.91 

* Significant at the 0.05 level.    
** Bai-Perron (Econometric Journal, 2003) critical values. 



Stability Diagnostics—221
determined by application of the unweighted and weighted maximized statistics. The maxi-
mized statistics both indicate the presence of a single break.

The remaining lines show the individual test statistics (original, scaled, weighted) along 
with the critical values for the scaled statistics. In each case, the statistics far exceed the crit-
ical value so that we reject the null of no breaks. Note that the values corresponding to the 

 and  statistics are shaded for easy identification. 

The last two lines of output show the test results for double maximum statistics. In both 
cases, the maximized value clearly exceeds the critical value, so that we reject the null of no 
breaks in favor of the alternative of a single break.

The bottom of the portion shows the global optimizers for the breakpoints for each number 
of breaks:

Note that the three-break global optimizers are the same as those obtained in the sequential 
testing example (“Sequential Bai-Perron” on page 217). This equivalence will not hold in 
general.

Global Information Criteria

Lastly, we consider using information criteria to select the number of breaks.

Here we see the dialog when we select Global information criteria in the Method drop-
down menu. Note that there are no options for computing the coefficient covariances since 
this method does not require their calculation. Click on OK to construct the table of results.

UDmax WDmax

Estimated break dates:    
1:  1980Q4     
2:  1972Q4,  1980Q4     
3:  1967Q1,  1972Q4,  1980Q4    
4:  1967Q1,  1972Q4,  1977Q1,  1980Q4 
5:  1965Q1,  1968Q4,  1972Q4,  1977Q1,  1980Q4   
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The top and bottom portions of the output are similar to the results seen previously so we 
focus only on the test summaries themselves:

The two summary rows show that both the Schwarz and the LWZ information criteria select 
2 breaks. The remainder of the output shows, for each break, the number of estimated coef-
ficients, the optimized sum-of-squared residuals and likelihood, and the values of the infor-
mation criteria. The minimized Schwarz and LWZ values are shaded for easy identification.

Chow's Forecast Test

The Chow forecast test estimates two models—one using the full set of data , and the 
other using a long subperiod . Differences between the results for the two estimated 
models casts doubt on the stability of the estimated relation over the sample period. The 
Chow forecast test can be used with least squares and two-stage least squares regressions.

EViews reports two test statistics for the Chow forecast test. The F-statistic is computed as

, (24.32)

where  is the residual sum of squares when the equation is fitted to all  sample obser-
vations,  is the residual sum of squares when the equation is fitted to  observations, 
and  is the number of estimated coefficients. This F-statistic follows an exact finite sample 
F-distribution if the errors are independent, and identically, normally distributed.

The log likelihood ratio statistic is based on the comparison of the restricted and unrestricted 
maximum of the (Gaussian) log likelihood function. Both the restricted and unrestricted log 
likelihood are obtained by estimating the regression using the whole sample. The restricted 
regression uses the original set of regressors, while the unrestricted regression adds a 
dummy variable for each forecast point. The LR test statistic has an asymptotic distribu-
tion with degrees of freedom equal to the number of forecast points  under the null 
hypothesis of no structural change. 

Schwarz criterion selected breaks:   2  
LWZ criterion selected breaks:   2  

  Sum of  Schwarz* LWZ* 
Breaks # of Coefs. Sq. Resids. Log-L Criterion Criterion 

 0  1 1214.922 -273.2375 2.512703 2.550154 
 1  3 644.9955 -240.6282 1.969506 2.082148 
 2  5 455.9502 -222.7649 1.712641 1.900875 
 3  7 445.1819 -221.5340 1.778735 2.042977 
 4  9 444.8797 -221.4990 1.868051 2.208735 
 5  11 449.6395 -222.0471 1.968688 2.386267 

* Minimum information criterion values displayed with shading  
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To apply Chow’s forecast test, push View/Stability Diagnostics/Chow Forecast Test… on 
the equation toolbar and specify the date or observation number for the beginning of the 
forecasting sample. The date should be within the current sample of observations.

As an example, using the “Coef_test2.WF1” workfile, suppose we estimate a consumption 
function, EQ1, using quarterly data from 1947q1 to 1994q4 and specify 1973q1 as the first 
observation in the forecast period. The test reestimates the equation for the period 1947q1 to 
1972q4, and uses the result to compute the prediction errors for the remaining quarters, and 
the top portion of the table shows the following results:

Neither of the forecast test statistics reject the null hypothesis of no structural change in the 
consumption function before and after 1973q1. 

If we test the same hypothesis using the Chow breakpoint test, the result is:

Note that the breakpoint test statistics decisively reject the hypothesis from above. This 
example illustrates the possibility that the two Chow tests may yield conflicting results.

Chow Forecast Test    
Equation: EQ1    
Specification: LOG(CS) C LOG(GDP)   
Test predictions for observations from 1973Q1 to 1994:4  

 Value df Probability  

F-statistic  0.708348 (88, 102)   0.9511  
Likelihood ratio  91.57087  88  0.3761  

F-test summary:    

 Sum of Sq. df 
Mean 

Squares  

Test SSR  0.061798  88  0.000702  
Restricted SSR  0.162920  190  0.000857  
Unrestricted SSR  0.101122  102  0.000991  
Unrestricted SSR  0.101122  102  0.000991  

LR test summary:    
 Value df   

Restricted LogL  406.4749  190   
Unrestricted LogL  452.2603  102   

Unrestricted log likelihood adjusts test equation results to account 
        for observations in  forecast sample  

Chow Breakpoint Test: 1973Q1   

Null Hypothesis: No breaks at specified breakpoints  

Varying regressors: All equation variables  

Equation Sample: 1947Q1 1994Q4  

F-statistic 38.39198  Prob. F(2,188) 0.0000 

Log likelihood ratio 65.75466  Prob. Chi-Square(2) 0.0000 

Wald Statistic  76.78396  Prob. Chi-Square(2) 0.0000 
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Ramsey's RESET Test

RESET stands for Regression Specification Error Test and was proposed by Ramsey (1969). 
The classical normal linear regression model is specified as:

, (24.33)

where the disturbance vector  is presumed to follow the multivariate normal distribution 
. Specification error is an omnibus term which covers any departure from the 

assumptions of the maintained model. Serial correlation, heteroskedasticity, or non-normal-
ity of all violate the assumption that the disturbances are distributed . Tests for 
these specification errors have been described above. In contrast, RESET is a general test for 
the following types of specification errors:

• Omitted variables;  does not include all relevant variables.

• Incorrect functional form; some or all of the variables in  and  should be trans-
formed to logs, powers, reciprocals, or in some other way.

• Correlation between  and , which may be caused, among other things, by mea-
surement error in , simultaneity, or the presence of lagged  values and serially 
correlated disturbances.

Under such specification errors, LS estimators will be biased and inconsistent, and conven-
tional inference procedures will be invalidated. Ramsey (1969) showed that any or all of 
these specification errors produce a non-zero mean vector for . Therefore, the null and 
alternative hypotheses of the RESET test are:

(24.34)

The test is based on an augmented regression:

. (24.35)

The test of specification error evaluates the restriction . The crucial question in con-
structing the test is to determine what variables should enter the  matrix. Note that the  
matrix may, for example, be comprised of variables that are not in the original specification, 
so that the test of  is simply the omitted variables test described above. 

In testing for incorrect functional form, the nonlinear part of the regression model may be 
some function of the regressors included in . For example, if a linear relation,

, (24.36)

is specified instead of the true relation:

(24.37)
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the augmented model has  and we are back to the omitted variable case. A more 
general example might be the specification of an additive relation,

(24.38)

instead of the (true) multiplicative relation:

. (24.39)

A Taylor series approximation of the multiplicative relation would yield an expression 
involving powers and cross-products of the explanatory variables. Ramsey's suggestion is to 
include powers of the predicted values of the dependent variable (which are, of course, lin-
ear combinations of powers and cross-product terms of the explanatory variables) in :

(24.40)

where  is the vector of fitted values from the regression of  on . The superscripts indi-
cate the powers to which these predictions are raised. The first power is not included since it 
is perfectly collinear with the  matrix. 

Output from the test reports the test regression and the F-statistic and log likelihood ratio for 
testing the hypothesis that the coefficients on the powers of fitted values are all zero. A 
study by Ramsey and Alexander (1984) showed that the RESET test could detect specifica-
tion error in an equation which was known a priori to be misspecified but which nonethe-
less gave satisfactory values for all the more traditional test criteria—goodness of fit, test for 
first order serial correlation, high t-ratios. 

To apply the test, select View/Stability Diagnostics/Ramsey RESET Test… and specify the 
number of fitted terms to include in the test regression. The fitted terms are the powers of 
the fitted values from the original regression, starting with the square or second power. For 
example, if you specify 1, then the test will add  in the regression, and if you specify 2, 
then the test will add  and  in the regression, and so on. If you specify a large number 
of fitted terms, EViews may report a near singular matrix error message since the powers of 
the fitted values are likely to be highly collinear. The Ramsey RESET test is only applicable 
to equations estimated using selected methods.

Recursive Least Squares

In recursive least squares the equation is estimated repeatedly, using ever larger subsets of 
the sample data. If there are  coefficients to be estimated in the  vector, then the first  
observations are used to form the first estimate of . The next observation is then added to 
the data set and  observations are used to compute the second estimate of . This pro-
cess is repeated until all the  sample points have been used, yielding  estimates 
of the  vector. At each step the last estimate of  can be used to predict the next value of 
the dependent variable. The one-step ahead forecast error resulting from this prediction, 
suitably scaled, is defined to be a recursive residual.
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More formally, let  denote the  matrix of the regressors from period 1 to 
period , and  the corresponding vector of observations on the dependent variable. 
These data up to period  give an estimated coefficient vector, denoted by . This 
coefficient vector gives you a forecast of the dependent variable in period . The forecast is 

, where  is the row vector of observations on the regressors in period . The 
forecast error is , and the forecast variance is given by:

. (24.41)

The recursive residual  is defined in EViews as:

. (24.42)

These residuals can be computed for . If the maintained model is valid, 
the recursive residuals will be independently and normally distributed with zero mean and 
constant variance .

To calculate the recursive residuals, press 
View/Stability Diagnostics/Recursive 
Estimates (OLS only)… on the equation 
toolbar. There are six options available for 
the recursive estimates view. The recursive 
estimates view is only available for equa-
tions estimated by ordinary least squares 
without AR and MA terms. The Save 
Results as Series option allows you to save 
the recursive residuals and recursive coeffi-
cients as named series in the workfile; see “Save Results as Series” on page 229.

Recursive Residuals

This option shows a plot of the recursive residuals about the zero line. Plus and minus two 
standard errors are also shown at each point. Residuals outside the standard error bands 
suggest instability in the parameters of the equation. 

CUSUM Test

The CUSUM test (Brown, Durbin, and Evans, 1975) is based on the cumulative sum of the 
recursive residuals. This option plots the cumulative sum together with the 5% critical lines. 
The test finds parameter instability if the cumulative sum goes outside the area between the 
two critical lines.

The CUSUM test is based on the statistic:
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, (24.43)

for , where  is the recursive residual defined above, and s is the stan-
dard deviation of the recursive residuals . If the  vector remains constant from period to 
period, , but if  changes,  will tend to diverge from the zero mean value 
line. The significance of any departure from the zero line is assessed by reference to a pair of 
5% significance lines, the distance between which increases with . The 5% significance 
lines are found by connecting the points:

. (24.44)

Movement of  outside the critical lines is suggestive of coefficient instability. A sample 
CUSUM is given below:

The test clearly indicates instability in the equation during the sample period.

CUSUM of Squares Test

The CUSUM of squares test (Brown, Durbin, and Evans, 1975) is based on the test statistic:

. (24.45)

The expected value of  under the hypothesis of parameter constancy is:

(24.46)

which goes from zero at  to unity at . The significance of the departure of  
from its expected value is assessed by reference to a pair of parallel straight lines around the 
expected value. See Brown, Durbin, and Evans (1975) or Johnston and DiNardo (1997, Table 
D.8) for a table of significance lines for the CUSUM of squares test. 
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The CUSUM of squares test provides a plot of  against  and the pair of 5 percent critical 
lines. As with the CUSUM test, movement outside the critical lines is suggestive of parame-
ter or variance instability.

The cumulative sum of squares is generally 
within the 5% significance lines, suggest-
ing that the residual variance is somewhat 
stable.

One-Step Forecast Test

If you look back at the definition of the 
recursive residuals given above, you will 
see that each recursive residual is the error 
in a one-step ahead forecast. To test 
whether the value of the dependent vari-
able at time  might have come from the 
model fitted to all the data up to that point, 
each error can be compared with its standard deviation from the full sample.

The One-Step Forecast Test option produces a plot of the recursive residuals and standard 
errors and the sample points whose probability value is at or below 15 percent. The plot can 
help you spot the periods when your equation is least successful. For example, the one-step 
ahead forecast test might look like this:

The upper portion of the plot (right verti-
cal axis) repeats the recursive residuals 
and standard errors displayed by the 
Recursive Residuals option. The lower 
portion of the plot (left vertical axis) 
shows the probability values for those 
sample points where the hypothesis of 
parameter constancy would be rejected 
at the 5, 10, or 15 percent levels. The 
points with p-values less the 0.05 corre-
spond to those points where the recur-
sive residuals go outside the two 
standard error bounds. 

For the test equation, there is evidence of instability early in the sample period. 

N-Step Forecast Test

This test uses the recursive calculations to carry out a sequence of Chow Forecast tests. In 
contrast to the single Chow Forecast test described earlier, this test does not require the 
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specification of a forecast period— it automatically computes all feasible cases, starting with 
the smallest possible sample size for estimating the forecasting equation and then adding 
one observation at a time. The plot from this test shows the recursive residuals at the top 
and significant probabilities (based on the F-statistic) in the lower portion of the diagram. 

Recursive Coefficient Estimates

This view enables you to trace the evolution of estimates for any coefficient as more and 
more of the sample data are used in the estimation. The view will provide a plot of selected 
coefficients in the equation for all feasible recursive estimations. Also shown are the two 
standard error bands around the estimated coefficients. 

If the coefficient displays significant variation as more data is added to the estimating equa-
tion, it is a strong indication of instability. Coefficient plots will sometimes show dramatic 
jumps as the postulated equation tries to digest a structural break.

To view the recursive coefficient estimates, click the Recursive Coefficients option and list 
the coefficients you want to plot in the Coefficient Display List field of the dialog box. The 
recursive estimates of the marginal propensity to consume (coefficient C(2)), from the sam-
ple consumption function are provided below:

The estimated propensity to consume rises 
steadily as we add more data over the sam-
ple period, approaching a value of one. 

Save Results as Series

The Save Results as Series checkbox will do 
different things depending on the plot you 
have asked to be displayed. When paired 
with the Recursive Coefficients option, 
Save Results as Series will instruct EViews 
to save all recursive coefficients and their 
standard errors in the workfile as named 
series. EViews will name the coefficients 
using the next available name of the form, R_C1, R_C2, …, and the corresponding standard 
errors as R_C1SE, R_C2SE, and so on. 

If you check the Save Results as Series box with any of the other options, EViews saves the 
recursive residuals and the recursive standard errors as named series in the workfile. EViews 
will name the residual and standard errors as R_RES and R_RESSE, respectively.

Note that you can use the recursive residuals to reconstruct the CUSUM and CUSUM of 
squares series. 
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Leverage Plots

Leverage plots are the multivariate equivalent of a simple residual plot in a univariate 
regression. Like influence statistics, leverage plots can be used as a method for identifying 
influential observations or outliers, as well as a method of graphically diagnosing any poten-
tial failures of the underlying assumptions of a regression model. 

Leverage plots are calculated by, in essence, turning a multivariate regression into a collec-
tion of univariate regressions. Following the notation given in Belsley, Kuh and Welsch 2004 
(Section 2.1), the leverage plot for the k-th coefficient is computed as follows:

Let  be the k-th column of the data matrix (the k-th variable in a linear equation, or the 
k-th gradient in a non-linear), and  be the remaining columns. Let  be the residuals 
from a regression of the dependent variable,  on , and let  be the residuals from a 
regression of  on . The leverage plot for the k-th coefficient is then a scatter plot of 

 on .

It can easily be shown that in an auxiliary regression of  on a constant and , the coeffi-
cient on  will be identical to the k-th coefficient from the original regression. Thus the 
original regression can be represented as a series of these univariate auxiliary regressions.

In a univariate regression, a plot of the residuals against the explanatory variable is often 
used to check for outliers (any observation whose residual is far from the regression line), or 
to check whether the model is possibly mis-specified (for example to check for linearity). 
Leverage plots can be used in the same way in a multivariate regression, since each coeffi-
cient has been modelled in a univariate auxiliary regression.

To display leverage plots in EViews select View/
Stability Diagnostics/Leverage Plots.... EViews 
will then display a dialog which lets you choose 
some simple options for the leverage plots.

The Variables to plot box lets you enter which 
variables, or coefficients in a non-linear equation, 
you wish to plot. By default this box will be filled 
in with the original regressors from your equation. 
Note that EViews will let you enter variables that 
were not in the original equation, in which case 
the plot will simply show the original equation 
residuals plotted against the residuals from a 
regression of the new variable against the original 
regressors.
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To add a regression line to each scatter plot, select the Add fit lines checkbox. If you do not 
wish to create plots of the partialed variables, but would rather plot the original regression 
residuals against the raw regressors, unselect the Partial out variables checkbox.

Finally, if you wish to save the partial residuals for each variable into a series in the work-
file, you may enter a naming suffix in the Enter a naming suffix to save the variables as a 
series box. EViews will then append the name of each variable to the suffix you entered as 
the name of the created series.

We illustrate using an example taken from Wooldridge (2000, Example 9.8) for the regres-
sion of R&D expenditures (RDINTENS) on sales (SALES), profits (PROFITMARG), and a 
constant (using the workfile “Rdchem.WF1”). The leverage plots for equation E1 are dis-
played here:

Influence Statistics

Influence statistics are a method of discovering influential observations, or outliers. They are 
a measure of the difference that a single observation makes to the regression results, or how 
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different an observation is from the other observations in an equation’s sample. EViews pro-
vides a selection of six different influence statistics: RStudent, DRResid, DFFITS, CovRatio, 
HatMatrix and DFBETAS.

• RStudent is the studentized residual; the residual of the equation at that observation 
divided by an estimate of its standard deviation:

 (24.47)

where  is the original residual for that observation,  is the variance of the resid-
uals that would have resulted had observation  not been included in the estimation, 
and  is the i-th diagonal element of the Hat Matrix, i.e. . The RStudent 
is also numerically identical to the t-statistic that would result from putting a dummy 
variable in the original equation which is equal to 1 on that particular observation 
and zero elsewhere. Thus it can be interpreted as a test for the significance of that 
observation.

• DFFITS is the scaled difference in fitted values for that observation between the origi-
nal equation and an equation estimated without that observation, where the scaling is 
done by dividing the difference by an estimate of the standard deviation of the fit: 

(24.48)

• DRResid is the dropped residual, an estimate of the residual for that observation had 
the equation been run without that observation’s data.

• COVRATIO is the ratio of the determinant of the covariance matrix of the coefficients 
from the original equation to the determinant of the covariance matrix from an equa-
tion without that observation.

• HatMatrix reports the i-th diagonal element of the Hat Matrix: .

• DFBETAS are the scaled difference in the estimated betas between the original equa-
tion and an equation estimated without that observation: 

(24.49)

where  is the original equation’s coefficient estimate, and  is the coefficient 
estimate from an equation without observation .
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To display influence statistics in 
EViews select View/Stability 
Diagnostics/Influence Statis-
tics. EViews will bring up a dia-
log where you can choose how 
you wish to display the statis-
tics. The Output statistics box 
lets you choose which statistics 
you would like to calculate, and 
whether to store them as a 
series in your workfile. Simply 
check the check box next to the 
statistics you would like to cal-
culate, and, optionally, enter the name of the series you would like to be created. Note that 
for the DFBETAS statistics you should enter a naming suffix, rather than the name of the 
series. EViews will then create the series with the name of the coefficient followed by the 
naming suffix you provide.

The Output type box lets you select whether to display the statistics in graph form, or in 
table form, or both. If both boxes are checked, EViews will create a spool object containing 
both tables and graphs.

If you select to display the statistics in tabular form, then a new set of options will be 
enabled, governing how the table is formed. By default, EViews will only display 100 rows 
of the statistics in the table (although note that if your equation has less than 100 observa-
tions, all of the statistics will be displayed). You can change this number by changing the 
Number of obs to include dropdown menu. EViews will display the statistics sorted from 
highest to lowest, where the Residuals are used for the sort order. You can change which sta-
tistic is used to sort by using the Select by dropdown menu. Finally, you can change the sort 
order to be by observation order rather than by one of the statistics by using the Display in 
observation order check box.

We illustrate using the equation E1 from the “Rdchem.WF1” workfile. A plot of the DFFITS 
and COVRATIOs clearly shows that observation 10 is an outlier.
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Applications

For illustrative purposes, we provide a demonstration of how to carry out some other speci-
fication tests in EViews. For brevity, the discussion is based on commands, but most of these 
procedures can also be carried out using the menu system.

A Wald Test of Structural Change with Unequal Variance

The F-statistics reported in the Chow tests have an F-distribution only if the errors are inde-
pendent and identically normally distributed. This restriction implies that the residual vari-
ance in the two subsamples must be equal. 

Suppose now that we wish to compute a Wald statistic for structural change with unequal 
subsample variances. Denote the parameter estimates and their covariance matrix in subsa-
mple  as  and  for . Under the assumption that  and  are independent 
normal random variables, the difference  has mean zero and variance . 
Therefore, a Wald statistic for the null hypothesis of no structural change and independent 
samples can be constructed as:

, (24.50)

which has an asymptotic distribution with degrees of freedom equal to the number of 
estimated parameters in the  vector. 
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To carry out this test in EViews, we estimate the model in each subsample and save the esti-
mated coefficients and their covariance matrix. For example, consider the quarterly workfile 
of macroeconomic data in the workfile “Coef_test2.WF1” (containing data for 1947q1–
1994q4) and suppose wish to test whether there was a structural change in the consumption 
function in 1973q1. First, estimate the model in the first sample and save the results by the 
commands:

coef(2) b1

smpl 1947q1 1972q4

equation eq_1.ls log(cs)=b1(1)+b1(2)*log(gdp)

sym v1=eq_1.@cov

The first line declares the coefficient vector, B1, into which we will place the coefficient esti-
mates in the first sample. Note that the equation specification in the third line explicitly 
refers to elements of this coefficient vector. The last line saves the coefficient covariance 
matrix as a symmetric matrix named V1. Similarly, estimate the model in the second sample 
and save the results by the commands:

coef(2) b2

smpl 1973q1 1994q4

equation eq_2.ls log(cs)=b2(1)+b2(2)*log(gdp)

sym v2=eq_2.@cov

To compute the Wald statistic, use the command:

matrix wald=@transpose(b1-b2)*@inverse(v1+v2)*(b1-b2)

The Wald statistic is saved in the  matrix named WALD. To see the value, either dou-
ble click on WALD or type “show wald”. You can compare this value with the critical values 
from the distribution with 2 degrees of freedom. Alternatively, you can compute the p-
value in EViews using the command:

scalar wald_p=1-@cchisq(wald(1,1),2)

The p-value is saved as a scalar named WALD_P. To see the p-value, double click on 
WALD_P or type “show wald_p”. The WALD statistic value of 53.1243 has an associated p-
value of 2.9e-12 so that we decisively reject the null hypothesis of no structural change.

The Hausman Test

A widely used class of tests in econometrics is the Hausman test. The underlying idea of the 
Hausman test is to compare two sets of estimates, one of which is consistent under both the 
null and the alternative and another which is consistent only under the null hypothesis. A 
large difference between the two sets of estimates is taken as evidence in favor of the alter-
native hypothesis. 

Hausman (1978) originally proposed a test statistic for endogeneity based upon a direct 
comparison of coefficient values. Here, we illustrate the version of the Hausman test pro-

1 1

x
2
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posed by Davidson and MacKinnon (1989, 1993), which carries out the test by running an 
auxiliary regression. 

The following equation in the “Basics.WF1” workfile was estimated by OLS:

Suppose we are concerned that industrial production (IP) is endogenously determined with 
money (M1) through the money supply function. If endogeneity is present, then OLS esti-
mates will be biased and inconsistent. To test this hypothesis, we need to find a set of instru-
mental variables that are correlated with the “suspect” variable IP but not with the error 
term of the money demand equation. The choice of the appropriate instrument is a crucial 
step. Here, we take the unemployment rate (URATE) and Moody’s AAA corporate bond 
yield (AAA) as instruments. 

To carry out the Hausman test by artificial regression, we run two OLS regressions. In the 
first regression, we regress the suspect variable (log) IP on all exogenous variables and 
instruments and retrieve the residuals: 

equation eq_test.ls log(ip) c dlog(ppi) tb3 log(m1(-1)) urate aaa

eq_test.makeresid res_ip

Then in the second regression, we re-estimate the money demand function including the 
residuals from the first regression as additional regressors. The result is:

Dependent Variable: LOG(M1)   
Method: Least Squares   
Date: 08/10/09   Time: 16:08   
Sample (adjusted) : 1959M02 1995M04   
Included observations: 435 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.  

C -0.022699 0.004443 -5.108528 0.0000
LOG(IP) 0.011630 0.002585 4.499708 0.0000

DLOG(PPI)  -0.024886 0.042754 -0.582071 0.5608
TB3 -0.000366 9.91E-05 -3.692675 0.0003

LOG(M1(-1)) 0.996578 0.001210 823.4440 0.0000

R-squared 0.999953    Mean dependent var 5.844581
Adjusted R-squared 0.999953    S.D. dependent var 0.670596
S.E. of regression 0.004601    Akaike info criterion -7.913714
Sum squared resid 0.009102    Schwarz criterion -7.866871
Log likelihood 1726.233    Hannan-Quinn criter. -7.895226
F-statistic 2304897.    Durbin-Watson stat 1.265920
Prob(F-statistic) 0.000000    
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If the OLS estimates are consistent, then the coefficient on the first stage residuals should 
not be significantly different from zero. In this example, the test rejects the hypothesis of 
consistent OLS estimates at conventional levels.

Note that an alternative form of a regressor endogeneity test may be computed using the 
Regressor Endogeneity Test view of an equation estimated by TSLS or GMM (see “Regressor 
Endogeneity Test” on page 93).

Non-nested Tests

Most of the tests discussed in this chapter are nested tests in which the null hypothesis is 
obtained as a special case of the alternative hypothesis. Now consider the problem of choos-
ing between the following two specifications of a consumption function:

(24.51)

for the variables in the workfile “Coef_test2.WF1”. These are examples of non-nested mod-
els since neither model may be expressed as a restricted version of the other. 

The J-test proposed by Davidson and MacKinnon (1993) provides one method of choosing 
between two non-nested models. The idea is that if one model is the correct model, then the 
fitted values from the other model should not have explanatory power when estimating that 
model. For example, to test model  against model , we first estimate model  and 
retrieve the fitted values:

equation eq_cs2.ls cs c gdp cs(-1)

Dependent Variable: LOG(M1)   
Method: Least Squares   
Date: 08/10/09   Time: 16:11   
Sample (adjusted) : 1959M02 1995M04   
Included observations: 435 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.  

C -0.007145 0.007473 -0.956158 0.3395
LOG(IP) 0.001560 0.004672 0.333832 0.7387

DLOG(PPI)  0.020233 0.045935 0.440465 0.6598
TB3 -0.000185 0.000121 -1.527775 0.1273

LOG(M1(-1)) 1.001093 0.002123 471.4894 0.0000
RES_IP 0.014428 0.005593 2.579826 0.0102

R-squared 0.999954    Mean dependent var 5.844581
Adjusted R-squared 0.999954    S.D. dependent var 0.670596
S.E. of regression 0.004571    Akaike info criterion -7.924511
Sum squared resid 0.008963    Schwarz criterion -7.868300
Log likelihood 1729.581    Hannan-Quinn criter. -7.902326
F-statistic 1868171.    Durbin-Watson stat 1.307838
Prob(F-statistic) 0.000000    

H1: CSt a1 a2GDPt a3GDPt 1– et  

H2: CSt b1 b2GDPt b3CSt 1– et  

H1 H2 H2
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eq_cs2.fit(f=na) cs2

The second line saves the fitted values as a series named CS2. Then estimate model  
including the fitted values from model . The result is:

The fitted values from model  enter significantly in model  and we reject model . 

We may also test model  against model . First, estimate model  and retrieve the 
fitted values:

equation eq_cs1a.ls cs gdp gdp(-1)

eq_cs1a.fit(f=na) cs1

Then estimate model  including the fitted values from model . The results of this 
“reverse” test regression are given by:

H1

H2

Dependent Variable: CS   
Method: Least Squares   
Date: 08/10/09   Time: 16:17   
Sample (adjusted) : 1947Q2 1994Q4   
Included observations: 191 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.  

C 7.313232 4.391305 1.665389 0.0975
GDP 0.278749 0.029278 9.520694 0.0000

GDP(-1) -0.314540 0.029287 -10.73978 0.0000
CS2 1.048470 0.019684 53.26506 0.0000

R-squared 0.999833    Mean dependent var 1953.966
Adjusted R-squared 0.999830    S.D. dependent var 848.4387
S.E. of regression 11.05357    Akaike info criterion 7.664104
Sum squared resid 22847.93    Schwarz criterion 7.732215
Log likelihood -727.9220    Hannan-Quinn criter. 7.691692
F-statistic 373074.4    Durbin-Watson stat 2.253186
Prob(F-statistic) 0.000000    

H2 H1 H1

H2 H1 H1

H2 H1
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The fitted values are again statistically significant and we reject model . 

In this example, we reject both specifications, against the alternatives, suggesting that 
another model for the data is needed. It is also possible that we fail to reject both models, in 
which case the data do not provide enough information to discriminate between the two 
models.
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Part VI.  Advanced Single Equation Analysis

The following sections describe EViews tools for the estimation and analysis of advanced 
single equation models and time series analysis:

• Chapter 25. “ARCH and GARCH Estimation,” beginning on page 243, outlines the 
EViews tools for ARCH and GARCH modeling of the conditional variance, or volatility, 
of a variable.

• Chapter 26. “Cointegrating Regression,” on page 267 describes EViews’ tools for esti-
mating and testing single equation cointegrating relationships. Multiple equation tests 
for cointegration are described in Chapter 40. “Vector Autoregression and Error Cor-
rection Models,” on page 687.

• Chapter 27. “Autoregressive Distributed Lag (ARDL) Models,” beginning on page 295 
describes the specification and estimation 0f Autoregressive Distributed Lag (ARDL) 
models.

• Chapter 28. “Midas Regression,” on page 313 documents EViews tools for Mixed Data 
Sampling (MIDAS) regression, an estimation technique which allows for data sampled 
at different frequencies to be used in the same regression.

• Chapter 29. “Discrete and Limited Dependent Variable Models,” on page 331 docu-
ments EViews tools for estimating qualitative and limited dependent variable models. 
EViews provides estimation routines for binary or ordered (probit, logit, gompit), cen-
sored or truncated (tobit, etc.), Heckman selection models, and integer valued (count 
data).

• Chapter 30. “Generalized Linear Models,” on page 391 documents describes EViews 
tools for the class of Generalized Linear Models.

• Chapter 31. “Robust Least Squares,” beginning on page 421 describes tools for robust 
least squares estimation which are designed to be robust, or less sensitive, to outliers.

• Chapter 32. “Least Squares with Breakpoints,” beginning on page 441 outlines the 
EViews estimator for equations with one or more structural breaks.

• Chapter 33. “Discrete Threshold Regression,” beginning on page 461 describes the 
analysis of discrete threshold regressions and autoregressions.

• Chapter 34. “Smooth Transition Regression,” beginning on page 477 describes the 
analysis of smooth threshold regressions and autoregressions.

• Chapter 35. “Switching Regression,” beginning on page 505 describes estimation of 
regression models with nonlinearities arising from discrete changes in unobserved 
regimes.
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• Chapter 36. “Quantile Regression,” beginning on page 541 describes the estimation of 
quantile regression and least absolute deviations estimation in EViews.

• Chapter 37. “The Log Likelihood (LogL) Object,” beginning on page 565 describes 
techniques for using EViews to estimate the parameters of maximum likelihood mod-
els where you may specify the form of the likelihood.

• Chapter 38. “Univariate Time Series Analysis,” on page 589 describes tools for univar-
iate time series analysis, including unit root tests in both conventional and panel data 
settings, variance ratio tests, and the BDS test for independence.



Chapter 25.  ARCH and GARCH Estimation

Most of the statistical tools in EViews are designed to model the conditional mean of a ran-
dom variable. The tools described in this chapter differ by modeling the conditional vari-
ance, or volatility, of a variable.

There are several reasons that you may wish to model and forecast volatility. First, you may 
need to analyze the risk of holding an asset or the value of an option. Second, forecast con-
fidence intervals may be time-varying, so that more accurate intervals can be obtained by 
modeling the variance of the errors. Third, more efficient estimators can be obtained if het-
eroskedasticity in the errors is handled properly.

Autoregressive Conditional Heteroskedasticity (ARCH) models are specifically designed to 
model and forecast conditional variances. The variance of the dependent variable is mod-
eled as a function of past values of the dependent variable and independent, or exogenous 
variables.

ARCH models were introduced by Engle (1982) and generalized as GARCH (Generalized 
ARCH) by Bollerslev (1986) and Taylor (1986). These models are widely used in various 
branches of econometrics, especially in financial time series analysis. See Bollerslev, Chou, 
and Kroner (1992) and Bollerslev, Engle, and Nelson (1994) for surveys.

In the next section, the basic ARCH model will be described in detail. In subsequent sec-
tions, we consider the wide range of specifications available in EViews for modeling volatil-
ity. For brevity of discussion, we will use ARCH to refer to both ARCH and GARCH models, 
except where there is the possibility of confusion.

Basic ARCH Specifications

In developing an ARCH model, you will have to provide three distinct specifications—one 
for the conditional mean equation, one for the conditional variance, and one for the condi-
tional error distribution. We begin by describing some basic specifications for these terms. 
The discussion of more complicated models is taken up in “Additional ARCH Models” on 
page 256.

The GARCH(1, 1) Model

We begin with the simplest GARCH(1,1) specification:

(25.1)

(25.2)

in which the mean equation given in (25.1) is written as a function of exogenous variables 
with an error term. Since  is the one-period ahead forecast variance based on past infor-
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mation, it is called the conditional variance. The conditional variance equation specified in 
(25.2) is a function of three terms:

• A constant term: .

• News about volatility from the previous period, measured as the lag of the squared 
residual from the mean equation:  (the ARCH term).

• Last period’s forecast variance:  (the GARCH term).

The (1, 1) in GARCH(1, 1) refers to the presence of a first-order autoregressive GARCH term 
(the first term in parentheses) and a first-order moving average ARCH term (the second term 
in parentheses). An ordinary ARCH model is a special case of a GARCH specification in 
which there are no lagged forecast variances in the conditional variance equation—i.e., a 
GARCH(0, 1).

This specification is often interpreted in a financial context, where an agent or trader pre-
dicts this period’s variance by forming a weighted average of a long term average (the con-
stant), the forecasted variance from last period (the GARCH term), and information about 
volatility observed in the previous period (the ARCH term). If the asset return was unexpect-
edly large in either the upward or the downward direction, then the trader will increase the 
estimate of the variance for the next period. This model is also consistent with the volatility 
clustering often seen in financial returns data, where large changes in returns are likely to be 
followed by further large changes.

There are two equivalent representations of the variance equation that may aid you in inter-
preting the model:

• If we recursively substitute for the lagged variance on the right-hand side of 
Equation (25.2), we can express the conditional variance as a weighted average of all 
of the lagged squared residuals:

. (25.3)

We see that the GARCH(1,1) variance specification is analogous to the sample vari-
ance, but that it down-weights more distant lagged squared errors.

• The error in the squared returns is given by . Substituting for the vari-
ances in the variance equation and rearranging terms we can write our model in 
terms of the errors:

. (25.4)

Thus, the squared errors follow a heteroskedastic ARMA(1,1) process. The autoregres-
sive root which governs the persistence of volatility shocks is the sum of  plus . In 
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many applied settings, this root is very close to unity so that shocks die out rather 
slowly.

The GARCH(q, p) Model

Higher order GARCH models, denoted GARCH( ), can be estimated by choosing either  
or  greater than 1 where  is the order of the autoregressive GARCH terms and  is the 
order of the moving average ARCH terms. 

The representation of the GARCH( ) variance is:

(25.5)

The GARCH-M Model

The  in equation Equation (25.2) represent exogenous or predetermined variables that 
are included in the mean equation. If we introduce the conditional variance or standard 
deviation into the mean equation, we get the GARCH-in-Mean (GARCH-M) model (Engle, 
Lilien and Robins, 1987):

. (25.6)

The ARCH-M model is often used in financial applications where the expected return on an 
asset is related to the expected asset risk. The estimated coefficient on the expected risk is a 
measure of the risk-return tradeoff.

Two variants of this ARCH-M specification use the conditional standard deviation or the log 
of the conditional variance in place of the variance in Equation (25.6).

. (25.7)

(25.8)

Regressors in the Variance Equation

Equation (25.5) may be extended to allow for the inclusion of exogenous or predetermined 
regressors, , in the variance equation:

. (25.9)

Note that the forecasted variances from this model are not guaranteed to be positive. You 
may wish to introduce regressors in a form where they are always positive to minimize the 
possibility that a single, large negative value generates a negative forecasted value.
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Distributional Assumptions

To complete the basic ARCH specification, we require an assumption about the conditional 
distribution of the error term . There are three assumptions commonly employed when 
working with ARCH models: normal (Gaussian) distribution, Student’s t-distribution, and 
the Generalized Error Distribution (GED). Given a distributional assumption, ARCH models 
are typically estimated by the method of maximum likelihood.

For example, for the GARCH(1, 1) model with conditionally normal errors, the contribution 
to the log-likelihood for observation  is:

, (25.10)

where  is specified in one of the forms above.

For the Student’s t-distribution, the log-likelihood contributions are of the form:

(25.11)

where the degree of freedom  controls the tail behavior. The t-distribution approaches 
the normal as .

For the GED, we have:

(25.12)

where the tail parameter . The GED is a normal distribution if , and fat-tailed if 
. 

By default, ARCH models in EViews are estimated by the method of maximum likelihood 
under the assumption that the errors are conditionally normally distributed. 

Estimating ARCH Models in EViews

To estimate an ARCH or GARCH model, open the equation specification dialog by selecting 
Quick/Estimate Equation…, by selecting Object/New Object.../Equation…. Select ARCH 
from the method dropdown menu at the bottom of the dialog. Alternately, typing the key-
word arch in the command line both creates the object and sets the estimation method.

The dialog will change to show you the ARCH specification dialog. You will need to specify 
both the mean and the variance specifications, the error distribution and the estimation 
sample.
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The Mean Equation

In the dependent variable 
edit box, you should enter 
the specification of the 
mean equation. You can 
enter the specification in list 
form by listing the depen-
dent variable followed by 
the regressors. You should 
add the C to your specifica-
tion if you wish to include a 
constant. If you have a more 
complex mean specifica-
tion, you can enter your 
mean equation using an 
explicit expression.

If your specification 
includes an ARCH-M term, 
you should select the appro-
priate item of the dropdown menu in the upper right-hand side of the dialog. You may 
choose to include the Std. Dev., Variance, or the Log(Var) in the mean equation.

The Variance Equation

Your next step is to specify your variance equation.

Class of models

To estimate one of the standard GARCH models as described above, select the GARCH/
TARCH entry in the Model dropdown menu. The other entries (EGARCH, PARCH, and 
Component ARCH(1, 1)) correspond to more complicated variants of the GARCH specifica-
tion. We discuss each of these models in “Additional ARCH Models” on page 256.

In the Order section, you should choose the number of ARCH and GARCH terms. The 
default, which includes one ARCH and one GARCH term is by far the most popular specifi-
cation.

If you wish to estimate an asymmetric model, you should enter the number of asymmetry 
terms in the Threshold order edit field. The default settings estimate a symmetric model 
with threshold order 0.
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Variance regressors

In the Variance regressors edit box, you may optionally list variables you wish to include in 
the variance specification. Note that, with the exception of IGARCH models, EViews will 
always include a constant as a variance regressor so that you do not need to add C to this 
list. 

The distinction between the permanent and transitory regressors is discussed in “The Com-
ponent GARCH (CGARCH) Model” on page 259.

Restrictions

If you choose the GARCH/TARCH model, you may restrict the parameters of the GARCH 
model in two ways. One option is to set the Restrictions dropdown to IGARCH, which 
restricts the persistent parameters to sum up to one. Another is Variance Target, which 
restricts the constant term to a function of the GARCH parameters and the unconditional 
variance:

(25.13)

where  is the unconditional variance of the residuals.

The Error Distribution

To specify the form of the conditional distribution for your errors, you should select an entry 
from the Error Distribution dropdown menu.You may choose between the default Normal 
(Gaussian), the Student’s t, the Generalized Error (GED), the Student’s t with fixed d.f., 
or the GED with fixed parameter. In the latter two cases, you will be prompted to enter a 
value for the fixed parameter. See “Distributional Assumptions” on page 245 for details on 
the supported distributions.

Estimation Options 

EViews provides you with access to a number of optional estimation settings. Simply click 
on the Options tab and fill out the dialog as desired.
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Backcasting

By default, both the innova-
tions used in initializing MA 
estimation and the initial 
variance required for the 
GARCH terms are computed 
using backcasting methods. 
Details on the MA backcast-
ing procedure are provided 
in “Initializing MA Innova-
tions” on page 144. 

When computing backcast 
initial variances for GARCH, 
EViews first uses the coeffi-
cient values to compute the 
residuals of the mean equa-
tion, and then computes an 
exponential smoothing esti-
mator of the initial values,

, (25.14)

where  are the residuals from the mean equation,  is the unconditional variance esti-
mate:

(25.15)

and the smoothing parameter . However, you have the option to choose from a 
number of weights from 0.1 to 1, in increments of 0.1, by using the Presample variance 
drop-down list. Notice that if the parameter is set to 1, then the initial value is simply the 
unconditional variance, e.g. backcasting is not calculated:

. (25.16)

Using the unconditional variance provides another common way to set the presample vari-
ance.

Our experience has been that GARCH models initialized using backcast exponential smooth-
ing often outperform models initialized using the unconditional variance.
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Heteroskedasticity Consistent Covariances

Click on the check box labeled Heteroskedasticity Consistent Covariance to compute the 
quasi-maximum likelihood (QML) covariances and standard errors using the methods 
described by Bollerslev and Wooldridge (1992). This option is only available if you choose 
the conditional normal as the error distribution.

You should use this option if you suspect that the residuals are not conditionally normally 
distributed. When the assumption of conditional normality does not hold, the ARCH param-
eter estimates will still be consistent, provided the mean and variance functions are correctly 
specified. The estimates of the covariance matrix will not be consistent unless this option is 
specified, resulting in incorrect standard errors.

Note that the parameter estimates will be unchanged if you select this option; only the esti-
mated covariance matrix will be altered.

Derivative Methods

EViews uses both numeric and analytic derivatives in estimating ARCH models. Fully ana-
lytic derivatives are available for GARCH(p, q) models with simple mean specifications 
assuming normal or unrestricted t-distribution errors. 

Analytic derivatives are not available for models with ARCH in mean specifications, complex 
variance equation specifications (e.g. threshold terms, exogenous variance regressors, or 
integrated or target variance restrictions), models with certain error assumptions (e.g. errors 
following the GED or fixed parameter t-distributions), and all non-GARCH(p, q) models (e.g. 
EGARCH, PARCH, component GARCH).

Some specifications offer analytic derivatives for a subset of coefficients. For example, sim-
ple GARCH models with non-constant regressors allow for analytic derivatives for the vari-
ance coefficients but use numeric derivatives for any non-constant regressor coefficients. 

You may control the method used in computing numeric derivatives to favor speed (fewer 
function evaluations) or to favor accuracy (more function evaluations). 

Iterative Estimation Control

The likelihood functions of ARCH models are not always well-behaved so that convergence 
may not be achieved with the default estimation settings. You can use the options dialog to 
select the iterative algorithm (Marquardt, BHHH/Gauss-Newton), change starting values, 
increase the maximum number of iterations, or adjust the convergence criterion. 

Starting Values

As with other iterative procedures, starting coefficient values are required. EViews will sup-
ply its own starting values for ARCH procedures using OLS regression for the mean equa-
tion. Using the Options dialog, you can also set starting values to various fractions of the 
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OLS starting values, or you can specify the values yourself by choosing the User Specified 
option, and placing the desired coefficients in the default coefficient vector.

GARCH(1,1) examples

To estimate a standard GARCH(1,1) model with no regressors in the mean and variance 
equations:

(25.17)

you should enter the various parts of your specification:

• Fill in the Mean Equation Specification edit box as

r c

• Enter 1 for the number of ARCH terms, and 1 for the number of GARCH terms, and 
select GARCH/TARCH.

• Select None for the ARCH-M term.

• Leave blank the Variance Regressors edit box.

To estimate the ARCH(4)-M model:

(25.18)

you should fill out the dialog in the following fashion:

• Enter the mean equation specification “R C DUM”.

• Enter “4” for the ARCH term and “0” for the GARCH term, and select GARCH (sym-
metric).

• Select Std. Dev. for the ARCH-M term.

• Enter DUM in the Variance Regressors edit box.

Once you have filled in the Equation Specification dialog, click OK to estimate the model. 
ARCH models are estimated by the method of maximum likelihood, under the assumption 
that the errors are conditionally normally distributed. Because the variance appears in a 
non-linear way in the likelihood function, the likelihood function must be estimated using 
iterative algorithms. In the status line, you can watch the value of the likelihood as it 
changes with each iteration. When estimates converge, the parameter estimates and conven-
tional regression statistics are presented in the ARCH object window.

As an example, we fit a GARCH(1,1) model to the first difference of log daily S&P 500 
(DLOG(SPX)) in the workfile “Stocks.WF1”, using backcast values for the initial variances 
and computing Bollerslev-Wooldridge standard errors. The output is presented below:
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By default, the estimation output header describes the estimation sample, and the methods 
used for computing the coefficient standard errors, the initial variance terms, and the vari-
ance equation. Also noted is the method for computing the presample variance, in this case 
backcasting with smoothing parameter .

The main output from ARCH estimation is divided into two sections—the upper part pro-
vides the standard output for the mean equation, while the lower part, labeled “Variance 
Equation”, contains the coefficients, standard errors, z-statistics and p-values for the coeffi-
cients of the variance equation.

The ARCH parameters correspond to  and the GARCH parameters to  in Equation (25.2) 
on page 243. The bottom panel of the output presents the standard set of regression statis-
tics using the residuals from the mean equation. Note that measures such as  may not be 
meaningful if there are no regressors in the mean equation. Here, for example, the  is 
negative.

In this example, the sum of the ARCH and GARCH coefficients ( ) is very close to one, 
indicating that volatility shocks are quite persistent. This result is often observed in high fre-
quency financial data.

Dependent Variable: DLOG(SPX)   
Method: ML ARCH - Normal distribution (Marquardt / EViews legacy) 
Date: 03/09/15   Time: 13:23   
Sample: 1/02/1990 12/31/1999   
Included observations: 2528   
Convergence achieved after 26 iterations   
Presample variance: backcast (parameter = 0.7)  
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)  

Variable Coefficient Std. Error z-Statistic Prob.  

C 0.000597 0.000149 4.013882 0.0001

 Variance Equation   

C 5.83E-07 1.37E-07 4.261215 0.0000
RESID(-1)^2 0.053317 0.005152 10.34861 0.0000
GARCH(-1) 0.939955 0.006125 153.4702 0.0000

R-squared -0.000014     Mean dependent var 0.000564
Adjusted R-squared -0.000014     S.D. dependent var 0.008888
S.E. of regression 0.008889     Akaike info criterion -6.807476
Sum squared resid 0.199649     Schwarz criterion -6.798243
Log likelihood 8608.650     Hannan-Quinn criter. -6.804126
Durbin-Watson stat 1.964029    
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Working with ARCH Models

Once your model has been estimated, EViews provides a variety of views and procedures for 
inference and diagnostic checking. 

Views of ARCH Models
• The Representations view displays the estimation command as well as the estimation 

and substituted coefficients equations for the mean and variance specifications.

• The Actual, Fitted, Residual view displays the residuals in various forms, such as 
table, graphs, and standardized residuals. You can save the residuals as a named 
series in your workfile using a procedure (see “ARCH Model Procedures” on 
page 254). 

• GARCH Graph/Conditional Standard Deviation and GARCH Graph/Conditional 
Variance plots the one-step ahead standard deviation  or variance  for each 
observation in the sample. The observation at period  is the forecast for  made 
using information available in . You can save the conditional standard deviations 
or variances as named series in your workfile using a procedure (see below). If the 
specification is for a component model, EViews will also display the permanent and 
transitory components.

• Covariance Matrix displays the estimated coefficient covariance matrix. Most ARCH 
models (except ARCH-M models) are block diagonal so that the covariance between 
the mean coefficients and the variance coefficients is very close to zero. If you include 
a constant in the mean equation, there will be two C’s in the covariance matrix; the 
first C is the constant of the mean equation, and the second C is the constant of the 
variance equation. 

• Coefficient Diagnostics produces standard diagnostics for the estimated coefficients. 
See “Coefficient Diagnostics” on page 176 for details. Note that the likelihood ratio 
tests are not appropriate under a quasi-maximum likelihood interpretation of your 
results. 

• Residual Diagnostics/Correlogram–Q-statistics displays the correlogram (autocor-
relations and partial autocorrelations) of the standardized residuals. This view can be 
used to test for remaining serial correlation in the mean equation and to check the 
specification of the mean equation. If the mean equation is correctly specified, all Q-
statistics should not be significant. See “Correlogram” on page 420 of User’s Guide I 
for an explanation of correlograms and Q-statistics.

• Residual Diagnostics/Correlogram Squared Residuals displays the correlogram 
(autocorrelations and partial autocorrelations) of the squared standardized residuals. 
This view can be used to test for remaining ARCH in the variance equation and to 
check the specification of the variance equation. If the variance equation is correctly 
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specified, all Q-statistics should not be significant. See “Correlogram” on page 420 of 
User’s Guide I for an explanation of correlograms and Q-statistics. See also Residual 
Diagnostics/ARCH LM Test.

• Residual Diagnostics/Histogram–Normality Test displays descriptive statistics and a 
histogram of the standardized residuals. You can use the Jarque-Bera statistic to test 
the null of whether the standardized residuals are normally distributed. If the stan-
dardized residuals are normally distributed, the Jarque-Bera statistic should not be 
significant. See “Descriptive Statistics & Tests,” beginning on page 402 of User’s Guide 
I for an explanation of the Jarque-Bera test. For example, the histogram of the stan-
dardized residuals from the GARCH(1,1) model fit to the daily stock return looks as 
follows:

The standardized residuals are leptokurtic and the Jarque-Bera statistic strongly 
rejects the hypothesis of normal distribution.

• Residual Diagnostics/ARCH LM Test carries out Lagrange multiplier tests to test 
whether the standardized residuals exhibit additional ARCH. If the variance equation 
is correctly specified, there should be no ARCH left in the standardized residuals. See 
“ARCH LM Test” on page 198 for a discussion of testing. See also Residual Diagnos-
tics/Correlogram Squared Residuals. 

ARCH Model Procedures

Various ARCH equation procedures allow you to produce results based on you estimated 
equation. Some of these procedures, for example the Make Gradient Group and Make Deriv-
ative Group behave the same as in other equations. Some of the procedures have ARCH spe-
cific elements:
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• Forecast uses the estimated ARCH model to compute static and dynamic forecasts of 
the mean, its forecast standard error, and the conditional variance. To save any of 
these forecasts in your workfile, type a name in the corresponding dialog box. If you 
choose the Forecast Graph option, EViews displays the graphs of the forecasts and 
two standard deviation bands for the mean forecast.

Note that the squared residuals  may not be available for presample values or when 
computing dynamic forecasts. In such cases, EViews will replaced the term by its 
expected value. In the simple GARCH(p, q) case, for example, the expected value of 
the squared residual is the fitted variance, e.g., . In other models, the 
expected value of the residual term will differ depending on the distribution and, in 
some cases, the estimated parameters of the model.

For example, to construct dynamic forecasts of SPX using the previously estimated 
model, click on Forecast and fill in the Forecast dialog, setting the sample to 
“2001m01 @last” so the dynamic forecast begins immediately following the estima-
tion period. Unselect the Forecast Evaluation checkbox and click on OK to display 
the forecast results. 

It will be useful to display these results in two columns. Right-mouse click then select 
Position and align graphs..., enter “2” for the number of Columns, and select Auto-
matic spacing. Click on OK to display the rearranged graph:

The first graph is the forecast of SPX (SPXF) from the mean equation with two stan-
dard deviation bands. The second graph is the forecast of the conditional variance .

• Make Residual Series saves the residuals as named series in your workfile. You have 
the option to save the ordinary residuals, , or the standardized residuals, . 
The residuals will be named RESID1, RESID2, and so on; you can rename the series 
with the name button in the series window. 

et
2

E et
2  jt

2

jt
2

et et jt



256—Chapter 25. ARCH and GARCH Estimation
• Make GARCH Variance Series... saves the conditional variances  as named series 
in your workfile. You should provide a name for the target conditional variance series 
and, if relevant, you may provide a name for the permanent component series. You 
may take the square root of the conditional variance series to get the conditional stan-
dard deviations as displayed by the View/GARCH Graph/Conditional Standard 
Deviation.

Additional ARCH Models

In addition to the standard GARCH specification, EViews has the flexibility to estimate sev-
eral other variance models. These include IGARCH, TARCH, EGARCH, PARCH, and compo-
nent GARCH. For each of these models, the user has the ability to choose the order, if any, of 
asymmetry.

The Integrated GARCH (IGARCH) Model

If one restricts the parameters of the GARCH model to sum to one and drop the constant 
term

(25.19)

such that

(25.20)

then we have an integrated GARCH. This model was originally described in Engle and 
Bollerslev (1986). To estimate this model, select IGARCH in the Restrictions drop-down 
menu for the GARCH/TARCH model.

The Threshold GARCH (TARCH) Model

TARCH or Threshold ARCH and Threshold GARCH were introduced independently by 
Zakoïan (1994) and Glosten, Jaganathan, and Runkle (1993). The generalized specification 
for the conditional variance is given by:

(25.21)

where  if  and 0 otherwise.

In this model, good news, , and bad news. , have differential effects on the 
conditional variance; good news has an impact of , while bad news has an impact of 

jt
2

jt
2

bjj
2
t j–

j 1

q

 aie
2
t i–

i 1

p



bj

j 1

q

 ai

i 1

p

 1

jt
2

q bjjt j–
2

j 1

q

 aiet i–
2

i 1

p

 gket k–
2

It k–
–

k 1

r

  

It
– 1 et 0

et i– 0 et i– 0
ai



Additional ARCH Models—257
. If , bad news increases volatility, and we say that there is a leverage effect for 
the i-th order. If , the news impact is asymmetric.

Note that GARCH is a special case of the TARCH model where the threshold term is set to 
zero. To estimate a TARCH model, specify your GARCH model with ARCH and GARCH order 
and then change the Threshold order to the desired value.

The Exponential GARCH (EGARCH) Model

The EGARCH or Exponential GARCH model was proposed by Nelson (1991). The specifica-
tion for the conditional variance is:

. (25.22)

Note that the left-hand side is the log of the conditional variance. This implies that the lever-
age effect is exponential, rather than quadratic, and that forecasts of the conditional vari-
ance are guaranteed to be nonnegative. The presence of leverage effects can be tested by the 
hypothesis that . The impact is asymmetric if . 

There are two differences between the EViews specification of the EGARCH model and the 
original Nelson model. First, Nelson assumes that the  follows a Generalized Error Distri-
bution (GED), while EViews offers you a choice of normal, Student’s t-distribution, or GED. 
Second, Nelson's specification for the log conditional variance is a restricted version of:

which is an alternative parameterization of the specification above. Estimating the latter 
model will yield identical estimates to those reported by EViews except for the intercept 
term , which will differ in a manner that depends upon the distributional assumption and 
the order . For example, in a  model with a normal distribution, the difference will 
be . 

To estimate an EGARCH model, simply select the EGARCH in the model specification drop-
down menu and enter the orders for the ARCH, GARCH and the Asymmetry order.
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Notice that we have specified the mean equation using an explicit expression. Using the 
explicit expression is for illustration purposes only; we could just as well entered “dlog(ibm) 
c dlog(spx)” as our specification.

The Power ARCH (PARCH) Model 

Taylor (1986) and Schwert (1989) introduced the standard deviation GARCH model, where 
the standard deviation is modeled rather than the variance. This model, along with several 
other models, is generalized in Ding et al. (1993) with the Power ARCH specification. In the 
Power ARCH model, the power parameter  of the standard deviation can be estimated 
rather than imposed, and the optional  parameters are added to capture asymmetry of up 
to order :

(25.23)

where ,  for ,  for all , and .

The symmetric model sets  for all . Note that if  and  for all , the 
PARCH model is simply a standard GARCH specification. As in the previous models, the 
asymmetric effects are present if .

To estimate this model, simply select the PARCH in the model specification dropdown menu 
and input the orders for the ARCH, GARCH and Asymmetric terms. EViews provides you 
with the option of either estimating or fixing a value for . To estimate the Taylor-Schwert's 
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model, for example, you will to set the order of the asymmetric terms to zero and will set  
to 1.

The Component GARCH (CGARCH) Model

The conditional variance in the GARCH(1, 1) model: 

. (25.24)

shows mean reversion to , which is a constant for all time. By contrast, the component 
model allows mean reversion to a varying level , modeled as:

(25.25)

Here  is still the volatility, while  takes the place of  and is the time varying long-run 
volatility. The first equation describes the transitory component, , which converges 
to zero with powers of ( ). The second equation describes the long run component 

, which converges to  with powers of .  is typically between 0.99 and 1 so that  
approaches  very slowly. We can combine the transitory and permanent equations and 
write:

(25.26)

which shows that the component model is a (nonlinear) restricted GARCH(2, 2) model. 
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To select the Component ARCH model, simply choose Component ARCH(1,1) in the Model 
dropdown menu. You can include exogenous variables in the conditional variance equation 
of component models, either in the permanent or transitory equation (or both). The vari-
ables in the transitory equation will have an impact on the short run movements in volatil-
ity, while the variables in the permanent equation will affect the long run levels of volatility.

An asymmetric Component ARCH model may be estimated by checking the Include thresh-
old term checkbox. This option combines the component model with the asymmetric 
TARCH model, introducing asymmetric effects in the transitory equation and estimates mod-
els of the form:

(25.27)

where  are the exogenous variables and  is the dummy variable indicating negative 
shocks.  indicates the presence of transitory leverage effects in the conditional vari-
ance.

User Specified Models

In some cases, you might wish to estimate an ARCH model not mentioned above, for exam-
ple a special variant of PARCH. Many other ARCH models can be estimated using the logl 
object. For example, Chapter 37. “The Log Likelihood (LogL) Object,” beginning on 
page 565 contains examples of using logl objects for simple bivariate GARCH models.
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Examples

As an illustration of ARCH modeling in 

EViews, we estimate a model for the 
daily S&P 500 stock index from 1990 to 
1999 (in the workfile “Stocks.WF1”). 
The dependent variable is the daily 
continuously compounding return, 

, where  is the daily 
close of the index. A graph of the return 
series clearly shows volatility cluster-
ing.

We will specify our mean equation with 
a simple constant:

For the variance specification, we employ an EGARCH(1, 1) model:

(25.28)

When we previously estimated a GARCH(1,1) model with the data, the standardized resid-
ual showed evidence of excess kurtosis. To model the thick tail in the residuals, we will 
assume that the errors follow a Student's t-distribution.

To estimate this model, open the GARCH estimation dialog, enter the mean specification:

dlog(spx) c

select the EGARCH method, enter 1 for the ARCH and GARCH orders and the Asymmetric 
order, and select Student’s t for the Error distribution. Click on OK to continue. 

EViews displays the results of the estimation procedure. The top portion contains a descrip-
tion of the estimation specification, including the estimation sample, error distribution 
assumption, and backcast assumption. 

Below the header information are the results for the mean and the variance equations, fol-
lowed by the results for any distributional parameters. Here, we see that the relatively small 
degrees of freedom parameter for the t-distribution suggests that the distribution of the stan-
dardized errors departs significantly from normality.

-.08

-.06

-.04

-.02

.00

.02

.04

.06

90 91 92 93 94 95 96 97 98 99

DLOG(SPX)

st st 1– log st

st st 1– log c1 et

jt
2 log q b jt 1–

2 log a
et 1–

jt 1–
----------- g

et 1–

jt 1–
-----------  



262—Chapter 25. ARCH and GARCH Estimation
To test whether there any remaining ARCH effects in the residuals, select View/Residual 
Diagnostics/ARCH LM Test... and specify the order to test. EViews will open the general 
Heteroskedasticity Tests dialog opened to the ARCH page. Enter “7” in the dialog for the 
number of lags and click on OK. 

Dependent Variable: DLOG(SPX)   
Method: ML ARCH - Student's t distribution (BFGS / Marquardt steps) 
Date: 03/09/15   Time: 14:01   
Sample: 1/02/1990 12/31/1999   
Included observations: 2528   
Convergence achieved after 71 iterations   
Coefficient covariance computed using outer product of gradients 
Presample variance: backcast (parameter = 0.7)  
LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1) / 
@SQRT(GARCH(-1))) + C(4)*RESID(-1) / @SQRT(GARCH(-
1)) + C(5)*LOG(GARCH(-1)) 

 

 

Variable Coefficient Std. Error z-Statistic Prob.  

C 0.000513 0.000135 3.810600 0.0001

 Variance Equation   

C(2) -0.196710 0.039150 -5.024490 0.0000
C(3) 0.113675 0.017550 6.477203 0.0000
C(4) -0.064068 0.011575 -5.535009 0.0000
C(5) 0.988584 0.003360 294.2102 0.0000

T-DIST. DOF 6.703688 0.844702 7.936156 0.0000

R-squared -0.000032     Mean dependent var 0.000564
Adjusted R-squared -0.000032     S.D. dependent var 0.008888
S.E. of regression 0.008889     Akaike info criterion -6.871798
Sum squared resid 0.199653     Schwarz criterion -6.857949
Log likelihood 8691.953     Hannan-Quinn criter. -6.866773
Durbin-Watson stat 1.963994    
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The top portion of the output from testing up-to an ARCH(7) is given by:

so there is little evidence of remaining ARCH effects.

One way of further examining the distribution of the residuals is to plot the quantiles. First, 
save the standardized residuals by clicking on Proc/Make Residual Series..., select the 
Standardized option, and specify a name for the resulting series. EViews will create a series 
containing the desired residuals; in this example, we create a series named RESID02. Then 
open the residual series window and select View/Graph... and Quantile-Quantile/Theoret-
ical from the list of graph types on the left-hand side of the dialog.

Heteroskedasticity Test: ARCH   

F-statistic 0.398895    Prob. F(7,2513) 0.9034 
Obs*R-squared 2.798042    Prob. Chi-Square(7) 0.9030 
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If the residuals are normally distrib-
uted, the points in the QQ-plots 
should lie alongside a straight line; 
see “Quantile-Quantile (Theoreti-
cal)” on page 699 of User’s Guide I 
for details on QQ-plots. The plot 
indicates that it is primarily large 
negative shocks that are driving the 
departure from normality. Note that 
we have modified the QQ-plot 
slightly by setting identical axes to 
facilitate comparison with the diag-
onal line.

We can also plot the residuals 
against the quantiles of the t-distribution. Instead of using the built-in QQ-plot for the t-dis-
tribution, you could instead simulate a draw from a t-distribution and examine whether the 
quantiles of the simulated observations match the quantiles of the residuals (this technique 
is useful for distributions not supported by EViews). The command:

series tdist = @qtdist(rnd, 6.7)

simulates a random draw from the t-distribution with 6.7 degrees of freedom. Then, create a 
group containing the series RESID02 and TDIST. Select View/Graph... and choose Quantile-
Quantile from the left-hand side of the dialog and Empirical from the Q-Q graph dropdown 
on the right-hand side.

The large negative residuals more closely fol-
low a straight line. On the other hand, one 
can see a slight deviation from t-distribution 
for large positive shocks. This is expected, as 
the previous QQ-plot suggested that, with the 
exception of the large negative shocks, the 
residuals were close to normally distributed.

To see how the model might fit real data, we 
examine static forecasts for out-of-sample 
data. Click on the Forecast button on the 
equation toolbar, type in “SPX_VOL” in the 
GARCH field to save the forecasted condi-
tional variance, change the sample to the 
post-estimation sample period “1/1/2000 1/1/
2002” and click on Static to select a static 
forecast.
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Since the actual volatility is unobserved, we will use the squared return series 
(DLOG(SPX)^2) as a proxy for the realized volatility. A plot of the proxy against the fore-
casted volatility for the years 2000 and 2001 provides an indication of the model’s ability to 
track variations in market volatility.
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Chapter 26.  Cointegrating Regression

This chapter describes EViews’ tools for estimating and testing single equation cointegrating 
relationships. Three fully efficient estimation methods, Fully Modified OLS (Phillips and 
Hansen 1992), Canonical Cointegrating Regression (Park 1992), and Dynamic OLS (Saik-
konen 1992, Stock and Watson 1993) are described, along with various cointegration testing 
procedures: Engle and Granger (1987) and Phillips and Ouliaris (1990) residual-based tests, 
Hansen’s (1992b) instability test, and Park’s (1992) added variables test.

Notably absent from the discussion is Johansen’s (1991, 1995) system maximum likelihood 
approach to cointegration analysis and testing, which is supported using Var and Group 
objects, and fully documented in Chapter 40. “Vector Autoregression and Error Correction 
Models,” on page 687 and Chapter 48. “Cointegration Testing,” on page 1023. Also excluded 
are single equation error correction methods which may be estimated using the Equation 
object and conventional OLS routines (see Phillips and Loretan (1991) for a survey).

The study of cointegrating relationships has been a particularly active area of research. We 
offer here an abbreviated discussion of the methods used to estimate and test for single 
equation cointegration in EViews. Those desiring additional detail will find a wealth of 
sources. Among the many useful overviews of literature are the textbook chapters in Hamil-
ton (1994) and Hayashi (2000), the book length treatment in Maddala and Kim (1999), and 
the Phillips and Loretan (1991) and Ogaki (1993) survey articles.

Background

It is well known that many economic time series are difference stationary. In general, a 
regression involving the levels of these I(1) series will produce misleading results, with con-
ventional Wald tests for coefficient significance spuriously showing a significant relationship 
between unrelated series (Phillips 1986).

Engle and Granger (1987) note that a linear combination of two or more I(1) series may be 
stationary, or I(0), in which case we say the series are cointegrated. Such a linear combina-
tion defines a cointegrating equation with cointegrating vector of weights characterizing the 
long-run relationship between the variables. 

We will work with the standard triangular representation of a regression specification and 
assume the existence of a single cointegrating vector (Hansen 1992b, Phillips and Hansen 
1990). Consider the  dimensional time series vector process , with cointe-
grating equation

(26.1)

where  are deterministic trend regressors and the  stochastic regres-
sors  are governed by the system of equations:

n 1 yt Xt , 

yt Xtb D1t g1 u1t 

Dt D1t D2t ,  n
Xt
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(26.2)

The -vector of  regressors enter into both the cointegrating equation and the regres-
sors equations, while the -vector of  are deterministic trend regressors which are 
included in the regressors equations but excluded from the cointegrating equation (if a non-
trending regressor such as the constant is present, it is assumed to be an element of  so 
it is not in ). 

Following Hansen (1992b), we assume that the innovations  are strictly 
stationary and ergodic with zero mean, contemporaneous covariance matrix , one-sided 
long-run covariance matrix , and covariance matrix , each of which we partition con-
formably with 

(26.3)

In addition, we assume a rank  long-run covariance matrix  with non-singular sub-
matrix . Taken together, the assumptions imply that the elements of  and  are I(1) 
and cointegrated but exclude both cointegration amongst the elements of  and multi-
cointegration. Discussions of additional and in some cases alternate assumptions for this 
specification are provided by Phillips and Hansen (1990), Hansen (1992b), and Park (1992).

It is well-known that if the series are cointegrated, ordinary least squares estimation (static 
OLS) of the cointegrating vector  in Equation (26.1) is consistent, converging at a faster 
rate than is standard (Hamilton 1994). One important shortcoming of static OLS (SOLS) is 
that the estimates have an asymptotic distribution that is generally non-Gaussian, exhibit 
asymptotic bias, asymmetry, and are a function of non-scalar nuisance parameters. Since 
conventional testing procedures are not valid unless modified substantially, SOLS is gener-
ally not recommended if one wishes to conduct inference on the cointegrating vector.

The problematic asymptotic distribution of SOLS arises due to the presence of long-run cor-
relation between the cointegrating equation errors and regressor innovations and , and 
cross-correlation between the cointegrating equation errors and the regressors . In the 
special case where the  are strictly exogenous regressors so that  and , 
the bias, asymmetry, and dependence on non-scalar nuisance parameters vanish, and the 
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SOLS estimator has a fully efficient asymptotic Gaussian mixture distribution which permits 
standard Wald testing using conventional limiting -distributions.

Alternately, SOLS has an asymptotic Gaussian mixture distribution if the number of deter-
ministic trends excluded from the cointegrating equation  is no less than the number of 
stochastic regressors . Let  represent the number of cointegrating 
regressors less the number of deterministic trend regressors excluded from the cointegrating 
equation. Then, roughly speaking, when , the deterministic trends in the regressors 
asymptotically dominate the stochastic trend components in the cointegrating equation.

While Park (1992) notes that these two cases are rather exceptional, they are relevant in 
motivating the construction of our three asymptotically efficient estimators and computation 
of critical values for residual-based cointegration tests. Notably, the fully efficient estimation 
methods supported by EViews involve transformations of the data or modifications of the 
cointegrating equation specification to mimic the strictly exogenous  case.

Estimating a Cointegrating Regression

EViews offers three methods for estimating a single cointegrating vector: Fully Modified OLS 
(FMOLS), Canonical Cointegrating Regression (CCR), and Dynamic OLS (DOLS). Static OLS 
is supported as a special case of DOLS. We emphasize again that Johansen’s (1991, 1995) 
system maximum likelihood approach is discussed in Chapter 40. “Vector Autoregression 
and Error Correction Models,” on page 687.
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The equation object is used to 
estimate a cointegrating equa-
tion. First, create an equation 
object, select Object/New 
Object.../Equation or Quick/
Estimate Equation… then 
select COINTREG - Cointe-
grating Regression in the 
Method dropdown menu. The 
dialog will show settings 
appropriate for your cointe-
grating regression. Alter-
nately, you may enter the 
cointreg keyword in the 
command window to perform 
both steps.

There are three parts to speci-
fying your equation. First, you 
should use the first two sec-
tions of the dialog (Equation 
specification and Cointegrating regressors specification) to specify your triangular system 
of equations. Second, you will use the Nonstationary estimation settings section to specify 
the basic cointegrating regression estimation method. Lastly, you should enter a sample 
specification, then click on OK to estimate the equation. (We ignore, for a moment, the 
options settings on the Options tab.)

Specifying the Equation

The first two sections of the dialog (Equation specification and Cointegrating regressors 
specification) are used to describe your cointegrating and regressors equations.

Equation Specification

The cointegrating equation is 
described in the Equation 
specification section. You 
should enter the name of the 
dependent variable, , fol-
lowed by a list of cointegrating 
regressors, , in the edit field, 
then use the Trend specifica-
tion dropdown to choose from 

y

X
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a list of deterministic trend variable assumptions (None, Constant (Level), Linear Trend, 
Quadratic Trend). The dropdown menu selections imply trends up to the specified order so 
that the Quadratic Trend selection depicted includes a constant and a linear trend term 
along with the quadratic. 

If you wish to add deterministic regressors that are not offered in the pre-specified list to 
, you may enter the series names in the Deterministic regressors edit box.

Cointegrating Regressors Specification

Cointegrating Regressors Specification section of the dialog completes the specification of 
the regressors equations.

First, if there are any  deterministic regressors (regressors that are included in the regres-
sors equations but not in the cointegrating equation), they should be specified here using 
the Additional trends dropdown menu or by entering regressors explicitly using the Addi-
tional deterministic regressors edit field. 

Second, you should indicate whether you wish to estimate the regressors innovations  
indirectly by estimating the regressors equations in levels and then differencing the residuals 
or directly by estimating the regressors equations in differences. Check the box for Estimate 
using differenced data (which is only relevant and only appears if you are estimating your 
equation using FMOLS or CCR) to estimate the regressors equations in differences.

Specifying an Estimation Method

Once you specify your cointegrating and regressor equations you are ready to describe your 
estimation method. The EViews equation object offers three methods for estimating a single 
cointegrating vector: Fully Modified OLS (FMOLS), Canonical Cointegrating Regression 
(CCR), and Dynamic OLS (DOLS). We again emphasize that Johansen’s (1991, 1995) system 
maximum likelihood approach is described elsewhere(“Vector Error Correction (VEC) Mod-
els” on page 726).

The Nonstationary estimation settings section is used to describe your estimation method. 
First, you should use the Method dropdown menu to choose one of the three methods. Both 
the main dialog page and the options page will change to display the options associated 
with your selection.

Fully Modified OLS

Phillips and Hansen (1990) propose an estimator which employs a semi-parametric correc-
tion to eliminate the problems caused by the long run correlation between the cointegrating 
equation and stochastic regressors innovations. The resulting Fully Modified OLS (FMOLS) 
estimator is asymptotically unbiased and has fully efficient mixture normal asymptotics 
allowing for standard Wald tests using asymptotic Chi-square statistical inference.

D1

D2

u2t
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The FMOLS estimator employs preliminary estimates of the symmetric and one-sided long-
run covariance matrices of the residuals. Let  be the residuals obtained after estimating 
Equation (26.1). The  may be obtained indirectly as  from the levels regres-
sions

(26.4)

or directly from the difference regressions

(26.5)

Let  and  be the long-run covariance matrices computed using the residuals 
. Then we may define the modified data

 (26.6)

and an estimated bias correction term

(26.7)

The FMOLS estimator is given by

(26.8)

where . The key to FMOLS estimation is the construction of long-run 
covariance matrix estimators  and .

Before describing the options available for computing  and , it will be useful to define 
the scalar estimator

(26.9)

which may be interpreted as the estimated long-run variance of  conditional on . We 
may, if desired, apply a degree-of-freedom correction to .

Hansen (1992) shows that the Wald statistic for the null hypothesis 

(26.10)

with

(26.11)

has an asymptotic -distribution, where  is the number of restrictions imposed by . 
(You should bear in mind that restrictions on the constant term and any other non-trending 
variables are not testable using the theory underlying Equation (26.10).)

û1t
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To estimate your equation using 
FMOLS, select Fully-modified OLS 
(FMOLS) in the Nonstationary esti-
mation settings dropdown menu. 
The main dialog and options pages will change to show the available settings.

To illustrate the FMOLS esti-
mator, we employ data for (100 
times) log real quarterly aggre-
gate personal disposable 
income (LY) and personal con-
sumption expenditures (LC) 
for the U.S. from 1947q1 to 
1989q3 as described in 
Hamilton (2000, p. 600, 610) 
and contained in the workfile 
“Hamilton_coint.WF1”.

We wish to estimate a model 
that includes an intercept in 
the cointegrating equation, has 
no additional deterministics in 
the regressors equations, and 
estimates the regressors equa-
tions in non-differenced form. 

By default, EViews will esti-
mate  and  using a (non-prewhitened) kernel approach with a Bartlett kernel and 
Newey-West fixed bandwidth. To change the whitening or kernel settings, click on the Long-
run variance calculation: Options button and enter your changes in the sub-dialog.

Q L
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Here we have specified that the long-run variances 
be computed using a nonparametric method with 
the Bartlett kernel and a real-valued bandwidth 
chosen by Andrews’ automatic bandwidth selec-
tion method.

In addition, you may use the Options tab of the 
Equation Estimation dialog to modify the compu-
tation of the coefficient covariance. By default, 
EViews computes the coefficient covariance by res-
caling the usual OLS covariances using the  
obtained from the estimated  after applying a 
degrees-of-freedom correction. In our example, we 
will use the checkbox on the Options tab (not 
depicted) to remove the d.f. correction.

The estimates for this specification are given by:

The top portion of the results describe the settings used in estimation, in particular, the 
specification of the deterministic regressors in the cointegrating equation, the kernel non-
parametric method used to compute the long-run variance estimators  and , and the no-
d.f. correction option used in the calculation of the coefficient covariance. Also displayed is 
the bandwidth of 14.9878 selected by the Andrews automatic bandwidth procedure.

The estimated coefficients are presented in the middle of the output. Of central importance 
is the coefficient on LY which implies that the estimated cointegrating vector for LC and LY 

q̂1.2

Q̂

Dependent Variable: LC   
Method: Fully Modified Least Squares (FMOLS)  
Date: 08/11/09   Time: 13:19   
Sample (adjusted) : 1947Q2 1989Q3   
Included observations: 170 after adjustments  
Cointegrating equation deterministics: C    
Long-run covariance estimate (Bartlett kernel, Andrews bandwidth = 
        14.9878)    
No d.f. adjustment for standard errors & covariance  

Variable Coefficient Std. Error t-Statistic Prob.  

LY 0.987548 0.009188 107.4880 0.0000
C -0.035023 6.715362 -0.005215 0.9958

R-squared 0.998171    Mean dependent var 720.5078
Adjusted R-squared 0.998160    S.D. dependent var 41.74069
S.E. of regression 1.790506    Sum squared resid 538.5929
Durbin-Watson stat 0.406259    Long-run variance 25.46653

Q̂ L̂
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(1, -0.9875). Note that we present the standard error, t-statistic, and p-value for the constant 
even though they are not, strictly speaking, valid.

The summary statistic portion of the output is relatively familiar but does require a bit of 
comment. First, all of the descriptive and fit statistics are computed using the original data, 
not the FMOLS transformed data. Thus, while the measures of fit and the Durbin-Watson 
stat may be of casual interest, you should exercise extreme caution in using these measures. 
Second, EViews displays a “Long-run variance” value which is an estimate of the long-run 
variance of  conditional on . This statistic, which takes the value of 25.47 in this 
example, is the  employed in forming the coefficient covariances, and is obtained from 
the  and  used in estimation. Since we are not d.f. correcting the coefficient covariance 
matrix the  reported here is not d.f. corrected.

Once you have estimated your equation using FMOLS you may use the various cointegrating 
regression equation views and procedures. We will discuss these tools in greater depth in 
(“Working with an Equation” on page 291), but for now we focus on a simple Wald test for 
the coefficients. To test for whether the cointegrating vector is (1, -1), select View/Coeffi-
cient Diagnostics/Wald Test - Coefficient Restrictions and enter “C(1)=1” in the dialog. 
EViews displays the output for the test:

The t-statistic and Chi-square p-values are both around 0.17, indicating that the we cannot 
reject the null hypothesis that the cointegrating regressor coefficient value is equal to 1.

Note that this Wald test is for a simple linear restriction. Hansen points out that his theoret-
ical results do not directly extend to testing nonlinear hypotheses in models with trend 
regressors, but EViews does allow tests with nonlinear restrictions since others, such as Phil-
lips and Loretan (1991) and Park (1992) provide results in the absence of the trend regres-
sors. We do urge caution in interpreting nonlinear restriction test results for equations 
involving such regressors.

u1t u2t

q̂1.2

Q̂ L̂

q̂1.2

Wald Test:   
Equation: FMOLS   
Null Hypothesis: C(1)=1  

Test Statistic Value df Probability

t-statistic -1.355362  168  0.1771 
F-statistic  1.837006 (1, 168)  0.1771 
Chi-square  1.837006  1  0.1753 

    
Null Hypothesis Summary:  

Normalized Restriction (= 0) Value Std. Err. 

-1 + C(1) -0.012452  0.009188 

Restrictions are linear in coefficients.  
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Canonical Cointegrating Regression

Park’s (1992) Canonical Cointegrating Regression (CCR) is closely related to FMOLS, but 
instead employs stationary transformations of the  data to obtain least squares 
estimates to remove the long run dependence between the cointegrating equation and sto-
chastic regressors innovations. Like FMOLS, CCR estimates follow a mixture normal distri-
bution which is free of non-scalar nuisance parameters and permits asymptotic Chi-square 
testing.

As in FMOLS, the first step in CCR is to obtain estimates of the innovations 
 and corresponding consistent estimates of the long-run covariance matri-

ces  and . Unlike FMOLS, CCR also requires a consistent estimator of the contempora-
neous covariance matrix .

Following Park, we extract the columns of  corresponding to the one-sided long-run cova-
riance matrix of  and (the levels and lags of) 

(26.12)

and transform the  using

(26.13)

where the  are estimates of the cointegrating equation coefficients, typically the SOLS esti-
mates used to obtain the residuals .

The CCR estimator is defined as ordinary least squares applied to the transformed data

(26.14)

where .

Park shows that the CCR transformations asymptotically eliminate the endogeneity caused 
by the long run correlation of the cointegrating equation errors and the stochastic regressors 
innovations, and simultaneously correct for asymptotic bias resulting from the contempora-
neous correlation between the regression and stochastic regressor errors. Estimates based on 
the CCR are therefore fully efficient and have the same unbiased, mixture normal asymptot-
ics as FMOLS. Wald testing may be carried out as in Equation (26.10) with  used in 
place of  in Equation (26.11).
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To estimate your equation using 
CCR, select Canonical Cointegrat-
ing Regression (CCR) in the Non-
stationary estimation settings 
dropdown menu. The main dialog and options pages for CCR are identical to those for 
FMOLS.

To continue with our consumption and disposable 
income example, suppose we wish to estimate the 
same specification as before by CCR, using pre-
whitened Quadratic-spectral kernel estimators of 
the long-run covariance matrices. Fill out the 
equation specification portion of the dialog as 
before, then click on the Long-run variance cal-
culation: Options button to change the calcula-
tion method. Here, we have specified a (fixed lag) 
VAR(1) for the prewhitening method and have 
changed our kernel shape to quadratic spectral. 
Click on OK to accept the covariance options 

Once again go to the Options tab to turn off d.f. 
correction for the coefficient covariances so that 
they match those from FMOLS. Click on OK again to accept the estimation options.

The results are presented below:

Dependent Variable: LC   
Method: Canonical  Cointegrating Regression (CCR)  
Date: 08/11/09   Time: 13:25   
Sample (adjusted) : 1947Q2 1989Q3   
Included observations: 170 after adjustments  
Cointegrating equation deterministics: C    
Long-run covariance estimate (Prewhitening with lags = 1, Quadratic 
        -Spectral kernel, Andrews bandwidth = 1.5911)  
No d.f. adjustment for standard errors & covariance  

Variable Coefficient Std. Error t-Statistic Prob.  

LY 0.988975 0.007256 136.3069 0.0000
C -1.958828 5.298819 -0.369673 0.7121

R-squared 0.997780    Mean dependent var 720.5078
Adjusted R-squared 0.997767    S.D. dependent var 41.74069
S.E. of regression 1.972481    Sum squared resid 653.6343
Durbin-Watson stat 0.335455    Long-run variance 15.91571
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The first thing we note is that the VAR prewhitening has a strong effect on the kernel part of 
the calculation of the long-run covariances, shortening the Andrews optimal bandwidth 
from almost 15 down to 1.6. Furthermore, as a result of prewhitening, the estimate of the 
conditional long-run variance changes quite a bit, decreasing from 25.47 to 15.92. This 
decrease contributes to estimated coefficient standard errors for CCR that are smaller than 
their FMOLS counterparts. Differences aside, however, the estimates of the cointegrating 
vector are qualitatively similar. In particular, a Wald test of the null hypothesis that the 
cointegrating vector is equal to (1, -1) yields a p-value of 0.1305.

Dynamic OLS

A simple approach to constructing an asymptotically efficient estimator that eliminates the 
feedback in the cointegrating system has been advocated by Saikkonen (1992) and Stock 
and Watson (1993). Termed Dynamic OLS (DOLS), the method involves augmenting the 
cointegrating regression with lags and leads of  so that the resulting cointegrating equa-
tion error term is orthogonal to the entire history of the stochastic regressor innovations:

(26.15)

Under the assumption that adding  lags and  leads of the differenced regressors soaks up 
all of the long-run correlation between  and , least-squares estimates of 

 using Equation (26.15) have the same asymptotic distribution as those 
obtained from FMOLS and CCR.

An estimator of the asymptotic variance matrix of  may be computed by computing the 
usual OLS coefficient covariance, but replacing the usual estimator for the residual variance 
of  with an estimator of the long-run variance of the residuals. Alternately, you could 
compute a robust HAC estimator of the coefficient covariance matrix.

To estimate your equation using DOLS, first fill out the equation specification, then select 
Dynamic OLS (DOLS) in the Nonstationary estimation settings dropdown menu. The dia-
log will change to display settings for DOLS.

By default, the Lag & lead method 
is Fixed with Lags and Leads each 
set to 1. You may specify a different 
number of lags or leads or you can 
use the dropdown to elect auto-
matic information criterion selection of the lag and lead orders by selecting Akaike, 
Schwarz, or Hannan-Quinn. If you select None, EViews will estimate SOLS.
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If you select one of the info crite-
rion selection methods, you will be 
prompted for a maximum lag and 
lead length. You may enter a value, 
or you may retain the default entry 
“*” which instructs EViews to use an arbitrary observation-based rule-of-thumb:

(26.16)

to set the maximum, where  is the number of coefficients in the cointegrating equation. 
This rule-of-thumb is a slightly modified version of the rule suggested by Schwert (1989) in 
the context of unit root testing. (We urge careful thought in the use of automatic selection 
methods since the purpose of including leads and lags is to remove long-run dependence by 
orthogonalizing the equation residual with respect to the history of stochastic regressor 
innovations; the automatic methods were not designed to produce this effect.)

For DOLS estimation we may also specify the method used to compute the coefficient cova-
riance matrix. Click on the Options tab of the dialog to see the relevant options.

The dropdown menu allows you to choose between the 
Default (rescaled OLS), Ordinary Least Squares, White, or 
HAC - Newey West. The default computation method re-
scales the ordinary least squares coefficient covariance using 
an estimator of the long-run variance of DOLS residuals 
(multiplying by the ratio of the long-run variance to the ordi-
nary squared standard error). Alternately, you may employ a 
sandwich-style HAC (Newey-West) covariance matrix esti-
mator. In both cases, the HAC Options button may be used to override the default method 
for computing the long-run variance (non-prewhitened Bartlett kernel and a Newey-West 
fixed bandwidth). In addition, EViews offers options for estimating the coefficient covari-
ance using the White covariance or Ordinary Least Squares methods. These methods are 
offered primarily for comparison purposes.

Lastly, the Options tab may be used to remove the degree-of-freedom correction that is 
applied to the estimate of the conditional long-run variance or robust coefficient covariance.

int min T k–  3 12,( ) T 100 1 4 
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We illustrate the technique by 
estimating an example from 
Hamilton (19.3.31, p. 611) 
using the consumption and 
income data discussed earlier. 
The model employs an inter-
cept-trend specification for the 
cointegrating equation, with 
no additional deterministics in 
the regressors equations, and 
four lags and leads of the dif-
ferenced cointegrating regres-
sor to eliminate long run 
correlation between the inno-
vations.

Here, we have entered the 
cointegrating equation specifi-
cation in the top portion of the 
dialog, and chosen Dynamic 
OLS (DOLS) as our estimation 
method, and specified a Fixed lag and lead length of 4.

In computing the covariance matrix, Hamilton computes the long-run variance of the resid-
uals using an AR(2) whitening regression with no d.f. correction. To match Hamilton’s com-
putations, we click on the Options tab to display the covariance. First, turn off the 
adjustment for degrees of freedom by unchecking the d.f. Adjustment box. Next, with the 
dropdown set to Default (rescaled OLS), click on the HAC Options button to display the 
Long-run Variance Options dialog. Select a Fixed lag specification of 2, and choose the 
None kernel. Click on OK to accept the HAC settings, then on OK again to estimate the 
equation.

The estimation results are given below:
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The top portion describes the settings used in estimation, showing the trend assumptions, 
the lag and lead specification, and method for computing the long-run variance used in 
forming the coefficient covariances. The actual estimate of the latter, in this case 10.198, is 
again displayed in the bottom portion of the output (if you had selected OLS as your coeffi-
cient covariance methods, this value would be simply be the ordinary S.E. of the regression; 
if you had selected White or HAC, the statistic would not have been computed).

The estimated coefficients are displayed in the middle of the output. First, note that EViews 
does not display the results for the lags and leads of the differenced cointegrating regressors 
since we cannot perform inference on these short-term dynamics nuisance parameters. Sec-
ond, the coefficient on the linear trend is statistically different from zero at conventional lev-
els, indicating that there is a deterministic time trend common to both LC and LY. Lastly, the 
estimated cointegrating vector for LC and LY is (1, -0.6812), which differs qualitatively from 
the earlier results. A Wald test of the restriction that the cointegrating vector is (1, -1) yields 
a t-statistic of -4.429, strongly rejecting that null hypothesis.

While EViews does not display the coefficients for the short-run dynamics, the short-run 
coefficients are used in constructing the fit statistics in the bottom portion of the results view 
(we again urge caution in using these measures). The short-run dynamics are also used in 
computing the residuals used by various equation views and procs such as the residual plot 
or the gradient view.

The short-run coefficients are not included in the representations view of the equation, 
which focuses only on the estimates for Equation (26.1). Furthermore, forecasting and 
model solution using an equation estimated by DOLS are also based on the long-run rela-
tionship. If you wish to construct forecasts that incorporate the short-run dynamics, you 

Dependent Variable: LC   
Method: Dynamic Least Squares (DOLS)   
Date: 08/11/09   Time: 13:37   
Sample (adjusted) : 1948Q2 1988Q3   
Included observations: 162 after adjustments  
Cointegrating equation deterministics: C @TREND   
Fixed leads and lags specification (lead=4, lag=4)   
Long-run variance estimate (Prewhitening with lags = 2, None kernel) 
No d.f. adjustment for standard errors & covariance  

Variable Coefficient Std. Error t-Statistic Prob.  

LY 0.681179 0.071981 9.463267 0.0000
C 199.1406 47.20878 4.218297 0.0000

@TREND 0.268957 0.062004 4.337740 0.0000

R-squared 0.999395    Mean dependent var 720.5532
Adjusted R-squared 0.999351    S.D. dependent var 39.92349
S.E. of regression 1.017016    Sum squared resid 155.1484
Durbin-Watson stat 0.422921    Long-run variance 10.19830
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may use least squares to estimate an equation that explicitly includes the lags and leads of 
the cointegrating regressors.

Testing for Cointegration

In the single equation setting, EViews provides views that perform Engle and Granger (1987) 
and Phillips and Ouliaris (1990) residual-based tests, Hansen’s instability test (Hansen 
1992b), and Park’s  added variables test (Park 1992). 

System cointegration testing using Johansen’s methodology is described in “Johansen 
Cointegration Test” on page 1023.

Note that the Engle-Granger and Phillips-Perron tests may also be performed as a view of a 
Group object.

Residual-based Tests

The Engle-Granger and Phillips-Ouliaris residual-based tests for cointegration are simply 
unit root tests applied to the residuals obtained from SOLS estimation of Equation (26.1). 
Under the assumption that the series are not cointegrated, all linear combinations of 

, including the residuals from SOLS, are unit root nonstationary. Therefore, a test 
of the null hypothesis of no cointegration against the alternative of cointegration corresponds 
to a unit root test of the null of nonstationarity against the alternative of stationarity.

The two tests differ in the method of accounting for serial correlation in the residual series; 
the Engle-Granger test uses a parametric, augmented Dickey-Fuller (ADF) approach, while 
the Phillips-Ouliaris test uses the nonparametric Phillips-Perron (PP) methodology.

The Engle-Granger test estimates a -lag augmented regression of the form

(26.17)

The number of lagged differences  should increase to infinity with the (zero-lag) sample 
size  but at a rate slower than .

We consider the two standard ADF test statistics, one based on the t-statistic for testing the 
null hypothesis of nonstationarity  and the other based directly on the normalized 
autocorrelation coefficient :

(26.18)
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where  is the usual OLS estimator of the standard error of the estimated  

(26.19)

(Stock 1986, Hayashi 2000). There is a practical question as to whether the standard error 
estimate in Equation (26.19) should employ a degree-of-freedom correction. Following com-
mon usage, EViews standalone unit root tests and the Engle-Granger cointegration tests both 
use the d.f.-corrected estimated standard error , with the latter test offering an option to 
turn off the correction.

In contrast to the Engle-Granger test, the Phillips-Ouliaris test obtains an estimate of  by 
running the unaugmented Dickey-Fuller regression

(26.20)

and using the results to compute estimates of the long-run variance  and the strict one-
sided long-run variance  of the residuals. By default, EViews d.f.-corrects the estimates 
of both long-run variances, but the correction may be turned off. (The d.f. correction 
employed in the Phillips-Ouliaris test differs slightly from the ones in FMOLS and CCR esti-
mation since the former applies to the estimators of both long-run variances, while the latter 
apply only to the estimate of the conditional long-run variance).

The bias corrected autocorrelation coefficient is then given by

(26.21)

The test statistics corresponding to Equation (26.18) are

(26.22)

where 

(26.23)

As with ADF and PP statistics, the asymptotic distributions of the Engle-Granger and Phil-
lips-Ouliaris  and  statistics are non-standard and depend on the deterministic regressors 
specification, so that critical values for the statistics are obtained from simulation results. 
Note that the dependence on the deterministics occurs despite the fact that the auxiliary 
regressions themselves exclude the deterministics (since those terms have already been 
removed from the residuals). In addition, the critical values for the ADF and PP test statistics 
must account for the fact that the residuals used in the tests depend upon estimated coeffi-
cients.
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MacKinnon (1996) provides response surface regression results for obtaining critical values 
for four different assumptions about the deterministic regressors in the cointegrating equa-
tion (none, constant (level), linear trend, quadratic trend) and values of  from 
1 to 12. (Recall that  is the number of cointegrating regressors less 
the number of deterministic trend regressors excluded from the cointegrating equation.) 
When computing critical values, EViews will ignore the presence of any user-specified deter-
ministic regressors since corresponding simulation results are not available. Furthermore, 
results for  will be used for cases that exceed that value.

Continuing with our consumption and income example from Hamilton, we construct Engle-
Granger and Phillips-Ouliaris tests from an estimated equation where the deterministic 
regressors include a constant and linear trend. Since SOLS is used to obtain the first-stage 
residuals, the test results do not depend on the method used to estimate the original equa-
tion, only the specification itself is used in constructing the test.

To perform the Engle-Granger test, open an estimated equation and select View/Cointegra-
tion and select Engle-Granger in the Test Method dropdown. The dialog will change to dis-
play the options for this specifying the number  of augmenting lags in the ADF regression.

By default, EViews uses automatic lag-length selection 
using the Schwarz information criterion. The default 
number of lags is the observation-based rule given in 
Equation (26.16). Alternately you may specify a Fixed 
(User-specified) lag-length, select a different informa-
tion criterion (Akaike, Hannan-Quinn, Modified 
Akaike, Modified Schwarz, or Modified Hannan-
Quinn), or specify sequential testing of the highest 
order lag using a t-statistic and specified p-value 
threshold. For our purposes the default settings suffice 
so simply click on OK.

The Engle-Granger test results are divided into three 
distinct sections. The first portion displays the test specification and settings, along with the 
test values and corresponding p-values:

k m2 1
m2 max n p2– 0, 

k 12

p
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The probability values are derived from the MacKinnon response surface simulation results. 
In settings where using the MacKinnon results may not be appropriate, for example when 
the cointegrating equation contains user-specified deterministic regressors or when there are 
more than 12 stochastic trends in the asymptotic distribution, EViews will display a warning 
message below these results.

Looking at the test description, we first confirm that the test statistic is computed using C 
and @TREND as deterministic regressors, and note that the choice to include a single lagged 
difference in the ADF regression was determined using automatic lag selection with a 
Schwarz criterion and a maximum lag of 13. 

As to the tests themselves, the Engle-Granger tau-statistic (t-statistic) and normalized auto-
correlation coefficient (which we term the z-statistic) both reject the null hypothesis of no 
cointegration (unit root in the residuals) at the 5% level. In addition, the tau-statistic rejects 
at a 1% significance level. On balance, the evidence clearly suggests that LC and LY are 
cointegrated.

The middle section of the output displays intermediate results used in constructing the test 
statistic that may be of interest:

Most of the entries are self-explanatory, though a few deserve a bit of discussion. First, the 
“Rho S.E.” and “Residual variance” are the (possibly) d.f. corrected coefficient standard 
error and the squared standard error of the regression. Next, the “Long-run residual vari-
ance” is the estimate of the long-run variance of the residual based on the estimated para-

Cointegration Test - Engle-Granger   
Date: 04/21/09   Time: 10:37   
Equation: EQ_DOLS    
Specification: LC LY C @TREND   
Cointegrating equation deterministics: C @TREND  
Null hypothesis: Series are not cointegrated  
Automatic lag specification (lag=1 based on Schwarz Info Criterion, 
        maxlag=13)    

  Value Prob.*  

Engle-Granger tau-statistic -4.536843  0.0070  
Engle-Granger z-statistic -33.43478  0.0108  

*MacKinnon (1996) p-values.   

Intermediate Results:   
Rho - 1  -0.241514   
Rho S.E.  0.053234   
Residual variance  0.642945   
Long-run residual variance  0.431433   
Number of lags  1   
Number of observations  169   
Number of stochastic trends**  2   

**Number of stochastic trends in asymptotic distribution.  
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metric model. The estimator is obtained by taking the residual variance and dividing it by 
the square of 1 minus the sum of the lag difference coefficients. These residual variance and 
long-run variances are used to obtain the denominator of the z-statistic (Equation (26.18)). 
Lastly, the “Number of stochastic trends” entry reports the  value used to 
obtain the p-values. In the leading case,  is simply the number of cointegrating variables 
(including the dependent) in the system, but the value must generally account for determin-
istic trend terms in the system that are excluded from the cointegrating equation.

The bottom section of the output depicts the results for the actual ADF test equation:

Alternately, you may compute the Phillips-Ouliaris test statistic. Simply select View/Cointe-
gration and choose Phillips-Ouliaris in the Test Method dropdown. 

The dialog changes to show a single Options button 
for controlling the estimation of the long-run variance 

 and the strict one-sided long-run variance . 
The default settings instruct EViews to compute these 
long-run variances using a non-prewhitened Bartlett 
kernel estimator with a fixed Newey-West bandwidth. 
To change these settings, click on the Options button 
and fill out the dialog. Since the default settings are 
sufficient for our needs, simply click on the OK button 
to compute the test statistics.

As before, the output may be divided into three parts; 
we will focus on the first two. The test results are given 
by:

k m2 1
k

Engle-Granger Test Equation:   
Dependent Variable: D(RESID)   
Method: Least Squares   
Date: 04/21/09   Time: 10:37   
Sample (adjusted) : 1947Q3 1989Q3   
Included observations: 169 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.  

RESID(-1) -0.241514 0.053234 -4.536843 0.0000
D(RESID(-1))  -0.220759 0.071571 -3.084486 0.0024

R-squared 0.216944    Mean dependent var -0.024433
Adjusted R-squared 0.212255    S.D. dependent var 0.903429
S.E. of regression 0.801838    Akaike info criterion 2.407945
Sum squared resid 107.3718    Schwarz criterion 2.444985
Log likelihood -201.4713    Hannan-Quinn criter. 2.422976
Durbin-Watson stat 1.971405    

qw l1w
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At the top of the output EViews notes that we estimated the long-run variance and one-sided 
long run variance using a Bartlett kernel and an number of observations based bandwidth of 
5.0. More importantly, the test statistics show that, as with the Engle-Granger tests, the Phil-
lips-Ouliaris tests reject the null hypothesis of no cointegration (unit root in the residuals) at 
roughly the 1% significance level. 

The intermediate results are given by:

There are a couple of new results. The “Bias corrected Rho - 1” reports the estimated value 
of Equation (26.21) and the “Rho* S.E.” corresponds to Equation (26.23). The “Long-run 
residual variance” and “Long-run residual autocovariance” are the estimates of  and 

, respectively. It is worth noting that the ratio of  to the S.E. of the regression, 
which is a measure of the amount of residual autocorrelation in the long-run variance, is the 
scaling factor used in adjusting the raw t-statistic to form tau.

The bottom portion of the output displays results for the test equation.

Hansen’s Instability Test

Hansen (1992) outlines a test of the null hypothesis of cointegration against the alternative 
of no cointegration. He notes that under the alternative hypothesis of no cointegration, one 
should expect to see evidence of parameter instability. He proposes (among others) use of 

Cointegration Test - Phillips-Ouliaris   
Date: 02/08/13   Time: 13:11   
Equation: EQ_19_3_29 
Specification: LC LY C @TREND   
Cointegrating equation deterministics: C @TREND  
Null hypothesis: Series are not cointegrated  
Long-run variance estimate (Bartlett kernel, Newey-West fixed bandwidth =
        5.0000)    
No d.f. adjustment for variances   

  Value Prob.*  

Phillips-Ouliaris tau-statistic -5.138345  0.0009  
Phillips-Ouliaris z-statistic -43.62100  0.0010  

Intermediate Results:   

Rho - 1 -0.279221   
Bias corrected Rho - 1 (Rho* - 1) -0.256594   
Rho*  S.E.  0.049937   
Residual variance  0.730377   
Long-run residual variance  0.659931   
Long-run residual autocovariance -0.035223
Number of observations  170   
Number of stochastic trends**  2   

**Number of stochastic trends in asymptotic distribution.  

qw

l1w q̂w
1 2
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the  test statistic, which arises from the theory of Lagrange Multiplier tests for parameter 
instability, to evaluate the stability of the parameters.

The  statistic examines time-variation in the scores from the estimated equation. Let  
be the vector of estimated individual score contributions from the estimated equation, and 
define the partial sums,

(26.24)

where  by construction. For FMOLS, we have

(26.25)

where  is the residual for the transformed regression. Then Hansen 
chooses a constant measure of the parameter instability  and forms the statistic

(26.26)

For FMOLS, the natural estimator for  is

(26.27)

The  and  may be defined analogously to least squares for CCR using the transformed 
data. For DOLS  is defined for the subset of original regressors , and  may be com-
puted using the method employed in computing the original coefficient standard errors.

The distribution of  is nonstandard and depends on , the number 
of cointegrating regressors less the number of deterministic trend regressors excluded from 
the cointegrating equation, and  the number of trending regressors in the system. Hansen 
(1992) has tabulated simulation results and provided polynomial functions allowing for 
computation of p-values for various values of  and . When computing p-values, 
EViews ignores the presence of user-specified deterministic regressors in your equation.

In contrast to the residual based cointegration tests, Hansen’s test does rely on estimates 
from the original equation. We continue our illustration by considering an equation esti-
mated on the consumption data using a constant and trend, FMOLS with a Quadratic Spec-
tral kernel, Andrews automatic bandwidth selection, and no d.f. correction for the long-run 
variance and coefficient covariance estimates. The equation estimates are given by:
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There are no options for the Hansen test so you may simply click on View/Cointegration 
Tests..., select Hansen Instability in the dropdown menu, then click on OK.

The top portion of the output describes the test hypothesis, the deterministic regressors, and 
any relevant information about the construction of the score variances. In this case, we see 
that the original equation had both C and @TREND as deterministic regressors, and that the 
score variance is based on the usual FMOLS variance with no d.f. correction.

The results are displayed below. The test statistic value of 0.5755 is presented in the first col-
umn. The next three columns describe the trends that determine the asymptotic distribution. 
Here there is a single stochastic regressor (LY) and one deterministic trend (@TREND) in the 
cointegrating equation, and no additional trends in the regressors equations. Lastly, we see 
from the final column that the Hansen test does not reject the null hypothesis that the series 

Dependent Variable: LC   
Method: Fully Modified Least Squares (FMOLS)  
Date: 08/11/09   Time: 13:45   
Sample (adjusted) : 1947Q2 1989Q3   
Included observations: 170 after adjustments  
Cointegrating equation deterministics: C @TREND   
Long-run covariance estimate (Quadratic-Spectral kernel, Andrews 
        bandwidth = 10.9793)   
No d.f. adjustment for standard errors & covariance  

Variable Coefficient Std. Error t-Statistic Prob.  

LY 0.651766 0.057711 11.29361 0.0000
C 220.1345 37.89636 5.808855 0.0000

@TREND 0.289900 0.049542 5.851627 0.0000

R-squared 0.999098    Mean dependent var 720.5078
Adjusted R-squared 0.999087    S.D. dependent var 41.74069
S.E. of regression 1.261046    Sum squared resid 265.5695
Durbin-Watson stat 0.514132    Long-run variance 8.223497

Cointegration Test - Hansen Parameter Instability  
Date: 08/11/09   Time: 13:48   
Equation: EQ_19_3_31    
Series: LC LY    
Null hypothesis: Series are cointegrated   
Cointegrating equation deterministics: C 
@TREND   
No d.f. adjustment for score variance   

 Stochastic Deterministic Excluded  
Lc statistic Trends (m) Trends (k) Trends (p2) Prob.* 

 0.575537  1  1  0  0.0641 

*Hansen (1992b) Lc(m2=1, k=1) p-values, where m2=m-p2 is the 
        number of stochastic trends in the asymptotic distribution 
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are cointegrated at conventional levels, though the relatively low p-value are cause for some 
concern, given the Engle-Granger and Phillips-Ouliaris results.

Park’s Added Variables Test

Park’s  test is an added variable test. The test is computed by testing for the signifi-
cance of spurious time trends in a cointegrating equation estimated using one of the meth-
ods described above.

Suppose we estimate equation Equation (26.1) where, to simplify, we let  consist solely 
of powers of trend up to order . Then the Park test estimates the spurious regression model 
including from  to  spurious powers of trend

(26.28)

and tests for the joint significance of the coefficients . Under the null hypoth-
esis of cointegration, the spurious trend coefficients should be insignificant since the resid-
ual is stationary, while under the alternative, the spurious trend terms will mimic the 
remaining stochastic trend in the residual. Note that unless you wish to treat the constant as 
one of your spurious regressors, it should be included in the original equation specification.

Since the additional variables are simply deterministic regressors, we may apply a joint Wald 
test of significance to . Under the maintained hypothesis that the original 
specification of the cointegrating equation is correct, the resulting test statistic is asymptoti-
cally .

While one could estimate an equation with spurious trends and then to test for their signifi-
cance using a Wald test, EViews offers a view which performs these steps for you. First esti-
mate an equation where you include all trends that are assumed to be in the cointegrating 
equation. Next, select View/Cointegration Test... and choose Park Added Variables in the 
dropdown menu. The dialog will change to allow you to specify the spurious trends.
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There are two parts to the dialog. The dropdown menu 
allows you to specify a trend polynomial. By default, 
the dropdown will be set to two orders higher than the 
trend order in the original equation. In our example 
equation which includes a linear trend, the default set-
ting will include quadratic and cubic trend terms in the 
test equation and test for the significance of the two 
coefficients. You may use the edit field to enter non 
power-of-trend deterministic regressors.

We will use the default settings to perform a Park test 
on the FMOLS linear trend consumption equation con-
sidered previously. The results are presented in two 
parts: the test specification and test results are displayed at the top of the output, and the 
results for the test equation (not depicted) are displayed at the bottom:

The null hypothesis is that the series are cointegrated. The original specification includes a 
constant and linear trend and the test equation will include up to a cubic trend. The Park 
test evaluates the statistical significance of the @TREND^2 and the (@TREND/170)^3 terms 
using a conventional Wald test. (You may notice that the latter cubic trend term—and any 
higher order trends that you may include—uses the trend scaled by the number of observa-
tions in the sample.)

The test results reject the null hypothesis of cointegration, in direct contrast to the results for 
the Engle-Granger, Phillips-Ouliarias, and Hansen tests (though the latter, which also tests 
the null of cointegration, is borderline). Note however, adding a quadratic trend to the origi-
nal equation and then testing for cointegration yields results that, for all four tests, point to 
cointegration between LC and LY. 

Working with an Equation

Once you estimate your equation, EViews offers a variety of views and procedures for exam-
ining the properties of the equation, testing, forecasting, and generating new data. For the 

Cointegration Test - Park Added Variables  
Date: 08/11/09   Time: 13:49   
Equation: EQ_19_3_31   
Series: LC LY    
Null hypothesis: Series are cointegrated  
Original trend specification: Linear trend  
Added trends: Powers of trend up to 3   
Added deterministics to  test: @TREND^2 (@TREND/170)^3  

 Value df Probability  

Chi-square  12.72578  2  0.0017  
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most part, these views and procedures are a subset of those available in other estimation 
settings such as least squares estimation. (The one new view, for cointegration testing, is 
described in depth in “Testing for Cointegration,” beginning on page 282.) In some cases 
there have been modifications to account for the nature of cointegrating regression.

Views 

For the most part, the views of a cointegrating equation require lit-
tle discussion. For example, the Representations view offers text 
descriptions of the estimated cointegrating equation, the Covari-
ance Matrix displays the coefficient covariance, and the Residual 
Diagnostics (Correlogram - Q-statistics, Correlogram Squared 
Residuals, Histogram - Normality Test) offer statistics based on 
pooled residuals. That said, a few comments about the construc-
tion of these views are in order.

First, the Representations and Covariance Matrix views of an 
equation only show results for the cointegrating equation and the long-run coefficients. In 
particular, the short-run dynamics included in a DOLS equation are not incorporated into 
the equation. Similarly, Coefficient Diagnostics and Gradients views do not include any of 
the short-run coefficients.

Second, the computation of the residuals used in the Actual, Fitted, Residual views and the 
Residual Diagnostics views differs depending on the estimation method. For FMOLS and 
CCR, the residuals are derived simply by substituting the estimated coefficients into the 
cointegrating equation and computing the residuals. The values are not based on the trans-
formed data. For DOLS, the residuals from the cointegrating equation are adjusted for the 
estimated short-run dynamics. In all cases, the test statistics results in the Residual Diag-
nostics should only be viewed is illustrative as they are not supported by asymptotic theory.

Note that standardized residuals are simply the residuals divided through by the long-run 
variance estimate.

The Gradient (score) views are based on the moment conditions implied by the particular 
estimation method. For FMOLS and CCR, these moment conditions are based on the trans-
formed data (see Equation (26.25) for the expression for FMOLS scores). For DOLS, these val-
ues are simply proportional (-2 times) to the residuals times the regressors.
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Procedures

The procs for an equation estimated using cointegrating regres-
sion are virtually identical to those found in least squares esti-
mation. 

Most of the relevant issues were discussed previously (e.g., 
construction of residuals and gradients), however you should 
also note that forecasts constructed using the Forecast... proce-
dure and models created using Make Model procedure follow 
the Representations view in omitting DOLS short-run dynamics. Furthermore, the forecast 
standard errors generated by the Forecast... proc and from solving models created using the 
Make Model... proc both employ the “S.E. of the regression” reported in the estimation out-
put. This may not be appropriate.

Data Members

The summary statistics results in the bottom of the equation output may be accessed using 
data member functions (see “Equation Data Members” on page 37 for a list of common data 
members). For equations estimated using DOLS (with default standard errors), FMOLS, or 
CCR, EViews computes an estimate of the long-run variance of the residuals. This statistic 
may be accessed using the @lrvar member function, so that if you have an equation named 
FMOLS, 

scalar mylrvar = fmols.@lrvar

will store the desired value in the scalar MYLRVAR.
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Chapter 27.  Autoregressive Distributed Lag (ARDL) Models 

EViews offers powerful time-saving tools for estimating and examining the properties of 
Autoregressive Distributed Lag (ARDL) models. ARDLs are standard least squares regres-
sions that include lags of both the dependent variable and explanatory variables as regres-
sors (Greene, 2008). Although ARDL models have been used in econometrics for decades, 
they have gained popularity in recent years as a method of examining cointegrating relation-
ships between variables through the work of Pesaran and Shin (1998, PS(1998)) and Pesa-
ran, Shin and Smith (2001, PSS(2001)).

While it is possible to use a standard least squares procedure to estimate an ARDL, the spe-
cialized ARDL estimator in EViews offers a number of useful features including model selec-
tion and the computation of post-estimation diagnostics.

Background

Specification

ARDL models are linear time series models in which both the dependent and independent 
variables are related not only contemporaneously, but across historical (lagged) values as 
well. In particular, if  is the dependent variable and  are  explanatory vari-
ables, a general ARDL  model is given by:

(27.1)

where  are the usual innovations,  is a constant term, and , and  are respec-
tively the coefficients associated with a linear trend, lags of , and lags of the  regressors 

 for . Alternatively, let  denote the usual lag operator and define  
and  as the lag polynomials:

 and 

Equation (27.1) above can then be rewritten as:

(27.2)

Following this general formulation, three alternative representations can be made. While all 
three can be used for parameter estimation, the first is typically used for intertemporal 
dynamic estimation, the second for post-estimation derivation of the long-run (equilibrium) 
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relationship, while the third is a reduction of (27.1) to the conditional error correction (CEC) 
representation in the PSS(2001) bounds test. All three alternative representations make use 
of the Beveridge-Nelson decomposition.

Representation 1: Intertemporal Dynamics Regression

The typical starting point for most ARDL applications is the estimation of intertemporal 
dynamics. In this form, one is interested in estimating the relationship between  on both 
its own lags as well as the contemporaneous and lagged values of the  regressors . 
This in fact the basis of the ARDL model studied in PS(1998). In particular, we cast (27.1) 
into the following representation:

(27.3)

where we have used the Beveridge-Nelson result to decompose  into 
. Since this equation does not solve for , it is typically 

interpreted as a regression for the intertemporal dynamics of the model.

Representation 2: Post-Regression Derivation of Long-Run Dynamics

The second representation is in essence an attempt to derive the long-run relationship 
between  and the  regressors. As such, the representation solves for  in terms of .

(27.4)
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where we have again used the Beveridge-Nelson decomposition to express 
. Furthermore, from (27.1) we are typically interested in the 

long-run (trend) parameters captured by  and , for . In fact, given the 
one-to-one correspondence between the parameter estimates obtained in (27.1) and (27.5), 
it is possible to derive estimates of the long-run parameters post-estimation. In particular, if 

 denote the relevant subset of estimated coefficients from the 
regression model corresponding to the model in (27.4), in particular,

then, a post-regression estimate of the long-run parameters is derived as follows:

(27.5)

Representation 3: Conditional Error Correction Form and the Bounds Test

The final representation is arguably the most interesting and one that typically receives the 
most attention in applied work. The objective here is to test for cointegration by reducing a 
typical vector autoregression framework to its corresponding conditional error correction 
(CEC) form. This CEC model is in fact an ARDL model with a one-to-one correspondence 
with the model in (27.1).

In particular, Equation (27.1) may be re-written as:
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â1 b̂0 1,  b̂0 p, b̂1  b̂k, , , , , ,

yt a0 a1t b0 i, yt i–

i 1

p

 bj xj t,

j 1

k

 cj lj, Dxj t lj–, et
lj 1

qj 1–


j 1

k

   

â1
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(27.6)

where we have used the convention

relying once again on the Beveridge-Nelson decomposition.

Equation (27.7) above is the CEC form derived from the ARDL model in (27.1). Rewriting 
this equation as:

(27.7)

it is readily verified that the error correction term, typically denoted as , is also the 
cointegrating relationship when  and  are cointegrated. PSS(2001) demon-
strate that (27.7) is in fact (abstracting from differing lag values) the CEC of the VAR(p) 
model:

where  is the (k +1)-vector  and  and  are respectively the (k 
+1)-vectors of intercept and trend coefficients, and  is the (k + 
1) square matrix lag polynomial. 

Traditionally, the cointegration tests of Engle-Granger (1987), Phillips and Ouliaris (1990), 
Park (1990), or Johansen (1991; 1995), typically require all variables in the VAR to be I(1). 
This clearly requires a battery pre-testing for the presence of a unit root in each of the vari-
ables under consideration, and is subject to misclassification. In contrast, PSS(2001) propose 
a test for cointegration that is robust to whether variables of interest are I(0), I(1), or mutu-
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ally cointegrated. In this regard, PSS(2001) discuss a bounds test for cointegration as a test 
on parameter significance in the cointegrating relationship of the CEC model (27.7). In other 
words, the test is a standard F. or Wald test for the following null and alternative hypothe-
ses:

(27.8)

Once the test statistic is computed, it is compared to two asymptotic critical values corre-
sponding to polar cases of all variables being purely I(0) or purely I(1). When the test statis-
tic is below the lower critical value, one fails to reject the null and concludes that 
cointegration is not possible. In contrast, when the test statistic is above the upper critical 
value, one rejects the null and concludes that cointegration is indeed possible. In either of 
these two cases, knowledge of the cointegrating rank is not necessary. 

Alternatively, should the test statistic fall between the lower and upper critical values, test-
ing is inconclusive, and knowledge of the cointegrating rank is required to proceed further. 

Here it is also important to highlight that PSS(2001) offer five alternative interpretations of 
the CEC model (27.7), distinguished by whether deterministic terms integrate into the error 
correction term. When deterministic terms contribute to the error correction term, they are 
implicitly projected onto the span of the cointegrating vector. This implies that  and  in 
(27.7) must be restricted. Below are summaries of the regression (REG) models, for each of 
the five interpretations along with the appropriate cointegrating relationship  and the 
bounds test null-hypothesis .
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(27.10)

Case 3:

(27.11)

Case 4:

(27.12)
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(27.13)

Estimating ARDL Models in EViews

Since ARDL models are least squares regressions using lags of the dependent and indepen-
dent variables as regressors, they can be estimated in EViews using an equation object with 
the Least Squares estimation method.

However, EViews also offers a specialized estimator for handling ARDL models. This estima-
tor offers built-in lag-length selection methods, as well as post-estimation views. To estimate 
an ARDL model using the ARDL estimator, open the equation dialog by selecting Quick/
Estimate Equation…, or by selecting Object/New Object…/Equation and then selecting 
ARDL from the Method dropdown menu. EViews will then display the ARDL estimation 
dialog:
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The Specification tab allows you to specify the variables used in the regression, and 
whether to let EViews automatically detect the appropriate number of lags for each variable. 

To begin, enter the name of the dependent variable, followed by a space delimited list of 
dynamic regressors (i.e., variables which will have lag terms in the model) in the Dynamic 
Specification edit box. You may then select whether you wish EViews to automatically 
select the number of lags for all variables by selecting the Automatic Selection radio button, 
fixing the independent variable and the regressors to a uniform fixed length by selecting the 
Fixed radio buttons, or by taking full control of granularity and specifying a specific lag for 
each of the independent and regressors variables. The latter can be specified via command 
in the Dynamic Specification edit box by replacing each variable by the Fixed Lag command 
@FL(VARIABLE, LAG). For instance, if the variable  should possess 3 lags, then one 
would specify this by writing @FL( , 3). One can do this for all variables in order to esti-
mate a specific structure, or specify some variables using the @FL command, and others 
without. In the latter case, if the Automatic Selection radio button is selected, EViews will fix 
the lags of the variables specified with @FL, and automatically select the lags for the vari-
ables which were not specified using the @FL function. Alternatively, if the Fixed radio but-
ton is selected, any variables not specified with @FL will have the specified fixed number.

If you choose automatic selection, you must then select the maximum number of lags to test 
for the dependent variable and regressors using the Max lags dropdowns. If you select to 
use a fixed number of lags, the same dropdowns can be used to select the number of lags for 
the dependent variable and regressors. Note that when using fixed lags for regressors, each 
regressor will be given the same number of lags.

xt

xt
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The Fixed regressors area lets you specify any fixed/static variables (regressors without 
lags). The Trend specification dropdown may be used to specify which of the five cases for 
the trend and intercept should be included. Any other static regressors can be specified by 
entering their name in the List of fixed regressors box. 

The Options tab allows you to specify the type of model selection to be used if you chose 
automatic selection on the Specification tab. You may choose between the Akaike Informa-
tion Criterion (AIC), Schwarz Criterion (SC), Hannan-Quinn Criterion (HQ), or the Adjusted 
R-squared.

You may also select the type of covariance matrix to use in the final estimates, using the 
Coefficient covariance matrix dropdown. Note that this selection does not affect the model 
selection criteria.

ARDL Post-Estimation Views and Procedures

Since ARDL models are estimated by simple least squares, all of the views and procedures 
available to equation objects estimated by least squares are also available for ARDL models. 
In addition, there are a few ARDL specific views.

The Model Selection Summary item on the View menu allows you to view either a Criteria 
Graph or a Criteria Table. The graph shows the model selection value for the twenty “best” 
models. If you use either the Akaike Information Criterion (AIC), the Schwarz Criterion 
(BIC), or the Hannan-Quinn (HQ) criterion, the graph will show the twenty models with the 
lowest criterion value. If you choose the Adjusted R-squared as the model selection criteria, 
the graph will show the twenty models with the highest Adjusted R-squared. The table form 
of the view shows the log-likelihood value, the AIC, BIC and HQ values, and the Adjusted R-
squareds of the top twenty models in tabular form.

The View/Coefficient Diagnostics menu offers the new item Long Run Form and Bounds 
Test. Every ARDL model is associated with a CEC model. This view displays a table of least 
squares estimates corresponding to this CEC regression. Note that the lag of the dependent 
variable in this regression will always be suffixed by a single asterisk while some other vari-
ables will be suffixed by a double asterisk. As summarized in notes below the regression 
output, the single asterisk indicates that the p-value associated with the relevant variable is 
incompatible with the t-Bounds distribution in Theorem 3.2 in PSS(2001). Moreover, any 
variables suffixed by a double asterisk indicates a dynamic regressor with an optimal lag of 
zero. As such, EViews does not include lags and differences of such variables, but estimates 
them contemporaneously. Accordingly, such variables should be reinterpreted in the context 
of the decomposition  so that they can be included in the  term 
which arises in each of the CEC regressions. In particular, least squares estimates of coeffi-
cients associated with such variables are simultaneously estimates of the coefficients associ-
ated with  as well as . When this is the case, EViews augments the table of 
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regression estimates with a note that such variables should be interpreted as Z = Z(-1) + 
D(Z). 

There are also several tables provided in this view. The first table is titled Levels Equation 
and displays the estimates of long-run variables, their standard errors computed using the 
delta method as in PS(98), their -statistics, as well as the appropriate -values. Moreover, 
just below this table is a line starting with . This expression lists the name of the depen-
dent variable minus an expression enclosed in brackets. This is the long run, otherwise 
known as the error correction equation.

Below the table of long run coefficient estimates are two additional tables, respectively titled 
as the -Bounds Test and the -Bounds Test. These tables respectively display the the the 

- and - statistics along with their associated I(0) (lower) and I(1) (upper) critical value 
bounds for the null hypotheses of no levels relationship between the dependent variable and 
the regressors in the CEC model. The critical values are provided for significance levels 10%, 
5%, 2.5%, and 1%, respectively. The -Bounds test in particular is a parameter significance 
test on the lagged value of the dependent variable. Since the distribution of this test is non-
standard, the -value provided in the regression output of the CEC regression is not compat-
ible with this distribution, although the -statistic is valid. Accordingly, any inference must 
be conducted using the -Bounds test critical values provided.

We also mention here that the - critical value tables now present the critical values com-
puted under an asymptotic regime (sample size equal to 1000) and referenced from 
PSS(2001), in addition to providing cirtical values for finite sample regimes (sample sizes 
running from 30 to 80 in increments of 5) and referenced from Narayan (2005).

Another view that is offered after estimation is View/ Coefficient Diagnostics/Error Cor-
rection Form. In this view, an error correction model which estimates the speed of adjust-
ment to equilibrium in a cointegrating relationship. Here, the error correction term derived 
as the Levels Equation earlier, is included among the regressors and is denoted as CointEq. 
The coefficient associated with this regressor is typically the speed of adjustment to equilib-
rium in every period. If variables are indeed cointegrated, we typically expect this coefficient 
to be negative and highly significant. Here as well we find the the -Bounds Test and the -
Bounds Test tables below the regression output. While the the -Bounds Test will not have 
changed from the Long Run Form and Bounds Test view, the -Bounds Test here reflects 
the - statistic associated with the CointEq regressor. Again, since the distribution of this test 
is non-standard, the -value provided in the regression output is not compatible with this 
distribution and any inference must be conducted using the the -Bounds test critical values 
provided.

Issues with ARDL Model Selection

The ARDL model selection process will use the same sample for each estimation. Since the 
selection is over the number of lags, this means that observations will be dropped from each 
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estimation based on the maximum number of lags in the selection procedure. However the 
final estimation output will use all observations available for the selected model. Conse-
quently, unless the selected model happens to be the model with the maximum number of 
lags, the final estimation will have more observations than when that model was estimated 
during selection, and will have different estimated results. 

An Example

Greene (2008, page 685) uses an ARDL model on data from a number of quarterly US mac-
roeconomic variables between 1950 and 2000. In particular, he estimates an ARDL model 
using the log of real consumption as the dependent variable, and the log of real GDP as a 
single regressor (along with a constant).

We can open the Greene data with the following EViews command:

wfopen http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF5-
2.txt

Next we bring up the ARDL estimation dialog by clicking on Quick/Estimate Equation and 
using the Method combo to change the estimation method to ARDL.

Following Greene's example, we estimate an ARDL model with the log of real consumption 
as the dependent variable, and log GDP as the regressor, by entering:

log(realcons) log(realgdp)

in the Dynamic Specification area. We choose to perform Automatic Selection, with a 
maximum of 8 lags (two years) for both the dependent variable and dynamic regressors.

Greene includes a full set of quarterly dummies as fixed regressors, which we can include by 
choosing Constant (Level) as the trend specification, and then adding the expression 
“@expand(@quarter, @droplast)” in the Fixed regressors box. 
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We do not make any changes to the Options tab, leaving all settings at their default value. 
The results are shown below:
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The first part of the output gives a summary of the settings used during estimation. Here we 
see that automatic selection (using the Akaike Information Criterion) was used with a maxi-
mum of 8 lags of both the dependent variable and the regressor. Out of the 72 models evalu-
ated, the procedure has selected an ARDL(5,1) model - 5 lags of the dependent variable, 
LOG(REALCONS), and a single lag (along with the level value) of LOG(REALGDP). 

EViews also notes that since the selected model has fewer lags than the maximum, the sam-
ple used in the final estimation will not match that used during selection.

The rest of the output is standard least squares output for the selected model. Note that each 
of the regressors (with the exception of the quarterly dummies) is significant, and that the 
coefficient on the one period lag of the dependent variable, LOG(REALCONS), is quite high, 
at 0.85.

To view the relative superiority of the selected model against alternatives, we click on View/
Model Selection Summary/Criteria Graph to view a graph of the AIC of the top twenty 
models. 

Dependent Variable: LOG(REALCONS) 
Method: ARDL   
Date: 03/10/15   Time: 23:38  
Sample (adjusted): 1951Q2 2000Q4 
Included observations: 199 after adjustments 
Maximum dependent lags: 8 (Automatic selection) 
Model selection method: Akaike info criterion (AIC) 
Dynamic regressors (8 lags, automatic): LOG(REALGDP)  
Fixed regressors: @EXPAND(@QUARTER, @DROPLAST) C 
Number of models evalulated: 72 
Selected Model: ARDL(5, 1)  
Note: final equation sample is larger than selection sample 

Variable Coefficient Std. Error t-Statistic Prob.*   

LOG(REALCONS(-1)) 0.854510 0.064428 13.26300 0.0000 
LOG(REALCONS(-2)) 0.258776 0.082121 3.151153 0.0019 
LOG(REALCONS(-3)) -0.156598 0.071521 -2.189542 0.0298 
LOG(REALCONS(-4)) -0.194069 0.070465 -2.754106 0.0065 
LOG(REALCONS(-5)) 0.169457 0.048486 3.494951 0.0006 

LOG(REALGDP) 0.547615 0.048246 11.35042 0.0000 
LOG(REALGDP(-1)) -0.475684 0.051091 -9.310547 0.0000 

@QUARTER=1 -0.000348 0.001176 -0.295813 0.7677 
@QUARTER=2 -0.000451 0.001165 -0.386775 0.6994 
@QUARTER=3 0.000854 0.001171 0.729123 0.4668 

C -0.058209 0.027842 -2.090705 0.0379 

R-squared 0.999873     Mean dependent var 7.902158 
Adjusted R-squared 0.999867     S.D. dependent var 0.502623 
S.E. of regression 0.005805     Akaike info criterion -7.406420 
Sum squared resid 0.006336     Schwarz criterion -7.224378 
Log likelihood 747.9388     Hannan-Quinn criter. -7.332743 
F-statistic 148407.0     Durbin-Watson stat 1.865392 
Prob(F-statistic) 0.000000    

*Note: p-values and any subsequent tests do not account for model 
        selection.   
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The selected ARDL(5,1) model was only slightly better than an ARDL(5,2) model, which 
was in turn only slightly better than an ARDL(5,3). It is notable that the top three models all 
use five lags of the dependent variable.

Rather than using automatic selection to choose the best model, Greene (Example 20.4) ana-
lyzes these data with a fixed ARDL(3,3) model. We can replicate this by pressing the Esti-
mate button to bring up the Equation Estimation dialog again. We change the number of 
lags on both dependent and regressors to 3, and then select the Fixed radio button to switch 
off automatic selection. 
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The results of this estimation are:
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The one-period lag on the dependent variable remains high, at 0.72, and again all coeffi-
cients are significant (with the exception of the dummies).

ARDL Cointegrating Form and Bounds Test   
Original dep. variable: LOG(REALCONS)   
Selected Model: ARDL(3, 3)   
Date: 31/03/17   Time: 11:04   
Sample: 1950Q1 2000Q4   
Included observations: 201   

Cointegrating Form 

Variable Coefficient Std. Error t-Statistic Prob.   

C -0.110221 0.029258 -3.767248 0.0002
LOG(REALCONS(-1)) -0.118944 0.030474 -3.903191 0.0001
LOG(REALGDP(-1)) 0.126497 0.032281 3.918624 0.0001

DLOG(REALCONS(-1)) -0.157714 0.069795 -2.259665 0.0250
DLOG(REALCONS(-2)) 0.233653 0.068672 3.402444 0.0008

DLOG(REALGDP) 0.565088 0.051953 10.87699 0.0000
DLOG(REALGDP(-1)) 0.047706 0.063725 0.748631 0.4550
DLOG(REALGDP(-2)) -0.190243 0.058922 -3.228753 0.0015

@QUARTER=2 4.66E-07 0.001270 0.000367 0.9997
@QUARTER=3 0.001174 0.001263 0.929288 0.3539
@QUARTER=4 0.000259 0.001266 0.204677 0.8380

     
Bounds Test Null Hypothesis: No cointegrating relationships exist

Test Statistic Value Signif. I(0) I(1)

F-statistic  10.45256 10%  3.02 3.51
k 1 5%  3.62 4.16

  2.5%  4.18 4.79
  1%  4.94 5.58

EC = LOG(REALCONS) - (1.0635*LOG(REALGDP) + 0.0000  
        *(@QUARTER=2) + 0.0099*(@QUARTER=3) + 0.0022
        *(@QUARTER=4)  -0.9267 )   

     
Long Run Coefficients 

Variable Coefficient Std. Error t-Statistic Prob.   

LOG(REALGDP) 1.063498 0.007908 134.4805 0.0000
@QUARTER=2 3.92E-06 0.010680 0.000367 0.9997
@QUARTER=3 0.009869 0.010947 0.901557 0.3684
@QUARTER=4 0.002178 0.010645 0.204601 0.8381

C -0.926656 0.065892 -14.06325 0.0000
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We can then examine the long-run coefficients by selecting View/Coefficient Diagnostics/
Cointegration Form and Bounds Test. 

The long-run coefficients, at the bottom of the output, show that the long-run impact of a 
change in log(REALGDP) on log(REALCONS) has essentially no lagged-effects. The long-run 
change is very close to being equal to the initial change (the coefficient is close to one).

In a second example, Example 20.5, Greene examines an ARDL(1,1) model's cointegrating 
form. To perform this in EViews, we again bring up the Equation Estimation dialog and 
change the number of lags to 1 for both dependent and regressors, remove the quarterly 
dummies, and then click OK. 

Following estimation, we click on View/Coefficient Diagnostics/Cointegration Form and 
Bounds Test to bring up the cointegrating relationship view:
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ARDL Cointegrating Form and Bounds Test   
Original dep. variable: LOG(REALCONS)   
Selected Model: ARDL(1, 1)   
Date: 31/03/17   Time: 11:05   
Sample: 1950Q1 2000Q4
Included observations: 203   

Cointegrating Form 

Variable Coefficient Std. Error t-Statistic Prob.   

C -0.085331 0.029285 -2.913823 0.0040
LOG(REALCONS(-1)) -0.095416 0.030589 -3.119291 0.0021
LOG(REALGDP(-1)) 0.101173 0.032371 3.125408 0.0020
DLOG(REALGDP) 0.584210 0.051411 11.36351 0.0000

     
Bounds Test Null Hypothesis: No cointegrating relationships exist

Test Statistic Value Signif. I(0) I(1)

F-statistic  17.24754 10%  3.02 3.51
k 1 5%  3.62 4.16

  2.5%  4.18 4.79
  1%  4.94 5.58

EC = LOG(REALCONS) - (1.0603*LOG(REALGDP)  -0.8943 )  

     
Long Run Coefficients 

Variable Coefficient Std. Error t-Statistic Prob.   

LOG(REALGDP) 1.060339 0.010630 99.75379 0.0000
C -0.894307 0.089041 -10.04381 0.0000
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Chapter 28.  Midas Regression

Mixed Data Sampling (MIDAS) regression is an estimation technique which allows for data 
sampled at different frequencies to be used in the same regression.

More specifically, the MIDAS methodology (Ghysels, Santa-Clara, and Valkanov, (2002) and 
Gyhsels, Santa-Clara, and Valkanaov (2006), and Andreou, Ghysels, and Kourtellos (2010)) 
addresses the situation where the dependent variable in the regression is sampled at a lower 
frequency than one or more of the regressors. The goal of the MIDAS approach is to incorpo-
rate the information in the higher frequency data into the lower frequency regression in a 
parsimonious, yet flexible fashion.

The following discussion describes EViews’ easy-to-use tools for single equation MIDAS 
regression estimation. We begin by offering background on the approach. Next, we describe 
how to estimate a MIDAS regression in EViews. We conclude with examples.

Background

Standard regression models require the regressor data to follow the same frequency and 
structure as the dependent variable in the regression. This restriction is not always met in 
practice—as in economics, where major statistical releases occur on annual, quarterly, 
monthly and even daily frequencies.

Traditionally, there have been two approaches to estimation in mixed frequency data set-
tings:

• The first approach involves introducing the sum or average of the higher frequency 
data into the lower frequency regression. This approach adds a single coefficient for 
each high frequency variable, implicitly applying equal weighting to each value in the 
sum.

• Alternately, the individual components of the higher frequency data may be added to 
the regression, allowing for a separate coefficient for each high frequency component. 
For example, in estimating an annual regression with monthly high frequency regres-
sors, one could add each of the monthly components as a regressor. Note that this 
approach adds a large number of coefficients to the regression.

MIDAS estimation occupies the middle ground between these approaches, allowing for non-
equal weights but reducing the number of coefficients by fitting functions to the parameters 
of the higher frequency data. Thus, MIDAS offers an approach to mixed frequency estima-
tion featuring a flexible, parsimonious parameterization of the response of the lower fre-
quency dependent variable to the higher frequency data.

Specifically, the model under consideration is:
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(28.1)

where

•  is the dependent variable, sampled at a low frequency, at date ,

•  is the set of regressors sampled at the same low frequency as ,

•  is a set of regressors sampled at a higher frequency with  values for each 
low frequency value. Note that  is not restricted to the  values associated 
with the current  as it may include values corresponding to lagged low frequency 
values.

•  is a function describing the effect of the higher frequency data in the lower fre-
quency regression

• , , and  vectors of parameters to be estimated.

The individual coefficients approach adds each of the higher frequency components as a 
regressor in the lower frequency regression. In the simple case where we only include high 
frequency data corresponding to the current low frequency observation, we have:

(28.2)

where  are the data  high frequency periods prior to  (we will refer to these 
data as the -th high frequency lag at ). Notice that this approach estimates a distinct  
for each of the  high frequency lag regressors.

Alternately, the simple aggregation approach adds an equally weighted sum (or average) of 
the high frequency data as a regressor in the low frequency regression:

(28.3)

The approach estimates a single  associated with the new regressor. Viewed differently, 
the aggregation approach may be thought of as one in which the component higher fre-
quency lags all enter the low frequency regression with a common coefficient .

For a quarterly regression with a higher frequency monthly series, there are three months in 
each quarter so the individual coefficients approach adds three regressors to the low fre-
quency regression. The first regressor contains values for the first month in the correspond-
ing quarter (January, April, July, or October), the second regressor has values for the second 
month in the corresponding quarter (February, May, August, or November), and the third 
regressor contains values for the third month in the relevant quarter (March, June, Septem-
ber, December).
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The aggregation approach adds the single regressor containing the sum of the monthly val-
ues over the corresponding quarter. For first quarter observations, the regressor will contain 
the sum of the higher frequency January, February, and March monthly values for that quar-
ter. Similarly, the regressor will contain the sum of the October, November, and December 
values in fourth quarter observations.

We may think of these two approaches as polar extremes. The individual coefficients 
approach offers the greatest flexibility but requires large numbers of coefficients. The aggre-
gation approach is parsimonious, but places quite significant equal weighting restrictions on 
the lagged high frequency data.

In contrast, MIDAS estimation offers several different weighting functions which occupy the 
middle ground between the unrestricted and the equally weighted aggregation approaches. 
The MIDAS weighting functions reduce the number of parameters in the model by placing 
restrictions on the effects of high frequency variables at various lags.

Step Weighting

The simplest weighting method employs the step function:

(28.4)

where 

•  is a chosen number of lagged high frequency periods to use (where  may be less 
than or greater than ).

•  is a step length

•  for 

In this approach, the coefficients on the high frequency data are restricted using a step func-
tion, with high frequency lags within a given step sharing values for . For example, with 

, the first three lagged high frequency lags , , employ the same 
coefficient , the next three lags use , and so on up to the maximum lag of . 

Notably, the number of high frequency coefficients in the step weighting model increases 
with the number of high frequency lags, but in comparison to an individual coefficient 
approach, the number of coefficients is reduced by a factor of roughly .

Almon (PDL) Weighting

Almon lag weighting (also called polynomial distributed lag or PDL weighting) is widely 
used to place restrictions on lag coefficients in autoregressive models, and is a natural candi-
date for the mixed frequency weighting. 
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For each high frequency lag up to , the regression coefficients are modeled as a  dimen-
sional lag polynomial in the MIDAS parameters . We may write the resulting restricted 
regression model as:

(28.5)

where  is the Almon polynomial order, and the chosen number of lags  may be less than 
or greater than .

Importantly, the number of coefficients to be estimated depends on the polynomial order 
and not the number of high frequency lags. We can see this more clearly after rearranging 
terms and rewriting the model using a constructed variable:

(28.6)

It is easy to see the distinct coefficient  associated with each of the  sets of constructed 
variables .

Exponential Almon Weighting

The normalized exponential Almon weighting approach uses exponential weights and a lag 
polynomial of degree 2, yielding:

(28.7)

(28.8)

where  is a chosen number of lags,  is a slope coefficient that is common across lags, 
and the differential response comes via the exponential weighting function and the lag poly-
nomial which depends on the two MIDAS coefficients  and .

In constructed variable form, we have
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(28.9)

Note that this regression model is highly nonlinear in the parameters of the model.

Beta Weighting

Beta weighting was introduced by Ghysels, Santa-Clara and Valkanov and is based on the 
normalized beta weighting function. The corresponding regression model is given by

(28.10)

where  is a number of lags,  is a slope coefficient that is common across lags, and

(28.11)

where  is a small number (in practice, approximately equal to ).

In constructed variable form, we have

(28.12)

The beta function is extremely flexible and can take many shapes, including gradually 
increasing or decreasing, flat, humped, or U-shaped, depending on the values of the three 
MIDAS parameters .

In practice the parameters of the beta function are restricted further by imposing , 
, or  and .

• The restriction  implies that the shape of the weight function depends on a 
single parameter, exhibiting slow decay when  and slow increase when .
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• The restriction  implies that there are zero weights at the high frequency lag 
endpoints (when  and ).

• The restriction  and  imposes both the shape and the zero endpoint 
weight restrictions.

(Please note that for specifications with a small number of MIDAS lags the zero endpoint 
restrictions is quite restrictive and may generate significant bias.)

Lastly, while the number of parameters of the beta weighting model is at most 3 so that it 
does not increase with the number of lags, estimation does involve optimization of a highly 
non-linear objective.

U-MIDAS

The U-MIDAS weighting method is simply the individual coefficients technique given by 
Equation (28.2).

U-MIDAS does not alleviate the issue of requiring a large number of coefficients, but can be 
used in cases where a small number of lags are required, and is often used for comparative 
purposes.

MIDAS Estimation in EViews

With built-in tools for working with multi-frequency data and an intrinsic understanding of 
the relationship between various time series frequencies, EViews offers an ideal platform for 
MIDAS estimation.

To perform MIDAS estimation in EViews, open the equation dialog by selecting Quick/Esti-
mate Equation…, or by selecting Object/New Object…/Equation and then selecting 
MIDAS from the Method dropdown menu to bring up the MIDAS estimation dialog:
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Specification 

The Specification tab is used to specify the variables of and form of the MIDAS equation 
and to set the estimation sample.

The Specification edit field is used to specify the low frequency dependent variable followed 
by a list of low frequency regressors from the same page as the dependent variable. The low 
frequency regressors should include any desired lags of the dependent variable. Note that 
explicit ARMA terms are not permitted in this estimation method.

The Higher frequency regressors edit field is used to specify the higher-frequency regres-
sors. The syntax for these variable is pagename\seriesname where pagename is the name of 
the page containing the series, and seriesname is the name of the series. Note also that 
series expressions are allowed, e.g. “mypage\log(x)”.

You may specify more than one higher-frequency series, and those series may be of different 
frequencies from different pages. However, we caution you that using more than one high 
frequency regressor oftens leads to multicollinearity issues and, in the case of the non-linear 
weighting, increases the complexity of estimation dramatically. An alternative approach sug-
gested by Andreou, et al. (2013) would be to estimate several univariate models and then 
use forecast combination to produce a final forecast.
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Date Timing

When specifying your high frequency variable, care should must be taken to ensure that you 
refer to the correct observations from the higher frequency page.

To illustrate, let’s assume our dependent variable, Y, is quarterly, and our regressor, X, is 
monthly. We would like to use 4 lags (months) of X to explain each quarter of Y. EViews will 
use the 4 months up to, and including, the last month of the corresponding quarter. Quarter 
1 will thus be explained by March, February, January and December. Quarter 2 will be 
explained by June, May, April and March. 

If you wish to use different sets of months, you can use the lag operator when specifying the 
regressor. In our example, if we want Quarter 1 to be explained by January, December, 
November and October, and Quarter 2 to be explained by April, March, February and Janu-
ary, we would specify the regressor as “monthlypage\x(-2)”; i.e., using the second lagged 
values of X.

Lag Selection

All of the MIDAS estimation methods require a value for , the number of high frequency 
lags to be included in the low frequency regression equation.

Just below the Higher frequency regressors edit field are radio buttons that control the 
number of lags. You may provide a fixed number of lags by selecting the appropriate radio 
button and entering a value, or you can elect to determine the number of lags using minimal 
sum-of-squared residuals as the selection criterion. If you select the latter radio button, you 
will prompted to enter a value for the maximum number of lags. Note that automatic selec-
tion is only available for the Almon and Step weighting methods.

If you have entered more than one high frequency regressor you may enter a single lag or 
maximum lag value or you may enter a space delimited list of lags. If you enter a single 
value, it will be applied to all of the regressors.

As you make your choice, keep in mind that the maximum number of lags and selected lags 
from automatic selection will apply to all of the high frequency series.

Estimation Options

The Options tab of the dialog lets you specify some the MIDAS weighting function along 
with other estimation options:

k
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The MIDAS weighting method dropdown menu controls specification of the MIDAS weight-
ing. By default the Almon weighting method is selected, but Step, Exponential Almon and 
Beta may also be chosen.

If you select the Almon method, you must specify , the degree of the Almon polynomial. If 
Step is selected, you must specify the stepsize . If Beta is selected, you can, if desired, 
impose restrictions on , , or both  and .

Since the Beta and Exponential Almon weighting methods involve non-linear estimation, 
selecting either of these methods will enable the Optimization and Covariance method 
options:
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The Optimization method dropdown menu offers standard EViews optimization settings, 
with the exception of the default Hybrid Optimization method. This method is a combina-
tion of the OPG and BFGS methods, where OPG is used for an initial 50 iterations, then 
BFGS is used until convergence. We have found that the hybrid method often reaches con-
vergence more successfully than OPG or BFGS alone.

For the nonlinear models, you may elect to have EViews obtain starting values, or you may 
specify your own. 

For the exponential Almon method, EViews sets  and , then runs OLS with 
those values to obtain the remaining starting values. For beta weighting, EViews sets 

, , and , then runs OLS to obtain the remaining values. Then, if not 
performing shape restricted estimation, EViews updates the starting values by estimating a 
shape restricted beta weight model.

The Frequency Conversion Options button produces a secondary dialog that allows you to 
change the way the different frequencies of the variables are matched. By default, EViews 
uses the last observation in the higher frequency periods as the 0th lag in the regression. You 
can change this to instruct EViews to use the first observation, or to use arbitrary date series 
from each page to perform the date matching.
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An Example

As an example of using MIDAS regression in EViews, we analyze data used by Armesto, 
Engemann, and Owyang (2010). The data consists of log-differenced, seasonally adjusted 
quarterly real GDP between 1947 and 2011 and log-differenced monthly total non-farm pay-
roll employment from 1939 to 2011. These data are in the workfile “Midas.WF1” with the 
real GDP data in series REALGDP on page “QuarterlyPage”, and the employment data in 
series EMP on page “MonthlyPage”.

Beta Weighting

We estimate a MIDAS model with real GDP as the dependent variable and a lagged value of 
real GDP as a regressor. Only data between 1985 and 2009q1 are used. Monthly employment 
with 9 lags is used as a set of higher-frequency regressors. The employment data lags are off-
set by 5 months (i.e., to explain Quarter 1 real GDP, employment data from the previous 
year’s February through October are used). 

We use the beta weighting method, while restricting the endpoints coefficient  to be zero. 
The following dialog settings reflect this equation specification:

and the associated options

v3
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The results of this estimation are given by
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The top portion of the output describes the estimation sample, MIDAS method, and other 
estimation settings. Here we see that beta weighting with restricted endpoints ( ). 
Estimation uses the hybrid method of initial OPG iterations followed by BFGS estimation, 
with the coefficient covariance computed using the inverse of the negative Hessian.

The first section displays coefficients, standard errors, and t-statistics for the low frequency 
regressors. These results show standard regression output.

Next, we display the results for the high frequency variables. First, we describe the page and 
name of the variable and the number lags  used in the low frequency regression. Here, we 
are using EMP(-5) from the “monthlypage” and allowing for 9 high frequency lags of this 
variable in the low frequency regression.

The coefficient results for the common SLOPE coefficient ( ) and the free MIDAS beta 
weight coefficients ( ) are displayed directly below. 
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First, we see that monthly EMP(-5) has an overall positive effect on REALGDP as the SLOPE 
coefficient is a statistically significant 1.91.

The actual lag coefficients are obtained by applying weights to this overall slope. The shape 
of the weight function is determined by the remaining MIDAS coefficients. The  coeffi-
cient, labeled BETA01, is very close to 1, so that the lag pattern depends primarily on 
BETA02 ( ). 

The large positive estimate of , is statistically different from 1, and value of 6.62, implies 
that the lag pattern is sharply decreasing as shown in the lag coefficient graph at the bottom 
of the output. We conclude that the coefficient that the zero high frequency lag of employ-
ment has a large impact on real GDP, but the effect dies off pretty quickly.

The endpoint coefficient  has been restricted to be zero so that it does not appear in the 
output.

The remaining output consists of the standard summary statistics and diagnostics.

To continue our example, we wish to perform a static forecast over the period after the esti-
mation sample (2009q2) to the end of the workfile (2011q2). To forecast from our MIDAS 
equation, we do so in the usual manner, by first clicking the Forecast button:

and filling out the resulting dialog with the appropriate settings. Clicking on OK performs 
the forecast:

v1

v2

v2

v3
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Almon Weighting

As a second example we will estimate the same model, but this time using the Almon 
weighting method, with a second degree polynomial, and we instruct EViews to select the 
most appropriate number of lags for employment (up to a maximum of 12):

 and 



328—Chapter 28. Midas Regression
Clicking on OK estimates the specified equation, and displays the results:
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As with the beta weighting model estimated above, the overall effect of high frequency 
EMP(-5) on REALGDP is positive and decreasing in the lags. However, in contrast with the 
beta weights estimates, the Almon weights lag coefficients do not decline sharply; in fact, 
the pattern appears to be roughly linear.

Note that the MIDAS variable description line shows that EViews chose 7 as the most appro-
priate high frequency lag length. Clicking on View/Model Selection/Criteria Graph dis-
plays a graph of the sum of squared residuals from each of the different lag selections:
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offering clear evidenced that 7 is the optimal lag.
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Chapter 29.  Discrete and Limited Dependent Variable 
Models

The regression methods described in Chapter 19. “Basic Regression Analysis” require that 
the dependent variable be observed on a continuous and unrestricted scale. It is quite com-
mon, however, for this condition to be violated, resulting in a non-continuous, or a limited 
dependent variable. We will distinguish between three types of these variables:

• qualitative (observed on a discrete or ordinal scale)

• censored or truncated

• integer valued

In this chapter, we discuss estimation methods for several qualitative and limited dependent 
variable models. EViews provides estimation routines for binary or ordered (probit, logit, 
gompit), censored or truncated (tobit, etc.), and integer valued (count data) models.

EViews offers related tools for estimation of a number of these models under the GLM 
framework (see Chapter 30. “Generalized Linear Models,” beginning on page 391). In some 
cases, the GLM tools are more general than those provided here; in other cases, they are 
more restrictive. 

Standard introductory discussion for the models presented in this chapter may be found in 
Greene (2008), Johnston and DiNardo (1997), and Maddala (1983). Wooldridge (1997) pro-
vides an excellent reference for quasi-likelihood methods and count models. 

Binary Dependent Variable Models

In this class of models, the dependent variable,  may take on only two values—  might 
be a dummy variable representing the occurrence of an event, or a choice between two alter-
natives. For example, you may be interested in modeling the employment status of each 
individual in your sample (whether employed or not). The individuals differ in age, educa-
tional attainment, race, marital status, and other observable characteristics, which we 
denote as . The goal is to quantify the relationship between the individual characteristics 
and the probability of being employed.

Background

Suppose that a binary dependent variable, , takes on values of zero and one. A simple lin-
ear regression of  on  is not appropriate, since among other things, the implied model of 
the conditional mean places inappropriate restrictions on the residuals of the model. Fur-
thermore, the fitted value of  from a simple linear regression is not restricted to lie 
between zero and one. 

y y

x

y
y x

y
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Instead, we adopt a specification that is designed to handle the specific requirements of 
binary dependent variables. Suppose that we model the probability of observing a value of 
one as: 

, (29.1)

where  is a continuous, strictly increasing function that takes a real value and returns a 
value ranging from zero to one. In this, and the remaining discussion in this chapter follows 
we adopt the standard simplifying convention of assuming that the index specification is lin-
ear in the parameters so that it takes the form . Note, however, that EViews allows you 
to estimate models with nonlinear index specifications.

The choice of the function  determines the type of binary model. It follows that:

. (29.2)

Given such a specification, we can estimate the parameters of this model using the method 
of maximum likelihood. The likelihood function is given by:

. (29.3)

The first order conditions for this likelihood are nonlinear so that obtaining parameter esti-
mates requires an iterative solution. By default, EViews uses a second derivative method for 
iteration and computation of the covariance matrix of the parameter estimates. As discussed 
below, EViews allows you to override these defaults using the Options dialog (see “Second 
Derivative Methods” on page 1095 for additional details on the estimation methods). 

There are two alternative interpretations of this specification that are of interest. First, the 
binary model is often motivated as a latent variables specification. Suppose that there is an 
unobserved latent variable  that is linearly related to :

(29.4)

where  is a random disturbance. Then the observed dependent variable is determined by 
whether  exceeds a threshold value:

(29.5)

In this case, the threshold is set to zero, but the choice of a threshold value is irrelevant, so 
long as a constant term is included in . Then:

 (29.6)
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where  is the cumulative distribution function of . Common models include probit 
(standard normal), logit (logistic), and gompit (extreme value) specifications for the  
function.

In principle, the coding of the two numerical values of  is not critical since each of the 
binary responses only represents an event. Nevertheless, EViews requires that you code  
as a zero-one variable. This restriction yields a number of advantages. For one, coding the 
variable in this fashion implies that expected value of  is simply the probability that 

: 

(29.7)

This convention provides us with a second interpretation of the binary specification: as a 
conditional mean specification. It follows that we can write the binary model as a regression 
model:

, (29.8)

where  is a residual representing the deviation of the binary  from its conditional mean. 
Then:

(29.9)

We will use the conditional mean interpretation in our discussion of binary model residuals 
(see “Make Residual Series” on page 345).

Estimating Binary Models in EViews

To estimate a binary dependent variable model, choose Object/New Object… from the main 
menu and select the Equation object from the main menu. From the Equation Specification 
dialog, select the BINARY - Binary Choice (Logit, Probit, Extreme Value) estimation 
method. The dialog will change to reflect your choice. Alternately, enter the keyword 
binary in the command line and press ENTER.

There are two parts to the binary model specification. First, in the Equation Specification 
field, you may type the name of the binary dependent variable followed by a list of regres-
sors or you may enter an explicit expression for the index. Next, select from among the three 
distributions for your error term: 
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For example, consider the probit specification example described in Greene (2008, p. 781-
783) where we analyze the effectiveness of teaching methods on grades. The variable 
GRADE represents improvement on grades following exposure to the new teaching method 
PSI (the data are provided in the workfile “Binary.WF1”). Also controlling for alternative 
measures of knowledge (GPA and TUCE), we have the specification:

Once you have specified the model, click OK. EViews estimates the parameters of the model 
using iterative procedures, and will display information in the status line. EViews requires 

Probit

where  is the cumulative distribution function of the stan-
dard normal distribution.

Logit

which is based upon the cumulative distribution function for 
the logistic distribution.

Extreme value 
(Gompit)

which is based upon the CDF for the Type-I extreme value dis-
tribution. Note that this distribution is skewed.
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that the dependent variable be coded with the values zero-one with all other observations 
dropped from the estimation.

Following estimation, EViews displays results in the equation window. The top part of the 
estimation output is given by:

The header contains basic information regarding the estimation technique (ML for maxi-
mum likelihood) and the sample used in estimation, as well as information on the number 
of iterations required for convergence, and on the method used to compute the coefficient 
covariance matrix.

Displayed next are the coefficient estimates, asymptotic standard errors, z-statistics and cor-
responding p-values. 

Interpretation of the coefficient values is complicated by the fact that estimated coefficients 
from a binary model cannot be interpreted as the marginal effect on the dependent variable. 
The marginal effect of  on the conditional probability is given by:

, (29.10)

where  is the density function corresponding to . Note that  is 
weighted by a factor  that depends on the values of all of the regressors in . The direction 
of the effect of a change in  depends only on the sign of the  coefficient. Positive values 
of  imply that increasing  will increase the probability of the response; negative values 
imply the opposite.

While marginal effects calculation is not provided as a built-in view or procedure, in “Fore-
cast” on page 345, we show you how to use EViews to compute the marginal effects.

An alternative interpretation of the coefficients results from noting that the ratios of coeffi-
cients provide a measure of the relative changes in the probabilities:

Dependent Variable: GRADE   
Method: ML - Binary Probit  (BFGS / Marquardt steps)  
Date: 03/09/15   Time: 15:54   
Sample: 1 32    
Included observations: 32   
Convergence achieved after 23 iterations   
Coefficient covariance computed using observed Hessian  

Variable Coefficient Std. Error z-Statistic Prob.   

C -7.452320 2.542472 -2.931131 0.0034 
GPA 1.625810 0.693882 2.343063 0.0191 

TUCE 0.051729 0.083890 0.616626 0.5375 
PSI 1.426332 0.595038 2.397045 0.0165 
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. (29.11)

In addition to the summary statistics of the dependent variable, EViews also presents the fol-
lowing summary statistics:

First, there are several familiar summary descriptive statistics: the mean and standard devia-
tion of the dependent variable, standard error of the regression, and the sum of the squared 
residuals. The latter two measures are computed in the usual fashion using the ordinary 
residuals:

(29.12)

Additionally, there are several likelihood based statistics:

• Log likelihood is the maximized value of the log likelihood function .

• Avg. log likelihood is the log likelihood  divided by the number of observations 
.

• Restr. log likelihood is the maximized log likelihood value, when all slope coeffi-
cients are restricted to zero, . Since the constant term is included, this specifica-
tion is equivalent to estimating the unconditional mean probability of “success”.

• The LR statistic tests the joint null hypothesis that all slope coefficients except the 
constant are zero and is computed as . This statistic, which is only 
reported when you include a constant in your specification, is used to test the overall 
significance of the model. The degrees of freedom is one less than the number of coef-
ficients in the equation, which is the number of restrictions under test.

• Probability(LR stat) is the p-value of the LR test statistic. Under the null hypothesis, 
the LR test statistic is asymptotically distributed as a variable, with degrees of free-
dom equal to the number of restrictions under test. 

• McFadden R-squared is the likelihood ratio index computed as , 
where  is the restricted log likelihood. As the name suggests, this is an analog to 
the  reported in linear regression models. It has the property that it always lies 
between zero and one.
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• The various information criteria are detailed in Appendix E. “Information Criteria,” 
beginning on page 1111. For additional discussion, see Grasa (1989). 

Estimation Options

The iteration limit, convergence criterion, and coefficient name may be set in the usual fash-
ion by clicking on the Options tab in the Equation Estimation dialog. In addition, there are 
options that are specific to binary models. These options are described below.

Optimization

By default, EViews uses Newton-Raphson with Marquardt steps to obtain parameter esti-
mates.

If you wish, you can use the Optimization method dropdown menu to select a different 
method. In addition to Newton-Raphson, you may select BFGS, OPG - BHHH, or EViews 
legacy. 

For non-legacy estimation, the Step method may be chosen between Marquardt, Dogleg, 
and Line search. For legacy estimation the Legacy method is set to the default Quadratic 
hill climbing (Marquardt steps) or BHHH (line search). 

Note that for legacy estimation, the default optimization algorithm does influence the 
default method of computing coefficient covariances.

See “Optimization Method” on page 1090 and “Technical Notes” on page 387 for discussion.

Coefficient Covariances

For binary dependent variable models, EViews allows you to estimate the standard errors 
using the default (inverse of the estimated information matrix), quasi-maximum likelihood 
(Huber/White) or generalized linear model (GLM) methods.

In addition, for ordinary and GLM covariances, you may choose to compute the information 
matrix estimate using the outer-product of the gradients (OPG) or using the negative of the 
matrix of log-likelihood second derivatives (Hessian - observed).

You may elect to compute your covariances with or without a d.f. Adjustment.

Note that for legacy estimation, the default algorithm does influence the default method of 
computing coefficient covariances.

See “Technical Notes” on page 387 for discussion.

Starting Values

As with other estimation procedures, EViews allows you to specify starting values. In the 
options menu, select one of the items from the dropdown menu. You can use the default 
EViews values, or you can choose a fraction of those values, zero coefficients, or user sup-
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plied values. To employ the latter, enter the coefficients in the C coefficient vector, and select 
User Supplied in the dropdown menu.

The EViews default values are selected using a algorithm that is specialized for each type of 
binary model. Unless there is a good reason to choose otherwise, we recommend that you 
use the default values.

Estimation Problems

In general, estimation of binary models is quite straightforward, and you should experience 
little difficulty in obtaining parameter estimates. There are a few situations, however, where 
you may experience problems.

First, you may get the error message “Dependent variable has no variance.” This error 
means that there is no variation in the dependent variable (the variable is always one or 
zero for all valid observations). This error most often occurs when EViews excludes the 
entire sample of observations for which  takes values other than zero or one, leaving too 
few observations for estimation.

You should make certain to recode your data so that the binary indicators take the values 
zero and one. This requirement is not as restrictive at it may first seem, since the recoding 
may easily be done using auto-series. Suppose, for example, that you have data where  
takes the values 1000 and 2000. You could then use the boolean auto-series, “y=1000”, or 
perhaps, “y<1500”, as your dependent variable.

Second, you may receive an error message of the form “[xxxx] perfectly predicts binary 
response [success/failure]”, where xxxx is a sample condition. This error occurs when one 
of the regressors contains a separating value for which all of the observations with values 
below the threshold are associated with a single binary response, and all of the values above 
the threshold are associated with the alternative response. In this circumstance, the method 
of maximum likelihood breaks down.

For example, if all values of the explanatory variable  are associated with , then 
 is a perfect predictor of the dependent variable, and EViews will issue an error message 

and stop the estimation procedure.

The only solution to this problem is to remove the offending variable from your specifica-
tion. Usually, the variable has been incorrectly entered in the model, as when a researcher 
includes a dummy variable that is identical to the dependent variable (for discussion, see 
Greene, 2008).

Thirdly, you may experience the error, “Non-positive likelihood value observed for observa-
tion [xxxx].” This error most commonly arises when the starting values for estimation are 
poor. The default EViews starting values should be adequate for most uses. You may wish to 

y

y

x 0 y 1
x
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check the Options dialog to make certain that you are not using user specified starting val-
ues, or you may experiment with alternative user-specified values.

Lastly, the error message “Near-singular matrix” indicates that EViews was unable to invert 
the matrix required for iterative estimation. This will occur if the model is not identified. It 
may also occur if the current parameters are far from the true values. If you believe the latter 
to be the case, you may wish to experiment with starting values or the estimation algorithm. 
The BHHH and quadratic hill-climbing algorithms are less sensitive to this particular prob-
lem than is Newton-Raphson.

Views of Binary Equations

EViews provides a number of standard views and procedures for binary models. For exam-
ple, you can easily perform Wald or likelihood ratio tests by selecting View/Coefficient 
Diagnostics, and then choosing the appropriate test. In addition, EViews allows you to 
examine and perform tests using the residuals from your model. The ordinary residuals used 
in most calculations are described above—additional residual types are defined below. Note 
that some care should be taken in interpreting test statistics that use these residuals since 
some of the underlying test assumptions may not be valid in the current setting.

There are a number of additional specialized views 
and procedures which allow you to examine the 
properties and performance of your estimated binary 
model.

Dependent Variable Frequencies

This view displays a frequency and cumulative fre-
quency table for the dependent variable in the binary 
model.

Categorical Regressor Stats 

This view displays descriptive statistics (mean and 
standard deviation) for each regressor. The descrip-
tive statistics are computed for the whole sample, as well as the sample broken down by the 
value of the dependent variable :y
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Expectation-Prediction (Classification) Table 

This view displays  tables of correct and incorrect classification based on a user speci-
fied prediction rule, and on expected value calculations. Click on View/Expectation-Predic-
tion Table. EViews opens a dialog prompting you to specify a prediction cutoff value, , 
lying between zero and one. Each observation will be classified as having a predicted proba-
bility that lies above or below this cutoff. 

After you enter the cutoff value and click on OK, EViews will display four (bordered)  
tables in the equation window. Each table corresponds to a contingency table of the pre-
dicted response classified against the observed dependent variable. The top two tables and 
associated statistics depict the classification results based upon the specified cutoff value:

Categorical Descriptive Statistics for Explanatory Variables 
Equation: EQ_PROBIT   
Date: 03/09/15   Time: 16:14  

  Mean  
Variable Dep=0 Dep=1 All 

C  1.000000  1.000000  1.000000 
GPA  2.951905  3.432727  3.117188 

TUCE  21.09524  23.54545  21.93750 
PSI  0.285714  0.727273  0.437500 

  
Standard 
Deviation  

Variable Dep=0 Dep=1 All 

C  0.000000  0.000000  0.000000 
GPA  0.357220  0.503132  0.466713 

TUCE  3.780275  3.777926  3.901509 
PSI  0.462910  0.467099  0.504016 

Observations  21  11  32 

2 2

p

2 2
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In the left-hand table, we classify observations as having predicted probabilities 
that are above or below the specified cutoff value (here set to the 

default of 0.5). In the upper right-hand table, we classify observations using , the sample 
proportion of  observations. This probability, which is constant across individuals, is 
the value computed from estimating a model that includes only the intercept term, C.

“Correct” classifications are obtained when the predicted probability is less than or equal to 
the cutoff and the observed , or when the predicted probability is greater than the 
cutoff and the observed . In the example above, 18 of the Dep=0 observations and 8 
of the Dep=1 observations are correctly classified by the estimated model.

It is worth noting that in the statistics literature, what we term the expectation-prediction 
table is sometimes referred to as the classification table. The fraction of  observations 
that are correctly predicted is termed the sensitivity, while the fraction of  observa-
tions that are correctly predicted is known as specificity. In EViews, these two values, 
expressed in percentage terms, are labeled “% Correct”. Overall, the estimated model cor-
rectly predicts 81.25% of the observations (85.71% of the Dep=0 and 72.73% of the Dep=1 
observations).

The gain in the number of correct predictions obtained in moving from the right table to the 
left table provides a measure of the predictive ability of your model. The gain measures are 
reported in both absolute percentage increases (Total Gain), and as a percentage of the 
incorrect classifications in the constant probability model (Percent Gain). In the example 
above, the restricted model predicts that all 21 individuals will have Dep=0. This prediction 
is correct for the 21  observations, but is incorrect for the 11  observations. 

The estimated model improves on the Dep=1 predictions by 72.73 percentage points, but 
does more poorly on the Dep=0 predictions (-14.29 percentage points). Overall, the esti-

Expectation-Prediction Evaluation for Binary 
Specification   
Equation: EQ_PROBIT     
Date: 03/09/15   Time: 16:15
Success cutoff: C = 0.5     

            Estimated Equation            Constant Probability 
 Dep=0 Dep=1 Total Dep=0 Dep=1 Total 

P(Dep=1)<=C 18 3 21 21 11 32 
P(Dep=1)>C 3 8 11 0 0 0 

Total 21 11 32 21 11 32 
Correct 18 8 26 21 0 21 

% Correct 85.71 72.73 81.25 100.00 0.00 65.63 
% Incorrect 14.29 27.27 18.75 0.00 100.00 34.38 
Total Gain* -14.29 72.73 15.63    

Percent 
Gain** NA 72.73 45.45    
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mated equation is 15.62 percentage points better at predicting responses than the constant 
probability model. This change represents a 45.45 percent improvement over the 65.62 per-
cent correct prediction of the default model.

The bottom portion of the equation window contains analogous prediction results based 
upon expected value calculations:

In the left-hand table, we compute the expected number of  and  observa-
tions in the sample. For example, E(# of Dep=0) is computed as:

, (29.13)

where the cumulative distribution function  is for the normal, logistic, or extreme value 
distribution. 

In the lower right-hand table, we compute the expected number of  and  
observations for a model estimated with only a constant. For this restricted model, E(# of 
Dep=0) is computed as , where  is the sample proportion of  observa-
tions. EViews also reports summary measures of the total gain and the percent (of the incor-
rect expectation) gain.

Among the 21 individuals with , the expected number of  observations in the 
estimated model is 16.89. Among the 11 observations with , the expected number of 

 observations is 6.86. These numbers represent roughly a 19.32 percentage point 
(42.82 percent) improvement over the constant probability model.

Goodness-of-Fit Tests

This view allows you to perform Pearson -type tests of goodness-of-fit. EViews carries out 
two goodness-of-fit tests: Hosmer-Lemeshow (1989) and Andrews (1988a, 1988b). The idea 
underlying these tests is to compare the fitted expected values to the actual values by group. 
If these differences are “large”, we reject the model as providing an insufficient fit to the 
data.

            Estimated Equation            Constant Probability 
 Dep=0 Dep=1 Total Dep=0 Dep=1 Total

E(# of Dep=0) 16.89 4.14 21.03 13.78 7.22 21.00
E(# of Dep=1) 4.11 6.86 10.97 7.22 3.78 11.00

Total 21.00 11.00 32.00 21.00 11.00 32.00
Correct 16.89 6.86 23.74 13.78 3.78 17.56

% Correct 80.42 62.32 74.20 65.63 34.38 54.88
% Incorrect 19.58 37.68 25.80 34.38 65.63 45.12
Total Gain* 14.80 27.95 19.32    

Percent Gain** 43.05 42.59 42.82    
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Details on the two tests are described in the “Tech-
nical Notes” on page 387. Briefly, the tests differ 
in how the observations are grouped and in the 
asymptotic distribution of the test statistic. The 
Hosmer-Lemeshow test groups observations on 
the basis of the predicted probability that . 
The Andrews test is a more general test that 
groups observations on the basis of any series or 
series expression.

To carry out the test, select View/Goodness-of-Fit 
Test… 

You must first decide on the grouping variable. 
You can select Hosmer-Lemeshow (predicted prob-
ability) grouping by clicking on the corresponding radio button, or you can select series 
grouping, and provide a series to be used in forming the groups. 

Next, you need to specify the grouping rule. EViews allows you to group on the basis of 
either distinct values or quantiles of the grouping variable. 

If your grouping variable takes relatively few distinct values, you should choose the Distinct 
values grouping. EViews will form a separate group for each distinct value of the grouping 
variable. For example, if your grouping variable is TUCE, EViews will create a group for each 
distinct TUCE value and compare the expected and actual numbers of  observations 
in each group. By default, EViews limits you to 100 distinct values. If the distinct values in 
your grouping series exceeds this value, EViews will return an error message. If you wish to 
evaluate the test for more than 100 values, you must explicitly increase the maximum num-
ber of distinct values. 

If your grouping variable takes on a large number of distinct values, you should select 
Quantiles, and enter the number of desired bins in the edit field. If you select this method, 
EViews will group your observations into the number of specified bins, on the basis of the 
ordered values of the grouping series. For example, if you choose to group by TUCE, select 
Quantiles, and enter 10, EViews will form groups on the basis of TUCE deciles.

If you choose to group by quantiles and there are ties in the grouping variable, EViews may 
not be able to form the exact number of groups you specify unless tied values are assigned 
to different groups. Furthermore, the number of observations in each group may be very 
unbalanced. Selecting the randomize ties option randomly assigns ties to adjacent groups in 
order to balance the number of observations in each group. 

y 1

y 1
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Since the properties of the test statistics require that the number of observations in each 
group is “large”, some care needs to be taken in selecting a rule so that you do not end up 
with a large number of cells, each containing small numbers of observations.

By default, EViews will perform the test using Hosmer-Lemeshow grouping. The default 
grouping method is to form deciles. The test result using the default specification is given 
by:

The columns labeled “Quantiles of Risk” depict the high and low value of the predicted 
probability for each decile. Also depicted are the actual and expected number of observa-
tions in each group, as well as the contribution of each group to the overall Hosmer-Leme-
show (H-L) statistic—large values indicate large differences between the actual and 
predicted values for that decile. 

The statistics are reported at the bottom of the table. Since grouping on the basis of the 
fitted values falls within the structure of an Andrews test, we report results for both the H-L 
and the Andrews test statistic. The p-value for the HL test is large while the value for the 
Andrews test statistic is small, providing mixed evidence of problems. Furthermore, the rela-
tively small sample sizes suggest that caution is in order in interpreting the results.

Goodness-of-Fit Evaluation for Binary Specification   
Andrews and Hosmer-Lemeshow Tests 
Equation: EQ_PROBIT       
Date: 03/09/15   Time: 16:16  
Grouping based upon predicted risk (randomize ties) 

     Quantile of Risk Dep=0 Dep=1 Total H-L 
 Low High Actual Expect Actual Expect Obs Value 

1 0.0161 0.0185 3 2.94722 0 0.05278 3 0.05372 
2 0.0186 0.0272 3 2.93223 0 0.06777 3 0.06934 
3 0.0309 0.0457 3 2.87888 0 0.12112 3 0.12621 
4 0.0531 0.1088 3 2.77618 0 0.22382 3 0.24186 
5 0.1235 0.1952 2 3.29779 2 0.70221 4 2.90924 
6 0.2732 0.3287 3 2.07481 0 0.92519 3 1.33775 
7 0.3563 0.5400 2 1.61497 1 1.38503 3 0.19883 
8 0.5546 0.6424 1 1.20962 2 1.79038 3 0.06087 
9 0.6572 0.8342 0 0.84550 3 2.15450 3 1.17730 

10 0.8400 0.9522 1 0.45575 3 3.54425 4 0.73351 

  Total 21 21.0330 11 10.9670 32 6.90863 

H-L Statistic 6.9086  Prob. Chi-Sq(8) 0.5465
Andrews Statistic 20.6045  Prob. Chi-Sq(10) 0.0240  

x
2
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Procedures for Binary Equations

In addition to the usual procedures for equations, EViews allows you to forecast the depen-
dent variable and linear index, or to compute a variety of residuals associated with the 
binary model.

Forecast

EViews allows you to compute either the fitted probability, , or the fit-
ted values of the index . From the equation toolbar select Proc/Forecast (Fitted Proba-
bility/Index)…, and then click on the desired entry.

As with other estimators, you can select a forecast sample, and display a graph of the fore-
cast. If your explanatory variables, , include lagged values of the binary dependent vari-
able , forecasting with the Dynamic option instructs EViews to use the fitted values 

, to derive the forecasts, in contrast with the Static option, which uses the actual 
(lagged) .

Neither forecast evaluations nor automatic calculation of standard errors of the forecast are 
currently available for this estimation method. The latter can be computed using the vari-
ance matrix of the coefficients obtained by displaying the covariance matrix view using 
View/Covariance Matrix or using the @covariance member function.

You can use the fitted index in a variety of ways, for example, to compute the marginal 
effects of the explanatory variables. Simply forecast the fitted index and save the results in a 
series, say XB. Then the auto-series @dnorm(-xb), @dlogistic(-xb), or @dextreme(-
xb) may be multiplied by the coefficients of interest to provide an estimate of the deriva-
tives of the expected value of  with respect to the j-th variable in :

. (29.14)

Make Residual Series 

Proc/Make Residual Series gives you the option of generating one of the following three 
types of residuals:

Ordinary

Standardized

Generalized
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where  is the fitted probability, and the distribution and density func-
tions  and , depend on the specified distribution.

The ordinary residuals have been described above. The standardized residuals are simply 
the ordinary residuals divided by an estimate of the theoretical standard deviation. The gen-
eralized residuals are derived from the first order conditions that define the ML estimates. 
The first order conditions may be regarded as an orthogonality condition between the gener-
alized residuals and the regressors .

. (29.15)

This property is analogous to the orthogonality condition between the (ordinary) residuals 
and the regressors in linear regression models.

The usefulness of the generalized residuals derives from the fact that you can easily obtain 
the score vectors by multiplying the generalized residuals by each of the regressors in . 
These scores can be used in a variety of LM specification tests (see Chesher, Lancaster and 
Irish (1985), and Gourieroux, Monfort, Renault, and Trognon (1987)). We provide an exam-
ple below.

Demonstrations

You can easily use the results of a binary model in additional analysis. Here, we provide 
demonstrations of using EViews to plot a probability response curve and to test for het-
eroskedasticity in the residuals.

Plotting Probability Response Curves

You can use the estimated coefficients from a binary model to examine how the predicted 
probabilities vary with an independent variable. To do so, we will use the EViews built-in 
modeling features. (The following discussion skims over many of the useful features of 
EViews models. Those wishing greater detail should consult Chapter 42. “Models,” begin-
ning on page 781.)

For the probit example above, suppose we are interested in the effect of teaching method 
(PSI) on educational improvement (GRADE). We wish to plot the fitted probabilities of 
GRADE improvement as a function of GPA for the two values of PSI, fixing the values of 
other variables at their sample means.
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First, we create a model out 
of the estimated equation by 
selecting Proc/Make Model 
from the equation toolbar. 
EViews will create an untitled 
model object linked to the 
estimated equation and will 
open the model window.

What we will do is to use the 
model to solve for values of 
the probabilities for various values of GPA, with TUCE equal to the mean value, and PSI 
equal to 0 in one case, and PSI equal to 1 in a second case. We will define scenarios in the 
model so that calculations are performed using the desired values. Click on the Scenarios 
button on the model toolbar to display the Scenario Specification dialog and click on Sce-
nario 1 to define the settings for that scenario.

The Scenario Specification dialog allows us to define a set of assumptions under which we 
will solve the model. Click on the Overrides tab and enter “GPA PSI TUCE”. Defining these 
overrides tells EViews to use the values in the series GPA_1, PSI_1, and TUCE_1 instead of 
the original GPA, PSI, and TUCE when solving for GRADE under Scenario 1. 

Having defined the first scenario, we must create the series GPA_1, PSI_1 and TUCE_1 in 
our workfile. We wish to use these series to evaluate the GRADE probabilities for various 
values of GPA holding TUCE equal to its mean value and PSI equal to 0. 
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First, we will use the command line to fill GPA_1 with a grid of values ranging from 2 to 4. 
The easiest way to do this is to use the @trend function:

series gpa_1 = 2+(4-2)*@trend/(@obs(@trend)-1)

Recall that @trend creates a series that begins at 0 in the first observation of the sample, 
and increases by 1 for each subsequent observation, up through @obs-1. 

Next we create series TUCE_1 containing the mean values of TUCE and a series PSI_1 which 
we set to zero:

series tuce_1 = @mean(tuce)

series psi_1 = 0

Having prepared our data for the first scenario, we will now use the model object to define 
an alternate scenario where PSI=1. Return to the Select Scenario tab, select Copy Scenario, 
then select Scenario 1 as the Source, and New Scenario as the Destination. Copying Sce-
nario 1 creates a new scenario, Scenario 2, that instructs EViews to use the values in the 
series GPA_2, PSI_2, and TUCE_2 when solving for GRADE. These values are initialized 
from the corresponding Scenario 1 series defined previously. We then set PSI_2 equal to 1 by 
issuing the command

series psi_2 = 1

We are now ready to solve the model under the two scenarios. Click on the Solve button and 
set the Active solution scenario to Scenario 1 and the Alternate solution scenario to Sce-
nario 2. Be sure to click on the checkbox Solve for Alternate along with Active so that 
EViews knows to solve for both. You can safely ignore the remaining solution settings and 
simply click on OK.

EViews will report that your model has solved successfully and will place the solutions in 
the series GRADE_1 and GRADE_2, respectively. To display the results, select Object/New 
Object.../Group, and enter:

 gpa_1 grade_1 grade_2

EViews will open an untitled group window containing these three series. Select View/
Graph/XY line to display a graph of the fitted GRADE probabilities plotted against GPA for 
those with PSI=0 (GRADE_1) and with PSI=1 (GRADE_2), both computed with TUCE 
evaluated at means.
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We have annotated the graph slightly so that you can better judge the effect of the new 
teaching methods (PSI) on the probability of grade improvement for various values of the 
student’s GPA. 

Testing for Heteroskedasticity

As an example of specification tests for binary dependent variable models, we carry out the 
LM test for heteroskedasticity using the artificial regression method described by Davidson 
and MacKinnon (1993, section 15.4). We test the null hypothesis of homoskedasticity 
against the alternative of heteroskedasticity of the form:

, (29.16)

where  is an unknown parameter. In this example, we take PSI as the only variable in . 
The test statistic is the explained sum of squares from the regression:

, (29.17)

which is asymptotically distributed as a with degrees of freedom equal to the number of 
variables in  (in this case 1).

To carry out the test, we first retrieve the fitted probabilities  and fitted index . Click 
on the Forecast button and first save the fitted probabilities as P_HAT and then the index as 
XB (you will have to click Forecast twice to save the two series). 
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Next, the dependent variable in the test regression may be obtained as the standardized 
residual. Select Proc/Make Residual Series… and select Standardized Residual. We will 
save the series as BRMR_Y.

Lastly, we will use the built-in EViews functions for evaluating the normal density and 
cumulative distribution function to create a group object containing the independent vari-
ables:

series fac=@dnorm(-xb)/@sqrt(p_hat*(1-p_hat))

group brmr_x fac (gpa*fac) (tuce*fac) (psi*fac)

Then run the artificial regression by clicking on Quick/Estimate Equation…, selecting 
Least Squares, and entering:

brmr_y brmr_x (psi*(-xb)*fac)

You can obtain the fitted values by clicking on the Forecast button in the equation toolbar of 
this artificial regression. The LM test statistic is the sum of squares of these fitted values. If 
the fitted values from the artificial regression are saved in BRMR_YF, the test statistic can be 
saved as a scalar named LM_TEST:

scalar lm_test=@sumsq(brmr_yf) 

which contains the value 1.5408. You can compare the value of this test statistic with the 
critical values from the chi-square table with one degree of freedom. To save the p-value as 
a scalar, enter the command:

scalar p_val=1-@cchisq(lm_test,1)

To examine the value of LM_TEST or P_VAL, double click on the name in the workfile win-
dow; the value will be displayed in the status line at the bottom of the EViews window. The 
p-value in this example is roughly 0.21, so we have little evidence against the null hypothe-
sis of homoskedasticity. 

Ordered Dependent Variable Models

EViews estimates the ordered-response model of Aitchison and Silvey (1957) under a variety 
of assumptions about the latent error distribution. In ordered dependent variable models, 
the observed  denotes outcomes representing ordered or ranked categories. For example, 
we may observe individuals who choose between one of four educational outcomes: less 
than high school, high school, college, advanced degree. Or we may observe individuals 
who are employed, partially retired, or fully retired.

As in the binary dependent variable model, we can model the observed response by consid-
ering a latent variable  that depends linearly on the explanatory variables :

(29.18)
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where is  are independent and identically distributed random variables. The observed  
is determined from  using the rule:

(29.19)

It is worth noting that the actual values chosen to represent the categories in  are com-
pletely arbitrary. All the ordered specification requires is for ordering to be preserved so that 

 implies that .

It follows that the probabilities of observing each value of  are given by

(29.20)

where  is the cumulative distribution function of . 

The threshold values  are estimated along with the  coefficients by maximizing the log 
likelihood function: 

(29.21)

where  is an indicator function which takes the value 1 if the argument is true, and 0 if 
the argument is false. By default, EViews uses analytic second derivative methods to obtain 
parameter and variance matrix of the estimated coefficient estimates (see “Quadratic hill-
climbing (Goldfeld-Quandt)” on page 1096).

Estimating Ordered Models in EViews

Suppose that the dependent variable DANGER is an index ordered from 1 (least dangerous 
animal) to 5 (most dangerous animal). We wish to model this ordered dependent variable as 
a function of the explanatory variables, BODY, BRAIN and SLEEP. Note that the values that 
we have assigned to the dependent variable are not relevant, only the ordering implied by 
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those values. EViews will estimate an identical model if the dependent variable is recorded 
to take the values 1, 2, 3, 4, 5 or 10, 234, 3243, 54321, 123456.

(The data, which are from Allison, Truett, and D.V. Cicchetti (1976).“Sleep in Mammals: 
Ecological and Constitutional Correlates,” Science, 194, 732-734, are available in the 
“Order.WF1” dataset. A more complete version of the data may be obtained from StatLib: 
http://lib.stat.cmu.edu/datasets/sleep).

To estimate this model, select Quick/Estimate Equation… from the main menu. From the 
Equation Estimation dialog, select estimation method ORDERED. The standard estimation 
dialog will change to match this specification.

There are three parts to specifying an ordered variable model: the equation specification, the 
error specification, and the sample specification. First, in the Equation specification field, 
you should type the name of the ordered dependent variable followed by the list of your 
regressors, or you may enter an explicit expression for the index. In our example, you will 
enter:

danger body brain sleep

Also keep in mind that:

• A separate constant term is not separately identified from the limit points , so 
EViews will ignore any constant term in your specification. Thus, the model:

danger c body brain sleep

is equivalent to the specification above.

• EViews requires the dependent variable to be integer valued, otherwise you will see 
an error message, and estimation will stop. This is not, however, a serious restriction, 
since you can easily convert the series into an integer using @round, @floor or 
@ceil in an auto-series expression.

Next, select between the ordered logit, ordered probit, and the ordered extreme value mod-
els by choosing one of the three distributions for the latent error term. 

Lastly, specify the estimation sample. 

You may click on the Options tab to set the iteration limit, convergence criterion, optimiza-
tion algorithm, and most importantly, method for computing coefficient covariances. See 
“Technical Notes” on page 387 for a discussion of these methods.

Now click on OK, EViews will estimate the parameters of the model using iterative proce-
dures. 

Once the estimation procedure converges, EViews will display the estimation results in the 
equation window. The first part of the table contains the usual header information, includ-
ing the assumed error distribution, estimation sample, iteration and convergence informa-

g
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tion, number of distinct values for , and the method of computing the coefficient 
covariance matrix.

Below the header information are the coefficient estimates and asymptotic standard errors, 
and the corresponding z-statistics and significance levels. The estimated coefficients of the 
ordered model must be interpreted with care (see Greene (2008, section 23.10) or Johnston 
and DiNardo (1997, section 13.9)).

The sign of  shows the direction of the change in the probability of falling in the endpoint 
rankings (  or ) when  changes. Pr( ) changes in the opposite direc-
tion of the sign of  and Pr( ) changes in the same direction as the sign of . The 
effects on the probability of falling in any of the middle rankings are given by:

(29.22)

for . It is impossible to determine the signs of these terms, a priori.

The lower part of the estimation output, labeled “Limit Points”, presents the estimates of the 
 coefficients and the associated standard errors and probability values:

y

Dependent Variable: DANGER   
Method: ML - Ordered Probit (Quadratic hill climbing)  
Date: 08/12/09   Time: 00:13   
Sample (adjusted): 1 61   
Included observations: 58 after adjustments  
Number of ordered indicator values: 5   
Convergence achieved after 7 iterations   
Covariance matrix computed using second derivatives  

Variable Coefficient Std. Error z-Statistic Prob.  

BODY 0.000247 0.000421 0.587475 0.5569
BRAIN -0.000397 0.000418 -0.950366 0.3419
SLEEP -0.199508 0.041641 -4.791138 0.0000
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 Limit Points   

LIMIT_2:C(4) -2.798449 0.514784 -5.436166 0.0000
LIMIT_3:C(5) -2.038945 0.492198 -4.142527 0.0000
LIMIT_4:C(6) -1.434567 0.473679 -3.028563 0.0025
LIMIT_5:C(7) -0.601211 0.449109 -1.338675 0.1807

Pseudo R-squared 0.147588    Akaike info criterion 2.890028
Schwarz criterion 3.138702    Log likelihood -76.81081
Hannan-Quinn criter. 2.986891    Restr. log likelihood -90.10996
LR stat is tic 26.59830    Avg. log likelihood -1.324324
Prob(LR stat istic) 0.000007    
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Note that the coefficients are labeled both with the identity of the limit point, and the coeffi-
cient number. Just below the limit points are the summary statistics for the equation.

Estimation Problems

Most of the previous discussion of estimation problems for binary models (“Estimation 
Problems” on page 338) also holds for ordered models. In general, these models are well-
behaved and will require little intervention.

There are cases, however, where problems will arise. First, EViews currently has a limit of 
750 total coefficients in an ordered dependent variable model. Thus, if you have 25 right-
hand side variables, and a dependent variable with 726 distinct values, you will be unable to 
estimate your model using EViews.

Second, you may run into identification problems and estimation difficulties if you have 
some groups where there are very few observations. If necessary, you may choose to com-
bine adjacent groups and re-estimate the model.

EViews may stop estimation with the message “Parameter estimates for limit points are non-
ascending”, most likely on the first iteration. This error indicates that parameter values for 
the limit points were invalid, and that EViews was unable to adjust these values to make 
them valid. Make certain that if you are using user defined parameters, the limit points are 
strictly increasing. Better yet, we recommend that you employ the EViews starting values 
since they are based on a consistent first-stage estimation procedure, and should therefore 
be quite well-behaved.

Views of Ordered Equations

EViews provides you with several views of an ordered equation. As with other equations, 
you can examine the specification and estimated covariance matrix as well as perform Wald 
and likelihood ratio tests on coefficients of the model. In addition, there are several views 
that are specialized for the ordered model:

• Dependent Variable Frequencies — computes a one-way frequency table for the 
ordered dependent variable for the observations in the estimation sample. EViews 
presents both the frequency table and the cumulative frequency table in levels and 
percentages.

• Prediction Evaluation— classifies observations on the basis of the predicted 
response. EViews performs the classification on the basis of the category with the 
maximum predicted probability.

The first portion of the output shows results for the estimated equation and for the 
constant probability (no regressor) specifications.
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Each row represents a distinct value for the dependent variable. The “Obs” column 
indicates the number of observations with that value. Of those, the number of “Cor-
rect” observations are those for which the predicted probability of the response is the 
highest. Thus, 10 of the 18 individuals with a DANGER value of 1 were correctly spec-
ified. Overall, 43% of the observations were correctly specified for the fitted model 
versus 31% for the constant probability model.

The bottom portion of the output shows additional statistics measuring this improve-
ment

Note the improvement in the prediction for DANGER values 2, 4, and especially 5 
comes from refinement of the constant only prediction of DANGER=1.

Predict ion Evaluation for Ordered Specification   
Equation: EQ_ORDER     
Date: 08/12/09   Time: 00:20    

            Estimated Equation  

Dep. Value Obs.  Correct Incorrect % Correct % Incorrect 

1 18 10 8 55.556 44.444 
2 14 6 8 42.857 57.143 
3 10 0 10 0.000 100.000 
4 9 3 6 33.333 66.667 
5 7 6 1 85.714 14.286 

Total 58 25 33 43.103 56.897 

      Constant Probability Spec.  

Dep. Value Obs.  Correct Incorrect % Correct % Incorrect 

1 18 18 0 100.000 0.000 
2 14 0 14 0.000 100.000 
3 10 0 10 0.000 100.000 
4 9 0 9 0.000 100.000 
5 7 0 7 0.000 100.000 

Total 58 18 40 31.034 68.966 

    Gain over Constant Prob. Spec.  

  Equation Constant   
Dep. Value Obs.  % Incorrect % Incorrect Total Gain* Pct. Gain** 

1 18 44.444 0.000 -44.444 NA 
2 14 57.143 100.000 42.857 42.857 
3 10 100.000 100.000 0.000 0.000 
4 9 66.667 100.000 33.333 33.333 
5 7 14.286 100.000 85.714 85.714 

Total 58 56.897 68.966 12.069 17.500 
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Procedures for Ordered Equations 

Make Ordered Limit Vector/Matrix

The full set of coefficients and the covariance matrix may be obtained from the estimated 
equation in the usual fashion (see “Working With Equation Statistics” on page 16). In some 
circumstances, however, you may wish to perform inference using only the estimates of the 

 coefficients and the associated covariances.

The Make Ordered Limit Vector and Make Ordered Limit Covariance Matrix procedures 
provide a shortcut method of obtaining the estimates associated with the  coefficients. The 
first procedure creates a vector (using the next unused name of the form LIMITS01, LIM-
ITS02, etc.) containing the estimated  coefficients. The latter procedure creates a symmet-
ric matrix containing the estimated covariance matrix of the . The matrix will be given an 
unused name of the form VLIMITS01, VLIMITS02, etc., where the “V” is used to indicate 
that these are the variances of the estimated limit points.

Forecasting using Models

You cannot forecast directly from an estimated ordered model since the dependent variable 
represents categorical or rank data. EViews does, however, allow you to forecast the proba-
bility associated with each category. To forecast these probabilities, you must first create a 
model. Choose Proc/Make Model and EViews will open an untitled model window contain-
ing a system of equations, with a separate equation for the probability of each ordered 
response value.

To forecast from this model, simply click the Solve button in the model window toolbar. If 
you select Scenario 1 as your solution scenario, the default settings will save your results in 
a set of named series with “_1” appended to the end of the each underlying name. See 
Chapter 42. “Models,” beginning on page 781 for additional detail on modifying and solving 
models. 

For this example, the series I_DANGER_1 will contain the fitted linear index . The fitted 
probability of falling in category 1 will be stored as a series named DANGER_1_1, the fitted 
probability of falling in category 2 will be stored as a series named DANGER_2_1, and so on. 
Note that for each observation, the fitted probability of falling in each of the categories sums 
up to one. 

Make Residual Series

The generalized residuals of the ordered model are the derivatives of the log likelihood with 
respect to a hypothetical unit-  variable. These residuals are defined to be uncorrelated 
with the explanatory variables of the model (see Chesher and Irish (1987), and Gourieroux, 
Monfort, Renault and Trognon (1987) for details), and thus may be used in a variety of spec-
ification tests.

g

g

g

g

xib̂

x
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To create a series containing the generalized residuals, select View/Make Residual 
Series…, enter a name or accept the default name, and click OK. The generalized residuals 
for an ordered model are given by:

, (29.23)

where , and .

Censored Regression Models

In some settings, the dependent variable is only partially observed. For example, in survey 
data, data on incomes above a specified level are often top-coded to protect confidentiality. 
Similarly desired consumption on durable goods may be censored at a small positive or zero 
value. EViews provides tools to perform maximum likelihood estimation of these models 
and to use the results for further analysis. 

Background

Consider the following latent variable regression model:

, (29.24)

where  is a scale parameter. The scale parameter  is identified in censored and truncated 
regression models, and will be estimated along with the . 

In the canonical censored regression model, known as the tobit (when there are normally dis-
tributed errors), the observed data  are given by:

(29.25)

In other words, all negative values of  are coded as 0. We say that these data are left cen-
sored at 0. Note that this situation differs from a truncated regression model where negative 
values of  are dropped from the sample. More generally, EViews allows for both left and 
right censoring at arbitrary limit points so that:

(29.26)
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where ,  are fixed numbers representing the censoring points. If there is no left censor-
ing, then we can set . If there is no right censoring, then . The canonical 
tobit model is a special case with  and .

The parameters ,  are estimated by maximizing the log likelihood function:

(29.27)

where ,  are the density and cumulative distribution functions of , respectively.

Estimating Censored Models in EViews

Suppose that we wish to estimate the model:

, (29.28)

where hours worked (HRS) is left censored at zero. To estimate this model, select Quick/
Estimate Equation… from the main menu. Then from the Equation Estimation dialog, 
select the CENSORED - Censored or Truncated Data (including Tobit) estimation method. 
Alternately, enter the keyword censored in the command line and press ENTER. The dialog 
will change to provide a number of different input options.

Specifying the Regression Equation

In the Equation specification field, enter the name of the censored dependent variable fol-
lowed by a list of regressors or an explicit expression for the equation. In our example, you 
will enter: 

hrs c age edu kid1 
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Next, select one of the three distributions for the error term. EViews allows you three possi-
ble choices for the distribution of : 

Bear in mind that the extreme value distribution is asymmetric.

Specifying the Censoring Points

You must also provide information about the censoring points of the dependent variable. 
There are two cases to consider: (1) where the limit points are known for all individuals, 
and (2) where the censoring is by indicator and the limit points are known only for individ-
uals with censored observations.

Limit Points Known

You should enter expressions for the left and right censoring points in the edit fields as 
required. Note that if you leave an edit field blank, EViews will assume that there is no cen-
soring of observations of that type.

Standard normal , 

Logistic
, 

Extreme value (Type I)   (Euler’s constant), 

e

E e  0 var e  1

E e  0 var e  p
2 3

E e  0.5772–

var e  p
2

6
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For example, in the canonical tobit model the data are censored on the left at zero, and are 
uncensored on the right. This case may be specified as:

Left edit field: 0

Right edit field: [blank]

Similarly, top-coded censored data may be specified as,

Left edit field: [blank]

Right edit field: 20000

while the more general case of left and right censoring is given by: 

Left edit field: 10000

Right edit field: 20000

EViews also allows more general specifications where the censoring points are known to dif-
fer across observations. Simply enter the name of the series or auto-series containing the 
censoring points in the appropriate edit field. For example:

Left edit field: lowinc

Right edit field: vcens1+10

specifies a model with LOWINC censoring on the left-hand side, and right censoring at the 
value of VCENS1+10.

Limit Points Not Known

In some cases, the hypothetical censoring point is unknown for some individuals (  and  
are not observed for all observations). This situation often occurs with data where censoring 
is indicated with a zero-one dummy variable, but no additional information is provided 
about potential censoring points.

EViews provides you an alternative method of describing data censoring that matches this 
format. Simply select the Field is zero/one indicator of censoring option in the estimation 
dialog, and enter the series expression for the censoring indicator(s) in the appropriate edit 
field(s). Observations with a censoring indicator of one are assumed to be censored while 
those with a value of zero are assumed to be actual responses.

For example, suppose that we have observations on the length of time that an individual has 
been unemployed (U), but that some of these observations represent ongoing unemploy-
ment at the time the sample is taken. These latter observations may be treated as right cen-
sored at the reported value. If the variable RCENS is a dummy variable representing 
censoring, you can click on the Field is zero/one indicator of censoring setting and enter:

Left edit field: [blank]

Right edit field: rcens

ci ci
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in the edit fields. If the data are censored on both the left and the right, use separate binary 
indicators for each form of censoring:

Left edit field: lcens

Right edit field: rcens

where LCENS is also a binary indicator.

Once you have specified the model, click OK. EViews will estimate the parameters of the 
model using appropriate iterative techniques.

A Comparison of Censoring Methods

An alternative to specifying index censoring is to enter a very large positive or negative 
value for the censoring limit for non-censored observations. For example, you could enter 
“1e-100” and “1e100” as the censoring limits for an observation on a completed unemploy-
ment spell. In fact, any limit point that is “outside” the observed data will suffice.

While this latter approach will yield the same likelihood function and therefore the same 
parameter values and coefficient covariance matrix, there is a drawback to the artificial limit 
approach. The presence of a censoring value implies that it is possible to evaluate the condi-
tional mean of the observed dependent variable, as well as the ordinary and standardized 
residuals. All of the calculations that use residuals will, however, be based upon the arbi-
trary artificial data and will be invalid.

If you specify your censoring by index, you are informing EViews that you do not have infor-
mation about the censoring for those observations that are not censored. Similarly, if an 
observation is left censored, you may not have information about the right censoring limit. 
In these circumstances, you should specify your censoring by index so that EViews will pre-
vent you from computing the conditional mean of the dependent variable and the associated 
residuals.

Interpreting the Output

If your model converges, EViews will display the estimation results in the equation window. 
The first part of the table presents the usual header information, including information 
about the assumed error distribution, estimation sample, estimation algorithms, and number 
of iterations required for convergence. 

EViews also provides information about the specification for the censoring. If the estimated 
model is the canonical tobit with left-censoring at zero, EViews will label the method as a 
TOBIT. For all other censoring methods, EViews will display detailed information about form 
of the left and/or right censoring.

Here, we see an example of header output from a left censored model (our Fair’s (1978) tobit 
model described below) where the censoring is specified by value:
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Below the header are the usual results for the coefficients, including the asymptotic standard 
errors, z-statistics, and significance levels. As in other limited dependent variable models, 
the estimated coefficients do not have a direct interpretation as the marginal effect of the 
associated regressor  for individual , . In censored regression models, a change in  
has two effects: an effect on the mean of , given that it is observed, and an effect on the 
probability of  being observed (see McDonald and Moffitt, 1980).

In addition to results for the regression coefficients, EViews reports an additional coefficient 
named SCALE, which is the estimated scale factor . This scale factor may be used to esti-
mate the standard deviation of the residual, using the known variance of the assumed distri-
bution. For example, if the estimated SCALE has a value of  for a model with extreme 
value errors, the implied standard error of the error term is . 

Most of the other output is self-explanatory. As in the binary and ordered models above, 
EViews reports summary statistics for the dependent variable and likelihood based statistics. 
The regression statistics at the bottom of the table are computed in the usual fashion, using 
the residuals  from the observed .

Views of Censored Equations

Most of the views that are available for a censored regression are familiar from other set-
tings. The residuals used in the calculations are defined below.

The one new view is the Categorical Regressor Stats view, which presents means and stan-
dard deviations for the dependent and independent variables for the estimation sample. 
EViews provides statistics computed over the entire sample, as well as for the left censored, 
right censored and non-censored individuals.

Procedures for Censored Equations

EViews provides several procedures which provide access to information derived from your 
censored equation estimates.

Make Residual Series

Select Proc/Make Residual Series, and select from among the three types of residuals. The 
three types of residuals for censored models are defined as:

Dependent Variable: Y_PT   
Method: ML - Censored Normal (TOBIT)  (Newton-Raphson /  
        Marquardt steps)
Date: 03/09/15   Time: 16:23   
Sample: 1 601    
Included observations: 601   
Left censoring (value) at zero   
Convergence achieved after 8 iterations   
Coefficient covariance computed using observed Hessian

j i xij xij

y
y

j

0.4766
0.5977 0.4766p 6

êi yi E yi xi b̂ ĵ, , – y
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where ,  are the density and distribution functions, and where 1 is an indicator function 
which takes the value 1 if the condition in parentheses is true, and 0 if it is false. All of the 
above terms will be evaluated at the estimated  and . See the discussion of forecasting 
for details on the computation of .

The generalized residuals may be used as the basis of a number of LM tests, including LM 
tests of normality (see Lancaster, Chesher and Irish (1985), Chesher and Irish (1987), and 
Gourioux, Monfort, Renault and Trognon (1987); Greene (2008), provides a brief discussion 
and additional references).

Forecasting

EViews provides you with the option of forecasting the expected dependent variable, 
, or the expected latent variable, . Select Forecast from the 

equation toolbar to open the forecast dialog. 

To forecast the expected latent variable, click on Index - Expected latent variable, and enter 
a name for the series to hold the output. The forecasts of the expected latent variable 

 may be derived from the latent model using the relationship:

. (29.29)

where  is the Euler-Mascheroni constant ( ).

To forecast the expected observed dependent variable, you should select Expected depen-
dent variable, and enter a series name. These forecasts are computed using the relationship:

(29.30)
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Note that these forecasts always satisfy . The probabilities associated with being 
in the various classifications are computed by evaluating the cumulative distribution func-
tion of the specified distribution. For example, the probability of being at the lower limit is 
given by:

. (29.31)

Censored Model Example

As an example, we replicate Fair’s (1978) tobit model that estimates the incidence of extra-
marital affairs (“Tobit_Fair.WF1). The dependent variable, number of extramarital affairs 
(Y_PT), is left censored at zero and the errors are assumed to be normally distributed. The 
top portion of the output was shown earlier; bottom portion of the output is presented 
below:

Tests of Significance

EViews does not, by default, provide you with the usual likelihood ratio test of the overall 
significance for the tobit and other censored regression models. There are several ways to 
perform this test (or an asymptotically equivalent test).

First, you can use the built-in coefficient testing procedures to test the exclusion of all of the 
explanatory variables. Select the redundant variables test and enter the names of all of the 

ci ŷi ci 

Pr yi ci xi b̂ ĵ, ,  Pr yi
 ci xi b̂ ĵ, ,  F ci xi b̂–  ĵ  

Variable Coefficient Std. Error z-Statistic Prob.  

C 7.608487 3.905987 1.947904 0.0514
Z1 0.945787 1.062866 0.889847 0.3735
Z2 -0.192698 0.080968 -2.379921 0.0173
Z3 0.533190 0.146607 3.636852 0.0003
Z4 1.019182 1.279575 0.796500 0.4257
Z5 -1.699000 0.405483 -4.190061 0.0000
Z6 0.025361 0.227667 0.111394 0.9113
Z7 0.212983 0.321157 0.663173 0.5072
Z8 -2.273284 0.415407 -5.472429 0.0000

 Error Distribution   

SCALE:C(10) 8.258432 0.554581 14.89131 0.0000

Mean dependent var 1.455907    S.D. dependent var 3.298758
S.E. of regression 3.058957    Akaike info criterion 2.378473
Sum squared resid 5539.472    Schwarz criterion 2.451661
Log likelihood -704.7311    Hannan-Quinn criter. 2.406961
Avg. log likelihood -1.172597    

Left censored obs 451     Right censored obs 0
Uncensored obs 150     Total obs 601
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explanatory variables you wish to exclude. EViews will compute the appropriate likelihood 
ratio test statistic and the p-value associated with the statistic.

To take an example, suppose we wish to test whether the variables in the Fair tobit, above, 
contribute to the fit of the model. Select View/Coefficient Diagnostics/Redundant Vari-
ables - Likelihood Ratio… and enter all of the explanatory variables:

z1 z2 z3 z4 z5 z6 z7 z8

EViews will estimate the restricted model for you and compute the LR statistic and p-value. 
In this case, the value of the test statistic is 80.01, which for eight degrees of freedom, yields 
a p-value of less than 0.000001.

Alternatively, you could test the restriction using the Wald test by selecting View/Coeffi-
cient Diagnostics/Wald - Coefficient Restrictions…, and entering the restriction that:

c(2)=c(3)=c(4)=c(5)=c(6)=c(7)=c(8)=c(9)=0

The reported statistic is 68.14, with a p-value of less than 0.000001.

Lastly, we demonstrate the direct computation of the LR test. Suppose the Fair tobit model 
estimated above is saved in the named equation EQ_TOBIT. Then you could estimate an 
equation containing only a constant, say EQ_RESTR, and place the likelihood ratio statistic 
in a scalar:

scalar lrstat=-2*(eq_restr.@logl-eq_tobit.@logl)

Next, evaluate the chi-square probability associated with this statistic:

scalar lrprob=1-@cchisq(lrstat, 8)

with degrees of freedom given by the number of coefficient restrictions in the constant only 
model. You can double click on the LRSTAT icon or the LRPROB icon in the workfile win-
dow to display the results.

A Specification Test for the Tobit

As a rough diagnostic check, Pagan and Vella (1989) suggest plotting Powell’s (1986) sym-
metrically trimmed residuals. If the error terms have a symmetric distribution centered at 
zero (as assumed by the normal distribution), so should the trimmed residuals. To construct 
the trimmed residuals, first save the forecasts of the index (expected latent variable): click 
Forecast, choose Index-Expected latent variable, and provide a name for the fitted index, 
say “XB”. The trimmed residuals are obtained by dropping observations for which , 
and replacing with  for all observations where . The trimmed residu-
als RES_T can be obtained by using the commands:

series res_t=(y_pt<=2*xb)*(y_pt-xb) +(y_pt>2*xb)*xb

smpl if xb<0

series res_t=na

xi b̂ 0
yi 2 xib̂  yi 2 xib̂ 
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smpl @all

The histogram of the trimmed residual is depicted below.

This example illustrates the pos-
sibility that the number of 
observations that are lost by 
trimming can be quite large; out 
of the 601 observations in the 
sample, only 47 observations 
are left after trimming. 

The tobit model imposes the 
restriction that the coefficients 
that determine the probability of 
being censored are the same as 
those that determine the condi-
tional mean of the uncensored 
observations. To test this restric-
tion, we carry out the LR test by comparing the (restricted) tobit to the unrestricted log like-
lihood that is the sum of a probit and a truncated regression (we discuss truncated 
regression in detail in the following section). Save the tobit equation in the workfile by 
pressing the Name button, and enter a name, say EQ_TOBIT. 

To estimate the probit, first create a dummy variable indicating uncensored observations by 
the command:

series y_c = (y_pt>0)

Then estimate a probit by replacing the dependent variable Y_PT by Y_C. A simple way to 
do this is to press Object/Copy Object… from the tobit equation toolbar. From the new unti-
tled equation window that appears, press Estimate, edit the specification, replacing the 
dependent variable “Y_PT” with “Y_C”, choose Method: BINARY and click OK. Save the 
probit equation by pressing the Name button, say as EQ_BIN. 

To estimate the truncated model, press Object/Copy Object… again from the tobit equation 
toolbar again. From the new untitled equation window that appears, press Estimate, mark 
the Truncated sample option, and click OK. Save the truncated regression by pressing the 
Name button, say as EQ_TR. 

Then the LR test statistic and its p-value can be saved as a scalar by the commands:

scalar lr_test=2*(eq_bin.@logl+eq_tr.@logl-eq_tobit.@logl)

scalar lr_pval=1-@cchisq(lr_test,eq_tobit.@ncoef)
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Double click on the scalar name to display the value in the status line at the bottom of the 
EViews window. For the example data set, the p-value is 0.066, which rejects the tobit 
model at the 10% level, but not at the 5% level. 

For other specification tests for the tobit, see Greene (2008, 23.3.4) or Pagan and Vella 
(1989).

Truncated Regression Models

A close relative of the censored regression model is the truncated regression model. Suppose 
that an observation is not observed whenever the dependent variable falls below one thresh-
old, or exceeds a second threshold. This sampling rule occurs, for example, in earnings func-
tion studies for low-income families that exclude observations with incomes above a 
threshold, and in studies of durables demand among individuals who purchase durables. 

The general two-limit truncated regression model may be written as:

(29.32)

where  is only observed if:

. (29.33)

If there is no lower truncation, then we can set . If there is no upper truncation, 
then we set .

The log likelihood function associated with these data is given by:

(29.34)

The likelihood function is maximized with respect to  and , using standard iterative 
methods.

Estimating a Truncated Model in EViews

Estimation of a truncated regression model follows the same steps as estimating a censored 
regression:

• Select Quick/Estimate Equation… from the main menu, and in the Equation Specifi-
cation dialog, select the CENSORED estimation method. The censored and truncated 
regression dialog will appear.
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• Enter the name of the truncated dependent variable and the list of the regressors or 
provide explicit expression for the equation in the Equation Specification field, and 
select one of the three distributions for the error term. 

• Indicate that you wish to estimate the truncated model by checking the Truncated 
sample option.

• Specify the truncation points of the dependent variable by entering the appropriate 
expressions in the two edit fields. If you leave an edit field blank, EViews will assume 
that there is no truncation along that dimension.

You should keep a few points in mind. First, truncated estimation is only available for mod-
els where the truncation points are known, since the likelihood function is not otherwise 
defined. If you attempt to specify your truncation points by index, EViews will issue an error 
message indicating that this selection is not available.

Second, EViews will issue an error message if any values of the dependent variable are out-
side the truncation points. Furthermore, EViews will automatically exclude any observations 
that are exactly equal to a truncation point. Thus, if you specify zero as the lower truncation 
limit, EViews will issue an error message if any observations are less than zero, and will 
exclude any observations where the dependent variable exactly equals zero.

The cumulative distribution function and density of the assumed distribution will be used to 
form the likelihood function, as described above.

Procedures for Truncated Equations

EViews provides the same procedures for truncated equations as for censored equations. 
The residual and forecast calculations differ to reflect the truncated dependent variable and 
the different likelihood function.

Make Residual Series

Select Proc/Make Residual Series, and select from among the three types of residuals. The 
three types of residuals for censored models are defined as:

Ordinary

Standardized

eoi yi E yi
 ci yi

 ci xi b̂ ĵ, ,  –

esi

yi E yi
 ci yi

 ci xi b̂ ĵ, ,  –

var yi
 ci yi

 ci xi b̂ ĵ, ,  
------------------------------------------------------------------------------------
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where , , are the density and distribution functions. Details on the computation of 
 are provided below.

The generalized residuals may be used as the basis of a number of LM tests, including LM 
tests of normality (see Chesher and Irish (1984, 1987), and Gourieroux, Monfort and Trog-
non (1987); Greene (2008) provides a brief discussion and additional references).

Forecasting

EViews provides you with the option of forecasting the expected observed dependent vari-
able, , or the expected latent variable, . 

To forecast the expected latent variable, select Forecast from the equation toolbar to open 
the forecast dialog, click on Index - Expected latent variable, and enter a name for the 
series to hold the output. The forecasts of the expected latent variable  are 
computed using:

. (29.35)

where  is the Euler-Mascheroni constant ( ).

To forecast the expected observed dependent variable for the truncated model, you should 
select Expected dependent variable, and enter a series name. These forecasts are computed 
using: 

(29.36)

so that the expectations for the latent variable are taken with respect to the conditional (on 
being observed) distribution of the . Note that these forecasts always satisfy the inequal-
ity . 

It is instructive to compare this latter expected value with the expected value derived for the 
censored model in Equation (29.30) above (repeated here for convenience):

(29.37)

The expected value of the dependent variable for the truncated model is the first part of the 
middle term of the censored expected value. The differences between the two expected val-
ues (the probability weight and the first and third terms) reflect the different treatment of 
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latent observations that do not lie between  and . In the censored case, those observa-
tions are included in the sample and are accounted for in the expected value. In the trun-
cated case, data outside the interval are not observed and are not used in the expected value 
computation.

An Illustration

As an example, we reestimate the Fair tobit model from above, truncating the data so that 
observations at or below zero are removed from the sample. The output from truncated esti-
mation of the Fair model is presented below:

Note that the header information indicates that the model is a truncated specification with a 
sample that is adjusted accordingly, and that the frequency information at the bottom of the 
screen shows that there are no left and right censored observations.

ci ci

Dependent Variable: Y_PT   
Method: ML - Censored Normal (TOBIT)  (Newton-Raphson /
        Marquardt steps)   
Date: 03/09/15   Time: 16:26   
Sample (adjusted): 452 601   
Included observations: 150 after adjustments  
Truncated sample    
Left censoring (value) at zero   
Convergence achieved after 11 iterations
Coefficient covariance computed using observed Hessian  

Variable Coefficient Std. Error z-Statistic Prob.  

C 12.37287 5.178533 2.389261 0.0169
Z1 -1.336854 1.451426 -0.921063 0.3570
Z2 -0.044791 0.116125 -0.385719 0.6997
Z3 0.544174 0.217885 2.497527 0.0125
Z4 -2.142868 1.784389 -1.200897 0.2298
Z5 -1.423107 0.594582 -2.393459 0.0167
Z6 -0.316717 0.321882 -0.983953 0.3251
Z7 0.621418 0.477420 1.301618 0.1930
Z8 -1.210020 0.547810 -2.208833 0.0272

 Error Distribution   

SCALE:C(10) 5.379485 0.623787 8.623910 0.0000

Mean dependent var 5.833333     S.D. dependent var 4.255934
S.E. of regression 4.013126     Akaike info criterion 5.344456
Sum squared resid 2254.725     Schwarz criterion 5.545165
Log likelihood -390.8342     Hannan-Quinn criter. 5.425998
Avg. log likelihood -2.605561    

Left censored obs 0      Right censored obs 0
Uncensored obs 150      Total obs 150
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Heckman Selection Model

The Heckman (1976) selection model, sometimes called the Heckit model, is a method for 
estimating regression models which suffer from sample selection bias. Under the Heckman 
selection framework, the dependent variable  is only observable for a portion of the data. 
A classic example, in economics, of the sample selection problem is the wage equation for 
women, whereby a woman’s wage is only observed if she makes the decision to enter the 
work place, and is unobservable if she does not. Heckman’s (1976) paper that introduced 
the Heckman Selection model worked on this very problem.

EViews provides an estimator for the simple linear Heckman Selection Model. This model is 
specified as:

(29.38)

(29.39)

where is  a binary variable, with  only observed when .  and  are error 
terms which follow a bivariate normal distribution:

(29.40)

with scale parameter  and correlation coefficient . Note that we have normalized the 
variance of  to 1 since this variance is not identified in this model.

Equation Equation (29.38) is generally referred to as the response equation, with  the 
variable of interest. Equation Equation (29.39) is termed the selection equation and deter-
mines whether is observed or not.

EViews offers two different methods of estimating this model: Heckman’s original two-step 
method and a Maximum Likelihood method.

The Heckman Two-Step Method

The Heckman two-step method is based around the observation that:

(29.41)

where  is the Inverse Mills Ratio (Greene, 2008), and  and  are 
the standard normal density and cumulative distribution function, respectively. Then we 
may specify a regression model:

(29.42)
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The two-step method proceeds by first estimating a Probit regression for Equation (29.39) to 
obtain an estimate of , from which  may be calculated. A least squares regres-
sion of  on  and 

(29.43)

is then computed, yielding consistent estimates of  and . An estimator for the 
error standard deviation  may be obtained from the usual standard error of the regression 

, and the ratio estimator  follows.

The estimator of the coefficient covariance matrix of the two-step method is given by:

(29.44)

where ,  is a diagonal matrix with  on the diago-

nals,  is an identity matrix, , and  is the coefficient 

covariance matrix from the Probit estimation of Equation (29.39).

Maximum Likelihood

The maximum likelihood method of estimating the Heckman Selection Model is performed 
using the log-likelihood function given by:

(29.45)

where the first summation is over observations for which  (i.e., when  is unob-
served), and the second for observations for which  (i.e., when  is observed).

It is straightforward to maximize this log-likelihood function with respect to the parameters, 
. However, this maximization is unrestricted with regards to  and , when, in 

fact, there are restrictions of the form  and  imposed on the parameters. 
EViews optimizes the model using transformed versions of the parameters:

(29.46)

(29.47)

to impose the restrictions.

Starting values for the optimization can be obtained using the Heckman two-step method 
outlined above.
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I Q r̂
2

XD̂W V̂ XD̂W  V̂

L b g r j X W , , , ,log 1log F Wig – 
i zi 0


j log–
i zi 1
 f

yi Xib–

j
-------------------- 
 

 
 log 1 F

Wig r
yi Xib–

j
-------------------- 
  

 –

1 r2–
---------------------------------------------------------

 
 
 
 
 

–

 
 
 
 
 

log



 



zi 0 yi

zi 1 yi

b g r j, , , r j

1 r 1  – j 1

j j exp

r arctan r( ) 2 p 



Heckman Selection Model—373
As with most maximum likelihood estimations, the covariance matrix of the estimated 
parameters can be calculated as either  (where  is the Hessian matrix, the infor-
mation matrix), (where  is the matrix of gradients), or as (the 
Huber/White matrix).

Estimating the Heckman Selection Model in EViews

To estimate the Heckman Selection Model, open the equation dialog by selecting Quick/
Estimate Equation… or Object/New Object…/Equation in the main EViews menu and 
selecting Heckit from the Method dropdown menu. Alternately, you may enter the com-
mand heckit in the command line.

The first page of the dialog, the 
Specification tab, lets you 
specify both the response 
equation Equation (29.38) and 
the selection equation 
Equation (29.39). Both equa-
tions should be specified as the 
dependent variable followed 
by a space delimited list of 
regressors. Note that the 
dependent variable for the 
selection equation should be 
series containing only zeros 
and ones.

The Specification page also 
lets you select the type of esti-
mation method by selecting 
one of the two radio buttons; 
either Maximum Likelihood or Heckman two-step.

If you have chosen to estimate via maximum likelihood, the Options tab of the dialog lets 
you specify the type of covariance matrix, by using the Coefficient covariance matrix drop-
down menu. You may choose from Outer Product of Gradients, Information Matrix, and 
Huber/White. You may also choose starting values for the maximum likelihood procedure. 
You may select EViews Supplied to perform the Heckman two-step procedure to obtain 
starting values, or you can down-weight those starting values by choosing a multiple of 
them. The User Supplied option will use the specified coefficient vector in the workfile to 
obtain starting values. 

H–  1–
H

GG'  1– G H 1– GG'H
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An Example

As an example of the estimation of the Heckman Selection model, we take one of the results 
from Econometric Analysis by William H. Greene (6th Edition, p. 888, Example 24.8), which 
uses data from the Mroz (1987) study of the labor supply of married women to estimate a 
wage equation for women. Only 428 of the 753 women studied participated in the labor 
force, so a selection equation is provided to model the sample selection behavior of married 
women. 

The wage equation is given by:

(29.48)

where EXPER is a measure of each woman’s experience, EDUC is her level of education, and 
CITY is a dummy variable for whether she lives in a city or not.

The selection equation is given by:

(29.49)

where LFP is a binary variable taking a value of 1 if the woman is in the labor force, and 0 
otherwise, AGE is her age, FAMINC is the level of household income not earned by the 
woman, and KIDS is a dummy variable for whether she has children.

You can bring the Mroz data directly into EViews from Greene’s website, using the following 
EViews command:

Wage b1 b2Exper b3Exper
2

b4Educ b5City e    

LFP g1 g2Age g3Age
2

g4Faminc g5Educ g6Kids     u
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wfopen http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF5-
1.txt

In this data, the wage data are in the series WW, experience is AX, education is in WE, the 
city dummy is CIT, labor force participation is LFP, age is WA, and family income is FAM-
INC. There is no kids dummy variable, but there are two variables containing the number of 
children below K6 education (KL6), and the number of kids between K6 education and 18 
(K618). We can create the dummy variable simply by testing whether the sum of those two 
variables is greater than 0.

To estimate this equation in EViews, we click on Quick/Estimate Equation…, and then 
change the equation method to Heckit. In the Response Equation box we type:

ww c ax ax^2 we cit

And in the Selection Equation box we type:

lfp c wa wa^2 faminc we (kl6+k618)>0

To begin we select the Heckman two-step estimation method. After clicking OK, the estima-
tion results show and replicate the results in the first pane of Table 24.3 in Greene (note that 
Greene only shows the estimates of the Wage equation, plus  and ).r j
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We can modify our equation to use as the estimation method. Click on the Estimate button 
to bring up the estimation dialog and change the method to Maximum Likelihood. Next, 
click on the Options tab and change the Information matrix to OPG and click on OK to esti-
mate the equation. The results match the second pane of Table 24.3 in Greene.

Dependent Variable: WW   
Method: Two-Step Heckman Selection   
Date: 03/09/15   Time: 16:31   
Sample: 1 753
Included observations: 753   
Selection Variable: LFP   
Coefficient covariance computed using  two-step Heckman 
method  

Variable Coefficient Std. Error t-Statistic Prob.  

 Response Equation - WW   

C -0.971200 2.132849 -0.455353 0.6490
AX 0.021061 0.062532 0.336804 0.7364

AX^2 0.000137 0.001882 0.072842 0.9420
WE 0.417017 0.104157 4.003746 0.0001
CIT 0.443838 0.316531 1.402194 0.1613

 Selection Equation - LFP   

C -4.156807 1.402086 -2.964730 0.0031
WA 0.185395 0.065967 2.810436 0.0051

WA^2 -0.002426 0.000774 -3.136096 0.0018
FAMINC 4.58E-06 4.21E-06 1.088918 0.2765

WE 0.098182 0.022984 4.271744 0.0000
(KL6+K618)>0 -0.448987 0.130911 -3.429697 0.0006

Mean dependent var 4.177682     S.D. dependent var 3.310282
S.E. of regression 2.418304     Akaike info criterion 6.017314
Sum squared resid 4327.663     Schwarz criterion 6.084863
Log likelihood -2254.519     Hannan-Quinn criter. 6.043337
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Count Models

Count models are employed when  takes integer values that represent the number of 
events that occur—examples of count data include the number of patents filed by a com-
pany, and the number of spells of unemployment experienced over a fixed time interval. 

EViews provides support for the estimation of several models of count data. In addition to 
the standard poisson and negative binomial maximum likelihood (ML) specifications, 
EViews provides a number of quasi-maximum likelihood (QML) estimators for count data.

Dependent Variable: WW   
Method: ML Heckman Selection (Newton-Raphson / Marquardt 
steps)  
Date: 03/09/15   Time: 16:34   
Sample: 1 753    
Included observations: 753   
Selection Variable: LFP   
Convergence achieved after 6 iterations   
Coefficient covariance computed using outer product of gradients 

Variable Coefficient Std. Error t-Statistic Prob.   

 Response Equation - WW   

C -1.963024 1.680330 -1.168237 0.2431 
AX 0.027868 0.075614 0.368562 0.7126 

AX^2 -0.000104 0.002341 -0.044369 0.9646 
WE 0.457005 0.096271 4.747067 0.0000 
CIT 0.446529 0.426937 1.045889 0.2960 

 Selection Equation - LFP   

C -4.119692 1.410456 -2.920822 0.0036 
WA 0.184015 0.065841 2.794837 0.0053 

WA^2 -0.002409 0.000773 -3.114124 0.0019 
FAMINC 5.68E-06 3.89E-06 1.460278 0.1446 

WE 0.095281 0.023999 3.970163 0.0001 
(KL6+K618)>0 -0.450615 0.136668 -3.297155 0.0010 

 Interaction terms   

@LOG(SIGMA) 1.134100 0.026909 42.14565 0.0000 
TFORM(RHO) -0.210301 0.367061 -0.572931 0.5669 

SIGMA 3.108376 0.083644 37.16219 0.0000 
RHO -0.131959 0.223781 -0.589676 0.5556 

Mean dependent var 4.177682    S.D. dependent var 3.310282 
S.E. of regression 2.361759    Akaike info criterion 4.234416 
Sum squared resid 4127.650    Schwarz criterion 4.314247 
Log likelihood -1581.258    Hannan-Quinn criter. 4.265171 

y
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Estimating Count Models in EViews 

To estimate a count data model, select Quick/Estimate Equation… from the main menu, 
and select COUNT - Integer Count Data as the estimation method. EViews displays the 
count estimation dialog into which you will enter the dependent and explanatory variable 
regressors, select a type of count model, and if desired, set estimation options.

There are three parts to the specification of the count model:

• In the upper edit field, you should list the dependent variable and the independent 
variables or you should provide an explicit expression for the index. The list of 
explanatory variables specifies a model for the conditional mean of the dependent 
variable:

. (29.50)

• Next, click on Options and, if desired, change the default estimation algorithm, con-
vergence criterion, starting values, and method of computing the coefficient covari-
ance.

• Lastly, select one of the entries listed under count estimation method, and if appropri-
ate, specify a value for the variance parameter. Details for each method are provided 
in the following discussion.

Poisson Model

For the Poisson model, the conditional density of  given  is:

m xi b,  E yi xi b,  xib exp 

yi xi
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(29.51)

where  is a non-negative integer valued random variable. The maximum likelihood esti-
mator (MLE) of the parameter  is obtained by maximizing the log likelihood function:

. (29.52)

Provided the conditional mean function is correctly specified and the conditional distribu-
tion of  is Poisson, the MLE  is consistent, efficient, and asymptotically normally distrib-
uted, with coefficient variance matrix consistently estimated by the inverse of the Hessian:

(29.53)

where . Alternately, one could estimate the coefficient covariance using the 
inverse of the outer-product of the scores:

(29.54)

The Poisson assumption imposes restrictions that are often violated in empirical applica-
tions. The most important restriction is the equality of the (conditional) mean and variance:

. (29.55)

If the mean-variance equality does not hold, the model is misspecified. EViews provides a 
number of other estimators for count data which relax this restriction.

We note here that the Poisson estimator may also be interpreted as a quasi-maximum likeli-
hood estimator. The implications of this result are discussed below.

Negative Binomial (ML)

One common alternative to the Poisson model is to estimate the parameters of the model 
using maximum likelihood of a negative binomial specification. The log likelihood for the 
negative binomial distribution is given by:

(29.56)
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where  is a variance parameter to be jointly estimated with the conditional mean param-
eters . EViews estimates the log of , and labels this parameter as the “SHAPE” parame-
ter in the output. Standard errors are computed using the inverse of the information matrix.

The negative binomial distribution is often used when there is overdispersion in the data, so 
that , since the following moment conditions hold:

(29.57)

 is therefore a measure of the extent to which the conditional variance exceeds the condi-
tional mean. 

Consistency and efficiency of the negative binomial ML requires that the conditional distri-
bution of  be negative binomial.

Quasi-maximum Likelihood (QML)

We can perform maximum likelihood estimation under a number of alternative distribu-
tional assumptions. These quasi-maximum likelihood (QML) estimators are robust in the 
sense that they produce consistent estimates of the parameters of a correctly specified condi-
tional mean, even if the distribution is incorrectly specified.

This robustness result is exactly analogous to the situation in ordinary regression, where the 
normal ML estimator (least squares) is consistent, even if the underlying error distribution is 
not normally distributed. In ordinary least squares, all that is required for consistency is a 
correct specification of the conditional mean . For QML count models, all 
that is required for consistency is a correct specification of the conditional mean .

The estimated standard errors computed using the inverse of the information matrix will not 
be consistent unless the conditional distribution of  is correctly specified. However, it is 
possible to estimate the standard errors in a robust fashion so that we can conduct valid 
inference, even if the distribution is incorrectly specified. 

EViews provides options to compute two types of robust standard errors. Click Options in 
the Equation Specification dialog box and mark the Robust Covariance option. The Huber/
White option computes QML standard errors, while the GLM option computes standard 
errors corrected for overdispersion. See “Technical Notes” on page 387 for details on these 
options.

Further details on QML estimation are provided by Gourioux, Monfort, and Trognon (1994a, 
1994b). Wooldridge (1997) provides an excellent summary of the use of QML techniques in 
estimating parameters of count models. See also the extensive related literature on General-
ized Linear Models (McCullagh and Nelder, 1989). 
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Poisson

The Poisson MLE is also a QMLE for data from alternative distributions. Provided that the 
conditional mean is correctly specified, it will yield consistent estimates of the parameters  
of the mean function. By default, EViews reports the ML standard errors. If you wish to com-
pute the QML standard errors, you should click on Options, select Robust Covariances, and 
select the desired covariance matrix estimator.

Exponential 

The log likelihood for the exponential distribution is given by:

. (29.58)

As with the other QML estimators, the exponential QMLE is consistent even if the condi-
tional distribution of  is not exponential, provided that  is correctly specified. By 
default, EViews reports the robust QML standard errors.

Normal 

The log likelihood for the normal distribution is:

. (29.59)

For fixed  and correctly specified , maximizing the normal log likelihood function pro-
vides consistent estimates even if the distribution is not normal. Note that maximizing the 
normal log likelihood for a fixed  is equivalent to minimizing the sum of squares for the 
nonlinear regression model:

. (29.60)

EViews sets  by default. You may specify any other (positive) value for  by 
changing the number in the Fixed variance parameter field box. By default, EViews reports 
the robust QML standard errors when estimating this specification.

Negative Binomial

If we maximize the negative binomial log likelihood, given above, for fixed , we obtain 
the QMLE of the conditional mean parameters . This QML estimator is consistent even if 
the conditional distribution of  is not negative binomial, provided that  is correctly 
specified. 

EViews sets  by default, which is a special case known as the geometric distribu-
tion. You may specify any other (positive) value by changing the number in the Fixed vari-

b

l b  m xi b, log– yi m xi b, –

i 1

N



yi mi

l b  1
2
---

yi m xi b, –

j
-------------------------------- 
 

2

–
1
2
--- j

2 log–
1
2
--- 2p log–

i 1

N



j
2 mi

j
2

yi m xi b,  ei

j
2

1 j
2

h
2

b

y mi

h
2 1



382—Chapter 29. Discrete and Limited Dependent Variable Models
ance parameter field box. For the negative binomial QMLE, EViews by default reports the 
robust QMLE standard errors. 

Views of Count Models

EViews provides a full complement of views of count models. You can examine the estima-
tion output, compute frequencies for the dependent variable, view the covariance matrix, or 
perform coefficient tests. Additionally, you can select View/Actual, Fitted, Residual… and 
pick from a number of views describing the ordinary residuals , or you 
can examine the correlogram and histogram of these residuals. For the most part, all of these 
views are self-explanatory. 

Note, however, that the LR test statistics presented in the summary statistics at the bottom of 
the equation output, or as computed under the View/Coefficient Diagnostics/Redundant 
Variables - Likelihood Ratio… have a known asymptotic distribution only if the conditional 
distribution is correctly specified. Under the weaker GLM assumption that the true variance 
is proportional to the nominal variance, we can form a quasi-likelihood ratio, 

, where  is the estimated proportional variance factor. This QLR statis-
tic has an asymptotic distribution under the assumption that the mean is correctly speci-
fied and that the variances follow the GLM structure. EViews does not compute the QLR 
statistic, but it can be estimated by computing an estimate of  based upon the standard-
ized residuals. We provide an example of the use of the QLR test statistic below.

If the GLM assumption does not hold, then there is no usable QLR test statistic with a 
known distribution; see Wooldridge (1997). 

Procedures for Count Models

Most of the procedures are self-explanatory. Some details are required for the forecasting 
and residual creation procedures.

• Forecast… provides you the option to forecast the dependent variable  or the pre-
dicted linear index . Note that for all of these models the forecasts of  are given 
by  where .

• Make Residual Series… provides the following three types of residuals for count 
models:

Ordinary

Standardized (Pearson)

Generalized =(varies)
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where the  represents any additional parameters in the variance specification. Note 
that the specification of the variances may vary significantly between specifications. 
For example, the Poisson model has , while the exponential has 

.

The generalized residuals can be used to obtain the score vector by multiplying the 
generalized residuals by each variable in . These scores can be used in a variety of 
LM or conditional moment tests for specification testing; see Wooldridge (1997).

Demonstrations

A Specification Test for Overdispersion

Consider the model:

, (29.61)

where the dependent variable NUMB is the number of strikes, IP is a measure of industrial 
production, and FEB is a February dummy variable, as reported in Kennan (1985, Table 1) 
and provided in the workfile “Strike.WF1”. 

The results from Poisson estimation of this model are presented below:

Cameron and Trivedi (1990) propose a regression based test of the Poisson restriction 
. To carry out the test, first estimate the Poisson model and obtain the 

fitted values of the dependent variable. Click Forecast and provide a name for the forecasted 
dependent variable, say NUMB_F. The test is based on an auxiliary regression of  on 

g
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x

NUMBi b1 b2IPi b3FEBi ei  

Dependent Variable: NUMB   
Method: ML/QML - Poisson Count  (Newton-Raphson / Marquardt 
        steps)    
Date: 03/09/15   Time: 16:43   
Sample: 1 103    
Included observations: 103
Convergence achieved after 3 iterations   
Coefficient covariance computed using observed Hessian  

Variable Coefficient Std. Error z-Statistic Prob.   

C 1.725630 0.043656 39.52764 0.0000 
IP 2.775334 0.819104 3.388254 0.0007 

FEB -0.377407 0.174520 -2.162539 0.0306 

R-squared 0.064502    Mean dependent var 5.495146 
Adjusted R-squared 0.045792    S.D. dependent var 3.653829 
S.E. of regression 3.569190    Akaike info criterion 5.583421 
Sum squared resid 1273.912    Schwarz criterion 5.660160 
Log likelihood -284.5462    Hannan-Quinn criter. 5.614503 
Restr. log likelihood -292.9694    LR statistic 16.84645 
Avg. log likelihood -2.762584    Prob(LR statistic) 0.000220 
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 and testing the significance of the regression coefficient. For this example, the test regres-
sion can be estimated by the command:

equation testeq.ls (numb-numb_f)^2-numb numb_f^2 

yielding the following results:

The t-statistic of the coefficient is highly significant, leading us to reject the Poisson restric-
tion. Moreover, the estimated coefficient is significantly positive, indicating overdispersion 
in the residuals.

An alternative approach, suggested by Wooldridge (1997), is to regress , on . To 
perform this test, select Proc/Make Residual Series… and select Standardized. Save the 
results in a series, say SRESID. Then estimating the regression specification:

sresid^2-1 numbf

yields the results:

ŷi
2

Dependent Variable: (NUMB-NUMB_F)^2-NUMB
Method: Least Squares   
Date: 03/09/15   Time: 16:38 
Sample: 1 103    
Included observations: 103

Variable Coefficient Std. Error t-Statistic Prob.  

NUMB_F^2 0.238874 0.052115 4.583571 0.0000

R-squared 0.043930     Mean dependent var 6.872929
Adjusted R-squared 0.043930     S.D. dependent var 17.65726
S.E. of regression 17.26506     Akaike info criterion 8.544908
Sum squared resid 30404.41     Schwarz criterion 8.570488
Log likelihood -439.0628     Hannan-Quinn criter. 8.555269
Durbin-Watson stat 1.711805    

esi 1– ŷi

Dependent Variable: SRESID^2-1   
Method: Least Squares   
Date: 08/12/09   Time: 10:55   
Sample: 1 103    
Included observations: 103   

Variable Coefficient Std. Error t-Statistic Prob.  

NUMB_F 0.221238 0.055002 4.022326 0.0001

R-squared 0.017556    Mean dependent var 1.161573
Adjusted R-squared 0.017556    S.D. dependent var 3.138974
S.E. of regression 3.111299    Akaike info criterion 5.117619
Sum squared resid 987.3785    Schwarz criterion 5.143199
Log likelihood -262.5574    Hannan-Quinn criter. 5.127980
Durbin-Watson stat 1.764537    
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Both tests suggest the presence of overdispersion, with the variance approximated by 
roughly .

Given the evidence of overdispersion and the rejection of the Poisson restriction, we will re-
estimate the model, allowing for mean-variance inequality. Our approach will be to estimate 
the two-step negative binomial QMLE specification (termed the quasi-generalized pseudo-
maximum likelihood estimator by Gourieroux, Monfort, and Trognon (1984a, 1984b)) using 
the estimate of  from the Wooldridge test derived above. To compute this estimator, sim-
ply select Negative Binomial (QML) and enter “0.221238” in the edit field for Fixed vari-
ance parameter.

We will use the GLM variance calculations, so you should click on Option in the Equation 
Specification dialog and choose the GLM option in the Covariance method dropdown 
menu. The estimation results are shown below:

The negative binomial QML should be consistent, and under the GLM assumption, the stan-
dard errors should be consistently estimated. It is worth noting that the coefficient on FEB, 
which was strongly statistically significant in the Poisson specification, is no longer signifi-
cantly different from zero at conventional significance levels.

v m 1 0.23m 

ĥ
2

Dependent Variable: NUMB   
Method: QML - Negative Binomial Count  (Newton-Raphson /  
        Marquardt steps)   
Date: 03/09/15   Time: 16:48   
Sample: 1 103    
Included observations: 103   
QML parameter used in estimation: 0.22124
Convergence achieved after 4 iterations   
Coefficient covariance computed using observed Hessian  
GLM adjusted covariance (variance factor =0.961161659819)  

Variable Coefficient Std. Error z-Statistic Prob.   

C 1.724906 0.064023 26.94197 0.0000 
IP 2.833103 1.198416 2.364039 0.0181 

FEB -0.369558 0.235617 -1.568474 0.1168 

R-squared 0.064374    Mean dependent var 5.495146 
Adjusted R-squared 0.045661    S.D. dependent var 3.653829 
S.E. of regression 3.569435    Akaike info criterion 5.174385 
Sum squared resid 1274.087    Schwarz criterion 5.251125 
Log likelihood -263.4808    Hannan-Quinn criter. 5.205468 
Restr. log likelihood -522.9973    LR statistic 519.0330 
Avg. log likelihood -2.558066    Prob(LR statistic) 0.000000 
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Quasi-likelihood Ratio Statistic

As described by Wooldridge (1997), specification testing using likelihood ratio statistics 
requires some care when based upon QML models. We illustrate here the differences 
between a standard LR test for significant coefficients and the corresponding QLR statistic.

From the results above, we know that the overall likelihood ratio statistic for the Poisson 
model is 16.85, with a corresponding p-value of 0.0002. This statistic is valid under the 
assumption that  is specified correctly and that the mean-variance equality holds.

We can decisively reject the latter hypothesis, suggesting that we should derive the QML 
estimator with consistently estimated covariance matrix under the GLM variance assump-
tion. While EViews currently does not automatically adjust the LR statistic to reflect the 
QML assumption, it is easy enough to compute the adjustment by hand. Following Wool-
dridge, we construct the QLR statistic by dividing the original LR statistic by the estimated 
GLM variance factor. (Alternately, you may use the GLM estimators for count models 
described in Chapter 30. “Generalized Linear Models,” on page 391, which do compute the 
QLR statistics automatically.)

Suppose that the estimated QML equation is named EQ1 and that the results are given by:

Note that when you select the GLM robust standard errors, EViews reports the estimated, 
here d.f. corrected, variance factor. Then you can use EViews to compute p-value associated 
with this statistic, placing the results in scalars using the following commands:

scalar qlr = eq1.@lrstat/2.226420477

scalar qpval = 1-@cchisq(qlr, 2)

m xi b, 

Dependent Variable: NUMB  
Method: ML/QML - Poisson Count  (Newton-Raphson / Marquardt steps) 
Date: 03/09/15   Time: 21:42  
Sample: 1 103   
Included observations: 103  
Convergence achieved after 3 iterations 
Coefficient covariance computed using observed Hessian 
GLM adjusted covariance (variance factor =2.22642047526) 
d.f. adjustment for standard errors & covariance 

Variable Coefficient Std. Error z-Statistic Prob.  

C 1.725630 0.065140 26.49094 0.0000
IP 2.775334 1.222202 2.270766 0.0232

FEB -0.377407 0.260405 -1.449307 0.1473

R-squared 0.064502     Mean dependent var 5.495146
Adjusted R-squared 0.045792     S.D. dependent var 3.653829
S.E. of regression 3.569190     Akaike info criterion 5.583421
Sum squared resid 1273.912     Schwarz criterion 5.660160
Log likelihood -284.5462     Hannan-Quinn criter. 5.614503
Restr. log likelihood -292.9694     LR statistic 16.84645
Avg. log likelihood -2.762584     Prob(LR statistic) 0.000220
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You can examine the results by clicking on the scalar objects in the workfile window and 
viewing the results. The QLR statistic is 7.5666, and the p-value is 0.023. The statistic and p-
value are valid under the weaker conditions that the conditional mean is correctly specified, 
and that the conditional variance is proportional (but not necessarily equal) to the condi-
tional mean.

Technical Notes

Default Standard Errors

The default standard errors are obtained by taking the inverse of the estimated information 
matrix. If you estimate your equation using a Newton-Raphson or Quadratic Hill Climbing 
method, EViews will use the inverse of the Hessian, , to form your coefficient covari-
ance estimate. If you employ BHHH, the coefficient covariance will be estimated using the 
inverse of the outer product of the scores , where  and  are the gradient (or 
score) and Hessian of the log likelihood evaluated at the ML estimates. 

Huber/White (QML) Standard Errors

The Huber/White options for robust standard errors computes the quasi-maximum likeli-
hood (or pseudo-ML) standard errors:

, (29.62)

Note that these standard errors are not robust to heteroskedasticity in binary dependent vari-
able models. They are robust to certain misspecifications of the underlying distribution of 

.

GLM Standard Errors

Many of the discrete and limited dependent variable models described in this chapter belong 
to a class of models known as generalized linear models (GLM). The assumption of GLM is 
that the distribution of the dependent variable  belongs to the exponential family and that 
the conditional mean of  is a (smooth) nonlinear transformation of the linear part :

. (29.63)

Even though the QML covariance is robust to general misspecification of the conditional dis-
tribution of , it does not possess any efficiency properties. An alternative consistent esti-
mate of the covariance is obtained if we impose the GLM condition that the (true) variance 
of  is proportional to the variance of the distribution used to specify the log likelihood:

. (29.64)

In other words, the ratio of the (conditional) variance to the mean is some constant  that 
is independent of . The most empirically relevant case is , which is known as 
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overdispersion. If this proportional variance condition holds, a consistent estimate of the 
GLM covariance is given by:

, (29.65)

where the d.f. corrected variance factor estimator is

. (29.66)

If you do not choose to d.f. correct, the leading term in Equation (29.66) is . When you 
select GLM standard errors, the estimated proportionality term  is reported as the vari-
ance factor estimate in EViews. 

(Note that the EViews legacy estimator always estimates a d.f. corrected variance factor, 
while the other estimators permit you to choose whether to override the default of no cor-
rection. Since the default behavior has changed, you will need to explicitly request d.f. cor-
rection to match the legacy covariance results.)

For detailed discussion on GLMs and the phenomenon of overdispersion, see McCullaugh 
and Nelder (1989). 

The Hosmer-Lemeshow Test

Let the data be grouped into  groups, and let  be the number of observa-
tions in group . Define the number of  observations and the average of predicted 
values in group  as:

(29.67)

The Hosmer-Lemeshow test statistic is computed as:

. (29.68)

The distribution of the HL statistic is not known; however, Hosmer and Lemeshow (1989, 
p.141) report evidence from extensive simulation indicating that when the model is correctly 
specified, the distribution of the statistic is well approximated by a distribution with 

 degrees of freedom. Note that these findings are based on a simulation where  is 
close to .
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yi ŷi– 2

v xi b̂ ĝ, , 
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v xi b̂ ĝ, ,  
-----------------------------------

i 1

N

 

1 N
ĵ
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The Andrews Test 

Let the data be grouped into  groups. Since  is binary, there are  cells 
into which any observation can fall. Andrews (1988a, 1988b) compares the  vector of the 
actual number of observations in each cell to those predicted from the model, forms a qua-
dratic form, and shows that the quadratic form has an asymptotic distribution if the 
model is specified correctly. 

Andrews suggests three tests depending on the choice of the weighting matrix in the qua-
dratic form. EViews uses the test that can be computed by an auxiliary regression as 
described in Andrews (1988a, 3.18) or Andrews (1988b, 17). 

Briefly, let  be an  matrix with element , where the indicator 
function  takes the value one if observation  belongs to group  with , 
and zero otherwise (we drop the columns for the groups with  to avoid singularity). 
Let  be the  matrix of the contributions to the score . The Andrews test 
statistic is  times the  from regressing a constant (one) on each column of  and . 
Under the null hypothesis that the model is correctly specified, is asymptotically dis-
tributed with  degrees of freedom. 
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Chapter 30.  Generalized Linear Models

Nelder and McCullagh (1972) describe a class of Generalized Linear Models (GLMs) that 
extends linear regression to permit non-normal stochastic and non-linear systematic compo-
nents. GLMs encompass a broad and empirically useful range of specifications that includes 
linear regression, logistic and probit analysis, and Poisson models.

GLMs offer a common framework in which we may place all of these specification, facilitat-
ing development of broadly applicable tools for estimation and inference. In addition, the 
GLM framework encourages the relaxation of distributional assumptions associated with 
these models, motivating development of robust quasi-maximum likelihood (QML) estima-
tors and robust covariance estimators for use in these settings.

The following discussion offers an overview of GLMs and describes the basics of estimating 
and working with GLMs in EViews. Those wishing additional background and technical 
information are encouraged to consult one of the many excellent summaries that are avail-
able (McCullagh and Nelder 1989, Hardin and Hilbe 2007, Agresti 1990).

Overview

Suppose we have  independent response variables , each of whose condi-
tional mean depends on -vectors of explanatory variables  and unknown coefficients 

. We may decompose  into a systematic mean component, , and a stochastic compo-
nent 

(30.1)

The conventional linear regression model assumes that the  is a linear predictor formed 
from the explanatory variables and coefficients, , and that  is normally distrib-
uted with zero mean and constant variance .

The GLM framework of Nelder and McCullagh (1972) generalizes linear regression by allow-
ing the mean component  to depend on a linear predictor through a nonlinear function, 
and the distribution of the stochastic component  be any member of the linear exponen-
tial family. Specifically, a GLM specification consists of:

• A linear predictor or index  where  is an optional offset term.

• A distribution for  belonging to the linear exponential family.

• A smooth, invertible link function, , relating the mean  and the linear 
predictor .

A wide range of familiar models may be cast in the form of a GLM by choosing an appropri-
ate distribution and link function. For example:
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For a detailed description of these and other familiar specifications, see McCullagh and 
Nelder (1981) and Hardin and Hilbe (2007). It is worth noting that the GLM framework is 
able to nest models for continuous (normal), proportion (logistic and probit), and discrete 
count (Poisson) data. 

Taken together, the GLM assumptions imply that the first two moments of  may be writ-
ten as functions of the linear predictor:

(30.2)

where  is a distribution-specific variance function describing the mean-variance rela-
tionship, the dispersion constant  is a possibly known scale factor, and  is a 
known prior weight that corrects for unequal scaling between observations.

Crucially, the properties of the GLM maximum likelihood estimator depend only on these 
two moments. Thus, a GLM specification is principally a vehicle for specifying a mean and 
variance, where the mean is determined by the link assumption, and the mean-variance 
relationship is governed by the distributional assumption. In this respect, the distributional 
assumption of the standard GLM is overly restrictive.

Accordingly, Wedderburn (1974) shows that one need only specify a mean and variance 
specification as in Equation (30.2) to define a quasi-likelihood that may be used for coeffi-
cient and covariance estimation. Not surprisingly, for variance functions derived from expo-
nential family distributions, the likelihood and quasi-likelihood functions coincide. 
McCullagh (1983) offers a full set of distributional results for the quasi-maximum likelihood 
(QML) estimator that mirror those for ordinary maximum likelihood. 

QML estimators are an important tool for the analysis of GLM and related models. In partic-
ular, these estimators permit us to estimate GLM-like models involving mean-variance spec-
ifications that extend beyond those for known exponential family distributions, and to 
estimate models where the mean-variance specification is of exponential family form, but 

Model Family  Link

Linear Regression Normal Identity: 

Exponential Regression Normal Log: 

Logistic Regression Binomial Logit: 

Probit Regression Binomial Probit: 

Poisson Count Poisson Log: 
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the observed data do not satisfy the distributional requirements (Agresti 1990, 13.2.3 offers 
a nice non-technical overview of QML).

Alternately, Gourioux, Monfort, and Trognon (1984) show that consistency of the GLM max-
imum likelihood estimator requires only correct specification of the conditional mean. Mis-
specification of the variance relationship does, however, lead to invalid inference, though 
this may be corrected using robust coefficient covariance estimation. In contrast to the QML 
results, the robust covariance correction does not require correction specification of a GLM 
conditional variance.

How to Estimate a GLM in EViews

To estimate a GLM model in EViews you must first create an equation object. You may select 
Object/New Object.../Equation or Quick/Estimate Equation… from the main menu, or 
enter the keyword equation in the command window. Next select GLM - Generalized Lin-
ear Model in the Method dropdown menu. Alternately, entering the keyword glm in the 
command window will both create the object and automatically set the estimation method. 
The dialog will change to show settings appropriate for specifying a GLM.

Specification

The main page of the dialog 
is used to describe the basic 
GLM specification. 

We will focus attention on 
the GLM Equation specifica-
tion section since the Estima-
tion settings section in the 
bottom of the dialog is 
should be self-explanatory.

Dependent Variable and 
Linear Predictor 

In the main edit field you 
should specify your depen-
dent variable and the linear 
predictor.

There are two ways in which you may enter this information. The easiest method is to list 
the dependent response variable followed by all of the regressors that enter into the predic-
tor. PDL specifications are permitted in this list, but ARMA terms are not. If you wish to 
include an offset in your predictor, it should be entered on the Options page (see “Specifica-
tion Options” on page 395).
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Alternately, you may enter an explicit linear specification like “Y=C(1)+C(2)*X”. The 
response variable will be taken to be the variable on the left-hand side of the equality (“Y”) 
and the linear predictor will be taken from the right-hand side of the expression 
(“C(1)+C(2)*X”). Offsets may be entered directly in the expression or they may be entered 
on the Options page. Note that this specification should not be taken as a literal description 
of the mean equation; it is merely a convenient syntax for specifying both the response and 
the linear predictor. 

Family

Next, you should use the Family dropdown to specify your distribu-
tion. The default family is the Normal distribution, but you are free to 
choose from the list of linear exponential family and quasi-likelihood 
distributions. Note that the last three entries (Exponential Mean, 
Power Mean (p), Binomial Squared) are for quasi-likelihood specifi-
cations not associated with exponential families.

If the selected distribution requires 
specification of an ancillary parame-
ter, you will be prompted to provide 
the values. For example, the Binomial 
Count and Binomial Proportion distributions both require specification of the number of 
trials , while the Negative Binomial requires specification of the excess-variance parame-
ter .

For descriptions of the various exponential and quasi-likelihood families, see “Distribution,” 
beginning on page 409.

Link

Lastly, you should use the Link dropdown to specify a link function.

EViews will initialize the Link setting to the default for to the selected 
family. In general, the canonical link is used as the default link, how-
ever, the Log link is used as the default for the Negative Binomial 
family. The Exponential Mean, Power Mean (p), and Binomial 
Squared quasi-likelihood families will default to use the Identity, 
Log, and Logit links, respectively.

If the link that you select requires specification of parameter values, you will be prompted to 
enter the values.

For detailed descriptions of the link functions, see “Link,” beginning on page 411.
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Options

Click on the Options tab to display additional settings for the GLM specification. You may 
use this page to augment the equation specification, to choose a dispersion estimator, to 
specify the estimation algorithm and associated settings, or to define a coefficient covariance 
estimator.

Specification Options

The Specification Options section of the Options tab allows you 
to augment the GLM specification.

To include an offset in your linear predictor, simply enter a 
series name or expression in the Offset edit field. 

The Frequency weights edit field should be used to specify rep-
licates for each observation in the workfile. In practical terms, 
the frequency weights act as a form of variance weighting and 
inflate the number of “observations” associated with the data records.

You may also specify prior variance weights in the using the Weights dropdown and associ-
ated edit fields. To specify your weights, simply select a description for the form of the 
weighting series (Inverse std. dev., Inverse variance, Std. deviation, Variance), then enter 
the corresponding weight series name or expression. EViews will translate the values in the 
weighting series into the appropriate values for . For example, to specify  directly, you 
should select Inverse variance then enter the series or expression containing the  values. 
If you instead choose Variance, EViews will set  to the inverse of the values in the weight 
series. “Weighted Least Squares” on page 47 for additional discussion.

Dispersion Options

The Method dropdown may be used to select the dispersion computation 
method. You will always be given the opportunity to choose between the 
Default setting or Pearson Chi-Sq., Fixed at 1, and User-Specified. Addi-
tionally, if the specified distribution is in the linear exponential family, you 
may choose to use the Deviance statistic.

The Default entry instructs EViews to use the default method for 
computing the dispersion, which will depend on the specified 
family. For families with a free dispersion parameter, the default 
is to use the Pearson Chi-Sq. statistic, otherwise the default is 
Fixed at 1. The current default setting will be displayed directly below the dropdown.

wi wi
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wi
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Coefficient Covariance Options

The Covariance method dropdown specifies the estimator 
for the coefficient covariance matrix. You may choose 
between the Ordinary method, which uses the inverse of 
the estimated information matrix, or you may elect to use 
Huber/White sandwich estimator, or the heteroskedastic-
ity and auto-correlation consistent HAC (Newey-West) 
approach. 

If you select the HAC covariance method, a HAC options button will appear prompting so 
that you may customize the whitening and kernel settings. By default, EViews HAC estima-
tion will employ a Bartlett kernel with fixed Newey-West sample-size based bandwidth and 
no pre-whitening (see “HAC Consistent Covariances (Newey-West)” on page 45 for addi-
tional discussion).

The Information matrix dropdown allows you to specify the method for estimating the 
information matrix. For covariances computed in the standard fashion, you may choose 
between the default Hessian - observed, Hessian - expected, and OPG - BHHH. If you are 
computing Huber/White covariances, only the two Hessian based selections will be dis-
played.

(Note that in some earlier versions of EViews, the information matrix default method was 
tied in with the optimization method. This default dependence has been eliminated.)

Lastly you may use the d.f. Adjustment checkbox choose whether to apply a degree-of-free-
dom correction to the coefficient covariance. By default, EViews will perform this adjust-
ment.

Estimation Options

The Estimation section of the page lets you specify the 
optimization algorithm, starting values, and other estima-
tion settings.

The Optimization Algorithm and Step method dropdown 
menus control your estimation method. 

• The default Optimization Algorithm is Newton-
Raphson, but you may instead select BFGS, OPG - 
BHHH, Fisher Scoring (IRLS), or EViews legacy.

• The default Step method is Marquardt, but you may use the menu to select Dogleg 
or Line search.

If you select optimization using EViews legacy, you will be prompted to select a legacy 
method in place of a step method. The Legacy method dropdown offers the choice of the 
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default Quadratic Hill Climbing (Newton-Raphson with Marquardt steps), Newton-Raph-
son with line search, IRLS - Fisher Scoring, and BHHH (OPG with line search).

By default, the Starting Values dropdown is set to EViews Supplied. The EViews default 
starting values for  are obtained using the suggestion of McCullagh and Nelder to initialize 
the IRLS algorithm at  for the binomial proportion family, and 

 otherwise, then running a single IRLS coefficient update to obtain the ini-
tial . Alternately, you may specify starting values that are a fraction of the default values, 
or you may instruct EViews to use your own values.

You may use the IRLS iterations edit field to instruct EViews to perform a fixed number of 
additional IRLS updates to refine coefficient values prior to starting the specified estimation 
algorithm.

The Max Iterations and Convergence edit fields are self-explanatory. Selecting the Display 
settings checkbox instructs EViews to show detailed information on tolerances and initial 
values in the equation output.

Coefficient Name

You may use the Coefficient name section of the dialog to change the coefficient vector from 
the default C. EViews will create and resize the vector if necessary.

Examples

In this section, we offer three examples illustrating GLM estimation in EViews.

Exponential Regression

Our first example uses the Kennen (1983) dataset (“Strike.WF1”) on number of strikes 
(NUMB), industrial production (IP), and dummy variable representing the month of Febru-
ary (FEB). To account for the non-negative response variable NUMB, we may estimate a 
nonlinear specification of the form:

(30.3)

where . This model falls into the GLM framework with a log link and normal 
family. To estimate this specification, bring up the GLM dialog and fill out the equation spec-
ification page as follows:

numb c ip feb

then change the Link function to Log. For the moment, we leave the remaining settings and 
those on the Options page at their default values. Click on OK to accept the specification 
and estimate the model. EViews displays the following results:

b
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The top portion of the output displays the estimation settings and basic results, in particular 
the choice of algorithm (Newton-Raphson with Marquardt steps), distribution family (Nor-
mal), and link function (Log), as well as the dispersion estimator, coefficient covariance esti-
mator, and estimation status. We see that the dispersion estimator is based on the Pearson 

 statistic and the coefficient covariance is computed using the inverse of the (negative of 
the) observed Hessian.

The coefficient estimates indicate that IP is positively related to the number of strikes, and 
that the relationship is statistically significant at conventional levels. The FEB dummy vari-
able is negatively related to NUMB, but the relationship is not statistically significant.

The bottom portion of the output displays various descriptive statistics. Note that in place of 
some of the more familiar statistics, EViews reports the deviance, deviance statistic (devi-
ance divided by the degrees-of-freedom) restricted deviance (for the model with only a con-
stant), and the corresponding LR test statistic and probability. The test indicates that the IP 
and FEB variables are jointly significant at roughly the 3% level. Also displayed are the sum-
of-squared Pearson residuals and the estimate of the dispersion, which in this example is the 
Pearson statistic.

Dependent Variable: NUMB   
Method: Generalized Linear Model  (Newton-Raphson / Marquardt steps) 
Included observations: 103   
Family: Normal    
Link: Log    
Dispersion computed using Pearson Chi-Square  
Convergence achieved after 6 iterations   
Coefficient covariance computed using observed Hessian  

Variable Coefficient Std. Error z-Statistic Prob.  

C 1.727368 0.066206 26.09097 0.0000
IP 2.664874 1.237904 2.152732 0.0313

FEB -0.391015 0.313445 -1.247476 0.2122

Mean dependent var 5.495146     S.D. dependent var 3.653829
Sum squared resid 1273.783     Log likelihood -275.6964
Akaike info criterion 5.411580     Schwarz criterion 5.488319
Hannan-Quinn criter. 5.442662     Deviance 1273.783
Deviance statistic 12.73783     Restr. deviance 1361.748
LR statistic 6.905754     Prob(LR statistic) 0.031654
Pearson SSR 1273.783     Pearson statistic 12.73783
Dispersion 12.73783    

x
2
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It may be instructive to examine 
the representations view of this 
equation. Simply go to the equa-
tion toolbar or the main menu 
and click on View/Representa-
tions to display the view. 

Notably, the representations 
view displays both the specifica-
tion of the linear predictor 
(I_NUMB) as well as the mean 
specification (EXP(I_NUMB)) in 
terms of the EViews coefficient 
names, and in terms of the esti-
mated values. These are the 
expressions used when forecast-
ing the index or the dependent variable using the Forecast procedure (see “Forecasting” on 
page 406).

Binomial

We illustrate the estimation of GLM binomial logistic regression using a simple example 
from Agresti (2007, Table 3.1, p. 69) examining the relationship between snoring and heart 
disease. The data in the first page of the workfile “Snoring.WF1” consist of grouped bino-
mial response data for 2,484 subjects divided into four risk factor groups for snoring level 
(SNORING), coded as 0, 2, 4, 5. Associated with each of the four groups is the number of 
individuals in the group exhibiting heart disease (DISEASE) as well as a total group size 
(TOTAL).

We may estimate a logistic regression model for these data in either raw frequency or pro-
portions form.

To estimate the model in raw frequency form, bring up the GLM equation dialog, enter the 
linear predictor specification:

disease c snore

SNORING DISEASE TOTAL

0 24 1379

2 35 638

4 21 213

5 30 254
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select Binomial Count in the Family dropdown, and enter “TOTAL” in the Number of trials 
edit field. Next switch over to the Options page and turn off the d.f. Adjustment for the 
coefficient covariance. Click on OK to estimate the equation.

The output header shows relevant information for the estimation procedure. Note in particu-
lar the EViews message that summary statistics are computed for the binomial proportions 
data. This message is a hint at the fact that EViews estimates the binomial count model by 
scaling the dependent variable by the number of trials, and estimating the corresponding 
proportions specification. 

Accordingly, you could have specified the model in proportions form. Simply enter the linear 
predictor specification:

disease/total c snoring

with Binomial Proportions specified in the Family dropdown and “TOTAL” entered in the 
Number of trials edit field.

Dependent Variable: DISEASE 
Method: Generalized Linear Model (Newton-Raphson / Marquardt 
    steps) 
Date: 03/10/15   Time: 15:19   
Sample: 1 4    
Included observations: 4   
Family: Binomial Count (n = TOTAL)   
Link: Logit    
Dispersion fixed at 1   
Summary statistics are for the binomial proportions and implicit 
        variance weights used in estimation  
Convergence achieved after 2 iterations   
Coefficient covariance computed using observed Hessian  
No d.f. adjustment for standard errors & covariance  
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The top portion of the output changes to show the different settings, but the remaining out-
put is identical. In particular, there is strong evidence that SNORING is related to heart dis-
ease in these data, with the estimated probability of heart disease increasing with the level 
of snoring.

It is worth mentioning that data of this form are sometimes represented in a frequency 
weighted form in which the data each group is divided into two records, one for the bino-
mial successes, and one for the failures. Each each record contains the number of repeats in 
the group and a binary indicator for success (the total number of records is , where  is 
the number of groups) The FREQ page of the “Snoring.WF1” workfile contains the data rep-
resented in this fashion:

SNORING DISEASE N

0 1 24

2 1 35

4 1 21

5 1 30

0 0 1355

Dependent Variable: DISEASE/TOTAL 
Method: Generalized Linear Model (Newton-Raphson / Marquardt 
     steps) 
Date: 03/10/15   Time: 15:21 
Sample: 1 4    
Included observations: 4   
Family: Binomial Proportion (trials = TOTAL)  
Link: Logit    
Dispersion fixed at 1   
Convergence achieved after 2 iterations   
Coefficient covariance computed using observed Hessian  
No d.f. adjustment for standard errors & covariance  

Variable Coefficient Std. Error z-Statistic Prob.   

C -3.866248 0.166214 -23.26061 0.0000 
SNORING 0.397337 0.050011 7.945039 0.0000 

Mean dependent var 0.023490    S.D. dependent var 0.001736 
Sum squared resid 0.000357    Log likelihood -11.53073 
Akaike info criterion 6.765367    Schwarz criterion 6.458514 
Hannan-Quinn criter. 6.092001    Deviance 2.808912 
Deviance statistic 1.404456    Restr. deviance 65.90448 
LR statistic 63.09557    Prob(LR statistic) 0.000000 
Pearson SSR 2.874323    Pearson statistic 1.437162 
Dispersion 1.000000

G G
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In this representation, DISEASE is an indicator for whether the record corresponds to indi-
viduals with heart disease or not, and N is the number of individuals in the category.

Estimation of the equivalent GLM model specified using the frequency weighted data is 
straightforward. Simply enter the linear predictor specification:

disease c snoring

with either Binomial Proportions or Binomial Count specified in the Family dropdown. 
Since each observation corresponds to a binary indicator, you should enter “1” enter as the 
Number of trials edit field. The multiple individuals in the category are handled by entering 
“N” in the Frequency weights field in the Options page.

Note that while a number of the summary statistics differ due to the different representation 
of the data (notably the Deviance and Pearson SSRs), the coefficient estimates and LR test 
statistics in this case are identical to those outlined above. There will, however, be substan-

2 0 603

4 0 192

5 0 224

Dependent Variable: DISEASE 
Method: Generalized Linear Model (Newton-Raphson / Marquardt 
     steps) 
Date: 03/10/15   Time: 15:16   
Sample: 1 8    
Included cases: 8    
Total observations: 2484   
Family: Binomial Count (n = 1)   
Link: Logit    
Frequency weight series: N   
Dispersion fixed at 1
Convergence achieved after 6 iterations   
Coefficient covariance computed using observed Hessian
No d.f. adjustment for standard errors & covariance  

Variable Coefficient Std. Error z-Statistic Prob.  

C -3.866248 0.166214 -23.26061 0.0000
SNORING 0.397337 0.050011 7.945039 0.0000

Mean dependent var 0.044283     S.D. dependent var 0.205765
Sum squared resid 102.1917     Log likelihood -418.8658
Akaike info criterion 0.338861     Schwarz criterion 0.343545
Hannan-Quinn criter. 0.340562     Deviance 837.7316
Deviance statistic 0.337523     Restr. deviance 900.8272
LR statistic 63.09557     Prob(LR statistic) 0.000000
Pearson SSR 2412.870     Pearson statistic 0.972147
Dispersion 1.000000    
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tive differences between the two results in settings when the dispersion is estimated since 
the effective number of observations differs in the two settings.

Lastly the data may be represented in individual trial form, which expands observations for 
each trial in the group into a separate record. The total number of records in the data is 

, where  is the number of trials in the i-th (of ) group. This representation is the 
traditional ungrouped binary response form for the data. Results for data in this representa-
tion should match those for the frequency weighted data.

Binomial Proportions

Papke and Wooldridge (1996) apply GLM techniques to the analysis of fractional response 
data for 401K tax advantaged savings plan participation rates (“401kjae.WF1”). Their analy-
sis focuses on the relationship between plan participation rates (PRATE) and the employer 
matching contribution rates (MRATE), accounting for the log of total employment 
(LOG(TOTEMP), LOG(TOTEMP)^2), plan age (AGE, AGE^2), and a binary indicator for 
whether the plan is the only pension plan offered by the plan sponsor (SOLE).

We focus on two of the equations estimated in the paper. In both, the authors employ a GLM 
specification using a binomial proportion family and logit link. Information on the binomial 
group size  is ignored, but variance misspecification is accounted for in two ways: first 
using a binomial QMLE with GLM standard errors, and second using the robust Huber-
White covariance approach.

To estimate the GLM standard error specification, we first call up the GLM dialog and enter 
the linear predictor specification:

prate mprate log(totemp) log(totemp)^2 age age^2 sole

Next, select the Binomial Proportion family, and enter the sample description

@all if mrate<=1

Lastly, we leave the Number of trials edit field at the default value of 1, but correct for het-
erogeneity by going to the Options page and specifying Pearson Chi-Sq. dispersion esti-
mates. Click on OK to continue.

The resulting estimates correspond the coefficient estimates and first set of standard errors 
in Papke and Wooldridge (Table II, column 2):

ni ni G
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Papke and Wooldridge offer a detailed analysis of the results (p. 628–629), which we will 
not duplicate here. We will point out that the estimate of the dispersion (0.191798) taken 
from the Pearson statistic is far from the restricted value of 1.0.

The results using the QML with GLM standard errors rely on validity of the GLM assumption 
for the variance given in Equation (30.2), an assumption that may be too restrictive. We may 
instead estimate the equation without imposing a particular conditional variance specifica-
tion by computing our estimates using a robust Huber-White sandwich method. Click on 
Estimate to bring up the equation dialog, select the Options tab, then change the Covari-
ance method from Default to Huber/White. Click on OK to estimate the revised specifica-
tion:

Dependent Variable: PRATE 
Method: Generalized Linear Model (Newton-Raphson / Marquardt 
     steps) 
Date: 03/10/15   Time: 15:26   
Sample: 1 4735 IF MRATE<=1   
Included observations: 3784   
Family: Binomial Proportion (trials = 1) Quasi-likelihood  
Link: Logit    
Dispersion computed using Pearson Chi-Square  
Convergence achieved after 4 iterations   
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

MRATE 1.390080 0.100368 13.84981 0.0000
LOG(TOTEMP) -1.001875 0.111222 -9.007914 0.0000

LOG(TOTEMP)^2 0.052186 0.007105 7.345545 0.0000
AGE 0.050113 0.008710 5.753136 0.0000

AGE^2 -0.000515 0.000211 -2.444532 0.0145
SOLE 0.007947 0.046785 0.169860 0.8651

C 5.057998 0.426942 11.84703 0.0000

Mean dependent var 0.847769     S.D. dependent var 0.169961
Sum squared resid 92.69516     Quasi-log likelihood -8075.397
Deviance 765.0353     Deviance statistic 0.202551
Restr. deviance 895.5505     Quasi-LR statistic 680.4838
Prob(Quasi-LR stat) 0.000000     Pearson SSR 724.4200
Pearson statistic 0.191798     Dispersion 0.191798
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EViews reports the new method of computing the coefficient covariance in the header. The 
coefficient estimates are unchanged, since the alternative computation of the coefficient 
covariance is a post-estimation procedure, and the new standard estimates correspond the 
second set of standard errors in Papke and Wooldridge (Table II, column 2). Notably, the use 
of an alternative estimator for the coefficient covariance has little substantive effect on the 
results.

Working with a GLM Equation

EViews offers various views and procedures for a estimated GLM equation. Some, like the 
Gradient Summary or the coefficient Covariance Matrix view are self-explanatory. In this 
section, we offer relevant comment on the remaining views.

Residuals

The main equation output offers summary statistics for the sum-of-squared response residu-
als (“Sum squared resid”), and the sum-of-squared Pearson residuals (“Pearson SSR”).

Dependent Variable: PRATE 
Method: Generalized Linear Model (Newton-Raphson / Marquardt 
     steps) 
Date: 03/10/15   Time: 15:27   
Sample: 1 4735 IF MRATE<=1   
Included observations: 3784   
Family: Binomial Proportion (trials = 1)   
Link: Logit    
Dispersion fixed at 1   
Convergence achieved after 5 iterations   
Coefficient covariance computed using the Huber-White method with
        observed Hessian   

Variable Coefficient Std. Error z-Statistic Prob.   

MRATE 1.390080 0.107792 12.89596 0.0000 
LOG(TOTEMP) -1.001875 0.110524 -9.064757 0.0000 

LOG(TOTEMP)^2 0.052186 0.007134 7.315681 0.0000 
AGE 0.050113 0.008852 5.661091 0.0000 

AGE^2 -0.000515 0.000212 -2.432326 0.0150 
SOLE 0.007947 0.050242 0.158172 0.8743 

C 5.057998 0.421199 12.00858 0.0000 

Mean dependent var 0.847769    S.D. dependent var 0.169961 
Sum squared resid 92.69516    Log likelihood -1179.279 
Akaike info criterion 0.626997    Schwarz criterion 0.638538 
Hannan-Quinn criter. 0.631100    Deviance 765.0353 
Deviance statistic 0.202551    Restr. deviance 895.5505 
LR statistic 130.5153    Prob(LR statistic) 0.000000 
Pearson SSR 724.4200    Pearson statistic 0.191798 
Dispersion 1.000000    
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The Actual, Fitted, Residual views and Residual Diagnostics allow you to examine proper-
ties of your residuals. The Actual, Fitted, Residual Table and Graph, show the fit of the 
unweighted data. As the name suggests, the Standardized Residual Graph displays the 
standardized (scaled Pearson) residuals.

The Residual Diagnostics show Histograms of the standardized residuals and Correlo-
grams of the standardized residuals and the squared standardized residuals.

The Make Residuals proc allows you to save the Ordi-
nary (response), Standardized (scaled Pearson), or Gen-
eralized (score) residuals into the workfile. The latter 
may be useful for constructing test statistics (note, how-
ever, that in some cases, it may be more useful to com-
pute the gradients of the model directly using Proc/Make 
Gradient Group).

Given standardized residuals SRES for equation EQ1, the 
unscaled Pearson residuals may be obtained using the command

series pearson = sres * @sqrt(eq1.@dispersion)

Forecasting

EViews offers built-in tools for producing in and out-of-sample forecasts (fits) from your 
GLM estimated equation. Simply click on the Forecast button on your estimated equation to 
bring up the forecast dialog, then enter the desired settings.

You should first use the radio but-
tons to specify whether you wish to 
forecast the expected dependent 
variable  or the linear index .

Next, enter the name of the series to 
hold the forecast output, and set the 
forecast sample.

Lastly, specify whether you wish to 
produce a forecast graph and 
whether you wish to fill non-fore-
cast values in the workfile with 
actual values or to fill them with 
NAs. For most cross-section applica-
tions, we recommend that you 
uncheck this box.

Click on OK to produce the forecast.

mi hi
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Note that while EViews does not presently offer a menu item for saving the fitted GLM vari-
ances or scaled variances, you can easily obtain results by saving the ordinary and standard-
ized residuals and taking ratios (“Residuals” on page 418). If ORESID are the ordinary and 
SRESID are the standardized residuals for equation EQ1, then the commands

series glmsvar = (oresid / sresid)^2

series glmvar = glmvar * eq1.@dispersion

produce the scaled variance and unscaled variances, respectively.

Lastly, you should use Proc/Make Model to create a model object for more complicated 
simulation from your GLM equation.

Testing

You may perform Wald tests of coefficient restrictions. Simply select View/Coefficient Diag-
nostics/Wald - Coefficient Restrictions, then enter your restrictions in the edit field. For the 
Papke-Wooldridge example above with Huber-White robust covariances, we may use a Wald 
test to evaluate the joint significance of AGE^2 and SOLE by entering the restriction 
“C(5)=C(6)=0” and clicking on OK to perform the test.

The test results show joint-significance at just above the 5% level. The Confidence Inter-
vals and Confidence Ellipses... views will also employ the robust covariance matrix esti-
mates.

The Omitted Variables... and Redundant Variables... views and the Ramsey RESET Test... 
views are likelihood ratio based tests. Note that the RESET test is a special case of an omit-
ted variables test where the omitted variables are powers of the fitted values from the origi-
nal equation. 

Wald Test:   
Equation: EQ2_QMLE_R   
Null Hypothesis: C(5)=C(6)=0  

Test Statistic Value df Probability

F-statistic  2.970226 (2, 3777)  0.0514 
Chi-square  5.940451  2  0.0513 

    
Null Hypothesis Summary:  

Normalized Restriction (= 0) Value Std. Err. 

C(5) -0.000515  0.000212 
C(6)  0.007947  0.050242 

Restrictions are linear in coefficients.  
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We illustrate these tests by performing the RESET test on the first Papke-Wooldridge QMLE 
equation with GLM covariances. Select View/Stability Diagnostics/Ramsey Reset Test... 
and change the default to include 2 fitted terms in the test equation.

The top portion of the output shows the test settings, and the test summaries. The bottom 
portion of the output shows the estimated test equation. The results show little evidence of 
nonlinearity.

Notice that in contrast to LR tests in most other equation views, the likelihood ratio test sta-
tistics in GLM equations are obtained from analysis of the deviances or quasi-deviances. 
Suppose  is the unscaled deviance under the null and  is the corresponding statistic 
under the alternative hypothesis. The usual asymptotic  likelihood ratio test statistic may 
be written in terms of the difference of deviances with common scaling, 

(30.4)

as , where  is an estimate of the dispersion and  is the fixed number of restric-
tions imposed by the null hypothesis.  is either a specified fixed value or an estimate 
under the alternative hypothesis using the specified dispersion method. When  and  
contain the quasi-deviances, the resulting statistic is the quasi-likelihood ratio (QLR) statis-
tic (Wooldridge, 1997).

If  is estimated, we may also employ the F-statistic variant of the test statistic:

(30.5)

Ramsey RESET Test    
Equation: EQ2_QMLE    
Specification: PRATE MRATE LOG(TOTEMP) LOG(TOTEMP)^2 AGE 
        AGE^2 SOLE C 
Omitted Variables: Powers of fitted values from 2 to 3  

 Value df Probability  
F-statistic  0.311140 (2, 3775)   0.7326  
QLR* statistic  0.622280  2  0.7326  

F-test summary:    

 Sum of Sq. df 
Mean 

Squares  

Test Deviance  0.119389  2  0.059694  
Restricted Deviance  765.0353  3777  0.202551  
Unrestricted Deviance  764.9159  3775  0.202627  
Dispersion SSR  724.2589  3775  0.191857  

QLR* test summary:    
 Value df   

Restricted Deviance  765.0353  3777   
Unrestricted Deviance  764.9159  3775   
Dispersion  0.191857    

D0 D1

x
2
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where  is the degrees-of-freedom under the alternative and  is an estimate of the 
dispersion. EViews will estimate  under the alternative hypothesis using the method spec-
ified in your equation.

We point out that the Ramsey test results (and all other GLM LR test statistics) presented 
here may be problematic since they rely on the GLM variance assumption, Papke and Wool-
dridge offer a robust LM formulation for the Ramsey RESET test. This test is not currently 
built-into EViews, but which may be constructed with some effort using auxiliary results 
provided by EViews (see Papke and Wooldridge, p. 625 for details on the test construction).

Technical Details

The following discussion offers a brief technical summary of GLMs, describing specification, 
estimation, and hypothesis testing in this framework. Those wishing greater detail should 
consult the McCullagh and Nelder’s (1989) monograph or the book-length survey by Hardin 
and Hilbe (2007).

Distribution

A GLM assumes that  are independent random variables following a linear exponential 
family distribution with density:

(30.6)

where  and  are distribution specific functions. , which is termed the canon-
ical parameter, fully parameterizes the distribution in terms of the conditional mean, the dis-
persion value  is a possibly known scale nuisance parameter, and  is a known prior 
weight that corrects for unequal scaling between observations with otherwise constant .

The exponential family assumption implies that the mean and variance of  may be writ-
ten as

(30.7)

where  and  are the first and second derivatives of the  function, respectively, 
and  is a distribution-specific variance function that depends only on .

EViews supports the following exponential family distributions:
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The corresponding density functions for each of these distributions are given by:

• Normal

(30.8)

for .

• Gamma

(30.9)

for  where .

• Inverse Gaussian

(30.10)

for .

• Poisson

(30.11)

for  The dispersion is restricted to be  and prior weighting is not 
permitted.

• Binomial Proportion

(30.12)
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for  where  is the number of binomial trials. The dispersion 
is restricted to be  and the prior weights .

• Negative Binomial

(30.13)

for  The dispersion is restricted to be  and prior weighting is not 
permitted.

In addition, EViews offers support for the following quasi-likelihood families:

The first three entries in the table correspond to overdispersed or prior weighted versions of 
the specified distribution. The last three entries are pure quasi-likelihood distributions that 
do not correspond to exponential family distributions. See “Quasi-likelihoods,” beginning on 
page 413 for additional discussion.

Link

The following table lists the names, functions, and associated range restrictions for the sup-
ported links:

Quasi-Likelihood Family
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EViews does not restrict the link choices associated with a given distributional family. Thus, 
it is possible for you to choose a link function that returns invalid mean values for the spec-
ified distribution at some parameter values, in which case your likelihood evaluation and 
estimation will fail.

One important role of the inverse link function is to map the real number domain of the lin-
ear index into the range of the dependent variable. Consequently the choice of link function 
is often governed in part by the desire to enforce range restrictions on the fitted mean. For 
example, the mean of a binomial proportions or negative binomial model must be between 0 
and 1, while the Poisson and Gamma distributions require a positive mean value. Accord-
ingly, the use of a Logit, Probit, Log-Log, Complementary Log-Log, Power Odds Ratio, or 
Box-Cox Odds Ratio is common with a binomial distribution, while the Log, Power, and Box-
Cox families are generally viewed as more appropriate for Poisson or Gamma distribution 
data. 

EViews will default to use the canonical link for a given distribution. The canonical link is 
the function that equates the canonical parameter  of the exponential family distribution 
and the linear predictor . The canonical links for relevant distributions 
are given by:

Log-Log
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The negative binomial canonical link is not supported in EViews so the log link is used as 
the default choice in this case. We note that while the canonical link offers computational 
and conceptual convenience, it is not necessarily the best choice for a given problem.

Quasi-likelihoods

Wedderburn (1974) proposed the method of maximum quasi-likelihood for estimating 
regression parameters when one has knowledge of a mean-variance relationship for the 
response, but is unwilling or unable to commit to a valid fully specified distribution func-
tion.

Under the assumption that the  are independent with mean  and variance 
, the function,

(30.14)

has the properties of an individual contribution to a score. Accordingly, the integral,

(30.15)

if it exists, should behave very much like a log-likelihood contribution. We may use to the 
individual contributions  to define the quasi-log-likelihood, and the scaled and unscaled 
quasi-deviance functions

(30.16)

We may obtain estimates of the coefficients by treating the quasi-likelihood  
as though it were a conventional likelihood and maximizing it respect to . As with conven-
tional GLM likelihoods, the quasi-ML estimate of  does not depend on the value of the dis-
persion parameter . The dispersion parameter is conventionally estimated using the 
Pearson  statistic, but if the mean-variance assumption corresponds to a valid exponen-
tial family distribution, one may also employ the deviance statistic.

For some mean-variance specifications, the quasi-likelihood function corresponds to an ordi-
nary likelihood in the linear exponential family, and the method of maximum quasi-likeli-
hood is equivalent to ordinary maximum likelihood. For other specifications, there is no 
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corresponding likelihood function. In both cases, the distributional properties of the maxi-
mum quasi-likelihood estimator will be analogous to those obtained from maximizing a 
valid likelihood (McCullagh 1983).

We emphasize the fact that quasi-likelihoods offer flexibility in the mean-variance specifica-
tion, allowing for variance assumptions that extend beyond those implied by exponential 
family distribution functions. One important example occurs when we modify the variance 
function for a Poisson, Binomial Proportion, or Negative Binomial distribution to allow a 
free dispersion parameter.

Furthermore, since the quasi-likelihood framework only requires specification of the mean 
and variance, it may be used to relax distributional restrictions on the form of the response 
data. For example, while we are unable to evaluate the Poisson likelihood for non-integer 
data, there are no such problems for the corresponding quasi-likelihood based on mean-vari-
ance equality.

A list of common quasi-likelihood mean-variance assumptions is provided below, along with 
names for the corresponding exponential family distribution:

Note that the power-mean , exponential mean , and squared binomial proportion 
 variance assumptions do not correspond to exponential family distributions.

Estimation

Estimation of GLM models may be divided into the estimation of three basic components: 
the  coefficients, the coefficient covariance matrix , and the dispersion parameter .
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Coefficient Estimation

The estimation of  is accomplished using the method of maximum likelihood (ML). Let 
 and . We may write the log-likelihood function as 

(30.17)

Differentiating  with respect to  yields

(30.18)

where the last equality uses the fact that . Since the scalar dispersion 
parameter  is incidental to the first-order conditions, we may ignore it when estimating . 
In practice this is accomplished by evaluating the likelihood function at .

It will prove useful in our discussion to define the scaled deviance  and the unscaled 
deviance  as

(30.19)

respectively. The scaled deviance  compares the likelihood function for the saturated 
(unrestricted) log-likelihood, , with the log-likelihood function evaluated at an 
arbitrary , . 

The unscaled deviance  is simply the scaled deviance multiplied by the dispersion, or 
equivalently, the scaled deviance evaluated at . It is easy to see that minimizing 
either deviance with respect to  is equivalent to maximizing the log-likelihood with 
respect to the .

In general, solving for the first-order conditions for  requires an iterative approach. EViews 
offers three different algorithms for obtaining solutions: Newton-Raphson, BHHH, and IRLS 
- Fisher Scoring. All of these methods are variants of Newton’s method but differ in the 
method for computing the gradient weighting matrix used in coefficient updates (see “Opti-
mization Algorithms” on page 1095).

IRLS, which stands for Iterated Reweighted Least Squares, is a commonly used algorithm for 
estimating GLM models. IRLS is equivalent to Fisher Scoring, a Newton-method variant that 
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employs the Fisher Information (negative of the expected Hessian matrix) as the update 
weighting matrix in place of the negative of the observed Hessian matrix used in standard 
Newton-Raphson, or the outer-product of the gradients (OPG) used in BHHH.

In the GLM context, the IRLS-Fisher Scoring coefficient updates have a particularly simple 
form that may be implemented using weighted least squares, where the weights are known 
functions of the fitted mean that are updated at each iteration. For this reason, IRLS is partic-
ularly attractive in cases where one does not have access to custom software for estimating 
GLMs. Moreover, in cases where one’s preference is for an observed-Hessian Newton 
method, the least squares nature of the IRLS updates make the latter well-suited to refining 
starting values prior to employing one of the other methods.

Coefficient Covariance Estimation

You may choose from a variety of estimators for , the covariance matrix of . In describ-
ing the various approaches, it will be useful to have expressions at hand for the expected 
Hessian ( ), the observed Hessian ( ), and the outer-product of the gradients ( ) for GLM 
models. Let . Then given estimates of  and the dispersion  (See 
“Dispersion Estimation,” on page 417), we may write

(30.20)

where , , and  are diagonal matrices with corresponding i-th diagonal elements

(30.21)

Given correct specification of the likelihood, asymptotically consistent estimators for the  
may be obtained by taking the inverse of one of these estimators of the information matrix. 
In practice, one typically matches the covariance matrix estimator with the method of esti-
mation (i.e., using the inverse of the expected information estimator  when esti-
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mation is performed using IRLS) but mirroring is not required. By default, EViews will pair 
the estimation and covariance methods, but you are free to mix and match as you see fit.

If the variance function is incorrectly specified, the GLM inverse information covariance esti-
mators are no longer consistent for . The Huber-White Sandwich estimator (Huber 1967, 
White 1980) permits non GLM-variances and is robust to misspecification of the variance 
function. EViews offers two forms for the estimator; you may choose between one that 
employs the expected information ( ) or one that uses the observed Hessian 
( ).

Lastly, you may choose to estimate the coefficient covariance with or without a degree-of-
freedom correction. In practical terms, this computation is most easily handled by using a 
non d.f.-corrected version of  in the basic calculation, then multiplying the coefficient 
covariance matrix by  when you want to apply the correction.

Dispersion Estimation

Recall that the dispersion parameter  may be ignored when estimating . Once we have 
obtained , we may turn attention to obtaining an estimate of . With respect to the esti-
mation of , we may divide the distribution families into two classes: distributions with a 
free dispersion parameter, and distributions where the dispersion is fixed.

For distributions with a free dispersion parameter (Normal, Gamma, Inverse Gaussian), we 
must estimate . An estimate of the free dispersion parameter  may be obtained using the 
generalized Pearson  statistic (Wedderburn 1972, McCullagh 1983),

(30.22)

where  is the number of estimated coefficients. In linear exponential family settings,  
may also be estimated using the unscaled deviance statistic (McCullagh 1983),

(30.23)

For distributions where the dispersion is fixed (Poisson, Binomial, Negative Binomial),  is 
naturally set to the theoretically proscribed value of 1.0.

In fixed dispersion settings, the theoretical restriction on the dispersion is sometimes vio-
lated in the data. This situation is generically termed overdispersion since  typically 
exceeds 1.0 (though underdispersion is a possibility). At a minimum, unaccounted for 
overdispersion leads to invalid inference, with estimated standard errors of the  typically 
understating the variability of the coefficient estimates. 

The easiest way to correct for overdispersion is by allowing a free dispersion parameter in 
the variance function, estimating  using one of the methods described above, and using 
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ŜIJ Î
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the estimate when computing the covariance matrix as described in “Coefficient Covariance 
Estimation,” on page 416. The resulting covariance matrix yields what are sometimes 
termed GLM standard errors.

Bear in mind that estimating  given a fixed dispersion distribution violates the assump-
tions of the likelihood so that standard ML theory does not apply. This approach is, how-
ever, consistent with a quasi-likelihood estimation framework (Wedderburn 1974), under 
which the coefficient estimator and covariance calculations are theoretically justified (see 
“Quasi-likelihoods,” beginning on page 413). We also caution that overdispersion may be 
evidence of more serious problems with your specification. You should take care to evaluate 
the appropriateness of your model.

Computational Details

The following provides additional details for the computation of results:

Residuals

There are several different types of residuals that are computed for a GLM specification:

• The ordinary or response residuals are defined as

(30.24)

The ordinary residuals are simply the deviations from the mean in the original scale of 
the responses.

• The weighted or Pearson residuals are given by

(30.25)

The weighted residuals divide the ordinary response variables by the square root of 
the unscaled variance. For models with fixed dispersion, the resulting residuals should 
have unit variance. For models with free dispersion, the weighted residuals may be 
used to form an estimator of .

• The standardized or scaled Pearson residuals) are computed as

(30.26)

The standardized residuals are constructed to have approximately unit variance.

• The generalized or score residuals are given by

(30.27)

The scores of the GLM specification are obtained by multiplying the explanatory vari-
ables by the generalized residuals (Equation (30.18)). Not surprisingly, the general-
ized residuals may be used in the construction of LM hypothesis tests.
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Sum of Squared Residuals

EViews reports two different sums-of-squared residuals: a basic sum of squared residuals, 
, and the Pearson SSR, . 

Dividing the Pearson SSR by  produces the Pearson  statistic which may be used 
as an estimator of , (“Dispersion Estimation” on page 417) and, in some cases, as a mea-
sure of goodness-of-fit.

Log-likelihood and Information Criteria

EViews always computes GLM log-likelihoods using the full specification of the density 
function: scale factors, inessential constants, and all. The likelihood functions are listed in 
“Distribution,” beginning on page 409.

If your dispersion specification calls for a fixed value for , the fixed value will be used to 
compute the likelihood. If the distribution and dispersion specification call for  to be esti-
mated,  will be used in the evaluation of the likelihood. If the specified distribution calls 
for a fixed value for  but you have asked EViews to estimate the dispersion, or if the spec-
ified value is not consistent with a valid likelihood, the log-likelihood will not be computed.

The AIC, SIC, and Hannan-Quinn information criteria are computed using the log-likelihood 
value and the usual definitions (Appendix E. “Information Criteria,” on page 1111).

It is worth mentioning that computed GLM likelihood value for the normal family will differ 
slightly from the likelihood reported by the corresponding LS estimator. The GLM likelihood 
follows convention in using a degree-of-freedom corrected estimator for the dispersion while 
the LS likelihood uses the uncorrected ML estimator of the residual variance. Accordingly, 
you should take care not compare likelihood functions estimated using the two methods.

Deviance and Quasi-likelihood

EViews reports the unscaled deviance  or quasi-deviance. The quasi-deviance 
and quasi-likelihood will be reported if the evaluation of the likelihood function is invalid. 
You may divide the reported deviance by  to obtain an estimator of the dispersion, 
or use the deviance to construct likelihood ratio or F-tests.

In addition, you may divide the deviance by the dispersion to obtain the scaled deviance. In 
some cases, the scaled deviance may be used as a measure of goodness-of-fit.

Restricted Deviance and LR Statistic

The restricted deviance and restricted quasi-likelihood reported on the main page are the 
values for the constant only model.

The entries for “LR statistic” and “Prob(LR statistic)” reported in the output are the corre-
sponding  likelihood ratio tests for the constant only null against the alternative given 
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by the estimated equation. They are the analogues to the “F-statistics” results reported in 
EViews least squares estimation. As with the latter F-statistics, the test entries will not be 
reported if the estimated equation does not contain an intercept.
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Chapter 31.  Robust Least Squares

Ordinary least squares estimators are sensitive to the presence of observations that lie 
outside the norm for the regression model of interest. The sensitivity of conventional 
regression methods to these outlier observations can result in coefficient estimates that 
do not accurately reflect the underlying statistical relationship.

Robust least squares refers to a variety of regression methods designed to be robust, or 
less sensitive, to outliers. EViews offers three different methods for robust least 
squares: M-estimation (Huber, 1973), S-estimation (Rousseeuw and Yohai, 1984), and 
MM-estimation (Yohai 1987). The three methods differ in their emphases:

• M-estimation addresses dependent variable outliers where the value of the 
dependent variable differs markedly from the regression model norm (large 
residuals).

• S-estimation is a computationally intensive procedure that focuses on outliers in 
the regressor variables (high leverages).

• MM-estimation is a combination of S-estimation and M-estimation. The proce-
dure starts by performing S-estimation, and then uses the estimates obtained 
from S-estimation as the starting point for M-estimation. Since MM-estimation is 
a combination of the other two methods, it addresses outliers in both the depen-
dent and independent variables. 

Least squares diagnostics for outlier detection are described in greater detail in “Lever-
age Plots” on page 230 and “Influence Statistics” on page 231.

Background

Before describing the mechanics of estimating robust regression models in EViews, it 
will be useful to review the basics of the three estimation methods and to outline alter-
native approaches for computing the covariance matrix of the coefficient estimates.

M-estimation

The traditional least squares estimator is computed by finding coefficient values that 
minimize the sum of the squared residuals:

(31.1)

where the residual function  is given by

(31.2)
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Since the residuals  enter the objective function on the right-hand side of Equation (31.1) 
after squaring, the effects of outliers are magnified accordingly. 

M-estimator definition

One obvious approach to robust regression replaces squaring of residuals in Equation (31.1) 
with a function that provides less weight to outliers. The Huber M-estimator (“M” for “max-
imum likelihood estimator-like”) computes the coefficient values that minimize the summed 
values of a function  of the residuals:

(31.3)

where  is a measure of the scale of the residuals,  is an arbitrary positive tuning constant 
associated with the function, and where  are individual weights that are generally set to 
1, but may be set to:

(31.4)

to down-weight observations with high leverage (large diagonals of the Hat Matrix). 

The potential choices for the function  (Andrews, Bisquare, Cauchy, Fair, Huber-Bisquare, 
Logistic, Median, Talworth, Welsch) are outlined below along with the default values of the 
tuning constants:
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The default tuning constants for each function are taken from Holland and Welsch (1977), 
and are chosen so that the estimator achieves 95% asymptotic efficiency under residual nor-
mality.

M-estimator calculation

If the scale  is known, then the -vector of coefficient estimates  may be found using 
standard iterative techniques for solving the  nonlinear first-order equations:

(31.5)

for , where , the derivative of the  function, and  is the value of 
the j-th regressor for observation .

Since  is not known, a sequential procedure is used that alternates between: (1) comput-
ing updated estimates of the scale  given coefficient estimates , and (2) using 
iterative methods to find the  that solves Equation (31.5) for a given . The initial 

Huber 1.345

Logistic 1.205

Median 0.01

Talworth 2.796

Welsch 2.985
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 are obtained from ordinary least squares. The initial coefficients are used to compute a 
scale estimate, , and from that are formed new coefficient estimates , followed by a 
new scale estimate , and so on until convergence is reached.

Given an estimate , the updated scale  is estimated using one of three different 
methods: Mean Absolute Deviation – Zero Centered (MADZERO), Median Absolute Devia-
tion – Median Centered (MADMED), or Huber Scaling:

where  are the residuals associated with  and where the initial scale required 
for the Huber method is estimated by:

(31.6)

M-estimator summary statistics

EViews automatically computes a variety of robust summary statistics for equations esti-
mated using M-estimators.

R-squared

Maronna (1996, p. 171) defines the robust  statistic as

where  is the M-estimate from the constant-only specification.
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The adjusted  is calculated as:

(31.7)

Both of these statistics can be highly sensitive to the choice of function, even when the coef-
ficient estimates and standard errors are not. Studies have also found that these statistics 
may be upwardly biased (see, for example, Renaud and Victoria-Feser (2010)).

Rw-squared

Renaud and Victoria-Feser (2010) propose the  statistic, and provide simulation results 
showing  to be a better measure of fit than the robust  outlined above. The  sta-
tistic is defined as

(31.8)

where  is the function of the residual value and 

(31.9)

As with the robust , an adjusted value of  may be calculated from the unadjusted 
statistic

(31.10)

Rn-squared Statistic

The  statistic is a robust version of a Wald test of the hypothesis that all of the coeffi-
cients are equal to zero. It is calculated using the standard Wald test quadratic form:

(31.11)

where  are the  non-intercept robust coefficient estimates and  is the corresponding 
estimated covariance. Under the null hypothesis that all of the coefficients are equal to zero, 
the  statistic is asymptotically distributed as a .

Deviance

The deviance is the value of the objective function Equation (31.3) evaluated at the final 
coefficient estimates and estimate of the scale:

(31.12)
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Information Criteria

EViews reports two information criteria for M-estimated equations: the robust equivalent of 
the Akaike Information Criterion ( ), and a corresponding robust Schwarz Information 
Criterion ( ):

(31.13)

where  is the derivative of  as outlined in Holland and Welsch (1977). See Ronchetti 
(1985) for details.

S-estimation

The S-estimator (“S” for “scale statistic”) is a member of the class of high-breakdown-value 
estimators introduced by Rousseeuw and Yohai (1984). The breakdown-value of an estima-
tor can be seen as a measure of an estimator's robustness to outliers. (A good description of 
breakdown-values and high-breakdown-value estimators can be found in Hubert and 
Debruyne (2009)).

S-estimator definition

S-estimators find the set of coefficients  that provide the smallest estimate of the scale  
such that:

(31.14)

for the function  with tuning constant , where  is taken to be  with  
the standard normal. The breakdown value  for this estimator is .

Following Rousseeuw and Yohai, we choose a function based on the integral of the Biweight 
function

(31.15)
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and estimate the scale  using the Median Absolute Deviation, Zero Centered (MADZERO) 
method.

Note that  affects the objective function through  and .  is typically chosen to 
achieve a desired breakdown value. EViews defaults to a  value of 1.5476 implying a 
breakdown value of 0.5. Other notable values for  (with associated ) are: 

S-estimator calculation

Calculation of S-estimates is computationally intensive, and there exist a number of fast 
algorithms that provide accurate approximations. EViews uses the Fast-S algorithm of Salib-
ian-Barrera and Yohai (2006):

1. Obtain a random subsample of size  from the data and compute the least squares 
regression to obtain a . By default  is set equal to , the number of regressors. 
(Note that with the default , the regression will produce an exact fit for the 
subsample.)

2. Using the full sample, perform a set of  refinements to the initial coefficient esti-
mates using a variant of M-estimation which takes a single step toward the solution of 
Equation (31.5) at every  update. These modified M-estimate refinements employ 
the Bisquare function  with tuning parameter and scale estimator

(31.16)

where  is the previous iteration's estimate of the scale and  is the breakdown 
value defined earlier.

The initial scale estimator  is obtained using MADZERO

3. Compute a new set of residuals over the entire sample using the possibly refined ini-
tial coefficient estimates, compute an estimate of the scale  using MADZERO, and 
produce a final estimate of  by iterating Equation (31.16) (with  in place of ) to 
convergence or until . 
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4. Steps 1-3 are repeated  times. The best (smallest)  scale estimates are refined 
using M-estimation as in Step 2 with  (or until convergence). The smallest 
scale from those refined scales is the final estimate of , and the final coefficient esti-
mates are the corresponding estimates of .

S-estimator summary statistics

The following summary statistics are available for equations estimated by S-estimation:

R-squared

The robust version of  for S-estimation is given by:

(31.17)

where  is the estimate of the scale from the final estimation, and  is an estimate of the 
scale from S-estimation with only a constant as a regressor.

Deviance

The S-estimator deviance value is given by:

(31.18)

Rn-squared Statistic

The  statistic is identical to the one computed for M-estimation. See “Rn-squared Statis-
tic” on page 425 for discussion.

MM Estimation

MM-estimation addresses outliers in both the dependent and the independent variables by 
combining S-estimation with M-estimation.

The MM-estimator first computes S-estimates of the coefficients and scale, then uses the 
estimate of the scale as a fixed value in iterating to find a solution to Equation (31.5). The 
second stage M-estimation in EViews uses the Bisquare function with a default tuning 
parameter value of 4.684 which gives 95% relative efficiency for normal errors (Yohai, 
1987).

The summary statistics for MM-estimation are obtained from the second-stage M-estimation 
procedure.

Coefficient Covariance Methods

EViews offers three different methods for computing the coefficient covariance matrix taken 
from Huber (1981, p. 173, equations 6.5, 6.6 and 6.7). All three methods provide unbiased 
estimates of the covariance matrix, with none having better properties than the others.
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with

(31.19)

where as before,  and  is the value of the j-th regressor for observation .

The first method (which is the easiest computationally) is the default choice.

Estimating Robust Regression in EViews

To estimate an equation using robust regression, open the equation dialog by selecting 
Quick/Estimate Equation…, or by selecting Object/New Object…/Equation and selecting 
ROBUSTLS from the Method dropdown menu. EViews will display the robust regression 
dialog:

Type I 
(default)

Type II

Type III

L
2

1 N K–   wc ri 2
i 1
N


1 N  wc ri 

i 1
N

 
2

------------------------------------------------------------------- XX  1–

L
1 N K–   wc ri 2

i 1
N


1 N  wc ri 

i 1
N

 
2

------------------------------------------------------------------- W
1–

L
1– 1
N k–
------------- wc ri 2

i 1
N

 W 1–
XX W 1–

L 1
N
k
----

wc ri  wc– 
i 1
N


wc 

2
----------------------------------------------------

w 1
N
---- wc ri 

i 1

N



Wjs wc  ri xijxis

i 1

N

 j s, 1  k, ,

wc   rc   xij i



430—Chapter 31. Robust Least Squares
The Specification tab lets you enter the basic regression specification and the type of robust 
regression to be performed:

• Enter the regression specification in list form (dependent variable followed by the list 
of regressors) in the Equation specification variable edit field.

• Specify the estimation type by choosing one of the three estimation types M-estima-
tion, S-estimation, or MM-estimation in the Robust estimation type dropdown. By 
default, EViews will perform M-estimation.

• Enter the estimation Sample in the edit field

Click on OK to estimate the equation using the default settings, or click on Options to 
inspect settings for advanced options.

Options

Clicking on the Options tab of the dialog lets you specify advanced estimation options. The 
tab will display different settings depending on whether you choose M-estimation, S-estima-
tion, or MM-estimation in the Robust estimation type dropdown.

M-estimation options

For M-estimation, you will be offered choices the for objective specification, scale estimator, 
and covariance type.
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Objective specification

The Objective specification section of the dialog controls the choice of function and the 
tuning constant:

• You should use the Function dropdown to choose from among the 10 available func-
tions: Andrews, Bisquare, Cauchy, Fair, Huber, Huber-Bisquare, Logistic, Median, Tal-
worth, and Welsch (Bisquare is the default). 

• The Scale using H-matrix checkbox may be used to define individual weights  as 
described in Equation (31.4) on page 422.

• The Default constant and User-specified constant radio buttons should be used to 
specify the value of the tuning constant. Choosing Default constant will use the Hol-
land and Welsch (1977) values of the tuning constant as described on page 422. To 
provide your own tuning value, select User-specified constant and enter a positive 
number or name of a scalar object in the Tuning value edit field.

Scale estimates

The Scale estimates dropdown is used to select between Mean Absolute Deviation (MAD) 
with either zero or median centering, Huber scaling, or a user-specified scale. The default 
estimator is MAD with median centering. To provide a user-specified scale, select Fixed user 
in the dropdown and enter a positive number or name of a scalar object in the User scale 
edit field

wi
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Other settings

The Covariance type dropdown allows you to choose between the three types of Huber 
covariance methods.

The Iteration control section controls the maximum iterations and convergence tolerances 
used when solving the nonlinear equations in Equation (31.5). Click on Display Settings to 
show information in the EViews output.

You may use the Coefficient name edit field to specify a coefficient vector other than the 
default C to hold the results from estimation.

S-estimation options

The S-estimator offers a set of estimation options than differs markedly from those offered 
by the M-estimator. In contrast to the M-estimator, there is no option for choosing the scale 
estimator. You will, however, be offered a slightly modified set of Objective specification 
options and a new set of S options.

Objective specification

The Objective specification section of the dialog allows you to specify the values of the tun-
ing and breakdown constants:

• You should select Default constant to use the default  value of 1.5476 (0.5 break-
down) or you may select User-specified constant and enter a value or name of a sca-
lar in the Tuning value edit field. The tuning value must be positive.

c
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• Note that the function choice dropdown is disabled since the S-estimation function is 
restricted to be the Tukey Bisquare.

S settings

The S options portion of the dialog allows you to control the settings for the Fast-S algo-
rithm: 

• Number of trials controls the number  of S subsample estimates to be computed. 
By default, EViews will compute 200 estimates.

• Initial sample size specifies the size  of each random subsample used in the S ini-
tializing regression. By default, this field will be initialized at the number of regres-
sors.

• Max refinements controls the number of refinements  to each initial subsample 
regression estimate. Each refinement consists of a single modified M-estimator step 
toward the solution of the nonlinear equations.

• Number of comparisons is the number of best estimates  that are candidates for 
refinement and comparison to find the final estimate.

• The Random generator and Seed fields control the construction of the random subsa-
mples required for the Fast-S algorithm. You may the leave the Seed field blank, in 
which case EViews will use the clock to obtain a seed at the time of estimation, or you 
may provide an integer from 0 to 2,147,483,647. The Clear button may be used to 
clear the seed used by a previously estimated equation.

For additional discussion of these settings, see “S-estimator calculation” on page 427.

Other settings

The Coefficient name, Covariance type, and Iteration control settings are as described in 
“M-estimation options” on page 430.

MM-estimation options

The options for the MM-estimator are closely related to the options for the S-estimator 
described in “S-estimation options” on page 432. 

The main difference between the MM and S options is in the set-
tings for the tuning parameters. Since the MM estimator com-
bines both S and M estimation, the dialog has separate fields for 
the tuning values used in the S-estimation and the tuning value 
used in the M-estimation.

The Default constants setting sets an S tuning parameter of 
1.5476 (0.5 breakdown) and a default M tuning value of 4.684 (for 0.95 relative efficiency 
under normal errors).
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An Illustration

For our example of robust regression estimation, we employ the “salinity” data set taken 
from Rousseeuw and Leroy (1987, page 82), which has been used in many studies of robust 
regression and outlier effects. See, for example, Rousseeuw and van Zomeren (1992) and 
Fung (1993). The data consist of 28 observations on water salinity (salt concentration) and 
river discharge measurements taken from Pamlico Sound in North Carolina. 

We are interested in modeling the relationship between the amount of discharge and the 
level of salinity. The regression model of interest is:

(31.20)

where  is the salinity level,  is discharge and  represents a time trend.

The data are provided in the workfile “Rousseeuw and Leroy.wf1” located in the EViews 
application data directory. The series SALINITY and DISCHARGE contain the salt and dis-
charge measurements, TREND contains the number of biweekly periods since the start of 
spring, and LAGSEL is contains the lagged value of SALINITY. 

We begin with ordinary least squares estimation of this specification. The equation EQ01 in 
the workfile contains these least squares estimates:

Rousseeuw and Leroy identify observation 16 as being an outlier. We can confirm this find-
ing by looking at the influence statistics and leverages for this equation. From the EQ01 
menu, display the influence statistics dialog by selecting View/Stability Diagnostics/Influ-
ence Statistics...

St b1 b2St 1– b3t b4Dt et   

S D t

Dependent Variable: SALINITY   
Method: Least Squares   
Date: 07/23/12   Time: 16:19   
Sample: 1 28    
Included observations: 28   

Variable Coefficient Std. Error t-Statistic Prob.  

C 9.590263 3.125086 3.068799 0.0053
LAGSAL 0.777105 0.086222 9.012849 0.0000
TREND -0.025512 0.161079 -0.158384 0.8755

DISCHARGE -0.295036 0.106804 -2.762410 0.0108

R-squared 0.826388     Mean dependent var 10.55357
Adjusted R-squared 0.804687     S.D. dependent var 3.010166
S.E. of regression 1.330320     Akaike info criterion 3.540279
Sum squared resid 42.47401     Schwarz criterion 3.730594
Log likelihood -45.56391     Hannan-Quinn criter. 3.598460
F-statistic 38.07988     Durbin-Watson stat 2.660574
Prob(F-statistic) 0.000000    
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Check the box labeled Hat Matrix to tell EViews that you want to view the diagonals of the 
matrix along with the default results, then click on OK to display the graphs:

The spikes in the graphs for all four influence measures point to observation 16 as being an 
outlier. This finding is confirmed by the leverage plot view of EQ01. Select View/Stability 
Diagnostics/Leverage Plots... and click on OK to accept the default settings:
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The graphs support the view that observation 16 has high leverage, especially in the rela-
tionship between SALINITY and DISCHARGE. Using the mouse pointer to hover over the 
outlier confirms the identity of the outlier observation. (For additional discussion of these 
diagnostics, see “Leverage Plots” on page 230 and “Influence Statistics” on page 231.)

M-estimation example

Given the presence of outliers, we re-estimate the regression using robust M-estimation. Cre-
ate a new equation object by clicking on Quick/Estimate Equation…, or by selecting 
Object/New Object…/Equation and then select ROBUSTLS from the Method dropdown 
menu. Enter the dependent variable followed by the list of regressor variables in the Equa-
tion specification edit field:

salinity c lagsel trend discharge

and click on OK to instruct EViews to estimate the specification using the default estimator 
and settings. (For convenience, we have included the equation object EQ02 estimated using 
these settings in your workfile.)
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A description of the settings used in the M-estimation is presented at the top of the output. 
Here we see that the Bisquare function with a default tuning parameter value of 4.685 was 
used, that the scale was estimated using the median centered, median absolute deviation 
method, and that the z-statistics in the output are based on Huber Type I covariance esti-
mates.

Turning to the coefficient estimates, we see the effect on the coefficient estimates of moving 
from least squares to robust M-estimation. The M-estimator produces a much larger negative 
impact of DISCHARGE on SALINITY than does ordinary least squares (-0.623 versus -0.295) 
with the M-estimator coefficient estimated with similar precision (0.091 versus 0.107). The 
sensitivity of the DISCHARGE coefficient estimates to robust estimation is in accord with the 
earlier EQ01 diagnostic suggesting that observation 16 had high leverage for the relationship 
between SALINITY and DISCHARGE.

The bottom portion of the output displays the  and  goodness-of-fit and adjusted 
measures, along which indicate that the model accounts for roughly 60-90% of the variation 
in the constant-only model. The  statistic of 202.906 and corresponding p-value of 0.00 
indicate strong rejection of the null hypothesis that all non-intercept coefficients are equal to 

Dependent Variable: SALINITY   
Method: Robust Least Squares   
Date: 08/15/12   Time: 15:32   
Sample: 1 28    
Included observations: 28
Method: M-estimation   
M settings: weight=Bisquare, tuning=4.685, scale=MAD   
        (median centered)    
Huber Type I Standard Errors & Covariance   

Variable Coefficient Std. Error z-Statistic Prob.  

C 18.29590 2.660551 6.876732 0.0000
LAGSAL 0.722380 0.073405 9.840981 0.0000
TREND -0.202283 0.137135 -1.475064 0.1402

DISCHARGE -0.623040 0.090928 -6.852032 0.0000

 Robust Statistics   

R-squared 0.620467    Adjusted R-squared 0.573026
Rw-squared 0.933495    Adjust Rw-squared 0.933495
Akaike info criterion 52.08135    Schwarz criterion 57.40400
Deviance 23.76607    Scale 0.734314
Rn-squared statistic 202.9058    Prob(Rn-squared stat.) 0.000000

 Non-robust Statistics   

Mean dependent var 10.55357    S.D. dependent var 3.010166
S.E. of regression 1.577654    Sum squared resid 59.73579
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zero. Lastly, the output shows the value of the deviance, information criteria, and the esti-
mated scale. These measures may be of use when comparing models. See “M-estimator 
summary statistics” on page 424 for formulae and discussion.

MM-estimation example

Next, we estimate the equation using MM-estimation. In the Specification tab:

• Specify your equation estimation method as ROBUSTLS - Robust Least Squares, 

• Change the Robust Estimation Type dropdown to MM-estimation

• Fill out the Specification edit field with “salinity c lagsel trend discharge” as before.

Next, we will provide values for the tuning and breakdown values, and will specify options 
to control the S-estimation refinement. 

Click on the Options tab to display the additional estimation settings:

• For the objective specification, we will provide tuning and breakdown values. Select 
the User-specified constants radio button and enter the values as depicted. The S-
tuning value of 2.937 is chosen to provide a breakdown of 0.25; the M-tuning value of 
3.44 is chosen to produce relative efficiency of 0.85.

• Select Huber Type II standard errors.

• Under S options, enter values for the Number of trials, and Max refinements, as 
depicted. The Initial sample size will be pre-filled with the number of regressor vari-
ables specified on the first tab of the dialog—we will leave this at the default setting. 
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Enter “5” in the Number of comparisons edit field so that EViews will refine the best 
5 of the 200 trials. 

Additional detail on these settings are provided in “S-estimation” on page 426 and “S-esti-
mation options” on page 432.

Click on OK to accept the specification and options and to estimate the equation. EViews 
will display the results of the MM-estimation.

Notice that the top of the output displays various settings for both the S and the M-portions 
of the MM-estimation. In addition to showing the S-tuning value of 2.937 and associated 
breakdown value of 0.25, EViews reports that the S-estimation consists of 200 trials with ini-
tial coefficients obtained from a random initial sample size of 4 and 2 initial refinement 
steps. The final comparison involves fully refining 5 sets of the scale estimates and choosing 
the smallest scale estimate. 

Once the scale estimate is obtained, EViews performs fixed scale M-estimation using the 
reported 3.44 tuning parameter.

Dependent Variable: SALINITY   
Method: Robust Least Squares   
Date: 08/15/12   Time: 16:41   
Sample: 1 28    
Included observations: 28   
Method: MM-estimation   
S settings: tuning=2.937, breakdown=0.25, trials=200, subsmpl=4, 
        refine=2, compare=5   
M settings: weight=Bisquare, tuning=3.44   
Random number generator: rng=kn, seed=801674785  
Huber Type II Standard Errors & Covariance

Variable Coefficient Std. Error z-Statistic Prob.  

C 18.35831 3.589233 5.114829 0.0000
LAGSAL 0.715431 0.066356 10.78163 0.0000
TREND -0.187484 0.139891 -1.340216 0.1802

DISCHARGE -0.625891 0.133533 -4.687167 0.0000

 Robust Statistics   

R-squared 0.661056    Adjusted R-squared 0.618688
Rw-squared 0.922073    Adjust Rw-squared 0.922073
Akaike info criterion 23.15291    Schwarz criterion 32.83208
Deviance 26.94331    Scale 1.175363
Rn-squared statistic 202.9223    Prob(Rn-squared stat.) 0.000000

 Non-robust Statistics   

Mean dependent var 10.55357    S.D. dependent var 3.010166
S.E. of regression 1.586231    Sum squared resid 60.38708
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EViews also reports information on the random number generator used to obtain the ran-
dom subsamples, and the method used to obtain coefficient estimate covariances.

Turning to the results, we note that despite the difference in robust estimation method, rela-
tive efficiency settings, and method of computing standard errors, the results from the M-
estimation and the MM-estimation are generally quite similar. Most importantly, both esti-
mates show statistically significant DISCHARGE coefficients of around -0.62 with roughly 
comparable coefficient standard errors (0.089 versus 0.13). The results for other coefficients 
are even closer.

The MM-estimate of the scale is considerably larger than that obtained from M-estimation 
(1.16 versus 0.73), but the overall goodness-of-fit measures and  statistic and test results 
are quite similar. 
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Chapter 32.  Least Squares with Breakpoints

The standard linear regression model described in Chapter 19. “Basic Regression Analysis,” 
on page 5 assumes that the parameters of the model do not vary across observations. 

Despite this assumption. structural change, the changing of parameters at dates in the sam-
ple period, plays an empirically relevant role in applied time series analysis. Accordingly, 
there has been a large volume of work targeted at developing testing and estimation meth-
odologies for regression models which allow for change. Hansen (2001) and Perron (2006) 
offer useful overviews of the literature.

This chapter describes the EViews tools for estimating linear regression models that are sub-
ject to structural change. The regime breakpoints may be known and specified a priori, or 
they may be estimated using the Bai (1997), Bai and Perron (1998), and related techniques. 

Note that much of the material in this chapter parallels the closely related subject of testing 
for multiple breakpoints outlined in “Multiple Breakpoint Tests” on page 210.

Background

We consider a standard multiple linear regression model with  periods and  potential 
breaks (producing  regimes). For the observations  in 
regime  we have the regression model

(32.1)

for the regimes . Note that the regressors are divided into two groups. The  
variables are those whose parameters do not vary across regimes, while the  variables 
have coefficients that are regime-specific.

While it is slightly more convenient to define breakdates to be the last date of a regime, we 
follow EViews’s convention in defining the breakdate to be the first date of the subsequent 
regime. We tie down the endpoints by setting  and .

Once the number and identity of the breakpoints is determined, the model may be estimated 
using standard regression techniques. We may rewrite the equation specification as a stan-
dard regression equation

(32.2)

with fixed parameter vectors  and  where  is an expanded set 
of regressors interacted with the set of dummy variables corresponding to each of the  
regime segments.
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The breakpoints may be known a priori or they be estimated using a variety of approaches. 
The breakpoint estimation methods that we consider may broadly be divided into two cate-
gories: global maximizers for the breakpoints and sequentially determined breakpoints.

Global Maximization

Bai and Perron (1998) describe global optimization procedures for identifying the  multi-
ple breaks and associated coefficients which minimize the sums-of-squared residuals of the 
regression model Equation (32.1).

If the desired number of breakpoints is known, the global -break optimizers are the set of 
breakpoints and corresponding coefficient estimates that minimize the sum-of-squares for 
that model.

If the desired number of breakpoints is not known, we may specify a maximum number of 
breakpoints and employ testing to determine the “optimal” number of breakpoints. The var-
ious test approaches are outlined in detail in “Global Maximizer Tests” on page 210, but 
briefly speaking, involve:

• Global tests of  breaks versus none (Bai-Perron 1998). The test of  versus no breaks 
procedure may be applied sequentially beginning with a single break until the null is 
not rejected. Alternately, it may be applied to all breaks with the selected break being 
the highest statistically significant number of breaks, or it may employ the 
unweighted or weighted double maximum statistics (  or ).

• Information criteria based model selection of the number of breaks (Yao 1988; Liu, 
Wi, and Zidek 1997), where we minimize the specified information criteria with 
respect to the number of breaks.

• Sequential tests of  versus  globally determined breakpoints. The procedure is 
applied sequentially, beginning with a single break, until the null is not rejected. This 
approach is a modified Bai (1997) method in which, at each test step, the  break-
points under the null are obtained by global optimization, and the candidate break-
points are obtained by sequential estimation.

Sequential Determination

Bai (1997) describes an intuitive approach for obtaining estimates for more than one break. 
The procedure involves sequential application of breakpoint tests.

• Begin with the full sample and perform a test of parameter constancy with unknown 
break. At each stage, test for breakpoints in breakpoint tests in each subsample. Add a 
breakpoint whenever a subsample null is rejected. (Alternately, one could test only 
the single subsample which shows the greatest improvement in the sum-of-squared 
residuals.) If any of the tests reject, add the specified breakpoint to the current set.
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• Repeat the procedure until all of the subsamples do not reject the null hypothesis, or 
until the maximum number of breakpoints allowed or maximum subsample intervals 
to test is reached. 

• Perform refinement so that breakpoints are re-estimated if they are obtained from a 
subsample containing more than one break. This procedure is required so that the 
breakpoint estimates have the same limiting distribution as those obtained from the 
global optimization procedure.

If the number of breakpoints is pre-specified, we simply estimate the specified number of 
breakpoints using the one-at-a-time method.

Estimating Least Squares with Breakpoints in EViews

To estimate an equation using least squares with breakpoints, select Object/New Object.../
Equation or Quick/Estimate Equation… from the main EViews menu, then select 
BREAKLS - Least Squares with Breakpoints in the Method drop-down menu, or simply 
type the keyword breakls in the command window:

You should enter the dependent variable followed by a list of variables with breaking regres-
sors in the top edit field, and optionally, a list of non-breaking regressors in the bottom edit 
field.

Next, click on the Options tab to display additional settings for calculation of the coefficient 
covariance matrix, specification of the breakpoints, weighting, and the coefficient name. 
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The weighting and coefficient name settings are common to other EViews estimators so we 
focus on the covariance computation and break specification.

Coefficient Covariance Matrix

The Coefficient covariance matrix section of the page offers various computation settings. 

The top drop-down menu should be used to specify the estimator 
for the coefficient covariances. The Estimation default is to use 
the conventional estimator for least squares regression. You may 
instead elect to use heteroskedasticity robust White or HAC 
(Newey-West) covariance calculations. If you specify HAC covari-
ances, EViews will display the HAC options button which you may 
press to bring up a dialog for customizing your calculation.

By default, the covariances will be computed assuming homogeneous errors variances with 
a common distribution across regimes. You may use the Allow error distributions to differ 
across breaks to relax this common distribution restriction.

If you specify either the White or HAC form of robust covariance, EViews will commonly 
display the Assume common data distributions checkbox. EViews generally follow Bai and 
Perron (2003a) who, with one exception, do not impose the restriction that the distribution 
of the  is the same across regimes. In cases where you employ robust variances, EViews 
will offer you a choice of whether to assume a common distribution for the data across 
regimes. 

Zt
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Bai and Perron do impose the homogeneity data restriction when computing HAC robust 
variances estimators with homogeneous errors. To match the Bai-Perron common error 
assumptions, you will have to select the Assume common data distribution checkbox.

(Note that EViews does not allow you to specify heterogeneous error distributions and 
robust covariances in partial breaking models.)

Break Specification

The Break specification section of the dialog contains a 
Method drop-down where you may specify the type of test 
you wish to perform. You may choose between: 

• Sequential L+1 breaks vs. L

• Sequential tests all subsets

• Global L breaks vs. none

• L+1 breaks vs. global L

• Global information criteria

• Fixed number - sequential

• Fixed number - global

• User-specified

The first two entries determine the optimal number of breaks based on the sequential meth-
odology as described in “Sequential Determination” on page 442 above. The methods differ 
in whether, for a given  breakpoints, we test for an additional breakpoint in each of the 

 segments (Sequential tests all subsets), or whether we test the single added break-
point that most reduces the sum-of-squares (Sequential L+1 breaks vs. L).

The next three methods employ the global optimizers to determine the number and identi-
ties of breaks as described in “Global Maximization” on page 442. If you select one of the 
global methods, you will see a second drop-down prompting you to specify a sub-method.

• For the Global L breaks vs. none method, there are 
four possible sub-methods. The Sequential evalua-
tion method chooses the last significant number of 
breaks, determined sequentially. Selecting Highest 
significant chooses the number of breaks that is 
largest from amongst the significant tests. The latter 
two settings choose the number of breaks using the 
corresponding double max test.

l
l 1
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• Similarly, if you select the L+1 breaks vs. none method, a drop-down offers a choice 
between Sequential evaluation and Highest significant. 

• The Global information criteria method lets you choose between using the Schwarz 
criterion or the LWZ criterion.

The next two methods, Fixed number - sequential and Fixed number - global, pre-specify 
the number of breaks and choose the breakpoint dates using the specified method.

The User-specified method allows you to specify your own break dates.

Depending on your choice of method, you may be prompted to provide information on one 
or more additional settings: 

• If you specify one of the two fixed number of break methods, you will be prompted 
for the number of breakpoints (not depicted).

• The Trimming percentage,  implicitly determines , the minimum 
segment length permitted when constructing a test. Small values of the trimming per-
centage can lead to estimates of coefficients and variances which are based on very 
few observations.

• The Maximum breaks and Maximum levels setting limits the number of breakpoints 
allowed via global testing, and in sequential or mixed  vs.  testing. 

• The Significance level drop-down menu should be used to choose between test size 
values of (0.01, 0.025, 0.05, and 0.10). This setting is not relevant for methods which 
do not employ testing.

Additional detail on all of the methodologies outlined above is provided in “Multiple Break-
point Tests” on page 210.

Working with Breakpoint Equations

Before describing EViews tools for working with an equation estimated using breakpoint 
least squares, it is important to point out that the resulting estimated equation is simply a 
linear regression model in which some of the variables are interacted with regime dummy 
variables, as in Equation (32.2) on page 441. Thus, most of the discussion related to the lin-

e 100 h T  h

l l 1
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ear regression model in Chapter 19. “Basic Regression Analysis,” on page 5 and Chapter 24. 
“Specification and Diagnostic Tests,” on page 175 applies. We focus our attention in this sec-
tion on the unique aspects of the breakpoint equation.

Estimation Output

To illustrate the output from estimation of a breakpoint equation, we employ data from Han-
sen’s (2001) labor productivity example. Hansen’s example uses monthly (February 1947 to 
April 2001) U. S. labor productivity in the manufacturing durables sector as measured by the 
growth rate of the ratio of the Industrial Production Index to average weekly labor hours. 
The data are in the series DDUR in the workfile “hansen_jep.wf1”.

We estimate a breakpoint model with DDUR regressed on its lag DDUR(-1) and a constant. 
The output is presented below:

Dependent Variable: DDUR   
Method: Least Squares with Breaks   
Date: 12/10/12   Time: 10:55   
Sample (adjusted): 1947M03 2001M04   
Included observations: 650 after adjustments  
Break type: Bai-Perron tests of L+1 vs. L sequentially determined 
        breaks    
Break selection: Trimming 0.05, Max. breaks 5, Sig. level 0.10  
Breaks: 1963M12, 1994M12   
White heteroskedasticity-consistent standard errors & covariances
No d.f. adjustment for covariances   

Variable Coefficient Std. Error t-Statistic Prob.  

1947M03 - 1963M11  --  201 obs 

DDUR(-1) 0.089257 0.097749 0.913124 0.3615
C 3.034604 1.086232 2.793697 0.0054

1963M12 - 1994M11  --  372 obs 

DDUR(-1) -0.240237 0.060248 -3.987492 0.0001
C 3.891848 0.553035 7.037262 0.0000

1994M12 - 2001M04  --  77 obs 

DDUR(-1) -0.186131 0.140463 -1.325130 0.1856
C 9.329578 1.562201 5.972073 0.0000

R-squared 0.049806    Mean dependent var 3.756325
Adjusted R-squared 0.042429    S.D. dependent var 11.15357
S.E. of regression 10.91439    Akaike info criterion 7.627229
Sum squared resid 76715.79    Schwarz criterion 7.668555
Log likelihood -2472.849    Hannan-Quinn criter. 7.643258
F-statistic 6.751313    Durbin-Watson stat 2.027022
Prob(F-statistic) 0.000004    
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The top portion of the output shows equation specification information. As we see, the two 
estimated breakdates 1963m12 and 1994m12 were determined using the Bai-Perron sequen-
tial breakpoint methodology, with a maximum of 5 breaks, 5% trimming, and a test size of 
0.10. Coefficient covariances for the tests and estimates are computed using White’s method 
with no d.f. correction.

The middle section labels each regime and shows the corresponding coefficient estimates, 
standard errors, and p-values.

The bottom portion of the dialog shows the standard summary statistics. Most are self-
explanatory. We do note that the -square, the F-statistic, and the corresponding probabil-
ity are all based on a comparison with the full restricted, no breakpoint, constant only 
model. Note also the F-statistic is based on the difference of the sums-of-squares so, despite 
the presence of White coefficient standard errors, it is not robust to heteroskedasticity.

Equation Views and Procs

As noted above, estimated equation is simply a linear regression model in which some of the 
variables are interacted with regime dummy variables. Thus, most of the equation views and 
procs are defined exactly as in the standard least square regression. There are, however, 
some specific breakpoint regression features that deserve discussion.

Representations View

The representations view shows you the equation specification estimated by EViews:

Note in particular the use of the @before, @during, and @after functions to create regime 
dummy variables that interact with the regressors. You could have used these functions to 
specify an equivalent model using the ordinary least squares estimator.

R
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Breakpoint Specification View

The breakpoint specification view (View/Breakpoint Specification) displays a summary of 
the breakpoint specification, the method used to determine the break dates, and if appropri-
ate, re-computes and displays the test statistics used to obtain the optimal breaks. 

The top portion of the output shows the breakpoint summary:

The remaining portion shows the intermediate results for the breakpoint determination:

Breakpoint Specification 
Description of the breakpoint specification used in estimation 
Equation: BREAKEQ
Date: 12/11/12   Time: 10:09  

Summary 

Estimated number of breaks: 2  
Method: Bai-Perron tests of L+1 vs. L sequentially
        determined breaks   
Maximum number of breaks: 5
Breaks: 1965M08, 1991M06   

Current breakpoint calculations:  
    

Multiple breakpoint tests   

Bai-Perron tests of L+1 vs. L sequentially determined breaks 
Date: 12/11/12   Time: 10:09  
Sample: 1947M03 2001M04   
Included observations: 650  
Breakpoint variables: DDUR(-1) C  
Break test options: Trimming 0.15, Max. breaks 5, Sig. level 0.05
Test statistics employ White heteroskedasticity-consistent 
        covariances assuming common data distribution 
No d.f. adjustment for covariances  

Sequential F-statistic determined breaks:  2 

  Scaled Critical
Break Test  F-statistic F-statistic Value**

0 vs. 1 * 8.967659 17.93532 11.47 
1 vs. 2 * 7.710196 15.42039 12.95 
2 vs. 3 3.817321 7.634643 14.03 

* Significant at the 0.05 level.  
** Bai-Perron (Econometric Journal, 2003) critical values. 

    
Break dates:   

 Sequential Repartition  

1 1982M01 1965M08  
2 1991M06 1991M06  
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Coefficient Labeling in Various Views

EViews uses various methods for labeling the coefficient results in view output.

For example, the matrix-based coefficient covariance view (View/Covariance matrix) uses 
minimum labeling information to identify columns and rows of the covariance matrix. The 
coefficients are listed in the order that they appear in the equation results view, but without 
overt regime identification:

Here, the first to columns correspond to the coefficients on DDUR(-1) and the intercept in 
the first regime, the next two columns are the results for the second regime, and so on. Any 
non-regime specific coefficients appear at the end of the blocks of varying coefficients.

In most table output, EViews groups and labels the variables by regimes. For example, the 
scaled coefficients view (View/Coefficient Diagnostics/Scaled Coefficients) mirrors the 
format of the equation results output:
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Alternately, in leverage plots (View/Stability Diagnostics/Leverage Plots...) EViews dis-
plays graphs that are labeled with the full dummy variable interaction variables previously 
seen in the representations view:

Scaled Coefficients   
Date: 12/10/12   Time: 12:21  
Sample: 1947M01 2001M04   
Included observations: 650  

  Standardized Elasticity 
Variable Coefficient Coefficient at Means 

1947M03 - 1965M07 -- 221 obs 

DDUR(-1)  0.081718  0.057258  0.026049 
C  3.256673  0.138422  0.294775 

1965M08 - 1991M05 -- 310 obs 

DDUR(-1) -0.239991 -0.150939 -0.082734 
C  3.342257  0.149785  0.424351 

1991M06 - 2001M04 -- 119 obs 

DDUR(-1) -0.209215 -0.091133 -0.071046
C  8.383666  0.290912  0.408606 
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Specifying Regime-Specific or Common Variables

EViews dialogs will prompt you, where relevant, to indicate whether variables should have 
regime-specific or common coefficients. For example, the omitted variables test (View/Coef-
ficient Diagnostics/Omitted Variables Test - Likelihood Ratio...) dialog offers separate edit 
fields corresponding to the two types of variables:

Similarly, if you select View/Stability Diagnostics/Leverage Plots..., EViews will prompt 
you to identify the variables for which you wish to display diagnostics. 

Notice that in both cases, you should specify these variables in terms of the original, non-
breaking variables.

Forecasting Proc

Forecasting in breakpoint least squares works the same way as in the least squares estima-
tor. Click on the Forecast button on the toolbar or select Proc/Forecast... to bring up the 
dialog.
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All of the settings are as in the standard linear regression case. However, it is worth noting 
that the saved forecast S.E. assumes a common variance across regimes even if you have 
relaxed this assumption in the computation of the coefficient covariances. Note also that 
out-of-sample forecasts will use the first regime specific coefficients for periods prior to the 
estimation period, and the last regime specific coefficients for periods after the estimation 
period.

Example

To illustrate the use of these tools in practice, we employ the simple model of the U.S. ex-
post real interest rate from Garcia and Perron (1996) that is used as an example by Bai and 
Perron (2003a). The data, which consist of observations for the three-month treasury rate 
deflated by the CPI for the period 1961q1–1983q3, are provided in the series RATES in the 
workfile “realrate.WF1”. 

Select Object/New Object.../Equation or Quick/Estimate Equation… from the main menu 
or enter the command breakls in the command line and hit Enter.
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The regression model consists of a regime-specific constant regressor so we enter the depen-
dent variable RATES and C in the topmost edit field. The sample is set to the full workfile 
range.

Next, click on the Options tab and specify HAC (Newey-West) standard errors, check Allow 
error distributions to differ across breaks, choose the Bai-Perron Global L breaks vs. 
none method using the Unweighted-Max F (UDMax) test to determine the number of 
breaks, and set a Trimming percentage of 15, and a Significance level of 0.05. 
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Lastly, to match the test example in Bai and Perron (2003a), we click on the HAC Options 
button and set the options to use a Quadratic-Spectral kernel with Andrews automatic 
bandwidth and single pre-whitening lag:

Click on OK to accept the settings and estimate the model. EViews displays the results of the 
breakpoint selection and coefficient estimation:
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The  methodology selects a single statistically significant break at 1980Q4. The 
results clearly show a significant difference in the mean RATES prior to and after 1980Q4. 

Click on View/Actual, Fitted, Residual/Actual, Fitted, Residual Graph, to see in-sample 
fitted data alongside the original series and the residuals:

Dependent Variable: RATES   
Method: Least Squares with Breaks   
Date: 12/11/12   Time: 14:38 
Sample: 1961Q1 1986Q3   
Included observations: 103   
Break type: Bai-Perron tests of 1 to M globally determined breaks 
Break selection: Unweighted max-F (UDmax), Trimming 0.15, Max. 
        breaks 5, Sig. level 0.05   
Breaks: 1980Q4    
HAC standard errors & covariance (Prewhitening with lags = 1,  
        Quadratic-Spectral kernel, Andrews bandwidth)  
Allow heterogeneous error distributions across breaks  

Variable Coefficient Std. Error t-Statistic Prob.  

1961Q1 - 1980Q3  --  79 obs 

C 0.078612 0.404959 0.194122 0.8465

1980Q4 - 1986Q3  --  24 obs

C 5.642890 0.608843 9.268219 0.0000

R-squared 0.469105     Mean dependent var 1.375142
Adjusted R-squared 0.463849     S.D. dependent var 3.451231
S.E. of regression 2.527072     Akaike info criterion 4.711226
Sum squared resid 644.9955     Schwarz criterion 4.762386
Log likelihood -240.6282     Hannan-Quinn criter. 4.731948
F-statistic 89.24490     Durbin-Watson stat 1.382941
Prob(F-statistic) 0.000000    

UDMax
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Casual inspection of the residuals suggests that the model might be improved with the addi-
tion of another breakpoint in the early 1970s. Click on the Estimate button, select the 
Options tab, and modify the Method to use the Global information criteria with LWZ cri-
terion. Click on OK to re-estimate the equation using the new method.

EViews reports new estimates featuring two breaks(1972Q4, 1980Q4) defining a medium, 
low, and a high rate regime, respectively:
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The corresponding actual, fitted, residual plot is given by

Dependent Variable: RATES   
Method: Least Squares with Breaks   
Date: 12/11/12   Time: 15:39   
Sample: 1961Q1 1986Q3   
Included observations: 103   
Break type: Compare information criteria for 0 to M globally  
        determined breaks   
Break selection: LWZ criterion, Trimming 0.15, Max. breaks 5  
Breaks: 1972Q4, 1980Q4   
HAC standard errors & covariance (Prewhitening with lags = 1,  
        Quadratic-Spectral kernel, Andrews bandwidth)  
Allow heterogeneous error distributions across breaks  

Variable Coefficient Std. Error t-Statistic Prob.  

1961Q1 - 1972Q3  --  47 obs

C 1.355037 0.157766 8.588880 0.0000

1972Q4 - 1980Q3  --  32 obs 

C -1.796138 0.518593 -3.463485 0.0008

1980Q4 - 1986Q3  --  24 obs 

C 5.642890 0.611880 9.222223 0.0000

R-squared 0.624708     Mean dependent var 1.375142
Adjusted R-squared 0.617202     S.D. dependent var 3.451231
S.E. of regression 2.135299     Akaike info criterion 4.383784
Sum squared resid 455.9502     Schwarz criterion 4.460524
Log likelihood -222.7649     Hannan-Quinn criter. 4.414866
F-statistic 83.22967     Durbin-Watson stat 1.942392
Prob(F-statistic) 0.000000    
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Chapter 33.  Discrete Threshold Regression

The discrete Threshold Regression (TR) model describes a simple form of nonlinear regres-
sion featuring piecewise linear specifications and regime switching that occurs when an 
observed variable crosses unknown thresholds. TR specifications are quite popular as they 
are easy to estimate and interpret, and able to produce interesting nonlinearities and rich 
dynamics. Among the applications of TR are models for sample splitting, multiple equilibria, 
and the very popular Threshold Autoregression (TAR) and self-exciting Threshold Autore-
gression (SETAR) specifications (Hansen 1999, 2011; Potter 2003).

This chapter describes tools for estimating TR models with known or unknown thresholds. 
Among the powerful features are model selection tools for selecting the best threshold vari-
able from a candidate list, and the ability to specify both regime varying and non-varying 
variables. You may, for example, easily specify a two-regime SETAR model and allow EViews 
to estimate the optimal delay parameter, threshold values, and coefficients and covariance 
estimates for the varying and regression parameters.

Background

We begin with a standard multiple linear regression model with  observations and  
potential thresholds (producing  regimes). (While we will use  to index the  
observations, there is nothing in the structure of the model that requires time series data.)

For the observations in regime  we have the linear regression specification

(33.1)

Note that the regressors are divided into two groups. The  variables are those whose 
parameters do not vary across regimes, while the  variables have coefficients that are 
regime-specific.

Suppose that there is an observable threshold variable  and strictly increasing threshold 
values  such that we are in regime  if and only if:

where we set  and . Thus, we are in regime  if the value of the 
threshold variable is at least as large as the j-th threshold value, but not as large as the 

-th threshold. (Note that we follow EViews convention by defining the threshold val-
ues as the first values of each regime.)

For example, in the single threshold, two regime model, we have:

(33.2)
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Using an indicator function  which takes the value 1 if the expression is true and 0 oth-
erwise and defining , we may combine the  individ-
ual regime specifications into a single equation:

(33.3)

The identity of the threshold variable  and the regressors  and  will determine the 
type of TR specification. If  is the -th lagged value of , Equation (33.3) is a self-exciting 
(SE) model with delay ; if it’s not a lagged dependent, it's a conventional TR model. If the 
regressors  and  contain only a constant and lags of the dependent variable, we have 
an autoregressive (AR) model. Thus, a SETAR model is a threshold regression that combines 
an autoregressive specification with a lagged dependent threshold variable. 

Given the threshold variable and the regression specification in Equation (33.1), we wish to 
find the coefficients  and , and usually, the threshold values . We may also use model 
selection to identify the threshold variable .

Nonlinear least squares is an natural approach for estimating the parameters of the model. If 
we define the sum-of-squares objective function

(33.4)

and we may obtain threshold regression estimates by minimizing  with respect to 
the parameters. 

Taking advantage of the fact that for a given , say , minimization of the concentrated 
objective  is a simple least squares problem, we can view estimation as finding 
the set of thresholds and corresponding OLS coefficient estimates that minimize the sum-of-
squares across all possible sets of -threshold partitions. 

This basic estimation setup is well known from the breakpoint testing and regression litera-
ture (see, for example, Hansen, 2001 and Perron, 2006), and indeed, by permuting the obser-
vation index so that the threshold variable is non-decreasing, one sees that estimation of the 
threshold and breakpoint models are fundamentally equivalent (Bai and Perron, 2003), In 
essence, threshold regressions can be thought of as breakpoint least squares regressions 
with data reordered with respect to the threshold variable. Alternately, breakpoint regres-
sions may be thought of as threshold regressions with time as the threshold variable.

Accordingly, the discussion of breakpoint testing (“Multiple Breakpoint Tests” on page 210) 
and estimation (Chapter 32. “Least Squares with Breakpoints,” on page 441) may generally 
be applied in the current context. We will assume for our purposes that you are familiar 
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with, or can refer to this material, and in the interest of brevity, we will minimize the 
amount of repetition in our discussion below.

Threshold Estimation in EViews

To estimate a threshold regression in EViews, select Object/New Object.../Equation or 
Quick/Estimate Equation... from the main EViews menu, then select Threshold - Thresh-
old Regression in the Method drop-down menu. Alternatively, type threshold in the com-
mand window and press Enter. You will see the following dialog:

There are two tabs in the threshold regression dialog: Specification and Options. We discuss 
each of the pages in turn.

Specification

There are three distinct sections in the threshold regression Specification page: Equation 
specification, Threshold specification, and Sample specification. Since the sample specifi-
cation should be familiar, we will focus on the first two sections.

In the first edit field of the Equation specification section you should enter the dependent 
variable followed by a list of variables with threshold specific coefficients. The list of explan-
atory variables may include lagged series and ranges of lagged series specified with the word 
“to” (lag ranges are common in threshold regression models). In the second edit field, you 
may optionally specify a list of non-threshold varying regressors.
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Next, in the Threshold variable specification edit field, you should a specification for one 
or more threshold variables. You may enter this specification as a single integer or integer 
pairs, or you may provide a list of variables:

• If you enter a single integer, EViews will interpret the value as the delay parameter in 
a SETAR model. Thus, if your dependent variable is Y and you enter a “3” in the edit 
field, EViews will use Y(-3) as the threshold variable.

• If you enter a single variable name, EViews will use that variable as the threshold 
variable. Thus, if you enter “W”, EViews will estimate the specification using the 
series W as the threshold variable.

• If you enter one or more lag pairs, EViews will use model selection to determine the 
best delay parameter amongst all of the implied lag values. Thus, if you enter “1 4 7 
9”, EViews will estimate SETAR models with delay parameters between 1 and 4 and 
between 7 and 9, (threshold variables {Y(-1), Y(-2), Y(-3), Y(-4), Y(-7), Y(-8), Y(-9)}), 
and determine the specification that minimizes the sum-of-squared residuals.

• If you specify more than one variable, by providing a list of names, entering a group 
name, or using wildcard expressions, EViews will estimate TR models using each vari-
able as the threshold variable and will employ model selection to choose the specifi-
cation that minimizes the sum-of-squares.

The model selection criterion is the sum of the squares of the residuals (SSR). Also note that 
your threshold specification may not mix integer specifications and explicit variable lists.

In the example depicted above, we specify a threshold regime specific AR(11) specification 
for LYNX_TRANSF and enter the range pair “1 5” in the Threshold variable specification 
edit field. The result is a SETAR model where we will perform model selection for the 
threshold variable using lags of LYNX_TRANSF from  to .

Options

The Options page contains additional settings for the calculation of the coefficient covari-
ance matrix, the determination of thresholds, and the coefficient name. Most of the settings 
are identical to those found in breakpoint least squares, and extensive discussion may be 
found elsewhere (“Estimating Least Squares with Breakpoints in EViews” on page 443). 

We offer a brief description of the threshold specification methods below.

Threshold Value Estimation Methods

EViews offers a number of options for choosing the number and location of the threshold 
values.

If the number of thresholds is known it can be entered as one of the “Fixed number” speci-
fication options. 

1– 5–
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Before describing the other methods, it is important to note that EViews uses the methodol-
ogies of Bai and Perron (1998), and not the fixed regressor bootstrap testing proposed by 
Hansen (1999), to determine the number of thresholds. We caution you that the approaches 
based on testing should be viewed as informal in the TAR setting as the lagged endogenous 
regressors in the model are themselves subject to structural breaks which violates the 
assumptions for the Sup-F statistics (Hansen, 2000; Hansen, 1999).

For a given , global estimation of thresholds compares the SSRs for all possible sets of  
threshold values. The following global methods are used to identify threshold values and the 
associated regression coefficients. In the first two methods the number of thresholds is 
unknown and user must specify the maximum number of thresholds allowed. In the last 
case the desired number of thresholds must be entered.

• Global  thresholds versus none

• Minimizing the information criteria

• Fixed number - global

Threshold values may also be estimated sequentially by finding an initial threshold value 
that minimizes the residual sums of squares, then searching for additional values (given the 
initial value) that minimize the SSR until the desired number of thresholds, possibly deter-
mined through testing, is obtained. Sequential tests are used in the following methods. 
Again, in the first two methods, the number of thresholds is not known and the user must 
enter the maximum number of thresholds allowed. In the last case, the user must enter the 
desired number of thresholds:

• Sequential  breaks vs. 

• Sequential tests all subsets

• Fixed number - sequential

The global tests are mixed with sequential testing in the  versus global  method.

Additional details for each of these methods may be found in the discussion of breakpoint 
regression (“Background,” beginning on page 441) and breakpoint testing (“Multiple Break-
point Tests,” beginning on page 210).

Working with Threshold Equations

The threshold equation produced by the EViews threshold estimation procedure is, in 
essence, a linear regression model with regime dummies on some or all of the variables. For 
the most part, views and procs will work as in standard models, though some care should 
be taken in interpreting results. 

We describe below the basics of working with your threshold equation, highlighting views 
and procs for which there are important differences, along with threshold specific tools.

m m

L

L 1 L

L 1 L
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Estimation Output

Suppose we estimate a two-regime threshold regression model with an AR(11) in each 
regime and model selection over threshold dependent variable lags from -1 to -5.

The top part of the output shows equation specification information. 

In addition to the usual dependent variable, method, date, and sample information, EViews 
displays information about the threshold specification. Here we see that the threshold value 
was found using the fixed number (one) of sequentially determined thresholds. Since we 
instructed EViews to perform model selection using 1 to 5 lags of the LYNX_TRANSF series, 
EViews displays the names of all of the candidate series. Lastly, EViews displays the selected 
threshold variable and the estimated threshold value. 

Some comments on the reported threshold value are in order. Recall that the threshold val-
ues are only identified up to an interval defined by adjacent values of the sorted threshold 
variable (Tsay, 1989). For purposes of display, EViews reports the observed value of the 
threshold variable at the beginning of a regime, truncated to a more readable form, while 
ensuring that the representation satisfies the threshold inequalities.

The middle part of the output labels displays coefficient values and associated statistics for 
each regime. The bottom portion of the output contains the usual summary statistics.

Dependent Variable: LYNX_TRANSF   
Method: Threshold Regression   
Date: 03/05/15   Time: 10:29   
Sample (adjusted): 1832 1934   
Included observations: 103 after adjustments  
Threshold type: Fixed number of sequentially determined thresholds 
Threshold variables considered: LYNX_TRANSF(-1) 
LYNX_TRANSF(-2) LYNX_TRANSF(-3) LYNX_TRANSF(-4) 
LYNX_TRANSF(-5)   
Threshold variable chosen: LYNX_TRANSF(-3)  
Threshold value used: 3.404149   
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Most of the summary statistics are self-explanatory. We do note that the -square, the F-
statistic, and the corresponding probability are all based on a comparison with the fully 
restricted, no threshold, constant only model.

Equation Views and Procs

Not surprisingly, the available views and procs for threshold equations parallel those in 
breakpoint least squares regression, with some additions as described below. Additionally 
we address some subtle and not-so-subtle issues that you should bear in mind when work-
ing with the familiar routines.

Variable Coefficient Std. Error t-Statistic Prob.   

LYNX_TRANSF(-3) < 3.404149 -- 78 obs

C 0.901519 0.326423 2.761809 0.0071 
LYNX_TRANSF(-1) 1.059387 0.111013 9.542922 0.0000 
LYNX_TRANSF(-2) -0.179744 0.156881 -1.145737 0.2554 
LYNX_TRANSF(-3) -0.054279 0.149394 -0.363329 0.7173 
LYNX_TRANSF(-4) -0.150385 0.150522 -0.999085 0.3208 
LYNX_TRANSF(-5) 0.047953 0.155663 0.308059 0.7588 
LYNX_TRANSF(-6) -0.041777 0.155923 -0.267935 0.7894 
LYNX_TRANSF(-7) -0.036509 0.158275 -0.230671 0.8182 
LYNX_TRANSF(-8) 0.159765 0.162665 0.982170 0.3290 
LYNX_TRANSF(-9) 0.009293 0.162477 0.057197 0.9545 
LYNX_TRANSF(-10) 0.184069 0.154652 1.190213 0.2375 
LYNX_TRANSF(-11) -0.308074 0.098137 -3.139209 0.0024 

3.404149 <= LYNX_TRANSF(-3) -- 25 obs 

C 1.074224 1.128350 0.952031 0.3440 
LYNX_TRANSF(-1) 1.625837 0.191162 8.505018 0.0000 
LYNX_TRANSF(-2) -1.980078 0.307855 -6.431855 0.0000 
LYNX_TRANSF(-3) 1.512621 0.445142 3.398063 0.0011 
LYNX_TRANSF(-4) -1.033482 0.444150 -2.326876 0.0225 
LYNX_TRANSF(-5) 0.755411 0.357410 2.113569 0.0377 
LYNX_TRANSF(-6) 0.424123 0.411788 1.029955 0.3062 
LYNX_TRANSF(-7) -0.946509 0.438604 -2.158001 0.0340 
LYNX_TRANSF(-8) -0.086284 0.278625 -0.309677 0.7576 
LYNX_TRANSF(-9) 0.414445 0.257290 1.610811 0.1112 
LYNX_TRANSF(-10) 0.141073 0.242708 0.581244 0.5627 
LYNX_TRANSF(-11) -0.242090 0.173382 -1.396282 0.1665 

R-squared 0.928938    Mean dependent var 2.879249 
Adjusted R-squared 0.908249    S.D. dependent var 0.562305 
S.E. of regression 0.170325    Akaike info criterion -0.501483 
Sum squared resid 2.291827    Schwarz criterion 0.112434 
Log likelihood 49.82638    Hannan-Quinn criter. -0.252825 
F-statistic 44.90026    Durbin-Watson stat 2.109955 
Prob(F-statistic) 0.000000    

R
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Criteria Graph and Table

If you select View/Model Selection Summary from an estimated threshold equation you 
will be offered a choice of displaying a Criteria Graph or a Criteria Table:

These two views display the model selection criteria used to select the threshold variable in 
a line plot or a table, ordered by the selection criterion.

For example, the criteria graph for this equation is shown below:
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In this figure, the threshold variable whose model has the lowest AIC is clearly visible on the 
left of the graph.

Here, we see the same set of results in table form. This view also includes information about 
the common sample used for model selection estimation, and the number of regimes 
employed for each candidate model.
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Representations View

The representations view (View/Representations) shows the expanded equation specifica-
tion, which combines the coefficients from different regimes with the threshold variable and 
limits and various inequalities into a single equation.

Note that estimating this single equation specification via ordinary least squares will pro-
duce the same coefficients as the estimated threshold model.

Threshold Specification

The threshold specification view displays more detailed information about the threshold 
variable, values, along with information about the method of selecting the number of 
thresholds. To display this view, click on View/Threshold Specification from the equation 
menu.

The top portion of the output displays information about the threshold and threshold values:
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The detailed information on the threshold values includes the actual data value correspond-
ing to the break (in this case 3.40414924921), the actual data value for the next highest data 
value (here 3.39984671271), and the truncated value EViews uses for display and represen-
tation purposes (3.404149). (Note that any value between the lower adjacent data value and 
the threshold data value would produce the same observed fit).

The lower portion of the output displays calculations used in determining the thresholds:

Threshold Specification   
Description of the threshold specification used in estimation 
Equation: TAR   
Date: 03/05/15   Time: 11:28  

Summary 

Threshold variable: LYNX_TRANSF(-3)  
Specified number of thresholds: 1  
Method: Fixed number of sequentially determined thresholds 
Threshold data value: 3.40414924921  
Adjacent data value: 3.39984671271  
Threshold value used: 3.404149  
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In this case, EViews displays the results for sequentially determined thresholds using the 
Bai-Perron Sup-F test statistics. We caution again that since this TAR specification contains 
lagged endogenous variables, that the conditions required for distributional results is vio-
lated (Hansen, 1999; Hansen, 2000).

Omitted and Redundant Variables Testing

The omitted variables test (View/Coefficient Diagnostics/Omitted Variables Test/Likeli-
hood Ratio...), requires the specification of regime-specific or common variables:

Current threshold calculations:  
    

Multiple threshold tests   
Bai-Perron tests of L+1 vs. L sequentially determined 
       thresholds
Date: 03/05/15   Time: 11:28  
Sample: 1832 1934   
Included observations: 103  
Threshold variable: LYNX_TRANSF(-3)   
Threshold varying variables: C LYNX_TRANSF(-1)  
        LYNX_TRANSF(-2) LYNX_TRANSF(-3)  
        LYNX_TRANSF(-4) LYNX_TRANSF(-5)  
        LYNX_TRANSF(-6) LYNX_TRANSF(-7)  
        LYNX_TRANSF(-8) LYNX_TRANSF(-9)  
        LYNX_TRANSF(-10) LYNX_TRANSF(-11)  
Threshold test options: Trimming 0.15, Max. thresholds 5, 
        Sig. level 0.05   

Sequential F-statistic determined thresholds:  2 

  Scaled Critical 
Threshold Test   F-statistic F-statistic Value** 

0 vs. 1 * 4.201074 50.41289 27.03 
1 vs. 2 * 2.900849 34.81019 29.24 
2 vs. 3 1.528676 18.34411 30.45 

* Significant at the 0.05 level.  
** Bai-Perron (Econometric Journal, 2003) critical values. 

    
Threshold values:   

 Sequential Repartition  

1 3.404149 2.328379
2 2.328379 3.404149  
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Simply enter the variables you wish to add in the appropriate edit field.

Alternately, the redundant variables test will prompt you to enter variables from the original 
specification that you wish to drop.

We point out that these tests are performed conditionally on the thresholds identified in the 
estimation step. EViews will use the threshold variables and values previously determined 
and perform the test on the conditional linear specification. This may not be the test you 
wish to perform.

Forecasting

Static or one-step ahead forecasting from a TR estimated equation is straightforward, and 
involves conditioning on the observed regressors, including any lagged endogenous and 
computing the forecast.

For TAR and other models with lagged endogenous variables, -step ahead nonlinear 
dynamic forecasting is considerably trickier (see, for example the discussion in Potter 1999, 
or Tong and Lim, 1980 who distinguish between the “eventual forecasting function” and the 

-step ahead forecasts). For dynamic threshold regression models, EViews computes fore-
casts by stochastic simulation with the forecasts and forecast standard errors obtained from 
the sample average and standard deviation of the simulated values.

To perform the forecast simulation, click on the Forecast button on the equation toolbar or 
select Proc/Forecast... from the equation menu to display the dialog:

n

n
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Most of this Forecast dialog should be familiar. Note, however, that under the Method sec-
tion are two new edit fields for controlling the stochastic simulation, one for the number of 
Repetitions, and the second for the % failed reps before halting. 

Change the settings as desired and click on OK to continue. Here we tell EViews we wish to 
compute the simulated dynamic forecasts from 1900 to 1934. EViews displays the results of 
the forecast along with evaluation statistics:



References—475
We may use the saved values of the forecast and standard error series to show a comparison 
with the actuals. First, display a graph containing the series using the command:

plot lynx_transf lynx_transfcst lynx_transfcst+2*lynx_transfse 
lynx_transfcst-2*lynx_transfse

After a bit of editing to change line colors, patterns, and legend entries, we have:
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Chapter 34.  Smooth Transition Regression

Smooth Transition Autoregressive (STAR) modeling (Teräsvirta, 1994) is an extremely popular 
approach for nonlinear time series analysis. STAR models, which are a special case of Smooth 
Transition Regression (STR) models, embed regime-dependent linear auto-regression specifi-
cations in a smooth transition nonlinear regression framework. 

Similar in concept to discrete Threshold Regression (TR) models, STR models differ in that 
regime switching occurs smoothly when an observed variable crosses the unobserved 
thresholds. As a result of this smooth response, STR models are often thought to have more 
“realistic” dynamics than their discrete TR counterparts. STR models have been applied to a 
wide range of datasets, from macroeconomic (Teräsvirta and Anderson 1992, Teräsvirta 1994) 
to the well-known Canadian lynx data (Teräsvirta, 1994). 

This chapter describes EViews tools for estimation of two-regime STR models with unknown 
parameters for the shape and location of the smooth threshold. EViews estimation supports 
several different transition functions, provides model selection tools for selecting the best 
threshold variable from a candidate list, and offers the ability to specify regime varying and 
non-varying variables and variables that appear in only one regime.

Following estimation, EViews offers specialized views of the transition function and weights 
and offers tests for linearity against STR alternatives and tests of no remaining nonlinearity 
and parameter constancy, alongside conventional tests for heteroskedasticity and serial cor-
relation.

Portions of this chapteroffer brief background for STR models. Those desiring additional 
detail should consult the more detailed discussions in Teräsvirta (1994) and van Dijk, Teräs-
virta, and Franses (2002), and the textbook treatment in Martin, Hurn, and Harris (2013, p. 

720–726, 744–745).

Background

We begin with a slightly modified version of Equation (33.3) defining the discrete TR model:

(34.1)

where  is a (0, 1) indicator for regime that depends on the observed variable , where 
 represents one or more thresholds and  is a threshold slope parameter. Note that we 

have divided the regressors into two groups—  variables whose coefficients vary across 
the  regimes, and  variables with coefficients that are regime invariant.
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Restricting ourselves to , as using the fact that  for exactly one , we may 
rewrite the discrete TR equation as:

(34.2)

To construct the two-regime STR model, we replace the indicator function with a continuous 
transition function  that returns values between 0 to 1. Then we have

(34.3)

where  has different properties as , , and , depending on the spe-
cific functional form. 

The key modeling choices in Equation (34.3) are the choice of the threshold variable  and 
the selection of a transition function . For a given  and , we may estimate the regres-
sion parameters  and the threshold values and slope  via nonlinear least 
squares. Additionally, given a list of candidate variables for , we can select a threshold 
variable using model selection techniques.

Common transition function choices are given by:

• Logistic (LSTR):

(34.4)

• Normal (NSTR or STR):

(34.5)

• Exponential (ESTR):

(34.6)

• Logistic, second-order (L2STR):

(34.7)

for  in all cases.

Some brief comments about properties of the specific transition functions:

• The logistic and normal transition functions are monotonically increasing in  so that 
the two regimes correspond to high and low values of the threshold variable. The 
threshold value  determines the point at which the regimes are equally weighted, 
while  controls the speed and smoothness of the transition. As , the transi-
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tion function approaches the indicator function and the model approaches the dis-
crete threshold model.

• The exponential transition function is increasing in absolute deviations of  from the 
threshold . Furthermore,  when , and  approaches 1 as 

 and . The ESTR model does not nest the discrete TR model since, as 
 or , the specification becomes linear since  approaches a constant 

function returning 0 or 1.

• The second-order logistic function does nest the discrete TR model. As  with 
distinct ,  approaches 1 for  and , and  approaches 0 for  
in-between. Thus, the L2STR model nests a three-regime discrete TR model where the 
outer regimes have a common linear specification.

For finite ,  attains its minimum value at  with a non-zero 
value.

For further discussion of the implications of various choices for , see van Dijk, Teräsvirta, 
and Franses (2002) who offer extensive commentary on the properties of these transition 
functions and provide concrete examples of their use in empirical settings.

Following estimation of the coefficients using nonlinear least squares (van Dijk, Terasvirt-
Teräsvirta, and Franses, 2002; Leybourne, Newbold and Vougas, 1998), we may estimate the 
coefficient covariance matrix using conventional methods available for nonlinear least 
squares (ordinary, heteroskedasticity consistent, heteroskedasticity and autocorrelation con-
sistent).

The general form of the NLLS covariance is given by:

(34.8)

where  is an estimate of the information,  is the variance of the residual weighted gradi-
ents, and  is a scale parameter.

For the ordinary covariance estimator, we assume that . Then we have

(34.9)

where  is an estimator of the residual variance (with or without degree-of-freedom correc-
tion). 

We may estimate  using the outer-product of the gradients (OPG) of the error function or 
the one-half of the Hessian matrix of second derivatives of the sum-of-squares function:

(34.10)
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(34.11)

evaluated at the estimated coefficients.

Alternately, we may assume distinct  and , and employ a White or HAC sandwich esti-
mator for the coefficient covariance as in “Robust Standard Errors,” beginning on page 32 of 
User’s Guide II.

Lastly, following specification and estimation of an STR equation, the modeling cycle typi-
cally involves performing a number of hypothesis tests using the STR specification and 
results. Background information for the various tests performed by EViews will be discussed 
below.

Estimating a Smooth Transition Regression in EViews

Estimation of a STR model is performed using the same dialog as discrete Threshold Regres-
sion. Open an existing equation or select Quick/Estimate Equation... from the main EViews 
menu, select THRESHOLD - Threshold Regression from the main Method dropdown menu 
near the bottom of the dialog, and click on the Smooth radio button in the Threshold type 
setting.

EViews will display a dialog with two tabs: the Specification tab and the Options tab. 
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Specification

Focusing first on the Specification page, we see that it is virtually identical to the dialog for 
discrete threshold models. There are again three sections: Equation specification, Thresh-
old specification, and Sample specification. As the Sample specification should be familiar, 
we focus our attention on the first two sections.

Equation Specification

The Equation specification section has two edit fields, one for the dependent variable and 
the threshold varying regressors, and one for threshold non-varying regressors.

In the first edit field, you should enter the dependent variable, followed by a list of  vari-
ables with threshold specific coefficients. The list of explanatory variables may include 
lagged series and ranges of lagged series specified with the word “to” (lag ranges commonly 
appear in STAR models). 

You may employ two varying regressor variable modifiers, @base, and @alt to specify vari-
ables which only appear in the base or in the alternative specification, respectively. For 
example, adding the varying regressors specification

@alt(c) @alt(ys(-7))

indicates that the  variables C and YS(-7) should only appear in the portion of the specifi-
cation weighted by , or equivalently, that the elements of  corresponding to those two 
variables will be zero. Note that you may include more than one variable inside a @base or 
@alt tag.

In the second edit field, you may optionally specify a list of threshold non-varying  regres-
sors corresponding with coefficients .

Threshold Specification

Next, in the Threshold variable specification edit field, you should enter a specification for 
the threshold variables. You may enter this specification as a single integer or integer pairs, 
or you may provide a list of variables:

• If you enter a single integer, EViews will interpret the value as the delay parameter in 
a self-exciting model. Thus, if your dependent variable is Y and you enter a “3” in the 
edit field, EViews will use Y(-3) as the threshold variable.

• If you enter a single variable name, EViews will use that variable as the threshold 
variable. Thus, if you enter “W”, EViews will estimate the specification using the 
series W as the threshold variable.

• If you enter one or more lag pairs, EViews will use model selection to determine the 
best delay parameter amongst all of the implied lag values. Thus, if you enter “1 4 7 
9”, EViews will estimate self-exciting STR models with delay parameters between 1 
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Z
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and 4 and between 7 and 9, (threshold variables {YS(-1), YS(-2), YS(-3), YS(-4), 
YS(-7), YS(-8), YS(-9)}), and determine the specification that minimizes the sum-of-
squared residuals.

• If you specify more than one variable by providing a list of names, entering a group 
name, or using wildcard expressions, EViews will estimate a STR model using each 
candidate threshold variable and will choose the specification that minimizes the 
sum-of-squares.

Note that your threshold specification may not mix integer specifications and explicit vari-
able lists.

Options

The options dialog for STR models differs substantively from its discrete counterpart. 

The most important STR options are in the Smooth threshold specification, and the Coeffi-
cient covariance matrix settings:

• The Smooth threshold specification should be used to select the form of the transi-
tion function (see “Background” on page 477). By default, EViews uses the Logistic, 
but you may use the dropdown to select the Exponential, Normal, or Logistic - 2nd 
Order functions.

• By default, EViews computes standard estimates of the coefficient covariance using 
the d.f. corrected estimator of the residual variance and the inverse outer-product of 
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the gradients. The Coefficient covariance matrix may be used to modify the estima-
tor to use the Hessian, or to compute White or HAC covariance estimates.

Estimation of smooth transition models involves nonlinear optimization. The settings for 
Starting parameter values and Estimation algorithm control the optimization starting val-
ues and method:

• The Starting parameter values may be used to choose between different starting 
value methods. 

The default method is Grid search - concentrated coefs, in which the regression coef-
ficients are concentrated out of the likelihood and grid search is performed over the 
transition parameters. Alternately, you may choose Grid search - zero coefs which is 
analogous to the first method, but sets the regression coefficients to zero, Data-
moments and OLS which uses OLS regression on the linear portion of the specifica-
tion, sets the nonlinear coefficient values to zero, and uses data moments to obtain 
starting values for the slope and threshold, or User-specified. The latter will use the 
coefficients in the coefficient vector specified in the Coefficient name edit field.

• The Estimation algorithm section offers standard nonlinear least squares optimiza-
tion settings. By default, EViews uses BFGS with Marquardt steps and sets the maxi-
mum iterations and convergence tolerance to their global defaults.

Lastly, EViews offers an option to control the behavior of threshold variable model selection 
when it encounters models that do not converge. By default, EViews will drop those models 
from consideration, but you may use the Include nonconverged models checkbox to force 
inclusion.

Working with Smooth Threshold Equations

The smooth threshold equation estimated by EViews is a particular nonlinear regression 
specification. Accordingly, EViews supports the most of the views and procs for a nonlinear 
regression equation, alongside a number of tools that are specific to STR regression. 

We describe below the basics of working with your STR, highlighting views and procs that 
are specific to STR and those which differ substantively from the standard nonlinear regres-
sion implementation.

Estimation Output

Following estimation, EViews displays the STR output. For example, we might have:
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The top portion of the output displays the dependent variable, method, date, sample infor-
mation, description of the threshold specification, and information about the estimation pro-
cedure. In this example, we see that the logistic STR (LSTR) is self-exciting, as the threshold 
variable is the first lag of the dependent variable. Estimation converged after 9 iterations, 

Dependent Variable: YS   
Method: Smooth Threshold Regression   
Transition function: Exponential   
Date: 05/06/17   Time: 09:38   
Sample (adjusted): 1869 1988   
Included observations: 120 after adjustments
Threshold variable: YS(-3)   
Starting values: Grid search with concentrated regression coefficients 
Ordinary standard errors & covariance using outer product of  
        gradients    
Convergence achieved after 9 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

Threshold Variables (linear part) 

YS(-1) 2.609656 1.302386 2.003750 0.0477
YS(-2) 1.190593 0.557769 2.134564 0.0351
YS(-3) 1.733120 1.224012 1.415934 0.1598
YS(-4) 0.385758 0.402546 0.958295 0.3401
YS(-5) -0.917191 0.437967 -2.094198 0.0387
YS(-6) -0.529917 0.319152 -1.660392 0.0998

Threshold Variables (nonlinear part) 

YS(-1) -2.618711 1.304748 -2.007062 0.0473
YS(-2) -1.243749 0.560841 -2.217650 0.0288
YS(-3) -1.975486 1.221529 -1.617224 0.1089
YS(-4) -0.454079 0.422803 -1.073972 0.2853
YS(-5) 0.935453 0.461735 2.025952 0.0453
YS(-6) 0.587556 0.339849 1.728875 0.0868

C 0.076220 0.014286 5.335444 0.0000
YS(-7) -0.322125 0.097125 -3.316622 0.0013

Slopes 

SLOPE 339.9926 133.2895 2.550782 0.0122

Thresholds 

THRESHOLD -0.087539 0.011879 -7.369287 0.0000

R-squared 0.238193     Mean dependent var 0.043943
Adjusted R-squared 0.128317     S.D. dependent var 0.071276
S.E. of regression 0.066546     Akaike info criterion -2.458292
Sum squared resid 0.460545     Schwarz criterion -2.086626
Log likelihood 163.4975     Hannan-Quinn criter. -2.307357
F-statistic 2.167837     Durbin-Watson stat 1.912573
Prob(F-statistic) 0.011921    
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from employed starting values obtained from grid search after concentrating out the regres-
sion coefficients. The coefficient standard errors and covariance uses the standard inverse 
outer product of the gradients times the d.f. corrected estimator of the residual variance.

The middle part of the output displays coefficient values and associated statistics for both 
the base (linear part) and alternative (nonlinear par) of the specification. EViews also 
reports the estimates slope ( ) and threshold ( ) parameters.

The bottom portion of the output contains the usual summary statistics.Most of the sum-
mary statistics are self-explanatory. Note that the -square, the F-statistic, and the corre-
sponding probability are all based on a comparison with the no threshold, constant only 
linear model.

Equation Views and Procs

The views and procs for smooth threshold equations parallel those in nonlinear least 
squares regression, with some additions as documented below. We will not discuss familiar 
residuals and residual diagnostics, gradients and derivatives, and coefficient covariance 
views and procedures, but will focus instead of views which are new or differ for equations 
estimated by STR.

Representations View

As always, the representations view (View/Representations) shows the estimation com-
mand. In addition, the view depicts the estimation equation and substituted coefficients sec-
tions which show the nonlinear regression specification which combines the coefficients 
from different regimes with the slope and threshold variable into a single equation.

Note that estimating the estimation equation via ordinary least squares will produce the 
same coefficients as the estimated smooth threshold model.

ĝ ĉ

R
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Threshold Smoothing Weights

The threshold function occupies a central place in the specification of STR models. Accord-
ingly, EViews offers easy-to-use tools for examining the weights associated with your esti-
mated equation

Threshold Weights View

The threshold weights view allows you to examine at the shape of the smoothing function or 
the values of the smoothing weights for each observation in the estimation sample. 

Select View/Threshold Smoothing Weights... to display the dialog:

By default, this view will display a Function graph showing the values returned by  for 
various values of , and will display Boxplots that summarize the distribution of the 
observed individual threshold values and smoothing weights along borders of graph.

You may use the Display type dropdown menu to instead display a Graph, Spreadsheet, or 
Summary Statistics for the individual weights.

• The default Function graph display will show the shape of the estimated smoothing 
function.

When displaying a Function graph, you may use the Axis borders dropdown to dis-
play summary graphs for the individual weights along the axis of the graph. You may 
choose to display a Boxplot, Histogram, or a Kernel density, or None. 

You may save the function plot data to a matrix in the workfile by providing the name 
of a new or existing Output matrix in the corresponding edit field.

G
s
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• The Graph and Spreadsheet display the individual weight data for each observation 
in graph or spreadsheet form.

• The Summary Statistics setting shows descriptive statistics for the individual 
weights.
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Save Threshold Weights Proc

The threshold weights proc lets you save the individual threshold weight values as a series 
in your workfile.

To save a series in the workfile containing the individual smoothing weights, click on Proc/
Make Threshold Weights Group... and enter a name for the weight series in the edit field. 
Click on OK to save the weight series.

Model Selection Summary 

If you specify more than one potential threshold variable, EViews will estimate a STR model 
using each candidate threshold variable and will choose the specification that minimizes the 
sum-of-squares. You may examine the results of this model selection procedure using the 
model selection views.

To display a graph of the results, ordered from best to worst, select View/Model Selection 
Summary/Criteria Graph:
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To display a table of the results, click on View/Model Selection Summary/Criteria Table:

Stability Diagnostics

EViews provides easy-to-use tests for linearity against STR alternatives as well as tests for 
misspecification of the STR model by considering the hypotheses of no remaining nonlinear-
ity, of parameter constancy, of no serial correlation, and of homoskedasticity, 

Linearity Testing

We may rewrite the basic form of the STR specification Equation (34.3) on page 478 as:

(34.12)yt Ztd0 G st c g,  Zt v Xta  et
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where . For convenience, we will assume that . This is not an 
important restriction as the functions above may be modified slightly to enforce this condi-
tion.

We can test for linearity under the null hypothesis using either  or , and as it 
is more convenient to test for , the literature focuses on this restriction. Note, how-
ever, that under the null hypothesis, the parameters  and  are not identified, so that stan-
dard theory cannot be used to obtain the null distribution of the test statistic.

Luukkonen, Saikkonen, and Teräsvirta (1988) propose an approach which replaces  by a 
Taylor series expansion which is estimable under the null. The resulting test procedure 
involves taking the linear portion of the model and adding terms representing the interaction 
of the linear regressors with the polynomial terms in the Taylor expansion and then testing 
for the statistical significance of sets of the interaction coefficients.

It is worth noting that the resulting Taylor series expansion will differ depending on the form 
for  and that the specific terms of the Taylor expansion that are asymptotically relevant 
under the alternative differ across . These differences allow us to use the probabilities of 
rejection of various null hypothesis to discriminate between alternative choices for .

There is a large literature discussing the properties of these tests, offering elaboration and 
various refinements. For details, see Teräsvirta (1994), Eitrheim and Teräsvirta (1996), 
Escribano and Jorda (1999), van Dijk, Teräsvirta, and Franses (2002).

To perform these tests, simply click on View/Stability Diagnostics/Linearity Test. EViews 
will perform linearity tests against nonlinear alternatives using the selected threshold vari-
able.

v d1 d0– G 0 c ht, ,  0

g 0 v 0
g 0

c v

G

G
G
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EViews displays results from three different sets of tests. 

• The Luukkonen, Saikkonen, and Teräsvirta linearity tests at the top of the output are 
joint hypothesis test for significance of the elements of the Taylor expansion. 

The listed hypothesis refers to the coefficients of the expansion under test assuming 
that the higher order terms are restricted to zero. Imposing these restrictions may pro-
duce tests with higher power.

For example, the H02 null hypothesis tests b1=b2=0 assuming that b3=b4=0. 

Smooth Threshold Linearity Tests  
Date: 05/06/17   Time: 10:28  
Sample: 1861 1988
Included observations: 120  
Test for nonlinearity using YS(-3) as the threshold variable 
Taylor series alternatives: b0 + b1*s [ + b2*s^2 + b3*s^3 + b4 
        *s^4 ]   

Linearity Tests
Null Hypothesis F-statistic d.f. p-value 

     H04:  b1=b2=b3=b4=0  2.719220 (30, 84)  0.0002 
     H03:  b1=b2=b3=0  2.854853 (23, 91)  0.0002 
     H02:  b1=b2=0  3.039417 (16, 98)  0.0004 
     H01:  b1=0  3.257240 (9, 105)  0.0016 

The H0i test uses the i-th order Taylor expansion (bj=0 for all 
        j>i).   

    

Terasvirta Sequential Tests 
Null Hypothesis F-statistic d.f. p-value 

     H3:  b3=0  1.957734 (7, 91)  0.0695 
     H2:  b2=0 | b3=0  2.375368 (7, 98)  0.0276 
     H1:  b1=0 | b2=b3=0  3.257240 (9, 105)  0.0016 

All tests are based on the third-order Taylor expansion (b4=0). 
Linear model is rejected at the 5% level using H03. 
Recommended model: first-order logistic.  
     .  Pr(H1) <= Pr(H2)  

    

Escribano-Jorda Tests 
Null Hypothesis F-statistic d.f. p-value 

     H0L:  b2=b4=0  1.394541 (13, 84)  0.1792 
    H0E:  b1=b3=0 2.456645 (12, 84) 0.0085

All tests are based on the fourth-order Taylor expansion. 
Linear model is rejected at the 5% level using H04. 
Recommended model: first-order logistic with zero threshold. 
     .  Pr(H0L) >= Pr(H0E)  with  Pr(H0L) >= .05 and Pr(H0E) < 
       .05).
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• The Teräsvirta tests are a sequential set of general-to-specific tests for terms of the Taylor 
expansion that allow for transition function selection. Following Teräsvirta, EViews car-
ries out the three tests in the following sequence:

(34.13)

If the null of linearity is rejected, we may use the results to determine a preferred tran-
sition function. A useful rule for discriminating between ESTAR and LSTAR models is to 
select the ESTAR model if the p-value for H2 is smallest, otherwise the LSTAR model is to 
be preferred.

• The Escribano-Jorda tests use the different properties of the Taylor expansion both to 
test for nonlinearity and to discriminate between alternative choices for . The HOL 
test evaluates linearity against a logistic alternative, while the HOE test compares lin-
earity to an exponential alternative. 

Note that EViews computes the F-statistic forms of all of these tests.

Further, note that we assume that the threshold variable is the one used in estimation of 
your STR model. Thus, EViews implementation does not allow for the forms of the linearity 
test where one tests against multiple thresholds.

Remaining Nonlinearity Tests

Given estimation of a two-regime STR model we may wish to test for whether there is addi-
tional unmodeled nonlinearity. One popular approach is to test the estimated model against 
a model with additional regimes. The testing methodology is analogous to the linearity tests 
outlined above (“Linearity Testing” on page 489) in which we consider a Taylor series 
expansion of the transition weighting function, and then test for the significance of interac-
tions with the variables of the specification.

Following the discussion in van Dijk, Teräsvirta, and Franses (2002) we distinguish between 
two forms of the test, the additive and the encapsulated tests, which offer different specifica-
tions of the multiple regime alternative. 

Additive Multiple Regime STR (AMRSTR)

We may specify a three regime model by adding a second nonlinear component, as in:

(34.14)

Eitrheim and Terasvirta (1998) develop LM tests to test the two-regime LSTAR model against 
this alternative. The test involves expanding the  function in a third-order Taylor expan-
sion and then performing a standard hypothesis test on polynomial terms interacted with .

H03:  b3 0

H02:  b2 0 b3 0 

H01:  b1 0 b2 b3 0  

G

yt Ztd0 G1 st c1 g1,  Ztv1 Xta G2 st c2 g2,  Ztv2 et   
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To perform a remaining nonlinearity test against this three regime alternative, you should 
click on View/Stability Diagnostics/Remaining Nonlinearity Test/Additive Nonlinearity 
Test:

Multiple Regime STR (MRSTR)

The Multiple Regime STR model encapsulates a STR model in a higher regime STR model. 
For our three regime alternative, we have

(34.15)

Note that both the linear and nonlinear terms in the first node appear in the second node, 
and that we have kept the non-varying regressors outside of the second nonlinear node.

Smooth Threshold Remaining Nonlinearity Tests 
Date: 05/06/17   Time: 10:45  
Sample: 1861 1988   
Included observations: 120  
Additive nonlinearity tests using YS(-3) as the threshold variable
Taylor series alternatives: b0 + b1*s [ + b2*s^2 + b3*s^3 + b4*s^4 ] 

Additive Nonlinearity Tests 
Null Hypothesis F-statistic d.f. p-value 

     H04:  b1=b2=b3=b4=0  1.427627 (30, 74)  0.1099 
     H03:  b1=b2=b3=0  1.401097 (23, 81)  0.1364 
     H02:  b1=b2=0  1.461854 (16, 88)  0.1328 
     H01:  b1=0  1.855505 (9, 95)  0.0682 

The H0i test uses the i-th order Taylor expansion (bj=0 for all j>i). 
    

Terasvirta Sequential Tests 
Null Hypothesis F-statistic d.f. p-value 

     H3:  b3=0  1.207163 (7, 81)  0.3084 
     H2:  b2=0 | b3=0  0.962351 (7, 88)  0.4637 
     H1:  b1=0 | b2=b3=0  1.855505 (9, 95)  0.0682 

All tests are based on the third-order Taylor expansion (b4=0). 
Original model is not rejected at the 5% level using H03. 

    

Escribano-Jorda Tests 
Null Hypothesis F-statistic d.f. p-value 

     H0L:  b2=b4=0  1.224852 (13, 74)  0.2796 
     H0E:  b1=b3=0  1.464289 (12, 74)  0.1574 

All tests are based on the fourth-order Taylor expansion. 
Original model is not rejected at the 5% level using H04. 

yt Zt d0 G1 st c1 g1,  Ztv1 G2 st c2 g2,  Zt v2 G1 st c1 g1, Ztv3 
Xta et


 
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van Dijk and Franses (1999) develop an LM test in this framework for testing the null of the 
two regime LSTAR model against the MRSTAR alternative. 

To perform a remaining nonlinearity test against the encapsulated three regime alternative, 
select View/Stability Diagnostics/Remaining Nonlinearity Test/Encapsulated Nonlinear-
ity Test:

Parameter Constancy Test

One interesting variant of the STR model is the time-varying coefficient specification which 
is obtained by choosing time to be the threshold variable. This model allows for structural 
instability in which regression parameters evolve smoothly over time.

Date: 05/06/17   Time: 10:57  
Sample: 1861 1988   
Included observations: 120  
Encapsulated nonlinearity tests using YS(-3) as the threshold
        variable   
Taylor series alternatives: b0 + b1*s [ + b2*s^2 + b3*s^3 + b4 
        *s^4 ]   

Encapsulated Nonlinearity Tests
Null Hypothesis F-statistic d.f. p-value 

     H04:  b1=b2=b3=b4=0  1.720985 (51, 53)  0.0261 
     H03:  b1=b2=b3=0  1.407513 (39, 65)  0.1102 
     H02:  b1=b2=0  1.573896 (26, 78)  0.0653 
     H01:  b1=0  2.053239 (13, 91)  0.0247 

The H0i test uses the i-th order Taylor expansion (bj=0 for all 
        j>i).   

    

Terasvirta Sequential Tests 
Null Hypothesis F-statistic d.f. p-value

     H3:  b3=0  1.049026 (13, 65)  0.4180 
     H2:  b2=0 | b3=0  1.073109 (13, 78)  0.3943 
     H1:  b1=0 | b2=b3=0  2.053239 (13, 91)  0.0247 

All tests are based on the third-order Taylor expansion (b4=0). 
Original model is not rejected at the 5% level using H03. 

    

Escribano-Jorda Tests 
Null Hypothesis F-statistic d.f. p-value 

     H0L:  b2=b4=0  1.707621 (24, 53)  0.0531 
     H0E:  b1=b3=0  1.708217 (23, 53)  0.0550 

All tests are based on the fourth-order Taylor expansion. 
Original model is rejected at the 5% level using H04. 
Recommended model: exponential with nonzero threshold. 
     .  Pr(H0L) < Pr(H0E) with Pr(H0L) >= .05 
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If we take the test methodology outlined in “Linearity Testing” on page 489 and test against 
the Taylor series expansion using the threshold variable , we obtain a test for parameter 
constancy.

To perform this test, select View/Stability Diagnostics/Parameter Constancy Test:

Note that EViews only performs the first form of the linearity test and not the remaining 
tests which discriminate between threshold variables. The latter may, however, be obtained 
by first estimating the STR time-varying coefficient specification and performing the stan-
dard linearity test on that equation.

Forecasting

Static and one-step ahead forecasting from an STR estimated equation is straightforward. 
These simple forecasts all involve conditioning on the observed regressors (including any 
lagged endogenous regressors) and using the estimated specification to evaluate the fore-
cast.

n-step ahead forecasting of STAR and other nonlinear dynamic models is considerably more 
difficult. For these dynamic forecasting problems, EViews computes the forecasts by sto-
chastic simulation, with the forecasts and forecast standard errors obtained from the sample 
average and the standard deviation of the simulated values.

To perform the forecast simulation, click on the Forecast button on the equation toolbar or 
select Proc/Forecast... from the equation menu to display the dialog.

t

Smooth Threshold Parameter Constancy Test
Date: 05/06/17   Time: 10:29  
Sample: 1861 1988
Included observations: 120  
Encapsulated nonlinearity test using trend as the threshold
        variable   
Taylor series alternatives: b0 + b1*s [ + b2*s^2 + b3*s^3 + b4
        *s^4 ]   

Parameter Constancy Tests 
Null Hypothesis F-statistic d.f. p-value

     H04:  b1=b2=b3=b4=0  0.962281 (56, 48)  0.5576 
     H03:  b1=b2=b3=0  0.911618 (42, 62)  0.6204 
     H02:  b1=b2=0  1.443235 (28, 76)  0.1063 
     H01:  b1=0  2.164006 (14, 90)  0.0152 

The H0i test uses the i-th order Taylor expansion (bj=0 for all 
        j>i).   
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If your equation has dynamic components, you will offered a choice between producing a 
Dynamic forecast or a Static forecast. If you select Dynamic forecast, EViews will display 
options for choosing the number of simulation Repetitions, and for specifying a Failed reps 
frac. before halting the simulation.

Example

We consider here an example of LSTAR estimation using a multiple equilibrium model of 
unemployment and data described in Martin, Hurn, and Harris (2013, 19.9.1, p. 744). The 
model is a simple two-regime error correction model of the change in the unemployment 
rate :

(34.16)

where  is the lagged annual change in the rate.

The data for unemployment consist of the U.S. Civilian Unemployment Rate (UNRATE) for 
persons 16 and older from 1948m01 to 2010m03 (2010-10-08 vintage). The “unemp_m-
hh19.wf1” workfile containing these data obtained from BLS is available in your EViews 
example data.

To estimate this model, open the smooth threshold dialog and fill it out as depicted:

y
t·

Dyt h0 d0yt 1– G st c g,  h1 d1yt 1–  et  

st yt 1– yt 13––
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We can leave the options at their default values. Click on OK to estimate this specification 
and display the results.



498—Chapter 34. Smooth Transition Regression
Comparison of these results to those reported in Table 19.6 of Martin, Hurn, and Harris 
shows that while the estimates of the  and  match, the estimates of the smoothing func-
tion slope parameter does not match. This difference stems from the fact that like some 
authors, Martin, Hurn, and Harris estimate the threshold weighting function employing a 
scaling factor  equal to the sample standard deviation of the threshold variable. The 
resulting parameterization is given by

(34.17)

Dependent Variable: D(UNRATE)   
Method: Smooth Threshold Regression   
Transition function: Logistic   
Date: 05/06/17   Time: 12:44   
Sample (adjusted): 1949M02 2010M03   
Included observations: 734 after adjustments
Threshold variable: UNRATE(-1)-UNRATE(-13)  
Starting values: Grid search with zero regression coefficents  
Ordinary standard errors & covariance using observed Hessian  
Convergence achieved after 14 iterations   

Variable Coefficient Std. Error t-Statistic Prob.  

Threshold Variables (linear part) 

C 0.077212 0.040566 1.903344 0.0574
UNRATE(-1) -0.020922 0.007250 -2.885710 0.0040

Threshold Variables (nonlinear part) 

C 0.281957 0.083136 3.391519 0.0007
UNRATE(-1) -0.017162 0.012472 -1.376091 0.1692

Slopes 

SLOPE 5.540962 2.644380 2.095373 0.0365

Thresholds 

THRESHOLD 0.420043 0.115051 3.650926 0.0003

R-squared 0.087165     Mean dependent var 0.007357
Adjusted R-squared 0.080896     S.D. dependent var 0.215941
S.E. of regression 0.207023     Akaike info criterion -0.303835
Sum squared resid 31.20094     Schwarz criterion -0.266245
Log likelihood 117.5075     Hannan-Quinn criter. -0.289336
F-statistic 13.90315     Durbin-Watson stat 1.949541
Prob(F-statistic) 0.000000    
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We can obtain the equivalent result by dividing the estimator of  and its corresponding 
standard error by the standard deviation of the threshold, or we can modify the existing 
specification to account for the weighting.

We can modify our estimates to match the weighted  results by either by creating a new 
scaled threshold series, or by directly entering the scaled expression

(unrate(-1)-unrate(-13))/@stdev(unrate(-1)-unrate(-13)) 

in the dialog and estimating the resulting specification:

g

g

Dependent Variable: D(UNRATE)   
Method: Smooth Threshold Regression   
Transition function: Logistic   
Date: 05/06/17   Time: 12:45   
Sample (adjusted): 1949M02 2010M03   
Included observations: 734 after adjustments  
Threshold variable: (UNRATE(-1)-UNRATE(-
13))/@STDEV(UNRATE(-1)-UNRATE(-13),"1948m01 
2010m03")  
   
Starting values: Grid search with zero regression coefficents  
Ordinary standard errors & covariance using observed Hessian  
Convergence achieved after 13 iterations   

Variable Coefficient Std. Error t-Statistic Prob.   

Threshold Variables (linear part) 

C 0.077212 0.040567 1.903318 0.0574 
UNRATE(-1) -0.020922 0.007250 -2.885669 0.0040 

Threshold Variables (nonlinear part) 

C 0.281957 0.083138 3.391434 0.0007 
UNRATE(-1) -0.017162 0.012472 -1.376053 0.1692 

Slopes 

SLOPE 6.886386 3.286494 2.095359 0.0365 

Thresholds 

THRESHOLD 0.337978 0.092573 3.650920 0.0003 

R-squared 0.087165    Mean dependent var 0.007357 
Adjusted R-squared 0.080896    S.D. dependent var 0.215941 
S.E. of regression 0.207023    Akaike info criterion -0.303835 
Sum squared resid 31.20094    Schwarz criterion -0.266245 
Log likelihood 117.5075    Hannan-Quinn criter. -0.289336 
F-statistic 13.90315    Durbin-Watson stat 1.949541 
Prob(F-statistic) 0.000000    
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The slopes now match, but the new estimates of  do not.We can obtain equivalent results 
for  by multiplying by the standard error by the standard deviation of the threshold.

It is worth commenting that the reason that some authors perform this scaling is to improve 
the numeric stability of the estimator procedure. We note that EViews always scales inter-
nally, but displays the results in the original metric.

We may display the transition function by clicking on View/Threshold Smoothing 
Weights..., and clicking on OK to accept the default settings:

Visually, we see that the median transition weight is near 0.3 and that the upper end of the 
IQR only extends to around 0.75. Moreover, the weight function is rather steep, with most of 
the variation occurring well within one standard deviation of the lagged annual change in 
the rate.

Clicking on View/Residual Diagnostics/Serial Correlation Test... and accepting the 
defaults, computes a Breusch-Godfrey serial correlation LM test using a default lag of 2:

c
c
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There is strong evidence against the null of no serial correlation, suggesting that the lag 
structure of the STAR is insufficient to account for autocorrelation.

We may perform a linearity test by clicking on View/Stability Diagnostics/Linearity Test:

Breusch-Godfrey Serial Correlation LM Test:  

F-statistic 23.02572    Prob. F(2,726) 0.0000 
Obs*R-squared 43.78175    Prob. Chi-Square(2) 0.0000 

     
Test Equation:    
Dependent Variable: RESID   
Method: Least Squares   
Date: 05/06/17   Time: 13:06   
Sample: 1949M02 2010M03   
Included observations: 734   
Coefficient covariance computed using observed Hessian  
Presample missing value lagged residuals set to zero.  

Variable Coefficient Std. Error t-Statistic Prob.   

C(1) 0.025105 0.040313 0.622743 0.5336 
C(2) -0.002826 0.007134 -0.396101 0.6921 
C(3) -0.008365 0.087390 -0.095723 0.9238 
C(4) -0.001797 0.012675 -0.141772 0.8873 
C(5) 1.489169 2.952912 0.504305 0.6142 
C(6) 0.024106 0.119306 0.202054 0.8399 

RESID(-1) 0.027900 0.036637 0.761520 0.4466 
RESID(-2) 0.247504 0.036663 6.750750 0.0000 

R-squared 0.059648    Mean dependent var -1.08E-16 
Adjusted R-squared 0.050581    S.D. dependent var 0.206315 
S.E. of regression 0.201030    Akaike info criterion -0.359887 
Sum squared resid 29.33986    Schwarz criterion -0.309767 
Log likelihood 140.0784    Hannan-Quinn criter. -0.340555 
F-statistic 6.578778    Durbin-Watson stat 2.082711 
Prob(F-statistic) 0.000000    
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The tests strongly reject the null of linearity against the smooth transition alternatives. 
Moreover, both the Terasvirta and the Escribano-Jordan discrimination tests favor the logis-
tic threshold function.

We may test against remaining nonlinearity using either the additive or encapsulated nonlin-
earity tests. Performing the encapsulated test by selecting View/Stability Diagnostics/
Remaining Nonlinearity Test/Encapsulated Nonlinearity Test yields:

Smooth Threshold Linearity Tests  
Date: 05/06/17   Time: 13:10  
Sample: 1948M01 2010M03
Included observations: 734  
Test for nonlinearity using UNRATE(-1)-UNRATE(-13) as the 
        threshold variable  
Taylor series alternatives: b0 + b1*s [ + b2*s^2 + b3*s^3 + b4 
        *s^4 ]   

Linearity Tests 
Null Hypothesis F-statistic d.f. p-value 

     H04:  b1=b2=b3=b4=0  12.66027 (8, 724)  0.0000 
     H03:  b1=b2=b3=0  11.43959 (6, 726)  0.0000 
     H02:  b1=b2=0  11.09069 (4, 728)  0.0000 
     H01:  b1=0  21.69341 (2, 730)  0.0000 

The H0i test uses the i-th order Taylor expansion (bj=0 for all 
        j>i).   

    

Terasvirta Sequential Tests 
Null Hypothesis F-statistic d.f. p-value 

     H3:  b3=0  11.49768 (2, 726)  0.0000 
     H2:  b2=0 | b3=0  0.516693 (2, 728)  0.5967 
     H1:  b1=0 | b2=b3=0  21.69341 (2, 730)  0.0000 

All tests are based on the third-order Taylor expansion (b4=0). 
Linear model is rejected at the 5% level using H03. 
Recommended model: first-order logistic.  
     .  Pr(H3) <= Pr(H2)  or  Pr(H1) <= Pr(H2) 

    

Escribano-Jorda Tests 
Null Hypothesis F-statistic d.f. p-value 

    H0L:  b2=b4=0  8.688837 (4, 724) 0.0000
     H0E:  b1=b3=0  15.10224 (4, 724)  0.0000 

All tests are based on the fourth-order Taylor expansion. 
Linear model is rejected at the 5% level using H04. 
Recommended model: first-order logistic with nonzero threshold. 
    .  Pr(H0L) >= Pr(H0E)  with  Pr(H0L) < .05
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suggesting that the current model is inadequate to capture the nonlinear dynamics.
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Smooth Threshold Remaining Nonlinearity Tests 
Date: 05/06/17   Time: 13:13  
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Chapter 35.  Switching Regression

Linear regression is one of the primary tools for econometric and statistical analysis. There 
is, however, considerable evidence that nonlinear modeling is sometimes appropriate, espe-
cially in the analysis of macroeconomic relationships that are subject to regime change.

We describe here EViews tools for switching regression models—linear regression models 
with nonlinearities arising from discrete changes in regime. We consider settings with both 
independent and Markov switching where the sample separation into regimes is not 
observed. Dynamics specifications are permitted through the use of lagged dependent vari-
ables as explanatory variables and through the presence of auto-correlated errors.

While this chapter focuses only on models where the regimes are unobserved, related mod-
els with observed regimes are discussed in the Heckman chapter.

Background

The following discussion describes only the basic features of switching models. Switching 
models have a long history in economics that is detailed in numerous surveys (Goldfeld and 
Quandt, 1973, 1976; Maddala, 1986; Hamilton, 1994; Frühwirth-Schnatter, 2006), and we 
encourage you to explore these resources for additional discussion.

The Basic Model

Suppose that the random variable of interest,  follows a process that depends on the value 
of an unobserved discrete state variable . We assume there are  possible regimes, and 
we are said to be in state or regime  in period  when , for .

The switching model assumes that there is a different regression model associated with each 
regime. Given regressors  and , the conditional mean of  in regime  is assumed to 
be the linear specification:

(35.1)

where  and  are  and  vectors of coefficients. Note that the  coefficients for 
 are indexed by regime and that the  coefficients associated with  are regime invari-

ant.

Lastly, we assume that the regression errors are normally distributed with variance that may 
depend on the regime. Then we have the model:

(35.2)

when , where  is  standard normally distributed. Note that the standard devi-
ation  may be regime dependent, .
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The likelihood contribution for a given observation may be formed by weighting the density 
function in each of the regimes by the one-step ahead probability of being in that regime:

(35.3)

, ,  are parameters that determine the regime proba-
bilities,  is the standard normal density function, and  is the information set in 
period . In the simplest case, the  represent the regime probabilities themselves.

The full log-likelihood is a normal mixture

(35.4)

which may be maximized with respect to .

Simple Switching

To this point, we have treated the regime probabilities  in an abstract 
fashion. This section considers a simple switching model featuring independent regime 
probabilities. We begin by focusing on the specification of the regime probabilities, then 
describe likelihood evaluation and estimation of those probabilities.

It should be emphasized that the following discussion is valid only for specifications with 
uncorrelated errors. Models with correlated errors are described in “Serial Correlation” on 
page 511.

Regime Probabilities

In the case where the probabilities are constant values, we could simply treat them as addi-
tional parameters in the likelihood in Equation (35.4). More generally, we may allow for 
varying probabilities by assuming that  is a function of vectors of exogenous observables 

 and coefficients  parameterized using a multinomial logit specification:

(35.5)

for  with the identifying normalization . The special case of 
constant probabilities is handled by choosing  to be identically equal to 1.

Likelihood Evaluation

We may use Equation (35.4) and Equation (35.5) to obtain a normal mixture log-likelihood 
function:
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(35.6)

This likelihood may be maximized with respect to the parameters  using itera-
tive methods.

It is worth noting that the likelihood function for this normal mixture model is unbounded 
for certain parameter values. However, local optima have the usual consistency, asymptotic 
normality, and efficiency properties. See Maddala (1986) for discussion of this issue as well 
as a survey of different algorithms and approaches for estimating the parameters.

Given parameter point-estimates, coefficient covariances may be estimated using conven-
tional methods, e.g., inverse negative Hessian, inverse outer-product of the scores, and 
robust sandwich.

Filtering

The likelihood expression in Equation (35.6) depends on the one-step ahead probabilities of 
being in a regime: . Note, however, that observing the value of the depen-
dent variable in a given period provides additional information about which regime is in 
effect. We may use this contemporaneous information to obtain updated estimates of the 
regime probabilities 

The process by which the probability estimates are updated is commonly termed filtering. 
By Bayes’ theorem and the laws of conditional probability, we have the filtering expressions:

(35.7)

The expressions on the right-hand side are obtained as a by-product of the densities 
obtained during likelihood evaluation. Substituting, we have:

(35.8)

Markov Switching

The Markov switching regression model extends the simple exogenous probability frame-
work by specifying a first-order Markov process for the regime probabilities. We begin by 
describing the regime probability specification, then discuss likelihood computation, filter-
ing, and smoothing.
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Regime Probabilities

The first-order Markov assumption requires that the probability of being in a regime 
depends on the previous state, so that

(35.9)

Typically, these probabilities are assumed to be time-invariant so that  for all , 
but this restriction is not required. 

We may write these probabilities in a transition matrix

(35.10)

where the -th element represents the probability of transitioning from regime  in period 
 to regime  in period . (Note that some authors use the transpose of  so that all 

of their indices are reversed from those used here.)

As in the simple switching model, we may parameterize the probabilities in terms of a mul-
tinomial logit. Note that since each row of the transition matrix specifies a full set of condi-
tional probabilities, we define a separate multinomial specification for each row  of the 
matrix

(35.11)

for  and  with the normalizations . 

As noted earlier, Markov switching models are generally specified with constant probabili-
ties so that  contains only a constant. Hamilton’s (1989) model of GDP is a notable 
example of a constant transition probability specification. Alternately, Diebold, Lee, and 
Weinbach (1994), and Filardo (1994) adopt two-state models that employ time-varying 
logistic parameterized probabilities.

Likelihood Evaluation and Filtering

The Markov property of the transition probabilities implies that the expressions on the right-
hand side of Equation (35.4) must be evaluated recursively. 

Briefly, each recursion step begins with filtered estimates of the regime probabilities for the 
previous period. Given filtered probabilities, , the recursion may broken 
down into three steps:

1. We first form the one-step ahead predictions of the regime probabilities using basic 
rules of probability and the Markov transition matrix:
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(35.12)

2. Next, we use these one-step ahead probabilities to form the one-step ahead joint den-
sities of the data and regimes in period :

(35.13)

3. The likelihood contribution for period  is obtained by summing the joint probabili-
ties across unobserved states to obtain the marginal distribution of the observed data

(35.14)

4. The final step is to filter the probabilities by using the results in Equation (35.13) to 
update one-step ahead predictions of the probabilities:

(35.15)

These steps are repeated successively for each period, . All that we require for 
implementation are the initial filtered probabilities, , or alternately, the ini-
tial one-step ahead regime probabilities . See “Initial Probabilities” on 
page 510 for discussion.

The likelihood obtained by summing the terms in Equation (35.14) may be maximized with 
respect to the parameters  using iterative methods. Coefficient covariances may 
be estimated using standard approaches.

Smoothing

Estimates of the regime probabilities may be improved by using all of the information in the 
sample. The smoothed estimates for the regime probabilities in period  use the information 
set in the final period, , in contrast to the filtered estimates which employ only contem-
poraneous information, . Intuitively, using information about future realizations of the 
dependent variable  ( ) improves our estimates of being in regime  in period  
because the Markov transition probabilities link together the likelihood of the observed data 
in different periods.

Kim (2004) provides an efficient smoothing algorithm that requires only a single backward 
recursion through the data. Under the Markov assumption, Kim shows that the joint proba-
bility is given by
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(35.16)

The key in moving from the first to the second line of Equation (35.16) is the fact that under 
appropriate assumptions, if  were known, there is no additional information about  
in the future data .

The smoothed probability in period  is then obtained by marginalizing the joint probability 
with respect to :

(35.17)

Note that apart from the smoothed probability terms, , all of the terms on 
the right-hand side of Equation (35.16) are obtained as part of the filtering computations. 
Given the set of filtered probabilities, we initialize the smoother using , and 
iterate computation of Equation (35.16) and Equation (35.17) for  to 
obtain the smoothed values.

Initial Probabilities

The Markov switching filter requires initialization of the filtered regime probabilities in 
period 0, . 

There are a few ways to proceed. Most commonly, the initial regime probabilities are set to 
the ergodic (steady state) values implied by the Markov transition matrix (see, for example 
Hamilton (1999, p. 192) or Kim and Nelson (1999, p. 70) for discussion and results). The 
values are thus treated as functions of the parameters that determine the transition matrix.

Alternately, we may use prior knowledge to specify regime probability values, or we can be 
agnostic and assign equal probabilities to regimes. Lastly, we may treat the initial probabili-
ties as parameters to be estimated.

Note that the initialization to ergodic values using period 0 information is somewhat arbi-
trary in the case of time-varying transition probabilities.

Dynamic Models

We may extend the basic switching model to allow for dynamics in the form of lagged 
endogenous variables and serially correlated errors. The two methods require different 
assumptions about the dynamic response to changes in regime. 

Our discussion is very brief. Frühwirth-Schnatter (2006) offers a nice overview of the differ-
ences between these two approaches, and provides further discussion and references.
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Dynamic Regression

The most straightforward method of adding dynamics to the switching model is to include 
lagged endogenous variables. For a model with  lagged endogenous regressors, and ran-
dom state variable  taking the value  we have:

(35.18)

where  is again  standard normally distributed. The coefficients on the lagged endoge-
nous variable are allowed to be regime-varying, but this generality is not required.

In the Markov switching context, this model has been termed the “Markov switching 
dynamic regression” (MSDR) model (Frühwirth-Schnatter, 2006). In the special case where 
the lagged endogenous coefficients are regime-invariant, the model may be viewed as a vari-
ant of the “Markov switching intercept” (MSI) specification (Krolzig, 1997).

Of central importance is the fact that the mean specification depends only on the contempo-
raneous state variable  so that lagged endogenous regressors may be treated as additional 
regime specific  or invariant  for purposes of likelihood evaluation, filtering, and 
smoothing. Thus, the discussions in “Simple Switching” on page 506 and “Markov Switch-
ing” on page 507 are directly applicable in MSDR settings.

Serial Correlation

An alternative dynamic approach assumes that the errors are serially correlated (Hamilton, 
1989). With serial correlation of order , we have the AR specification

(35.19)

Rearranging terms and applying the lag operator, we have:

(35.20)

In the Markov switching literature, this specification has been termed the “Markov switch-
ing autoregressive” (MSAR) (Frühwirth-Schnatter, 2006) or the “Markov switching mean” 
(MSM) model (Krolzig, 1997). The MSAR model is perhaps most commonly referred to as 
the “Hamilton model” of switching with dynamics.

Note that, in contrast to the MSDR specification, the mean equation in the MSAR model 
depends on lag states. The presence of the regime-specific lagged mean adjustments on the 
right-hand side of Equation (35.20) implies that probabilities for a  dimensional state 
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vector representing the current and  previous regimes are required to obtain a representa-
tion of the likelihood. 

For example, in a two regime model with an AR(1), we have the standard prediction error 
representation of the likelihood:

(35.21)

which requires that we consider probabilities for the four potential regime outcomes for the 
state vector .

More generally, since there is a  dimensional state vector and  regimes, the number 
of potential realizations is . The description of the basic Markov switching 
model above (“Markov Switching” on page 507) is no longer valid since it does not handle 
the filtering and smoothing for the full  vector of probabilities.

Markov Switching AR

Hamilton (1989) derived the form of the MSAR specification and outlined an operational fil-
tering procedure for evaluating the likelihood function. Hamilton (1989), Kim (1994), and 
Kim and Nelson (1999, Chapter 4) all offer excellent descriptions of the construction of this 
lagged-state filtering procedure.

Briefly, the Hamilton filter extends the analysis in “Markov Switching” on page 507 to han-
dle the larger  dimensional state vector. While the mechanics of the procedure are a 
bit more involved, the concepts follow directly from the simple filter described above (“Like-
lihood Evaluation and Filtering” on page 508). The filtered probabilities for lagged values of 
the states,  conditional on the information set  are obtained from the 
previous iteration of the filter, and the one-step ahead joint probabilities for the state vector 
are obtained by applying the Markov updates to the filtered probabilities. These joint proba-
bilities are used to evaluate a likelihood contribution and in obtaining updated filtered prob-
abilities. 

Hamilton also offers a modified lag-state smoothing algorithm that may be used with the 
MSAR model, but the approach is computationally unwieldy. Kim (1994) improves signifi-
cantly on the Hamilton smoother with an efficient smoothing filter that handles the  
probabilities using a single backward recursion pass through the data. This approach is a 
straightforward extension of the basic Kim smoother (see “Smoothing” on page 509).
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Simple Switching AR

The simple switching results outlined earlier (“Simple Switching” on page 506) do not hold 
for the simple switching with autocorrelation (SSAR) model. As with the MSAR specifica-
tion, the presence of lagged states in the specification complicates the dynamics and 
requires handling a  dimensional state variable representing current and lag states.

Conveniently, we may obtain results for the specification by treating it as a restricted Mar-
kov switching model with transition probabilities that do not depend on the origin regime:

(35.22)

so that the rows of the transition matrix are the identical

(35.23)

We may then apply the Hamilton filter and Kim smoother to this restricted specification to 
obtain the one-step ahead, likelihood, filtered, and smoothed values.

Initial Probabilities

In the serial correlation setting, the Markov switching filter requires initialization of the vec-
tor of probabilities associated with the  dimensional state vector. We may proceed as 
in the uncorrelated model by setting  initial probabilities in period  using one of 
the methods described in “Initial Probabilities” on page 510 and recursively applying Mar-
kov transition updates to obtain the joint initial probabilities for the  dimensional initial 
probability vector in period .

Again note that the initialization to steady state values using the period  informa-
tion is somewhat arbitrary in the case of time-varying transition probabilities.

Estimating Switching Regressions in EViews

To display the switching regression dialog, first open an equation by selecting Quick/Esti-
mate Equation… from the main menu and select SWITCHREG - Switching Regression in 
the Method dropdown, or enter the command switchreg in the command line:
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There are two tabs in this dialog. The first tab is used for basic specification of your switch-
ing regression. The second tab contains options for modifying selected features of the speci-
fication and for controlling computational aspects of the estimation.

Specification

The Specification page contains three sections: Equation specification, Switching specifi-
cation, and Estimation settings. We focus on the first two sections since the last should 
already be familiar.

Equation Specification

The top portion of the page contains the Equation specification section where you should 
specify the behavior of the model in the different regimes.

• You should enter the name 
of the dependent variable 
series ( ) followed by any 
regressors with switching 
coefficients ( ) in the first 
edit field. 

• Regressors which have non-
varying coefficients ( ) 
should be listed in the second edit field. 

yt

Xt

Zt
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• You should select the Regime specific error variances option if you wish to allow for 
heteroskedasticity across regimes.

You may specify dynamics by including lags of the dependent variable series as regressors or 
by including AR terms to allow for serially correlated errors. Bear in mind that the dimension 
of the state probability vector, , increases rapidly in , where  is the highest AR 
order in the model.

Note that the dependent variable may not be specified by expression, and that the regressor 
lists may not contain expressions containing the dependent variable or its lags.

Switching Specification
 

The Switching specification sec-
tion controls the specification of the 
regime probabilities.

• The Switching type drop-
down allows you to choose between Simple and Markov switching. The default set-
ting is to estimate a simple switching model.

• You should specify the number of regimes  in the edit field. By default, EViews 
assumes that you have two regimes. Bear in mind that switching models with more 
than a few regimes may be difficult to estimate.

• You may specify additional regressors that determine the unconditional regime proba-
bilities (for simple switching) or the regime transition probability matrix (for Markov 
switching). By default, EViews sets the list so that there is a single constant term 
resulting in time-invariant probabilities.

Important note: the data for the probability regressors that determine the transition or 
regime probabilities for period , should be located in period  of the workfile. That is, 
the  data should be in period  of the workfile, not period . You may, of 
course, employ standard EViews lag expressions to refer to data in the previous period.

Additional options for setting the initial regime probabilities and restricting the elements of 
the probability vector or transition matrix are located on the Options tab and described in 
“Switching” on page 516.

Options

Clicking on the Options tab displays options for modifying features of the switching specifi-
cation and for controlling various aspects of the computation.

M
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Switching

The Switching options section may be used to specify the initial state probabilities and any 
restrictions to the regime probability vector or transition matrix.

Recall that evaluation of the likelihood in Markov switching 
and SSAR models requires presample values for the filtered 
probabilities (“Initial Probabilities” on page 510). The Initial 
regime probabilities dropdown lets you choose the method of 
initializing these values (Ergodic solution (default), Esti-
mated, Uniform, User-specified). If you select User-specified, you will be prompted for the 
name of an -element vector in the workfile that contains the initial probabilities.

The Probability restriction vector/Transition restriction matrix edit field allows you to 
specify restrictions on the regime probabilities. Markov switching models, in particular, will 
sometime require restrictions on transition matrix probabilities. For example, we may have 

 if it is impossible to transition directly from state  to state . Similarly, if state 
 is an absorbing state, then  and  for .

To specify restrictions, you should enter the name of an -element vector in the workfile 
(for a SSAR model), or an  matrix in the workfile (for Markov switching) in the edit 
field. The vector or matrix should contain valid probability values for elements that are 
restricted and NAs for elements that are to be estimated. For example, in a three regime Mar-
kov switching model where state 3 is an absorbing state, you would have

M

pwr 0 w r
w pww 1 pwr 0 r w

M
M M
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(35.24)

You should take care not to specify invalid or inconsistent restrictions. For example, rows of 
a Markov transition matrix may not be specified so that there is a single unrestricted cell 
since the adding up condition for the row places a restriction on that cell. Similarly, fixed 
values should be valid probabilities that do not have generate row sums greater than 1. 
EViews will detect these types of errors and will refuse to estimate the model.

In “Regime Heteroskedasticity” on page 534, we offer an example that employs restrictions 
and discuss several practical issues associated with estimating the model.

Coefficient Covariance Options

EViews estimates the parameters of the likelihood using the Broyden, Fletcher, Goldfarb and 
Shanno (BFGS) method. By default, the coefficient covariance is computed using the d.f. 
corrected inverse of the negative of the observed Hessian.

You may use the Covariance method dropdown to instruct EViews to use the Hessian, the 
outer product of the gradient (OPG) method, or a Huber-White robust covariance that forms 
a sandwich using the Hessian and gradients.

The d.f. Adjustment checkbox may be used to remove the d.f. correction.

Starting Value and Iteration Options

The Iteration control section contains the standard fields for setting the maximum number 
of iterations and convergence tolerance. By default, EViews will use the estimation settings 
from your global options.You may select the Display settings checkbox to display starting 
values and other estimation settings in the top section of your estimation output.

You may use the Starting values section to control the set-
ting of initial parameter estimates. Switching regression 
models often have local roots and may be difficult to esti-
mate so EViews offers a range of tools for choosing starting 
values.

Start Method

The Start method dropdown allows you to specify a basic 
method for choosing starting values (EViews Supplied, .8 x 
EViews Supplied, .5 x EViews Supplied, .3 x EViews Sup-
plied, Zero, User-Supplied). 

NA NA NA

NA NA NA

0 0 1
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The EViews supplied methods employ simple least squares coefficient estimates or the spec-
ified fraction of those estimates. AR coefficients are arbitrarily initialized to zero.

The Zero and User-Supplied methods are self-explanatory, with the latter taken from the 
default coefficient vector specified in the dialog (typically the coefficient vector C).

Randomized Estimates

The first two edit fields under Randomized estimates allow you to choose random starting 
values based on the those specified in the Start method dropdown. 

• EViews will randomly choose the number of random starts as specified in No. of ran-
dom starts and for each random start perform the number of iterations as specified in 
Iterations for starts. The coefficients with the highest likelihood value will be chosen 
as the starting values.

For non user-supplied starting values, EViews will, by default, generate 25 sets of ran-
dom starting values and refine each with 10 iterations before choosing the best set as 
the starting values. By default, there is no randomization of user-supplied values.

In addition to randomizing based on the initial values, you may randomize based on the 
final coefficient estimates. The No. of random from final edit field determines the number 
of random coefficients to try following estimation. 

• The random starting values are chosen by taking the best estimated values to date and 
adding random normals with scale given by the Random scale fraction of the final 
coefficient standard deviations. The estimates with the highest likelihood become the 
final estimates.

By default, EViews does not perform randomization based on the final coefficient esti-
mates.

For both initial and final randomization, the random starting values are chosen by taking the 
base values and adding random normals with scale given by the Random scale fraction of 
the root of the estimated coefficient variances (or the scale fraction itself if the variances are 
not available). The random values will be generated using the Generator specified in the 
dropdown and the random Seed specified in the edit field. If a random seed is not specified, 
EViews will obtain one from a single draw from the generator.

Optimization Options

You can use the Optimization method dropdown menu to select a different method.
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By default, EViews uses BFGS with Marquardt steps to obtain parameter estimates. You may 
use the Optimization method dropdown to choose between BFGS, OPG - BHHH, or New-
ton-Raphson. The Step method dropdown offers the choice of Marquardt, Dogleg, and 
Line search.

See “Optimization Method” on page 1090 for discussion.

The remainder of the section allows you to specify a convergence criterion and the maxi-
mum number of iterations, and to instruct EViews to display starting value and other optimi-
zation information in the output.

Estimation Output

Estimating the equation produces the standard estimation output view. Here we see example 
output from a simple switching regression model, estimated using data in the workfile 
“GNP_hamilton.WF1”:
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The top portion of the output describes the type of switching model and basic sample infor-
mation, along with information about the computation of the coefficient covariance and the 
method of producing coefficient estimates.

The middle section displays coefficient estimates. Regime specific coefficients are presented 
in blocks at the top, followed by any common coefficients, and then the logistic coefficients 
for the regime probabilities. Note that we have specified G(-1) to be a regime specific regres-
sor, G(-2) to be common, and assume a common error variance. In this example of a simple 
switching model with two regimes and no probability regressors, there is only a single prob-
ability regressor.

The bottom section shows the standard descriptive statistics for the equation. Most are self-
explanatory. Of note are the residual-based statistics which employ the expected value of the 

Dependent Variable: G   
Method: Simple Switching Regression (BFGS / Marquardt steps) 
Date: 03/10/15   Time: 16:03   
Sample (adjusted): 1951Q4 1984Q4   
Included observations: 133 after adjustments
Number of states: 2    
Standard errors & covariance computed using observed 
Hessian  
Random search: 25 starting values with 10 iterations using 1 standard 
        deviation (rng=kn, seed=216937)   
Convergence achieved after 16 iterations   

Variable Coefficient Std. Error z-Statistic Prob.  

Regime 1 

C -0.769089 0.233452 -3.294420 0.0010
G(-1) 0.493466 0.140850 3.503494 0.0005

Regime 2 

C 0.951307 0.138822 6.852728 0.0000
G(-1) 0.272289 0.090619 3.004760 0.0027

Common 

G(-2) -0.012522 0.081574 -0.153503 0.8780
LOG(SIGMA) -0.342578 0.117598 -2.913118 0.0036

Probabilities Parameters 

P1-C -0.985846 0.440799 -2.236495 0.0253

Mean dependent var 0.719740     S.D. dependent var 1.058739
S.E. of regression 1.020420     Sum squared resid 132.2396
Durbin-Watson stat 2.043722     Log likelihood -184.7977
Akaike info criterion 2.884176     Schwarz criterion 3.036300
Hannan-Quinn criter. 2.945993    
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residuals obtained by taking the sum of the regime specific residuals weighted by the one-
step ahead (unfiltered) regime probabilities (Maheu and McCurdy, 2000).

Switching Views

Once you have estimated your equation, EViews offers a variety 
of views for examining your results. 

Most of these routines are familiar tools for working with an esti-
mated equation. You may, for example, examine Actual, Fitted, 
Residual plots for your estimated equation, examine the coeffi-
cient Covariance Matrix, or use Coefficient Diagnostics view 
submenu to examine coefficient confidence ellipses, compute 
Wald or omitted and redundant variable tests, or use the Resid-
ual Diagnostics submenu to examine properties of your residu-
als.

Since the presence of multiple regimes creates a few wrinkles, we offer a few comments on 
select views.

Regime Results

EViews offers specialized tools for examining the regime transition results and predicted 
regime probabilities.

Transition Results

To display the transition results dialog, select View/Regime 
Results/Transition Results... EViews offers to display different 
types of output: Summary, Transition probabilities, and 
Expected durations.

The default Summary display shows a table containing both 
the transition matrix and the expected durations (Kim and Nel-
son, 1999, p. 71-72) implied by the transition matrix. For exam-
ple, 
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Here, we see results from the simple switching model with constant transition probabilities. 
Note that since the model assumes simple switching, the probabilities of being in regime 1 
and regime 2 (approximately 0.27 and 0.73, respectively) do not depend on the origin state. 
These probabilities imply that the expected duration in a regime is roughly 1.37 quarters in 
regime 1 and 3.68 quarters in regime 2.

In models with varying transition probabilities, the transition probability summary will 
instead show the means and standard deviations of the transition probabilities and the 
expected durations.

The latter two output type choices may prove useful in models with time-varying transition 
probabilities:

• Selecting Transition probabilities allows you to see the transition matrix in every 
period. You will be offered a choice of displaying the transition probabilities in Graph 
(default), Sheet, or Table form.

The Graph display shows a multiple graph showing each transition probability. For 
purposes of this display simple switching models are treated as restricted Markov 
switching models. Thus, a two-regime switching model will always show four sepa-
rate graphs, one for each transition. Note that for constant transition probability mod-
els, each graph will be a straight line.

The Sheet display shows the same results in spreadsheet format while the Table form 
displays results for each period in a table form similar to that used in the summary 
display. For constant probability models, the spreadsheet format will contain identical 
rows and the table form will show a single transition matrix.

Equation: EQ01   
Date: 10/16/12   Time: 11:18  
Transition summary: Constant simple switching 
        transition probabilities and expected durations 
Sample (adjusted): 1951Q4 1984Q4  
Included observations: 133 after adjustments 

Constant transition probabilities:  
P(i, k) = P(s(t) = k | s(t-1) = i)  
(row = i / column = j)  

   1  2 
  1 0.271733 0.728267

  2 0.271733 0.728267
    
    

Constant expected durations:  
    
   1  2 

  1.373124 3.680077
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• Lastly, you may display the Expected durations associated with the transition matrix 
in each period. The results may be displayed in Graph (default), Sheet, or Table form. 
For constant probability models, the table form will only show the single set of 
expected durations.

Regime Probabilities

To display the estimated regime probabilities select View/Regime Results/Regime Proba-
bilities...

EViews offers a choice between the One-step-ahead, Filtered, and Smoothed probabilities. 
For simple switching models without AR terms, the filtered and smoothed results are the 
same. In addition, you may display the results in Multiple graphs, in a Single graph, or in 
Sheet form. 

For graphical output you may also select which regimes to plot by entering the correspond-
ing indices in the Regimes to plot edit field. While the default is to show the probabilities 
for all regimes, you may use the edit field to remove redundant probabilities or to focus on a 
specific regime of interest.

Residuals and Residual Diagnostics

The Actual, Fitted, Residual submenu provides various views of the residuals and associ-
ated fitted values. The fits and residuals are formed by taking expectations using regime spe-
cific values and the one-step ahead regime probabilities. The standardized residuals are 
computed similarly with the regime specific residuals scaled by the estimate of the regime 
standard error prior to forming the expectations (Maheu and McCurdy, 2000).

EViews offers select diagnostics in the Residual Diagnostics submenu. Some care should be 
taken in the use of these views. Maheu and McCurdy note, for example, that the standard-
ized residuals may be used in Ljung-Box tests, but urge caution in interpreting the results 
since asymptotic results using these residuals are not available. 

AR Structure

EViews offers several ways of viewing the underlying structure of your AR specification. 
These tools are described in detail elsewhere (see “ARMA Structure,” beginning on 
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page 128). Note, however, that these tools are currently available only for models with 
regime-invariant AR structures.

Switching Procs

EViews offers several procs for working with switching equa-
tions. Most of these procs are self-explanatory, but we offer 
brief comments about forecasting and saving regime results to 
the workfile.

Forecasting

The forecasting procedure follows Davidson (2004) in employing 
the one-step or -step ahead regime probabilities to compute the 
expected forecasted value. 

To forecast from an estimated equation, click on the Forecast button on the equation toolbar 
or select Proc/Forecast... from the menu.

EViews will display the standard fore-
cast dialog allowing you to specify a 
forecast sample and output series, to 
select between dynamic and static 
forecasting, to choose whether to 
include AR terms, and whether to dis-
play a forecast graph and forecast 
evaluation.

In standard settings, dynamic and 
static forecasting differ principally 
their handling of lagged dependent 
variables, with dynamic forecasts 
using lagged predicted values as 
regressors where appropriate, while 
static forecasts use only actual lagged 
values. 

In a switching regression setting, dynamic and static forecasting methods also differ in the con-
struction of regime probabilities. The static forecasts use the observed dependent variable, if avail-
able, to filter the regime probabilities in preparation for the next forecast period. Dynamic 
forecasts do not use the available data to filter the probabilities.

Make Regime Results

The Make Regime Results submenu offers routines for saving transition matrix results and 
predicted regime probabilities into series and matrices in the workfile.

n
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Transition Results

To save transition probability or expected duration results in the workfile click on Proc/
Make Regime Results/Make Transition Results...

In addition to prompting you to choose 
between saving the Transition probabilities 
or the Expected durations, you must select 
an output format. By default, EViews will 
save the results in a group of series in the 
workfile. The series names will be formed 
using the base name specified in the edit 
field, as in “TPROB12”, “TPROB22”, etc. for 
transitions, and “TPROB1”, “TPROB2”, etc. for expected durations.

You may instead elect to save the results in a matrix. In this case, EViews will prompt you 
for the name of the matrix and for an observation at which to evaluate the transition matrix 
or expected duration. By default, the dialog will be filled with the first observation in the 
estimation sample.

Regime Probabilities

To save the regime probabilities, select 
Proc/Make Regime Results/Make 
Regime Probabilities Group...

Select the type of probability you wish to 
compute (One-step-ahead, Filtered, or 
Smoothed), and enter the names of series 
to hold the results, one for each probabil-
ity you wish to retain.

Examples

As illustrations of switching regression estimation, we consider three examples: Hamilton’s 
(1989) MSAR(4) specification for post-war U.S. GNP, Kim and Nelson’s (1999) example of a 
time-varying transition probability model of industrial production, and Kim and Nelson’s 
(1999) three state Markov model of regime heteroskedasticity.

Markov Switching AR

Hamilton (1989) specifies a two-state Markov switching model in which the mean growth 
rate of GNP is subject to regime switching, and where the errors follow a regime-invariant 
AR(4) process. The data for this example, which consists of the series G containing (100 
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times) the log difference of quarterly U.S. GNP for 1951q1–1984q4, may be found in the 
workfile “GNP_hamilton.WF1”. 

To estimate the Hamilton model, open an switching equation dialog and enter the specifica-
tion as depicted below:

The equation specification consists of a two-state Markov switching model with a single 
switching mean regressor C and the four non-switching AR terms. The error variance is 
assumed to be common across the regimes. The only probability regressor is the constant C 
since we have time-invariant regime transition probabilities.

With the exception of the convergence tolerance which we set to 1e-8, we leave the rest of 
the settings at their default values. Click on OK to estimate the equation and display the esti-
mation results.

The top portion of the output describes the estimation settings:
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(Bear in mind that if you attempt replicate this estimation using the default settings, you 
may obtain different results due to the different set of random starting values. You may use 
the random number generator seed settings to obtain the same starting values.)

The middle section displays the coefficients for the regime specific mean and the invariant 
error distribution coefficients. We see, in the differences in the regime specific means, what 
Hamilton terms the fast and slow growth rates for the U.S. economy.

The remaining results show the parameters of the transition matrix and summary statistics 
for the estimated equation.

Dependent Variable: G   
Method: Markov Switching Regression (BFGS / Marquardt 
steps)  
Date: 03/10/15   Time: 16:04   
Sample (adjusted): 1952Q2 1984Q4   
Included observations: 131 after adjustments  
Number of states: 2    
Initial probabilities obtained from ergodic solution  
Standard errors & covariance computed using observed Hessian 
Random search: 25 starting values with 10 iterations using 1 standard 
        deviation (rng=kn, seed=216937)   
Convergence achieved after 36 iterations   

Variable Coefficient Std. Error z-Statistic Prob.   

Regime 1 

C 1.163517 0.077218 15.06795 0.0000 

Regime 2 

C -0.358813 0.274116 -1.308983 0.1905 

Common 

AR(1) 0.013487 0.124301 0.108504 0.9136 
AR(2) -0.057521 0.142645 -0.403246 0.6868 
AR(3) -0.246983 0.110779 -2.229508 0.0258 
AR(4) -0.212921 0.114528 -1.859115 0.0630 

LOG(SIGMA) -0.262658 0.089928 -2.920758 0.0035 
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Instead of focusing on the transition matrix parameters, we examine the transition matrix 
probabilities directly by selecting View/Regime Results/Transition Results... and clicking 
on OK to display the default summary view:

Here, we see the transition probability matrix and the expected durations. Note that there is 
considerable state dependence in the transition probabilities with a relatively higher proba-
bility of remaining in the origin regime (0.90 for the high output state, 0.75 for the low out-
put state). The corresponding expected durations in a regime are approximately 10.4 and 4.1 
quarters, respectively.

Lastly, we display the filtered and full sample estimates of the probabilities of being in the 
two regimes. First select View/Regime Results/Regime Probabilities... and choose the fil-

Transition Matrix Parameters 

P11-C 2.243457 0.450936 4.975108 0.0000
P21-C -1.123682 0.540208 -2.080092 0.0375

Mean dependent var 0.719835     S.D. dependent var 1.066382
S.E. of regression 1.005677     Sum squared resid 125.4118
Durbin-Watson stat 1.923927     Log likelihood -181.2634
Akaike info criterion 2.904785     Schwarz criterion 3.102317
Hannan-Quinn criter. 2.985051    

Inverted AR Roots  .48-.62i      .48+.62i   -.47+.35i -.47-.35i 

Equation: MSAR4   
Date: 03/10/15   Time: 16:07  
Transition summary: Constant Markov transition 
        probabilities and expected durations 
Sample (adjusted): 1951Q2 1984Q4  
Included observations: 135 after adjustments 

Constant transition probabilities:  
P(i, k) = P(s(t) = k | s(t-1) = i)  
(row = i / column = j)  

   1  2 

  1 0.904085 0.095915
  2 0.245329 0.754671
    
    

Constant expected durations:  
    

1 2
  10.42586 4.076158
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tered results. We will display the results only for the first regime. Then repeat the procedure 
choosing the smoothed results. 

After saving the two views as graphs, editing the labels, and applying the RecShade add-in 
(http://www.eviews.com/Addins/addins.shtml) to label the NBER recessions, we see that 
the predicted probabilities of being in the low output state coincide nicely with the com-
monly employed definition of recessions:

Time-Varying Transitions

Kim and Nelson (1999, p. 93) provide example data for estimating an MSAR(4) model with 
time-varying transition probabilities, as in Filardo (1994). Filardo models the log growth rate 
of industrial production (DLOGIP) using an MSAR(4) switching mean specification, using 
(among other variables) the log growth rate of the Composite Index of Eleven Leading Indi-
cators (DLOGIDX) as a business-cycle predictor. 

The Kim and Nelson monthly data for 1948m01 to 1991m04 are included the workfile “kim-
nelson_tvp.WF1”. Note that these data correspond to, but differ slightly from the data used 
in Filardo (1994).

http://www.eviews.com/Addins/addins.shtml
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We open the switching regression dialog and fill out the Specification tab with the switching 
mean AR(4) spec and the switching probability specification:

Note that use have used the lag of the leading indicator variable as our probability regressor 
so that the period  data for the regressor corresponds to the values influencing the transi-
tions for  to .

We leave the remaining settings at their defaults and click on OK to estimate the equation. 
Following estimation, EViews displays the results:

t
t 1– t
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The results are broadly similar to, but differ slightly from those reported by Filardo. The 
coefficients on the intercept in the mean equation both differ from zero with opposite (sta-
tistically significant) signs. As to the transition matrix parameters, we see that increases in 
the log growth rate are associated with higher probabilities of being in the high production 
growth regime, lowering the transition probability out of regime 1 and increasing the transi-
tion probability from regime 2 into regime 1. 

Dependent Variable: DLOGIP   
Method: Markov Switching Regression (BFGS / Marquardt steps) 
Date: 03/10/15   Time: 16:11   
Sample (adjusted): 1948M07 1991M04   
Included observations: 514 after adjustments  
Number of states: 2    
Initial probabilities obtained from ergodic solution  
Standard errors & covariance computed using observed Hessian 
Random search: 25 starting values with 10 iterations using 1 standard 
        deviation (rng=kn, seed=1081838492)  
Convergence achieved after 15 iterations   

Variable Coefficient Std. Error z-Statistic Prob.   

Regime 1 

C 0.517304 0.077974 6.634341 0.0000 

Regime 2 

C -0.865887 0.154691 -5.597543 0.0000 

Common 

AR(1) 0.189474 0.050923 3.720827 0.0002 
AR(2) 0.079344 0.051670 1.535587 0.1246 
AR(3) 0.110945 0.052516 2.112572 0.0346 
AR(4) 0.122252 0.051106 2.392135 0.0168 

LOG(SIGMA) -0.362469 0.038370 -9.446653 0.0000 

Transition Matrix Parameters 

P11-C 4.359390 0.755435 5.770703 0.0000 
P11-DLOGIDX(-1) 1.770205 0.513537 3.447085 0.0006 

P21-C -1.649359 0.450407 -3.661931 0.0003 
P21-DLOGIDX(-1) 0.994559 0.571838 1.739232 0.0820 

Mean dependent var 0.245376    S.D. dependent var 0.878113 
S.E. of regression 0.772775    Sum squared resid 303.3684 
Durbin-Watson stat 2.059688    Log likelihood -586.5718 
Akaike info criterion 2.320667    Schwarz criterion 2.411319 
Hannan-Quinn criter. 2.356194    

Inverted AR Roots       .76     -.04+.57i   -.04-.57i      -.50 
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We can examine more directly the transition probabilities. The default transition probability 
summary (View/Regime Results/Transition Results...) shows descriptive statistics for the 
elements of the transition matrix:

We can see the variation in the time-varying probabilities by examining graphs of the transi-
tion probabilities for each observation. Select View/Regime Results/Transition Results... 
and click on the Transition probabilities radio button. The default view for showing the 
probabilities is a graph so you may simply click on OK to show graphs for all four probabili-
ties.

Equation: MSAR4_TVP  
Date: 03/10/15   Time: 16:13 
Transition summary: Time-varying Markov 
        transition probabilities and expected durations 
Sample (adjusted): 1948M03 
1991M04 
Included observations: 518 after adjustments 

Time-varying transition probabilities:  
P(i, k) = P(s(t) = k | s(t-1) = i)  
(row = i / column = j)  

   1  2 

Mean  1 0.951776 0.048224
  2 0.200155 0.799845
    
   1  2 

Std. Dev. 1 0.112571 0.112571
  2 0.145082 0.145082
    

Time-varying expected durations:  
    
   1  2 

Mean 503.5106 10.50145
Std. Dev. 2948.119 16.90769
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The filtered probabilities of being in the low production regime are presented below, with 
NBER recession shading. 
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To create this graph, select View/Regime Results/Regime Probabilities..., select the Fil-
tered radio button and enter “2” in the Regimes to plot edit field to only show the second 
(low production) regime. 

Click on OK to display the graph view, then click on the Freeze button to save the view as a 
graph object. Select Proc/Add-ins/Add USA Recession Shading in the graph menu (you 
must first install the RecShade Add-in to use the automatic shading feature—http://
www.eviews.com/Addins/addins.shtml).

Regime Heteroskedasticity

Kim and Nelson (1999) offer an example (Section 4.6, p. 86) of a three state Markov switch-
ing model of regime heteroskedastic stock returns from 1926m1–1986m12. The data, which 
consist of monthly CRSP equal-weighted excess returns are in the series EXCESS, provided 
in the workfile “ew_excs.WF1”.

The specification of the model is as depicted in the dialog below:

The excess returns are assumed to have mean zero so we enter only the name of the depen-
dent variable in the topmost edit field. Since we wish to model regime heteroskedasticity, 
Regime specific error variances box is checked. The model assumes Markov switching 
probabilities with 3 regimes and constant transition probabilities.

Preliminary analysis indicates that this model is particularly difficult to estimate with a 
number of local roots exhibiting coefficient singularity. 

http://www.eviews.com/Addins/addins.shtml
http://www.eviews.com/Addins/addins.shtml
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To obtain estimates we instruct EViews to perform extra randomized starting value estima-
tion. Click on the Options tab and change the starting value settings so EViews generates 
200 sets of random starts (instead of 25) with 50 (instead of 10) iteration refinements. Set 
the convergence tolerance to 1e-5. You may need to set the random seed as depicted below. 
Click on OK to proceed with the estimation.

EViews estimates the model and displays the standard switching regression output:

The results show estimates of the log standard deviations in the low, high, and medium vol-
atility regimes. The implied standard deviations are 0.035, 0.176, and 0.063, respectively.

Dependent Variable: EXCESS   
Method: Markov Switching Regression (BFGS / Marquardt 
steps)  
Date: 03/18/15   Time: 11:25 
Sample: 1926M01 1986M12   
Included observations: 732   
Number of states: 3    
Initial probabilities obtained from ergodic solution  
Standard errors & covariance computed using observed 
Hessian  
Random search: 200 starting values with 50 iterations using 1  
        standard deviation (rng=kn, seed=1727802456)  
Convergence achieved after 1 iteration   

Variable Coefficient Std. Error z-Statistic Prob.   

Regime 1 

LOG(SIGMA) -3.352112 0.077154 -43.44684 0.0000 

Regime 2 

LOG(SIGMA) -1.736500 0.092396 -18.79415 0.0000 

Regime 3 

LOG(SIGMA) -2.760187 0.059783 -46.16981 0.0000 

Transition Matrix Parameters 

P11-C 3.608554 0.700534 5.151145 0.0000 
P12-C -16.92853 1799.045 -0.009410 0.9925 
P21-C -2.818798 8.158197 -0.345517 0.7297 
P22-C 3.028018 0.875604 3.458206 0.0005 
P31-C -3.894605 0.630337 -6.178607 0.0000 
P32-C -4.417053 0.649727 -6.798325 0.0000 

Mean dependent var -2.44E-18    S.D. dependent var 0.080088 
S.E. of regression 0.080198    Sum squared resid 4.688728 
Durbin-Watson stat 1.616117    Log likelihood 1001.904 
Akaike info criterion -2.712851    Schwarz criterion -2.656346 
Hannan-Quinn criter. -2.691054
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We may view the estimated transition probability matrix by clicking on View/Regime 
Results/Transition Results... and clicking on OK to display the summary:

The transition probabilities point to a possible explanation of the difficulty in estimating the 
model. The transition probability from the low volatility regime 1 to the high volatility 
regime 2 is essentially zero.

We may impose a zero restriction on transitions from the high to low state by creating a 
 matrix object RESTR containing:

(35.25)

and re-estimating the model using this restriction matrix.

One tricky aspect of imposing restrictions is that the regime identities are not fixed and can 
change for different starting values. Accordingly, we re-estimate the model using the prior 
coefficient estimates as user-specified starting values, keeping in mind that the P12-C coeffi-
cient no longer exists.

Your example workfile includes the vector object STARTCOEFS which contains the coeffi-
cient estimates from the unrestricted equation with the P12-C coefficient removed. Select 
Proc/Set Global Coefs from the STARTCOEFS toolbar to place these values in the C coeffi-
cient vector. 

Equation: HETEROSK1   
Date: 03/10/15   Time: 16:49 
Transition summary: Constant Markov transition probabilities and   
     expected durations 
Sample: 1926M01 1986M12   
Included observations: 732   

Constant transition probabilities:   
P(i, k) = P(s(t) = k | s(t-1) = i)   
(row = i / column = j)

   1  2  3 

  1 0.973624 2.46E-12 0.026376
  2 0.002748 0.951202 0.046050
  3 0.019712 0.011691 0.968597
     
     

Constant expected durations:   
     
   1  2  3 

  37.91315 20.49264 31.84411
     

3 3

NA 0 NA

NA NA NA

NA NA NA
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Next, go to the original equation and make a copy by selecting Object/Copy Object. Click 
on the Estimate button go to the Options tab, enter the name of the restriction vector in the 
Transition prob restr. matrix edit field, and change the Start method to User Specified. 
Click on OK to accept the changes and estimate the equation.

The update results are displayed below:

Note that the coefficient associated with the restricted probability  has been removed. 

Dependent Variable: EXCESS   
Method: Markov Switching Regression (OPG - BHHH / 
Marquardt  
        steps)    
Date: 03/18/15   Time: 11:29   
Sample: 1926M01 1986M12   
Included observations: 732   
Number of states: 3    
Fixed probability matrix: RESTR   
Initial probabilities obtained from ergodic solution  
Standard errors & covariance computed using observed 
Hessian  
Random search: 200 starting values with 50 iterations using 1  
        standard deviation (rng=kn, seed=1727802456)  
Convergence achieved after 56 iterations   

Variable Coefficient Std. Error z-Statistic Prob.   

Regime 1 

LOG(SIGMA) -3.352111 0.077102 -43.47652 0.0000 

Regime 2 

LOG(SIGMA) -1.736499 0.092333 -18.80698 0.0000 

Regime 3 

LOG(SIGMA) -2.760187 0.059743 -46.20125 0.0000 

Transition Matrix Parameters 

P11-C 3.608567 0.700107 5.154310 0.0000 
P21-C -2.818959 8.157176 -0.345580 0.7297 
P22-C 3.027993 0.875130 3.460047 0.0005 
P31-C -3.894608 0.629907 -6.182827 0.0000 
P32-C -4.417052 0.649280 -6.802999 0.0000 

Mean dependent var -2.44E-18    S.D. dependent var 0.080088 
S.E. of regression 0.080198    Sum squared resid 4.688728 
Durbin-Watson stat 1.616117    Log likelihood 1001.904 
Akaike info criterion -2.715584    Schwarz criterion -2.665356 
Hannan-Quinn criter. -2.696208    

p12
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The transition probabilities view shows us the updated probabilities with the restricted 
value for :

Lastly, we display the smoothed regime probabilities View/Regime Results/Regime Proba-
bilities... selecting Smoothed and clicking on OK to accept the remaining settings. After 
rearranging, we have:

p12

Equation: HETEROSK2   
Date: 03/10/15   Time: 16:52 
Transition summary: Constant Markov transition probabilities and  
     expected durations 
Sample: 1926M01 1986M12   
Included observations: 732   

Constant transition probabilities:   
P(i, k) = P(s(t) = k | s(t-1) = i)   
(row = i / column = j)   

   1  2  3 

  1 0.973624 0.000000 0.026376
  2 0.002748 0.951202 0.046050
  3 0.019712 0.011691 0.968597
     
     

Constant expected durations:   
 

   1  2  3 

  37.91315 20.49264 31.84411
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Chapter 36.  Quantile Regression

While the great majority of regression models are concerned with analyzing the conditional 
mean of a dependent variable, there is increasing interest in methods of modeling other 
aspects of the conditional distribution. One increasingly popular approach, quantile regres-
sion, models the quantiles of the dependent variable given a set of conditioning variables. 

As originally proposed by Koenker and Bassett (1978), quantile regression provides esti-
mates of the linear relationship between regressors  and a specified quantile of the depen-
dent variable . One important special case of quantile regression is the least absolute 
deviations (LAD) estimator, which corresponds to fitting the conditional median of the 
response variable.

Quantile regression permits a more complete description of the conditional distribution than 
conditional mean analysis alone, allowing us, for example, to describe how the median, or 
perhaps the 10th or 95th percentile of the response variable, are affected by regressor vari-
ables. Moreover, since the quantile regression approach does not require strong distribu-
tional assumptions, it offers a robust method of modeling these relationships.

The remainder of this chapter describes the basics of performing quantile regression in 
EViews. We begin with a walkthrough showing how to estimate a quantile regression speci-
fication and describe the output from the procedure. Next we examine the various views and 
procedures that one may perform using an estimated quantile regression equation. Lastly, 
we provide background information on the quantile regression model.

Estimating Quantile Regression in EViews

To estimate a quantile regression specification in EViews you may select Object/New 
Object.../Equation or Quick/Estimate Equation… from the main menu, or simply type the 
keyword equation in the command window. From the main estimation dialog you should 
select QREG - Quantile Regression (including LAD). Alternately, you may type qreg in 
the command window.

X
Y
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EViews will open the quantile 
regression form of the Equa-
tion Estimation dialog.

Specification

The dialog has two pages. The 
first page, depicted here, is 
used to specify the variables in 
the conditional quantile func-
tion, the quantile to estimate, 
and the sample of observa-
tions to use.

You may enter the Equation 
specification using a list of 
the dependent and regressor 
variables, as depicted here, or 
you may enter an explicit 
expression. Note that if you 
enter an explicit expression it must be linear in the coefficients.

The Quantile to estimate edit field is where you will enter your desired quantile. By default, 
EViews estimates the median regression as depicted here, but you may enter any value 
between 0 and 1 (though values very close to 0 and 1 may cause estimation difficulties).

Here we specify a conditional median function for Y that depends on a constant term and 
the series X. EViews will estimate the LAD estimator for the entire sample of 235 observa-
tions.

Estimation Options

Most of the quantile regression settings are set using this page. The options on the left-hand 
side of the page control the method for computing the coefficient covariances, allow you to 
specify a weight series for weighted estimation, and specify the method for computing scalar 
sparsity estimates.
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Quantile Regression Options

The dropdown menu labeled Coefficient Covariance is 
where you will choose your method of computing covari-
ances: computing Ordinary (IID) covariances, using a 
Huber Sandwich method, or using Bootstrap resampling. 
By default, EViews uses the Huber Sandwich calculations 
which are valid under independent but non-identical sam-
pling.

Just below the dropdown menu is an section Weight, 
where you may define observations weights. The data will 
be transformed prior to estimation using this specification. 
(See “Weighted Least Squares” on page 47 for a discussion 
of the settings). 

The remaining settings in this section control the estima-
tion of the scalar sparsity value. Different options are available for different Coefficient 
Covariance settings. For ordinary or bootstrap covariances you may choose either Siddiqui 
(mean fitted), Kernel (residual), or Siddiqui (residual) as your sparsity estimation 
method, while if the covariance method is set to Huber Sandwich, only the Siddiqui (mean 
fitted) and Kernel (residual) methods are available. 

There are additional options for the bandwidth method (and associated size parameter if rel-
evant), the method for computing empirical quantiles (used to estimate the sparsity or the 
kernel bandwidth), and the choice of kernel function. Most of these settings should be self-
explanatory; if necessary, see the discussion in “Sparsity Estimation,” beginning on 
page 555 for details.

It is worth mentioning that the sparsity estimation options are always relevant, since EViews 
always computes and reports a scalar sparsity estimate, even if it is not used in computing 
the covariance matrix. In particular, a sparsity value is estimated even when you compute 
the asymptotic covariance using a Huber Sandwich method. The sparsity estimate will be 
used in non-robust quasi-likelihood ratio tests statistics as necessary.

Iteration Control

The iteration control section offers the standard edit field for changing the maximum num-
ber of iterations, a dropdown menu for specifying starting values, and a check box for dis-
playing the estimation settings in the output. Note that the default starting value for quantile 
regression is 0, but you may choose a fraction of the OLS estimates, or provide a set of user 
specified values.
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Bootstrap Settings

When you select Bootstrap in the Coefficient Covariance dropdown, the right side of the 
dialog changes to offer a set of bootstrap options.

You may use the Method dropdown menu to choose from 
one of four bootstrap methods: Residual, XY-pair, MCMB, 
MCMB-A. See “Bootstrapping,” beginning on page 559 for a 
discussion of the various methods. The default method is 
XY-pair.

Just below the dropdown menu are two edit fields labeled 
Replications and No. of obs. By default, EViews will per-
form 100 bootstrap replications, but you may override this by 
entering your desired value. The No. of obs. edit field con-
trols the size of the bootstrap sample. If the edit field is left blank, EViews will draw samples 
of the same size as the original data. There is some evidence that specifying a bootstrap 
sample size smaller than the original data may produce more accurate results, especially for 
very large sample sizes; Koenker (2005, p. 108) provides a brief summary.

To save the results of your bootstrap replications in a matrix object, enter the name in the 
Output edit field.

The last two items control the generation of random numbers. The Random generator drop-
down should be self-explanatory. Simply use the dropdown to choose your desired genera-
tor. EViews will initialize the dropdown using the default settings for the choice of generator.

By default, the first time that you perform a bootstrap for a given equation, the Seed edit 
field will be blank; you may provide your own integer value, if desired. If an initial seed is 
not provided, EViews will randomly select a seed value. The value of this initial seed will be 
saved with the equation so that by default, subsequent estimation will employ the same 
seed, allowing you to replicate results when re-estimating the equation, and when perform-
ing tests. If you wish to use a different seed, simply enter a value in the Seed edit field or 
press the Clear button to have EViews draw a new random seed value.

Estimation Output

Once you have provided your quantile regression specification and specified your options, 
you may click on OK to estimate your equation. Unless you are performing bootstrapping 
with a very large number of observations, the estimation results should be displayed shortly.

Our example uses the Engel dataset containing food expenditure and household income con-
sidered by Koenker (2005, p. 78-79, 297-307). The default model estimates the median of 
food expenditure Y as a function of a constant term and household income X.
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The top portion of the output displays the estimation settings. Here we see that our esti-
mates use the Huber sandwich method for computing the covariance matrix, with individ-
ual sparsity estimates obtained using kernel methods. The bandwidth uses the Hall and 
Sheather formula, yielding a value of 0.15744.

Below the header information are the coefficients, along with standard errors, t-statistics 
and associated p-values. We see that both coefficients are statistically significantly different 
from zero and conventional levels.

The bottom portion of the output reports the Koenker and Machado (1999) goodness-of-fit 
measure (pseudo R-squared), and adjusted version of the statistic, as well as the scalar esti-
mate of the sparsity using the kernel method. Note that this scalar estimate is not used in 
the computation of the standard errors in this case since we are employing the Huber sand-
wich method.

Also reported are the minimized value of the objective function (“Objective”), the mini-
mized constant-only version of the objective (“Restr. objective”), the constant-only coeffi-
cient estimate (“Quantile dependent var”), and the corresponding  form of the Quasi-
LR statistic and associated probability for the difference between the two specifications 
(Koenker and Machado, 1999). Note that despite the fact that the coefficient covariances are 
computed using the robust Huber Sandwich, the QLR statistic assumes i.i.d. errors and uses 
the estimated value of the sparsity.

The reported S.E. of the regression is based on the usual d.f. adjusted sample variance of the 
residuals. This measure of scale is used in forming standardized residuals and forecast stan-
dard errors. It is replaced by the Koenker and Machado (1999) scale estimator in the compu-

Dependent Variable: Y   
Method: Quantile Regression (Median)   
Date: 08/12/09   Time: 11:46   
Sample: 1 235    
Included observations: 235   
Huber Sandwich Standard Errors & Covariance  
Sparsi ty method: Kernel (Epanechnikov) using residuals  
Bandwidth method: Hall-Sheather, bw=0.15744  
Estimation successfully identifies unique optimal solution  

Variable Coefficient Std. Error t-Statistic Prob.  

C 81.48225 24.03494 3.390158 0.0008
X 0.560181 0.031370 17.85707 0.0000

Pseudo R-squared 0.620556    Mean dependent var 624.1501
Adjusted R-squared 0.618927    S.D. dependent var 276.4570
S.E. of regression 120.8447    Objective 8779.966
Quantile dependent var 582.5413    Restr. objective 23139.03
Sparsi ty 209.3504    Quasi-LR statistic 548.7091
Prob(Quasi-LR stat) 0.000000    

Ln t 
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tation of the  form of the QLR statistics (see “Standard Views and Procedures” on 
page 547 and “Quasi-Likelihood Ratio Tests” on page 561).

We may elect instead to perform bootstrapping to obtain the covariance matrix. Click on the 
Estimate button to bring up the dialog, then on Estimation Options to show the options 
tab. Select Bootstrap as the Coefficient Covariance, then choose MCMB-A as the bootstrap 
method. Next, we increase the number of replications to 500. Lastly, to see the effect of 
using a different estimator of the sparsity, we change the scalar sparsity estimation method 
to Siddiqui (mean fitted). Click on OK to estimate the specification.

For the most part the results are quite similar. The header information shows the different 
method of computing coefficient covariances and sparsity estimates. The Huber Sandwich 
and bootstrap standard errors are reasonably close (24.03 versus 22.02, and 0.031 versus 
0.024). There are moderate differences between the two sparsity estimates, with the Siddiqui 
estimator of the sparsity roughly 25% higher (267.83 versus 209.35), but this difference has 
no substantive impact on the probability of the QLR statistic.

Views and Procedures

We turn now to a brief description of the views and procedures that are available for equa-
tions estimated using quantile regression. Most of the available views and procedures for the 
quantile regression equation are identical to those for an ordinary least squares regression, 
but a few require additional discussion.

Ln t 

Dependent Variable: Y   
Method: Quantile Regression (Median)   
Date: 08/12/09   Time: 11:49   
Sample: 1 235    
Included observations: 235   
Bootstrap Standard Errors & Covariance   
Bootstrap method: MCMB-A, reps=500, rng=kn, seed=47500547 
Sparsi ty method: Siddiqui using fitted quantiles  
Bandwidth method: Hall-Sheather, bw=0.15744  
Estimation successfully identifies unique optimal solution  

Variable Coefficient Std. Error t-Statistic Prob.  

C 81.48225 22.01534 3.701158 0.0003
X 0.560181 0.023804 23.53350 0.0000

Pseudo R-squared 0.620556    Mean dependent var 624.1501
Adjusted R-squared 0.618927    S.D. dependent var 276.4570
S.E. of regression 120.8447    Objective 8779.966
Quantile dependent var 582.5413    Restr. objective 23139.03
Sparsi ty 267.8284    Quasi-LR statistic 428.9034
Prob(Quasi-LR stat) 0.000000    
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Standard Views and Procedures

With the exception of the views listed under Quantile Process, the quantile regression views 
and procedures should be familiar from the discussion in ordinary least squares regression 
(see “Working with Equations” on page 18). 

A few of the familiar views and procedures do require a brief comment or two:

• Residuals are computed using the estimated parameters for the specified quantile: 
. Standardized residuals are the ratios of the residuals to the 

degree-of-freedom corrected sample standard deviation of the residuals. 

Note that an alternative approach to standardizing residuals that is not employed here 
would follow Koenker and Machado (1999) in estimating the scale parameter using 
the average value of the minimized objective function . This latter 
estimator is used in forming quasi-likelihood ratio (QLR) tests (“Quasi-Likelihood 
Ratio Tests” on page 561).

• Wald tests and confidence ellipses are constructed in the usual fashion using the pos-
sibly robust estimator for the coefficient covariance matrix specified during estima-
tion. 

• The omitted and redundant variables tests and the Ramsey RESET test all perform 
QLR tests of the specified restrictions (Koenker and Machado, 1999). These tests 
require the i.i.d. assumption for the sparsity estimator to be valid.

• Forecasts and models will be for the estimated conditional quantile specification, 
using the estimated . We remind you that by default, EViews forecasts will insert 
the actual values for out-of-forecast-sample observations, which may not be the 
desired approach. You may switch the insertion off by unselecting the Insert actuals 
for out-of-sample observations checkbox in the Forecast dialog.

Quantile Process Views

The Quantile Process view sub-
menu lists three specialized views 
that rely on quantile process esti-
mates. Before describing the three 
views, we note that since each 
requires estimation of quantile 
regression specifications for vari-
ous , they may be time-consum-
ing, especially for specifications 
where the coefficient covariance is 
estimated via bootstrapping.
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Process Coefficients

You may select View/Quantile Process/Process Coefficients to examine the process coeffi-
cients estimated at various quantiles.

The Output section of the 
Specification tab is used 
to control how the process 
results are displayed. By 
default, EViews displays 
the results as a table of 
coefficient estimates, stan-
dard errors, t-statistics, 
and p-values. You may 
instead click on the Graph 
radio button and enter the 
size of the confidence 
interval in the edit field 
that appears. The default 
is to display a 95% confi-
dence interval.

The Quantile specification section of the page determines the quantiles at which the pro-
cess will be estimated. By default, EViews will estimate models for each of the deciles (10 
quantiles, ). You may specify a different number of quantiles using 
the edit field, or you may select User-specified quantiles and then enter a list of quantiles 
or one or more vectors containing quantile values.

The Coefficient specification radio buttons permit you to choose a subset of the coefficients 
to display. By default, EViews will produce results for all of the coefficients in your model. 
You may select Intercept only to produce results only for the intercept, or you may select 
User-specified coefficients and enter a list of coefficient names to show results for specific 
coefficients. Entering, for example, “C(2) C(3)” will produce process results only for the sec-
ond and third coefficients.

t 0.1 0.2  0.9, , , 
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Here, we follow Koenker 
(2005), in displaying a process 
graph for a modified version 
of the earlier equation: a 
median regression using the 
Engel data, where we fit the Y 
data to the centered X series 
and a constant. We display 
the results for 20 quantiles, 
along with 90% confidence 
intervals.

In both cases, the coefficient 
estimates show a clear posi-
tive relationship between the 
quantile value and the esti-
mated coefficients; the posi-
tive relationship for 
X_CENTERED is clear evi-
dence that the conditional 
quantiles are not i.i.d. We test 
the strength of this relation-
ship formally below.

The Output page of the 
dialog allows you to save 
the results of the quantile 
process estimation. You 
may provide a name for 
the vector of quantiles, 
the matrix of process 
coefficients, and the cova-
riance matrix of the coef-
ficients. For the  sorted 
quantile estimates, each 
row of the  coeffi-
cient matrix contains esti-
mates for a given 
quantile. The covariance 
matrix is the covariance of the vec of the coefficient matrix.

k

k p
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Slope Equality Test

To perform the Koenker and Bassett (1982a) test for the equality of the slope coefficients 
across quantiles, select View/Quantile Process/Slope Equality Test... and fill out the dia-
log.

The dialog has two pages. 
The Specification page is 
used to determine the 
quantiles at which the pro-
cess will be compared. 
EViews will compare with 
slope (non-intercept) coeffi-
cients of the estimated tau, 
with the taus specified in 
the dialog. By default, the 
comparison taus will be the 
three quartile limits 
( ), 
but you may select User-specified quantiles and provide your own values.

In addition, you may use the Coefficient specification section to specify a subset of coeffi-
cients to test. Simply click on the User-specified coefficients radio and enter a list of coeffi-
cient names to perform the tests on a specific set of coefficients. Entering, for example, 
“C(2) C(3)” will produce test equality only for the second and third coefficients.

The Output page allows you to save the results from the supplementary process estimation. 
As in “Process Coefficients” on page 548, you may provide a name for the vector of quan-
tiles, the matrix of process coefficients, and the covariance matrix of the coefficients. 

The results for the slope equality test for a median regression of our first equation relating 
food expenditure and household income in the Engel data set are provided below. We com-
pare the slope coefficient for the median against those estimated at the upper and lower 
quartile.

t 0.25 0.5 0.75, , 
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The top portion of the output shows the equation specification, and the Wald test summary. 
Not surprisingly (given the graph of the coefficients above), we see that the -statistic 
value of 25.22 is statistically significant at conventional test levels. We conclude that coeffi-
cients differ across quantile values and that the conditional quantiles are not identical.

Symmetric Quantiles Test

The symmetric quantiles test performs the Newey and Powell (1987) test of conditional sym-
metry. Conditional symmetry implies that the average value of two sets of coefficients for 
symmetric quantiles around the median will equal the value of the coefficients at the 
median:

(36.1)

To perform the test, select View/Quantile Process/Symmetric Quantiles Test... and fill out 
the dialog.

Quantile Slope Equality Test    

Equation: UNTITLED    

Specification: Y C X    

Test Summary 
Chi-Sq. 
Statistic Chi-Sq. d.f. Prob.  

Wald Test 25.22366 2 0.0000 

     

Restriction Detail:  b(tau_h) - b(tau_k) = 0   

Quantiles Variable Restr. Value Std. Error Prob.  

0.25, 0.5 X -0.086077 0.025923 0.0009 

0.5, 0.75  -0.083834 0.030529 0.0060 

x
2

b t  b 1 t– 
2

--------------------------------------- b 1 2 



552—Chapter 36. Quantile Regression
By default, EViews will test for symmetry using the estimated quantile and the quartiles as 
specified in the dialog. Thus, if the estimated model fits the median, there will be a single 
set of restrictions: . If the estimated model fits the  
quantile, there will be an additional set of restrictions: .

As with the other process routines, you may select User-specified quantiles and provide 
your own values. EViews will estimate a model for both the specified quantile, , and its 
complement , and will compare the results to the median estimates.

If your original model is for a quantile other than the median, you will be offered a third 
choice of performing the test using only the estimated quantile. For example, if the model is 
fit to the  quantile, an additional radio button will appear: Estimation quantile only 
(0.6). Choosing this form of the test, there will be a single set of restrictions: 

.

Also, if it is known a priori that the errors are i.i.d., but possibly not symmetrically distrib-
uted, one can restrict the null to examine only the restriction associated with the intercept. 
To perform this restricted version of the test, simply click on Intercept only in the Test Spec-
ification portion of the page. Alternately, you may click on User-specified coefficients and 
enter a list of coefficient names (e.g. “C(3) C(4)”) to perform tests for specific coefficients. 

Lastly, you may use the Output page to save the results from the supplementary process 
estimation. You may provide a name for the vector of quantiles, the matrix of process coeffi-
cients, and the covariance matrix of the coefficients. 

The default test of symmetry for the basic median Engel curve specification is given below:

We see that the test compares estimates at the first and third quartile with the median spec-
ification. While earlier we saw strong evidence that the slope coefficients are not constant 
across quantiles, we now see that there is little evidence of departures from symmetry. The 

b 0.25  b 0.75   2 b 0.5  0.6
b 0.4  b 0.6   2 b 0.5 

t

1 t–

0.6

b 0.4  b 0.6   2 b 0.5 

Symmetric Quantiles Test    

Equation: UNTITLED    

Specification: Y C X    

Test statistic compares all coefficients   

Test Summary 
Chi-Sq. 
Statistic Chi-Sq. d.f. Prob. 

Wald Test 0.530024 2 0.7672

     

Restriction Detail:  b(tau) + b(1-tau) - 2*b(.5) = 0   

Quantiles Variable Restr. Value Std. Error Prob. 

0.25, 0.75 C -5.084370 34.59898 0.8832

 X -0.002244 0.045012 0.9602
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overall p-value for the test is around 0.75, and the individual coefficient restriction test val-
ues show even less evidence of asymmetry.

Background

We present here a brief discussion of quantile regression. As always, the discussion is neces-
sarily brief and omits considerable detail. For a book-length treatment of quantile regression 
see Koenker (2005).

The Model

Suppose that we have a random variable  with probability distribution function

(36.2)

so that for , the -th quantile of  may be defined as the smallest  satisfying 
:

(36.3)

Given a set of  observations on , the traditional empirical distribution function is given 
by:

(36.4)

where  is an indicator function that takes the value 1 if the argument  is true and 0 
otherwise. The associated empirical quantile is given by,

(36.5)

or equivalently, in the form of a simple optimization problem:

(36.6)

where  is the so-called check function which weights positive and 
negative values asymmetrically.

Quantile regression extends this simple formulation to allow for regressors . We assume a 
linear specification for the conditional quantile of the response variable  given values for 
the -vector of explanatory variables :

(36.7)
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where  is the vector of coefficients associated with the -th quantile.

Then the analog to the unconditional quantile minimization above is the conditional quan-
tile regression estimator:

(36.8)

Estimation

The quantile regression estimator can be obtained as the solution to a linear programming 
problem. Several algorithms for obtaining a solution to this problem have been proposed in 
the literature. EViews uses a modified version of the Koenker and D’Orey (1987) version of 
the Barrodale and Roberts (1973) simplex algorithm.

The Barrodale and Roberts (BR) algorithm has received more than its fair share of criticism 
for being computationally inefficient, with dire theoretical results for worst-case scenarios in 
problems involving large numbers of observations. Simulations showing poor relative per-
formance of the BR algorithm as compared with alternatives such as interior point methods 
appear to bear this out, with estimation times that are roughly quadratic in the number of 
observations (Koenker and Hallock, 2001; Portnoy and Koenker, 1997).

Our experience with our optimized version of the BR algorithm is that its performance is cer-
tainly better than commonly portrayed. Using various subsets of the low-birthweight data 
described in Koenker and Hallock (2001), we find that while certainly not as fast as Chole-
sky-based linear regression (and possibly not as fast as interior point methods), the estima-
tion times for the modified BR algorithm are quite reasonable.

For example, estimating a 16 explanatory variable model for the median using the first 
20,000 observations of the data set takes a bit more than 1.2 seconds on a 3.2GHz Pentium 
4, with 1.0Gb of RAM; this time includes both estimation and computation of a kernel based 
estimator of the coefficient covariance matrix. The same specification using the full sample 
of 198,377 observations takes under 7.5 seconds. 

Overall, our experience is that estimation times for the modified BR algorithm are roughly 
linear in the number of observations through a broad range of sample sizes. While our 
results are not definitive, we see no real impediment to using this algorithm for virtually all 
practical problems.

Asymptotic Distributions

Under mild regularity conditions, quantile regression coefficients may be shown to be 
asymptotically normally distributed (Koenker, 2005) with different forms of the asymptotic 
covariance matrix depending on the model assumptions.
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Computation of the coefficient covariance matrices occupies an important place in quantile 
regression analysis. In large part, this importance stems from the fact that the covariance 
matrix of the estimates depends on one or more nuisance quantities which must be esti-
mated. Accordingly, a large literature has developed to consider the relative merits of vari-
ous approaches to estimating the asymptotic variances (see Koenker (2005), for an 
overview).

We may divide the estimators into three distinct classes: (1) direct methods for estimating 
the covariance matrix in i.i.d. settings; (2) direct methods for estimating the covariance 
matrix for independent but not-identical distribution; (3) bootstrap resampling methods for 
both i.i.d. and i.n.i.d. settings.

Independent and Identical

Koenker and Bassett (1978) derive asymptotic normality results for the quantile regression 
estimator in the i.i.d. setting, showing that under mild regularity conditions,

(36.9)

where:

(36.10)

and , which is termed the sparsity function or the quantile density function, may be 
interpreted either as the derivative of the quantile function or the inverse of the density 
function evaluated at the -th quantile (see, for example, Welsh, 1988). Note that the i.i.d. 
error assumption implies that  does not depend on  so that the quantile functions 
depend on  only in location, hence all conditional quantile planes are parallel.

Given the value of the sparsity at a given quantile, direct estimation of the coefficient covari-
ance matrix is straightforward. In fact, the expression for the asymptotic covariance in 
Equation (36.9) is analogous to the ordinary least squares covariance in the i.i.d. setting, 
with  standing in for the error variance in the usual formula.

Sparsity Estimation

We have seen the importance of the sparsity function in the formula for the asymptotic cova-
riance matrix of the quantile regression estimates for i.i.d. data. Unfortunately, the sparsity 
is a function of the unknown distribution , and therefore is a nuisance quantity which 
must be estimated.

EViews provides three methods for estimating the scalar sparsity : two Siddiqui (1960) 
difference quotient methods (Koenker, 1994; Bassett and Koenker (1982) and one kernel 
density estimator (Powell, 1986; Jones, 1992; Buchinsky 1995).
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Siddiqui Difference Quotient

The first two methods are variants of a procedure originally proposed by Siddiqui (1960; see 
Koenker, 1994), where we compute a simple difference quotient of the empirical quantile 
function:

(36.11)

for some bandwidth  tending to zero as the sample size .  is in essence com-
puted using a simply two-sided numeric derivative of the quantile function. To make this 
procedure operational we need to determine: (1) how to obtain estimates of the empirical 
quantile function  at the two evaluation points, and (2) what bandwidth to employ.

The first approach to evaluating the quantile functions, which EViews terms Siddiqui 
(mean fitted), is due to Bassett and Koenker (1982). The approach involves estimating two 
additional quantile regression models for  and , and using the estimated coef-
ficients to compute fitted quantiles. Substituting the fitted quantiles into the numeric deriva-
tive expression yields:

(36.12)

for an arbitrary . While the i.i.d. assumption implies that  may be set to any value, 
Bassett and Koenker propose using the mean value of , noting that the mean possesses 
two very desirable properties: the precision of the estimate is maximized at that point, and 
the empirical quantile function is monotone in  when evaluated at , so that  
will always yield a positive value for suitable .

A second, less computationally intensive approach to evaluating the quantile functions com-
putes the  and  empirical quantiles of the residuals from the original quantile 
regression equation, as in Koenker (1994). Following Koencker, we compute quantiles for 
the residuals excluding the  residuals that are set to zero in estimation, and interpolating 
values to get a piecewise linear version of the quantile. EViews refers to this method as Sid-
diqui (residual).

Both Siddiqui methods require specification of a bandwidth . EViews offers the Bofinger 
(1975), Hall-Sheather (1988), and Chamberlain (1994) bandwidth methods (along with the 
ability to specify an arbitrary bandwidth). 

The Bofinger bandwidth, which is given by:

(36.13)

(approximately) minimizes the mean square error (MSE) of the sparsity estimates. 

Hall-Sheather proposed an alternative bandwidth that is designed specifically for testing. 
The Hall-Sheather bandwidth is given by:
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(36.14)

where , for  the parameter controlling the size of the desired  
confidence intervals. 

A similar testing motivation underlies the Chamberlain bandwidth:

(36.15)

which is derived using the exact and normal asymptotic confidence intervals for the order 
statistics (Buchinsky, 1995).

Kernel Density

Kernel density estimators of the sparsity offer an important alternative to the Siddiqui 
approach. Most of the attention has focused on kernel methods for estimating the derivative 

 directly (Falk, 1988; Welsh, 1988), but one may also estimate  using the 
inverse of a kernel density function estimator (Powell, 1986; Jones, 1992; Buchinsky 1995). 
In the present context, we may compute:

(36.16)

where  are the residuals from the quantile regression fit. EViews supports the latter 
density function approach, which is termed the Kernel (residual) method, since it is closely 
related to the more commonly employed Powell (1984, 1989) kernel estimator for the non-
i.i.d. case described below.

Kernel estimation of the density function requires specification of a bandwidth . We fol-
low Koenker (2005, p. 81) in choosing:

(36.17)

where  is the Silverman (1986) robust estimate of scale (where  
the sample standard deviation and  the interquartile range) and  is the Siddiqui 
bandwidth.

Independent, Non-Identical

We may relax the assumption that the quantile density function does not depend on . The 
asymptotic distribution of  in the i.n.i.d. setting takes the Huber sandwich 
form (see, among others, Hendricks and Koenker, 1992):

(36.18)
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where  is as defined earlier,

(36.19)

and:

(36.20)

 is the conditional density function of the response, evaluated at the -th condi-
tional quantile for individual . Note that if the conditional density does not depend on the 
observation, the Huber sandwich form of the variance in Equation (36.18) reduces to the 
simple scalar sparsity form given in Equation (36.9).

Computation of a sample analogue to  is straightforward so we focus on estimation of 
. EViews offers a choice of two methods for estimating : a Siddiqui-type differ-

ence method proposed by Hendricks and Koenker (1992), and a Powell (1984, 1989) kernel 
method based on residuals of the estimated model. EViews labels the first method Siddiqui 
(mean fitted), and the latter method Kernel (residual):

The Siddiqui-type method proposed by Hendricks and Koenker (1991) is a straightforward 
generalization of the scalar Siddiqui method (see “Siddiqui Difference Quotient,” beginning 
on page 556). As before, two additional quantile regression models are estimated for  
and , and the estimated coefficients may be used to compute the Siddiqui difference 
quotient:

(36.21)

Note that in the absence of identically distributed data, the quantile density function 
 must be evaluated for each individual. One minor complication is that 

Equation (36.21) is not guaranteed to be positive except at . Accordingly, Hen-
dricks and Koenker modify the expression slightly to use only positive values:

(36.22)

where  is a small positive number included to prevent division by zero.

The estimated quantile densities  are then used to form an estimator  of :

(36.23)

The Powell (1984, 1989) kernel approach replaces the Siddiqui difference with a kernel den-
sity estimator using the residuals of the original fitted model:
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(36.24)

where  is a kernel function that integrates to 1, and  is a kernel bandwidth. EViews 
uses the Koenker (2005) kernel bandwidth as described in “Kernel Density” on page 557 
above.

Bootstrapping

The direct methods of estimating the asymptotic covariance matrices of the estimates 
require the estimation of the sparsity nuisance parameter, either at a single point, or condi-
tionally for each observation. One method of avoiding this cumbersome estimation is to 
employ bootstrapping techniques for the estimation of the covariance matrix.

EViews supports four different bootstrap methods: the residual bootstrap (Residual), the 
design, or XY-pair, bootstrap (XY-pair), and two variants of the Markov Chain Marginal 
Bootstrap (MCMB and MBMB-A).

The following discussion provides a brief overview of the various bootstrap methods. For 
additional detail, see Buchinsky (1995, He and Hu (2002) and Kocherginsky, He, and Mu 
(2005).

Residual Bootstrap

The residual bootstrap, is constructed by resampling (with replacement) separately from the 
residuals  and from the .

Let  be an -vector of resampled residuals, and let  be a  matrix of inde-
pendently resampled . (Note that  need not be equal to the original sample size .) We 
form the dependent variable using the resampled residuals, resampled data, and estimated 
coefficients, , and then construct a bootstrap estimate of  using 

 and . 

This procedure is repeated for  bootstrap replications, and the estimator of the asymptotic 
covariance matrix is formed from:

(36.25)

where  is the mean of the bootstrap elements. The bootstrap covariance matrix  
is simply a (scaled) estimate of the sample variance of the bootstrap estimates of .

Note that the validity of using separate draws from  and  requires independence of 
the  and the . 
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XY-pair (Design) Bootstrap

The XY-pair bootstrap is the most natural form of bootstrap resampling, and is valid in set-
tings where  and  are not independent. For the XY-pair bootstrap, we simply form  
randomly drawn (with replacement) subsamples of size  from the original data, then 
compute estimates of  using the  for each subsample. The asymptotic covari-
ance matrix is then estimated from sample variance of the bootstrap results using 
Equation (36.25).

Markov Chain Marginal Bootstrap

The primary disadvantage to the residual and design bootstrapping methods is that they are 
computationally intensive, requiring estimation of a relatively difficult -dimensional linear 
programming problem for each bootstrap replication.

He and Hu (2002) proposed a new method for constructing bootstrap replications that 
reduces each -dimensional bootstrap optimization to a sequence of  easily solved one-
dimensional problems. The sequence of one-dimensional solutions forms a Markov chain 
whose sample variance, computed using Equation (36.25), consistently approximates the 
true covariance for large  and . 

One problem with the MCMB is that high autocorrelations in the MCMB sequence for spe-
cific coefficients will result in a poor estimates for the asymptotic covariance for given chain 
length , and may result in non-convergence of the covariance estimates for any chain of 
practical length.

Kocherginsky, He, and Mu (KHM, 2005) propose a modification to MCMB, which alleviates 
autocorrelation problems by transforming the parameter space prior to performing the 
MCMB algorithm, and then transforming the result back to the original space. Note that the 
resulting MCMB-A algorithm requires the i.i.d. assumption, though the authors suggest that 
the method is robust against heteroskedasticity.

Practical recommendations for the MCMB-A are provided in KHM. Summarizing, they rec-
ommend that the methods be applied to problems where  with  
between 100 and 200 for relatively small problems ( ). For moderately large 
problems with  between 10,000 and 2,000,000, they recommend  between 50 and 200 
depending on one’s level of patience.

Model Evaluation and Testing

Evaluation of the quality of a quantile regression model may be conducted using goodness-
of-fit criteria, as well as formal testing using quasi-likelihood ratio and Wald tests.

Goodness-of-Fit

Koenker and Machado (1999) define a goodness-of-fit statistic for quantile regression that is 
analogous to the  from conventional regression analysis. We begin by recalling our linear 
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quantile specification, and assume that we may partition the 
data and coefficient vector as  and , so that

(36.26)

We may then define:

(36.27)

the minimized unrestricted and intercept-only objective functions. The Koenker and Mach-
ado goodness-of-fit criterion is given by:

(36.28)

This statistic is an obvious analogue of the conventional .  lies between 0 and 1, 
and measures the relative success of the model in fitting the data for the -th quantile.

Quasi-Likelihood Ratio Tests

Koenker and Machado (1999) describe quasi-likelihood ratio tests based on the change in 
the optimized value of the objective function after relaxation of the restrictions imposed by 
the null hypothesis. They offer two test statistics which they term quantile-  tests, though 
as Koenker (2005) points out, they may also be thought of as quasi-likelihood ratio tests.

We define the test statistics:

(36.29)

which are both asymptotically  where  is the number of restrictions imposed by the null 
hypothesis.

You should note the presence of the sparsity term  in the denominator of both expres-
sions. Any of the sparsity estimators outlined in “Sparsity Estimation,” on page 555 may be 
employed for either the null or alternative specifications; EViews uses the sparsity estimated 
under the alternative. The presence of  should be a tipoff that these test statistics 
require that the quantile density function does not depend on , as in the pure location-
shift model.

Note that EViews will always compute an estimate of the scalar sparsity, even when you 
specify a Huber sandwich covariance method. This value of the sparsity will be used to 
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compute QLR test statistics which may be less robust than the corresponding Wald counter-
parts.

Coefficient Tests

Given estimates of the asymptotic covariance matrix for the quantile regression estimates, 
you may construct Wald-type tests of hypotheses and construct coefficient confidence 
ellipses as in “Coefficient Diagnostics,” beginning on page 176. 

Quantile Process Testing

The focus of our analysis thus far has been on the quantile regression model for a single 
quantile, . In a number of cases, we may instead be interested in forming joint hypotheses 
using coefficients for more than one quantile. We may, for example, be interested in evaluat-
ing whether the location-shift model is appropriate by testing for equality of slopes across 
quantile values. Consideration of more than one quantile regression at the same time comes 
under the general category of quantile process analysis.

While the EViews equation object is set up to consider only one quantile at a time, special-
ized tools allow you to perform the most commonly performed quantile process analyses.

Before proceeding to the hypothesis tests of interest, we must first outline the required distri-
butional theory. Define the process coefficient vector:

(36.30)

Then

(36.31)

where  has blocks of the form:

(36.32)

In the i.i.d. setting,  simplifies to,

(36.33)

where  has representative element:

(36.34)

Estimation of  may be performed directly using (36.32), (36.33) and (36.34), or using one 
of the bootstrap variants.

Slope Equality Testing

Koenker and Bassett (1982a) propose testing for slope equality across quantiles as a robust 
test of heteroskedasticity. The null hypothesis is given by:
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(36.35)

which imposes  restrictions on the coefficients. We may form the corre-
sponding Wald statistic, which is distributed as a .

Symmetry Testing

Newey and Powell (1987) construct a test of the less restrictive hypothesis of symmetry, for 
asymmetric least squares estimators, but the approach may easily be applied to the quantile 
regression case.

The premise of the Newey and Powell test is that if the distribution of  given  is sym-
metric, then:

(36.36)

We may evaluate this restriction using Wald tests on the quantile process. Suppose that 
there are an odd number, , of sets of estimated coefficients ordered by . The middle 
value  is assumed to be equal to 0.5, and the remaining  are symmetric around 
0.5, with , for . Then the Newey and Powell test 
null is the joint hypothesis that:

(36.37)

for .

The Wald test formed for this null is zero under the null hypothesis of symmetry. The null 
has  restrictions, so the Wald statistic is distributed as a . Newey 
and Powell point out that if it is known a priori that the errors are i.i.d., but possibly asym-
metric, one can restrict the null to only examine the restriction for the intercept. This 
restricted null imposes only  restrictions on the process coefficients.
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Chapter 37.  The Log Likelihood (LogL) Object

EViews contains customized procedures which help solve a wide range of the estimation 
problems that you might encounter. On occasion, however, you may come across an estima-
tion specification which is not included among these specialized routines. This specification 
may be an extension of an existing procedure, or it could be an entirely new class of prob-
lem.

Fortunately, EViews provides you with tools to estimate a wide variety of specifications 
through the log likelihood (logl) object. The logl object provides you with a general, open-
ended tool for estimating a broad class of specifications by maximizing a likelihood function 
with respect to parameters.

When working with a log likelihood object, you will use EViews’ series generation capabili-
ties to describe the log likelihood contribution of each observation in your sample as a func-
tion of unknown parameters. You may supply analytical derivatives of the likelihood for one 
or more parameters, or you can simply let EViews calculate numeric derivatives automati-
cally. EViews will search for the parameter values that maximize the specified likelihood 
function, and will provide estimated standard errors for these parameter estimates.

You should note that while useful in a wide range of settings, the Logl object is nevertheless 
restricted in the types of functions that it can handle. In particular, the Logl requires that all 
computations be specified using series expressions, and that the log-likelihood objective can 
be expressed as a series containing log-likelihood contributions for each observation. For 
more general optimization problems, you should consider the optimize command (see 
Chapter 10. “User-Defined Optimization,” beginning on page 243 of Command and Pro-
gramming Reference).

In this chapter, we provide an overview and describe the general features of the logl object. 
We also give examples of specifications which may be estimated using the object. The exam-
ples include: multinomial logit, unconditional maximum likelihood AR(1) estimation, Box-
Cox regression, disequilibrium switching models, least squares with multiplicative het-
eroskedasticity, probit specifications with heteroskedasticity, probit with grouped data, 
nested logit, zero-altered Poisson models, Heckman sample selection models, Weibull haz-
ard models, GARCH(1,1) with t-distributed errors, GARCH with coefficient restrictions, 
EGARCH with a generalized error distribution, and multivariate GARCH.

Overview

Most of the work in estimating a model using the logl object is in creating the text specifica-
tion which will be used to evaluate the likelihood function.
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If you are familiar with the process of generating series in EViews, you should find it easy to 
work with the logl specification, since the likelihood specification is merely a list of series 
assignment statements which are evaluated iteratively during the course of the maximiza-
tion procedure. All you need to do is write down a set of statements which, when evaluated, 
will describe a series containing the contributions of each observation to the log likelihood 
function.

To take a simple example, suppose you believe that your data are generated by the condi-
tional heteroskedasticity regression model:

(37.1)

where , , and  are the observed series (data) and  are the parameters 
of the model. The log likelihood function (the log of the density of the observed data) for a 
sample of  observations can be written as:

(37.2)

where  is the standard normal density function.

Note that we can write the log likelihood function as a sum of the log likelihood contribu-
tions for each observation :

(37.3)

where the individual contributions are given by:

(37.4)

Suppose that you know the true parameter values of the model, and you wish to generate a 
series in EViews which contains the contributions for each observation. To do this, you 
could assign the known values of the parameters to the elements C(1) to C(5) of the coeffi-
cient vector, and then execute the following list of assignment statements as commands or 
in an EViews program:

series res = y - c(1) - c(2)*x - c(3)*z

series var = c(4) * z^c(5)
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series logl1 = log(@dnorm(res/@sqrt(var))) - log(var)/2

The first two statements describe series which will contain intermediate results used in the 
calculations. The first statement creates the residual series, RES, and the second statement 
creates the variance series, VAR. The series LOGL1 contains the set of log likelihood contri-
butions for each observation.

Now suppose instead that you do not know the true parameter values of the model, and 
would like to estimate them from the data. The maximum likelihood estimates of the param-
eters are defined as the set of parameter values which produce the largest value of the likeli-
hood function evaluated across all the observations in the sample.

The logl object makes finding these maximum likelihood estimates easy. Simply create a 
new log likelihood object, input the assignment statements above into the logl specification 
view, then ask EViews to estimate the specification. 

In entering the assignment statements, you need only make two minor changes to the text 
above. First, the series keyword must be removed from the beginning of each line (since 
the likelihood specification implicitly assumes it is present). Second, an extra line must be 
added to the specification which identifies the name of the series in which the likelihood 
contributions will be contained. Thus, you should enter the following into your log likeli-
hood object:

@logl logl1

res = y - c(1) - c(2)*x - c(3)*z

var = c(4) * z^c(5)

logl1 = log(@dnorm(res/@sqrt(var))) - log(var)/2

The first line in the log likelihood specification, @logl logl1, tells EViews that the series 
LOGL1 should be used to store the likelihood contributions. The remaining lines describe 
the computation of the intermediate results, and the actual likelihood contributions.

When you tell EViews to estimate the parameters of this model, it will execute the assign-
ment statements in the specification repeatedly for different parameter values, using an iter-
ative algorithm to search for the set of values that maximize the sum of the log likelihood 
contributions. When EViews can no longer improve the overall likelihood, it will stop iterat-
ing and will report final parameter values and estimated standard errors in the estimation 
output.

The remainder of this chapter discusses the rules for specification, estimation and testing 
using the likelihood object in greater detail.

Specification

To create a likelihood object, choose Object/New Object…/LogL or type the keyword logl 
in the command window. The likelihood window will open with a blank specification view. 
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The specification view is a text window into which you enter a list of statements which 
describe your statistical model, and in which you set options which control various aspects 
of the estimation procedure.

Specifying the Likelihood

As described in the overview above, the core of the likelihood specification is a set of assign-
ment statements which, when evaluated, generate a series containing the log likelihood con-
tribution of each observation in the sample. There can be as many or as few of these 
assignment statements as you wish.

Each likelihood specification must contain a control statement which provides the name of 
the series which is used to contain the likelihood contributions. The format of this statement 
is:

@logl series_name

where series_name is the name of the series which will contain the contributions. This 
control statement may appear anywhere in the logl specification.

Whenever the specification is evaluated, whether for estimation or for carrying out a View 
or Proc, each assignment statement will be evaluated at the current parameter values, and 
the results stored in a series with the specified name. If the series does not exist, it will be 
created automatically. If the series already exists, EViews will use the existing series for stor-
age, and will overwrite the data contained in the series. 

If you would like to remove one or more of the series used in the specification after evalua-
tion, you can use the @temp statement, as in:

@temp series_name1 series_name2

This statement tells EViews to delete any series in the list after evaluation of the specifica-
tion is completed. Deleting these series may be useful if your logl creates a lot of intermedi-
ate results, and you do not want the series containing these results to clutter your workfile.

Parameter Names

In the example above, we used the coefficients C(1) to C(5) as names for our unknown 
parameters. More generally, any element of a named coefficient vector which appears in the 
specification will be treated as a parameter to be estimated.

In the conditional heteroskedasticity example, you might choose to use coefficients from 
three different coefficient vectors: one vector for the mean equation, one for the variance 
equation, and one for the variance parameters. You would first create three named coeffi-
cient vectors by the commands:

coef(3) beta

coef(1) scale
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coef(1) alpha

You could then write the likelihood specification as:

@logl logl1

res = y - beta(1) - beta(2)*x - beta(3)*z

var = scale(1)*z^alpha(1)

logl1 = log(@dnorm(res/@sqrt(var))) - log(var)/2

Since all elements of named coefficient vectors in the specification will be treated as param-
eters, you should make certain that all coefficients really do affect the value of one or more 
of the likelihood contributions. If a parameter has no effect upon the likelihood, you will 
experience a singularity error when you attempt to estimate the parameters. 

Note that all objects other than coefficient elements will be considered fixed and will not be 
updated during estimation. For example, suppose that SIGMA is a named scalar in your 
workfile. Then if you redefine the subexpression for VAR as:

var = sigma*z^alpha(1)

EViews will not estimate SIGMA. The value of SIGMA will remain fixed at its value at the 
start of estimation.

Order of Evaluation

The logl specification contains one or more assignment statements which generate the series 
containing the likelihood contributions. EViews always evaluates from top to bottom when 
executing these assignment statements, so expressions which are used in subsequent calcu-
lations should always be placed first.

EViews must also iterate through the observations in the sample. Since EViews iterates 
through both the equations in the specification and the observations in the sample, you will 
need to specify the order in which the evaluation of observations and equations occurs.

By default, EViews evaluates the specification by observation so that all of the assignment 
statements are evaluated for the first observation, then for the second observation, and so on 
across all the observations in the estimation sample. This is the correct order for recursive 
models where the likelihood of an observation depends on previously observed (lagged) val-
ues, as in AR or ARCH models.

You can change the order of evaluation so EViews evaluates the specification by equation, so 
the first assignment statement is evaluated for all the observations, then the second assign-
ment statement is evaluated for all the observations, and so on for each of the assignment 
statements in the specification. This is the correct order for models where aggregate statis-
tics from intermediate series are used as input to subsequent calculations.

You can control the method of evaluation by adding a statement to the likelihood specifica-
tion. To force evaluation by equation, simply add a line containing the keyword “@byeqn”. 
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To explicitly state that you require evaluation by observation, the “@byobs” keyword can be 
used. If no keyword is provided, @byobs is assumed.

In the conditional heteroskedasticity example above, it does not matter whether the assign-
ment statements are evaluated by equation (line by line) or by observation, since the results 
do not depend upon the order of evaluation.

However, if the specification has a recursive structure, or if the specification requires the cal-
culation of aggregate statistics based on intermediate series, you must select the appropriate 
evaluation order if the calculations are to be carried out correctly.

As an example of the @byeqn statement, consider the following specification:

@logl robust1

@byeqn

res1 = y-c(1)-c(2)*x

delta = @abs(res1)/6/@median(@abs(res1))

weight = (delta<1)*(1-delta^2)^2

robust1 = -(weight*res1^2)

This specification performs robust regression by downweighting outlier residuals at each 
iteration. The assignment statement for DELTA computes the median of the absolute value 
of the residuals in each iteration, and this is used as a reference point for forming a weight-
ing function for outliers. The @byeqn statement instructs EViews to compute all residuals 
RES1 at a given iteration before computing the median of those residuals when calculating 
the DELTA series.

Analytic Derivatives

By default, when maximizing the likelihood and forming estimates of the standard errors, 
EViews computes numeric derivatives of the likelihood function with respect to the parame-
ters. If you would like to specify an analytic expression for one or more of the derivatives, 
you may use the @deriv statement. The @deriv statement has the form:

@deriv pname1 sname1 pname2 sname2 …

where pname is a parameter in the model and sname is the name of the corresponding 
derivative series generated by the specification. 

For example, consider the following likelihood object that specifies a multinomial logit 
model:

' multinomial logit with 3 outcomes

@logl logl1

xb2 = b2(1)+b2(2)*x1+b2(3)*x2

xb3 = b3(1)+b3(2)*x1+b3(3)*x2

denom = 1+exp(xb2)+exp(xb3)
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' derivatives wrt the 2nd outcome params

@deriv b2(1) grad21 b2(2) grad22 b2(3) grad23

grad21 = d2-exp(xb2)/denom

grad22 = grad21*x1

grad23 = grad21*x2

' derivatives wrt the 3rd outcome params

@deriv b3(1) grad31 b3(2) grad32 b3(3) grad33

grad31 = d3-exp(xb3)/denom

grad32 = grad31*x1

grad33 = grad31*x2

' specify log likelihood

logl1 = d2*xb2+d3*xb3-log(1+exp(xb2)+exp(xb3))

See Greene (2008), Chapter 23.11.1 for a discussion of multinomial logit models. There are 
three possible outcomes, and the parameters of the three regressors (X1, X2 and the con-
stant) are normalized relative to the first outcome. The analytic derivatives are particularly 
simple for the multinomial logit model and the two @deriv statements in the specification 
instruct EViews to use the expressions for GRAD21, GRAD22, GRAD23, GRAD31, GRAD32, 
and GRAD33, instead of computing numeric derivatives.

When working with analytic derivatives, you may wish to check the validity of your expres-
sions for the derivatives by comparing them with numerically computed derivatives. EViews 
provides you with tools which will perform this comparison at the current values of param-
eters or at the specified starting values. See the discussion of the Check Derivatives view of 
the likelihood object in “Check Derivatives” on page 577.

Derivative Step Sizes

If analytic derivatives are not specified for any of your parameters, EViews numerically eval-
uates the derivatives of the likelihood function for those parameters. The step sizes used in 
computing the derivatives are controlled by two parameters:  (relative step size) and m 
(minimum step size). Let  denote the value of the parameter  at iteration . Then the 
step size at iteration  is determined by:

(37.5)

The two-sided numeric derivative is evaluated as:

(37.6)

The one-sided numeric derivative is evaluated as:
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(37.7)

where  is the likelihood function. Two-sided derivatives are more accurate, but require 
roughly twice as many evaluations of the likelihood function and so take about twice as long 
to evaluate.

The @derivstep statement can be used to control the step size and method used to evalu-
ate the derivative at each iteration. The @derivstep keyword should be followed by sets of 
three arguments: the name of the parameter to be set (or the keyword @all), the relative 
step size, and the minimum step size.

The default setting is (approximately):

@derivstep(1) @all 1.49e-8 1e-10

where “1” in the parentheses indicates that one-sided numeric derivatives should be used 
and @all indicates that the following setting applies to all of the parameters. The first num-
ber following @all is the relative step size and the second number is the minimum step 
size. The default relative step size is set to the square root of machine epsilon  
and the minimum step size is set to . 

The step size can be set separately for each parameter in a single or in multiple @derivstep 
statements. The evaluation method option specified in parentheses is a global option; it can-
not be specified separately for each parameter. 

For example, if you include the line:

@derivstep(2) c(2) 1e-7 1e-10

the relative step size for coefficient C(2) will be increased to  and a two-sided 
derivative will be used to evaluate the derivative. In a more complex example,

@derivstep(2) @all 1.49e-8 1e-10 c(2) 1e-7 1e-10 c(3) 1e-5 1e-8

computes two-sided derivatives using the default step sizes for all coefficients except C(2) 
and C(3). The values for these latter coefficients are specified directly.

Estimation

Once you have specified the logl object, you can ask EViews to find the parameter values 
which maximize the likelihood parameters. Simply click the Estimate button in the likeli-
hood window toolbar to open the Estimation Options dialog.
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There are a number of options 
which allow you to control vari-
ous aspects of the estimation pro-
cedure. 

You may also use the Estimation 
options section of the dialog to 
specify the estimation method, 
step method, maximum number 
of iterations, convergence toler-
ance, and whether to display 
information about settings in the 
output. 

Note that the default estimation method for new logl objects is BFGS. 

The Coefficient covariance section of the dialog provides options for controlling the coeffi-
cient covariance estimate. The default Covariance method estimates the coefficient covari-
ance using the inverse of the matrix specified in the Information matrix dropdown menu. 
Alternately, you may compute the sandwich covariance by selecting Huber – White in the 
Covariance method menu. By default, EViews uses the outer-product of the gradients 
(OPG) as the information matrix estimator, but if you are performing non-legacy optimiza-
tion, you may substitute the (negative of the) observed Hessian by selecting Hessian – 
Observed.

See “Setting Estimation Options” on page 1089 for a discussion of these options. 

The default settings should, however, provide a good start for most problems. When you 
click on OK, EViews will begin estimation using the current settings.

Starting Values

Since EViews uses an iterative algorithm to find the maximum likelihood estimates, the 
choice of starting values is important. For problems in which the likelihood function is glob-
ally concave, it will influence how many iterations are taken for estimation to converge. For 
problems where the likelihood function is not concave, it may determine which of several 
local maxima is found. In some cases, estimation will fail unless reasonable starting values 
are provided.

By default, EViews uses the values stored in the coefficient vector or vectors prior to estima-
tion. If a @param statement is included in the specification, the values specified in the state-
ment will be used instead.

In our conditional heteroskedasticity regression example, one choice for starting values for 
the coefficients of the mean equation coefficients are the simple OLS estimates, since OLS 
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provides consistent point estimates even in the presence of (bounded) heteroskedasticity. To 
use the OLS estimates as starting values, first estimate the OLS equation by the command:

equation eq1.ls y c x z

After estimating this equation, the elements C(1), C(2), C(3) of the C coefficient vector will 
contain the OLS estimates. To set the variance scale parameter C(4) to the estimated OLS 
residual variance, you can type the assignment statement in the command window:

c(4) = eq1.@se^2

For the final heteroskedasticity parameter C(5), you can use the residuals from the original 
OLS regression to carry out a second OLS regression, and set the value of C(5) to the appro-
priate coefficient. Alternatively, you can arbitrarily set the parameter value using a simple 
assignment statement:

c(5) = 1

Now, if you estimate the logl specification immediately after carrying out the OLS estimation 
and subsequent commands, it will use the values that you have placed in the C vector as 
starting values. 

As noted above, an alternative method of initializing the parameters to known values is to 
include a @param statement in the likelihood specification. For example, if you include the 
line:

@param c(1) 0.1 c(2) 0.1 c(3) 0.1 c(4) 1 c(5) 1

in the specification of the logl, EViews will always set the starting values to 
C(1)=C(2)=C(3)=0.1, C(4)=C(5)=1.

See also the discussion of starting values in “Starting Coefficient Values” on page 1091.

Estimation Sample

EViews uses the sample of observations specified in the Estimation Options dialog when 
estimating the parameters of the log likelihood. EViews evaluates each expression in the logl 
for every observation in the sample at current parameter values, using the by observation or 
by equation ordering. All of these evaluations follow the standard EViews rules for evaluat-
ing series expressions. 

If there are missing values in the log likelihood series at the initial parameter values, EViews 
will issue an error message and the estimation procedure will stop. In contrast to the behav-
ior of other EViews built-in procedures, logl estimation performs no endpoint adjustments or 
dropping of observations with missing values when estimating the parameters of the model.
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LogL Views

• Likelihood Specification: displays the window where you specify and edit the likeli-
hood specification.

• Estimation Output: displays the estimation results obtained from maximizing the 
likelihood function.

• Covariance Matrix: displays the estimated covariance matrix of the parameter esti-
mates. These are computed from the inverse of the sum of the outer product of the 
first derivatives evaluated at the optimum parameter values. To save this covariance 
matrix as a symmetric matrix object, you may use the @coefcov data member.

• Wald Coefficient Tests…: performs the Wald coefficient restriction test. See “Wald 
Test (Coefficient Restrictions)” on page 182, for a discussion of Wald tests.

• Gradients: displays view of the gradients (first derivatives) of the log likelihood at the 
current parameter values (if the model has not yet been estimated), or at the con-
verged parameter values (if the model has been estimated). These views may prove to 
be useful diagnostic tools if you are experiencing problems with convergence.

• Check Derivatives: displays the values of the numeric derivatives and analytic deriv-
atives (if available) at the starting values (if a @param statement is included), or at 
current parameter values (if there is no @param statement).

LogL Procs

• Estimate…: brings up a dialog to set estimation options, and to estimate the parame-
ters of the log likelihood.

• Make Model: creates an untitled model object out of the estimated likelihood specifi-
cation.

• Make Gradient Group: creates an untitled group of the gradients (first derivatives) of 
the log likelihood at the estimated parameter values. These gradients are often used in 
constructing Lagrange multiplier tests.

• Update Coefs from LogL: updates the coefficient vector(s) with the estimates from 
the likelihood object. This procedure allows you to export the maximum likelihood 
estimates for use as starting values in other estimation problems. 

Most of these procedures should be familiar to you from other EViews estimation objects. 
We describe below the features that are specific to the logl object.

Estimation Output

In addition to the coefficient and standard error estimates, the standard output for the logl 
object describes the method of estimation, sample used in estimation, date and time that the 
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logl was estimated, evaluation order, information about the convergence of the estimation 
procedure, and the method used to compute the coefficient covariance matrix.

EViews also provides the log likelihood value, average log likelihood value, number of coef-
ficients, and three Information Criteria. By default, the starting values are not displayed. 
Here, we have used the Estimation Options dialog to instruct EViews to display the estima-
tion starting values in the output.

Gradients

The gradient summary table and gradient summary graph view allow you to examine the 
gradients of the likelihood. These gradients are computed at the current parameter values (if 
the model has not yet been estimated), or at the converged parameter values (if the model 
has been estimated). See Appendix D. “Gradients and Derivatives,” on page 1103 for addi-
tional details.

LogL: MLOGIT   
Method: Maximum Likelihood  (BFGS / Marquardt steps) 
Date: 03/10/15   Time: 21:47  
Sample: 1 1000   
Included observations: 1000  
Evaluation order: By equation  
Convergence achieved after 22 iterations 
Coefficient covariance computed using outer product of gradients 

 Coefficient Std. Error z-Statistic Prob.  

B2(1) -0.521793 0.205568 -2.538302 0.0111
B2(2) 0.994358 0.267963 3.710798 0.0002
B2(3) 0.134983 0.265655 0.508115 0.6114
B3(1) -0.262307 0.207174 -1.266122 0.2055
B3(2) 0.176770 0.274756 0.643371 0.5200
B3(3) 0.399166 0.274056 1.456511 0.1453

Log likelihood -1089.415     Akaike info criterion 2.190830
Avg. log likelihood -1.089415     Schwarz criterion 2.220277
Number of Coefs. 6     Hannan-Quinn criter. 2.202022
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You may find this view to 
be a useful diagnostic tool 
when experiencing prob-
lems with convergence or 
singularity. One common 
problem leading to singular 
matrices is a zero derivative 
for a parameter due to an 
incorrectly specified likeli-
hood, poor starting values, 
or a lack of model identifi-
cation. See the discussion 
below for further details.

Check Derivatives

You can use the Check Derivatives view to examine your numeric derivatives or to check 
the validity of your expressions for the analytic derivatives. If the logl specification contains 
a @param statement, the derivatives will be evaluated at the specified values, otherwise, the 
derivatives will be computed at the current coefficient values.

Consider the derivative view 
for coefficients estimated 
using the logl specification. 
The first part of this view dis-
plays the names of the user 
supplied derivatives, step 
size parameters, and the 
coefficient values at which 
the derivatives are evaluated. 
The relative and minimum 
step sizes shown in this 
example are the default set-
tings. 

The second part of the view 
computes the sum (over all 
individuals in the sample) of 
the numeric and, if applica-
ble, the analytic derivatives for each coefficient. If appropriate, EViews will also compute the 
largest individual difference between the analytic and the numeric derivatives in both abso-
lute, and percentage terms. 
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Troubleshooting

Because the logl object provides a great deal of flexibility, you are more likely to experience 
problems with estimation using the logl object than with EViews’ built-in estimators. 

If you are experiencing difficulties with estimation the following suggestions may help you 
in solving your problem:

• Check your likelihood specification. A simple error involving a wrong sign can eas-
ily stop the estimation process from working. You should also verify that the parame-
ters of the model are really identified (in some specifications you may have to impose 
a normalization across the parameters). Also, every parameter which appears in the 
model must feed directly or indirectly into the likelihood contributions. The Check 
Derivatives view is particularly useful in helping you spot the latter problem.

• Choose your starting values. If any of the likelihood contributions in your sample 
cannot be evaluated due to missing values or because of domain errors in mathemati-
cal operations (logs and square roots of negative numbers, division by zero, etc.) the 
estimation will stop immediately with the message: “Cannot compute @logl due to 
missing values”. In other cases, a bad choice of starting values may lead you into 
regions where the likelihood function is poorly behaved. You should always try to ini-
tialize your parameters to sensible numerical values. If you have a simpler estimation 
technique available which approximates the problem, you may wish to use estimates 
from this method as starting values for the maximum likelihood specification. 

• Make sure lagged values are initialized correctly. In contrast to most other estima-
tion routines in EViews, the logl estimation procedure will not automatically drop 
observations with NAs or lags from the sample when estimating a log likelihood 
model. If your likelihood specification involves lags, you will either have to drop 
observations from the beginning of your estimation sample, or you will have to care-
fully code the specification so that missing values from before the sample do not 
cause NAs to propagate through the entire sample (see the AR(1) and GARCH exam-
ples for a demonstration). 

Since the series used to evaluate the likelihood are contained in your workfile (unless you 
use the @temp statement to delete them), you can examine the values in the log likelihood 
and intermediate series to find problems involving lags and missing values.

• Verify your derivatives. If you are using analytic derivatives, use the Check Deriva-
tives view to make sure you have coded the derivatives correctly. If you are using 
numerical derivatives, consider specifying analytic derivatives or adjusting the 
options for derivative method or step size. 

• Reparametrize your model. If you are having problems with parameter values caus-
ing mathematical errors, you may wish to consider reparameterizing the model to 
restrict the parameter within its valid domain. See the discussion below for examples. 
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Most of the error messages you are likely to see during estimation are self-explanatory. The 
error message “near singular matrix” may be less obvious. This error message occurs when 
EViews is unable to invert the matrix of the sum of the outer product of the derivatives so 
that it is impossible to determine the direction of the next step of the optimization. This 
error may indicate a wide variety of problems, including bad starting values, but will almost 
always occur if the model is not identified, either theoretically, or in terms of the available 
data. 

Limitations

The likelihood object can be used to estimate parameters that maximize (or minimize) a 
variety of objective functions. Although the main use of the likelihood object will be to spec-
ify a log likelihood, you can specify least squares and minimum distance estimation prob-
lems with the likelihood object as long as the objective function is additive over the sample.

You should be aware that the algorithm used in estimating the parameters of the log likeli-
hood is not well suited to solving arbitrary maximization or minimization problems. The 
algorithm forms an approximation to the Hessian of the log likelihood, based on the sum of 
the outer product of the derivatives of the likelihood contributions. This approximation 
relies on both the functional form and statistical properties of maximum likelihood objective 
functions, and may not be a good approximation in general settings. Consequently, you may 
or may not be able to obtain results with other functional forms. Furthermore, the standard 
error estimates of the parameter values will only have meaning if the series describing the 
log likelihood contributions are (up to an additive constant) the individual contributions to a 
correctly specified, well-defined theoretical log likelihood.

Currently, the expressions used to describe the likelihood contribution must follow the rules 
of EViews series expressions. This restriction implies that we do not allow matrix operations 
in the likelihood specification. In order to specify likelihood functions for multiple equation 
models, you may have to write out the expression for the determinants and quadratic forms. 
Although possible, this may become tedious for models with more than two or three equa-
tions. See the multivariate GARCH sample programs for examples of this approach.

Additionally, the logl object does not directly handle optimization subject to general inequal-
ity constraints. There are, however, a variety of well-established techniques for imposing 
simple inequality constraints. We provide examples below. The underlying idea is to apply a 
monotonic transformation to the coefficient so that the new coefficient term takes on values 
only in the desired range. The commonly used transformations are the @exp for one-sided 
restrictions and the @logit and @atan for two-sided restrictions.

You should be aware of the limitations of the transformation approach. First, the approach 
only works for relatively simple inequality constraints. If you have several cross-coefficient 
inequality restrictions, the solution will quickly become intractable. Second, in order to per-
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form hypothesis tests on the untransformed coefficient, you will have to obtain an estimate 
of the standard errors of the associated expressions. Since the transformations are generally 
nonlinear, you will have to compute linear approximations to the variances yourself (using 
the delta method). Lastly, inference will be poor near the boundary values of the inequality 
restrictions.

Simple One-Sided Restrictions

Suppose you would like to restrict the estimate of the coefficient of X to be no larger than 1. 
One way you could do this is to specify the corresponding subexpression as follows: 

' restrict coef on x to not exceed 1

res1 = y - c(1) - (1-exp(c(2)))*x

Note that EViews will report the point estimate and the standard error for the parameter 
C(2), not the coefficient of X. To find the standard error of the expression 1-exp(c(2)), 
you will have to use the delta method; see for example Greene (2008).

Simple Two-Sided Restrictions

Suppose instead that you want to restrict the coefficient for X to be between -1 and 1. Then 
you can specify the expression as:

' restrict coef on x to be between -1 and 1

res1 = y - c(1) - (2*@logit(c(2))-1)*x

Again, EViews will report the point estimate and standard error for the parameter C(2). You 
will have to use the delta method to compute the standard error of the transformation 
expression 2*@logit(c(2))-1.

More generally, if you want to restrict the parameter to lie between L and H, you can use the 
transformation:

(H-L)*@logit(c(1)) + L

where C(1) is the parameter to be estimated. In the above example, L=-1 and H=1.

Examples

In this section, we provide extended examples of working with the logl object to estimate a 
multinomial logit and a maximum likelihood AR(1) specification. Example programs for 
these and several other specifications are provided in your default EViews data directory. If 
you set your default directory to point to the EViews data directory, you should be able to 
issue a RUN command for each of these programs to create the logl object and to estimate 
the unknown parameters.
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Multinomial Logit (mlogit1.prg)

In this example, we demonstrate how to specify and estimate a simple multinomial logit 
model using the logl object. Suppose the dependent variable Y can take one of three catego-
ries 1, 2, and 3. Further suppose that there are data on two regressors, X1 and X2 that vary 
across observations (individuals). Standard examples include variables such as age and level 
of education. Then the multinomial logit model assumes that the probability of observing 
each category in Y is given by:

(37.8)

for . Note that the parameters  are specific to each category so there are 
 parameters in this specification. The parameters are not all identified unless we 

impose a normalization, so we normalize the parameters of the first choice category  
to be all zero:  (see, for example, Greene (2008, Section 23.11.1).

The log likelihood function for the multinomial logit can be written as:

(37.9)

where  is a dummy variable that takes the value 1 if observation  has chosen alternative 
 and 0 otherwise. The first-order conditions are:

(37.10)

for  and . 

We have provided, in the Example Files subdirectory of your default EViews directory, a 
workfile “Mlogit.WK1” containing artificial multinomial data. The program begins by load-
ing this workfile:

' load artificial data

%evworkfile = @evpath + "\example files\logl\mlogit"

load "{%evworkfile}"

from the EViews example directory.

Next, we declare the coefficient vectors that will contain the estimated parameters for each 
choice alternative:

' declare parameter vector

coef(3) b2
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bkj
---------- dij Pij– xki
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coef(3) b3

As an alternative, we could have used the default coefficient vector C.

We then set up the likelihood function by issuing a series of append statements:

mlogit.append xb2 = b2(1)+b2(2)*x1+b2(3)*x2

mlogit.append xb3 = b3(1)+b3(2)*x1+b3(3)*x2

' define prob for each choice

mlogit.append denom = 1+exp(xb2)+exp(xb3)

mlogit.append pr1 = 1/denom

mlogit.append pr2 = exp(xb2)/denom

mlogit.append pr3 = exp(xb3)/denom

' specify likelihood

mlogit.append logl1 = (1-dd2-dd3)*log(pr1) 
+dd2*log(pr2)+dd3*log(pr3)

Since the analytic derivatives for the multinomial logit are particularly simple, we also spec-
ify the expressions for the analytic derivatives to be used during estimation and the appro-
priate @deriv statements: 

' specify analytic derivatives

for!i = 2 to 3

mlogit.append @deriv b{!i}(1) grad{!i}1 b{!i}(2) grad{!i}2 
b{!i}(3) grad{!i}3

mlogit.append grad{!i}1 = dd{!i}-pr{!i}

mlogit.append grad{!i}2 = grad{!i}1*x1

mlogit.append grad{!i}3 = grad{!i}1*x2

next

Note that if you were to specify this likelihood interactively, you would simply type the 
expression that follows each append statement directly into the MLOGIT object.

This concludes the actual specification of the likelihood object. Before estimating the model, 
we get the starting values by estimating a series of binary logit models:

' get starting values from binomial logit

equation eq2.binary(d=l) dd2 c x1 x2

b2 = eq2.@coefs

equation eq3.binary(d=l) dd3 c x1 x2

b3 = eq3.@coefs

To check whether you have specified the analytic derivatives correctly, choose View/Check 
Derivatives or use the command:

show mlogit.checkderiv



Examples—583
If you have correctly specified the analytic derivatives, they should be fairly close to the 
numeric derivatives.

We are now ready to estimate the model. Either click the Estimate button or use the com-
mand:

' do MLE

mlogit.ml(showopts, m=1000, c=1e-5)

show mlogit.output

Note that you can examine the derivatives for this model using the Gradient Table view, or 
you can examine the series in the workfile containing the gradients. You can also look at the 
intermediate results and log likelihood values. For example, to look at the likelihood contri-
butions for each individual, simply double click on the LOGL1 series.

AR(1) Model (ar1.prg)

In this example, we demonstrate using the logl to compute full maximum likelihood esti-
mates of an AR(1). This logl example replicates the ML estimator that is built-into the least 
squares estimator for an equation (Chapter 22. “Time Series Regression,” beginning on 
page 99). 

To illustrate, we first generate data that follows an AR(1) process:

' make up data

create m 80 89

rndseed 123

series y=0

smpl @first+1 @last

y = 1+0.85*y(-1) + nrnd

The exact Gaussian likelihood function for an AR(1) model is given by:

(37.11)

where  is the constant term,  is the AR(1) coefficient, and  is the error variance, all to 
be estimated (see for example Hamilton, 1994, Chapter 5.2). 

Since the likelihood function evaluation differs for the first observation in our sample, we 
create a dummy variable indicator for the first observation:

' create dummy variable for first obs
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series d1 = 0

smpl @first @first 

d1 = 1

smpl @all

Next, we declare the coefficient vectors to store the parameter estimates and initialize them 
with the least squares estimates:

' set starting values to LS (drops first obs)

equation eq1.ls y c ar(1)

coef(1) rho = c(2)

coef(1) s2 = eq1.@se^2

We then specify the likelihood function. We make use of the @recode function to differenti-
ate the evaluation of the likelihood for the first observation from the remaining observations. 
Note: the @recode function used here uses the updated syntax for this function—please 
double-check the current documentation for details.

' set up likelihood

logl ar1

ar1.append @logl logl1

ar1.append var = @recode(d1=1,s2(1)/(1-rho(1)^2),s2(1))

ar1.append res = @recode(d1=1,y-c(1)/(1-rho(1)),y-c(1)-rho(1)*y(-
1))

ar1.append sres = res/@sqrt(var)

ar1.append logl1 = log(@dnorm(sres))-log(var)/2

The likelihood specification uses the built-in function @dnorm for the standard normal den-
sity. The second term is the Jacobian term that arises from transforming the standard nor-
mal variable to one with non-unit variance. (You could, of course, write out the likelihood 
for the normal distribution without using the @dnorm function.)

The program displays the MLE together with the least squares estimates:

' do MLE

ar1.ml(showopts, m=1000, c=1e-5)

show ar1.output

' compare with EViews AR(1) which ignores first obs

show eq1.output

Additional Examples

The following additional example programs can be found in the “Example Files” subdirec-
tory of your default EViews directory.
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• Conditional logit (clogit1.prg): estimates a conditional logit with 3 outcomes and 
both individual specific and choice specific regressors. The program also displays the 
prediction table and carries out a Hausman test for independence of irrelevant alterna-
tives (IIA). See Greene (2008, Chapter 23.11.1) for a discussion of multinomial logit 
models. 

• Box-Cox transformation (boxcox1.prg): estimates a simple bivariate regression with 
an estimated Box-Cox transformation on both the dependent and independent vari-
ables. Box-Cox transformation models are notoriously difficult to estimate and the 
results are very sensitive to starting values.

• Disequilibrium switching model (diseq1.prg): estimates the switching model in 
exercise 15.14–15.15 of Judge et al. (1985, p. 644–646). Note that there are some 
typos in Judge et al. (1985, p. 639–640). The program uses the likelihood specification 
in Quandt (1988, page 32, equations 2.3.16–2.3.17).

• Multiplicative heteroskedasticity (hetero1.prg): estimates a linear regression model 
with multiplicative heteroskedasticity.

• Probit with heteroskedasticity (hprobit1.prg): estimates a probit specification with 
multiplicative heteroskedasticity. 

• Probit with grouped data (gprobit1.prg): estimates a probit with grouped data (pro-
portions data).

• Nested logit (nlogit1.prg): estimates a nested logit model with 2 branches. Tests the 
IIA assumption by a Wald test. See Greene (2008, Chapter 23.11.4) for a discussion of 
nested logit models.

• Zero-altered Poisson model (zpoiss1.prg): estimates the zero-altered Poisson model. 
Also carries out the non-nested LR test of Vuong (1989). See Greene (2008, Chapter 
25.4) for a discussion of zero-altered Poisson models and Vuong’s non-nested likeli-
hood ratio test.

• Heckman sample selection model (heckman1.prg): estimates Heckman’s two equa-
tion sample selection model by MLE using the two-step estimates as starting values.

• Weibull hazard model (weibull1.prg): estimates the uncensored Weibull hazard 
model described in Greene (2008, example 25.4).

• GARCH(1,1) with t-distributed errors (arch_t1.prg): estimates a GARCH(1,1) model 
with t-distribution. The log likelihood function for this model can be found in Hamil-
ton (1994, equation 21.1.24, page 662). Note that this model may more easily be esti-
mated using the standard ARCH estimation tools provided in EViews (Chapter 25. 
“ARCH and GARCH Estimation,” on page 243).

• GARCH with coefficient restrictions (garch1.prg): estimates an MA(1)-GARCH(1,1) 
model with coefficient restrictions in the conditional variance equation. This model is 
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estimated by Bollerslev, Engle, and Nelson (1994, equation 9.1, page 3015) for differ-
ent data. 

• EGARCH with generalized error distributed errors (egarch1.prg): estimates Nel-
son’s (1991) exponential GARCH with generalized error distribution. The specification 
and likelihood are described in Hamilton (1994, p. 668–669). Note that this model 
may more easily be estimated using the standard ARCH estimation tools provided in 
EViews (Chapter 25. “ARCH and GARCH Estimation,” on page 243).

• Multivariate GARCH (bv_garch.prg and tv_garch.prg): estimates the bi- or the tri-
variate version of the BEKK GARCH specification (Engle and Kroner, 1995). Note that 
this specification may be estimated using the built-in procedures available in the sys-
tem object (“System Estimation,” on page 645).
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Part VII.  Advanced Univariate Analysis

The following section describe EViews tools for advanced univariate analysis:

• Chapter 38. “Univariate Time Series Analysis,” on page 589 describes advanced tools 
for univariate time series analysis, including unit root tests in both conventional and 
panel data settings, variance ratio tests, and the BDS test for independence.
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Chapter 38.  Univariate Time Series Analysis

In this section, we discuss a several advanced tools for testing properties of univariate time 
series. Among the topics considered are unit root tests in both conventional and panel data 
settings, variance ratio tests, the BDS test for independence.

Unit Root Testing

The theory behind ARMA estimation is based on stationary time series. A series is said to be 
(weakly or covariance) stationary if the mean and autocovariances of the series do not 
depend on time. Any series that is not stationary is said to be nonstationary. 

A common example of a nonstationary series is the random walk:

, (38.1)

where  is a stationary random disturbance term. The series  has a constant forecast 
value, conditional on , and the variance is increasing over time. The random walk is a dif-
ference stationary series since the first difference of  is stationary:

. (38.2)

A difference stationary series is said to be integrated and is denoted as I( ) where  is the 
order of integration. The order of integration is the number of unit roots contained in the 
series, or the number of differencing operations it takes to make the series stationary. For the 
random walk above, there is one unit root, so it is an I(1) series. Similarly, a stationary series 
is I(0). 

Standard inference procedures do not apply to regressions which contain an integrated 
dependent variable or integrated regressors. Therefore, it is important to check whether a 
series is stationary or not before using it in a regression. The formal method to test the sta-
tionarity of a series is the unit root test. 

EViews provides you with a variety of powerful tools for testing a series (or the first or sec-
ond difference of the series) for the presence of a unit root. In addition to Augmented 
Dickey-Fuller (1979) and Phillips-Perron (1988) tests, EViews allows you to compute the 
GLS-detrended Dickey-Fuller (Elliot, Rothenberg, and Stock, 1996), Kwiatkowski, Phillips, 
Schmidt, and Shin (KPSS, 1992), Elliott, Rothenberg, and Stock Point Optimal (ERS, 1996), 
and Ng and Perron (NP, 2001) unit root tests. All of these tests are available as a view of a 
series.
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Performing Unit Root Tests in EViews

The following discussion assumes that 
you are familiar with the basic forms of 
the unit root tests and the associated 
options. We provide theoretical back-
ground for these tests in “Basic Unit 
Root Theory,” beginning on page 593, 
and document the settings used when 
performing these tests. 

To begin, double click on the series 
name to open the series window, and 
choose View/Unit Root Test…

You must specify four sets of options to 
carry out a unit root test. The first three 
settings (on the left-hand side of the dialog) determine the basic form of the unit root test. 
The fourth set of options (on the right-hand side of the dialog) consist of test-specific 
advanced settings. You only need concern yourself with these settings if you wish to custom-
ize the calculation of your unit root test. 

First, you should use the topmost dropdown menu to select the type of unit root test that 
you wish to perform. You may choose one of six tests: ADF, DFGLS, PP, KPSS, ERS, and NP.

Next, specify whether you wish to test for a unit root in the level, first difference, or second 
difference of the series. 

Lastly, choose your exogenous regressors. You can choose to include a constant, a constant 
and linear trend, or neither (there are limitations on these choices for some of the tests). 

You can click on OK to compute the test using the specified settings, or you can customize 
your test using the advanced settings portion of the dialog.

The advanced settings for both the ADF and DFGLS tests allow you to specify how lagged 
difference terms  are to be included in the ADF test equation. You may choose to let 
EViews automatically select , or you may specify a fixed positive integer value (if you 
choose automatic selection, you are given the additional option of selecting both the infor-
mation criterion and maximum number of lags to be used in the selection procedure).

In this case, we have chosen to estimate an ADF test that includes a constant in the test 
regression and employs automatic lag length selection using a Schwarz Information Crite-
rion (BIC) and a maximum lag length of 14. Applying these settings to data on the U.S. one-
month Treasury bill rate for the period from March 1953 to July 1971 (“Hayashi_92.WF1”), 
we can replicate Example 9.2 of Hayashi (2000, p. 596). The results are described below.

p
p
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The first part of the unit root output provides information about the form of the test (the 
type of test, the exogenous variables, and lag length used), and contains the test output, 
associated critical values, and in this case, the p-value:

The ADF statistic value is -1.417 and the associated one-sided p-value (for a test with 221 
observations) is .573. In addition, EViews reports the critical values at the 1%, 5% and 10% 
levels. Notice here that the statistic  value is greater than the critical values so that we do 
not reject the null at conventional test sizes.

The second part of the output shows the intermediate test equation that EViews used to cal-
culate the ADF statistic:

If you had chosen to perform any of the other unit root tests (PP, KPSS, ERS, NP), the right 
side of the dialog would show the different options associated with the specified test. The 
options are associated with the method used to estimate the zero frequency spectrum term, 

, that is used in constructing the particular test statistic. As before, you only need pay 
attention to these settings if you wish to change from the EViews defaults.

Null Hypothesis: TBILL has a unit root 
Exogenous: Constant 
Lag Length: 1 (Automatic based on SIC, MAXLAG=14) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -1.417410  0.5734 
Test critical values: 1% level  -3.459898  

 5% level  -2.874435  
 10% level  -2.573719  

*MacKinnon (1996) one-sided p-values. 

ta

Augmented Dickey-Fuller Test Equation   

Dependent Variable: D(TBILL)   

Method: Least Squares   

Date: 08/08/06   Time: 13:55   

Sample: 1953M03 1971M07   

Included observations: 221   

 Coefficient Std. Error t-Statistic Prob.   

TBILL(-1) -0.022951 0.016192 -1.417410 0.1578 

D(TBILL(-1)) -0.203330 0.067007 -3.034470 0.0027 

C 0.088398 0.056934 1.552626 0.1220 

R-squared 0.053856     Mean dependent var 0.013826 

Adjusted R-squared 0.045175     S.D. dependent var 0.379758 

S.E. of regression 0.371081     Akaike info criterion 0.868688 

Sum squared resid 30.01882     Schwarz criterion 0.914817 

Log likelihood -92.99005     Hannan-Quinn criter. 0.887314 

F-statistic 6.204410     Durbin-Watson stat 1.976361 

Prob(F-statistic) 0.002395    

f0
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Here, we have selected the PP test in the 
dropdown menu. Note that the right-hand 
side of the dialog has changed, and now 
features a dropdown menu for selecting the 
spectral estimation method. You may use 
this dropdown menu to choose between 
various kernel or AR regression based esti-
mators for . The entry labeled “Default” 
will show you the default estimator for the 
specific unit root test—in this example, we 
see that the PP default uses a kernel sum-
of-covariances estimator with Bartlett 
weights. Alternately, if you had selected a 
NP test, the default entry would be “AR spectral-GLS”. 

Lastly, you can control the lag length or bandwidth used for your spectral estimator. If you 
select one of the kernel estimation methods (Bartlett, Parzen, Quadratic Spectral), the dialog 
will give you a choice between using Newey-West or Andrews automatic bandwidth selec-
tion methods, or providing a user specified bandwidth. If you choose one of the AR spectral 
density estimation methods (AR Spectral - OLS, AR Spectral - OLS detrended, AR Spectral - 
GLS detrended), the dialog will prompt you to choose from various automatic lag length 
selection methods (using information criteria) or to provide a user-specified lag length. See 
“Automatic Bandwidth and Lag Length Selection” on page 600.

Once you have chosen the appropriate settings for your test, click on the OK button. EViews 
reports the test statistic along with output from the corresponding test regression. For these 
tests, EViews reports the uncorrected estimate of the residual variance and the estimate of 
the frequency zero spectrum  (labeled as the “HAC corrected variance”) in addition to the 
basic output. Running a PP test using the TBILL series using the Andrews bandwidth yields:

f0

f0

Null Hypothesis: TBILL has a unit root 
Exogenous: Constant 
Bandwidth: 3.82 (Andrews using Bartlett kernel) 

   Adj. t-Stat   Prob.* 

Phillips-Perron test statistic -1.519035  0.5223 
Test critical values: 1% level  -3.459898  

 5% level  -2.874435  
 10% level  -2.573719  

*MacKinnon (1996) one-sided p-values. 
     

Residual variance (no correction)  0.141569
HAC corrected variance (Bartlett kernel)  0.107615
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As with the ADF test, we fail to reject the null hypothesis of a unit root in the TBILL series at 
conventional significance levels.

Note that your test output will differ somewhat for alternative test specifications. For exam-
ple, the KPSS output only provides the asymptotic critical values tabulated by KPSS:

Similarly, the NP test output will contain results for all four test statistics, along with the NP 
tabulated critical values.

A word of caution. You should note that the critical values reported by EViews are valid only 
for unit root tests of a data series, and will be invalid if the series is based on estimated val-
ues. For example, Engle and Granger (1987) proposed a two-step method of testing for 
cointegration which looks for a unit root in the residuals of a first-stage regression. Since 
these residuals are estimates of the disturbance term, the asymptotic distribution of the test 
statistic differs from the one for ordinary series. See Chapter 48. “Cointegration Testing,” on 
page 1032 for EViews routines to perform testing in this setting.

Basic Unit Root Theory

The following discussion outlines the basics features of unit root tests. By necessity, the dis-
cussion will be brief. Users who require detail should consult the original sources and stan-
dard references (see, for example, Davidson and MacKinnon, 1993, Chapter 20, Hamilton, 
1994, Chapter 17, and Hayashi, 2000, Chapter 9).

Consider a simple AR(1) process:

, (38.3)

where  are optional exogenous regressors which may consist of constant, or a constant 
and trend,  and  are parameters to be estimated, and the  are assumed to be white 
noise. If ,  is a nonstationary series and the variance of  increases with time and 
approaches infinity. If ,  is a (trend-)stationary series. Thus, the hypothesis of 

Null Hypothesis: TBILL is stationary   
Exogenous: Constant    
Bandwidth: 11 (Newey-West automatic) using Bartlett kernel   

    LM-Stat. 

Kwiatkowski-Phill ips-Schmidt-Shin test statistic  1.537310

Asymptotic critical values*: 1% level   0.739000
  5% level   0.463000
  10% level   0.347000

*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)   
     

Residual variance (no correction)   2.415060
HAC corrected variance (Bartlett kernel)   26.11028

yt ryt 1– xt d et 

xt

r d et

r 1 y y
r 1 y



594—Chapter 38. Univariate Time Series Analysis
(trend-)stationarity can be evaluated by testing whether the absolute value of  is strictly 
less than one. 

The unit root tests that EViews provides generally test the null hypothesis  
against the one-sided alternative . In some cases, the null is tested against a point 
alternative. In contrast, the KPSS Lagrange Multiplier test evaluates the null of  
against the alternative .

The Augmented Dickey-Fuller (ADF) Test

The standard DF test is carried out by estimating Equation (38.3) after subtracting  
from both sides of the equation:

, (38.4)

where . The null and alternative hypotheses may be written as,

(38.5)

and evaluated using the conventional -ratio for :

(38.6)

where  is the estimate of , and  is the coefficient standard error.

Dickey and Fuller (1979) show that under the null hypothesis of a unit root, this statistic 
does not follow the conventional Student’s t-distribution, and they derive asymptotic results 
and simulate critical values for various test and sample sizes. More recently, MacKinnon 
(1991, 1996) implements a much larger set of simulations than those tabulated by Dickey 
and Fuller. In addition, MacKinnon estimates response surfaces for the simulation results, 
permitting the calculation of Dickey-Fuller critical values and -values for arbitrary sample 
sizes. The more recent MacKinnon critical value calculations are used by EViews in con-
structing test output.

The simple Dickey-Fuller unit root test described above is valid only if the series is an AR(1) 
process. If the series is correlated at higher order lags, the assumption of white noise distur-
bances  is violated. The Augmented Dickey-Fuller (ADF) test constructs a parametric cor-
rection for higher-order correlation by assuming that the  series follows an AR( ) process 
and adding  lagged difference terms of the dependent variable  to the right-hand side of 
the test regression:

. (38.7)

This augmented specification is then used to test (38.5) using the -ratio (38.6). An import-
ant result obtained by Fuller is that the asymptotic distribution of the -ratio for  is inde-
pendent of the number of lagged first differences included in the ADF regression. Moreover, 
while the assumption that  follows an autoregressive (AR) process may seem restrictive, 
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Said and Dickey (1984) demonstrate that the ADF test is asymptotically valid in the presence 
of a moving average (MA) component, provided that sufficient lagged difference terms are 
included in the test regression.

You will face two practical issues in performing an ADF test. First, you must choose whether 
to include exogenous variables in the test regression. You have the choice of including a con-
stant, a constant and a linear time trend, or neither in the test regression. One approach 
would be to run the test with both a constant and a linear trend since the other two cases 
are just special cases of this more general specification. However, including irrelevant regres-
sors in the regression will reduce the power of the test to reject the null of a unit root. The 
standard recommendation is to choose a specification that is a plausible description of the 
data under both the null and alternative hypotheses. See Hamilton (1994, p. 501) for discus-
sion.

Second, you will have to specify the number of lagged difference terms (which we will term 
the “lag length”) to be added to the test regression (0 yields the standard DF test; integers 
greater than 0 correspond to ADF tests). The usual (though not particularly useful) advice is 
to include a number of lags sufficient to remove serial correlation in the residuals. EViews 
provides both automatic and manual lag length selection options. For details, see “Automatic 
Bandwidth and Lag Length Selection,” beginning on page 600.

Dickey-Fuller Test with GLS Detrending (DFGLS)

As noted above, you may elect to include a constant, or a constant and a linear time trend, 
in your ADF test regression. For these two cases, ERS (1996) propose a simple modification 
of the ADF tests in which the data are detrended so that explanatory variables are “taken 
out” of the data prior to running the test regression.

ERS define a quasi-difference of  that depends on the value  representing the specific 
point alternative against which we wish to test the null:

(38.8)

Next, consider an OLS regression of the quasi-differenced data  on the quasi-differ-
enced :

(38.9)

where  contains either a constant, or a constant and trend, and let  be the OLS esti-
mates from this regression.

All that we need now is a value for . ERS recommend the use of , where:
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(38.10)

We now define the GLS detrended data,  using the estimates associated with the :

(38.11)

Then the DFGLS test involves estimating the standard ADF test equation, (38.7), after sub-
stituting the GLS detrended  for the original :

(38.12)

Note that since the  are detrended, we do not include the  in the DFGLS test equation. 
As with the ADF test, we consider the -ratio for  from this test equation.

While the DFGLS -ratio follows a Dickey-Fuller distribution in the constant only case, the 
asymptotic distribution differs when you include both a constant and trend. ERS (1996, 
Table 1, p. 825) simulate the critical values of the test statistic in this latter setting for 

. Thus, the EViews lower tail critical values use the MacKinnon 
simulations for the no constant case, but are interpolated from the ERS simulated values for 
the constant and trend case. The null hypothesis is rejected for values that fall below these 
critical values.

The Phillips-Perron (PP) Test

Phillips and Perron (1988) propose an alternative (nonparametric) method of controlling for 
serial correlation when testing for a unit root. The PP method estimates the non-augmented 
DF test equation (38.4), and modifies the -ratio of the  coefficient so that serial correla-
tion does not affect the asymptotic distribution of the test statistic. The PP test is based on 
the statistic:

(38.13)

where  is the estimate, and  the -ratio of ,  is coefficient standard error, and  
is the standard error of the test regression. In addition,  is a consistent estimate of the 
error variance in (38.4) (calculated as , where  is the number of regressors). 
The remaining term, , is an estimator of the residual spectrum at frequency zero.

There are two choices you will have make when performing the PP test. First, you must 
choose whether to include a constant, a constant and a linear time trend, or neither, in the 
test regression. Second, you will have to choose a method for estimating . EViews sup-
ports estimators for  based on kernel-based sum-of-covariances, or on autoregressive 
spectral density estimation. See “Frequency Zero Spectrum Estimation,” beginning on 
page 598 for details.
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The asymptotic distribution of the PP modified -ratio is the same as that of the ADF statis-
tic. EViews reports MacKinnon lower-tail critical and p-values for this test.

The Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Test

The KPSS (1992) test differs from the other unit root tests described here in that the series 
 is assumed to be (trend-) stationary under the null. The KPSS statistic is based on the 

residuals from the OLS regression of  on the exogenous variables :

(38.14)

The LM statistic is be defined as:

(38.15)

where , is an estimator of the residual spectrum at frequency zero and where  is a 
cumulative residual function:

(38.16)

based on the residuals . We point out that the estimator of  used in this 
calculation differs from the estimator for  used by GLS detrending since it is based on a 
regression involving the original data and not on the quasi-differenced data.

To specify the KPSS test, you must specify the set of exogenous regressors  and a method 
for estimating . See “Frequency Zero Spectrum Estimation” on page 598 for discussion.

The reported critical values for the LM test statistic are based upon the asymptotic results 
presented in KPSS (Table 1, p. 166).

Elliot, Rothenberg, and Stock Point Optimal (ERS) Test

The ERS Point Optimal test is based on the quasi-differencing regression defined in Equa-
tions (38.9). Define the residuals from (38.9) as , and let 

 be the sum-of-squared residuals function. The ERS (feasible) point 
optimal test statistic of the null that  against the alternative that , is then 
defined as:

(38.17)

where , is an estimator of the residual spectrum at frequency zero.

To compute the ERS test, you must specify the set of exogenous regressors  and a method 
for estimating  (see “Frequency Zero Spectrum Estimation” on page 598).
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ût yt xt d̂ 0 – d

d

xt

f0
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Critical values for the ERS test statistic are computed by interpolating the simulation results 
provided by ERS (1996, Table 1, p. 825) for .

Ng and Perron (NP) Tests

Ng and Perron (2001) construct four test statistics that are based upon the GLS detrended 
data . These test statistics are modified forms of Phillips and Perron  and  statistics, 
the Bhargava (1986)  statistic, and the ERS Point Optimal statistic. First, define the term:

(38.18)

The modified statistics may then be written as,

(38.19)

where:

(38.20)

The NP tests require a specification for  and a choice of method for estimating  (see 
“Frequency Zero Spectrum Estimation” on page 598).

Frequency Zero Spectrum Estimation

Many of the unit root tests described above require a consistent estimate of the residual 
spectrum at frequency zero. EViews supports two classes of estimators for : kernel-based 
sum-of-covariances estimators, and autoregressive spectral density estimators.

Kernel Sum-of-Covariances Estimation

The kernel-based estimator of the frequency zero spectrum is based on a weighted sum of 
the autocovariances, with the weights are defined by a kernel function. The estimator takes 
the form,

(38.21)
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where  is a bandwidth parameter (which acts as a truncation lag in the covariance weight-
ing),  is a kernel function, and where , the j-th sample autocovariance of the residu-
als , is defined as:

 (38.22)

Note that the residuals  that EViews uses in estimating the autocovariance functions in 
(38.22) will differ depending on the specified unit root test:

EViews supports the following kernel functions:

The properties of these kernels are described in Andrews (1991).

As with most kernel estimators, the choice of the bandwidth parameter  is of considerable 
importance. EViews allows you to specify a fixed parameter or to have EViews select one 
using a data-dependent method. Automatic bandwidth parameter selection is discussed in 
“Automatic Bandwidth and Lag Length Selection,” beginning on page 600.

Autoregressive Spectral Density Estimator

The autoregressive spectral density estimator at frequency zero is based upon the residual 
variance and estimated coefficients from the auxiliary regression:

(38.23)

Unit root test Source of  residuals for kernel estimator

ADF, DFGLS not applicable.

PP, ERS Point 
Optimal, NP

residuals from the Dickey-Fuller test equation, (38.4).

KPSS residuals from the OLS test equation, (38.14).
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EViews provides three autoregressive spectral methods: OLS, OLS detrending, and GLS 
detrending, corresponding to difference choices for the data . The following table summa-
rizes the auxiliary equation estimated by the various AR spectral density estimators:

where  are the coefficient estimates from the regression defined in (38.9).

The AR spectral estimator of the frequency zero spectrum is defined as:

(38.24)

where  is the residual variance, and  are the estimates from (38.23). We 
note here that EViews uses the non-degree of freedom estimator of the residual variance. As 
a result, spectral estimates computed in EViews may differ slightly from those obtained from 
other sources.

Not surprisingly, the spectrum estimator is sensitive to the number of lagged difference 
terms in the auxiliary equation. You may either specify a fixed parameter or have EViews 
automatically select one based on an information criterion. Automatic lag length selection is 
examined in “Automatic Bandwidth and Lag Length Selection” on page 600.

Default Settings

By default, EViews will choose the estimator of  used by the authors of a given test speci-
fication. You may, of course, override the default settings and choose from either family of 
estimation methods. The default settings are listed below:

Automatic Bandwidth and Lag Length Selection

There are three distinct situations in which EViews can automatically compute a bandwidth 
or a lag length parameter. 

AR spectral method Auxiliary AR regression specification

OLS , and , .

OLS detrended , and .

GLS detrended . and .

Unit root test Frequency zero spectrum default method

ADF, DFGLS not applicable

PP, KPSS Kernel (Bartlett) sum-of-covariances

ERS Point Optimal AR spectral regression (OLS)

NP AR spectral regression (GLS-detrended)
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The first situation occurs when you are selecting the bandwidth parameter  for the kernel-
based estimators of . For the kernel estimators, EViews provides you with the option of 
using the Newey-West (1994) or the Andrews (1991) data-based automatic bandwidth 
parameter methods. See the original sources for details. For those familiar with the Newey-
West procedure, we note that EViews uses the lag selection parameter formulae given in the 
corresponding first lines of Table II-C. The Andrews method is based on an AR(1) specifica-
tion. (See “Automatic Bandwidth Selection” on page 1119 for discussion.)

The latter two situations occur when the unit root test requires estimation of a regression 
with a parametric correction for serial correlation as in the ADF and DFGLS test equation 
regressions, and in the AR spectral estimator for . In all of these cases,  lagged differ-
ence terms are added to a regression equation. The automatic selection methods choose  
(less than the specified maximum) to minimize one of the following criteria:

where the modification factor  is computed as:

(38.25)

for , when computing the ADF test equation, and for  as defined in “Autoregres-
sive Spectral Density Estimator” on page 599, when estimating . Ng and Perron (2001) 
propose and examine the modified criteria, concluding with a recommendation of the MAIC.

For the information criterion selection methods, you must also specify an upper bound to 
the lag length. By default, EViews chooses a maximum lag of:

(38.26)

See Hayashi (2000, p. 594) for a discussion of the selection of this upper bound.

Unit Root Tests with a Breakpoint

The use of unit root tests to distinguish between trend and difference stationary data has 
become an essential tool in applied research. Accordingly, EViews offers a variety of stan-
dard unit root tests, including augmented Dickey-Fuller (ADF), Phillips-Perron (PP), Elliot, 

Information criterion Definition

Akaike (AIC)

Schwarz (SIC)

Hannan-Quinn (HQ)

Modified AIC (MAIC)

Modified SIC (MSIC)

Modified Hannan-Quinn (MHQ)
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Rothenberg, and Stock (ERS), Ng and Perron (NP), and Kwiatkowski, Phillips, Schmidt, and 
Shin (KPSS) tests (“Unit Root Testing,” on page 589).

However, as Perron (1989) points out, structural change and unit roots are closely related, 
and researchers should bear in mind that conventional unit root tests are biased toward a 
false unit root null when the data are trend stationary with a structural break. This observa-
tion has spurred development of a large literature outlining various unit root tests that 
remain valid in the presence of a break (see Hansen, 2001 for an overview).

EViews offers support for several types of modified augmented Dickey-Fuller tests which 
allow for levels and trends that differ across a single break date. You may compute unit root 
tests with a single break where:

• The break can occur slowly or immediately.

• The break consists of a level shift, a trend break, or both a shift and break.

• The break date is known, or the break date is unknown and estimated from the data.

• The data are non-trending or trending.

Background

We begin with a brief discussion of the specifications underlining the testing methodology. 
As always, our discussion is necessarily brief and we encourage you to consult the enclosed 
references for additional detail.

Our discussion follows the basic framework outlined in Perron (1989), Vogelsang and Perron 
(1998), Zivot and Andrews (1992), Banerjee et al. (1992) and others. For a useful overview 
of the literature, see Perron (2006). Note that our notation differs slightly from the above 
sources.

Break Variables

Before proceeding, it will be useful to define a few variables which allow us to characterize 
the breaks. Let  be an indicator function that takes the value 1 if the argument  is 
true, and 0 otherwise. Then the following variables are defined in terms of a specified break 
date ,

• An intercept break variable

(38.27)

that takes the value 0 for all dates prior to the break, and 1 thereafter.

• A trend break variable

(38.28)
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which takes the value 0 for all dates prior to the break, and is a break date re-based 
trend for all subsequent dates.

• A one-time break dummy variable

(38.29)

which takes the value of 1 only on the break date and 0 otherwise.

Note that following EViews convention, we define the break date as the first date for the new 
regime. This is in contrast to much of the literature which defines the break date as the last 
date of the previous regime.

The Model

Following Perron (1989), we consider four basic models for data with a one-time break. For 
non-trending data, we have a model with (O) a one-time change in level; for trending data, 
we have models with (A) a change in level, (B) a change in both level and trend, and (C) a 
change in trend.

In addition, we consider two versions of the four models which differ in their treatment of 
the break dynamics: the innovational outlier (IO) model assumes that the break occurs grad-
ually, with the breaks following the same dynamic path as the innovations, while the addi-
tive outlier (AO) model assumes the breaks occur immediately. The tests considered here 
evaluate the null hypothesis that the data follow a unit root process, possibly with a break, 
against a trend stationary with break alternative.

Within this basic framework there are a variety of specifications for the null and alternative 
hypotheses, depending on the assumptions one wishes to make about the break dynamics, 
trend behavior, and whether the break date is known or determined endogenously.

As in Perron (1989), we consider two distinct approaches to modeling the break dynamics.

Innovational Outlier Tests

For the IO model, we consider the following general null hypothesis:

(38.30)

where  are i.i.d. innovations, and  is a lag polynomial representing the dynamics of 
the stationary and invertible ARMA error process. Note that the break variables enter the 
model with the same dynamics as the  innovations.

For our alternative hypothesis, we assume a trend stationary model with breaks in the inter-
cept and trend:

(38.31)

with the breaks again following the innovation dynamics.
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We may construct a general Dickey-Fuller test equation which nests the two hypotheses:

(38.32)

and use the t-statistic for comparing  to 1 ( ) to evaluate the null hypothesis. As with 
conventional Dickey-Fuller unit root test equations, the  lagged differences of the  are 
included in the test equations to eliminate the effect of the error correlation structure on the 
asymptotic distribution of the statistic.

Within this general framework, we may specify different models for the null and alternative 
by placing zero restrictions on one or more of the trend and break parameters , , . . 
Following Perron (1989), Perron and Vogelsang (1992a, 1992b), and Vogelsang and Perron 
(1998), we consider four distinct specifications for the Dickey-Fuller regression which corre-
spond to different assumptions for the trend and break behavior:

• Model 0: non-trending data with intercept break:

(38.33)

Setting the trend and trend break coefficients  and  to zero yields a test of a ran-
dom walk against a stationary model with intercept break.

• Model 1: trending data with intercept break:

(38.34)

Setting the trend break coefficient  to zero produces a test of a random walk with 
drift against a trend stationary model with intercept break.

• Model 2: trending data with intercept and trend break:

(38.35)

The unrestricted Dickey-Fuller equation tests the random walk with drift against a 
trend stationary with intercept and trend break alternative.

• Model 3: trending data with trend break:

(38.36)

Setting the intercept break and break dummy coefficients  and  to zero tests a ran-
dom walk with drift null against a trend stationary with trend break alternative. 

Note that the test equation for Model 3 follows the methodology of Zivot and Andrews 
(1992) and Banerjee et al. (1992) which does not nest the null and alternatives, as 

 is absent from the test equation; see Vogelsang and Perron (1998), p. 1077 
for discussion.
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You should bear in mind that whether one specifies a known break date or estimates the 
break date from the data affects the allowable specifications for the null hypothesis.

If the break date is known as in Perron (1989), Models 0, 1, and 2 allow for breaks under the 
null hypothesis. Model 3 does not allow for a break under the null.

If the break date is estimated, the test statistics considered here do not permit a breaking 
trend under the null. Vogelsang and Perron (1998) offer a detailed discussion of this point, 
noting that this undesirable restriction is required to obtain distributional results for the 
resulting Dickey-Fuller t-statistic. They offer practical advice for testing in the case where 
you wish to allow  under the null. See also Kim and Perron (2009) for more recent 
work that directly tackles this issue.

Additive Outlier Tests

The general AO model null hypothesis is:

(38.37)

where  are i.i.d. innovations, and  is a lag polynomial representing the dynamics of 
the stationary and invertible ARMA error process, and  is a drift parameter. Note that the 
full impact of the break variables occurs immediately.

The alternative hypothesis is for a trend stationary model with possible breaks in the inter-
cept and trend:

(38.38)

Testing for a unit root in the AO framework is a two-step procedure where we first use the 
intercept, trend, and breaking variables to detrend the series using OLS, and then use the 
detrended series to test for a unit root using a modified Dickey-Fuller regression.

In the first-step of the AO test, we detrend the data using a model with appropriate trend and 
break variables:

• Model 0: non-trending data with intercept break:

(38.39)

• Model 1: trending data with intercept break:

(38.40)

• Model 2: trending data with intercept and trend break:

(38.41)

• Model 3: trending data with trend break:

(38.42)
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In the second-step, let  be the residuals obtained from the detrending equation. The 
resulting Dickey-Fuller unit root test equation is given by,

• Models 0, 1, 2:

(38.43)

• Model 3:

(38.44)

where we use the t-statistic for comparing  to 1, , to evaluate the null hypothesis. 

These are standard augmented Dickey-Fuller equations with the addition of  break 
dummy variables  in Equation (38.44) to eliminate the asymptotic dependence of 
the test statistic on the correlation structure of the errors and to ensure that the asymptotic 
distribution is identical to that of the corresponding IO specification. See Perron and Vogel-
sang (1992b) for discussion.

As with the IO tests, when we estimate the break date from the data, the distributional 
results require that there be no trend break under the null hypothesis. See Vogelsang and 
Perron (1998) and Kim and Perron (2009) for discussion.

Test Options

For a given test equation described above, you must choose a number of lags  to include in 
the test equation, and you must specify the candidate date  at which to evaluate the 
break. EViews offers a number of tools for you to use when making these choices.

Lag Selection

The theoretical properties of the test statistics requires that we choose the number of lag 
terms in the Dickey-Fuller equations  to be large enough to eliminate the effect of the cor-
relation structure of the errors on the asymptotic distribution of the statistic

• Fixed (with observation-based suggestion from Said and Dickey, 1984).

All of the remaining methods are data dependent, and require specification of a maximum 
lag length . A different optimal lag length  is obtained for each candidate break 
date. 

• t-test.

Following Perron (1989), Perron and Vogelsang (1992a, 1992b), and Vogelsang and 
Perron (1998),  is chosen so that the coefficient on the last included dependent 
variable lag difference is significant at a specified probability value, while the coeffi-
cients on the last included lag difference in higher-order autoregressions up to  
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ŷt qiDt i– Tb 
i 0
k
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are all insignificant at the same level. The probability values for the t-statistics are 
computed using the t-distribution.

The t-test method requires the specification of a p-value for use in evaluating signifi-
cance. The default p-value of 0.10 may be changed by the user.

• F-test.

Based on an approach of Said and Dickey (1984) (see also Perron and Vogelsang, 
1992a, 1992b), the approach uses an F-test of the joint significance of the lag coeffi-
cients for a given  against all higher lags up to . If any of the tests against 
higher-order lags are significant at a specified probability level, we set . 
If none of the test statistics is significant, we lower  by 1 and continue. We begin 
the procedure with  and continue until we achieve a rejection with 

, or until the lower bound  is evaluated without rejection and 
we set .

The F-test method requires the specification of a p-value for use in evaluating signifi-
cance. The default p-value of 0.10 may be changed by the user.

• Information criterion

Following the approach of Hall (1994) and Ng and Perron (1995),  is chosen to 
minimize the specified information criterion amongst models with 0 to  lags. 

You may choose between the Akaike, Schwarz, Hannan-Quinn, Modified Akaike, 
Modified Schwarz, Modified Hannan-Quinn. Note that the sample used for model 
selection excludes data using full set of lag differences up to .

Break Date Selection

Perron (1989) specified an a priori fixed break date. Subsequent research (Zivot and 
Andrews, 1992; Banerjee et al., 1992; Vogelsang and Perron, 1998) has focused on endoge-
nously determining break dates from the data. EViews supports the following break date 
selection methods:

• Minimize the Dickey-Fuller t-statistic .

Select the date providing the most evidence against the null hypothesis of a unit root 
and in favor of the breaking trend alternative hypothesis.

• Minimize or maximize  t-statistic ( ) Maximize  t-statistic ( ), Minimize or 
Maximize  t-statistic ( ), Maximize  t-statistic ( ), Maximize  F-statis-
tic ( ).

Choose the date with the strongest evidence of a break. The alternative minimize and 
maximize options are provided to allow for evaluation of one-sided alternatives, and 
will produce different critical values for the final Dickey-Fuller test statistic and tests 
with greater power than the non-directional alternatives.
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v̂ ĝ, 



608—Chapter 38. Univariate Time Series Analysis
• User-specified break date.

Specify a fixed break date. This option allows you to carry out the original Perron 
(1989) test.

For the automatic break selection methods, the following procedure is carried out. For each 
possible break date, the optimal number of lags  is chosen using the specified method, and 
the test statistic of interest is computed. The procedure is repeated for each possible break 
date, and the optimal break date is chosen from the candidate dates.

When the method is minimize , all possible break dates are considered. For the methods 
involving  or , trimming is performed to remove some endpoint values from consider-
ation as the break date.

Computing a Unit Root with Breakpoint Test

To compute a breakpoint unit root test, open a series window and select View/Breakpoint 
Unit Root Test... to display the dialog:

The dialog is divided into six sections. 

• The first section tells EViews whether you wish to compute the test using the raw 
data (Level), or whether to test for higher order integration using differences (1st 
difference or 2nd difference) of the original data.

• The Trend specification section determines the trend components that are included 
in the test. Using the Basic dropdown, you may choose between an Intercept only or 
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an Intercept and trend specification. If you include a trend in the specification you 
will be prompted to indicate which deterministic components are breaking by choos-
ing Intercept, Intercept and trend, or Trend in the Breaking dropdown menu.

• The Lag length section describes the method for selecting lags  for each of the aug-
mented Dickey-Fuller test specifications (“Lag Selection” on page 606). You may 
choose between Akaike criterion (AIC), Schwarz criterion (BIC), Hannan-Quinn 
criterion (HQC), Modified Akaike, Modified Schwarz, Modified Hannan-Quinn, t-
statistic, F-statistic, and Fixed lag specifications. For all but the Fixed lag method, 
you must provide a Max. lag to test; by default, EViews will suggest a maximum lag 
based on the number of observations in the series. For the test methods (t-statistic, 
F-statistic), you must specify a p-value for the tests; for the Fixed lag method, you 
must specify the actual number of use using the User lags edit field.

• The Break type section allows you to choose between the default Innovation outlier 
and the Additive outlier specifications (“The Model” on page 603).

• The Breakpoint selection section specifies the method for determining the identity 
of the breakpoint (“Break Date Selection” on page 607). 

For a model with an intercept break, you may choose between minimizing the t-sta-
tistic for  in the ADF test (Dickey-Fuller min-t), minimizing the t-statistic for the 
intercept break coefficient (Intercept break min-t), maximizing the t-statistic for the 
break coefficient (Intercept break max-t), maximizing the absolute value of the t-
statistic for the intercept break coefficient (Intercept break max-abs-t), or providing 
a specific date (User-specified). 
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For models with a trend break, there will be corresponding entries for minimizing 
and maximizing the t-statistic or absolute value of the t-statistic for the trend break 
coefficient. For models with both an intercept and trend break you will be offered an 
additional choice of using the F-statistic for the break coefficients (Incpt.+trend 
break max-F) to select the breakpoint.

You will be prompted for specify a trimming percentage when employing methods 
that involve the t-statistic or F-statistic of the break coefficients, EViews will remove 
from consideration as the breakpoint this percentage of the observations from each 
endpoint.

For the User-specified break choice you will be prompted to specify a single date.

• Lastly, the Additional output controls the output produced by the view. The check-
box Display test and selection graphs controls whether to show only the test results 
with the selected break, or to show the test results and graphs depicting the break 
selection criterion results for each candidate break.

If you provide a name in the Results matrix edit field, EViews will save the results 
from each of the candidate augmented Dickey-Fuller tests in workfile. The first col-
umn contains the observation identifier for the break; the second through fifth col-
umns contain the autoregressive coefficient, autoregressive coefficient standard 
error, number of observations, number of variables, and number of selected lags in 
the Dickey-Fuller regressions. 

If appropriate, the remaining columns contain results for the breakpoint selection, 
with the contents varying with the method chosen. When minimizing the Dickey-
Fuller , the output consists of a single column containing the  statistics. For 
methods involving one of  or , the output contains the coefficient value, standard 
error, and the corresponding t-statistic; for the F-statistic method, the output columns 
consist of the estimates of , the standard error of , the estimates of , the standard 
error of , and the F-statistic for testing the significance of the two coefficients.

Examples

As examples, we replicate some of the results given in Perron (1997), using data originally 
provided by Nelson and Plosser (1982). The dataset contains fourteen annual macroeco-
nomic series with values between 1860 and 1988. These data are provided in the workfile 
“nelson_plosser.wf1”.
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Real GNP

To begin, we replicate the results in the second row of Table 3 in Perron (1997), which tests 
for a unit root in the log of real GNP using data between 1909 and 1970. We display the log 
of real GDP, and set the workfile sample to dates from 1909 to 1970 with the commands

smpl 1909 1970

show log(rgnp)

To perform the unit root test with breakpoints, we click on View/Breakpoint Unit Root 
Test... which brings up the test dialog. In this example Perron tests for the existence of a unit 
root of the data in levels. The test assumes an innovation outlier break, with a trend specifi-
cation given by Model 2 (Equation (38.35), above); trending data with both intercept and 
trend break.

Perron selects a breakpoint by minimizing the Dickey-Fuller t-statistic, and selects a lag 
length using the F-test.

We can match these settings by clicking the Level and Innovation Outlier buttons, changing 
the Basic Trend specification to Trend and Intercept and the Breaking Trend specification 
to Intercept, selecting Dickey-Fuller min-t as the Breakpoint selection, and changing the 
Lag length Method to F-statistic:

Clicking OK produces the following results:
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The top section of this output describes the test that was performed, with a description of 
the underlying series, the trend and break specification, and the break type. The second sec-
tion displays the selected break date, which in this case is 1929. Recall that, unlike Perron, 
EViews reports the break date for the start of the new regime instead of the last date before 
of the old regime, so the EViews reported date of 1929 matches Perron’s 1928 result. Lastly, 
we see that the selected number of lags for corresponding test regression, selected on the 
basis of F-statistic selection is eight.

The lower section reports the Augmented Dickey-Fuller t-statistic for the unit root test, along 
with Vogelsang’s asymptotic p-values. Our test resulted in a statistic of -5.50, with a p-value 
less than 0.01, leading us to reject the null hypothesis of a unit root.

EViews also provides a graph of the Augmented Dickey-Fuller statistics and AR coefficients 
at each test date:
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Both graphs show a large dip in 1929, leaving little doubt as to which date should be 
selected as the break point.

Employment

Our second example replicates row nine of Table 3 in Perron (2007). This example performs 
a unit root test on the log of employment using data from 1890 to 1970. We again begin with 
issuing commands to set the sample and display the log of employment:

smpl 1890 1970

show log(totalemp)

In this test, Perron again assumes an innovation outlier break, with a trend specification 
given by Model 2 (Equation (38.35), above); trending data with intercept and trend break. 
However Perron now selects the breakpoint corresponding to the minimum intercept break 
t-statistic, and selects the lag-length using the t-statistic method. We replicate these choices 
with the following dialog settings:

The first section of the results of this test are shown below:
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Again, the top section of this output describes the test that was performed, notably the 
underlying series, the trend and break specifications, and the break type. From the second 
section we can see that again a date of 1929 was chosen as the most likely break date. The t-
statistic based lag selection selected seven lags for this test regression.

The second section displays the test statistic and associated p-value. The statistic value of -
4.918 matches the value report by Perron, and the p-value again means that we reject (at a 
5% significance level) the null hypothesis of a unit root.

GNP Deflator

Our final example replicates row 12 of Table 3 in Perron (1997), and performs a unit root test 
with breaks on the log of the GNP deflator between 1889 and 1970. We set the workfile sam-
ple and display the log of the GNP deflator by issuing the commands

smpl 1889 1970

show log(gnpdeflat)

We can mimic Perron’s results with the following dialog settings:
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which yield results of:

Here, 1920 was selected at the most likely break date, and the automatic lag selection rou-
tine selected 9 lags.

The t-statistic of -3.869 matches that reported by Perron, and the corresponding p-value of 
0.27 indicates we cannot reject the hypothesis that the log of the GNP deflator has a unit 
root.
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Panel Unit Root Testing

Recent literature suggests that panel-based unit root tests have higher power than unit root 
tests based on individual time series. EViews will compute one of the following five types of 
panel unit root tests: Levin, Lin and Chu (2002), Breitung (2000), Im, Pesaran and Shin 
(2003), Fisher-type tests using ADF and PP tests (Maddala and Wu (1999) and Choi (2001)), 
and Hadri (2000).

While these tests are commonly termed “panel unit root” tests, theoretically, they are simply 
multiple-series unit root tests that have been applied to panel data structures (where the 
presence of cross-sections generates “multiple series” out of a single series). Accordingly, 
EViews supports these tests in settings involving multiple series: as a series view (if the 
workfile is panel structured), as a group view, or as a pool view.

Performing Panel Unit Root Tests in EViews

The following discussion assumes that you are familiar with the basics of both unit root 
tests and panel unit root tests.

To begin, select View/Unit Root Test…from the menu of an EViews group or pool object, or 
from the menu of an individual series in a panel structured workfile. Here we show the dia-
log for a Group unit root test—the other dialogs differ slightly (for testing using a pool 
object, there is an additional field in the upper-left hand portion of the dialog where you 
must indicate the name of the pool series on which you wish to conduct your test; for the 
series object in a panel workfile, the Use balanced sample option is not present).

If you wish to accept the default 
settings, simply click on OK. 
EViews will use the default Sum-
mary setting, and will compute 
a full suite of unit root tests on 
the levels of the series, along 
with a summary of the results. 

To customize the unit root calcu-
lations, you will choose from a 
variety of options. The options 
on the left-hand side of the dia-
log determine the basic structure 
of the test or tests, while the 
options on the right-hand side of 
the dialog control advanced 
computational details such as bandwidth or lag selection methods, or kernel methods.
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The dropdown menu at the top of the dialog is where you will choose the type of test to per-
form. There are six settings: “Summary”, “Common root - Levin, Lin, Chu”, “Common 
root - Breitung”, “Individual root - Im, Pesaran, Shin”, “Individual root - Fisher - ADF”, 
“Individual root - Fisher - PP”, and “Hadri”, corresponding to one or more of the tests 
listed above. The dropdown menu labels include a brief description of the assumptions 
under which the tests are computed. “Common root” indicates that the tests are estimated 
assuming a common AR structure for all of the series; “Individual root” is used for tests 
which allow for different AR coefficients in each series. 

We have already pointed out that the Summary default instructs EViews to estimate the first 
five of the tests, where applicable, and to provide a brief summary of the results. Selecting 
an individual test type allows you better control over the computational method and pro-
vides additional detail on the test results.

The next two sets of radio buttons allow you to control the specification of your test equa-
tion. First, you may choose to conduct the unit root on the Level, 1st difference, or 2nd dif-
ference of your series. Next, you may choose between sets of exogenous regressors to be 
included. You can select Individual intercept if you wish to include individual fixed effects, 
Individual intercepts and individual trends to include both fixed effects and trends, or 
None for no regressors.

The Use balanced sample option is present only if you are estimating a Pool or a Group unit 
root test. If you select this option, EViews will adjust your sample so that only observations 
where all series values are not missing will be included in the test equations.

Depending on the form of the test or tests to be computed, you will be presented with vari-
ous advanced options on the right side of the dialog. For tests that involve regressions on 
lagged difference terms (Levin, Lin, and Chu, Breitung, Im, Pesaran, and Shin, Fisher - ADF) 
these options relate to the choice of the number of lags to be included. For the tests involv-
ing kernel weighting (Levin, Lin, and Chu, Fisher - PP, Hadri), the options relate to the 
choice of bandwidth and kernel type.

For a group or pool unit root test, the EViews default is to use automatic selection methods: 
information matrix criterion based for the number of lag difference terms (with automatic 
selection of the maximum lag to evaluate), and the Andrews or Newey-West method for 
bandwidth selection. For unit root tests on a series in a panel workfile, the default behavior 
uses user-specified options.

If you wish to override these settings, simply enter the appropriate information. You may, for 
example, select a fixed, user-specified number of lags by entering a number in the User 
specified field. Alternatively, you may customize the settings for automatic lag selection 
method. Alternative criteria for evaluating the optimal lag length may be selected via the 
dropdown menu (Akaike, Schwarz, Hannan-Quinn, Modified Akaike, Modified Schwarz, 
Modified Hannan-Quinn), and you may limit the number of lags to try in automatic selec-
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tion by entering a number in the Maximum lags box. For the kernel based methods, you 
may select a kernel type from the dropdown menu (Bartlett, Parzen, Quadratic spectral), 
and you may specify either an automatic bandwidth selection method (Andrews, Newey-
West) or user-specified fixed bandwidth.

As an illustration, we perform a panel unit root tests on real gross investment data (I) in the 
oft-cited Grunfeld data containing data on R&D expenditure and other economic measures 
for 10 firms for the years 1935 to 1954 found in “Grunfeld_Baltagi.WF1”. We compute the 
summary panel unit root test, using individual fixed effects as regressors, and automatic lag 
difference term and bandwidth selection (using the Schwarz criterion for the lag differences, 
and the Newey-West method and the Bartlett kernel for the bandwidth). The results for the 
panel unit root test are presented below:

The top of the output indicates the type of test, exogenous variables and test equation 
options. If we were instead estimating a Pool or Group test, a list of the series used in the 
test would also be depicted. The lower part of the summary output gives the main test 
results, organized both by null hypothesis as well as the maintained hypothesis concerning 
the type of unit root process. 

All of the results indicate the presence of a unit root, as the LLC, IPS, and both Fisher tests 
fail to reject the null of a unit root.

If you only wish to compute a single unit root test type, or if you wish to examine the tests 
results in greater detail, you may simply repeat the unit root test after selecting the desired 
test in Test type dropdown menu. Here, we show the bottom portion of the LLC test specific 
output for the same data:

Panel unit root test: Summary    
Series:  I    
Date: 08/12/09   Time: 14:17   
Sample: 1935 1954    
Exogenous variables: Individual effects  
Automatic selection of maximum lags   
Automatic lag length selection based on SIC: 0 to 3  
Newey-West automatic bandwidth selection and Bartlett kernel 

   Cross-  
Method Statistic Prob.** sections Obs 

Null: Unit root (assumes common unit root process)   
Levin, Lin & Chu t*  2.39544  0.9917  10  184 

     
Null: Unit root (assumes individual unit root process)  

Im, Pesaran and Shin W -stat   2.80541  0.9975  10  184 
ADF -  Fisher Chi-square  12.0000  0.9161  10  184 
PP - Fisher Chi-square  12.9243  0.8806  10  190 

** Probabilities for Fisher tests are computed using an asymptotic Chi 
        -square distribution. All other tests assume asymptotic 
        normality.   
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For each cross-section, the autoregression coefficient, variance of the regression, HAC of the 
dependent variable, the selected lag order, maximum lag, bandwidth truncation parameter, 
and the number of observations used are displayed.

Panel Unit Root Details

Panel unit root tests are similar, but not identical, to unit root tests carried out on a single 
series. Here, we briefly describe the five panel unit root tests currently supported in EViews; 
for additional detail, we encourage you to consult the original literature. The discussion 
assumes that you have a basic knowledge of unit root theory.

We begin by classifying our unit root tests on the basis of whether there are restrictions on 
the autoregressive process across cross-sections or series. Consider a following AR(1) pro-
cess for panel data:

(38.45)

where  cross-section units or series, that are observed over periods 
.

The  represent the exogenous variables in the model, including any fixed effects or indi-
vidual trends,  are the autoregressive coefficients, and the errors  are assumed to be 
mutually independent idiosyncratic disturbance. If ,  is said to be weakly (trend-) 
stationary. On the other hand, if  then  contains a unit root.

For purposes of testing, there are two natural assumptions that we can make about the . 
First, one can assume that the persistence parameters are common across cross-sections so 
that  for all . The Levin, Lin, and Chu (LLC), Breitung, and Hadri tests all employ 
this assumption. Alternatively, one can allow  to vary freely across cross-sections. The Im, 
Pesaran, and Shin (IPS), and Fisher-ADF and Fisher-PP tests are of this form.

Intermediate results on I      

Cross 2nd Stage Variance HAC of   Max Band-  
section Coefficient of Reg Dep. Lag Lag width Obs 

 1  0.22672  11314.  18734.  0  4  1.0  19 
 2 -0.55912  7838.8  1851.4  1  4  11.0  18 
 3 -0.10233  408.12  179.68  3  4  5.0  16 
 4 -0.05375  444.60  236.40  0  4  7.0  19 
 5 -0.35898  147.58  11.767  1  4  18.0  18 
 6  0.12362  62.429  82.716  0  4  1.0  19 
 7 -0.13862  129.04  22.173  0  4  17.0  19 
 8 -0.44416  113.56  43.504  1  4  6.0  18 
 9 -0.26332  90.040  89.960  0  4  2.0  19 
 10 -0.11741  0.8153  0.5243  0  4  5.0  19 

        
 Coefficient t-Stat SE Reg mu* sig*  Obs 

Pooled -0.01940 -0.464  1.079 -0.554  0.919   184 
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Tests with Common Unit Root Process

Levin, Lin, and Chu (LLC), Breitung, and Hadri tests all assume that there is a common unit 
root process so that  is identical across cross-sections. The first two tests employ a null 
hypothesis of a unit root while the Hadri test uses a null of no unit root.

LLC and Breitung both consider the following basic ADF specification:

(38.46)

where we assume a common , but allow the lag order for the difference terms, 
, to vary across cross-sections. The null and alternative hypotheses for the tests may be 

written as:

(38.47)

(38.48)

Under the null hypothesis, there is a unit root, while under the alternative, there is no unit 
root. 

Levin, Lin, and Chu

The method described in LLC derives estimates of  from proxies for  and  that are 
standardized and free of autocorrelations and deterministic components.

For a given set of lag orders, we begin by estimating two additional sets of equations, 
regressing both , and  on the lag terms  (for ) and the exog-
enous variables . The estimated coefficients from these two regressions will be denoted 

 and , respectively.

We define  by taking  and removing the autocorrelations and deterministic com-
ponents using the first set of auxiliary estimates:

(38.49)

Likewise, we may define the analogous  using the second set of coefficients:

(38.50)

Next, we obtain our proxies by standardizing both  and , dividing by the regres-
sion standard error:
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(38.51)

where  are the estimated standard errors from estimating each ADF in Equation (38.46).

Lastly, an estimate of the coefficient  may be obtained from the pooled proxy equation:

(38.52)

LLC show that under the null, a modified t-statistic for the resulting  is asymptotically nor-
mally distributed

(38.53)

where  is the standard t-statistic for ,  is the estimated variance of the error 
term ,  is the standard error of , and:

(38.54)

The remaining terms, which involve complicated moment calculations, are described in 
greater detail in LLC. The average standard deviation ratio, , is defined as the mean of 
the ratios of the long-run standard deviation to the innovation standard deviation for each 
individual. Its estimate is derived using kernel-based techniques. The remaining two terms, 

 and  are adjustment terms for the mean and standard deviation.

The LLC method requires a specification of the number of lags used in each cross-section 
ADF regression, , as well as kernel choices used in the computation of . In addition, 
you must specify the exogenous variables used in the test equations. You may elect to 
include no exogenous regressors, or to include individual constant terms (fixed effects), or 
to employ individual constants and trends.

Breitung

The Breitung method differs from LLC in two distinct ways. First, only the autoregressive 
portion (and not the exogenous components) is removed when constructing the standard-
ized proxies:

(38.55)
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where , , and  are as defined for LLC.

Second, the proxies are transformed and detrended,

(38.56)

The persistence parameter  is estimated from the pooled proxy equation:

(38.57)

Breitung shows that under the null, the resulting estimator  is asymptotically distributed 
as a standard normal.

The Breitung method requires only a specification of the number of lags used in each cross-
section ADF regression, , and the exogenous regressors. Note that in contrast with LLC, 
no kernel computations are required.

Hadri

The Hadri panel unit root test is similar to the KPSS unit root test, and has a null hypothesis 
of no unit root in any of the series in the panel. Like the KPSS test, the Hadri test is based on 
the residuals from the individual OLS regressions of  on a constant, or on a constant and 
a trend. For example, if we include both the constant and a trend, we derive estimates from:

(38.58)

Given the residuals  from the individual regressions, we form the LM statistic:

(38.59)

where  are the cumulative sums of the residuals,

(38.60)

and  is the average of the individual estimators of the residual spectrum at frequency zero:

(38.61)

EViews provides several methods for estimating the . See “Unit Root Testing” on 
page 589 for additional details.

An alternative form of the LM statistic allows for heteroskedasticity across :
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(38.62)

Hadri shows that under mild assumptions,

(38.63)

where  and , if the model only includes constants (  is set to 0 for all 
), and  and , otherwise.

The Hadri panel unit root tests require only the specification of the form of the OLS regres-
sions: whether to include only individual specific constant terms, or whether to include both 
constant and trend terms. EViews reports two -statistic values, one based on  with 
the associated homoskedasticity assumption, and the other using  that is heteroskedas-
ticity consistent.

It is worth noting that simulation evidence suggests that in various settings (for example, 
small ), Hadri's panel unit root test experiences significant size distortion in the presence 
of autocorrelation when there is no unit root. In particular, the Hadri test appears to over-
reject the null of stationarity, and may yield results that directly contradict those obtained 
using alternative test statistics (see Hlouskova and Wagner (2006) for discussion and 
details).

Tests with Individual Unit Root Processes

The Im, Pesaran, and Shin, and the Fisher-ADF and PP tests all allow for individual unit root 
processes so that  may vary across cross-sections. The tests are all characterized by the 
combining of individual unit root tests to derive a panel-specific result.

Im, Pesaran, and Shin

Im, Pesaran, and Shin begin by specifying a separate ADF regression for each cross section:

(38.64)

The null hypothesis may be written as,

(38.65)

while the alternative hypothesis is given by:

(38.66)
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(where the  may be reordered as necessary) which may be interpreted as a non-zero frac-
tion of the individual processes is stationary.

After estimating the separate ADF regressions, the average of the t-statistics for  from the 
individual ADF regressions, :

(38.67)

is then adjusted to arrive at the desired test statistics.

In the case where the lag order is always zero (  for all ), simulated critical values 
for  are provided in the IPS paper for different numbers of cross sections , series 
lengths , and for test equations containing either intercepts, or intercepts and linear 
trends. EViews uses these values, or linearly interpolated values, in evaluating the signifi-
cance of the test statistics.

In the general case where the lag order in Equation (38.64) may be non-zero for some cross-
sections, IPS show that a properly standardized  has an asymptotic standard normal dis-
tribution:

(38.68)

The expressions for the expected mean and variance of the ADF regression t-statistics, 
 and , are provided by IPS for various values of  and  and dif-

fering test equation assumptions, and are not provided here.

The IPS test statistic requires specification of the number of lags and the specification of the 
deterministic component for each cross-section ADF equation. You may choose to include 
individual constants, or to include individual constant and trend terms.

Fisher-ADF and Fisher-PP

An alternative approach to panel unit root tests uses Fisher’s (1932) results to derive tests 
that combine the p-values from individual unit root tests. This idea has been proposed by 
Maddala and Wu, and by Choi.

If we define  as the p-value from any individual unit root test for cross-section , then 
under the null of unit root for all  cross-sections, we have the asymptotic result that
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(38.69)

In addition, Choi demonstrates that:

(38.70)

where  is the inverse of the standard normal cumulative distribution function.

EViews reports both the asymptotic  and standard normal statistics using ADF and Phil-
lips-Perron individual unit root tests. The null and alternative hypotheses are the same as for 
the as IPS.

For both Fisher tests, you must specify the exogenous variables for the test equations. You 
may elect to include no exogenous regressors, to include individual constants (effects), or 
include individual constant and trend terms.

Additionally, when the Fisher tests are based on ADF test statistics, you must specify the 
number of lags used in each cross-section ADF regression. For the PP form of the test, you 
must instead specify a method for estimating . EViews supports estimators for  based 
on kernel-based sum-of-covariances. See “Frequency Zero Spectrum Estimation,” beginning 
on page 598 for details.

Summary of Available Panel Unit Root Tests

The following table summarizes the basic characteristics of the panel unit root tests avail-
able in EViews:

Test Null Alternative Possible 
Deterministic 
Component

Autocorrela-
tion Correc-
tion Method

Levin, Lin and 
Chu

Unit root No Unit Root None, F, T Lags

Breitung Unit root No Unit Root None, F, T Lags

IPS Unit Root Some cross-
sections with-

out UR

F, T Lags

Fisher-ADF Unit Root Some cross-
sections with-

out UR

None, F, T Lags
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None - no exogenous variables; F - fixed effect; and T - individual effect and individual 
trend.

Variance Ratio Test

The question of whether asset prices are predictable has long been the subject of consider-
able interest. One popular approach to answering this question, the Lo and MacKinlay 
(1988, 1989) overlapping variance ratio test, examines the predictability of time series data 
by comparing variances of differences of the data (returns) calculated over different inter-
vals. If we assume the data follow a random walk, the variance of a -period difference 
should be  times the variance of the one-period difference. Evaluating the empirical evi-
dence for or against this restriction is the basis of the variance ratio test.

EViews allows you to perform the Lo and MacKinlay variance ratio test for homoskedastic 
and heteroskedastic random walks, using the asymptotic normal distribution (Lo and 
MacKinlay, 1988) or wild bootstrap (Kim, 2006) to evaluate statistical significance. In addi-
tion, you may compute the rank, rank-score, or sign-based forms of the test (Wright, 2000), 
with bootstrap evaluation of significance. In addition, EViews offers Wald and multiple com-
parison variance ratio tests (Richardson and Smith, 1991; Chow and Denning, 1993), so you 
may perform joint tests of the variance ratio restriction for several intervals.

Performing Variance Ratio Tests in EViews

First, open the series which contains the data which you wish to test and click on View/
Variance Ratio Test… Note that EViews allows you to perform the test using the differ-
ences, log differences, or original data in your series as the random walk innovations.

Fisher-PP Unit Root Some cross-
sections with-

out UR

None, F, T Kernel

Hadri No Unit Root Unit Root F, T Kernel

q
q
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The Output dropdown deter-
mines whether you wish to 
see your test output in Table 
or Graph form. (As we dis-
cuss below, the choices differ 
slightly in a panel workfile.)

The Data specification sec-
tion describes the properties 
of the data in the series. By 
default, EViews assumes you 
wish to test whether the data 
in the series follow a Random 
walk, so that variances are 
computed for differences of 
the data. Alternately, you 
may assume that the data fol-
low an Exponential random 
walk so that the innovations are obtained by taking log differences, or that the series con-
tains the Random walk innovations themselves.

The Test specification section describes the method used to compute your test. By default, 
EViews computes the basic Lo and MacKinlay variance ratio statistic assuming heteroske-
dastic increments to the random walk. The default calculations also allow for a non-zero 
innovation mean and bias correct the variance estimates.

The Compute using dropdown, which defaults to Original data, instructs EViews to use the 
original Lo and MacKinlay test statistic based on the innovations obtained from the original 
data. You may instead use the Compute using dropdown to instruct EViews to perform the 
variance ratio test using Ranks, Rank scores (van der Waerden scores), or Signs of the 
data.

For the Lo and MacKinlay test statistic, the three checkboxes directly beneath the dropdown 
allow you to choose whether to bias-correct the variance estimates, to construct the test 
using the heteroskedasticity robust test standard error, and to allow for non-zero means in 
the innovations. The Probabilities dropdown may be used to select between computing the 
test probabilities using the default Asymptotic normal results (Lo and MacKinlay 1988), or 
using the Wild bootstrap (Kim 2006). If you choose to perform a wild bootstrap, the 
Options portion on the lower right of the dialog will prompt you to choose a bootstrap error 
distribution (Two-point, Rademacher, Normal), number of replications, random number 
generator, and to specify an optional random number generator seed.
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For variance ratio test com-
puted using Ranks, Rank 
scores (van der Waerden 
scores), or Signs of the data, 
the probabilities will be com-
puted by permutation boot-
strapping using the settings 
specified under Options. For 
the ranks and rank scores 
tests, there is an additional 
Tie handling option for the 
method of assigning ranks in 
the presence of tied data.

Lastly, the Test periods sec-
tion identifies the intervals 
whose variances you wish to 
compare to the variance of 
the one-period innovations. You may specify a single period or more than one period; if 
there is more than one period, EViews will perform one ore more joint tests of the variance 
ratio restrictions for the specified periods.

There are two ways to specify the periods to test. First, you may provide a user-specified list 
of values or name of a vector containing the values. The default settings, depicted above, are 
to compute the test for periods “2 4 8 16.” Alternately, you may click on the Equal-spaced 
grid radio, and enter a minimum, maximum, and step.

If you are performing your test on a series in a panel workfile, the 
Output options differ slightly. If you wish to produce output in 
tabular form, you can choose to compute individual variance 
ratio tests for each cross-section and form a Fisher Combined test (Table - Fisher Com-
bined), or you can choose to stack the cross-sections into a single series and perform the 
test on the stacked panel (Table - Stacked Panel). Note that the stacked panel method 
assumes that all means and variances are the same across all cross-sections; the only adjust-
ment for the panel structure is in data handling that insures that lags never cross the seams 
between cross-sections. There are two graphical counterparts to the table choices: Graph - 
Individual, which produces a graph for each cross-section, and Graph - Stacked Panel, 
which produces a graph of the results for the stacked analysis.

An Example

In our example, we employ the time series data on nominal exchange rates used by Wright 
(2000) to illustrate his modified variance ratio tests (“Wright.WF1”). The data in the first 
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page (WRIGHT) of the workfile provide the relative-to-U.S. exchange rates for the Canadian 
dollar, French franc, German mark, Japanese yen, and the British pound for the 1,139 weeks 
from August 1974 through May 1996. Of interest is whether the exchange rate returns, as 
measured by the log differences of the rates, are i.i.d. or martingale difference, or alter-
nately, whether the exchange rates themselves follow an exponential random walk.

We begin by performing tests 
on the Japanese yen. Open 
the JP series, then select 
View/Variance Ratio... to 
display the dialog. We will 
make a few changes to the 
default settings to match 
Wright’s calculations. First, 
select Exponential random 
walk in the Data specifica-
tion section to tell EViews 
that you wish to work with 
the log returns. Next, 
uncheck the Use unbiased 
variances and Use het-
eroskedastic robust S.E. 
checkboxes to perform the 
i.i.d. version of the Lo-MacKinlay test with no bias correction. Lastly, change the user-speci-
fied test periods to “2 5 10 30” to match the test periods examined by Wright. Click on OK to 
compute and display the results.

The top portion of the output shows the test settings and basic test results.
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Since we have specified more than one test period, there are two sets of test results. The 
“Joint Tests” are the tests of the joint null hypothesis for all periods, while the “Individual 
Tests” are the variance ratio tests applied to individual periods. Here, the Chow-Denning 
maximum  statistic of 4.295 is associated with the period 5 individual test. The approxi-
mate p-value of 0.0001 is obtained using the studentized maximum modulus with infinite 
degrees of freedom so that we strongly reject the null of a random walk. The results are 
quite similar for the Wald test statistic for the joint hypotheses. The individual statistics gen-
erally reject the null hypothesis, though the period 2 variance ratio statistic p-value is 
slightly greater than 0.05.

The bottom portion of the output shows the intermediate results for the variance ratio test 
calculations, including the estimated mean, individual variances, and number of observa-
tions used in each calculation.

Alternately, we may display a graph of the test statistics using the same settings. Simply 
click again on View/Variance Ratio Test..., change the Output dropdown from Table to 
Graph, then fill out the dialog as before and click on OK:

Null Hypothesis: Log JP is a random walk   
Date: 04/21/09   Time: 15:15   
Sample: 8/07/1974 5/29/1996   
Included observations: 1138 (after adjustments)  
Standard error estimates assume no heteroskedasticity  
Use biased variance estimates   
User-specified lags: 2 5 10 30   

Joint Tests Value df Probability 
Max |z| (at period 5)*  4.295371  1138  0.0001 
Wald (Chi-Square)  22.63414  4  0.0001 

     
Individual Tests    

Period Var. Ratio Std. Error  z-Statistic Probability 

 2  1.056126  0.029643  1.893376  0.0583 
 5  1.278965  0.064946  4.295371  0.0000 
 10  1.395415  0.100088  3.950676  0.0001 
 30  1.576815  0.182788  3.155651  0.0016 

*Probability approximation using studentized maximum modulus with 
        parameter value 4 and infinite degrees of freedom  

z

Test Details (Mean = -0.000892835617901)   

Period Variance Var. Ratio Obs.  

 1  0.00021 --  1138  
 2  0.00022  1.05613  1137  
 5  0.00027  1.27897  1134  
 10  0.00029  1.39541  1129  
 30  0.00033  1.57682  1109  
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EViews displays a graph of the vari-
ance ratio statistics and plus or 
minus two asymptotic standard 
error bands, along with a horizontal 
reference line at 1 representing the 
null hypothesis. Here, we see a 
graphical representation of the fact 
that with the exception of the test 
against period 2, the null reference 
line lies outside the bands.

Next, we repeat the previous analy-
sis but allow for heteroskedasticity 
in the data and use bootstrapping to 
evaluate the statistical significance. 
Fill out the dialog as before, but 
enable the Use heteroskedastic 
robust S.E. checkbox and use the Probabilities dropdown to select Wild bootstrap (with 
the two-point distribution, 5000 replications, the Knuth generator, and a seed for the random 
number generator of 1000 specified in the Options section). The top portion of the results is 
depicted here:

Note that the Wald test is no longer displayed since the test methodology is not consistent 
with the use of heteroskedastic robust standard errors in the individual tests. The p-values 
for the individual variance ratio tests, which are all generated using the wild bootstrap, are 
generally consistent with the previous results, albeit with probabilities that are slightly 
higher than before. The individual period 2 test, which was borderline (in)significant in the 

Null Hypothesis: Log JP is a martingale   
Date: 04/21/09   Time: 15:15   
Sample: 8/07/1974 5/29/1996   
Included observations: 1138 (after adjustments)  
Heteroskedasticity robust standard error estimates  
Use biased variance estimates   
User-specified lags: 2 5 10 30   
Test probabilities computed using wild bootstrap: dist=twopoint, 
        reps=5000, rng=kn, seed=1000   

Joint Tests Value df Probability 

Max |z| (at period 5)  3.646683  1138  0.0012 
     
Individual Tests    

Period Var. Ratio Std. Error  z-Statistic Probability 

 2  1.056126  0.037086  1.513412  0.1316 
 5  1.278965  0.076498  3.646683  0.0004 
 10  1.395415  0.115533  3.422512  0.0010 
 30  1.576815  0.205582  2.805766  0.0058 
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homoskedastic test, is no longer significant at conventional levels. The Chow-Denning joint 
test statistic of 3.647 has a bootstrap p-value of 0.0012 and strongly rejects the null hypothe-
sis that the log of JP is a martingale.

Lastly, we perform Wright’s rank variance ratio test with ties replaced by the average of the 
tied ranks. The test probabilities for this test are computed using the permutation bootstrap, 
whose settings we select to match those for the previous bootstrap:

The standard errors employed in forming the individual z-statistics (and those displayed in 
the corresponding graph view) are obtained from the asymptotic normal results. The proba-
bilities for the individual z-statistics and the joint max  and Wald statistics, which all 
strongly reject the null hypothesis, are obtained from the permutation bootstrap.

The preceding analysis may be extended to tests that jointly consider all five exchange rates 
in a panel setting. The second page (WRIGHT_STK) of the “Wright.WF1” workfile contains 
the panel dataset of the relative-to-U.S. exchange rates described above (Canada, Germany, 
France, Japan, U.K.). Click on the WRIGHT_STK tab to make the second page active, double 
click on the EXCHANGE series to open the stacked exchange rates series, then select View/
Variance Ratio Test...

We will redo the heterogeneous Lo and MacKinlay test example from above using the panel 
data series. Select Table - Fisher Combined in the Output dropdown then fill out the 
remainder of the dialog as before, then click on OK. The output, which takes a moment to 
generate since we are performing 5000 bootstrap replications for each cross-section, consists 
of two distinct parts. The top portion of the output:

Null Hypothesis: Log JP is a random walk   
Date: 04/21/09   Time: 15:16   
Sample: 8/07/1974 5/29/1996   
Included observations: 1138 (after adjustments) 
Standard error estimates assume no heteroskedasticity  
User-specified lags: 2 5 10 30   
Test probabilities computed using permutation bootstrap: reps=5000, 
        rng=kn, seed=1000   

Joint Tests Value df Probability 

Max |z| (at period 5)  5.415582  1138  0.0000 
Wald (Chi-Square)  37.92402  4  0.0000 

     
Individual Tests    

Period Var. Ratio Std. Error  z-Statistic Probability 

 2  1.081907  0.029643  2.763085  0.0050 
 5  1.351718  0.064946  5.415582  0.0000 
 10  1.466929  0.100088  4.665193  0.0000 
 30  1.790412  0.182788  4.324203  0.0000 

z
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shows the test settings and provides the joint Fisher combined test statistic which, in this 
case, strongly rejects the joint null hypothesis that all of the cross-sections are martingales.

The bottom portion of the output:

depicts the max  statistics for the individual cross-sections, along with corresponding 
wild bootstrap probabilities. Note that four of the five individual test statistics do not reject 
the joint hypothesis at conventional levels. It would therefore appear that the Japanese yen 
result is the driving force behind the Fisher combined test rejection.

Technical Details

Suppose we have the time series  satisfying

(38.71)

where  is an arbitrary drift parameter. The key properties of a random walk that we would 
like to test are  for all  and  for any positive . 

The Basic Test Statistic

Lo and MacKinlay (1988) formulate two test statistics for the random walk properties that 
are applicable under different sets of null hypothesis assumptions about :

Null Hypothesis: Log EXCHANGE is a martingale 
Date: 04/21/09   Time: 15:18  
Sample: 8/07/1974 5/29/1996  
Cross-sections included: 5  
Total panel observations: 5690 (after adjustments) 
Heteroskedasticity robust standard error estimates 
Use biased variance estimates  
User-specified lags: 2 5 10 30  
Test probabili ties computed using wild bootstrap: 
        dist=Two-point, reps=5000, rng=kn, seed=1000 

Summary Statistics    
    

Statistics Max |z| Prob. df 

Fisher Combined  28.252  0.0016  10 
    

Cross-section Joint Tests   
    

Cross-section Max |z| Prob. Obs. 

CAN  2.0413  0.0952  1138 
DEU  1.7230  0.1952  1138 
FRA  2.0825  0.0946  1138 
JP  3.6467  0.0016  1138 
UK  1.5670  0.2606  1138 

z
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First, Lo and MacKinlay make the strong assumption that the  are i.i.d. Gaussian with 
variance  (though the normality assumption is not strictly necessary). Lo and MacKinlay 
term this the homoskedastic random walk hypothesis, though others refer to this as the i.i.d. 
null.

Alternately, Lo and MacKinlay outline a heteroskedastic random walk hypothesis where 
they weaken the i.i.d. assumption and allow for fairly general forms of conditional het-
eroskedasticity and dependence. This hypothesis is sometimes termed the martingale null, 
since it offers a set of sufficient (but not necessary), conditions for  to be a martingale dif-
ference sequence (m.d.s.).

We may define estimators for the mean of first difference and the scaled variance of the -th 
difference:

(38.72)

and the corresponding variance ratio . The variance estimators 
may be adjusted for bias, as suggested by Lo and MacKinlay, by replacing  in 
Equation (38.72) with  in the no-drift case, or with  in 
the drift case.

Lo and MacKinlay show that the variance ratio z-statistic:

(38.73)

is asymptotically  for appropriate choice of estimator . 

Under the i.i.d. hypothesis we have the estimator,

(38.74)

while under the m.d.s. assumption we may use the kernel estimator,

(38.75)

where

(38.76)
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Joint Variance Ratio Tests

Since the variance ratio restriction holds for every difference , it is common to evalu-
ate the statistic at several selected values of . 

To control the size of the joint test, Chow and Denning (1993) propose a (conservative) test 
statistic that examines the maximum absolute value of a set of multiple variance ratio statis-
tics. The p-value for the Chow-Denning statistic using  variance ratio statistics is bounded 
from above by the probability for the Studentized Maximum Modulus (SMM) distribution 
with parameter  and  degrees-of-freedom. Following Chow and Denning, we approxi-
mate this bound using the asymptotic  SMM distribution.

An second approach is available for variance ratio tests of the i.i.d. null. Under this set of 
assumptions, we may form the joint covariance matrix of the variance ratio test statistics as 
in Richardson and Smith (1991), and compute the standard Wald statistic for the joint 
hypothesis that all  variance ratio statistics equal 1. Under the null, the Wald statistic is 
asymptotic Chi-square with  degrees-of-freedom.

For a detailed discussion of these tests, see Fong, Koh, and Ouliaris (1997).

Wild Bootstrap

Kim (2006) offers a wild bootstrap approach to improving the small sample properties of 
variance ratio tests. The approach involves computing the individual (Lo and MacKinlay) 
and joint (Chow and Denning, Wald) variance ratio test statistics on samples of  observa-
tions formed by weighting the original data by mean 0 and variance 1 random variables, and 
using the results to form bootstrap distributions of the test statistics. The bootstrap p-values 
are computed directly from the fraction of replications falling outside the bounds defined by 
the estimated statistic.

EViews offers three distributions for constructing wild bootstrap weights: the two-point, the 
Rademacher, and the normal. Kim’s simulations indicate that the test results are generally 
insensitive to the choice of wild bootstrap distribution.

Rank and Rank Score Tests

Wright (2000) proposes modifying the usual variance ratio tests using standardized ranks of 
the increments, . Letting  be the rank of the  among all  values, we 
define the standardized rank  and van der Waerden rank scores :

(38.77)

In cases where there are tied ranks, the denominator in  may be modified slightly to 
account for the tie handling.
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The Wright variance ratio test statistics are obtained by computing the Lo and MacKinlay 
homoskedastic test statistic using the ranks or rank scores in place of the original data. 
Under the i.i.d. null hypothesis, the exact sampling distribution of the statistics may be 
approximated using a permutation bootstrap.

Sign Test

Wright also proposes a modification of the homoskedastic Lo and MacKinlay statistic in 
which each  is replaced by its sign. This statistic is valid under the m.d.s. null hypothe-
sis, and under the assumption that , the exact sampling distribution may also be 
approximated using a permutation bootstrap. (EViews does not allow for non-zero means 
when performing the sign test since allowing  introduces a nuisance parameter into 
the sampling distribution.)

Panel Statistics

EViews offers two approaches to variance ratio testing in panel settings. 

First, under the assumption that cross-sections are independent, with cross-section hetero-
geneity of the processes, we may compute separate joint variance ratio tests for each cross-
section, then combine the p-values from cross-section results using the Fisher approach as 
in Maddala and Wu (1999). If we define  to be a p-value from the i-th cross-section, then 
under the hypothesis that the null hypothesis holds for all  cross-sections,

(38.78)

as . 

Alternately, if we assume homogeneity across all cross-sections, we may stack the panel 
observations and compute the variance ratio test for the stacked data. In this approach, the 
only adjustment for the panel nature of the stacked data is in ensuring that lag calculations 
do not span cross-section boundaries.

BDS Independence Test

This series view carries out the BDS test for independence as described in Brock, Dechert, 
Scheinkman and LeBaron (1996).

The BDS test is a portmanteau test for time based dependence in a series. It can be used for 
testing against a variety of possible deviations from independence including linear depen-
dence, non-linear dependence, or chaos.

The test can be applied to a series of estimated residuals to check whether the residuals are 
independent and identically distributed (iid). For example, the residuals from an ARMA 
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model can be tested to see if there is any non-linear dependence in the series after the linear 
ARMA model has been fitted.

The idea behind the test is fairly simple. To perform the test, we first choose a distance, . 
We then consider a pair of points. If the observations of the series truly are iid, then for any 
pair of points, the probability of the distance between these points being less than or equal 
to epsilon will be constant. We denote this probability by .

We can also consider sets consisting of multiple pairs of points. One way we can choose sets 
of pairs is to move through the consecutive observations of the sample in order. That is, 
given an observation , and an observation  of a series X, we can construct a set of pairs 
of the form:

(38.79)

where  is the number of consecutive points used in the set, or embedding dimension. We 
denote the joint probability of every pair of points in the set satisfying the epsilon condition 
by the probability .

The BDS test proceeds by noting that under the assumption of independence, this probabil-
ity will simply be the product of the individual probabilities for each pair. That is, if the 
observations are independent,

. (38.80)

When working with sample data, we do not directly observe  or . We can only 
estimate them from the sample. As a result, we do not expect this relationship to hold 
exactly, but only with some error. The larger the error, the less likely it is that the error is 
caused by random sample variation. The BDS test provides a formal basis for judging the 
size of this error.

To estimate the probability for a particular dimension, we simply go through all the possible 
sets of that length that can be drawn from the sample and count the number of sets which 
satisfy the  condition. The ratio of the number of sets satisfying the condition divided by 
the total number of sets provides the estimate of the probability. Given a sample of  obser-
vations of a series X, we can state this condition in mathematical notation,

(38.81)

where  is the indicator function:

(38.82)

Note that the statistics  are often referred to as correlation integrals.
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We can then use these sample estimates of the probabilities to construct a test statistic for 
independence:

(38.83)

where the second term discards the last  observations from the sample so that it is 
based on the same number of terms as the first statistic. 

Under the assumption of independence, we would expect this statistic to be close to zero. In 
fact, it is shown in Brock et al. (1996) that

(38.84)

where 

(38.85)

and where  can be estimated using .  is the probability of any triplet of points lying 
within  of each other, and is estimated by counting the number of sets satisfying the sam-
ple condition:

(38.86)

To calculate the BDS test statistic in EViews, simply open the series you would like to test in 
a window, and choose View/BDS Independence Test.... A dialog will appear prompting you 
to input options.

To carry out the test, we must choose , the dis-
tance used for testing proximity of the data 
points, and the dimension , the number of 
consecutive data points to include in the set.

The dialog provides several choices for how to 
specify :

• Fraction of pairs:  is calculated so as to 
ensure a certain fraction of the total num-
ber of pairs of points in the sample lie 
within  of each other.

• Fixed value:  is fixed at a raw value specified in the units as the data series.
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• Standard deviations:  is calculated as a multiple of the standard deviation of the 
series.

• Fraction of range:  is calculated as a fraction of the range (the difference between 
the maximum and minimum value) of the series.

The default is to specify  as a fraction of pairs, since this method is most invariant to differ-
ent distributions of the underlying series.

You must also specify the value used in calculating . The meaning of this value varies 
based on the choice of method. The default value of 0.7 provides a good starting point for 
the default method when testing shorter dimensions. For testing longer dimensions, you 
should generally increase the value of  to improve the power of the test.

EViews also allows you to specify the maximum correlation dimension for which to calcu-
late the test statistic. EViews will calculate the BDS test statistic for all dimensions from 2 to 
the specified value, using the same value of  or each dimension. Note the same  is used 
only because of calculational efficiency. It may be better to vary  with the correlation 
dimension to maximize the power of the test.

In small samples or in series that have unusual distributions, the distribution of the BDS test 
statistic can be quite different from the asymptotic normal distribution. To compensate for 
this, EViews offers you the option of calculating bootstrapped p-values for the test statistic. 
To request bootstrapped p-values, simply check the Use bootstrap box, then specify the 
number of repetitions in the field below. A greater number of repetitions will provide a more 
accurate estimate of the p-values, but the procedure will take longer to perform.

When bootstrapped p-values are requested, EViews first calculates the test statistic for the 
data in the order in which it appears in the sample. EViews then carries out a set of repeti-
tions where for each repetition a set of observations is randomly drawn with replacement 
from the original data. Also note that the set of observations will be of the same size as the 
original data. For each repetition, EViews recalculates the BDS test statistic for the randomly 
drawn data, then compares the statistic to that obtained from the original data. When all the 
repetitions are complete, EViews forms the final estimate of the bootstrapped p-value by 
dividing the lesser of the number of repetitions above or below the original statistic by the 
total number of repetitions, then multiplying by two (to account for the two tails).

As an example of a series where the BDS statistic will reject independence, consider a series 
generated by the non-linear moving average model:

(38.87)

where  is a normal random variable. On simulated data, the correlogram of this series 
shows no statistically significant correlations, yet the BDS test strongly rejects the hypothesis 
that the observations of the series are independent (note that the Q-statistics on the squared 
levels of the series also reject independence).
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Part VIII.  Multiple Equation Analysis

In this section, we document EViews tools for multiple equation estimation, forecasting and 
data analysis. 

• The first two chapter describe estimation techniques for systems of equations 
(Chapter 39. “System Estimation,” on page 645), and VARs and VECs (Chapter 40. 
“Vector Autoregression and Error Correction Models,” on page 687).

• Chapter 41. “State Space Models and the Kalman Filter,” on page 755 describes the 
use of EViews’ state space and Kalman filter tools for modeling structural time series 
models.

• Chapter 42. “Models,” beginning on page 781 describes the use of model objects to 
forecast from multiple equation estimates, or to perform multivariate simulation.
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Chapter 39.  System Estimation

This chapter describes methods of estimating the parameters of systems of equations. We 
describe least squares, weighted least squares, seemingly unrelated regression (SUR), 
weighted two-stage least squares, three-stage least squares, full-information maximum likeli-
hood (FIML), generalized method of moments (GMM), and autoregressive conditional het-
eroskedasticity (ARCH) estimation techniques.

Once you have estimated the parameters of your system of equations, you may wish to fore-
cast future values or perform simulations for different values of the explanatory variables. 
Chapter 42. “Models,” on page 781 describes the use of models to forecast from an esti-
mated system of equations or to perform single and multivariate simulation.

Background

A system is a group of equations containing unknown parameters. Systems can be estimated 
using a number of multivariate techniques that take into account the interdependencies 
among the equations in the system. 

The general form of a system is:

, (39.1)

where  is a vector of endogenous variables,  is a vector of exogenous variables, and  
is a vector of possibly serially correlated disturbances. The task of estimation is to find esti-
mates of the vector of parameters .

EViews provides you with a number of methods of estimating the parameters of the system. 
One approach is to estimate each equation in the system separately, using one of the single 
equation methods described earlier in this manual. A second approach is to estimate, simul-
taneously, the complete set of parameters of the equations in the system. The simultaneous 
approach allows you to place constraints on coefficients across equations and to employ 
techniques that account for correlation in the residuals across equations. 

While there are important advantages to using a system to estimate your parameters, they 
do not come without cost. Most importantly, if you misspecify one of the equations in the 
system and estimate your parameters using single equation methods, only the misspecified 
equation will be poorly estimated. If you employ system estimation techniques, the poor 
estimates for the misspecification equation may “contaminate” estimates for other equa-
tions.

At this point, we take care to distinguish between systems of equations and models. A model 
is a group of known equations describing endogenous variables. Models are used to solve 
for values of the endogenous variables, given information on other variables in the model.

f yt xt b, ,  et

yt xt et

b
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Systems and models often work together quite closely. You might estimate the parameters of 
a system of equations, and then create a model in order to forecast or simulate values of the 
endogenous variables in the system. We discuss this process in greater detail in Chapter 42. 
“Models,” on page 781.

System Estimation Methods

EViews will estimate the parameters of a system of equations using:

• Ordinary least squares.

• Equation weighted regression.

• Seemingly unrelated regression (SUR).

• System two-state least squares.

• Weighted two-stage least squares.

• Three-stage least squares.

• Full information maximum likelihood (FIML) (with both unrestricted and restricted 
covariance matrices).

• Generalized method of moments (GMM).

• Autoregressive Conditional Heteroskedasticity (ARCH).

The equations in the system may be linear or nonlinear, and may contain autoregressive 
error terms.

In the remainder of this section, we describe each technique at a general level. Users who 
are interested in the technical details are referred to the “Technical Discussion” on page 674.

Ordinary Least Squares

This technique minimizes the sum-of-squared residuals for each equation, accounting for 
any cross-equation restrictions on the parameters of the system. If there are no such restric-
tions, this method is identical to estimating each equation using single-equation ordinary 
least squares.

Cross-Equation Weighting

This method accounts for cross-equation heteroskedasticity by minimizing the weighted 
sum-of-squared residuals. The equation weights are the inverses of the estimated equation 
variances, and are derived from unweighted estimation of the parameters of the system. This 
method yields identical results to unweighted single-equation least squares if there are no 
cross-equation restrictions.
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Seemingly Unrelated Regression 

The seemingly unrelated regression (SUR) method, also known as the multivariate regres-
sion, or Zellner's method, estimates the parameters of the system, accounting for heteroske-
dasticity and contemporaneous correlation in the errors across equations. The estimates of 
the cross-equation covariance matrix are based upon parameter estimates of the unweighted 
system. 

Note that EViews estimates a more general form of SUR than is typically described in the lit-
erature, since it allows for cross-equation restrictions on parameters.

Two-Stage Least Squares

The system two-stage least squares (STSLS) estimator is the system version of the single 
equation two-stage least squares estimator described above. STSLS is an appropriate tech-
nique when some of the right-hand side variables are correlated with the error terms, and 
there is neither heteroskedasticity, nor contemporaneous correlation in the residuals. EViews 
estimates STSLS by applying TSLS equation by equation to the unweighted system, enforc-
ing any cross-equation parameter restrictions. If there are no cross-equation restrictions, the 
results will be identical to unweighted single-equation TSLS.

Weighted Two-Stage Least Squares

The weighted two-stage least squares (WTSLS) estimator is the two-stage version of the 
weighted least squares estimator. WTSLS is an appropriate technique when some of the 
right-hand side variables are correlated with the error terms, and there is heteroskedasticity, 
but no contemporaneous correlation in the residuals.

EViews first applies STSLS to the unweighted system. The results from this estimation are 
used to form the equation weights, based upon the estimated equation variances. If there 
are no cross-equation restrictions, these first-stage results will be identical to unweighted 
single-equation TSLS.

Three-Stage Least Squares

Three-stage least squares (3SLS) is the two-stage least squares version of the SUR method. It 
is an appropriate technique when right-hand side variables are correlated with the error 
terms, and there is both heteroskedasticity, and contemporaneous correlation in the residu-
als.

EViews applies TSLS to the unweighted system, enforcing any cross-equation parameter 
restrictions. These estimates are used to form an estimate of the full cross-equation covari-
ance matrix which, in turn, is used to transform the equations to eliminate the cross-equa-
tion correlation. TSLS is applied to the transformed model.
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Full Information Maximum Likelihood (FIML)

Full Information Maximum Likelihood (FIML) estimates the likelihood function under the 
assumption that the contemporaneous errors have a joint normal distribution. Provided that 
the likelihood function is specified correctly, FIML is fully efficient.

Generalized Method of Moments (GMM)

The GMM estimator belongs to a class of estimators known as M-estimators that are defined 
by minimizing some criterion function. GMM is a robust estimator in that it does not require 
information of the exact distribution of the disturbances. 

GMM estimation is based upon the assumption that the disturbances in the equations are 
uncorrelated with a set of instrumental variables. The GMM estimator selects parameter esti-
mates so that the correlations between the instruments and disturbances are as close to zero 
as possible, as defined by a criterion function. By choosing the weighting matrix in the crite-
rion function appropriately, GMM can be made robust to heteroskedasticity and/or autocor-
relation of unknown form.

Many standard estimators, including all of the system estimators provided in EViews, can be 
set up as special cases of GMM. For example, the ordinary least squares estimator can be 
viewed as a GMM estimator, based upon the conditions that each of the right-hand side vari-
ables is uncorrelated with the residual.

Autogressive Conditional Heteroskedasticity (ARCH)

The System ARCH estimator is the multivariate version of ARCH estimator. System ARCH is 
an appropriate technique when one wants to model the variance and covariance of the error 
terms, generally in an autoregressive form. System ARCH allows you to choose from the 
most popular multivariate ARCH specifications: Constant Conditional Correlation, the Diag-
onal VECH, and (indirectly) the Diagonal BEKK.

How to Create and Specify a System

To estimate the parameters of your system of equations, you should first create a system 
object and specify the system of equations. There are three ways to specify the system: man-
ually by entering a specification, by inserting a text file containing the specification, or by 
letting EViews create a system automatically from a selected list of variables, 

To create a new system manually or by inserting a text file, click on Object/New Object.../
System or type system in the command window. A blank system object window should 
appear. You will fill the system specification window with text describing the equations, and 
potentially, lines describing the instruments and the parameter starting values. You may 
enter the text by typing in the specification, or clicking on the InsertTxt button and loading 
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a specification from a text file. You may also insert a text file using the right-mouse button 
menu and selecting Insert Text File...

To estimate the parameters of your system of equations, you should first create a system 
object and specify the system of equations. Click on Object/New Object.../System or type 
system in the command window. The system object window should appear. When you first 
create the system, the window will be blank. You will fill the system specification window 
with text describing the equations, and potentially, lines describing the instruments and the 
parameter starting values.

From a list of selected vari-
ables, EViews can also auto-
matically generate linear 
equations in a system. To use 
this procedure, first highlight 
the dependent variables that 
will be in the system. Next, 
double click on any of the high-
lighted series, and select Open/
Open System..., or right click 
and select Open/as System.... 
The Make System dialog box 
should appear with the variable 
names entered in the Depen-
dent variables field. You can 
augment the specification by 
adding regressors or AR terms, 
either estimated with common or equation specific coefficients. See “System Procs” on 
page 662 for additional details on this dialog.

The Make System proc is also available from a Group object (see “Make System,” on 
page 612).

Equations

Enter your equations, by formula, using standard EViews expressions. The equations in your 
system should be behavioral equations with unknown coefficients and an implicit error 
term. 
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Consider the specification of a simple two 
equation system. You can use the default 
EViews coefficients, C(1), C(2), and so on, 
or you can use other coefficient vectors, in 
which case you should first declare them by 
clicking Object/New Object.../Matrix-Vec-
tor-Coef/Coefficient Vector in the main 
menu. 

There are some general rules for specifying your equations:

• Equations can be nonlinear in their variables, coefficients, or both. Cross equation 
coefficient restrictions may be imposed by using the same coefficients in different 
equations. For example:

y = c(1) + c(2)*x

z = c(3) + c(2)*z + (1-c(2))*x

• You may also impose adding up constraints. Suppose for the equation:

y = c(1)*x1 + c(2)*x2 + c(3)*x3

you wish to impose C(1)+C(2)+C(3)=1. You can impose this restriction by specify-
ing the equation as:

y = c(1)*x1 + c(2)*x2 + (1-c(1)-c(2))*x3

• The equations in a system may contain autoregressive (AR) error specifications, but 
not MA, SAR, or SMA error specifications. You must associate coefficients with each 
AR specification. Enclose the entire AR specification in square brackets and follow 
each AR with an “=”-sign and a coefficient. For example:

cs = c(1) + c(2)*gdp + [ar(1)=c(3), ar(2)=c(4)]

You can constrain all of the equations in a system to have the same AR coefficient by 
giving all equations the same AR coefficient number, or you can estimate separate AR 
processes, by assigning each equation its own coefficient.

• Equations in a system need not have a dependent variable followed by an equal sign 
and then an expression. The “=”-sign can be anywhere in the formula, as in:

log(unemp/(1-unemp)) = c(1) + c(2)*dmr

You can also write the equation as a simple expression without a dependent variable, 
as in:

(c(1)*x + c(2)*y + 4)^2

When encountering an expression that does not contain an equal sign, EViews sets 
the entire expression equal to the implicit error term.
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If an equation should not have a disturbance, it is an identity, and should not be 
included in a system. If necessary, you should solve out for any identities to obtain 
the behavioral equations.

You should make certain that there is no identity linking all of the disturbances in 
your system. For example, if each of your equations describes a fraction of a total, the 
sum of the equations will always equal one, and the sum of the disturbances will 
identically equal zero. You will need to drop one of these equations to avoid numeri-
cal problems.

Instruments

If you plan to estimate your system using two-stage least squares, three-stage least squares, 
or GMM, you must specify the instrumental variables to be used in estimation. There are 
several ways to specify your instruments, with the appropriate form depending on whether 
you wish to have identical instruments in each equation, and whether you wish to compute 
the projections on an equation-by-equation basis, or whether you wish to compute a 
restricted projection using the stacked system.

In the simplest (default) case, EViews will form your instrumental variable projections on an 
equation-by-equation basis. If you prefer to think of this process as a two-step (2SLS) proce-
dure, the first-stage regression of the variables in your model on the instruments will be run 
separately for each equation. 

In this setting, there are two ways to specify your instruments. If you would like to use iden-
tical instruments in every equations, you should include a line beginning with the keyword 
“@INST” or “INST”, followed by a list of all the exogenous variables to be used as instru-
ments. For example, the line:

@inst gdp(-1 to -4) x gov

instructs EViews to use these six variables as instruments for all of the equations in the sys-
tem. System estimation will involve a separate projection for each equation in your system. 

You may also specify different instruments for each equation by appending an “@”-sign at 
the end of the equation, followed by a list of instruments for that equation. For example: 

cs = c(1)+c(2)*gdp+c(3)*cs(-1) @ cs(-1) inv(-1) gov

inv = c(4)+c(5)*gdp+c(6)*gov @ gdp(-1) gov

The first equation uses CS(-1), INV(-1), GOV, and a constant as instruments, while the sec-
ond equation uses GDP(-1), GOV, and a constant as instruments.

Lastly, you can mix the two methods. Any equation without individually specified instru-
ments will use the instruments specified by the @inst statement. The system:

@inst gdp(-1 to -4) x gov

cs = c(1)+c(2)*gdp+c(3)*cs(-1) 
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inv = c(4)+c(5)*gdp+c(6)*gov @ gdp(-1) gov

will use the instruments GDP(-1), GDP(-2), GDP(-3), GDP(-4), X, GOV, and C, for the CS 
equation, but only GDP(-1), GOV, and C, for the INV equation.

As noted above, the EViews default behavior is to perform the instrumental variables projec-
tion on an equation-by-equation basis. You may, however, wish to perform the projections 
on the stacked system. Notably, where the number of instruments is large, relative to the 
number of observations, stacking the equations and instruments prior to performing the pro-
jection may be the only feasible way to compute 2SLS estimates.

To designate instruments for a stacked projection, you should use the @stackinst state-
ment (note: this statement is only available for systems estimated by 2SLS or 3SLS; it is not 
available for systems estimated using GMM). 

In a @stackinst statement, the “@STACKINST” keyword should be followed by a list of 
stacked instrument specifications. Each specification is a comma delimited list of series 
enclosed in parentheses (one per equation), describing the instruments to be constrained in 
a stacked specification.

For example, the following @stackinst specification creates two instruments in a three 
equation model:

@stackinst (z1,z2,z3) (m1,m1,m1)

This statement instructs EViews to form two stacked instruments, one by stacking the sepa-
rate series Z1, Z2, and Z3, and the other formed by stacking M1 three times. The first-stage 
instrumental variables projection is then of the variables in the stacked system on the 
stacked instruments.

When working with systems that have a large number of equations, the above syntax may 
be unwieldy. For these cases, EViews provides a couple of shortcuts. First, for instruments 
that are identical in all equations, you may use an “*” after the comma to instruct EViews to 
repeat the specified series. Thus, the above statement is equivalent to:

@stackinst (z1,z2,z3) (m1,*)

Second, for non-identical instruments, you may specify a set of stacked instruments using 
an EViews group object, so long as the number of variables in the group is equal to the num-
ber of equations in the system. Thus, if you create a group Z with,

group z z1 z2 z3

the above statement can be simplified to:

@stackinst z (m1,*)

You can, of course, combine ordinary instrument and stacked instrument specifications. 
This situation is equivalent to having common and equation specific coefficients for vari-
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ables in your system. Simply think of the stacked instruments as representing common 
(coefficient) instruments, and ordinary instruments as representing equation specific (coeffi-
cient) instruments. For example, consider the system given by,

@stackinst (z1,z2,z3) (m1,*)

@inst ia 

y1 = c(1)*x1

y2 = c(1)*x2

y3 = c(1)*x3 @ ic

The stacked instruments for this specification may be represented as:

(39.2)

so it is easy to see that this specification is equivalent to the following stacked specification,

@stackinst (z1, z2, z3) (m1, *) (ia, 0, 0) (0, ia, 0) (0, 0, ia) 
(0, 0, ic)

since the common instrument specification,

@inst ia 

is equivalent to:

@stackinst (ia, 0, 0) (0, ia, 0) (0, 0, ia) 

Note that the constant instruments are added implicitly.

Additional Comments
• If you include a “C” in the stacked instrument list, it will not be included in the indi-

vidual equations. If you do not include the “C” as a stacked instrument, it will be 
included as an instrument in every equation, whether specified explicitly or not. 

• You should list all exogenous right-hand side variables as instruments for a given 
equation.

• Identification requires that there should be at least as many instruments (including 
the constant) in each equation as there are right-hand side variables in that equation.

• The @stackinst statement is only available for estimation by 2SLS and 3SLS. It is 
not currently supported for GMM.

• If you estimate your system using a method that does not use instruments, all instru-
ment specification lines will be ignored. 

Z1 M1 IA C 0 0 0 0 0

Z2 M1 0 0 IA C 0 0 0

Z3 M1 0 0 0 0 IA C IC
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Starting Values

For systems that contain nonlinear equations, you can include a line that begins with param 
to provide starting values for some or all of the parameters. List pairs of parameters and val-
ues. For example:

param  c(1) .15  b(3) .5

sets the initial values of C(1) and B(3). If you do not provide starting values, EViews uses 
the values in the current coefficient vector. In ARCH estimation, by default, EViews does 
provide a set of starting coefficients. Users are able to provide their own set of starting val-
ues by selecting User Supplied in the Starting coefficient value field located in the Options 
tab.

How to Estimate a System

Once you have created and specified your system, you may push the Estimate button on the 
toolbar to bring up the System Estimation dialog.

The drop-down menu marked Estimation Method provides you with several options for the 
estimation method. You may choose from one of a number of methods for estimating the 
parameters of your specification.

The estimation dialog may change to reflect your choice, providing you with additional 
options. If you select an estimator which uses instrumental variables, a checkbox will 
appear, prompting you to choose whether to Add lagged regressors to instruments for lin-
ear equations with AR terms. As the checkbox label suggests, if selected, EViews will add 
lagged values of the dependent and independent variable to the instrument list when esti-
mating AR models. The lag order for these instruments will match the AR order of the spec-
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ification. This automatic lag inclusion reflects the fact that EViews transforms the linear 
specification to a nonlinear specification when estimating AR models, and that the lagged 
values are ideal instruments for the transformed specification. If you wish to maintain pre-
cise control over the instruments added to your model, you should unselect this option.

GMM Settings

Additional options appear if you are estimating a GMM specification. Note that the GMM-
Cross section option uses a weighting matrix that is robust to heteroskedasticity and con-
temporaneous correlation of unknown form, while the GMM-Time series (HAC) option 
extends this robustness to autocorrelation of unknown form.

If you select either GMM method, EViews will display a checkbox labeled Identity weight-
ing matrix in estimation. If selected, EViews will estimate the model using identity 
weights, and will use the estimated coefficients and GMM specification you provide to com-
pute a coefficient covariance matrix that is robust to cross-section heteroskedasticity (White) 
or heteroskedasticity and autocorrelation (Newey-West). If this option is not selected, 
EViews will use the GMM weights both in estimation, and in computing the coefficient 
covariances.

When you select the 
GMM-Time series 
(HAC) option, the dia-
log displays additional 
options for specifying 
the weighting matrix. 
The new options will 
appear on the right 
side of the dialog. 
These options control 
the computation of the 
heteroskedasticity and 
autocorrelation robust 
(HAC) weighting 
matrix. See “Technical 
Discussion” on 
page 674 for a more detailed discussion of these options.

The Kernel Options determines the functional form of the kernel used to weight the autoco-
variances to compute the weighting matrix. The Bandwidth Selection option determines 
how the weights given by the kernel change with the lags of the autocovariances in the com-
putation of the weighting matrix. If you select Fixed bandwidth, you may enter a number 
for the bandwidth or type nw to use Newey and West’s fixed bandwidth selection criterion. 
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The Prewhitening option runs a preliminary VAR(1) prior to estimation to “soak up” the 
correlation in the moment conditions.

ARCH Settings

If the ARCH - Conditional Heteroskedasticity method is selected, the dialog displays the 
options appropriate for ARCH models. Model type allows you to select among three differ-
ent multivariate ARCH models: Diagonal VECH, Constant Conditional Correlation (CCC), 
and Diagonal BEKK. Auto-regressive order indicates the number of autoregressive terms 
included in the model. You may use the Variance Regressors edit field to specify any regres-
sors in the variance equation.

The coefficient specifications for the auto-regressive terms and regressors in the variance 
equation may be fine-tuned using the controls in the ARCH coefficient restrictions section 
of the dialog page. Each auto-regression or regressor term is displayed in the Coefficient list. 
You should select a term to modify it, and in the Restriction field select a type coefficient 
specification for that term. For the Diagonal VECH model, each of the coefficient matrices 
may be restricted to be Scalar, Diagonal, Rank One, Full Rank, Indefinite Matrix or (in the 
case of the constant coefficient) Variance Target. The options for the BEKK model behave 
the same except that the ARCH, GARCH, and TARCH term is restricted to be Diagonal. For 
the CCC model, Scalar is the only option for ARCH, TARCH and GARCH terms, Scalar and 
Variance Target are allowed or the constant term. For for exogenous variables you may 
choose between Individual and Common, indicating whether the parameters are restricted 
to be the same for all variance equations (common) or are unrestricted.
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By default, the conditional distribution of the error terms is assumed to be Multivariate 
Normal. You have the option of instead using Multivariate Student's t by selecting it in the 
Error distribution dropdown list.

FIML Settings

For systems estimated using FIML, you will be prompted to specify estimation settings for 
the parameterization of the residual covariance matrix.

The Residual Covariance drop down allows you to choose between the default 
Unrestricted, and Diagonal, User-covariance, and User-factor settings. 

• The Unrestricted setting specifies standard FIML estimation in which all of the ele-
ments of the residual covariance matrix are estimated along with the coefficients of 
the mean equation. Note that the variance parameters for FIML are treated as nui-
sance parameters.

• The Diagonal setting places zero restrictions on the off-diagonals of the residual cova-
riance matrix. Only the diagonal elements of the residual covariance matrix corre-
sponding to the variances are estimated.

• User-covariance allows you to provide the name of a sym matrix object containing 
values for all of the residual covariances. All elements of the residual covariance  
must be specified; no elements will be estimated.

• User-factor offers an alternative method of specifying the residual covariance. Instead 
of providing a sym matrix containing values of , you will provide the name of a 
matrix  where . Again, no elements of the residual covariance matrix are 
estimated.

S

S

P PP S



658—Chapter 39. System Estimation
Note that system objects estimated using a restricted FIML (diagonal, user-specified, or user-
factor) estimator are not backward compatible with earlier versions of EViews, and will be 
dropped from the workfile if opened in a version prior to 9.5.

Options

For weighted least squares, SUR, weighted TSLS, 3SLS, GMM, and nonlinear systems of 
equations, there are additional options controlling the procedure for computing the GLS 
weighting matrix and the coefficient vector and for ARCH system, the coefficient vector used 
in estimation, as well as backcasting and robust standard error options. 

To specify the method used in iteration, click on the Options tab.

The estimation 
option controls the 
method of iterating 
over coefficients, 
over the weighting 
matrices, or both:

• Update 
weights once, 
then—Iterate 
coefs to con-
vergence is the 
default 
method.

By default, 
EViews carries 
out a first-stage 
estimation of the coefficients using no weighting matrix (the identity matrix). Using 
starting values obtained from OLS (or TSLS, if there are instruments), EViews iterates 
the first-stage estimates until the coefficients converge. If the specification is linear, 
this procedure involves a single OLS or TSLS regression. 

The residuals from this first-stage iteration are used to form a consistent estimate of 
the weighting matrix. 

In the second stage of the procedure, EViews uses the estimated weighting matrix in 
forming new estimates of the coefficients. If the model is nonlinear, EViews iterates 
the coefficient estimates until convergence.

• Update weights once, then—Update coefs once performs the first-stage estimation of 
the coefficients, and constructs an estimate of the weighting matrix. In the second 
stage, EViews does not iterate the coefficients to convergence, instead performing a 
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single coefficient iteration step. Since the first stage coefficients are consistent, this 
one-step update is asymptotically efficient, but unless the specification is linear, does 
not produce results that are identical to the first method.

• Iterate Weights and Coefs—Simultaneous updating updates both the coefficients 
and the weighting matrix at each iteration. These steps are then repeated until both 
the coefficients and weighting matrix converge. This is the iteration method employed 
in EViews prior to version 4.

• Iterate Weights and Coefs—Sequential updating repeats the default method of 
updating weights and then iterating coefficients to convergence until both the coeffi-
cients and the weighting matrix converge.

Note that all four of the estimation techniques yield results that are asymptotically efficient. 
For linear models, the two Iterate Weights and Coefs options are equivalent, and the two 
One-Step Weighting Matrix options are equivalent, since obtaining coefficient estimates 
does not require iteration.

When ARCH is the 
estimation method a 
set of ARCH options 
appears:

• Starting coeffi-
cient value 
indicates what 
starting values 
EViews should 
use to start the 
iteration pro-
cess. By default 
EViews Sup-
plied is set. 
You can also 
select User 
Supplied which allows you to set your own starting coefficient via the C coefficient 
vector or another of your choice.

• Coefficient name specifies the name of the coefficient to be used in the variance 
equation. This can be different from the mean equation.

• Starting (presample) covariance indicates the method by which presample condi-
tional variance and expected innovation should be calculated. Initial variance for the 
conditional variance are set using backcasting of the innovations,
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(39.3)

where:

(39.4)

is the unconditional variance of the residuals. By default, the smoothing parameter,  
is set to 0.7. However, you have the option to choose from a number of weights from 
0.1 to 1, in increments of 0.1. Notice that if the parameter is set to 1 the initial value is 
simply the unconditional variance, i.e. backcasting is not performed.

• EViews will report the robust standard errors when the Bollerslev-Wooldridge SE box 
is checked.

For basic specifications, ARCH analytic derivatives are available, and are employed by 
default. For a more complex model, either in the means or conditional variance, numerical 
or a combination of numerical and analytics are used. Analytic derivatives are generally, but 
not always, faster than numeric.

In addition, the Options tab allows you to set a number of options for estimation, including 
convergence criterion, maximum number of iterations, and derivative calculation settings. 
See “Setting Estimation Options” on page 1089 for related discussion.

Estimation Output

The system estimation output contains parameter estimates, standard errors, and t-statistics 
(or z-statistics for maximum likelihood estimations), for each of the coefficients in the sys-
tem. Additionally, EViews reports the determinant of the residual covariance matrix, and, for 
ARCH and FIML estimates, the maximized likelihood values, Akaike and Schwarz criteria. 
For ARCH estimations, the mean equation coefficients are separated from the variance coef-
ficient section.

In addition, EViews reports a set of summary statistics for each equation. The  statistic, 
Durbin-Watson statistic, standard error of the regression, sum-of-squared residuals, etc., are 
computed for each equation using the standard definitions, based on the residuals from the 
system estimation procedure.

In ARCH estimations, the raw coefficients of the variance equation do not necessarily give a 
clear understanding of the variance equations in many specifications. An extended coeffi-
cient view is supplied at the end of the output table to provide an enhanced view of the 
coefficient values involved.
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You may access most of these results using regression statistics functions. See Chapter 19, 
page 16 for a discussion of the use of these functions, and Chapter 1. “Object View and Pro-
cedure Reference,” on page 2 of the Command and Programming Reference for a full listing 
of the available functions for systems.

Working With Systems

After obtaining estimates, the system object provides a number of tools for examining the 
equation results, and performing inference and specification testing. 

System Views
• The System Specification view displays the specification window for the system. The 

specification window may also be displayed by pressing Spec on the toolbar.

• Representations provides you with the estimation command, the estimated equations 
and the substituted coefficient counterpart. For ARCH estimation this view also 
includes additional variance and covariance specification in matrix formation as well 
as single equation with and without substituted coefficients.

• The Estimation Output view displays the coefficient estimates and summary statistics 
for the system. You may also access this view by pressing Stats on the system toolbar.

• Residuals/Graphs displays a separate graph of the residuals from each equation in 
the system.

• Residuals/Correlation Matrix computes the contemporaneous correlation matrix for 
the residuals of each equation.

• Residuals/Covariance Matrix computes the contemporaneous covariance matrix for 
the residuals. See also the function @residcov in “System” on page 741 of the Com-
mand and Programming Reference.

• Gradients and Derivatives provides views which describe the gradients of the objec-
tive function and the information about the computation of any derivatives of the 
regression functions. Details on these views are provided in Appendix D. “Gradients 
and Derivatives,” on page 1103.

• Conditional Covariance… gives you the option to generate conditional covariances, 
variances, correlations or standard deviations for systems estimated using ARCH 
methods.

• Coefficient Covariance Matrix allows you to examine the estimated covariance 
matrix.

• Estimation Covariance Matrix displays the covariance matrix used in estimation:

1. identity matrix for OLS and TSLS

2. diagonal matrix with equation variances used to compute WOLS and WTSLS
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3. residual covariance matrix used to compute SUR and 3SLS

4. residual covariance matrix for unrestricted FIML; diagonal residual covariance 
matrix for diagonal FIML; user-specified covariance for user-covariance FIML

5. long-run covariance of the moments used to compute the weighting matrix for 
GMM estimates

6. matrix of missing values for ARCH

• Coefficient Tests allows you to display confidence ellipses or to perform hypothesis 
tests for restrictions on the coefficients. These views are discussed in greater depth in 
“Confidence Intervals and Confidence Ellipses” on page 176 and “Wald Test (Coeffi-
cient Restrictions)” on page 182.

• A number of Residual Diagnostics are supported, including Correlograms, Portman-
teau Autocorrelation Test, and Normality Test. For most estimation methods, the 
Correlogram and Portmanteau views employ raw residuals, while Normality tests are 
based on standardized residuals. For ARCH estimation, the user has the added option 
of using a number of standardized residuals to calculate Correlogram and Portman-
teau tests. The available standardization methods include Cholesky, Inverse Square 
Root of Residual Correlation, or Inverse Square Root of Residual Covariance. See 
“Residual Tests” on page 703 for details on these tests and factorization methods.

• Endogenous Table presents a spreadsheet view of the endogenous variables in the 
system.

• Endogenous Graph displays graphs of each of the endogenous variables.

System Procs

One notable difference between systems and single equation objects is that there is no fore-
cast procedure for systems. To forecast or perform simulation using an estimated system, 
you must use a model object.

EViews provides you with a simple method of incorporating the results of a system into a 
model. If you select Proc/Make Model, EViews will open an untitled model object contain-
ing the estimated system. This model can be used for forecasting and simulation. An alter-
native approach, creating the model and including the system object by name, is described 
in “Building a Model” on page 799.

There are other procedures for working with the system:
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• Define System… provides 
an easy way to define a 
system without having to 
type in every equation. 
Dependent variables 
allows you to list the 
dependent variables in the 
system. You have the 
option to transform these 
variables by selecting from 
the Dependent variable 
transformation list in the 
Option section. Regres-
sors and AR( ) terms that 
share the same coefficient 
across equations can be listed in Common coefficients, while those that do not can 
be placed in Equation specific coefficients. Command instruments can be listed in 
the Common field in the Instrument list section.

• Estimate… opens the dialog for estimating the system of equations. It may also be 
accessed by pressing Estimate on the system toolbar.

• Make Residuals creates a number of series containing the residuals for each equation 
in the system. The residuals will be given the next unused name of the form RESID01, 
RESID02, etc., in the order that the equations are specified in the system.

• Make Endogenous Group creates an untitled group object containing the endogenous 
variables.

• Make Loglikelihoods (for system ARCH) creates a series containing the log likelihood 
contribution.

• Make Conditional Covariance (for system ARCH) allows you to generate estimates of 
the conditional variances, covariances, or correlations for the specified set of depen-
dent variables. (EViews automatically places all of the dependent variables in the 
Variable field. You have the option to modify this field to include only the variable of 
interest.)

If you select Group under Format, EViews will save the data in series. The Base name 
edit box indicates the base name to be used when generating series data. For the con-
ditional variance series, the naming convention will be the specified base name plus 
terms of the form “_01”, “_02”. For covariances or correlations, the naming conven-
tion will use the base name plus “_01_02”, “_01_03”, etc., where the additional text 
indicates the covariance/correlation between member 1 and 2, member 1 and 3, etc. 
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If Matrix is selected then whatever is in the Matrix name field will be generated for 
what is in the Date (or Presample if it is checked) edit field. 

Example

As an illustration of the process of estimating a system of equations in EViews, we estimate 
a translog cost function using data from Berndt and Wood (1975) as presented in Greene 
(1997). The data are provided in “G_cost.WF1”. The translog cost function has four factors 
with three equations of the form:

 (39.5)

where  and  are the cost share and price of factor , respectively.  and  are the 
parameters to be estimated. Note that there are cross equation coefficient restrictions that 
ensure symmetry of the cross partial derivatives. 

We first estimate this system without imposing the cross equation restrictions and test 
whether the symmetry restrictions hold. Create a system by clicking Object/New Object.../
System in the main toolbar or type system in the command window. Press the Name but-
ton and type in the name “SYS_UR” to name the system. 

Next, type in the system window and specify the system as:

We estimate this model by full information maximum likelihood (FIML). FIML is invariant 
to the equation that is dropped. Press the Estimate button and choose Full Information 
Maximum Likelihood. Click on OK to perform the estimation. EViews presents the esti-
mated coefficients and regression statistics for each equation. The top portion of the output 
describes the coefficient estimates:
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while the bottom portion of the output (not depicted) describes equation specific statistics. 

To test the symmetry restrictions, select View/Coefficient Diagnostics/Wald Coefficient 
Tests…, fill in the dialog:

and click OK. The test result:

System: SYS_UR    
Estimation Method: Full Information Maximum Likelihood (Marquardt)  
Date: 08/13/09   Time: 09:10   
Sample: 1947 1971    
Included observations: 25   
Total system (balanced) observations 75   
Convergence achieved after 128 iterations   

 Coefficient Std. Error z-Statistic Prob.  

C(1) 0.054983 0.009353 5.878830 0.0000
C(2) 0.035130 0.035677 0.984676 0.3248
C(3) 0.004136 0.025616 0.161445 0.8717
C(4) 0.023633 0.084444 0.279867 0.7796
C(5) 0.250180 0.012019 20.81592 0.0000
C(6) 0.014758 0.024771 0.595766 0.5513
C(7) 0.083909 0.032188 2.606811 0.0091
C(8) 0.056411 0.096020 0.587493 0.5569
C(9) 0.043257 0.007981 5.420095 0.0000

C(10) -0.007707 0.012518 -0.615722 0.5381
C(11) -0.002183 0.020123 -0.108489 0.9136
C(12) 0.035624 0.061802 0.576422 0.5643

Log likelihood 349.0326           Schwarz criterion -26.37755
Avg. log likelihood 4.653769           Hannan-Quinn criter. -26.80034
Akaike info criterion -26.96261    
Determinant residual covariance 1.50E-16   
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fails to reject the symmetry restrictions. To estimate the system imposing the symmetry 
restrictions, copy the object using Object/Copy Object, click View/System Specification 
and modify the system.

We have named the system SYS_T-
LOG. Note that to impose symme-
try in the translog specification, we 
have restricted the coefficients on 
the cross-price terms to be the 
same (we have also renumbered 
the 9 remaining coefficients so that 
they are consecutive). The restric-
tions are imposed by using the 
same coefficients in each equation. For example, the coefficient on the log(P_L/P_M) term 
in the C_K equation, C(3), is the same as the coefficient on the log(P_K/P_M) term in the 
C_L equation. 

To estimate this model using FIML, click Estimate and choose Full Information Maximum 
Likelihood. We will leave the Residual covariance combo at the default setting of Unre-
stricted to allow for estimation of an unrestricted covariance matrix. Click on OK to esti-
mate the equation.

The top part of the equation describes the estimation specification, and provides coefficient 
and standard error estimates, t-statistics, p-values, and summary statistics:

Wald Test:   
System: SYS_UR   
Null Hypothesis: C(3)=C(6), C(4)=C(10), C(8)=C(11) 

Test Statistic Value df Probability

Chi-square  0.418796  3  0.9363 

    
Null Hypothesis Summary:  

Normalized Restriction (= 0) Value Std. Err. 

C(3) - C(6) -0.010622  0.039838 
C(4) - C(10)  0.031340  0.077783 
C(8) - C(11)  0.058594  0.090758 

Restrictions are linear in coefficients.  
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The log likelihood value reported at the bottom of the first part of the table may be used to 
construct likelihood ratio tests. 

Since maximum likelihood assumes the errors are 
multivariate normal, we may wish to test whether 
the residuals are normally distributed. Click Proc/
Make Residuals to display the residuals dialog. You 
may choose to save the ordinary or standardized 
residuals. If you choose the latter, you can elect to 
standardize the residuals using the Cholesky factor 
of the (conditional) covariance, the square root of 
the (conditional) correlation matrix, or the square 
root of the (conditional) covariance matrix. You 
must enter a basename for saving the residuals. The 
residuals will be named using the next available names in the workfile, in this case 
“RESID01”, “RESID02”, ...., if those names are not already used.

System: SYS_TLOG   
Estimation Method: Full Information Maximum Likelihood (BFGS / Marquardt 
        steps)   
Date: 03/10/15   Time: 22:09  
Sample: 1947 1971   
Included observations: 25  
Total system (balanced) observations 75 
Convergence achieved after 38 iterations 
Coefficient covariance computed using outer product of gradients 

 Coefficient Std. Error z-Statistic Prob.   

C(1) 0.057022 0.003306 17.24913 0.0000 
C(2) 0.029742 0.012583 2.363697 0.0181 
C(3) -0.000369 0.011205 -0.032971 0.9737 
C(4) -0.010228 0.006027 -1.697176 0.0897 
C(5) 0.253398 0.005050 50.17733 0.0000 
C(6) 0.075427 0.015483 4.871616 0.0000 
C(7) -0.004414 0.009141 -0.482900 0.6292 
C(8) 0.044286 0.003349 13.22339 0.0000 
C(9) 0.018767 0.014894 1.260009 0.2077 

Log likelihood 344.5916 Schwarz criterion -26.40853 
Avg. log likelihood 4.594555 Hannan-Quinn criter. -26.72563 
Akaike info criterion -26.84733    
Determinant residual covariance 2.14E-16   
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In this example, we elect to produce 
ordinary residuals. EViews opens an 
untitled group window containing the 
residuals of each equation in the sys-
tem. To compute descriptive statistics 
for each residual in the group, select 
View/Descriptive Stats/Common 
Sample from the group window tool-
bar.

The Jarque-Bera statistic rejects the 
hypothesis of normal distribution for 
the second equation but not for the 
other equations.

The estimated coefficients of the 
translog cost function may be used to construct estimates of the elasticity of substitution 
between factors of production. For example, the elasticity of substitution between capital 
and labor is given by 1+c(3)/(C_K*C_L). Note that the elasticity of substitution is not a 
constant, and depends on the values of C_K and C_L. To create a series containing the elas-
ticities computed for each observation, select Quick/Generate Series…, and enter:

es_kl = 1 + sys_tlog.c(3)/(c_k*c_l) 

To plot the series of elasticity of substitution between capital and labor for each observation, 
double click on the series name ES_KL in the workfile and select View/Graph/Line & Sym-
bol:
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While it varies over the sample, the elasticity of substitution is generally close to one, which 
is consistent with the assumption of a Cobb-Douglas cost function.

System ARCH Example

In this section we provide an example for system arch estimation. We will model the weekly 
returns of Japanese Yen ( ), Swiss Franc ( ) and British Pound ( ). The data, which 
are located in the WEEKLY page of the workfile “Fx.WF1”, which may be located in the 
Example File folder, contain the weekly exchange rates of these currencies against the U.S. 
dollar. The mean equations for the continuously compounding returns is regressed against a 
constant:

(39.6)

where  is assumed to distributed normally with mean zero and covari-
ance . The conditional covariance is modeled with a basic Diagonal VECH model:

(39.7)

To estimate this model, create a system SYS01 with the following specification:

dlog(jy) = c(1)

dlog(sf) = c(2)

dlog(bp) = c(3)

We estimate this model by selecting ARCH - Conditional Heteroskedasticity as the estima-
tion method in the estimation dialog. Since the model we want to estimate is the default 
Diagonal VECH model we leave most of the settings as they are. In the sample field, we 
change the sample to “1980 2000” to use only a portion of the data. Click on OK to estimate 
the system.

EViews displays the results of the estimation, which are similar to other system estimation 
output with a few differences. The ARCH results contain the coefficients statistics section 
(which includes both the mean and raw variance coefficients), model and equation specific 
statistics, and an extended section describing the variance coefficients.

The coefficient section at the top is separated into two parts, one contains the estimated 
coefficient for the mean equation and the other contains the estimated raw coefficients for 
the variance equation. The parameters estimates of the mean equation, C(1), C(2) and C(3), 
are listed in the upper portion of the coefficient list.

jyt sft bpt

jyt jyt 1– log c1 e1t

sft sft 1– log c2 e2t

bpt bpt 1– log c3 e3t

et e1t e2t e3t,[ , ]
Ht

Ht Q A et 1– et 1–  B Ht 1– 
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The variance coefficients are displayed in their own section. Coefficients C(4) to C(9) are the 
coefficients for the constant matrix, C(10) to C(15) are the coefficients for the ARCH term, 
and C(16) through C(21) are the coefficients for the GARCH term. 

Note that the number of variance coefficients in an ARCH model can be very large. Even in 
this small 3-variable system, 18 parameters are estimated, making interpretation somewhat 
difficult. To aid you in interpreting the results, EViews provides a covariance specification 
section at the bottom of the estimation output that re-labels and transforms coefficients:

System: SYSTEM01   
Estimation Method: ARCH Maximum Likelihood (BFGS / Marquardt steps) 
Covariance specification: Diagonal VECH 
Date: 03/10/15   Time: 22:15  
Sample: 12/31/1979 12/25/2000  
Included observations: 1096  
Total system (balanced) observations 3288 
Presample covariance: backcast (parameter =0.7) 
Convergence achieved after 68 iterations 
Coefficient covariance computed using outer product of gradients 

 Coefficient Std. Error z-Statistic Prob.  

C(1) -0.000865 0.000446 -1.936740 0.0528
C(2) 5.43E-05 0.000454 0.119510 0.9049
C(3) -3.49E-05 0.000378 -0.092282 0.9265

 Variance Equation Coefficients 

C(4) 6.49E-06 1.10E-06 5.919901 0.0000
C(5) 3.64E-06 9.67E-07 3.759945 0.0002
C(6) -2.64E-06 7.39E-07 -3.575569 0.0003
C(7) 1.04E-05 2.28E-06 4.550943 0.0000
C(8) -8.03E-06 1.62E-06 -4.972743 0.0000
C(9) 1.39E-05 2.49E-06 5.590122 0.0000

C(10) 0.059566 0.007893 7.546435 0.0000
C(11) 0.052100 0.007282 7.154661 0.0000
C(12) 0.046822 0.008259 5.668999 0.0000
C(13) 0.058630 0.007199 8.144178 0.0000
C(14) 0.067051 0.007508 8.931132 0.0000
C(15) 0.112734 0.008091 13.93397 0.0000
C(16) 0.917973 0.010867 84.47647 0.0000
C(17) 0.928844 0.009860 94.20352 0.0000
C(18) 0.924802 0.010562 87.55899 0.0000
C(19) 0.908492 0.011498 79.01305 0.0000
C(20) 0.886249 0.011892 74.52704 0.0000
C(21) 0.829154 0.012741 65.07734 0.0000
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The first line of this section states the covariance model used in estimation, in this case 
Diagonal VECH. The next line of the header describes the model that we have estimated in 
abbreviated text form. In this case, “GARCH” is the conditional variance matrix, “M” is the 
constant matrix coefficient, A1 is the coefficient matrix for the ARCH term and B1 is the 
coefficient matrix for the GARCH term. M, A1, and B1 are all specified as indefinite matrices.

Next, the estimated values of the matrix elements as well as other statistics are displayed. 
Since the variance matrices are indefinite, the values are identical to those reported for the 
raw variance coefficients. For example, M(1,1), the (1,1) element in matrix M, corresponds 
to raw coefficient C(4), M(1,2) corresponds to C(5), A1(1,1) to C(10), etc.

For matrix coefficients that are rank 1 or full rank, the values reported in this section are a 
transformation of the raw estimated coefficients, i.e. they are a function of one or more of 
the raw coefficients. Thus, the reported values do not have a one-to-one correspondence 
with the raw parameters.

Covariance speci fication: Diagonal VECH   
GARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1)  
M is an indefinite matrix   
A1 is an indefinite matrix   
B1 is an indefinite matrix*   

 Transformed Variance Coefficients  

 Coefficient Std. Error z-Statistic Prob.  

M(1,1) 6.49E-06 1.10E-06 5.919903 0.0000
M(1,2) 3.64E-06 9.67E-07 3.759946 0.0002
M(1,3) -2.64E-06 7.39E-07 -3.575568 0.0003
M(2,2) 1.04E-05 2.28E-06 4.550942 0.0000
M(2,3) -8.03E-06 1.62E-06 -4.972744 0.0000
M(3,3) 1.39E-05 2.49E-06 5.590125 0.0000
A1(1,1) 0.059566 0.007893 7.546440 0.0000
A1(1,2) 0.052100 0.007282 7.154665 0.0000
A1(1,3) 0.046822 0.008259 5.669004 0.0000
A1(2,2) 0.058630 0.007199 8.144180 0.0000
A1(2,3) 0.067051 0.007508 8.931139 0.0000
A1(3,3) 0.112734 0.008091 13.93396 0.0000
B1(1,1) 0.917973 0.010867 84.47655 0.0000
B1(1,2) 0.928844 0.009860 94.20361 0.0000
B1(1,3) 0.924802 0.010562 87.55915 0.0000
B1(2,2) 0.908492 0.011498 79.01313 0.0000
B1(2,3) 0.886249 0.011892 74.52720 0.0000
B1(3,3) 0.829154 0.012741 65.07757 0.0000

* Coefficient matrix is not PSD.   
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A single equation representation 
of the variance-covariance 
equation may be viewed by 
clicking on View/Representa-
tions and scrolling down to the 
Variance and Covariance 
Equations section.

The GARCH equations are the 
conditional variance equations 
while the COV equations are the 
conditional covariance equa-
tions. For example GARCH1 is the conditional variance of Japanese yen. COV1_2 is the con-
ditional covariance between the Japanese Yen and the Swiss Franc.

Before proceeding we name the system SYS01 by clicking on the Name button and accepting 
the default name.

A graph of the conditional variance can be generated using View/Conditional Covari-
ance…. An extensive list of options is available, including Covariance, Correlation, Vari-
ance, and Standard Deviation. Data may also be displayed in graph, matrix or time series 
list format. Here is the correlation view:

The correlation looks to be time varying, which is a general characteristic of this model. 
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Another possibility is to model the covariance matrix using the CCC specification, which 
imposes a constant correlation over time. We proceed by creating a new system with specifi-
cation identical to the one above. We'll select Constant Conditional Correlation this time as 
the Model type for estimation and leave the remaining settings as they are. The basic 
results:

Note that this specification has only 12 free parameters in the variance equation, as com-
pared with 18 in the previous model. The extended variance section represents the variance 
equation as,

GARCH(i) = M(i) + A1(i)*RESID(i)(-1)^2 + B1(i)*GARCH(i)(-1)

while the model for the covariance equation is:

COV(i,j) = R(i,j)*@SQRT(GARCH(i)*GARCH(j))

The lower portion of the output shows that the correlations, R(1, 2), R(1, 3), and R(2, 3) are 
0.5713, -0.4032, and -0.6773, respectively:

System: UNTITLED   
Estimation Method: ARCH Maximum Likelihood (BFGS / Marquardt steps) 
Covariance specification: Constant Conditional Correlation 
Date: 03/10/15   Time: 22:29  
Sample: 12/31/1979 12/25/2000  
Included observations: 1096  
Total system (balanced) observations 3288 
Presample covariance: backcast (parameter =0.7) 
Convergence achieved after 48 iterations 
Coefficient covariance computed using outer product of gradients 

 Coefficient Std. Error z-Statistic Prob.   

C(1) -0.000804 0.000450 -1.788285 0.0737 
C(2) -0.000232 0.000467 -0.497008 0.6192 
C(3) 8.56E-05 0.000377 0.226828 0.8206 

 Variance Equation Coefficients 

C(4) 5.84E-06 1.30E-06 4.482923 0.0000 
C(5) 0.062911 0.010085 6.238135 0.0000 
C(6) 0.916958 0.013613 67.35993 0.0000 
C(7) 4.89E-05 1.72E-05 2.836869 0.0046 
C(8) 0.063178 0.012988 4.864468 0.0000 
C(9) 0.772214 0.064005 12.06496 0.0000 

C(10) 1.47E-05 3.11E-06 4.735844 0.0000 
C(11) 0.104348 0.009262 11.26665 0.0000 
C(12) 0.828535 0.017936 46.19303 0.0000 
C(13) 0.571323 0.018238 31.32550 0.0000 
C(14) -0.403219 0.023634 -17.06082 0.0000 
C(15) -0.677329 0.014588 -46.43001 0.0000 

Log likelihood 9593.125 Schwarz criterion -17.40991 
Avg. log likelihood 2.917617 Hannan-Quinn criter. -17.45244 
Akaike info criterion -17.47833    
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Is this model better than the previous model? While the log likelihood value is lower, it also 
has fewer coefficients. We may compare the two system by looking at model selection crite-
ria. The Akaike, Schwarz and Hannan-Quinn all show lower information criteria values for 
the VECH model than the CCC specification, suggesting that the time-varying Diagonal 
VECH specification may be preferred.

Technical Discussion

While the discussion to follow is expressed in terms of a balanced system of linear equa-
tions, the analysis carries forward in a straightforward way to unbalanced systems contain-
ing nonlinear equations.

Denote a system of  equations in stacked form as:

(39.8)

where  is  vector,  is a  matrix, and  is a  vector of coefficients. The 
error terms  have an  covariance matrix . The system may be written in 
compact form as:

. (39.9)

Covariance speci fication: Constant Conditional Correlation  
GARCH(i) = M(i) + A1(i)*RESID(i)(-1)^2 + B1(i)*GARCH(i)(-1)  
COV(i,j) = R(i,j)*@SQRT(GARCH(i)*GARCH(j))   

 Transformed Variance Coefficients  

 Coefficient Std. Error z-Statistic Prob.  

M(1) 5.84E-06 1.30E-06 4.482923 0.0000
A1(1) 0.062911 0.010085 6.238137 0.0000
B1(1) 0.916958 0.013613 67.35994 0.0000
M(2) 4.89E-05 1.72E-05 2.836869 0.0046
A1(2) 0.063178 0.012988 4.864469 0.0000
B1(2) 0.772214 0.064005 12.06496 0.0000
M(3) 1.47E-05 3.11E-06 4.735844 0.0000
A1(3) 0.104348 0.009262 11.26665 0.0000
B1(3) 0.828536 0.017936 46.19308 0.0000
R(1,2) 0.571323 0.018238 31.32550 0.0000
R(1,3) -0.403219 0.023634 -17.06082 0.0000
R(2,3) -0.677329 0.014588 -46.43002 0.0000

m

y1

y2


yM

X1 0  0

0 X2  
   0

0  0 XM

b1

b2


bM

e1

e2


eM



ym T Xm T km bm km

e MT MT V

y Xb e
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Under the standard assumptions, the residual variance matrix from this stacked system is 
given by:

. (39.10)

Other residual structures are of interest. First, the errors may be heteroskedastic across the 
 equations. Second, they may be heteroskedastic and contemporaneously correlated. We 

can characterize both of these cases by defining the  matrix of contemporaneous 
correlations, , where the (i,j)-th element of  is given by  for all . If the 
errors are contemporaneously uncorrelated, then,  for , and we can write:

(39.11)

More generally, if the errors are heteroskedastic and contemporaneously correlated:

. (39.12)

Lastly, at the most general level, there may be heteroskedasticity, contemporaneous correla-
tion, and autocorrelation of the residuals. The general variance matrix of the residuals may 
be written:

(39.13)

where  is an autocorrelation matrix for the i-th and j-th equations.

Ordinary Least Squares

The OLS estimator of the estimated variance matrix of the parameters is valid under the 
assumption that . The estimator for  is given by,

(39.14)

and the variance estimator is given by:

(39.15)

where is the residual variance estimate for the stacked system.

Weighted Least Squares

The weighted least squares estimator is given by:

(39.16)

where  is a consistent estimator of , and  is the 
residual variance estimator:
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(39.17)

where the inner product is taken over the non-missing common elements of  and . The 
max function in Equation (39.17) is designed to handle the case of unbalanced data by 
down-weighting the covariance terms. Provided the missing values are asymptotically negli-
gible, this yields a consistent estimator of the variance elements. Note also that there is no 
adjustment for degrees of freedom.

When specifying your estimation specification, you are given a choice of which coefficients 
to use in computing the . If you choose not to iterate the weights, the OLS coefficient esti-
mates will be used to estimate the variances. If you choose to iterate the weights, the current 
parameter estimates (which may be based on the previously computed weights) are used in 
computing the . This latter procedure may be iterated until the weights and coefficients 
converge.

The estimator for the coefficient variance matrix is:

. (39.18)

The weighted least squares estimator is efficient, and the variance estimator consistent, 
under the assumption that there is heteroskedasticity, but no serial or contemporaneous cor-
relation in the residuals.

It is worth pointing out that if there are no cross-equation restrictions on the parameters of 
the model, weighted LS on the entire system yields estimates that are identical to those 
obtained by equation-by-equation LS. Consider the following simple model:

(39.19)

If  and  are unrestricted, the WLS estimator given in Equation (39.18) yields:

. (39.20)

The expression on the right is equivalent to equation-by-equation OLS. Note, however, that 
even without cross-equation restrictions, the standard errors are not the same in the two 
cases.

Seemingly Unrelated Regression (SUR)

SUR is appropriate when all the right-hand side regressors  are assumed to be exogenous, 
and the errors are heteroskedastic and contemporaneously correlated so that the error vari-
ance matrix is given by . Zellner’s SUR estimator of  takes the form:

, (39.21)
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where  is a consistent estimate of  with typical element , for all  and .

If you include AR terms in equation , EViews transforms the model (see “Specifying AR 
Terms” on page 112) and estimates the following equation:

(39.22)

where  is assumed to be serially independent, but possibly correlated contemporaneously 
across equations. At the beginning of the first iteration, we estimate the equation by nonlin-
ear LS and use the estimates to compute the residuals . We then construct an estimate of 

 using  and perform nonlinear GLS to complete one iteration 
of the estimation procedure. These iterations may be repeated until the coefficients and 
weights converge.

Two-Stage Least Squares (TSLS) and Weighted TSLS

TSLS is a single equation estimation method that is appropriate when some of the variables 
in  are endogenous. Write the j-th equation of the system as,

(39.23)

or, alternatively:

(39.24)

where , , and .  is 
the matrix of endogenous variables and  is the matrix of exogenous variables;  is the 
matrix of endogenous variables not including .

In the first stage, we regress the right-hand side endogenous variables  on all exogenous 
variables  and get the fitted values:

. (39.25)

In the second stage, we regress  on  and  to get:

. (39.26)

where . The residuals from an equation using these coefficients are used for 
form weights.

Weighted TSLS applies the weights in the second stage so that:

(39.27)

where the elements of the variance matrix are estimated in the usual fashion using the resid-
uals from unweighted TSLS. 
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Ẑj Ŷj Xj, 

d̂W2SLS Ẑj V̂
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If you choose to iterate the weights,  is estimated at each step using the current values of 
the coefficients and residuals.

Three-Stage Least Squares (3SLS)

Since TSLS is a single equation estimator that does not take account of the covariances 
between residuals, it is not, in general, fully efficient. 3SLS is a system method that esti-
mates all of the coefficients of the model, then forms weights and reestimates the model 
using the estimated weighting matrix. It should be viewed as the endogenous variable ana-
logue to the SUR estimator described above. 

The first two stages of 3SLS are the same as in TSLS. In the third stage, we apply feasible 
generalized least squares (FGLS) to the equations in the system in a manner analogous to 
the SUR estimator.

SUR uses the OLS residuals to obtain a consistent estimate of the cross-equation covariance 
matrix . This covariance estimator is not, however, consistent if any of the right-hand side 
variables are endogenous. 3SLS uses the 2SLS residuals to obtain a consistent estimate of . 

In the balanced case, we may write the equation as,

(39.28)

where  has typical element:

(39.29)

If you choose to iterate the weights, the current coefficients and residuals will be used to 
estimate .

Full Information Maximum Likelihood)

Following the discussion in Amemiya (1997), recall that we have

, (39.30)

where  is a vector of endogenous variables,  is a vector of exogenous variables. The 
Full Information Maximum Likelihood (FIML) estimator finds the vector of parameters  by 
maximizing the likelihood under the assumption that  is a vector of i.i.d. multivariate nor-
mal random variables with covariance matrix .

Under the normality assumption, the log-likelihood is given by

(39.31)

where . Note that the log determinant of the derivatives of  captures the 
simultaneity in the system of equations.
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For the unrestricted and diagonal restricted covariance variants of the model, we may use 
the first-order conditions for the variance parameters and rewrite the likelihood in concen-
trated form:

(39.32)

The diagonal restricted estimator replaces the off diagonal terms in the latter matrix with 
zeros. The corresponding FIML estimator maximizes the concentrated likelihood with 
respect to the  (or equivalently, the full likelihood with respect to  and the free parame-
ters of ).

The FIML estimator for models with user restricted covariances maximizes the full likeli-
hood in Equation (39.31) with respect to  given the user specified value for .

The estimator for  is asymptotically normally distributed with coefficient covariance typi-
cally computed using the partitioned inverse of the outer-product of the gradient of the full 
likelihood (OPG) or the inverse of the negative of the observed Hessian of the concentrated 
likelihood. EViews employs the OPG covariance by default, but there is evidence that one 
should take seriously the choice of method (Calzolari and Panattoni, 1988). In addition, 
EViews offers a QML covariance computation that employs a Huber-White sandwich using 
both the OPG and the inverse negative Hessian.

Over the years, a number of approaches for FIML estimation have been proposed (see, for 
example, Parke 1982, Belsley 1980, Dagenais 1978, or Amemiya 1977). EViews offers standard 

BFGS, Newton-Raphson, and OPG/BHHH algorithms with various step methods in trust region 

form, as well as a simple implementation of BHHH with Marquardt and line search steps (“Opti-
mization Algorithms” on page 1095). See Calzolari and Panattoni (1987) and Weihs, Calzolari, 

and Panattoni (1986) for simulation results for the performance of various estimators. 

Whichever method you select, we encourage you to perform sensitivity analysis.

Generalized Method of Moments (GMM)

The basic idea underlying GMM is simple and intuitive. We have a set of theoretical moment 
conditions that the parameters of interest  should satisfy. We denote these moment condi-
tions as:

. (39.33)

The method of moments estimator is defined by replacing the moment condition (39.33) by 
its sample analog:

. (39.34)
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However, condition (39.34) will not be satisfied for any when there are more restrictions 
 than there are parameters . To allow for such overidentification, the GMM estimator is 

defined by minimizing the following criterion function:

(39.35)

which measures the “distance” between  and zero.  is a weighting matrix that weights 
each moment condition. Any symmetric positive definite matrix  will yield a consistent 
estimate of . However, it can be shown that a necessary (but not sufficient) condition to 
obtain an (asymptotically) efficient estimate of  is to set  equal to the inverse of the 
covariance matrix  of the sample moments . This follows intuitively, since we want to 
put less weight on the conditions that are more imprecise. 

To obtain GMM estimates in EViews, you must be able to write the moment conditions in 
Equation (39.33) as an orthogonality condition between the residuals of a regression equa-
tion, , and a set of instrumental variables, , so that:

(39.36)

For example, the OLS estimator is obtained as a GMM estimator with the orthogonality con-
ditions:

. (39.37)

For the GMM estimator to be identified, there must be at least as many instrumental vari-
ables  as there are parameters . See the section on “Generalized Method of Moments,” 
beginning on page 81 for additional examples of GMM orthogonality conditions.

An important aspect of specifying a GMM problem is the choice of the weighting matrix . 
EViews uses the optimal , where  is the estimated long-run covariance matrix of 
the sample moments . EViews uses the consistent TSLS estimates for the initial estimate 
of  in forming the estimate of . 

White’s Heteroskedasticity Consistent Covariance Matrix

If you choose the GMM-Cross section option, EViews estimates  using White’s heteroske-
dasticity consistent covariance matrix:

(39.38)

where  is the vector of residuals, and  is a  matrix such that the  moment condi-
tions at  may be written as .
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Heteroskedasticity and Autocorrelation Consistent (HAC) Covariance Matrix 

If you choose the GMM-Time series option, EViews estimates  by,

(39.39)

where:

. (39.40)

You also need to specify the kernel function  and the bandwidth . 

Kernel Options

The kernel function  is used to weight the covariances so that  is ensured to be positive 
semi-definite. EViews provides two choices for the kernel, Bartlett and quadratic spectral 
(QS). The Bartlett kernel is given by:

(39.41)

while the quadratic spectral (QS) kernel is given by:

(39.42)

where . The QS has a faster rate of convergence than the Bartlett and is smooth 
and not truncated (Andrews 1991). Note that even though the QS kernel is not truncated, it 
still depends on the bandwidth  (which need not be an integer). 

Bandwidth Selection

The bandwidth  determines how the weights given by the kernel change with the lags in 
the estimation of . Newey-West fixed bandwidth is based solely on the number of obser-
vations in the sample and is given by:

(39.43)

where int( ) denotes the integer part of the argument. 

EViews also provides two “automatic”, or data dependent bandwidth selection methods that 
are based on the autocorrelations in the data. Both methods select the bandwidth according 
to the rule:
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(39.44)

The two methods, Andrews and Variable-Newey-West, differ in how they estimate  
and . 

Andrews (1991) is a parametric method that assumes the sample moments follow an AR(1) 
process. We first fit an AR(1) to each sample moment (39.36) and estimate the autocorrela-
tion coefficients  and the residual variances  for . Then  and 

 are estimated by:

(39.45)

Note that we weight all moments equally, including the moment corresponding to the con-
stant. 

Newey-West (1994) is a nonparametric method based on a truncated weighted sum of the 
estimated cross-moments .  and  are estimated by,

(39.46)

where  is a vector of ones and: 

, (39.47)

for .

One practical problem with the Newey-West method is that we have to choose a lag selec-
tion parameter . The choice of  is arbitrary, subject to the condition that it grow at a cer-
tain rate. EViews sets the lag parameter to:

(39.48)

where  for the Bartlett kernel and  for the quadratic spectral kernel.

Prewhitening

You can also choose to prewhiten the sample moments  to “soak up” the correlations in 
 prior to GMM estimation. We first fit a VAR(1) to the sample moments:

. (39.49)
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Then the variance  of  is estimated by  where  is the 
long-run variance of the residuals  computed using any of the above methods. The GMM 
estimator is then found by minimizing the criterion function:

(39.50)

Note that while Andrews and Monahan (1992) adjust the VAR estimates to avoid singularity 
when the moments are near unit root processes, EViews does not perform this eigenvalue 
adjustment.

Multivariate ARCH

ARCH estimation uses maximum likelihood to jointly estimate the parameters of the mean 
and the variance equations.

Assuming multivariate normality, the log likelihood contributions for GARCH models are 
given by:

(39.51)

where m is the number of mean equations, and  is the  vector of mean equation resid-
uals. For Student's t-distribution, the contributions are of the form:

(39.52)

where  is the estimated degree of freedom.

Given a specification for the mean equation and a distributional assumption, all that we 
require is a specification for the conditional covariance matrix. We consider, in turn, each of 
the three basic specifications: Diagonal VECH, Constant Conditional Correlation (CCC), and 
Diagonal BEKK.

Diagonal VECH

Bollerslev, et. al (1988) introduce a restricted version of the general multivariate VECH 
model of the conditional covariance with the following formulation:

(39.53)

where the coefficient matrices , , and  are  symmetric matrices, and the oper-
ator “•” is the element by element (Hadamard) product. The coefficient matrices may be 
parametrized in several ways. The most general way is to allow the parameters in the matri-
ces to vary without any restrictions, i.e. parameterize them as indefinite matrices. In that 
case the model may be written in single equation format as:
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(39.54)

where, for instance,  is the i-th row and j-th column of matrix .

Each matrix contains  parameters. This model is the most unrestricted version 
of a Diagonal VECH model. At the same time, it does not ensure that the conditional covari-
ance matrix is positive semidefinite (PSD). As summarized in Ding and Engle (2001), there 
are several approaches for specifying coefficient matrices that restrict  to be PSD, possibly 
by reducing the number of parameters. One example is:

(39.55)

where raw matrices , , and  are any matrix up to rank . For example, one may use 
the rank  Cholesky factorized matrix of the coefficient matrix. This method is labeled the 
Full Rank Matrix in the coefficient Restriction selection of the system ARCH dialog. While 
this method contains the same number of parameters as the indefinite version, it does 
ensure that the conditional covariance is PSD.

A second method, which we term Rank One, reduces the number of parameter estimated to 
 and guarantees that the conditional covariance is PSD. In this case, the estimated raw 

matrix is restricted, with all but the first column of coefficients equal to zero.

In both of these specifications, the reported raw variance coefficients are elements of , , 
and . These coefficients must be transformed to obtain the matrix of interest: , 

, and . These transformed coefficients are reported in the extended 
variance coefficient section at the end of the system estimation results.

There are two other covariance specifications that you may employ. First, the values in the 
 matrix may be a constant, so that:

(39.56)

where  is a scalar and  is an  vector of ones. This Scalar specification implies that 
for a particular term, the parameters of the variance and covariance equations are restricted 
to be the same. Alternately, the matrix coefficients may be parameterized as Diagonal so 
that all off diagonal elements are restricted to be zero. In both of these parameterizations, 
the coefficients are not restricted to be positive, so that  is not guaranteed to be PSD.

Lastly, for the constant matrix , we may also impose a Variance Target on the coefficients 
which restricts the values of the coefficient matrix so that:

(39.57)

where  is the unconditional sample variance of the residuals. When using this option, the 
constant matrix is not estimated, reducing the number of estimated parameters.

You may specify a different type of coefficient matrix for each term. For example, if one esti-
mates a multivariate GARCH(1,1) model with indefinite matrix coefficient for the constant 
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while specifying the coefficients of the ARCH and GARCH term to be rank one matrices, then 
the number of parameters will be , instead of .

Constant Conditional Correlation (CCC)

Bollerslev (1990) specifies the elements of the conditional covariance matrix as follows:

(39.58)

Restrictions may be imposed on the constant term using variance targeting so that:

(39.59)

where  is the unconditional variance.

When exogenous variables are included in the variance specification, the user may choose 
between individual coefficients and common coefficients. For common coefficients, exoge-
nous variables are assumed to have the same slope, , for every equation. Individual coeffi-
cients allow each exogenous variable effect  to differ across equations.

(39.60)

Diagonal BEKK

BEKK (Engle and Kroner, 1995) is defined as:

(39.61)

EViews does not estimate the general form of BEKK in which  and  are unrestricted. 
However, a common and popular form, diagonal BEKK, may be specified that restricts  
and  to be diagonals. This Diagonal BEKK model is identical to the Diagonal VECH model 
where the coefficient matrices are rank one matrices. For convenience, EViews provides an 
option to estimate the Diagonal VECH model, but display the result in Diagonal BEKK form.
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Chapter 40.  Vector Autoregression and Error Correction 
Models

The structural approach to time series modeling uses economic theory to model the relation-
ship among the variables of interest. Unfortunately, economic theory is often not rich 
enough to provide a dynamic specification that identifies all of these relationships. Further-
more, estimation and inference are complicated by the fact that endogenous variables may 
appear on both the left and right sides of equations.

These problems lead to alternative, non-structural approaches to modeling the relationship 
among several variables. This chapter describes the estimation and analysis of vector autore-
gression (VAR) and the vector error correction (VEC) models. We also describe tools for test-
ing the presence of cointegrating relationships among several non-stationary variables.

Vector Autoregressions (VARs)

The vector autoregression (VAR) is commonly used for forecasting systems of interrelated 
time series and for analyzing the dynamic impact of random disturbances on the system of 
variables. The reduced form VAR approach sidesteps the need for structural modeling by 
treating every endogenous variable in the system as a function of p-lagged values of all of 
the endogenous variables in the system. 

Below, we offer an abbreviated description of important features of the model. There are 
countless treatments of the basics of VAR analysis that one can consult for additional detail 
(see, for example, Lütkepohl, 2006).

We may write the stationary, -dimensional, VAR(p) process as

(40.1)

where 

•  is a  vector of endogenous variables,

•  is a  vector of exogenous variables,

•  are  matrices of lag coefficients to be estimated,

•  is a  matrix of exogenous variable coefficients to be estimated,

•  is a  white noise innovation process, with 
, , and  for . 

The last statement implies that the vector of innovations are contemporaneously correlated 
with full rank matrix , but are uncorrelated with their leads and lags of the innovations 
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and (assuming the usual  orthogonality) uncorrelated with all of the right-hand side vari-
ables.

Let the  vector

(40.2)

represent all of the period t regressors in the VAR. Then for observations , we 
may write this model in compact system form as:

(40.3)

where  and  are  matrices of endogenous 
variables and innovations, and

(40.4)

are the  matrix of system coefficients and the  matrix of regressor 
data, respectively.

In stacked form, we have

(40.5)

where , , and , where .

Since only lagged values of the endogenous variables appear on the right-hand side of the 
VAR equations Equation (40.1) and the innovations are assumed to be uncorrelated with 
lagged innovations and the exogenous regressors, standard orthogonality conditions hold 
and OLS yields consistent estimates.

Furthermore, even though the innovations  may be contemporaneously correlated, all of 
the equations in the system have identical  regressors so that OLS is both equivalent to 
GLS and efficient. Accordingly, estimation of the standard VAR model in EViews is per-
formed using simple OLS applied to each equation. (Later, when we describe estimation of 
restricted VAR models, we relax the identical regressors assumption so that OLS is no longer 
efficient.)

Applying least squares estimation to the stacked representation yields the least squares esti-
mator

(40.6)

which has covariance matrix

(40.7)

To obtain an estimator of the covariance matrix we require an estimate of , which is typi-
cally obtained using the d.f. corrected residual moment estimator:
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(40.8)

where  for 

As an example, suppose that industrial production (IP) and money supply (M1) are jointly 
determined by a VAR(2) and let a constant be the only exogenous variable. Then the VAR 
may be written as:

(40.9)

where , ,  are the parameters to be estimated.

Alternately, in terms of Equation (40.1), we have

(40.10)

where  and  are ,  and  are  matrices, 
and  is .

Further, we may write the specification in system or stacked form using Equation (40.3), 
Equation (40.4), and Equation (40.5) with  and 

.

Estimates of the coefficients of the VAR may be obtained by regressing IP on an intercept 
and two lags of IP and M1 and by regressing M1 on an intercept and two lags of IP and M1.

Estimating a VAR in EViews

To specify a VAR in EViews, you must first create a Var object. Select Quick/Estimate VAR... 
or type var in the command window to display the estimation dialog

The Basics tab of the VAR Specification dialog will prompt you to define the structure of 
your VAR.

Ŝe
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We begin with a simple reduced form VAR. You should fill out the dialog with the appropri-
ate information:

• Select the VAR type: Standard VAR.

• Set the estimation sample.

• Enter a list of  Endogenous variables in the corresponding edit field. You may list 
the series individually or you may include one or more series in a group object and 
enter the group name.

Here we have listed M1, IP, and TB3 as endogenous series

• Enter the lag specification in the Lag Intervals for Endogenous edit box. This infor-
mation is entered in pairs where each pair of numbers defines a range of lags. For 
example, the lag pair shown above:

 1 4

tells EViews to use the first through fourth lags of all the endogenous variables in the 
system as right-hand side variables.

Through use of multiple lag pairs you may place zero restrictions on particular lag 
coefficient matrices , as desired. Simply add any number of lag intervals, all 
entered in pairs, omitting those lags you wish to restrict. For example, he lag specifica-
tion:

 2 4 6 9 12 12 

uses lags 2–4, 6–9, and 12.

k

Ai
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Note that restrictions entered in this fashion restrict the entire  matrix to be zero. 
Below, we describe tools that allow for finer discrimination.

• Enter the specification for the exogenous series in the appropriate edit box, using 
group names if convenient.

Here, we have used the special series C to indicate that the VAR has a single constant 
exogenous term.

For the moment, we will ignore the VAR Restrictions tab of the dialog. Once you have speci-
fied your VAR, click on OK to have EViews estimate the coefficient matrices using least 
squares.

Estimation Output

Following estimation, EViews will estimate the model EViews will display the estimation 
results in the VAR window.

Recall that our VAR specification has three ( ) endogenous variables, IP, M1, and TB3, 
the exogenous intercept C ( ), and includes lags 1 to 4 ( ). Thus, there are 
( ) regressors in each of the three equations in the VAR.

As you can see, EViews displays the coefficient results in table. Each column in the table 
corresponds to an equation in the VAR, and each row corresponds to a regressor in the equa-
tion. Note that the regressors are grouped by variable, so that all of the lags for the first vari-

Ai

k 3
d 1 p 4

kp d 13
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able, here IP, are followed by all of the lags for the second variable, M1, and so on. The 
exogenous variables appear last.

For each right-hand side variable, EViews reports the estimated coefficient, its standard 
error, and the t-statistic. For example, the coefficient for IP(-1) in the TB3 equation is 
0.095984, the standard error is 0.05021, and the corresponding t-statistic is 1.91170.

EViews displays additional information below the coefficient results. This information is 
divided into two parts: 

• The first part of the additional output presents standard OLS regression summary sta-
tistics at the bottom of the column for the corresponding equation (recall that for the 
standard VAR each equation is estimated separately by OLS).

• The second part consists of summary statistics for the VAR system as a whole. These 
statistics include the determinant of the residual covariance, log-likelihood and associ-
ated information criteria, and number of coefficients:

A couple of comments on the calculation of the system statistics.

• The determinant of the residual covariance (degree-of-freedom adjusted) is computed 
as:

(40.11)Ŝe det
1

T pk d –
-------------------------------- êt êt
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where you will recall that  is the number of parameters per equation in the 
VAR. The unadjusted calculation ignores the number of parameters and divides by .

• The log likelihood value is computed assuming a multivariate normal (Gaussian) dis-
tribution as:

 (40.12)

using the unadjusted determinant.

• The two information criteria are computed as:

(40.13)

where  is the total number of estimated parameters in the VAR. The 
information criteria can be used for model selection such as determining the lag 
length of the VAR, with smaller values of the information criterion being preferred. 
Bear in mind when comparing the IC with other sources that some define the AIC/SC 
differently, either omitting the “inessential” constant terms from the likelihood, or by 
not dividing by  (see also Appendix E. “Information Criteria,” on page 1111 for addi-
tional discussion of information criteria).

VARs With Linear Constraints

The basic -variable VAR(p) specification has  coefficients so that even moderate 
sized VARs require estimation of a large number of parameters. When VARs are applied to 
macroeconomic data with limited sample sizes, model over-parameterization is a frequent 
problem as there are too few observations to estimate precisely the VAR parameters.

EViews offers two approaches to handling this over-parameterization problem:

• One approach, Bayesian estimation, is described in detail below (“Bayesian VAR” on 
page 732).

• Alternately, you may reduce the number of free parameters by imposing linear con-
straints on the elements of .

We outline here EViews’s tools for imposing linear restrictions. Note that we previously 
explored a variant of the constraint approach where specification of the VAR lag structure 
using multiple lag pairs sets a subset of lag matrices  to zero (“Estimating a VAR in 
EViews” on page 689). In contrast, the more general methods described in this section per-
mit finely targeted restriction on the parameters, allowing us to incorporate a priori informa-
tion about the parameters of the model which does not fit into the lag exclusion framework.

Briefly, to echo the discussion in Lütkepohl (2006), suppose we have linear restrictions of 
the form:

pk d 
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(40.14)

where  is the  vector of VAR coefficients,  is a  
restriction matrix,  is a  vector of unconstrained parameters and  is a 

 vector of known constants.

Note that while this is not the most common form for expressing linear restrictions, the con-
ventional ( ) form of linear restrictions, , may readily be transformed to the 
( ) form (see Lütkepohl 2006, p. 195).

Substituting Equation (40.14) into Equation (40.5) produces an unrestricted regression spec-
ification

(40.15)

where .

The OLS estimator for  is given by

(40.16)

and a estimator of the variance of  is given by

(40.17)

for the consistent estimator

(40.18)

Note that we employ the unadjusted residual variance matrix estimator since the presence of 
restrictions produces ambiguity in the finite sample correction.

Efficiency gains may be realized by accounting for the contemporaneous correlation in the 
errors. For , a consistent estimator of  the estimated GLS estimator is given by

(40.19)

Note that any consistent estimator for  may be employed. By default, EViews will iterate 
over estimates of  and the  obtained using the current residuals until convergence, 
or the maximum number of iterations is reached. Alternately, you may elect to perform only 
a single GLS iteration.

A consistent estimator of the coefficient covariance is given by

(40.20)

The corresponding estimators and covariances for the full coefficient vector  are then
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Ŝe
ˆ

Se

ĝGLS R ZZ Ŝe
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(40.21)

and

(40.22)

Bear in mind that by construction,  has reduced rank.

Estimating a VAR with Linear Restrictions in EViews

Select Quick/Estimate VAR... or type var in the command window to display the estima-
tion dialog. 

The Basics tab of the VAR Specification dialog outlines the basic specification, and should 
be filled out as for a basic specification (“Estimating a VAR in EViews” on page 689).

Click on the VAR Restrictions tab to specify your restrictions:

The Restrictions section on the left should be used to select the VAR elements that you wish 
to restrict. You may click on the entries for the lag matrices (L1, L2, L3, L4) and the vectors 
of coefficients associated with each exogenous variable (C) to select an element to restrict. 
The right side of the dialog will change to show the current settings for the selected element. 
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• If the Manual method is selected, you will place restrictions on the selection by edit-
ing its matrix representation in the dialog (rows of the matrix represent VAR equations 
while columns represent the endogenous variable). The ordering of the matrix ele-
ments follows the order of the endogenous variables in the original specification. Ele-
ments of the matrix or vector that are NA will be estimated while the remaining 
elements will be restricted to the specified value.

Here, we have selected the matrix for the first lag of the endogenous variables (L1) 
and set two elements to zero so that the lag of the first endogenous variable has no 
effect on the second and third endogenous variables.

• If the Workfile matrix method is selected, you should enter the name of a matrix 
object in the workfile containing the restriction matrix for the selection. The matrix 
should be of the correct dimension and should have NAs for unrestricted elements 
and numeric values for restricted elements.

In settings where restricting a large number individual elements is inconvenient, or where 
you wish to impose restrictions across lag or exogenous variable coefficients, you may find it 
more convenient to specify restrictions using text expressions. In this case, click on the Text 
node of the Restrictions tree to display the Restriction Text edit field.

Text expressions allow you to use a function-like syntax to employ text to specify restrictions 
on one or more matrix elements. The text restrictions will use the following “@” keywords 
that you may use to refer to individual coefficient matrix elements,
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Note that in this syntax, the canonical names (“L#”, “E#”, “E(X)”) that refer to lag matrices 
and exogenous variable vectors are preceded by “@” to avoid ambiguity.

For example, we may have:

@L1(1,1) = 0

@L2(2,2) = @L1(3,3) / 2

@L2(1,1) + @L4(2,1) = 1

@E(C, 1) = 0

@E(X, 2) = @E(C, 2)

@E1(1) + @E1(2) = 1

In addition, you may use text expressions to refer to parts of lag coefficient matrices and to 
impose specialized restrictions,

@l#(r, c) Element (r, c) of the lag # coefficient matrix.

@e#(r) Element r of the exogenous variable # coefficient vec-
tor.

@e(X, r) Element r of the exogenous variable X coefficient vec-
tor

@vec(W)=n1, n2, n3, ... Restricts all elements of matrix W similar to a pattern 
matrix. Element ordering matches the vectorization of 
the matrix, i.e., the elements of the first column, fol-
lowed by the second column, followed by the third col-
umn, etc.

@diag(W) Restricts W to be a diagonal matrix, i.e., off-diagonal 
elements are zero. The diagonal elements are unre-
stricted.

@diag(W) = n Restricts W to be a diagonal matrix with elements on 
the diagonal restricted to be n.

@lower(W) Restricts W to be a lower triangular matrix, i.e., ele-
ments above the diagonal are zero.

@unitlower(W) Restricts W to be a unit lower triangular matrix, i.e., 
elements above the diagonal are zero and elements on 
the diagonal are one.

@upper(W) Restricts W to be an upper triangular matrix, i.e., ele-
ments below the diagonal are zero.
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where  is a reference to a canonical matrix name (e.g., “L1”, “L3”).

For example:

@row(L1, 2) = 0

@lower(L5)

You may specify your restrictions with any combination of direct assignment or text expres-
sions. EViews will analyze the specification and determine if there are any restrictions that 
are incompatible.

If restrictions have been applied to any elements, the left side of the dialog will note this fact 
with the line of text “* restrictions applied”, and the Clear All button will be enabled. The 
button allows you to easily remove all of the current restrictions.

When restrictions have been applied, the Basics tab of the dialog will change to offer addi-
tional options. In the newly displayed Restriction estimation section in the bottom left o 
the dialog, you will be prompted to specify the method of estimating your restricted coeffi-
cients:

@unitupper(W) Restricts W to be a unit upper triangular matrix, i.e., 
elements below the diagonal are zero and elements on 
the diagonal are one.

@row(W, r) = n Restricts the elements in row r of W to be n.

@col(W, c) = n Restricts the elements in column c of W to be n.

W
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In you do not select the Iterate GLS weighting option, EViews will estimate the parameters 
of the model using one-step GLS estimation. If you do select Iterate GLS weighting you will 
be prompted to specify the iteration and convergence properties of the estimation. To esti-
mate with OLS, you may select Iterate GLS weighting and specify a Max Iterations of 0.

Estimation Output (Linear Restrictions)

Following estimation, EViews will display the results of restricted estimation. For the most 
part, the results are as described in “Estimation Output” on page 691, but there are some dif-
ferences of note.

First, the top of the estimation output shows that the VAR estimates were estimated with 
restrictions, and provides a text description of the restrictions. Here we see that in our illus-
tration, we have placed zero restrictions on the first lag coefficients for IP in the M1 equa-
tion, and for IP and M1 in the TB3 equation.

Just below the restrictions specification, EViews displays information about the restricted 
estimation method. Here, we see that EViews estimated the VAR using iterated GLS and that 
the coefficients and GLS weight matrix converged after 11 iterations.
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The coefficients display shows the full set of VAR coefficient estimates with restrictions 
imposed as appropriate. In cases, where the estimated standard error of the coefficient is 
zero, the display will show “---” and the t-statistic is suppressed.

As for unrestricted VARs, the bottom of the output show additional information on the indi-
vidual equations and summary statistics for the VAR as a whole:

As before, there are standard OLS regression summary statistics at the bottom of the column 
for the corresponding equation. Since linearly restricted VAR regression is not computed on 
an equation by equation basis, EViews only displays a subset of the equation specific statis-
tics that are available for unrestricted VAR estimation.

The remaining output consists of summary statistics for the VAR system as a whole. These 
statistics include the determinant of the residual covariance (non-d.f. corrected), log-likeli-
hood and associated information criteria, the number of coefficients, and number of restric-
tions.
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Views and Procs of a VAR

Once you have estimated a VAR, EViews provides various 
views to work with the estimated VAR. In this section, we dis-
cuss views that are specific to VARs. For other views and proce-
dures, see the general discussion of system views in 
Chapter 39. “System Estimation,” beginning on page 645.

Residual Views

You may use the entries under the Residuals and Structural 
Residuals menus to examine the residuals of the estimated 
VAR in graph or spreadsheet form, or you may examine the 
covariance and correlation matrix of those residuals.

The views listed under Residuals will display results using the 
raw residuals from the estimated VAR. 

Alternately, you may display the Structural Residuals views to examine the these trans-
formed estimated residuals. If the  are the ordinary residuals, we may plot the structural 
residuals  based on factor loadings ,

(40.23)

or based on weights ,

(40.24)

When producing results for the Structural Residuals views, you will be prompted to choose 
a transformation.
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Note that there is a corresponding procs which will save the residuals series in the workfile 
(Proc/Make Residuals and Proc/Make Structural Residuals...).

Diagnostic Views

A set of diagnostic views are provided under the menus View/Lag Structure and View/
Residual Tests in the VAR window. These views should help you check the appropriateness 
of the estimated VAR.

Lag Structure

EViews offers several views for investigating the lag structure of your equation.

AR Roots Table/Graph

Reports the inverse roots 
of the characteristic AR 
polynomial; see Lütkepohl 
(1991). The estimated 
VAR is stable (stationary) if all roots have modulus less than one and lie inside the unit cir-
cle. If the VAR is not stable, certain results (such as impulse response standard errors) are 
not valid. There will be  roots, where  is the number of endogenous variables and  is 
the largest lag. If you estimated a VEC with  cointegrating relations,  roots should be 
equal to unity.

Pairwise Granger Causality Tests

Carries out pairwise Granger causality tests and tests whether an endogenous variable can 
be treated as exogenous. For each equation in the VAR, the output displays (Wald) statis-
tics for the joint significance of each of the other lagged endogenous variables in that equa-
tion. The statistic in the last row (All) is the -statistic for joint significance of all other 
lagged endogenous variables in the equation. 

Warning: if you have estimated a VEC, the lagged variables that are tested for exclusion are 
only those that are first differenced. The lagged level terms in the cointegrating equations (the 
error correction terms) are not tested.

Note: for VAR models with linear restrictions, EViews will only perform tests involving endog-
enous variable lags for which there are no restrictions.

Lag Exclusion Tests

Carries out lag exclusion tests for each lag in the VAR. For each lag, the (Wald) statistic 
for the joint significance of all endogenous variables at that lag is reported for each equation 
separately and jointly (last column).

Note: for VAR models with linear restrictions, EViews will only perform tests involving endog-
enous variable lags for which there are no restrictions.
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Lag Length Criteria

Computes various criteria to select the lag order of an unrestricted VAR. You will be 
prompted to specify the maximum lag to “test” for. The table displays various information 
criteria for all lags up to the specified maximum. (If there are no exogenous variables in the 
VAR, the lag starts at 1; otherwise the lag starts at 0.) The table indicates the selected lag 
from each column criterion by an asterisk “*”. For columns 4–7, these are the lags with the 
smallest value of the criterion.

All the criteria are discussed in Lütkepohl (1991, Section 4.3). The sequential modified like-
lihood ratio (LR) test is carried out as follows. Starting from the maximum lag, test the 
hypothesis that the coefficients on lag  are jointly zero using the statistics:

(40.25)

where  is the number of parameters per equation under the alternative. Note that we 
employ Sims’ (1980) small sample modification which uses ( ) rather than . We 
compare the modified LR statistics to the 5% critical values starting from the maximum lag, 
and decreasing the lag one at a time until we first get a rejection. The alternative lag order 
from the first rejected test is marked with an asterisk (if no test rejects, the minimum lag will 
be marked with an asterisk). It is worth emphasizing that even though the individual tests 
have size 0.05, the overall size of the test will not be 5%; see the discussion in Lütkepohl 
(1991, p. 125–126).

Note: for VAR models with linear restrictions, EViews perform lag length tests using models in 
which the VAR linear restrictions are not applied.

Residual Tests

You may use these views to examine the properties of the residuals from your estimated 
VAR.

Correlograms

Displays the pairwise 
cross-correlograms (sam-
ple autocorrelations) for 
the estimated residuals in 
the VAR for the specified 
number of lags. The 
cross-correlograms can be 
displayed in three different formats. There are two tabular forms, one ordered by variables 
(Tabulate by Variable) and one ordered by lags (Tabulate by Lag). The Graph form dis-
plays a matrix of pairwise cross-correlograms. The dotted line in the graphs represent plus 
or minus two times the approximate asymptotic standard errors of the lagged correlations 
(ignoring coefficient estimation and computed as ).
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Portmanteau Autocorrelation Test 

Computes the multivariate Box-Pierce/Ljung-Box Q-statistics for residual serial correlation 
up to the specified order (see Lütkepohl, 1991, 4.4.21 & 4.4.23 for details). We report both 
the Q-statistics and the adjusted Q-statistics (with a small sample correction). Under the 
null hypothesis of no serial correlation up to lag , both statistics are approximately distrib-
uted with degrees of freedom  where  is the VAR lag order if there are no 
coefficient restrictions, and  where  contains adjustments for the restrictions. 

The asymptotic distribution is approximate in the sense that it requires the MA coefficients 
to be zero for lags . Therefore, this approximation will be poor if the roots of the 
AR polynomial are close to one and  is small. In fact, the degrees of freedom becomes neg-
ative for .

Note that adjustments are made to the computation of the p-value of these statistics when 
the model is a VECM (Brüggemann, Lütkepohl, and Saikkonen, 2006).

Autocorrelation LM Test 

Reports the multivariate LM test statistics for residual serial correlation up to the specified 
order. A Breusch-Godfrey test statistic for autocorrelation at lag order  is computed by run-
ning an auxiliary regression of the residuals  on the original right-hand regressors and the 
lagged residual , where the missing first  values of  are filled with zeros.

See Johansen (1995, p. 22) for the formula of the LR version of this LM test. The form of this 
statistic employs the Edgeworth expansion correction (Edgerton and Shukur 1999). Under 
the null hypothesis of no serial correlation of order , the LM statistic is asymptotically dis-
tributed with  degrees of freedom. 

A variant of this test tests for autocorrelation for lags 1 to . The test modifies the LM statis-
tic above by including all of the modified lagged residual regressors from . 
Under the null hypothesis, the LM statistic is asymptotically with  degrees of free-
dom.

In addition to the LR version of the test, EViews computes the Rao F-test version of the LM 
statistic as described Edgerton and Shukur (1999) since their simulations suggest it performs 
best among the many variants they consider.

Normality Test 

This view reports the multivariate extensions of the Jarque-Bera residual normality test, 
which compares the third and fourth moments of the residuals to those from the normal dis-
tribution. For the multivariate test, you must choose a factorization of the  residuals that 
are orthogonal to each other (see “Impulse Responses” on page 707 for additional discussion 
of the need for orthogonalization).

Let  be a  factorization matrix such that:
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(40.26)

where  is the demeaned residuals. Define the third and fourth moment vectors 
 and . Then:

(40.27)

under the null hypothesis of normal distribution. Since each component is independent of 
each other, we can form a -statistic by summing squares of any of these third and fourth 
moments.

EViews provides you with choices for the factorization matrix :

• Cholesky (Lütkepohl 1991, p. 155-158):  is the inverse of the lower triangular 
Cholesky factor of the residual covariance matrix. The resulting test statistics depend 
on the ordering of the variables in the VAR.

• Inverse Square Root of Residual Correlation Matrix (Doornik and Hansen 1994): 
 where  is a diagonal matrix containing the eigenvalues of the 

residual correlation matrix on the diagonal,  is a matrix whose columns are the cor-
responding eigenvectors, and  is a diagonal matrix containing the inverse square 
root of the residual variances on the diagonal. This  is essentially the inverse square 
root of the residual correlation matrix. The test is invariant to the ordering and to the 
scale of the variables in the VAR. As suggested by Doornik and Hansen (1994), we 
perform a small sample correction to the transformed residuals  before computing 
the statistics.

• Inverse Square Root of Residual Covariance Matrix (Urzua 1997):  
where  is the diagonal matrix containing the eigenvalues of the residual covariance 
matrix on the diagonal and  is a matrix whose columns are the corresponding 
eigenvectors. This test has a specific alternative, which is the quartic exponential dis-
tribution. According to Urzua, this is the “most likely” alternative to the multivariate 
normal with finite fourth moments since it can approximate the multivariate Pearson 
family “as close as needed.” As recommended by Urzua, we make a small sample cor-
rection to the transformed residuals  before computing the statistics. This small 
sample correction differs from the one used by Doornik and Hansen (1994); see Urzua 
(1997, Section D).

• Factorization from Identified (Structural) VAR:  where ,  are esti-
mated from the structural VAR model. This option is available only if you have esti-
mated the factorization matrices  and  using the structural VAR (see page 714, 
below).
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EViews reports test statistics for each orthogonal component (labeled RESID1, RESID2, and 
so on) and for the joint test. For individual components, the estimated skewness  and 
kurtosis are reported in the first two columns together with the p-values from the  
distribution (in square brackets). The Jarque-Bera column reports:

(40.28)

with p-values from the  distribution. Note: in contrast to the Jarque-Bera statistic com-
puted in the series view, this statistic is not computed using a degrees of freedom correction.

For the joint tests, we will generally report:

(40.29)

If, however, you choose Urzua’s (1997) test,  will not only use the sum of squares of the               
“pure” third and fourth moments but will also include the sum of squares of all cross third 
and fourth moments. In this case,  is asymptotically distributed as a with 

 degrees of freedom.

White Heteroskedasticity Test

These tests are the extension of White’s (1980) test to systems of equations as discussed by 
Kelejian (1982) and Doornik (1995). The test regression is run by regressing each cross prod-
uct of the residuals on the cross products of the regressors and testing the joint significance 
of the regression. The No Cross Terms option uses only the levels and squares of the origi-
nal regressors, while the With Cross Terms option includes all non-redundant cross-prod-
ucts of the original regressors in the test equation. The test regression always includes a 
constant term as a regressor.

The first part of the output displays the joint significance of the regressors excluding the con-
stant term for each test regression. You may think of each test regression as testing the con-
stancy of each element in the residual covariance matrix separately. Under the null of no 
heteroskedasticity or (no misspecification), the non-constant regressors should not be jointly 
significant.

The last line of the output table shows the LM chi-square statistics for the joint significance 
of all regressors in the system of test equations (see Doornik, 1995, for details). The system 
LM statistic is distributed as a with degrees-of-freedom , where  is 
the number of cross-products of the residuals in the system and  is the number of the com-
mon set of right-hand side variables in the test regression.
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Cointegration Test

This view performs the Johansen cointegration test for the variables in your VAR. See 
“Johansen Cointegration Test,” on page 1023 for a description of the basic test methodology.

Note that Johansen cointegration tests may also be performed from a Group object, how-
ever, tests performed using the latter do not permit you to impose identifying restrictions on 
the cointegrating vector.

Notes on Comparability

Many of the diagnostic tests given above may be computed “manually” by estimating the 
VAR using a system object and selecting View/Wald Coefficient Tests... We caution you 
that the results from the system will not match those from the VAR diagnostic views for var-
ious reasons:

• The system object will, in general, use the maximum possible observations for each 
equation in the system. By contrast, VAR objects force a balanced sample in case there 
are missing values.

• The estimates of the weighting matrix used in system estimation do not contain a 
degrees of freedom correction (the residual sums-of-squares are divided by  rather 
than by ), while the VAR estimates do perform this adjustment. Even though 
estimated using comparable specifications and yielding identifiable coefficients, the 
test statistics from system SUR and the VARs will show small (asymptotically insignif-
icant) differences.

Impulse Responses

A shock to the i-th variable not only directly affects the i-th variable but is also transmitted 
to all of the other endogenous variables through the dynamic (lag) structure of the VAR. An 
impulse response function traces the effect of a one-time shock to one of the innovations on 
current and future values of the endogenous variables. 

If the innovations  are contemporaneously uncorrelated, interpretation of the impulse 
response is straightforward. The i-th innovation  is simply a shock to the i-th endoge-
nous variable . 

Innovations, however, are usually correlated, and may be viewed as having a common com-
ponent which cannot be associated with a specific variable. In order to interpret the 
impulses, it is common to apply a transformation  to the innovations so that they become 
uncorrelated:

(40.30)

where  is a diagonal covariance matrix. As explained below, EViews provides several 
options for the choice of  which produce a diagonal matrix.
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To obtain the impulse response functions, first estimate a VAR. Then select View/Impulse 
Response... from the VAR toolbar. You will see a dialog box with two tabs: Display and 
Impulse Definition.

The Display tab provides the follow-
ing options:

• Display Format: displays 
results as a table or graph. 
Keep in mind that if you 
choose the Combined Graphs 
option, the Response Stan-
dard Errors option will be 
ignored and the standard 
errors will not be displayed. 
Note also that the output table 
format is ordered by response 
variables, not by impulse vari-
ables.

• Display Information: you should enter the variables for which you wish to generate 
innovations (Impulses) and the variables for which you wish to observe the 
responses (Responses). You may either enter the name of the endogenous variables 
or the numbers corresponding to the ordering of the variables. For example, if you 
specified the VAR as GDP, M1, CPI, then you may either type,

 GDP CPI M1 

or,

 1 3 2 

The order in which you enter these variables only affects the display of results.

You should also specify a positive integer for the number of periods to trace the 
response function. To display the accumulated responses, check the Accumulate 
Response box. For stationary VARs, the impulse responses should die out to zero and 
the accumulated responses should asymptote to some (non-zero) constant.

• Response Standard Errors: provides options for computing the response standard 
errors. Note that analytic and/or Monte Carlo standard errors are currently not avail-
able for certain Impulse options and for vector error correction (VEC) models. If you 
choose Monte Carlo standard errors, you should also specify the number of repeti-
tions to use in the appropriate edit box.

If you choose the table format, the estimated standard errors will be reported in 
parentheses below the responses. If you choose to display the results in multiple 
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graphs, the graph will contain the plus/minus two standard error bands about the 
impulse responses. The standard error bands are not displayed in combined graphs.

The Impulse tab provides the following options for transforming the impulses:

• Residual—One Unit sets the impulses to one unit of the residuals. This option 
ignores the units of measurement and the correlations in the VAR residuals so that no 
transformation is performed. The responses from this option are the MA coefficients 
of the infinite MA order Wold representation of the VAR.

• Residual—One Std. Dev. sets the impulses to one standard deviation of the residuals. 
This option ignores the correlations in the VAR residuals.

• Cholesky uses the inverse of the Cholesky factor of the residual covariance matrix to 
orthogonalize the impulses. This option imposes an ordering of the variables in the 
VAR and attributes all of the effect of any common component to the variable that 
comes first in the VAR system. Note that responses can change dramatically if you 
change the ordering of the variables. You may specify a different VAR ordering by 
reordering the variables in the Cholesky Ordering edit box.

The (d.f. adjustment) option makes a small sample degrees of freedom correction 
when estimating the residual covariance matrix used to derive the Cholesky factor. 
The (i,j)-th element of the residual covariance matrix with degrees of freedom correc-
tion is computed as  where  is the number of parameters per 
equation in the VAR. The (no d.f. adjustment) option estimates the (i,j)-th element of 
the residual covariance matrix as . 

• Generalized Impulses as described by Pesaran and Shin (1998) constructs an orthog-
onal set of innovations that does not depend on the VAR ordering. The generalized 
impulse responses from an innovation to the j-th variable are derived by applying a 
variable specific Cholesky factor computed with the j-th variable at the top of the 
Cholesky ordering.

• Structural Decomposition uses the orthogonal transformation estimated from the 
structural factorization matrices. This approach is not available unless you have esti-
mated the structural factorization matrices as explained in “Structural (Identified) 
VARs” on page 714.

• User Specified allows you to specify your own impulses. Create a matrix (or vector) 
that contains the impulses and type the name of that matrix in the edit box. If the VAR 
has  endogenous variables, the impulse matrix must have  rows and 1 or  col-
umns, where each column is a impulse vector.

For example, say you have a  variable VAR and wish to apply simultaneously a 
positive one unit shock to the first variable and a negative one unit shock to the sec-
ond variable. Then you will create a  impulse matrix containing the values 1, -1, 
and 0. Using commands, you can enter:
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 matrix(3,1) shock 

 shock.fill(by=c) 1,-1,0 

and type the name of the matrix SHOCK in the edit box.

Variance Decomposition

While impulse response functions trace the effects of a shock to one endogenous variable on 
to the other variables in the VAR, variance decomposition separates the variation in an 
endogenous variable into the component shocks to the VAR. Thus, the variance decomposi-
tion provides information about the relative importance of each random innovation in affect-
ing the variables in the VAR.

To obtain the variance decomposition, 
select View/Variance Decomposition... 
from the var object toolbar. You should 
provide the same information as for 
impulse responses above. In addition to 
displaying the decompositions in Table 
form, in Multiple Graphs, Combined 
Graphs, or in Stacked Graphs.

Note that since non-orthogonal factoriza-
tion will yield decompositions that do not 
satisfy an adding up property, your choice 
of factorization is limited to the Cholesky 
Decomposition orthogonal factorizations 
or the Structural Decomposition, if available.

The table format displays a separate variance decomposition for each endogenous variable. 
The second column, labeled “S.E.”, contains the forecast error of the variable at the given 
forecast horizon. The source of this forecast error is the variation in the current and future 
values of the innovations to each endogenous variable in the VAR. The remaining columns 
give the percentage of the forecast variance due to each innovation, with each row adding 
up to 100.

As with the impulse responses, the variance decomposition based on the Cholesky factor 
can change dramatically if you alter the ordering of the variables in the VAR. For example, 
the first period decomposition for the first variable in the VAR ordering is completely due to 
its own innovation.

Factorization based on structural orthogonalization is available only if you have estimated 
the structural factorization matrices as explained in “Structural (Identified) VARs” on 
page 714. Note that the forecast standard errors should be identical to those from the Chole-
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sky factorization if the structural VAR is just identified. For over-identified structural VARs, 
the forecast standard errors may differ in order to maintain the adding up property.

Historical Decomposition

An alternative method of innovation accounting is to decompose the observed series into 
the components corresponding to each structural shock. Burbridge and Harrison (1985) pro-
pose transforming observed residuals to structural residuals, and then for each observation 
beyond some point in the estimation sample, computing the contribution of the different 
accumulated structural shocks to each observed variable.

To obtain the historical decomposition, select View/Historical Decomposition... from the 
var object toolbar. You should provide the same information as for impulse responses and 
variance decomposition above.

In addition, you may use the Include baseline in decomposition to choose whether to 
include the base projection in the decomposition, or whether to plot only the stochastic 
accumulations and total.

Lastly, you may use the edit fields to specify an optional Start and End period to the decom-
position. Both periods must be within the range of the original estimation period. If you 
leave the fields blank, EViews will perform the decomposition from the start to the end of 
the full estimation period.

Procs of a VAR

Most of the procedures available for a VAR are common to those available for a system 
object (see “System Procs” on page 662). Here, we discuss only those procedures that are 
unique to the VAR object.
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Forecasting

You may produce forecasts directly from an estimated VAR object by clicking on the Forecast 
button or by selecting Proc/Forecast. EViews will display the forecast dialog:

Most of the dialog should be familiar from the standard equation forecast dialog. There are, 
however, a few minor differences.

First, the fields in which you enter the forecast name and optional S.E. series names now 
refer to the character suffix which you will use to form output series names. By default, as 
depicted here, EViews will append the letter “f” to the end of the original series names to 
form the output series names. If necessary, the original name will be converted into a valid 
EViews series name.

Second, if you choose to compute standard errors of the forecast, EViews will obtain those 
values via simulation. You will be prompted for the number of Simulation repetitions, and 
the “% failed reps before halting” the simulation setting.

Lastly, in addition to a Forecast evaluation, you are given a choice of whether to display the 
output graphs as Individual graphs, as Multiple graphs, or both.

Clicking on OK instructs EViews to perform the forecast and, if appropriate to display the 
output:
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In this case, the output consists of a spool containing the forecast evaluation of the series in 
the VAR, along with individual graphs of the forecasts and the corresponding actuals series.

Make System

This proc creates a system object that contains an equivalent VAR specification. If you want 
to estimate a non-standard VAR, you may use this proc as a quick way to specify a VAR in a 
system object which you can then modify to meet your needs. For example, while the VAR 
object requires each equation to have the same lag structure, you may want to relax this 
restriction. To estimate a VAR with unbalanced lag structure, use the Proc/Make System 
procedure to create a VAR system with a balanced lag structure and edit the system specifi-
cation to meet the desired lag specification.

The By Variable option creates a system whose specification (and coefficient number) is 
ordered by variables. Use this option if you want to edit the specification to exclude lags of a 
specific variable from some of the equations. The By Lag option creates a system whose 
specification (and coefficient number) is ordered by lags. Use this option if you want to edit 
the specification to exclude certain lags from some of the equations.

For vector error correction (VEC) models, treating the coefficients of the cointegrating vector 
as additional unknown coefficients will make the resulting system unidentified. In this case, 
EViews will create a system object where the coefficients for the cointegrating vectors are 
fixed at the estimated values from the VEC. If you want to estimate the coefficients of the 
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cointegrating vector in the system, you may edit the specification, but you should make cer-
tain that the resulting system is identified.

You should also note that while the standard VAR can be estimated efficiently by equation-
by-equation OLS, this is generally not the case for the modified specification. You may wish 
to use one of the system-wide estimation methods (e.g., SUR) when estimating non-standard 
VARs using the system object.

Estimate Structural Factorization

This procedure is used to estimate the factorization matrices for a structural (or identified) 
VAR. The details for this procedure are provided in “Structural (Identified) VARs” below. You 
must first estimate the structural factorization matrices using this proc in order to use the 
structural options in impulse responses and variance decompositions.

Structural (Identified) VARs

A structural VAR (SVAR) uses additional identifying restrictions and estimation of structural 
matrices to transform VAR errors into uncorrelated structural shocks. Obtaining structural 
shocks is central to a wide range of VAR analysis, including impulse response, forecast vari-
ance decomposition, historical decomposition, and other forms of causal analysis. See, for 
example, Amisano and Giannini (1997), Martin, Hurn and Harris (2013).

We begin with the SVAR specification

(40.31)

where , all of the , and  are the structural coefficients, and the  are the orthonor-
mal unobserved structural innovations with .

It is easy to see the relationship between the SVAR specification and the corresponding 
reduced-form VAR. Assuming that  is invertible, we have:

(40.32)

so the reduced-form lag matrices  and , and the reduced form 
error structure is given by

(40.33)

where .

SVAR estimation uses estimates  obtained from the reduced form VAR, the short-run 
covariance relationships and any restrictions in Equation (40.33), and long-run restrictions 
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on the accumulated impulse responses (as described below), to identify and estimate the 
model. The challenge in SVAR estimation is that there are only  moments in  
and more than  elements in  and , or in  so that those matrices are not 
identified unless additional restrictions are provided.

SVAR Restrictions

Prior knowledge and theory will often suggest restrictions on structural matrices, allowing 
you to identify and estimate the parameters of the SVAR. EViews allows you to specify 
restrictions in different ways, with support for restrictions using two different short-run rep-
resentations, and restrictions on the long-run impulse-responses.

Our discussion of SVAR restrictions and estimation is necessarily brief. We encourage those 
interested in greater detail to consult Rubio-Ramirez, Waggoner, and Zha (2010) for detailed 
discussion of identification and other related issues.

A-B Restrictions (Short-run)

From Equation (40.33) we may write the short-run A-B model as:

(40.34)

We may use the estimated moments  along with the  unique covariance 
equations in Equation (40.34) to estimate the  elements in  and . Satisfying the 
order condition requires an additional  restrictions 
for identification.

Restrictions on  and  take the form of assumptions about the structure of contempora-
neous feedback of variables in the SVAR and assumptions about the correlation structure of 
the errors, respectively.

S Restrictions (Short-run)

The short-run S model is given by:

(40.35)

We may use estimates  along with covariance restrictions in Equation (40.35) to estimate 
the elements of . 

The S model may be more convenient to specify in that it involves the  element product 
 matrix and not the  elements in the individual  and . Thus, the order 
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condition only requires an additional  restrictions for iden-
tification.

This convenience comes at a cost, however, as the individual  and  matrices as the lat-
ter are not identified from  alone. For example, a given S model with  is equivalent to an 
A-B model with  and , or an A-B model with  and .

Thus, restrictions on  take the form of restrictions on the composite factor loadings, but 
offer no insight into the decomposition into endogeneity  and error loading components 

.

F Restrictions (Long-run)

The identifying restrictions embodied in the relations  and  are com-
monly referred to as short-run restrictions. Blanchard and Quah (1989) proposed an alterna-
tive identification method using restrictions on the long-run properties of the accumulated 
impulse responses.

We may write these long-run restrictions as:

(40.36)

where  is the long-run multiplier, which may be estimated 
using the reduced form VAR parameter estimates. Note that the long-run F model is related 
to the S model through  and that as in the S model, the order condition requires 
an additional  restrictions.

The F model employs estimates of the moments  along with covariance relationships and 
restrictions from Equation (40.33) to estimate the  elements in . Thus, long-run identi-
fying restrictions are specified in terms of the elements of this  matrix, typically in the 
form of zero restrictions. The restriction  means that the (accumulated) response 
of the i-th variable to the j-th structural shock is zero in the long-run.

Note that as with the S model, knowledge of  and  is sufficient to compute , but the 
converse is not true. 

Specifying SVAR Restrictions in EViews

EViews supports linear restrictions among the elements of matrices , , , and . In 
addition to commonly employed restrictions on single elements of the structural matrices, 
you may specify restrictions across elements of a given matrix, and you may even specify 
restrictions span , , , and .

For example, you may specify:

• a single element constant restriction, e.g. 
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• a general linear relationship within a single matrix, e.g.  or 

• a general linear relationship that spans multiple matrices, e.g.  or 

Restrictions in EViews are specified via pattern matrices and/or text expressions. Pattern 
matrices are a convenient way to place simple constant restrictions on individual elements 
of a structural matrix, while text expressions provide for the full range of supported restric-
tions.

A pattern matrix is a  matrix whose non-missing values, i.e., non-NAs, specify con-
stant restrictions on the corresponding matrix elements. All missing values, i.e., NAs, place 
no restrictions on the corresponding matrix elements (such elements many still be restricted 
via text expressions). For example, suppose you want to restrict A to be unit lower triangular 
and B to be diagonal. With  the following pattern matrices could be employed:

. (40.37)

Text expressions allow you to write linear equations or use a function-like syntax to specify 
restrictions on one or more matrix elements. For example, replicating some of the earlier 
restrictions:

@a(1,1) = 2.5

@b(2,2) = @b(3,3) / 2

@a(1,1) + @a(2,1) = 1

@a(1,2) = 3 * @b(3,3)

@s(1,1) + @s(2,2) - @f(3,3) = 1.5

Notice that the EViews text syntax requires that the canonical structural matrix names are 
preceded by “@” to avoid ambiguity with workfile objects, e.g., scalars or matrix object ele-
ments.

In addition, EViews offers function-like expressions that concisely specify popular sets of 
restrictions. In the following list, the token  can be substituted with any of the canonical 
matrices , , , and . The canonical names should not be preceded by “@” in this 
context since there is no potential workfile object ambiguity in the function argument(s).

B2 2, B3 3, 2
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Examples

Suppose we wish to recreate a recursive Cholesky orthogonalization (using the order of the 
variables in the VAR specification). This restriction is equivalent to requiring that the  
matrix is lower triangular. In the SVAR dialog (“Restrictions” on page 720) there is Restric-
tion Preset for exactly this scenario, but we can also use a pattern matrix or text expression 
to restrict S. For simplicity we’ll assume an underlying VAR named V1 with three endoge-
nous variables ( ). Each of the following sequences of commands produces the same 
set of S model restrictions and then estimates the model:

Approach #1: Using a pattern matrix

matrix(3, 3) pattern

pattern.fill na, na, na, 0, na, na, 0, 0, na

v1.svar(s=pattern)

Approach #2: Using a text expression equivalent to a pattern matrix

@X = mat Use mat as a pattern matrix for matrix X, e.g., 
“@a=mat1”, “@b = @mat2”.

@vec(X)=n1, n2, n3, ... Restricts all elements of matrix X similar using the 
specified pattern matrix (provided in list form). Ele-
ment ordering matches the vectorization of the matrix, 
i.e., the elements of the first column, followed by the 
second column, followed by the third column, etc.

@diag(X) Restricts X to be a diagonal matrix, i.e., off-diagonal 
elements are zero. The diagonal elements are unre-
stricted.

@diag(X) = n Restricts X to be a diagonal matrix with elements on 
the diagonal restricted to be n.

@lower(X) Restricts X to be a lower triangular matrix, i.e., ele-
ments above the diagonal are zero.

@unitlower(X) Restricts X to be a unit lower triangular matrix, i.e., 
elements above the diagonal are zero and elements on 
the diagonal are one.

@upper(X) Restricts X to be an upper triangular matrix, i.e., ele-
ments below the diagonal are zero.

@unitupper(X) Restricts X to be a unit upper triangular matrix, i.e., 
elements below the diagonal are zero and elements on 
the diagonal are one.

@row(X, r) = n Restricts the elements in row r of X to equal n.

@col(X, c) = n Restricts the elements in column c of X equal n.

S

k 3
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v1.append(svar) @vec(s) = na, na, na, 0, na, na, 0, 0, na

v1.svar

Approach #3: Using a text expression with specialized function

v1.append(svar) @lower(s)

v1.svar

For the next example, suppose we wish to estimate an A-B model where  captures only 
the standard deviations of the structural innovations so that the off-diagonal elements of  
are set to zero. For , these six restrictions fall short of the twelve restrictions neces-
sary to satisfy the order condition, so (at least) six additional restrictions are required. To 
satisfy the order condition, we will restrict matrix  to have ones along the diagonal and 
require , , and .

Approach #1: Using pattern matrices when possible

matrix(3, 3) patternA

patternA.fill 1, na, na, 0, 1, na, 0, na, 1

matrix(3, 3) patternB

patternB.fill na, 0, 0, 0, na, 0, 0, 0, na

v1.append(svar) @a(2,1) = @a(3,1)

v1.svar(a=patternA, b=patternB)

Approach #2: Using text expressions when possible

v1.append(svar) @vec(a) = 1, na, na, 0, 1, na, 0, na, 1

v1.append(svar) @a(2,1) = @a(3,1)

v1.append(svar) @diag(b)

v1.svar

Finally, suppose we wish to restrict the long-run impulse responses of an SVAR system. For 
illustrative purposes, suppose the responses of some variables to innovations are precisely 
half the responses of other variables, specifically , , and 

. Since these restrictions all involve more than one element , we must 
use text expressions to specify the linear restrictions

v1.append(svar) @f(1,1) = @f(2,1) / 2

v1.append(svar) @f(2,1) = @f(3,2) / 2

v1.append(svar) @f(1,3) = @f(2,3) / 2

v1.svar

Estimating an SVAR in EViews

Once you have estimated a reduced form VAR, the SVAR specification and estimation dialog 
may be displayed by selecting Proc/Estimate Structural Factorization... You may use the 

B
B

k 3

A
A1 2, 0 A1 3, 0 A2 1, A3 1,

F1 1, F2 1, 2 F2 1, F3 2, 2
F1 3, F2 3, 2 F
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dialog to specify a base collection of restrictions, customize restrictions on the four canoni-
cal matrices, and adjust options for the estimation procedure.

Restrictions

The Identifying Restrictions tab allows you to specify your SVAR restrictions.

The Restriction Preset drop-down menu provides a variety of pre-built restriction templates 
that can be applied to the SVAR model. Several of the presets can be used as is, while others 
require additional restrictions to meet the order condition.

The selection area on the left of the dialog allows you to view the current pattern matrices 
for any and all of the four canonical matrices as well as the current collection of text expres-
sion restrictions. Selecting a matrix element will change the dialog display to show the cur-
rent restrictions for that matrix. There are two methods for specifying restrictions:

• Select Manual and enter the elements directly in the dialog.

• Use the Workfile matrix edit field to provide the name of a matrix in the workfile 
that contains the desired patterns.

To you click on the Text entry in the selection area, you may enter the specification of your 
restrictions using the syntax described above (“Specifying SVAR Restrictions in EViews” on 
page 716).
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Note that when a restriction has been applied to any of the selections, the left-hand side of 
the dialog will display the message “* restriction applied” and the names in the selection 
area will display a matching “*” as appropriate.

Lastly, we caution you that using the dropdown to select a preset will specify appropriate 
initial matrix restrictions, so that any existing customization will be overwritten.

Optimization

The log likelihood is maximized using Newton-Raphson with the Marquardt trust-region 
technique, analytic gradients, and numeric Hessians. See “Marquardt,” on page 1097). See 
Amisano and Giannini (1997) for the analytic expression of the first derivatives.

Estimation of the SVAR model is based on the relation , with  specified in 
terms of elements of  and , or , or , which in turn depend on . We estimate  via 
maximum likelihood using the concentrated log-likelihood function:

(40.38)

where  is the probability density function of the multivariate normal distribution with zero 
mean and  is the matrix trace operation.

As the underlying parameterization of the model in EViews involves a few idiosyncrasies, a 
few comments are in order:

• The underlying estimation parameters  will be used to form elements of  and , 
or elements of S, or elements of F (mirroring the A-B, S, and F models), with the 
parameterization chosen to reflect the specified restrictions.

• EViews parametrically enforces your restrictions by analytically determining a set of 
unconstrained free parameters in one of the three above models. The models are pri-
oritized, from highest to lowest: A-B, then S, and then F.

If, for example, the restrictions are in terms of a simple A-B model, then the parame-
terization will be in terms of the elements of  and . If the restrictions are in 
terms of  and , then the restrictions on  would be converted to restrictions on 
elements of .

Regardless of which parameterization is used, the parameters can be used to calculate  
and the likelihood.

In the special case of an A-B model with additional restrictions on  or  there is an addi-
tional complication, since restrictions on  or  cannot, in general, be converted to restric-
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tions on  and . In this setting, restrictions on  and  are enforced numerically 
through inclusion of a penalty term in the log-likelihood function. 

As the penalty function approach does not actually reduce the number of parameters, this 
scenario produces a situation where the parameters may technically be under-identified. 
Ideally, the penalized log-likelihood function can guide the optimizer to convergence as if 
the extra parameters did not exist. However, convergence can be more difficult to achieve, 
even when the model is correctly identified. We therefore recommend that when using an 
A-B model, the number of restrictions on  and  be kept to a minimum.

Once you provide identifying restrictions, you are ready to estimate the SVAR. Simply click 
on OK to estimate the model.

Prior to estimation, you may first to click on the Optimization Control tab in the SVAR 
Options dialog to show and modify the estimation settings:

There are three sets of settings for you to consider.

Starting Values 

The starting values are those for the unconstrained parameters after substituting out the 
constraints. Fixed sets all free parameters to the value specified in the edit field. User Spec-
ified uses the values in the coefficient vector as specified in text form as starting values. For 
restrictions specified in pattern form, user specified starting values are taken from the first 

 elements of the default C coefficient vector, where  is the number of free parameters. 

A B S F

S F

m m
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The Draw from... options randomly draw the starting values for the free parameters from 
the specified distributions.

Iteration Control

Options for controlling the optimization process are provided in the Optimization Control 
tab of the SVAR Options dialog. You have the option to specify the maximum number of 
iterations, and the convergence criterion.

Sign Restrictions

For some restrictions, the signs of the matrices are not identified; see Christiano, Eichen-
baum, and Evans (1999) for a discussion of this issue. When the sign is indeterminate, 
EViews will choose a post-estimation normalization such that the diagonal elements of 
matrix  are positive, with a further preference for the diagonal elements of matrix  to be 
positive in model. While it is not always possible to make the diagonal elements positive, 
this normalization procedure attempts to give all structural impulses positive signs (as well 
as the Cholesky factorization). The EViews default behavior applies this normalization rule 
whenever applicable. If you do not want to normalize the signs, deselect the Normalize 
signs option.

Ignore Errors

The Ignore errors checkbox instructs EViews to suppress “Near Singular Matrix” and other 
error messages during estimation. Consequently, if an error occurs, estimation results may 
be incomplete and inaccurate.

Optimization Trace

The Optimization trace period tells EViews to summarize the ongoing optimization (itera-
tion number, log-likelihood, parameter values) at the user-specified interval. Summary infor-
mation is displayed in an unnamed text object.

Estimation Output

Once optimization convergence is achieved, EViews displays the estimation output in the 
VAR window. The point estimates, standard errors, and z-statistics of the estimated free 
parameters are reported together with the maximized value of the log likelihood. The esti-
mated standard errors are based on the inverse of the estimated information matrix (nega-
tive expected value of the Hessian) evaluated at the final parameter estimates.

For over-identified models, we also report the LR test for over-identification. The LR test sta-
tistic is computed as:

S B

LR 2 lu lr–  T tr P  Plog– k–  
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where . Under the null hypothesis that the restrictions are valid, the LR sta-
tistic is asymptotically distributed as , where  is the number of identifying 
restrictions.

The top portion of your SVAR output will show the restrictions, parameterization, and esti-
mated coefficients,

P S
T–
S

1–
S

x
2

q k–  q

Structural VAR Estimates  
Date: 06/15/17   Time: 16:15  
Sample: 1955Q1 1987Q3   
Included observations: 131  
Estimation method: Least squares via Gauss-Newton (analytic derivatives) 
Convergence achieved after 16 iterations 
Structural VAR is just-identified 

     

     
Model: Ae = Bu where E[uu']=I  
A =    

C(1) C(5) C(9) C(13)  
C(2) C(6) C(10) -C(10)  
C(3) C(7) C(11) C(14)  
C(4) C(8) C(12) C(15)  

B =    
1 0 0 0  
0 1 0 0  
0 0 1 0  
0 0 0 1  

@F(1,2) = 0              
@F(1,3) = 0              
@F(1,4) = 0              
@S(1,2) = 0              
@S(1,3) = 0              
@A(2,3) + @A(2,4) = 0    
@DIAG(B) = 1   
including the restriction(s)  

     

     
 Coefficient Std. Error z-Statistic Prob. 
     

     
C(1)  0.938016  0.059131  15.86337  0.0000 
C(2)  0.141273  0.101338 1.394080 0.1633
C(3) -0.240158  0.102263 -2.348425  0.0189 
C(4)  0.569856  0.092085  6.188399  0.0000 
C(5) -0.614865  0.045403 -13.54246  0.0000 
C(6)  0.590929  0.195760  3.018647  0.0025 
C(7)  0.768293  0.146066 5.259897 0.0000
C(8)  0.928173  0.094779  9.793037  0.0000 
C(9)  0.275181  0.019167  14.35711  0.0000 

C(10)  0.178343  0.036007  4.953047  0.0000 
C(11)  0.154229  0.056652  2.722407  0.0065 
C(12) -0.415401  0.037699 -11.01892  0.0000 
C(13) -0.081105  0.007293 -11.12095  0.0000 
C(14)  0.187028  0.030663  6.099560  0.0000 
C(15)  0.122432  0.017324  7.067029  0.0000 

     

     
Objective value -952.9302    
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while the bottom portion shows the structural matrix estimates,

If you switch the view of the VAR window, you can come back to the previous results (with-
out reestimating) by selecting View/Structural Factorization from the VAR window. In 
addition, some of the SVAR estimation results can be retrieved as data members of the VAR; 
see “Var Data Members” on page 840 of the Command and Programming Reference for a list 
of available VAR data members.

Compatibility Notes

The increased flexibility of SVAR restrictions in EViews 10 is accompanied by streamlined 
options in the svar estimation procedure and a new text language for specifying restric-
tions. 

The options and text syntax used by previous versions of EViews will continue to work in 
EViews 10 with the same limitations, e.g., disallowing simultaneous short-run and long-run 
restrictions. 

The new restriction capabilities of EViews 10 are only available via the new interface. Fur-
thermore, SVAR estimation results (View/Structural Factorization) produced in EViews 10 
and saved to a workfile will be accessible in previous version of EViews only in the follow-
ing cases:

• The SVAR model was specified using only legacy options and text restrictions (if pres-
ent). You may therefore use, for example, EViews 9 syntax to maintain workfile com-
patibility with EViews 9.

• The SVAR A-B-only or F-only model was estimated by pattern matrix restrictions spec-
ified in matrix objects.

Estimated A matrix:  
 0.938016 -0.614865  0.275181 -0.081105 
 0.141273  0.590929  0.178343 -0.178343 
-0.240158 0.768293 0.154229 0.187028
 0.569856  0.928173 -0.415401  0.122432 

Estimated B matrix:  
 1.000000  0.000000  0.000000  0.000000 
 0.000000  1.000000  0.000000  0.000000 
 0.000000  0.000000  1.000000  0.000000 
 0.000000  0.000000  0.000000  1.000000 

Estimated S matrix:  
0.760158 0.000000 0.000000 0.503565

-0.176944  0.628329  0.339939  0.278754 
 0.924631  0.517439  1.547698 -0.998017 
 0.940489 -3.007808  2.674070  0.324515 

Estimated F matrix:  
 1.236121  0.000000  0.000000  0.000000 
-0.127932 -0.520269 -0.027516  0.654769 
 5.272415  7.150987  4.518060 -2.794496 
7.864187 4.919853 6.432775 -7.228512
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Vector Error Correction (VEC) Models

A vector error correction (VEC) model is a restricted VAR designed for use with nonstation-
ary series that are known to be cointegrated. You may test for cointegration using an esti-
mated VAR object, Equation object estimated using nonstationary regression methods, or 
using a Group object (see Chapter 48. “Cointegration Testing,” on page 1023).

The VEC has cointegration relations built into the specification so that it restricts the long-
run behavior of the endogenous variables to converge to their cointegrating relationships 
while allowing for short-run adjustment dynamics. The cointegration term is known as the 
error correction term since the deviation from long-run equilibrium is corrected gradually 
through a series of partial short-run adjustments.

To take the simplest possible example, consider a two variable system with one cointegrat-
ing equation and no lagged difference terms. The cointegrating equation is:

(40.39)

The corresponding VEC model is:

(40.40)

In this simple model, the only right-hand side variable is the error correction term. In long 
run equilibrium, this term is zero. However, if  and  deviate from the long run equilib-
rium, the error correction term will be nonzero and each variable adjusts to partially restore 
the equilibrium relation. The coefficient  measures the speed of adjustment of the i-th 
endogenous variable towards the equilibrium.

How to Estimate a VEC

As the VEC specification only applies to cointegrated series, you should first run the Johan-
sen cointegration test as described above and determine the number of cointegrating rela-
tions. You will need to provide this information as part of the VEC specification.

To set up a VEC, click the Estimate button in the VAR toolbar and choose the Vector Error 
Correction specification from the VAR/VEC Specification tab. In the VAR/VEC Specifica-
tion tab, you should provide the same information as for an unrestricted VAR, except that:

• The constant or linear trend term should not be included in the Exogenous Series edit 
box. The constant and trend specification for VECs should be specified in the Cointe-
gration tab (see below).

• The lag interval specification refers to lags of the first difference terms in the VEC. For 
example, the lag specification “1 1” will include lagged first difference terms on the 
right-hand side of the VEC. Rewritten in levels, this VEC is a restricted VAR with two 
lags. To estimate a VEC with no lagged first difference terms, specify the lag as “0 0”.

y2 t, by1 t,

y1 t, a1 y2 t 1–, by1 t 1–,–  e1 t,

y2 t, a2 y2 t 1–, by1 t 1–,–  e2 t,

y1 y2

ai
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• The constant and trend specification for VECs should be specified in the Cointegra-
tion tab. You must choose from one of the five Johansen (1995) trend specifications as 
explained in “Deterministic Trend Specification” on page 1024. You must also specify 
the number of cointegrating relations in the appropriate edit field. This number 
should be a positive integer less than the number of endogenous variables in the VEC.

• If you want to impose restrictions on the cointegrating relations and/or the adjust-
ment coefficients, use the Restrictions tab. “Imposing VEC Restrictions” on page 729 
describes these restriction in greater detail. Note that the contents of this tab are 
grayed out unless you have clicked the Vector Error Correction specification in the 
VAR/VEC Specification tab.

Once you have filled the dialog, simply click OK to estimate the VEC. Estimation of a VEC 
model is carried out in two steps. In the first step, we estimate the cointegrating relations 
from the Johansen procedure as used in the cointegration test. We then construct the error 
correction terms from the estimated cointegrating relations and estimate a VAR in first differ-
ences including the error correction terms as regressors.

VEC Estimation Output

The VEC estimation output consists of two parts. The first part reports the results from the 
first step Johansen procedure. If you did not impose restrictions, EViews will use a default 
normalization that identifies all cointegrating relations. This default normalization expresses 
the first  variables in the VEC as functions of the remaining  variables, where  is the 
number of cointegrating relations and  is the number of endogenous variables. Asymptotic 
standard errors (corrected for degrees of freedom) are reported for parameters that are iden-
tified under the restrictions. If you provided your own restrictions, standard errors will not 
be reported unless the restrictions identify all cointegrating vectors.

The second part of the output reports results from the second step VAR in first differences, 
including the error correction terms estimated from the first step. The error correction terms 
are denoted CointEq1, CointEq2, and so on in the output. This part of the output has the 
same format as the output from unrestricted VARs as explained in “Estimation Output” on 
page 691, with one difference. At the bottom of the VEC output table, you will see two log 
likelihood values reported for the system. The first value, labeled Log Likelihood (d.f. 
adjusted), is computed using the determinant of the residual covariance matrix (reported as 
Determinant Residual Covariance), using small sample degrees of freedom correction as in 
(40.11). This is the log likelihood value reported for unrestricted VARs. The Log Likelihood 
value is computed using the residual covariance matrix without correcting for degrees of 
freedom. This log likelihood value is comparable to the one reported in the cointegration test 
output.

r k r– r
k
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Views and Procs of a VEC

Views and procs available for VECs are mostly the same as those available for VARs as 
explained above. Here, we only mention those that are specific to VECs.

Cointegrating Relations

View/Cointegration Graph displays a graph of the estimated cointegrating relations as used 
in the VEC. To store these estimated cointegrating relations as named series in the workfile, 
use Proc/Make Cointegration Group. This proc will create and display an untitled group 
object containing the estimated cointegrating relations as named series. These series are 
named COINTEQ01, COINTEQ02 and so on.

Forecasting

To forecast from your VEC, click on the Forecast button on the toolbar and fill out the dialog 
as described in “Forecasting,” on page 712

Data Members

Various results from the estimated VAR/VEC can be retrieved through the command line 
data members. “Var Data Members” on page 840 of the Command and Programming Refer-
ence provides a complete list of data members that are available for a VAR object. Here, we 
focus on retrieving the estimated coefficients of a VAR/VEC.

Obtaining Coefficients of a VAR

Coefficients of (unrestricted) VARs can be accessed by referring to elements of a two dimen-
sional array C. The first dimension of C refers to the equation number of the VAR, while the 
second dimension refers to the variable number in each equation. For example, C(2,3) is the 
coefficient of the third regressor in the second equation of the VAR. The C(2,3) coefficient of 
a VAR named VAR01 can then be accessed by the command

var01.c(2,3) 

To examine the correspondence between each element of C and the estimated coefficients, 
select View/Representations from the VAR toolbar.

Obtaining Coefficients of a VEC

For VEC models, the estimated coefficients are stored in three different two dimensional 
arrays: A, B, and C. A contains the adjustment parameters , B contains the cointegrating 
vectors , and C holds the short-run parameters (the coefficients on the lagged first differ-
ence terms). 

• The first index of A is the equation number of the VEC, while the second index is the 
number of the cointegrating equation. For example, A(2,1) is the adjustment coeffi-
cient of the first cointegrating equation in the second equation of the VEC.

a

b
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• The first index of B is the number of the cointegrating equation, while the second 
index is the variable number in the cointegrating equation. For example, B(2,1) is the 
coefficient of the first variable in the second cointegrating equation. Note that this 
indexing scheme corresponds to the transpose of .

• The first index of C is the equation number of the VEC, while the second index is the 
variable number of the first differenced regressor of the VEC. For example, C(2, 1) is 
the coefficient of the first differenced regressor in the second equation of the VEC.

You can access each element of these coefficients by referring to the name of the VEC fol-
lowed by a dot and coefficient element:

var01.a(2,1) 

var01.b(2,1) 

var01.c(2,1) 

To see the correspondence between each element of A, B, and C and the estimated coeffi-
cients, select View/Representations from the VAR toolbar.

Imposing VEC Restrictions

Since the cointegrating vector  is not fully identified, you may wish to impose your own 
identifying restrictions when performing estimation. 

Restrictions can be imposed on 
the cointegrating vector (ele-
ments of the  matrix) and/or 
on the adjustment coefficients 
(elements of the  matrix). To 
impose restrictions in estima-
tion, open the test, select Vec-
tor Error Correction in the 
main VAR estimation dialog, 
then click on the VEC Restric-
tions tab. You will enter your 
restrictions in the edit box that 
appears when you check the 
Impose Restrictions box:

Restrictions on the Cointe-
grating Vector

To impose restrictions on the 
cointegrating vector , you must refer to the (i,j)-th element of the transpose of the  
matrix by B(i,j). The i-th cointegrating relation has the representation:

B(i,1)*y1 + B(i,2)*y2 + ... + B(i,k)*yk 

b

b

b

a

b b
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where y1, y2, ... are the (lagged) endogenous variable. Then, if you want to impose the 
restriction that the coefficient on y1 for the second cointegrating equation is 1, you would 
type the following in the edit box:

B(2,1) = 1 

You can impose multiple restrictions by separating each restriction with a comma on the 
same line or typing each restriction on a separate line. For example, if you want to impose 
the restriction that the coefficients on y1 for the first and second cointegrating equations are 
1, you would type:

B(1,1) = 1 

B(2,1) = 1 

Currently all restrictions must be linear (or more precisely affine) in the elements of the  
matrix. So for example

B(1,1) * B(2,1) = 1 

will return a syntax error.

Restrictions on the Adjustment Coefficients

To impose restrictions on the adjustment coefficients, you must refer to the (i,j)-th elements 
of the  matrix by A(i,j). The error correction terms in the i-th VEC equation will have 
the representation:

A(i,1)*CointEq1 + A(i,2)*CointEq2 + ... + A(i,r)*CointEqr 

Restrictions on the adjustment coefficients are currently limited to linear homogeneous restric-
tions so that you must be able to write your restriction as , where  is a 
known  matrix. This condition implies, for example, that the restriction,

A(1,1) = A(2,1) 

is valid but:

A(1,1) = 1 

will return a restriction syntax error.

One restriction of particular interest is whether the i-th row of the  matrix is all zero. If 
this is the case, then the i-th endogenous variable is said to be weakly exogenous with 
respect to the  parameters. See Johansen (1995) for the definition and implications of weak 
exogeneity. For example, if we assume that there is only one cointegrating relation in the 
VEC, to test whether the second endogenous variable is weakly exogenous with respect to 

 you would enter:

A(2,1) = 0 

To impose multiple restrictions, you may either separate each restriction with a comma on 
the same line or type each restriction on a separate line. For example, to test whether the 

b

a
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second endogenous variable is weakly exogenous with respect to  in a VEC with two 
cointegrating relations, you can type:

A(2,1) = 0 

A(2,2) = 0 

You may also impose restrictions on both  and . However, the restrictions on  and  
must be independent. So for example,

A(1,1) = 0 

B(1,1) = 1 

is a valid restriction but:

A(1,1) = B(1,1) 

will return a restriction syntax error.

Identifying Restrictions and Binding Restrictions

EViews will check to see whether the restrictions you provided identify all cointegrating vec-
tors for each possible rank. The identification condition is checked numerically by the rank 
of the appropriate Jacobian matrix; see Boswijk (1995) for the technical details. Asymptotic 
standard errors for the estimated cointegrating parameters will be reported only if the 
restrictions identify the cointegrating vectors.

If the restrictions are binding, EViews will report the LR statistic to test the binding restric-
tions. The LR statistic is reported if the degrees of freedom of the asymptotic -distribution 
is positive. Note that the restrictions can be binding even if they are not identifying, (e.g. 
when you impose restrictions on the adjustment coefficients but not on the cointegrating 
vector).

Options for Restricted Estimation

Estimation of the restricted cointegrating vectors  and adjustment coefficients  generally 
involves an iterative process. The VEC Restrictions tab provides iteration control for the 
maximum number of iterations and the convergence criterion. EViews estimates the 
restricted  and  using the switching algorithm as described in Boswijk (1995). Each step 
of the algorithm is guaranteed to increase the likelihood and the algorithm should eventually 
converge (though convergence may be to a local rather than a global optimum). You may 
need to increase the number of iterations in case you are having difficulty achieving conver-
gence at the default settings.

Once you have filled the dialog, simply click OK to estimate the VEC. Estimation of a VEC 
model is carried out in two steps. In the first step, we estimate the cointegrating relations 
from the Johansen procedure as used in the cointegration test. We then construct the error 
correction terms from the estimated cointegrating relations and estimate a VAR in first differ-
ences including the error correction terms as regressors.

b

b a b a

x2

b a

b a
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Bayesian VAR

VARs are frequently used in the study of macroeconomic data. Since VARs frequently require 
estimation of a large number of parameters, over-parameterization of VAR models is often a 
problem—with too few observations to estimate the parameters of the model.

One approach for solving this problem is shrinkage, where we impose restrictions on param-
eters to reduce the parameter set. Bayesian VAR (BVAR) methods (Litterman, 1986; Doan, 
Litterman, and Sims, 1984; Sims and Zha, 1998) are one popular approach for achieving 
shrinkage, since Bayesian priors provide a logical and consistent method of imposing param-
eter restrictions.

The remainder of this discussion describes the estimation of VARs with Bayesian restrictions 
shrinkage. We first describe the set of EViews tools for estimating and working with BVARs 
and provide examples of the approach. This first section assumes that you are familiar with 
the various methods outlined in the literature. The remaining section outlines the methods 
in somewhat more detail, 

Estimating a Bayesian VAR in EViews

To estimate a Bayesian VAR in EViews, click on Quick/Estimate VAR... or type var in the 
command window to bring up the VAR Specification dialog. Select the Bayesian VAR as 
the VAR type in the radio buttons on the left-hand side of the dialog.

The dialog will change to the BVAR version of the VAR Specification dialog. As with a stan-
dard VAR, you may use the Basics page to list of endogenous variables, the included lags, 
and any exogenous variables, and to specify the estimation sample:
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The two BVAR specific tabs, Prior type and Prior specification, allow you to customize 
your specification. The following discussion of these settings assumes that you are familiar 
with the basics of the various prior types and associated settings. For additional detail, see 
“Technical Background” on page 745.

Prior Type

The Prior type tab lets you specify the type of prior you wish to use, along with options for 
calculating the initial residual covariance matrix. 

You may use the drop-down menu to 
choose between Litterman/Minne-
sota, normal-Wishart, Sims-Zha 
normal-Wishart, and Sims-Zha nor-
mal-flat priors.

For the priors other than normal-
Wishart, you may select a method 
for estimating the initial (or prior) 
residual covariance matrix, and 
whether you would like to correct 
that estimated covariance matrix by 
the degrees-of-freedom in the model. 

Prior Specification

The Prior specification tab lets you 
further specify the prior distributions 
by either assigning hyper-parameter values, or providing a user-supplied prior matrix. If you 
wish to assign hyper-parameter values, you should select the Hyper-parameters radio but-
ton in the Prior specification type box. 
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Litterman/Minnesota Prior

For the Litterman/Minnesota prior 
depicted here, you may specify the 
hyper-parameters using the four sca-
lars , , , and . 

As described below, the prior mean 
is likely to have most or all of its ele-
ments set to zero to lessen the risk of 
over-fitting, and this implies that  
should be close to zero. 

 is the overall tightness on the 
variance (of the first lag) and con-
trols the relative importance of sam-
ple and prior information. Note that 
if  is small, prior information 
dominates the sample information. 

 represents the relative tightness 
of the variance of other variables. Setting  implies the VAR is collapsed to a vector 
of univariate models.  represents the relative tightness of the variance of lags. For ref-
erence, Koop and Korobilis (2009) set  equal to 2, whereas Kadiyala and Karlsson (1997) 
choose  to be 1 (a special case, linear decay) for their particular application.

To specify your own hyper-parameter values, select the User-specified radio button… If you 
choose User-specified you should provide the following information:

m1 l1 l2 l3

m1

l1

l1

l2

l2 0
l3 0

l3

l3
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• Coefficient means. Fill in the edit box with the name of a vector in the workfile con-
taining a prior mean for the coefficients.

• Coefficient covariance. If desired, you may provide the name of a matrix containing a 
prior covariance for the coefficients. 

Normal-Wishart Prior

For the normal-Wishart prior, you can specify the two hyper-parameters  and  (where 
the prior coefficient mean and covariance are  and , respectively, for  an -
element unit vector and  an  identity matrix). 

Note that the prior covariance has the form  (to ensure natural conjugacy of the 
prior). This result implies that the prior covariance in any equation is identically equal to 

, which may be an undesirable restriction. 

If you select User-specified you should enter the name of a vector in your workfile contain-
ing a prior mean for the coefficients. 

Sims-Zha Priors

The hyper-parameters for both Sims-Zha priors may be specified by setting the five scalars 
values , , , , and . 

m1 l1

m1im l1Im im m
Im m m

V0 l1Im

l1

m5 m6 l1 l3 l0
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The parameter , is used to set 
prior weights on dummy observa-
tions for a sum of coefficient prior 
that implies beliefs about the pres-
ence of unit roots.  controls 
the initial dummy observations. Note 
that the dummy variables can intro-
duce correlations among coeffi-
cients, and therefore as  and 

, the prior imposes more 
constraints on the model. Specifi-
cally,  implies that there are 
as many unit roots as variables and 
there is no cointegration. When 

, the model tends to be a 
form in which either all variables are 
stationary with means equal to sample average of initial conditions (i.e. dummies are set to 
be the averages of initial conditions), or there are unit root components without drift (linear 
trend) terms.

Following Litterman, the hyper-parameter  controls overall tightness,  controls the rate 
at which prior variance shrinks with increasing lag size, and  controls the tightness of 
beliefs on the residual covariance.

m5 0

m6 0

m5 
m6 

m5 

m6 

l1 l3

l0
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If you select User-specified you should provide the name of a matrix containing a prior 
covariance for the coefficients in the H matrix edit box, and the name of a matrix containing 
a residual prior scale matrix in the Residual scale matrix edit box. 

An Example

To illustrate the Bayesian approach, we now estimate the coefficients of a VAR(2) model 
using the first differences of the logarithm of the DLINVESTMENT (investment), DLINCOME 
(income), and DLCONCUMPTION (consumption) example data. The raw data are provided 
in the EViews workfile “wgmacro.WF1”. This data set was examined by Lütkepohl (2007, 

page 228).

Click on Quick/Estimate VAR... to open the main VAR specification dialog. In the VAR type 
box, select Bayesian VAR and in the Endogenous Variables box, type:

dlincome dlinvestment dlconsumption

Here, you will see the pre-filled settings including the variable names. You may change the 
default settings, but for now on, we assume that the default settings are used.

Next, click on the Prior type tab to select the prior type for the VAR. By default, EViews will 
choose the Litterman/Minnesota prior and the Univariate AR estimate for the Initial 
residual covariance options, but you can change the prior type and the initial covariance 
estimation option from the menus. 

The Prior specification tab shows the hyper-parameter settings. Note that the settings may 
vary depending on the prior type. We will use the default settings for our example so that 
you may click on OK to continue.

EViews estimates the VAR and displays the results view. The top portion of the main results 
is shown below. The heading information provides the basic information about the settings 
used in estimation, and the basic prior information:
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In his study of this data, Lütkepohl chose a set of different hyper-parameters from those set by 

default in EViews, and chose to use a diagonal VAR to estimate the initial residual covariance. We 

can replicate his results by setting the Diagonal VAR estimate on the Prior type tab of the dia-

log. 

 Bayesian VAR Estimates   
 Date: 02/14/13   Time: 16:30   
 Sample (adjusted): 1960Q4 1978Q4   
 Included observations: 73 after adjustments
 Prior type: Litterman/Minnesota   
 Initial residual covariance: Univariate AR  
 Hyper-parameters: Mu: 0, L1: 0.1, L2: 0.99, L3: 1  
 Standard errors in ( ) & t-statistics in [ ]  

 DLINVESTMENT DLINCOME DLCONSUMPTION

DLINVESTMENT(-1) -0.093779  0.017748 -0.003903 
  (0.07669)  (0.01955)  (0.01652) 
 [-1.22277] [ 0.90787] [-0.23629] 
    

DLINVESTMENT(-2) -0.010859  0.005534  0.007179 
  (0.04612)  (0.01173)  (0.00991) 
 [-0.23544] [ 0.47195] [ 0.72462] 
    

DLINCOME(-1)  0.150255 -0.017130  0.066732 
  (0.30170)  (0.07784)  (0.06538) 
 [ 0.49802] [-0.22007] [ 1.02066] 
    

DLINCOME(-2)  0.059967  0.010609  0.047408 
  (0.17853)  (0.04617)  (0.03868) 
 [ 0.33589] [ 0.22975] [ 1.22557] 
    

DLCONSUMPTION(-1)  0.272233  0.103522 -0.047166 
  (0.35591)  (0.09128)  (0.07758) 
 [ 0.76489] [ 1.13412] [-0.60799] 
    

DLCONSUMPTION(-2)  0.088063  0.002904  0.036281 
  (0.21118)  (0.05415)  (0.04615) 
 [ 0.41701] [ 0.05362] [ 0.78621] 
    

C  0.008495  0.017854  0.017587 
  (0.01140)  (0.00293)  (0.00248) 
 [ 0.74534] [ 6.09886] [ 7.10390] 

 R-squared 0.057882 0.058994 0.097916
 Adj. R-squared -0.027765 -0.026552  0.015909 
 Sum sq. resids  0.151955  0.009629  0.007093 
 S.E. equation  0.047983  0.012079  0.010367 
 F-statistic  0.675823  0.689612  1.193989 
 Mean dependent  0.018229  0.020283  0.019802 
 S.D. dependent  0.047330  0.011921  0.010451 
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Since the estimates in the third row of Table 5.3 of Lütkepohl’s example may be obtained using 
EViews’ default hyper-parameter values, click on OK to estimate the modified BVAR specification.
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The results in the other rows of table Table 5.3 may be obtained by changing the hyper-parame-
ters. For example, to obtain the results in the fourth row, go to the Prior Specification tab in the 
estimation dialog and change Lambda1 to 0.01:

 Bayesian VAR Estimates   
 Date: 02/14/13   Time: 14:05   
 Sample (adjusted): 1960Q4 1978Q4  
 Included observations: 73 after adjustments  
 Prior type: Litterman/Minnesota  
 Initial residual covariance: Diagonal VAR  
 Hyper-parameters: Mu: 0, L1: 0.1, L2: 0.99, L3: 1  
 Standard errors in ( ) & t-statistics in [ ]  

 DLINVESTMENT DLINCOME DLCONSUMPTION

DLINVESTMENT(-1) -0.096453  0.017885 -0.003959 
  (0.07622)  (0.01924)  (0.01551) 
 [-1.26547] [ 0.92950] [-0.25524] 
    

DLINVESTMENT(-2) -0.011337  0.005721  0.007308 
  (0.04601)  (0.01159)  (0.00934) 
 [-0.24639] [ 0.49375] [ 0.78263] 

DLINCOME(-1)  0.150439 -0.019351  0.069184 
  (0.30206)  (0.07717)  (0.06183) 
 [ 0.49805] [-0.25076] [ 1.11887] 
    

DLINCOME(-2)  0.061511  0.010797  0.049405 
  (0.17965)  (0.04601)  (0.03677) 
 [ 0.34239] [ 0.23465] [ 1.34362] 
    

DLCONSUMPTION(-1)  0.297322  0.112852 -0.051735 
  (0.36589)  (0.09293)  (0.07531) 
 [ 0.81261] [ 1.21434] [-0.68697] 
    

DLCONSUMPTION(-2)  0.100237  0.003454  0.040620 
  (0.22109)  (0.05615)  (0.04563) 
 [ 0.45338] [ 0.06151] [ 0.89022] 
    

C  0.007766  0.017691  0.017498 
  (0.01147)  (0.00292)  (0.00235) 
 [ 0.67684] [ 6.06270] [ 7.43245] 

 R-squared  0.060117  0.061359  0.102341 
 Adj. R-squared -0.025327 -0.023972  0.020736 
 Sum sq. resids  0.151595  0.009605  0.007059 
 S.E. equation  0.047926  0.012064  0.010342 
 F-statistic 0.703587 0.719073 1.254100
 Mean dependent  0.018229  0.020283  0.019802 
 S.D. dependent  0.047330  0.011921  0.010451 
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Click on OK to estimate the updated specification. The resulting estimation output is displayed 
below:
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Alternate priors

To illustrate the importance of the prior selection, we estimate the same model using the 
Sims-Zha normal-flat prior, with a univariate AR estimate for the initial residual covariance, 
and the default hyper-parameter settings.

 Bayesian VAR Estimates   
 Date: 02/14/13   Time: 16:50   
 Sample (adjusted): 1960Q4 1978Q4  
 Included observations: 73 after adjustments  
 Prior type: Litterman/Minnesota  
 Initial residual covariance: Diagonal VAR  
 Hyper-parameters: Mu: 0, L1: 0.01, L2: 0.99, L3: 1  
 Standard errors in ( ) & t-statistics in [ ]  

 DLINVESTMENT DLINCOME DLCONSUMPTION

DLINVESTMENT(-1) -0.001468  0.000349 -6.90E-05 
  (0.00996)  (0.00250)  (0.00202) 
 [-0.14733] [ 0.13943] [-0.03417] 
    

DLINVESTMENT(-2) -7.78E-05  5.85E-05  0.000101 
  (0.00500)  (0.00126)  (0.00101) 
 [-0.01558] [ 0.04655] [ 0.10020] 

DLINCOME(-1)  0.003243  7.94E-05  0.001141 
  (0.03884)  (0.00996)  (0.00795) 
 [ 0.08350] [ 0.00797] [ 0.14351] 
    

DLINCOME(-2)  0.000815  0.000184  0.000605 
  (0.01947)  (0.00500)  (0.00399) 
 [ 0.04186] [ 0.03685] [ 0.15188] 
    

DLCONSUMPTION(-1)  0.005173  0.002182 -0.000644 
  (0.04817)  (0.01223)  (0.00996) 
 [ 0.10740] [ 0.17837] [-0.06470] 
    

DLCONSUMPTION(-2)  0.001138  6.03E-05  0.000608 
  (0.02416)  (0.00614)  (0.00499) 
 [ 0.04712] [ 0.00982] [ 0.12166] 
    

C  0.018046  0.020225  0.019766 
  (0.00559)  (0.00142)  (0.00114) 
 [ 3.23065] [ 14.2547] [ 17.2838] 

 R-squared  0.001169  0.001471  0.001673 
 Adj. R-squared -0.089634 -0.089305 -0.089084 
 Sum sq. resids  0.161103  0.010218  0.007850 
 S.E. equation  0.049406  0.012442  0.010906 
 F-statistic 0.012870 0.016203 0.018431
 Mean dependent  0.018229  0.020283  0.019802 
 S.D. dependent  0.047330  0.011921  0.010451 
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The results of this estimation are shown below:
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We can see that the point estimates of the coefficients have changed, in some cases by a 
large degree, when compared to our initial BVAR estimation using default settings. For exam-
ple, the coefficient in the DLINVESTMENT equation for the lagged value of DLCONSUMP-
TION has decreased from a value of 0.272 to 0.004, with a corresponding change in t-
statistic from 0.76 to 0.02. 

 Bayesian VAR Estimates   
 Date: 02/14/13   Time: 16:50   
 Sample (adjusted): 1960Q4 1978Q4   
 Included observations: 73 after adjustments  
 Prior type: Sims/Zha (normal-flat)   
 Initial residual covariance: Univariate AR  
 Hyper-parameters: L0: 1, L1: 0.1, L3: 1  
 Standard errors in ( ) & t-statistics in [ ]  

 DLINVESTMENT DLINCOME DLCONSUMPTION 

DLINVESTMENT(-1) -0.093886  0.017931 -0.003959 
  (0.11763)  (0.02994)  (0.02557) 
 [-0.79818] [ 0.59894] [-0.15486] 
    

DLINVESTMENT(-2) -0.010879  0.005632  0.007293 
  (0.46548)  (0.11847)  (0.10117) 
 [-0.02337] [ 0.04754] [ 0.07208] 

DLINCOME(-1)  0.151304 -0.016722  0.067412 
  (0.54919)  (0.13978)  (0.11937) 
 [ 0.27550] [-0.11963] [ 0.56473] 
    

DLINCOME(-2)  0.060782  0.010793  0.048193 
  (0.07073)  (0.01800)  (0.01537) 
 [ 0.85933] [ 0.59956] [ 3.13470] 
    

DLCONSUMPTION(-1)  0.275072  0.104512 -0.047074 
  (0.27613)  (0.07028)  (0.06002) 
 [ 0.99616] [ 1.48710] [-0.78432] 
    

DLCONSUMPTION(-2)  0.089479  0.002897  0.036280 
  (0.32665)  (0.08314)  (0.07100) 
 [ 0.27393] [ 0.03485] [ 0.51098] 
    

C  0.008372  0.017819  0.017554 
  (0.01755)  (0.00447)  (0.00381) 
 [ 0.47701] [ 3.98922] [ 4.60183] 

 R-squared  0.058142  0.059442  0.098831 
 Adj. R-squared -0.027481 -0.026063  0.016906 
 Sum sq. resids  0.151914  0.009625  0.007086 
 S.E. equation  0.047976  0.012076  0.010362 
 F-statistic 0.679046 0.695184 1.206364
 Mean dependent  0.018229  0.020283  0.019802 
 S.D. dependent  0.047330  0.011921  0.010451 
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Technical Background

Bayesian analysis requires knowledge of the distributional properties of the prior, likelihood, 
and posterior. In Bayesian statistics and econometrics, anything about which we are uncer-
tain, including the true value of a parameter, can be thought of as being a random variable 
to which can assign a probability distribution. 

The prior is the external distributional information based on researchers’ belief on parame-
ters of interest. The likelihood is the data information contained in the sample probability 
distribution function (pdf). Combining the prior distribution via Bayes’ theorem with the 
data likelihood results in the posterior distribution. 

In particular, denote the parameters of interest in a given model by  and the 
data by . Let us say that the prior distribution is  and the likelihood is , then 
the posterior distribution  is the distribution of  given the data  and may be 
derived by

 

Note that the denominator part  is a normalizing constant which has no ran-
domness, and thus the posterior is proportional to the product of the likelihood and the prior

The main target of Bayesian estimation is to find the posterior moments of the parameter of 
interest. For instance, location and dispersion are the general estimates which are compara-
ble to those obtained in classical estimation (namely the classical coefficient estimate and 
coefficient standard error). These point estimates can be easily derived from the posterior 
because the posterior distribution contains all the information available on the parameter .

To relate this general framework to Bayesian VAR (BVAR) models, suppose that we have the 
VAR(p) model:

where  for  is an  vector containing observations on m different 
series and  is an  vector of errors where we assume  is i.i.d. . For com-
pactness we may rewrite the model as:

(40.41)

or

(40.42)
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where  and  are  matrices and  is a  matrix for 
,  is the identify matrix of dimension , , and 

. Using Equation (40.42) the likelihood function is 

(40.43)

To illustrate how to derive the posterior moments, let us assume  is known and a multi-
variate normal prior for :

(40.44)

where  is the prior mean and  is the prior covariance. When we combine this prior 
with the likelihood function in Equation (40.43), the posterior density can be written as

(40.45)

which is a multivariate normal pdf. For simplicity, define

 (40.46)

Then the exponent in Equation (40.45) can be written as

(40.47)

where the posterior mean  is

Since  is known, the second term of Equation (40.47) has no randomness about . The 
posterior therefore may be summarized as

Y E T m X x1  xt, ,  T mp 1 
xt 1 y, t 1–  yt q–, ,  Im m v vec A 
e N 0 Se IT, 

l v Se,  Se IT 1 2/– 1
2
--- y Im X v–  Se IT  1–

y Im X v– –
 
 
 

exp

Se

v

P v  V0
1 2/– 1

2
--- v v0– V0

1– v v0– –
 
 
 

exp

v0 V0

P v y  1
2
--- V0

1 2/– v v0–   V0
1 2/– v v0–  

Se
1 2/– I T y Se

1 2/– X v–  Se
1 2/– I T y Se

1 2/– X v– 





–












exp

w
V0

1 2/– v0

Se
1 2/– I T y



W
V0

1 2/–

Se
1 2/– X 



P v y  1
2
--- w Wv–  w Wv– –

 
 
 

1
2
--- v v– 'WW v v– – w Wv–  w Wv– 

 
 
 

exp

exp

v

v WW  1– Ww V0
1– Se

1– X X   1– V0
1– v0 Se

1– X y  

Se v



Bayesian VAR—747
and the posterior covariance  is given as

Priors

A fundamental feature of Bayesian econometrics is the formulation of the prior distribution 
of the parameters, based upon information which reflects researchers’ beliefs. A proper 
Bayesian analysis will incorporate the prior information to strengthen inferences about the 
true value of the parameters. An obvious argument against the use of prior distributions is 
that a prior is intrinsically subjective and therefore offers the potential for manipulation.

EViews offers four different priors which have been popular in the BVAR literature:

1. The Litterman/Minnesota prior: A normal prior on  with fixed .

2. The Normal-Wishart prior: A normal prior on  and a Wishart prior on 

3. The Sims-Zha normal-Wishart prior.

4. The Sims-Zha normal-flat: A normal prior on  and non-informative prior on :

It is worth noting that EViews only offers conjugate priors (whose posterior has the same 
distributional family as the prior distribution). This restriction allows for analytical calcula-
tion of the Bayesian VAR, rather than simulation-based estimation (e.g. the MCMC method) 
as is generally required. It is also worth noting that the choice of priors does not imply the 
need for different Bayesian techniques of estimation. Disagreement over the priors may be 
addressed by post-estimation sensitivity analysis evaluating the robustness of posterior 
quantities of interest to different prior specifications.

Litterman or Minnesota prior

Early work on Bayesian VAR priors was done by researchers at the University of Minnesota 
and the Federal Reserve Bank of Minneapolis (see Litterman (1986) and Doan, Litterman, 
and Sims (1984)), and these early priors are often referred to as the “Litterman prior” or the 
“Minnesota prior”. This family of priors is based on an assumption that  is known; 
replacing  with its estimate . This assumption yields simplifications in prior elicitation 
and computation of the posterior.

EViews offers three choices of an estimator of :
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Se



748—Chapter 40. Vector Autoregression and Error Correction Models
• Univariate AR:  is restricted to be a diagonal matrix, where , the -th ele-
ment of , is the standard OLS estimate of the error variance calculated from an uni-
variate AR regression using the i-th variable. 

• Full VAR: estimates a standard classical VAR and uses the covariance matrix from that 
estimation as the initial estimate of . This choice is not always feasible in cases 
where there are not enough observations to estimate the full VAR.

• Diagonal VAR:  is restricted to be a diagonal matrix (as in the univariate VAR esti-
mator), however the diagonal elements of the matrix are calculated from the full clas-
sical VAR (i.e., the diagonal elements are equal to those in the full VAR method, and 
the non-diagonal elements are set equal to zero).

Since  is replaced by , we need only specify a prior for the VAR coefficient . The Lit-
terman prior assumes that the prior of  is

 (where the hyper-parameter , which indicates a zero mean model) and 
nonzero prior covariance . Note that although the choice of zero mean could lessen 
the risk of over-fitting, theoretically any value for  is possible. 

To explain the Minnesota/Litterman prior for the covariance , note that the explanatory 
variables in the VAR in any equation can be divided into own lags of the dependent variable, 
lags of the other dependent variables, and finally any exogenous variables, including the 
constant term. The elements of  corresponding to exogenous variables are set to infinity 
(i.e., no information about the exogenous variables is contained within the prior).

The remainder of  is then a diagonal matrix with its diagonal elements  for 

(40.48)

where  is the i-th diagonal element of . 

This prior setting simplifies the complicated choice of specifying all the elements of  
down to choosing three scalars ,  and . The first two scalars  and  are overall 
tightness and relative cross-variable weight, respectively.  captures the lag decay that, as 
lag length increases, coefficients are increasingly shrunk toward zero. 

Note that changes in these hyper-parameter scalar values may lead to smaller (or larger) 
variances of coefficients, which is called tightening (or loosening) the prior. The exact 
choice of values for these three scalars depends on the empirical application, so that 
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researchers can make trials with different values for themselves. Litterman (1986) provides 
additional discussion of these choices.

Given this choice of prior, the posterior for  takes the form

where

and

A primary advantage of the Minnesota/Litterman prior is that it leads to simple posterior 
inference. The prior does not, however, provide a full Bayesian treatment of  as an 
unknown, so it ignores uncertainty in this parameter. 

Normal-Wishart prior

When the assumption that  is known is loosened, a prior for the residual covariance can 
be also chosen. One well-known conjugate prior for normal data is the normal-Wishart:

where  is the AR(1) coefficient mean and  is the coefficient covari-
ance with the two prior hyper-parameters  and , and 

where  is the degree of freedom and  is the scale matrix . Any 
values for the hyper-parameters can be chosen, however, it is worth noting that a non-infor-
mative prior is obtained by setting the hyper-parameters as  and letting 

. It can be seen that the non-informative prior leads to a posterior based on OLS 
quantities which are identical to classical VAR estimation results.

According to the Bayes updating rule, the posterior becomes:

and 

where

(40.49)

with the standard OLS estimate  and
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(40.50)

Since the natural conjugate priors have the same distributional form for the prior, likelihood, 
and posterior, the prior can be considered as dummy observations. In the following section, 
we will discuss how this interpretation develops the priors for structural VARs.

Sims-Zha priors

Sims and Zha (1998) show how the dummy observations approach can be used to elicit the 
priors for structural VAR models. To illustrate the Sims-Zha priors, suppose that we have a 
contemporaneous correlation of the series, then the model can be written as:

where  and . Note that given appropriate identifying restric-
tions, there will be a mapping from the parameters of the reduced form VAR to the structural 
VAR. This form can be also written in a multivariate regression form by defining  to be a 
matrix of the coefficients on the lagged variable

where  is ,  is ,  is ,  is , and  is 
. Note that  contains the lagged Y’s and a column of 1’s corresponding to the con-

stant.

Sims and Zha suggest the conditional prior (Sims-Zha prior) on  and . In particular,

(40.51)

where  is a marginal distribution of  and  is a normal density with 
mean  and covariance . Note that EViews sets the mar-
ginal distribution of  to be normal. The conditional likelihood can be expressed in a com-
pact form:

(40.52)

where 

(40.53)

Combining Equation (40.51) and Equation (40.52), we can derive the posterior density as:
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where  is a notation for  vectorized. Since this posterior has a nonstandard form, a 
direct analysis of the likelihood may be computationally infeasible. However, the conditional 
posterior distribution  can be analytically derived by:

(40.54)

where 

(40.55)

This specification differs from the Litterman/Minnesota case in a few respects. First, there is 
no distinction between the prior variances on own lags versus other lags. Second, there is 
only one scale factor in the denominator , rather than using the ratio scale factors 

. In particular, each element of  for  and  is written 
as 

(40.56)

where  is the j-th diagonal element of  for the l-th lag of the series i in equation j. 

EViews offers two different choices for the estimate of : Univariate AR  and Diagonal 
VAR , as previously specified in 1) and 2). The three hyper-parameters  and  
reflect the general beliefs about the VAR, and in practice theses are specified on the basis of 
prior knowledge of researchers. Specifically,  is overall tightness of beliefs on ,  is 
standard deviation around , and  represents lag decay. 

Based on the recognition that the prior information can be considered as dummy observa-
tions, Sim and Zha suggest two extra dummy variables (  and )

which account for unit roots (  and ) and trends (  and ), and write the model 
as

The first set of dummies are given by
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where the hyper-parameter  implies the beliefs on the presence of different station-
arities. Note that the last columns of , which correspond to the constant term and any 
exogenous variables, are set to zero. 

The second set of dummies reflect a belief that the average of initial values of variable i (i.e., 
 for j=1,..., p) is likely to be a good forecast of . The dummies for initial observa-

tion are

where  allows for common trend. 

EViews will provide two different Sims-Zha priors, normal-Wishart and normal-flat, which 
apply different distributional family to the covariance matrix  (i.e.,  can be either 
Wishart or flat distribution). It is worth noting that the normal-flat prior puts a non-informa-
tive information on the covariance matrix. 

Sims-Zha normal-Wishart prior

For notation consistency, let us denote the coefficient parameter to be . For the 
natural conjugate normal-Wishart prior, the prior mean is given as Equation (40.54) and its 
posterior is updated as in Equation (40.55). The prior covariance is given as 

where  is the degree of freedom and  is the 
scale matrix where .

The posteriors  is analytically calculated as
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Sims-Zha normal-flat prior

The normal-flat prior is a weak conjugate prior which has no meaningful prior information 
on 

After some mathematical calculation, the posteriors are derived as

.

Note that the coefficient parameter  is updated by the rule in Equation (40.55).
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Chapter 41.  State Space Models and the Kalman Filter

The EViews sspace (state space) object provides a straightforward, easy-to-use interface for 
specifying, estimating, and working with the results of your single or multiple equation 
dynamic system. EViews provides a wide range of specification, filtering, smoothing, and 
other forecasting tools which aid you in working with dynamic systems specified in state 
space form.

A wide range of time series models, including the classical linear regression model and 
ARIMA models, can be written and estimated as special cases of a state space specification. 
State space models have been applied in the econometrics literature to model unobserved 
variables: (rational) expectations, measurement errors, missing observations, permanent 
income, unobserved components (cycles and trends), and the non-accelerating rate of 
unemployment. Extensive surveys of applications of state space models in econometrics can 
be found in Hamilton (1994a, Chapter 13; 1994b) and Harvey (1989, Chapters 3, 4). 

There are two main benefits to representing a dynamic system in state space form. First, the 
state space allows unobserved variables (known as the state variables) to be incorporated 
into, and estimated along with, the observable model. Second, state space models can be 
analyzed using a powerful recursive algorithm known as the Kalman (Bucy) filter. The Kal-
man filter algorithm has been used, among other things, to compute exact, finite sample 
forecasts for Gaussian ARMA models, multivariate (vector) ARMA models, MIMIC (multiple 
indicators and multiple causes), and time varying (random) coefficient models. 

Background

We present here a very brief discussion of the specification and estimation of a linear state 
space model. Those desiring greater detail are directed to Harvey (1989), Hamilton (1994a, 
Chapter 13; 1994b), and especially the excellent treatment of Koopman, Shephard, and 
Doornik (1999), whose approach we largely follow.

Specification

A linear state space representation of the dynamics of the  vector  is given by the 
system of equations:

(41.1)

(41.2)

where  is an  vector of possibly unobserved state variables, where , ,  and 
 are conformable vectors and matrices, and where  and  are vectors of mean zero, 

Gaussian disturbances. Note that the unobserved state vector is assumed to move over time 
as a first-order vector autoregression. 
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We will refer to the first set of equations as the “signal” or “observation” equations and the 
second set as the “state” or “transition” equations. The disturbance vectors  and  are 
assumed to be serially independent, with contemporaneous variance structure:

(41.3)

where  is an  symmetric variance matrix,  is an  symmetric variance 
matrix, and  is an  matrix of covariances.

Note that the updating equation for the states is for the states in period , given the 
errors specified in period . This particular timing convention, which follows Koopman, 
Shephard, and Doornik (1999), has important implications for the interpretation of correla-
tions between errors in the signal and state equations  as discussed in “A Note on Cor-
related Errors” on page 764.

In the discussion that follows, we will generalize the specification given in (41.1)—(41.3) by 
allowing the system matrices and vectors  to depend upon 
observable explanatory variables  and unobservable parameters . Estimation of the 
parameters  is discussed in “Estimation,” beginning on page 759.

Filtering

Consider the conditional distribution of the state vector  given information available at 
time . We can define the mean and variance matrix of the conditional distribution as:

(41.4)

(41.5)

where the subscript below the expectation operator indicates that expectations are taken 
using the conditional distribution for that period.

One important conditional distribution is obtained by setting , so that we obtain 
the one-step ahead mean  and one-step ahead variance  of the states . 
Under the Gaussian error assumption,  is also the minimum mean square error esti-
mator of  and  is the mean square error (MSE) of . If the normality assump-
tion is dropped,  is still the minimum mean square linear estimator of .

Given the one-step ahead state conditional mean, we can also form the (linear) minimum 
MSE one-step ahead estimate of :

(41.6)

The one-step ahead prediction error is given by,

(41.7)
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Background—757
and the prediction error variance is defined as:

(41.8)

The Kalman (Bucy) filter is a recursive algorithm for sequentially updating the one-step 
ahead estimate of the state mean and variance given new information. Details on the recur-
sion are provided in the references above. For our purposes, it is sufficient to note that given 
initial values for the state mean and covariance, values for the system matrices , and 
observations on , the Kalman filter may be used to compute one-step ahead estimates of 
the state and the associated mean square error matrix, , the contempora-
neous or filtered state mean and variance, , and the one-step ahead prediction, pre-
diction error, and prediction error variance, . Note that we may also 
obtain the standardized prediction residual, , by dividing  by the square-root of 
the corresponding diagonal element of .

Fixed-Interval Smoothing

Suppose that we observe the sequence of data up to time period . The process of using 
this information to form expectations at any time period up to  is known as fixed-interval 
smoothing. Despite the fact that there are a variety of other distinct forms of smoothing (e.g., 
fixed-point, fixed-lag), we will use the term smoothing to refer to fixed-interval smoothing.

Additional details on the smoothing procedure are provided in the references given above. 
For now, note that smoothing uses all of the information in the sample to provide smoothed 
estimates of the states, , and smoothed estimates of the state variances, 

. The matrix  may also be interpreted as the MSE of the smoothed state 
estimate .

As with the one-step ahead states and variances above, we may use the smoothed values to 
form smoothed estimates of the signal variables,

(41.9)

and to compute the variance of the smoothed signal estimates:

. (41.10)

Lastly, the smoothing procedure allows us to compute smoothed disturbance estimates, 
 and , and a corresponding smoothed disturbance 

variance matrix:

(41.11)

Dividing the smoothed disturbance estimates by the square roots of the corresponding diag-
onal elements of the smoothed variance matrix yields the standardized smoothed distur-
bance estimates  and .
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Forecasting

There are a variety of types of forecasting which may be performed with state space models. 
These methods differ primarily in what and how information is used. We will focus on the 
three methods that are supported by EViews built-in forecasting routines.

n-Step Ahead Forecasting

Earlier, we examined the notion of one-step ahead prediction. Consider now the notion of 
multi-step ahead prediction of observations, in which we take a fixed set of information 
available at a given period, and forecast several periods ahead. Modifying slightly the 
expressions in (41.4)—(41.8) yields the n-step ahead state conditional mean and variance:

, (41.12)

(41.13)

the n-step ahead forecast,

(41.14)

and the corresponding n-step ahead forecast MSE matrix:

(41.15)

for . As before,  may also be interpreted as the minimum MSE estimate 
of  based on the information set available at time , and  is the MSE of the 
estimate. 

It is worth emphasizing that the definitions given above for the forecast MSE matrices 
 do not account for extra variability introduced in the estimation of any unknown 

parameters . In this setting, the  will understate the true variability of the forecast, 
and should be viewed as being computed conditional on the specific value of the estimated 
parameters.

It is also worth noting that the n-step ahead forecasts may be computed using a slightly 
modified version of the basic Kalman recursion (Harvey 1989). To forecast at period 

, simply initialize a Kalman filter at time  with the values of the predicted 
states and state covariances using information at time , and run the filter forward  
additional periods using no additional signal information. This procedure is repeated for 
each observation in the forecast sample, .

Dynamic Forecasting

The concept of dynamic forecasting should be familiar to you from other EViews estimation 
objects. In dynamic forecasting, we start at the beginning of the forecast sample , and com-
pute a complete set of n-period ahead forecasts for each period  in the fore-
cast interval. Thus, if we wish to start at period  and forecast dynamically to , we 
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would compute a one-step ahead forecast for , a two-step ahead forecast for , 
and so forth, up to an -step ahead forecast for . It may be useful to note that as 
with n-step ahead forecasting, we simply initialize a Kalman filter at time  and run the 
filter forward additional periods using no additional signal information. For dynamic fore-
casting, however, only one n-step ahead forecast is required to compute all of the forecast 
values since the information set is not updated from the beginning of the forecast period.

Smoothed Forecasting

Alternatively, we can compute smoothed forecasts which use all available signal data over 
the forecast sample (for example, ). These forward looking forecasts may be com-
puted by initializing the states at the start of the forecast period, and performing a Kalman 
smooth over the entire forecast period using all relevant signal data. This technique is useful 
in settings where information on the entire path of the signals is used to interpolate values 
throughout the forecast sample.

We make one final comment about the forecasting methods described above. For traditional 
n-step ahead and dynamic forecasting, the states are typically initialized using the one-step 
ahead forecasts of the states and variances at the start of the forecast window. For smoothed 
forecasts, one would generally initialize the forecasts using the corresponding smoothed val-
ues of states and variances. There may, however, be situations where you wish to choose a 
different set of initial values for the forecast filter or smoother. The EViews forecasting rou-
tines (described in “State Space Procedures,” beginning on page 775) provide you with con-
siderable control over these initial settings. Be aware, however, that the interpretation of the 
forecasts in terms of the available information will change if you choose alternative settings.

Estimation

To implement the Kalman filter and the fixed-interval smoother, we must first replace any 
unknown elements of the system matrices by their estimates. Under the assumption that the 

 and  are Gaussian, the sample log likelihood:

(41.16)

may be evaluated using the Kalman filter. Using numeric derivatives, standard iterative tech-
niques may be employed to maximize the likelihood with respect to the unknown parame-
ters  (see Appendix C. “Estimation and Solution Options,” on page 1095).

Initial Conditions

Evaluation of the Kalman filter, smoother, and forecasting procedures all require that we 
provide the initial one-step ahead predicted values for the states  and variance matrix 

. With some stationary models, steady-state conditions allow us to use the system 
matrices to solve for the values of  and . In other cases, we may have preliminary 
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estimates of , along with measures of uncertainty about those estimates. But in many 
cases, we may have no information, or diffuse priors, about the initial conditions. 

Specifying a State Space Model in EViews

EViews handles a wide range of single and multiple-equation state space models, providing 
you with detailed control over the specification of your system equations, covariance matri-
ces, and initial conditions.

The first step in specifying and estimating a state space model is to create a state space 
object. Select Object/New Object.../Sspace from the main toolbar or type sspace in the 
command window. EViews will create a state space object and open an empty state space 
specification window.

There are two ways to specify your state space model. The easiest is to use EViews’ special 
“auto-specification” features to guide you in creating some of the standard forms for these 
models. Simply select Proc/Define State Space... from the sspace object menu. Specialized 
dialogs will open to guide you through the specification process. We will describe this 
method in greater detail in “Auto-Specification” on page 768.

The more general method of describing your state space model uses keywords and text to 
describe the signal equations, state equations, error structure, initial conditions, and if 
desired, parameter starting values for estimation. Note that you can insert a state space 
specification from an existing text file by clicking on the Spec button to display the state 
space specification, then pressing the right-mouse button menu and selecting Insert Text 
File...

The next section describes the general syntax for the state space object.

Specification Syntax

State Equations

A state equation contains the “@STATE” keyword followed by a valid state equation specifi-
cation. Bear in mind that:

• Each equation must have a unique dependent variable name; expressions are not 
allowed. Since EViews does not automatically create workfile series for the states, you 
may use the name of an existing (non-series) EViews object.

• State equations may not contain signal equation dependent variables, or leads or lags 
of these variables.

• Each state equation must be linear in the one-period lag of the states. Nonlinearities 
in the states, or the presence of contemporaneous, lead, or multi-period lag states will 
generate an error message. We emphasize the point that the one-period lag restriction 
on states is not restrictive since higher order lags may be written as new state vari-

a1 0
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ables. An example of this technique is provided in the example “ARMAX(2, 3) with a 
Random Coefficient” on page 764.

• State equations may contain exogenous variables and unknown coefficients, and may 
be nonlinear in these elements.

In addition, state equations may contain an optional error or error variance specification. If 
there is no error or error variance, the state equation is assumed to be deterministic. Specifi-
cation of the error structure of state space models is described in greater detail in “Errors 
and Variances” on page 762.

Examples

The following two state equations define an unobserved error with an AR(2) process:

@state sv1 = c(2)*sv1(-1) + c(3)*sv2(-1) + [var = exp(c(5))]

@state sv2 = sv1(-1)

The first equation parameterizes the AR(2) for SV1 in terms of an AR(1) coefficient, C(2), 
and an AR(2) coefficient, C(3). The error variance specification is given in square brackets. 
Note that the state equation for SV2 defines the lag of SV1 so that SV2(-1) is the two period 
lag of SV1.

Similarly, the following are valid state equations:

@state sv1 = sv1(-1) + [var = exp(c(3))]

@state sv2 = c(1) + c(2)*sv2(-1) + [var = exp(c(3))]

@state sv3 = c(1) + exp(c(3)*x/z) + c(2)*sv3(-1) + [var = 
exp(c(3))]

describing a random walk, and an AR(1) with drift (without/with exogenous variables).

The following are not valid state equations:

@state exp(sv1) = sv1(-1) + [var = exp(c(3))]

@state sv2 = log(sv2(-1)) + [var = exp(c(3))]

@state sv3 = c(1) + c(2)*sv3(-2) + [var=exp(c(3))]

since they violate at least one of the conditions described above (in order: expression for 
dependent state variable, nonlinear in state, multi-period lag of state variables).

Observation/Signal Equations

By default, if an equation specification is not specifically identified as a state equation using 
the “@STATE” keyword, it will be treated by EViews as an observation or signal equation. 
Signal equations may also be identified explicitly by the keyword “@SIGNAL”. There are 
some aspects of signal equation specification to keep in mind:

• Signal equation dependent variables may involve expressions.
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• Signal equations may not contain current values or leads of signal variables. You 
should be aware that any lagged signals are treated as predetermined for purposes of 
multi-step ahead forecasting (for discussion and alternative specifications, see Harvey 
1989, p. 367-368).

• Signal equations must be linear in the contemporaneous states. Nonlinearities in the 
states, or the presence of leads or lags of states will generate an error message. Again, 
the restriction that there are no state lags is not restrictive since additional determinis-
tic states may be created to represent the lagged values of the states.

• Signal equations may have exogenous variables and unknown coefficients, and may 
be nonlinear in these elements.

Signal equations may also contain an optional error or error variance specification. If there 
is no error or error variance, the equation is assumed to be deterministic. Specification of the 
error structure of state space models is described in greater detail in “Errors and Variances” 
on page 762.

Examples

The following are valid signal equation specifications:

log(passenger) = c(1) + c(3)*x + sv1 + c(4)*sv2

@signal y = sv1 + sv2*x1 + sv3*x2 + sv4*y(-1) + [var=exp(c(1))]

z = sv1 + sv2*x1 + sv3*x2 + c(1) + [var=exp(c(2))]

The following are invalid equations:

log(passenger) = c(1) + c(3)*x + sv1(-1)

@signal y = sv1*sv2*x1 + [var = exp(c(1))]

z = sv1 + sv2*x1 + z(1) + c(1) + [var = exp(c(2))]

since they violate at least one of the conditions described above (in order: lag of state vari-
able, nonlinear in a state variable, lead of signal variable).

Errors and Variances

While EViews always adds an implicit error term to each equation in an equation or system 
object, the handling of error terms differs in a sspace object. In a sspace object, the equation 
specifications in a signal or state equation do not contain error terms unless specified explic-
itly.

The easiest way to add an error to a state space equation is to specify an implied error term 
using its variance. You can simply add an error variance expression, consisting of the key-
word “VAR” followed by an assignment statement (all enclosed in square brackets), to the 
existing equation:

@signal y = c(1) + sv1 + sv2 + [var = 1]

@state sv1 = sv1(-1) + [var = exp(c(2))]
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@state sv2 = c(3) + c(4)*sv2(-1) + [var = exp(c(2)*x)]

The specified variance may be a known constant value, or it can be an expression contain-
ing unknown parameters to be estimated. You may also build time-variation into the vari-
ances using a series expression. Variance expressions may not, however, contain state or 
signal variables.

While straightforward, this direct variance specification method does not admit correlation 
between errors in different equations (by default, EViews assumes that the covariance 
between error terms is 0). If you require a more flexible variance structure, you will need to 
use the “named error” approach to define named errors with variances and covariances, and 
then to use these named errors as parts of expressions in the signal and state equations. 

The first step of this general approach is to define your named errors. You may declare a 
named error by including a line with the keyword “@ENAME” followed by the name of the 
error:

@ename e1

@ename e2

Once declared, a named error may enter linearly into state and signal equations. In this 
manner, one can build correlation between the equation errors. For example, the errors in 
the state and signal equations in the sspace specification:

y = c(1) + sv1*x1 + e1

@state sv1 = sv1(-1) + e2 + c(2)*e1

@ename e1

@ename e2

are, in general, correlated since the named error E1 appears in both equations.

In the special case where a named error is the only error in a given equation, you can both 
declare and use the named residual by adding an error expression consisting of the keyword 
“ENAME” followed by an assignment and a name identifier:

y = c(1) + sv1*x1 + [ename = e1]

@state sv1 = sv1(-1) + [ename = e2]

The final step in building a general error structure is to define the variances and covariances 
associated with your named errors. You should include a sspace line comprised of the key-
word “@EVAR” followed by an assignment statement for the variance of the error or the 
covariance between two errors:

@evar cov(e1, e2) = c(2)

@evar var(e1) = exp(c(3))

@evar var(e2) = exp(c(4))*x
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The syntax for the @EVAR assignment statements should be self-explanatory. Simply indi-
cate whether the term is a variance or covariance, identify the error(s), and enter the speci-
fication for the variance or covariance. There should be a separate line for each named error 
covariance or variance that you wish to specify. If an error term is named, but there are no 
corresponding “VAR=” or @EVAR specifications, the missing variance or covariance speci-
fications will remain at the default values of “NA” and “0”, respectively. 

As you might expect, in the special case where an equation contains a single error term, you 
may combine the named error and direct variance assignment statements:

@state sv1 = sv1(-1) + [ename = e1, var = exp(c(3))]

@state sv2 = sv2(-1) + [ename = e2, var = exp(c(4))]

@evar cov(e1, e2) = c(5)

A Note on Correlated Errors

We caution that you should think very carefully about the timing of your errors if you allow 
for correlation between errors in the state and signal equations. The timing in the signal 
equation and state equation updates specified in Equation (41.2) and Equation (41.1), 
implies that correlation between the signal and state errors is defined to be between the 
errors in the signal at time , and the errors in the states dated in . This timing may 
not be what you intend. To allow for correlation in the contemporaneous states and signals 
in time , you will need to specify errors in the lagged states, and define correlation 
between the lagged state errors and the errors in the signal equation.

Specification Examples

ARMAX(2, 3) with a Random Coefficient

We can use the syntax described above to define an ARMAX(2,3) with a random coefficient 
for the regression variable X:

y = c(1) + sv5*x + sv1 + c(4)*sv2 + c(5)*sv3 + c(6)*sv4

@state sv1 = c(2)*sv1(-1) + c(3)*sv2(-1) + [var=exp(c(7))]

@state sv2 = sv1(-1)

@state sv3 = sv2(-1)

@state sv4 = sv3(-1)

@state sv5 = sv5(-1) + [var=3]

The AR coefficients are parameterized in terms of C(2) and C(3), while the MA coefficients 
are given by C(4), C(5) and C(6). The variance of the innovation is restricted to be a positive 
function of C(7). SV5 is the random coefficient on X, with variance restricted to be 3.

Recursive and Random Coefficients

The following example describes a model with one random coefficient (SV1), one recursive 
coefficient (SV2), and possible correlation between the errors for SV1 and Y:

t t 1

t
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y = c(1) + sv1*x1 + sv2*x2 + [ename = e1, var = exp(c(2))]

@state sv1 = sv1(-1) + [ename = e2, var = exp(c(3)*x)]

@state sv2 = sv2(-1)

@evar cov(e1,e2) = c(4)

The variances and covariances in the model are parameterized in terms of the coefficients 
C(2), C(3) and C(4), with the variances of the observed Y and the unobserved state SV1 
restricted to be non-negative functions of the parameters.

Parameter Starting Values

Unless otherwise instructed, EViews will initialize all parameters to the current values in the 
corresponding coefficient vector or vectors. As in the system object, you may override this 
default behavior by specifying explicitly the desired values of the parameters using a PARAM 
or @PARAM statement. For additional details, see “Starting Values” on page 654.

Specifying Initial Conditions

By default, EViews will handle the initial conditions for you. For some stationary models, 
steady-state conditions allow us to solve for the values of  and . For cases where it is 
not possible to solve for the initial conditions, EViews will treat the initial values as diffuse, 
setting , and  to an arbitrarily high number to reflect our uncertainty about 
the values (see “Technical Discussion” on page 779).

You may, however have prior information about the values of  and . In this case, 
you can create a vector or matrix that contains the appropriate values, and use the 
“@MPRIOR” or “@VPRIOR” keywords to perform the assignment. 

To set the initial states, enter “@MPRIOR” followed by the name of a vector object. The 
length of the vector object must match the state dimension. The order of elements should 
follow the order in which the states were introduced in the specification screen.

@mprior v1

@vprior m1

To set the initial state variance matrix, enter “@VPRIOR” followed by the name of a sym 
object (note that it must be a sym object, and not an ordinary matrix object). The dimen-
sions of the sym must match the state dimension, with the ordering following the order in 
which the states appear in the specification. If you wish to set a specific element to be dif-
fuse, simply assign the element the “NA” missing value. EViews will reset all of the corre-
sponding variances and covariances to be diffuse.

For example, suppose you have a two equation state space object named SS1 and you want 
to set the initial values of the state vector and the state variance matrix as:

a0 P0

a1 0 0 P1 0

a1 0 P1 0
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(41.17)

First, create a named vector object, say SVEC0, to hold the initial values. Click Object/New 
Object, choose Matrix-Vector-Coef and enter the name SVEC0. Click OK, and then choose 
the type Vector and specify the size of the vector (in this case 2 rows). When you click OK, 
EViews will display the spreadsheet view of the vector SVEC0. Click the Edit +/– button to 
toggle on edit mode and type in the desired values. Then create a named symmetric matrix 
object, say SVAR0, in an analogous fashion.

Alternatively, you may find it easier to create and initialize the vector and matrix using com-
mands. You can enter the following commands in the command window:

vector(2) svec0

svec0.fill 1, 0

sym(2) svar0

svar0.fill 1, 0.5, 2

Then, simply add the lines:

@mprior svec0

@vprior svar0

to your sspace object by editing the specification window. Alternatively, you can type the 
following commands in the command window:

ss1.append @mprior svec0

ss1.append @vprior svar0

For more details on matrix objects and the fill and append commands, see Chapter 11. 
“Matrix Language,” on page 261 of the Command and Programming Reference.

Specification Views

State space models may be very complex. To aid you in examining your specification, 
EViews provides views which allow you to view the text specification in a more compact 
form, and to examine the numerical values of your system matrices evaluated at current 
parameter values.

Click on the View menu and select Specification... The following Specification views are 
always available, regardless of whether the sspace has previously been estimated:
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0
, var SV1

SV2

1 0.5
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• Text Screen. This is the 
familiar text view of the spec-
ification. You should use this 
view when you create or edit 
the state space specification. 
This view may also be 
accessed by clicking on the 
Spec button on the sspace 
toolbar.

• Coefficient Description. Text 
description of the structure of your state space specification. The variables on the left-
hand side, representing  and , are expressed as linear functions of the state 
variables , and a remainder term CONST. The elements of the matrix are the corre-
sponding coefficients. For example, the ARMAX example has the following Coefficient 
Description view:

• Covariance Description. Text description of the covariance matrix of the state space 
specification. For example, the ARMAX example has the following Covariance 
Description view:

at 1 yt

at



768—Chapter 41. State Space Models and the Kalman Filter
• Coefficient Values. Numeric description of the structure of the signal and the state 
equations evaluated at current parameter values. If the system coefficient matrix is 
time-varying, EViews will prompt you for a date/observation at which to evaluate the 
matrix.

• Covariance Values. Numeric description of the structure of the state space specifica-
tion evaluated at current parameter values. If the system covariance matrix is time-
varying, EViews will prompt you for a date/observation at which to evaluate the 
matrix.

Auto-Specification

To aid you in creating a state space specification, EViews provides you with “auto-specifica-
tion” tools which will create the text representation of a model that you specify using dia-
logs. This tool may be very useful if your model is a standard regression with fixed, 
recursive, and various random coefficient specifications, and/or your errors have a general 
ARMA structure.

When you select Proc/Define State Space... from the menu, EViews opens a three tab dia-
log. The first tab is used to describe the basic regression portion of your specification. Enter 
the dependent variable, and any regressors which have fixed or recursive coefficients. You 
can choose which COEF object EViews uses for indicating unknowns when setting up the 
specification. At the bottom, you can specify an ARMA structure for your errors. Here, we 
have specified a simple ARMA(2,1) specification for LOG(PASSENGER).
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The second tab of the dialog is used to add any regressors which have random coefficients. 
Simply enter the appropriate regressors in each of the four edit fields. EViews allows you to 
define regressors with any combination of constant mean, AR(1), random walk, or random 
walk (with drift) coefficients.

Lastly, the Auto-Specification dialog allows you to choose between basic variance struc-
tures for your state space model. Click on the Variance Specification tab, and choose 
between an Identity matrix, Common Diagonal (diagonal with common variances), Diago-
nal, or general (Unrestricted) variance matrix for the signals and for the states. The dialog 
also allows you to allow the signal equation(s) and state equations(s) to have non-zero error 
covariances. 
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We emphasize the fact that your sspace object is not restricted to the choices provided in 
this dialog. If you find that the set of specifications supported by Auto-Specification is too 
restrictive, you may use it the dialogs as a tool to build a basic specification, and then edit 
the specification to describe your model.

Estimating a State Space Model 

Once you have specified a state space model and verified that your specification is correct, 
you are ready to estimate the model. To open the estimation dialog, simply click on the Esti-
mate button on the toolbar or select Proc/Estimate…

As with other estimation objects, 
EViews allows you to set the esti-
mation sample, optimization and 
coefficient covariance methods, 
the maximum number of itera-
tions, convergence tolerance, the 
estimation algorithm, derivative 
settings and whether to display the 
starting values. 

The default optimization method 
for new sspace objects is BFGS, 
but you may also select Newton-
Raphson, OPG - BHHH, or EViews legacy. For non-legacy estimation, the Step method 
allows you to choose between the default Marquardt, Dogleg, and Line search determined 
steps.
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The Ordinary default Covariance method employs the inverse of the matrix specified in the 
Information matrix dropdown menu. Alternately, you may compute the sandwich covari-
ance by selecting Huber – White in the Covariance method menu. 

The outer-product of the gradients (OPG) is the default information matrix estimator. If you 
are performing non-legacy optimization, you may use the observed Hessian by selecting 
Hessian – Observed.

The default settings should provide a good start for most problems; if you choose to change 
the settings, see “Setting Estimation Options” on page 1089 for related discussion of estima-
tion options. 

When you click on OK, EViews will begin estimation using the specified settings.

There are two additional things to keep in mind when estimating your model:

• Although the EViews Kalman filter routines will automatically handle any missing 
values in your sample, EViews does require that your estimation sample be contigu-
ous, with no gaps between successive observations. 

• If there are no unknown coefficients in your specification, you will still have to “esti-
mate” your sspace to run the Kalman filter and initialize elements that EViews needs 
in order to perform further analysis.

Interpreting the estimation results

After you choose the variance options and click OK, EViews presents the estimation results 
in the state space window. For example, if we specify an ARMA(2,1) for the log of the 
monthly international airline passenger totals from January 1949 to December 1960 (from 
Box and Jenkins, 1976, series G, p. 531):

log(passenger) = c(1) + sv1 + c(4)*sv2

@state sv1 = c(2)*sv1(-1) + c(3)*sv2(-1) + [var=exp(c(5))]

@state sv2 = sv1(-1)

and estimate the model, EViews will display the estimation output view:
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The bulk of the output view should be familiar from other EViews estimation objects. The 
information at the top describes the basics of the estimation: the name of the sspace object, 
estimation method, the date and time of estimation, sample and number of objects in the 
sample, convergence information, and the coefficient estimates. The bottom part of the view 
reports the maximized log likelihood value, the number of estimated parameters, and the 
associated information criteria.

Some parts of the output, however, are new and may require discussion. The bottom section 
provides additional information about the handling of missing values in estimation. “Likeli-
hood observations” reports the actual number of observations that are used in forming the 
likelihood. This number (which is the one used in computing the information criteria) will 
differ from the “Included observations” reported at the top of the view when EViews drops 
an observation from the likelihood calculation because all of the signal equations have miss-
ing values. The number of omitted observations is reported in “Missing observations”. “Par-
tial observations” reports the number of observations that are included in the likelihood, but 
for which some equations have been dropped. “Diffuse priors” indicates the number of ini-
tial state covariances for which EViews is unable to solve and for which there is no user ini-
tialization. EViews’ handling of initial states and covariances is described in greater detail in 
“Initial Conditions” on page 779.

EViews also displays the final one-step ahead values of the state vector, , and the 
corresponding RMSE values (square roots of the diagonal elements of ). For settings 

Sspace: SS_ARMA21    
Method: Maximum likelihood  (BFGS / Marquardt steps)  
Date: 03/16/15   Time: 11:42   
Sample: 1949M01 1960M12   
Included observations: 144   
Convergence achieved after 9 iterations   
Coefficient covariance computed using outer product of 
gradients  

 Coefficient Std. Error z-Statistic Prob.  

C(1) 5.499767 0.257517 21.35687 0.0000
C(2) 0.409013 0.167201 2.446239 0.0144
C(3) 0.547165 0.164608 3.324055 0.0009
C(4) 1.188382 0.141461 8.400799 0.0000
C(5) -4.934585 0.308276 -16.00704 0.0000

 Final State Root MSE z-Statistic Prob.  

SV1 0.245396 0.084850 2.892117 0.0038
SV2 0.319569 0.047896 6.672101 0.0000

Log likelihood 124.3367      Akaike info criterion -1.657454
Parameters 5      Schwarz criterion -1.554336
Diffuse priors 0      Hannan-Quinn criter. -1.615553

aT 1 T
PT 1 T
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where you may care about the entire path of the state vector and covariance matrix, EViews 
provides you with a variety of views and procedures for examining the state results in 
greater detail.

Working with the State Space

EViews provides a variety of specialized tools for specifying and examining your state space 
specification. As with other estimation objects, the sspace object provides additional views 
and procedures for examining the estimation results, performing inference and specification 
testing, and extracting results into other EViews objects.

State Space Views

Many of the state space views should be familiar from previ-
ous discussion:

• We have already discussed the Specification... views 
in our analysis of “Specification Views” on page 766.

• The Estimation Output view displays the coefficient 
estimates and summary statistics as described above in 
“Interpreting the estimation results” on page 771. You 
may also access this view by pressing Stats on the 
sspace toolbar.

• The Gradients and Derivatives... views should be 
familiar from other estimation objects. If the sspace contains parameters to be esti-
mated, this view provides summary and visual information about the gradients of the 
log likelihood at estimated parameters (if the sspace is estimated) or at current param-
eter values.

• Actual, Predicted, Residual Graph displays, in graphical form, the actual and one-
step ahead fitted values of the signal dependent variable(s), , and the one-step 
ahead standardized residuals, .

• Select Coefficient Covariance Matrix to view the estimated coefficient covariance.

• Wald Coefficient Tests… allows you to perform hypothesis tests on the estimated 
coefficients. For details, see “Wald Test (Coefficient Restrictions)” on page 182.

• Label allows you to annotate your object. See “Labeling Objects” on page 116 of 
User’s Guide I.

Note that with the exception of the Label and Specification... views, these views are avail-
able only following successful estimation of your state space model.

yt t 1–

et t 1–
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Signal Views

When you click on View/Signal Views, EViews displays a 
sub-menu containing additional view selections. Two of these 
selections are always available, even if the state space model 
has not yet been estimated:

• Actual Signal Table and Actual Signal Graph display 
the dependent signal variables in spreadsheet and graphical forms, respectively. If 
there are multiple signal equations, EViews will display a each series with its own 
axes.

The remaining views are only available following estimation.

• Graph Signal Series... opens a dialog with 
choices for the results to be displayed. The 
dialog allows you to choose between the one-
step ahead predicted signals, , the cor-
responding one-step residuals, , or stan-
dardized one-step residuals, , the 
smoothed signals, , smoothed signal distur-
bances, , or the standardized smoothed sig-
nal disturbances, .  (root mean square) 
standard error bands are plotted where appro-
priate.

• Std. Residual Correlation Matrix and Std. Residual Covariance Matrix display the 
correlation and covariance matrix of the standardized one-step ahead signal residual, 

.

State Views

To examine the unobserved state components, click on View/
State Views to display the state submenu. EViews allows you to 
examine the initial or final values of the state components, or to 
graph the full time-path of various filtered or smoothed state 
data.

Two of the views are available either before or after estimation:

• Initial State Vector and Initial State Covariance Matrix display the values of the ini-
tial state vector, , and covariance matrix, . If the unknown parameters have pre-
viously been estimated, EViews will evaluate the initial conditions using the 
estimated values. If the sspace has not been estimated, the current coefficient values 
will be used in evaluating the initial conditions.
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This information is especially relevant in models where EViews is using the current 
values of the system matrices to solve for the initial conditions. In cases where you 
are having difficulty starting your estimation, you may wish to examine the values of 
the initial conditions at the starting parameter values for any sign of problems. 

The remainder of the views are only available following successful estimation:

• Final State Vector and Final State Covariance Matrix display the values of the final 
state vector, , and covariance matrix, , evaluated at the estimated parameters.

• Select Graph State Series... to display a dia-
log containing several choices for the state 
information. You can graph the one-step 
ahead predicted states, , the filtered 
(contemporaneous) states, , the smoothed 
state estimates, , smoothed state distur-
bance estimates, , or the standardized 
smoothed state disturbances, . In each 
case, the data are displayed along with corre-
sponding  standard error bands.

State Space Procedures

You can use the EViews procedures to create, estimate, forecast, and generate data from 
your state space specification. Select Proc in the sspace toolbar to display the available pro-
cedures:

• Define State Space... calls up the Auto-Specification dialog 
(see “Auto-Specification” on page 768). This feature pro-
vides a method of specifying a variety of common state 
space specifications using interactive menus.

• Select Estimate... to estimate the parameters of the specifi-
cation (see “Estimating a State Space Model” on page 770).

These above items are available both before and after estimation. 
The automatic specification tool will replace the existing state 
space specification and will clear any results.

Once you have estimated your sspace, EViews provides additional tools for generating data:

• The Forecast... dialog allows you to generate forecasts of the states, signals, and the 
associated standard errors using alternative methods and initialization approaches.

First, select the forecast method. You can select between dynamic, smoothed, and 
n-period ahead forecasting, as described in “Forecasting” on page 758. Note that any 

aT PT

at t 1–

at

at
ˆ

v̂t

ĥt
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lagged endogenous variables on the right-hand side of your signal equations will be 
treated as predetermined for purposes of forecasting.

EViews allows you to save 
various types of forecast out-
put in series in your work-
file. Simply check any of the 
output boxes, and specify the 
names for the series in the 
corresponding edit field.

You may specify the names 
either as a list or using a 
wildcard expression. If you 
choose to list the names, the 
number of identifiers must 
match the number of signals 
in your specification. You should be aware that if an output series with a specified 
name already exists in the workfile, EViews will overwrite the entire contents of the 
series.

If you use a wildcard expression, EViews will substitute the name of each signal in the 
appropriate position in the wildcard expression. For example, if you have a model 
with signals Y1 and Y2, and elect to save the one-step predictions in “PRED*”, 
EViews will use the series PREDY1 and PREDY2 for output. There are two limitations 
to this feature: (1) you may not use the wildcard expression “*” to save signal results 
since this will overwrite the original signal data, and (2) you may not use a wildcard 
when any signal dependent variables are specified by expression, or when there are 
multiple equations for a signal variable. In both cases, EViews will be unable to create 
the new series and will generate an error message.

Keep in mind that if your signal dependent variable is an expression, EViews will only 
provide forecasts of the expression. Thus, if your signal variable is LOG(Y), EViews 
will forecast the logarithm of Y.

Now enter a sample and specify the treatment of the initial states, and then click OK. 
EViews will compute the forecast and will place the results in the specified series. No 
output window will open.

There are several options available for setting the initial conditions. If you wish, you 
can instruct the sspace object to use the One-step ahead or Smoothed estimates of 
the state and state covariance as initial values for the forecast period. The two initial-
ization methods differ in the amount of information used from the estimation sample; 
one-step ahead uses information up to the beginning of the forecast period, while 
smoothed uses the entire estimation period.
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Alternatively, you may use EViews computed initial conditions. As in estimation, if 
possible, EViews will solve the Algebraic Riccati equations to obtain values for the ini-
tial state and state covariance at the start of each forecast interval. If solution of these 
conditions is not possible, EViews will use diffuse priors for the initial values. 

Lastly, you may choose to provide a vector and sym object which contain the values 
for the forecast initialization. Simply select User Specified and enter the name of 
valid EViews objects in the appropriate edit fields.

Note that when performing either dynamic or smoothed forecasting, EViews requires 
that one-step ahead and smoothed initial conditions be computed from the estimation 
sample. If you choose one of these two forecasting methods and your forecast period 
begins either before or after the estimation sample, EViews will issue an error and 
instruct you to select a different initialization method.

When computing n-step ahead forecasting, EViews will adjust the start of the forecast 
period so that it is possible to obtain initial conditions for each period using the spec-
ified method. For the one-step ahead and smoothed methods, this means that at the 
earliest, the forecast period will begin  observations into the estimation sample, 
with earlier forecasted values set to NA. For the other initialization methods, forecast 
sample endpoint adjustment is not required.

• Make Signal Series... allows you to create series containing various signal results 
computed over the estimation sample. Simply click on the menu entry to display the 
results dialog.

You may select the one-step ahead 
predicted signals, , one-step 
prediction residuals, , 
smoothed signal, , or signal dis-
turbance estimates, . EViews also 
allows you to save the correspond-
ing standard errors for each of these 
components (square roots of the 
diagonal elements of , , 
and ), or the standardized values 
of the one-step residuals and 
smoothed disturbances,  or 

.

Next, specify the names of your series in the edit field using a list or wildcards as 
described above. Click OK to generate a group containing the desired signal series.

As above, if your signal dependent variable is an expression, EViews will only export 
results based upon the entire expression.
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• Make State Series... opens a dialog allowing you to create series containing results for 
the state variables computed over the estimation sample. You can choose to save 
either the one-step ahead state estimate, , the filtered state mean, , the 
smoothed states, , state disturbances, , standardized state disturbances, , or 
the corresponding standard error series (square roots of the diagonal elements of 

, ,  and ).

Simply select one of the output types, 
and enter the names of the output 
series in the edit field. The rules for 
specifying the output names are the 
same as for the Forecast... procedure 
described above. Note that the wild-
card expression “*” is permitted 
when saving state results. EViews 
will simply use the state names 
defined in your specification.

We again caution you that if an out-
put series exists in the workfile, 
EViews will overwrite the entire contents of the series.

• Click on Make Endogenous Group to create a group object containing the signal 
dependent variable series.

• Make Gradient Group creates a group object with series containing the gradients of 
the log likelihood. These series are named “GRAD##” where ## is a unique number in 
the workfile.

• Make Kalman Filter creates a new state space object containing the current specifica-
tion, but with all parameters replaced by their estimated values. In this way you can 
“freeze” the current state space for additional analysis. This procedure is similar to 
the Make Model procedure found in other estimation objects.

• Make Model creates a model object containing the state space equations.

• Update Coefs from Sspace will place the estimated parameters in the appropriate 
coefficient vectors.

Converting from Version 3 Sspace

Those of you who have worked with the EViews Version 3 sspace object will undoubtedly 
be struck by the large number of changes and additional features in Version 4 and later. In 
addition to new estimation options, views and procedures, we have changed the underlying 
specification syntax to provide you with considerable additional flexibility. A wide variety of 
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specifications that were not supported in earlier versions may be estimated with the current 
sspace object.

The cost of these additional features and added flexibility is that Version 3 sspace objects are 
not fully compatible with those in the current version. This has two important practical 
effects: 

• If you load in a workfile which contains a Version 3 sspace object, all previous estima-
tion results will be cleared and the text of the specification will be translated to the 
current syntax. The original text will be retained as comments at the bottom of your 
sspace specification.

• If you take a workfile which contains a new sspace object created with EViews 4 or 
later and attempt to read it into an earlier version of EViews, the object will not be 
read, and EViews will warn you that a partial load of the workfile was performed. If 
you subsequently save the workfile, the original sspace object will not be saved with 
the workfile.

Technical Discussion

Initial Conditions

If there are no @MPRIOR or @VPRIOR statements in the specification, EViews will either: 
(1) solve for the initial state mean and variance, or (2) initialize the states and variances 
using diffuse priors. 

Solving for the initial conditions is only possible if the state transition matrices , and vari-
ance matrices  and  are non time-varying and satisfy certain stability conditions (see 
Harvey, 1989, p. 121). If possible, EViews will solve for the conditions  using the famil-
iar relationship: . If this is not possible, the states will be 
treated as diffuse unless otherwise specified.

When using diffuse priors, EViews follows the method adopted by Koopman, Shephard and 
Doornik (1999) in setting , and , where the  is an arbitrarily cho-
sen large number. EViews uses the authors’ recommendation that one first set  and 
then adjust it for scale by multiplying by the largest diagonal element of the residual covari-
ances.
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Chapter 42.  Models

A model in EViews is a set of one or more equations that jointly describe the relation-
ship between a set of variables. The model equations can come from many sources: 
they can be simple identities, they can be the result of estimation of single equations, 
or they can be the result of estimation using any one of EViews’ multiple equation esti-
mators. 

EViews models allow you to combine equations from all these sources inside a single 
object, which may be used to create a deterministic or stochastic joint forecast or sim-
ulation for all of the variables in the model. In a deterministic setting, the inputs to the 
model are fixed at known values, and a single path is calculated for the output vari-
ables. In a stochastic environment, uncertainty is incorporated into the model by add-
ing a random element to the coefficients, the equation residuals or the exogenous 
variables.

Models also allow you to examine simulation results under different assumptions con-
cerning the variables that are determined outside the model. In EViews, we refer to 
these sets of assumptions as scenarios, and provide a variety of tools for working with 
multiple model scenarios.

Even if you are working with only a single equation, you may find that it is worth cre-
ating a model from that equation so that you may use the features provided by the 
EViews Model object.

Overview

The following section provides a brief introduction to the purpose and structure of the 
EViews model object, and introduces terminology that will be used throughout the rest 
of the chapter.

A model consists of a set of equations that describe the relationships between a set of 
variables.

The variables in a model can be divided into two categories: those determined inside 
the model, which we refer to as the endogenous variables, and those determined out-
side the model, which we refer to as the exogenous variables. A third category of vari-
ables, the add factors, are a special case of exogenous variables.

In its most general form, a model can be written in mathematical notation as:

(42.1)F y x,  0
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where  is the vector of endogenous variables,  is the vector of exogenous variables, and 
 is a vector of real-valued functions . For the model to have a unique solution, 

there should typically be as many equations as there are endogenous variables.

In EViews, each equation in the model must have a unique endogenous variable assigned to 
it. That is, each equation in the model must be able to be written in the form:

(42.2)

where  is the endogenous variable assigned to equation . EViews has the ability to nor-
malize equations involving simple transformations of the endogenous variable, rewriting 
them automatically into explicit form when necessary. Any variable that is not assigned as 
the endogenous variable for any equation is considered exogenous to the model.

Equations in an EViews model can either be inline or linked. An inline equation contains the 
specification for the equation as text within the model. A linked equation is one that brings 
its specification into the model from an external EViews object such as a single or multiple 
equation estimation object, or even another model. Linking allows you to couple a model 
more closely with the estimation procedure underlying the equations, or with another model 
on which it depends. For example, a model for industry supply and demand might link to 
another model and to estimated equations:

Equations can also be divided into stochastic equations and identities. Roughly speaking, an 
identity is an equation that we would expect to hold exactly when applied to real world 
data, while a stochastic equation is one that we would expect to hold only with random 
error. Stochastic equations typically result from statistical estimation procedures while iden-
tities are drawn from accounting relationships between the variables.

The most important operation performed on a model is to solve the model. By solving the 
model, we mean that for a given set of values of the exogenous variables, X, we will try to 
find a set of values for the endogenous variables, Y, so that the equations in the model are 
satisfied within some numerical tolerance. Often, we will be interested in solving the model 
over a sequence of periods, in which case, for a simple model, we will iterate through the 
periods one by one. If the equations of the model contain future endogenous variables, we 

Industry Supply And Demand Model

link to macro model object for forecasts of total consumption

link to equation object containing industry supply equation

link to equation object containing industry demand equation

inline identity: supply = demand

y x
F fi y x, 

yi fi y x, 

yi i
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may require a more complicated procedure to solve for the entire set of periods simultane-
ously.

In EViews, when solving a model, we must first associate data with each variable in the 
model by binding each of the model variables to a series in the workfile. We then solve the 
model for each observation in the selected sample and place the results in the corresponding 
series.

When binding the variables of the model to specific series in the workfile, EViews will often 
modify the name of the variable to generate the name of the series. Typically, this will 
involve adding an extension of a few characters to the end of the name. For example, an 
endogenous variable in the model may be called “Y”, but when EViews solves the model, it 
may assign the result into an observation of a series in the workfile called “Y_0”. We refer to 
this mapping of names as aliasing. Aliasing is an important feature of an EViews model, as 
it allows the variables in the model to be mapped into different sets of workfile series, with-
out having to alter the equations of the model.

When a model is solved, aliasing is typically applied to the endogenous variables so that his-
torical data is not overwritten. Furthermore, for models which contain lagged endogenous 
variables, aliasing allows us to bind the lagged variables to either the actual historical data, 
which we refer to as a static forecast, or to the values solved for in previous periods, which 
we refer to as a dynamic forecast. In both cases, the lagged endogenous variables are effec-
tively treated as exogenous variables in the model when solving the model for a single 
period.

Aliasing is also frequently applied to exogenous variables when using model scenarios. 
Model scenarios allow you to investigate how the predictions of your model vary under dif-
ferent assumptions concerning the path of exogenous variables or add factors. In a scenario, 
you can change the path of an exogenous variable by overriding the variable. When a vari-
able is overridden, the values for that variable will be fetched from a workfile series specific 
to that scenario. The name of the series is formed by adding a suffix associated with the sce-
nario to the variable name. This same suffix is also used when storing the solutions of the 
model for the scenario. By using scenarios it is easy to compare the outcomes predicted by 
your model under a variety of different assumptions without having to edit the structure of 
your model.

The following table gives a typical example of how model aliasing might map variable 
names in a model into series names in the workfile:

 

Model Variable Workfile Series

endogenous Y Y historical data

Y_0 baseline solution 
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Earlier, we mentioned a third category of variables called add factors. An add factor is a spe-
cial type of exogenous variable that is used to shift the results of a stochastic equation to 
provide a better fit to historical data or to fine-tune the forecasting results of the model. 
While there is nothing that you can do with an add factor that could not be done using exog-
enous variables, EViews provides a separate interface for add factors to facilitate a number 
of common tasks.

An Example Model

In this section, we demonstrate how we can use the EViews model object to implement a 
simple macroeconomic model of the U.S. economy. The specification of the model is taken 
from Pindyck and Rubinfeld (1998, p. 390). We have provided the data and other objects 
relating to the model in the sample workfile “Macromod.WF1”. You may find it useful to fol-
low along with the steps in the example, and you can use the workfile to experiment further 
with the model object.

(A second, simpler example may be found in “Plotting Probability Response Curves” on 
page 346).

The macro model contains three stochastic equations and one identity. In EViews notation, 
these can be written:

cn = c(1) + c(2)*y + c(3)*cn(-1)

i = c(4) + c(5)*(y(-1)-y(-2)) + c(6)*y + c(7)*r(-4)

r = c(8) + c(9)*y + c(10)*(y-y(-1)) + c(11)*(m-m(-1)) + c(12)* (r(-
1)+r(-2))

y = cn + i + g

where:

• CN is real personal consumption

• I is real private investment

• G is real government expenditure

• Y is real GDP less net exports

• R is the interest rate on three-month treasury bills

• M is the real money supply, narrowly defined (M1)

Y_1 scenario 1

exogenous X X historical data followed by baseline forecast

X_1 overridden forecast for scenario 1
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and the C(i) are the unknown coefficients.

The model follows the structure of a simple textbook ISLM macroeconomic model, with 
expenditure equations relating consumption and investment to GDP and interest rates, and a 
money market equation relating interest rates to GDP and the money supply. The fourth 
equation is the national accounts expenditure identity which ensures that the components of 
GDP add to total GDP. The model differs from a typical textbook model in its more dynamic 
structure, with many of the variables appearing in lagged or differenced form.

Estimating the Equations

To begin, we must first estimate the unknown coefficients in the stochastic equations. For 
simplicity, we estimate the coefficients by simple single equation OLS. Note that this 
approach is not strictly valid, since Y appears on the right-hand side of several of the equa-
tions as an independent variable but is endogenous to the system as a whole. Because of 
this, we would expect Y to be correlated with the residuals of the equations, which violates 
the assumptions of OLS estimation. To adjust for this, we would need to use some form of 
instrumental variables or system estimation (for details, see the discussion of single equa-
tion “Two-stage Least Squares,” beginning on page 69 and system “Two-Stage Least 
Squares” and related sections beginning on page 647).

To estimate the equations in EViews, we create three new equation objects in the workfile 
(using Object/New Object.../Equation), and then enter the appropriate specifications. Since 
all three equations are linear, we can specify them using list form. To minimize confusion, 
we will name the three equations according to their endogenous variables. The resulting 
names and specifications are:

The three equations estimate satisfactorily and provide a reasonably close fit to the data, 
although much of the fit probably comes from the lagged endogenous variables. The con-
sumption and investment equations show signs of heteroskedasticity, possibly indicating 
that we should be modeling the relationships in log form. All three equations show signs of 
serial correlation. We will ignore these problems for the purpose of this example, although 
you may like to experiment with alternative specifications and compare their performance.

Creating the Model

Now that we have estimated the three equations, we can proceed to the model itself. To cre-
ate the model, we simply select Object/New Object.../Model from the menus. To keep the 
model permanently in the workfile, we name the model by clicking on the Name button, 
enter the name MODEL1, and click on OK.

Equation EQCN: cn c y cn(-1)

Equation EQI: i c y(-1)-y(-2) y r(-4)

Equation EQR: r c y y-y(-1) m-m(-1) r(-1)+r(-2)
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When first created, the model object defaults to equation view. Equation view allows us to 
browse through the specifications and properties of the equations contained in the model. 
Since we have not yet added any equations to the model, this window will appear empty.

Linking the Equations

To add our estimated stochastic equations to the model, we can simply copy-and-paste or 
drag-and-drop them from the workfile window. To copy-and-paste, first select the objects in 
the workfile window, and then use Edit/Copy or the right mouse button menu to copy the 
objects to the clipboard. Click anywhere in the model object window, and use Edit/Paste or 
the right mouse button menu to paste the objects into the model object window. To drag-
and-drop, simply select the equation objects, then drag into the model window. Click on OK 
when prompted to link the equation to the object.

Alternatively, we could have combined the two steps by first highlighting the three equa-
tions, right-mouse clicking, and selecting Open as Model. EViews will create a new 
unnamed model containing the three equations. Press on the Name button to name the 
model object.

The three estimated equations 
should now appear in the equation 
window. Each equation appears on 
a line with an icon showing the 
type of object, its name, its equa-
tion number, and a symbolic repre-
sentation of the equation in terms 
of the variables that it contains. 
Double clicking on any equation will bring up a dialog of properties of that equation. For the 
moment, we do not need to alter any of these properties.

We have added our three equations as linked equations. This means if we go back and rees-
timate one or more of the equations, we can automatically update the equations in the 
model to the new estimates by using the procedure Proc/Links/Update All Links.

Adding the Identity

To complete the model, we must add our final equation, the national accounts expenditure 
identity. There is no estimation involved in this equation, so instead of including the equa-
tion via a link to an external object, we merely add the equation as inline text.

To add the identity, we click with the right mouse button anywhere in the equation window, 
and select Insert…. A dialog box will appear titled Model Source Edit which contains a text 
box with the heading Enter one or more lines. Simply type the identity, “Y = CN + I + 
G”, into the text box, then click on OK to add it to the model.
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The equation should now appear 
in the model window. The appear-
ance differs slightly from the other 
equations, which is an indicator 
that the new equation is an inline 
text equation rather than a link.

Our model specification is now 
complete. At this point, we can proceed straight to solving the model.

Performing a Static Solution 

To solve the model, simply click on the Solve button in the model window button bar. 

There are many options avail-
able from the dialog, but for the 
moment we will consider only 
the basic settings. As our first 
exercise in assessing our model, 
we would like to examine the 
ability of our model to provide 
one-period ahead forecasts of 
our endogenous variables. To do 
this, we can look at the predic-
tions of our model against our 
historical data, using actual val-
ues for both the exogenous and 
the lagged endogenous variables 
of the model. In EViews, we 
refer to this as a static simula-
tion. We may easily perform this type of simulation by choosing Static solution in the 
Dynamics box of the dialog.

We must also adjust the sample over which to solve the model, so as to avoid initializing our 
solution with missing values from our data. Most of our series are defined over the range of 
1947Q1 to 1999Q4, but our money supply series is available only from 1959Q1. Because of 
this, we set the sample to 1960Q1 to 1999Q4, allowing a few extra periods prior to the sam-
ple for any lagged variables.

We are now ready to solve the model. Simply click on OK to start the calculations. The 
model window will switch to the Solution Messages view.
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The output should be fairly self-
explanatory. In this case, the 
solution took less than a second 
and there were no errors while 
performing the calculations.

Examining the Solution Results

Now that we have solved the 
model, we would like to look at 
the results. When we solved the 
model, the results for the endoge-
nous variables were placed into series in the workfile with names determined by the name 
aliasing rules of the model. Since these series are ordinary EViews objects, we could use the 
workfile window to open the series and examine them directly. However, the model object 
provides a much more convenient way to work with the series through a view called the 
Variable View.

The easiest way to switch to the variable view is to select View/Variables or to click on the 
button labeled Variables on the model window button bar.

 

In the variable view, each 
line in the window is used 
to represent a variable. The 
line contains an icon indi-
cating the variable type 
(endogenous, exogenous or 
add factor), the name of the 
variable, the equation with 
which the variable is associ-
ated (if any), and the description field from the label of the underlying series (if available). 
The name of the variable may be colored according to its status, indicating whether it is 
being traced (blue) or whether it has been overridden (red). In our model, we can see that 
CN, I, R and Y are endogenous variables in the model, while G and M are exogenous.

Much of the convenience of the variable view comes from the fact that it allows you to work 
directly with the names of the variables in the model, rather than the names of series in the 
workfile. This is useful because when working with a model, there are different series asso-
ciated with each variable. For endogenous variables, there will be the actual historical val-
ues and one or more series of solution values. For exogenous variables, there may be several 
alternative scenarios for the variable. The variable view and its associated procedures help 
you move between these different sets of series without having to worry about the many dif-
ferent names involved.
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For example, to look at 
graphs containing the actual 
and fitted values for the 
endogenous variables in our 
model, we select the four 
variables (by holding down 
the control key and clicking 
on the variable names), then 
use Proc/Make Graph… to 
enter the dialog. 

(The names of the four 
series will be pre-filled in the 
Model variables section. 
Alternately, we could have 
simply selected Proc/Make Graph... then set the Model variables dropdown to Endoge-
nous variables.)

Again, the dialog has many options, but for our current purposes, we can leave most set-
tings at their default values. Simply make sure that the Actuals and Active checkboxes are 
checked, set the sample for the graph to “1960 1999”, then click on OK. 

The graphs show that as 
a one-step ahead predic-
tor, the model performs 
quite well, although the 
ability of the model to 
predict investment deteri-
orates during the second 
half of the sample.

Performing a 
Dynamic Solution

An alternative way of 
evaluating the model is to 
examine how the model 
performs when used to 
forecast many periods 
into the future. To do this, 
we must use our forecasts 
from previous periods, 
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not actual historical data, when assigning values to the lagged endogenous terms in our 
model. In EViews, we refer to such a forecast as a dynamic forecast.

To perform a dynamic forecast, we will the model with a slightly different set of options. 
Return to the model window and again click on the Solve button. In the model solution dia-
log, choose Dynamic solution in the Dynamics section of the dialog, and set the solution 
sample to “1985 1999”. 

Click on OK to solve 
the model. To exam-
ine the results, we 
will use Proc/Make 
Graph… exactly as 
above to display the 
actuals and the base-
line solutions for the 
endogenous vari-
ables. Make sure the 
sample is set to 
1985Q1 to 1999Q4 
then click on OK. 
The results illustrate 
how our model 
would have per-
formed if we had 
used it back in 1985 
to make a forecast 
for the economy over 
the next fifteen 
years, assuming that we had used the correct paths for the exogenous variables (in reality, 
we would not have known these values at the time the forecasts were generated). Not sur-
prisingly, the results show substantial deviations from the actual outcomes, although they 
do seem to follow the general trends in the data.

Forecasting

Once we are satisfied with the performance of our model against historical data, we can use 
the model to forecast future values of our endogenous variables. The first step in producing 
such a forecast is to decide on values for our exogenous variables during the forecast period. 
These may be based on our best guess as to what will actually happen, or they may be sim-
ply one particular possibility that we are interested in considering. Often we will be inter-
ested in constructing several different paths and then comparing the results.
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Filling in Exogenous Data

In our model, we must provide future values for our two exogenous variables: government 
expenditure (G), and the real money supply (M). For our example, we will try to construct a 
set of paths that broadly follow the trends of the historical data.

A quick look at our historical 
series for G suggests that the 
growth rate of G has been 
fairly constant since 1960, so 
that the log of G roughly fol-
lows a linear trend. Where G 
deviates from the trend, the 
deviations seem to follow a 
cyclical pattern.

As a simple model of this 
behavior, we can regress the 
log of G against a constant 
and a time trend, using an 
AR(4) error structure to 
model the cyclical deviations. 
This gives the following equation, which we save in the workfile as EQG:

log(g) = 6.252335363 + 0.004716422189*@trend + 
[ar(1)=1.169491542,ar(2)=0.1986105964,ar(3)=0.239913126,ar(4)=
-0.2453607091]

To produce a set of future values for G, we can use this equation to perform a dynamic fore-
cast for G from 2000Q1 to 2005Q4, saving the results back into G itself; see Chapter 23. 
“Forecasting from an Equation,” on page 147 for details. Later we will show you how to 
instruct the model to use the data in a different series, say G_1, in place of the data in G 
(“Using Scenarios for Alternate Assumptions” on page 797), so that you may preserve the 
original state of the series G.
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The historical path of the real M1 
money supply, M, is quite differ-
ent from G, showing spurts of 
growth followed by periods of 
stability. For now, we will assume 
that the real money supply simply 
remains at its last observed his-
torical value over the entire fore-
cast period.

We can use an EViews series 
statement to fill in this path. The 
following lines will fill the series 
M from 2000Q1 to the last obser-
vation in the sample with the last 
observed historical value for M:

smpl 2000q1 @last

series m = m(-1)

smpl @all

We now have a set of possible values for our exogenous variables over the forecast period.

Producing Endogenous Forecasts

To produce forecasts for our endogenous variables, we return to the model window, click on 
Solve, choose Dynamic Solution, set the forecast sample for 2000Q1 to 2005Q4, and then 
click on OK. The Solution Messages screen should appear, indicating that the model was 
successfully solved.

To examine the results in a graph, we again use Proc/Make Graph… from the variables 
view, select Endogenous variables in the Model variables section, then set the sample to 
1995Q1 to 2005Q4 (so that we include five years of historical data). We will only display the 
baseline results so uncheck the Actuals box, then click on OK to produce the graphs.

After adding a line in 1999Q4 to separate historical and actual results, we get a graph show-
ing the results:
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We observe 
strange behavior 
in the results. At 
the beginning of 
the forecast 
period, we see a 
heavy dip in 
investment, GDP, 
and interest 
rates. This is fol-
lowed by a series 
of oscillations in 
these series with 
a period of about 
a year, which die 
out slowly during 
the forecast 
period. This is 
not a particularly 
convincing forecast.

There is little in the paths of our exogenous variables or the history of our endogenous vari-
ables that would lead to this sharp dip, suggesting that the problem may lie with the residu-
als of our equations. Our investment equation is the most likely candidate, as it has a large, 
persistent positive residual near the end of the historical data (see figure below). This resid-
ual will be set to zero over the forecast period when solving the model, which might be the 
cause of the sudden drop in investment at the beginning of the forecast.
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Using Add Factors to Model Equation Residuals

One way of dealing with this prob-
lem would be to change the specifi-
cation of the investment equation. 
The simplest modification would 
be to add an autoregressive compo-
nent to the equation, which would 
help reduce the persistence of the 
error. A better alternative would be 
to try to modify the variables in the 
equation so that the equation can 
provide some explanation for the 
sharp rise in investment during the 
1990s.

An alternative approach to the 
problem is to leave the equation as 
it is, but to include an add factor in the equation so that we can model the path of the resid-
ual by hand. To include the add factor, we switch to the equation view of the model, double 
click on the investment equation, EQI, select the Add factors tab. Under Factor type, choose 
Equation intercept (residual shift). A prompt will appear asking if we would like to create 
the add factor series (if the series I_A does not already exist in the workfile). Click on OK to 
create the series. When you return to the variable view, you should see that a new variable, 
I_A, has been added to the list of variables in the model.

Using the add factor, we can specify any path we choose for the residual of the investment 
equation during the forecast period. By examining the Actual/Fitted/Residual Graph view 
from the equation object, we see that near the end of the historical data, the residual 
appears to be hovering around a value of about 160. We will assume that this value holds 
throughout the forecast period. We can set the add factor using a few simple EViews com-
mands:

smpl 2000q1 @last

i_a = 160

smpl @all

With the add factor in place, we can follow exactly the same procedure that we followed 
above to produce a new set of solutions for the model and a new graph for the results. 
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Including the add 
factor in the model 
has made the 
results far more 
appealing. The sud-
den dip in the first 
period of the fore-
cast that we saw 
above has been 
removed. The oscil-
lations are still 
apparent, but are 
much less pro-
nounced.

Performing a 
Stochastic 
Simulation

So far, we have 
been working under the assumption that our stochastic equations hold exactly over the fore-
cast period. In reality, we would expect to see the same sort of errors occurring in the future 
as we have seen in history. We have also been ignoring the fact that some of the coefficients 
in our equations are estimated, rather than fixed at known values. We may like to reflect this 
uncertainty about our coefficients in some way in the results from our model.

We can incorporate these features into our EViews model using stochastic simulation.

Up until now, we have thought of our model as forecasting a single point for each of our 
endogenous variables at each observation. As soon as we add uncertainty to the model, we 
should think instead of our model as predicting a whole distribution of outcomes for each 
variable at each observation. Our goal is to summarize these distributions using appropriate 
statistics.

If the model is linear (as in our example) and the errors are normal, then the endogenous 
variables will follow a normal distribution, and the mean and standard deviation of each 
distribution should be sufficient to describe the distribution completely. In this case, the 
mean will actually be equal to the deterministic solution to the model. If the model is not 
linear, then the distributions of the endogenous variables need not be normal. In this case, 
the quantiles of the distribution may be more informative than the first two moments, since 
the distributions may have tails which are very different from the normal case. In a non-lin-
ear model, the mean of the distribution need not match up to the deterministic solution of 
the model.
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EViews makes it easy to calculate statistics to describe the distributions of your endogenous 
variables in an uncertain environment. To simulate the distributions, the model object uses 
a Monte Carlo approach, where the model is solved many times with pseudo-random num-
bers substituted for the unknown errors at each repetition. This method provides only 
approximate results. However, as the number of repetitions is increased, we would expect 
the results to approach their true values.

To return to our simple macroeconomic model, we can use a stochastic simulation to pro-
vide some measure of the uncertainty in our results by adding error bounds to our predic-
tions. From the model window, click on the Solve button. When the model solution dialog 
appears, choose Stochastic for the simulation type and choose Dynamic solution for the 
sample “2000 2005”. In the Solution scenarios & output box on the right-hand side of the 
dialog, make sure that the Std. Dev. checkbox in the Active section is checked. Click on OK 
to begin the simulation.

Status messages will appear to indicate progress of the simulation. When the simulation is 
complete select Proc/Make Graph… to display the results. As before, we will set the Model 
variables to Endogenous variables and the sample to “1995 2005”. In addition, you should 
choose Mean +- 2 standard deviations in the Solution Series box, check the Actuals and 
Active scenario boxes, and set the latter to Baseline. Click on OK to produce the graph.

The error bounds in 
the resulting output 
graph show that we 
should be reluctant 
to place too much 
weight on the point 
forecasts of our 
model, since the 
bounds are quite 
wide on several of 
the variables. Much 
of the uncertainty is 
probably due to the 
large residual in the 
investment equa-
tion, which is creat-
ing a lot of variation 
in investment and 
interest rates in the 
stochastic simulation.

 



An Example Model—797
Using Scenarios for Alternate Assumptions

Another exercise we might like to consider when working with our model is to examine how 
the model behaves under alternative assumptions with respect to the exogenous variables. 
One approach to this would be to directly edit the exogenous series so that they contain the 
new values, and then resolve the model, overwriting any existing results. The problem with 
this approach is that it makes it awkward to manage the data and to compare the different 
sets of outcomes.

EViews provides a better way of carrying out exercises such as this through the use of model 
scenarios. Using a model scenario, you can override a subset of the exogenous variables in a 
model to give them new values, while using the values stored in the actual series for the 
remainder of the variables. When you solve for a scenario, the values of the endogenous 
variables are assigned into workfile series with an extension specific to that scenario, mak-
ing it easy to keep multiple solutions for the model within a single workfile.

To create a scenario, we begin 
by selecting View/Scenarios… 
from the model object menus. 
The Scenario Specification 
dialog will appear with a list of 
the scenarios currently defined 
in the model. You can use this 
dialog to select which scenario 
is currently active, or to create, 
rename, copy, and delete sce-
narios.

There are two special scenarios 
that are always present in the 
model: Actuals and Baseline. 
These two scenarios are special 
in that they cannot contain any overridden variables. The two scenarios differ in that the 
“Actuals” scenario writes its solution values directly into the workfile series with the same 
names as the endogenous variables, while the “Baseline” scenario writes its solution values 
back into workfile series with the names appended by the extension “_0”.

To add a new scenario to the model, simply click on the button labeled Create New Sce-
nario. A new scenario will be created with the default name “Scenario 1”. Once we have cre-
ated the scenario, we can modify the scenario from the baseline settings by overriding one 
of our exogenous variables. To add an override for the series M, first make certain that “Sce-
nario 1” is active (highlighted in the Scenario Specification dialog) then click on the Over-
rides tab and enter “M” in the dialog. Click on OK to accept your changes.
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Alternately, after exiting the Scenario Specification dialog, you may View/Variables to 
return to the variable window of the model, click on the variable M, use the right mouse 
button to call up the Properties dialog for the variable, and then in the Scenario box, click 
on the checkbox for Use override series in scenario. A message will appear asking if you 
would like to create the new series. Click on Yes to create the series, then OK to return to the 
variable window.

In the variable window, the variable name “M” should now appear in red, indicating that it 
has been overridden in the active scenario. This means that the variable M will now be 
bound to the series M_1 instead of the series M when solving the model using “Scenario 1”. 

(You may use the Aliasing tab to change the extension from “_1”. Note also that depending 
on how you created the override, you may still need to create the series M_1 in your workfile 
by copying the values of M.)

For example, in our previous forecast for M, we assumed that the real money supply would 
be kept at a constant level during the forecast period. For our alternative scenario, we are 
going to assume that the real money supply is contracted sharply at the beginning of the 
forecast period, and held at this lower value throughout the forecast. We can set the new 
values using a few simple commands:

smpl 2000q1 2005q4

series m_1 = 900

smpl @all

As before, we can solve the model by clicking on the Solve button. Restore the Simulation 
type to deterministic, make sure that “Scenario 1” is the active scenario, and “Baseline” is 
the alternate scenario, and that Solve for Alternate along with Active is checked. Set the 
solution sample to “2000 2005”. Click on OK to solve.

Once the solution is complete, we can use Proc/Make Graph… to display the results follow-
ing the same procedure as above. First, set the Model variables selection to display the 
Endogenous variables. Next, set the Solution series list box to the setting Deterministic 
solutions, then check both the Active and Compare solution check boxes, making sure that 
the active scenario is set to “Scenario 1”, and the comparison scenario is set to “Baseline”. 
Set the sample to 1995Q1 to 2005Q4, then click on OK. The following graph should be dis-
played:
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The simulation results 
suggest that the cut in 
the money supply 
causes a substantial 
increase in interest 
rates, which creates a 
small reduction in 
investment and a rela-
tively minor drop in 
income and consump-
tion. Overall, the pre-
dicted effects of 
changes in the money 
supply on the real 
economy are relatively 
minor in this model.

This concludes the dis-
cussion of our example 
model. The remainder 
of this chapter pro-
vides detailed information about working with particular features of the EViews model 
object.

Building a Model

Creating a Model

The first step in working with a model is to create the model object itself. There are several 
different ways of creating a model:

• You can create an empty model by using Object/New Object… and then choosing 
Model, or by performing the same operation using the right mouse button menu from 
inside the workfile window.

• You can select a list of estimation objects in the workfile window (equations, VARs, 
systems), and then select Open as Model from the right mouse button menu. This 
item will create a model which contains the equations from the selected objects as 
links.

• You can use the Make model procedure from an estimation object to create a model 
containing the equation or equations in that object.

 



800—Chapter 42. Models
Adding Equations to the Model

The equations in a model can be classified into two types: linked equations and inline equa-
tions. Linked equations are equations that import their specification from other objects in 
the workfile. Inline equations are contained inside the model as text.

There are a number of ways to add equations to your model:

• To add a linked equation: from the workfile window, select the object which contains 
the equation, system, var, or equations you would like to add to the model, then copy-
and-paste or drag-and-drop the object into the model equation view window.

• To add an equation using text: select Insert… from the right 
mouse button menu. In the text box titled: Enter one or more 
lines…, type in one or more equations in standard EViews for-
mat. You can also add linked equations from this dialog by typing 
a colon followed by the name of the object you would like to link 
to, for example “:EQ1”, because this is the text form of a linked 
object.

In an EViews model, the first variable that appears in an equation will be considered the 
endogenous variable for that equation. Since each endogenous variable can be associated 
with only one equation, you may need to rewrite your equations to ensure that each equa-
tion begins with a different variable. For example, say we have an equation in the model:

x / y = z

EViews will associate the equation with the variable X. If we would like the equation to be 
associated with the variable Y, we would have to rewrite the equation: 

1 / y * x = z

Note that EViews has the ability to handle simple expressions involving the endogenous 
variable. You may use functions like LOG, D, and DLOG on the left-hand side of your equa-
tion. EViews will normalize the equation into explicit form if the Gauss-Seidel method is 
selected for solving the model.

Removing Equations from the Model

To remove equations from the model, simply select the equations using the mouse in Equa-
tion view, then use Delete from the right mouse button menu to remove the equations.

Both adding and removing equations from the model will change which variables are con-
sidered endogenous to the model.
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Updating Links in the Model

If a model contains linked equations, changes to the specification of the equations made 
outside the model can cause the equations contained in the model to become out of date. 
You can incorporate these changes in the model by using Proc/Link/Update All Links. 
Alternatively, you can update just a single equation using the Proc/Link/Update Link item 
from the right mouse button menu. Links are also updated when a workfile is reloaded from 
disk.

Sometimes, you may want to sever equations in the model from their linked objects. For 
example, you may wish to see the entire model in text form, with all equations written in 
place. To do this, you can use the Proc/Link/Break All Links procedure to convert all 
linked equations in the model into inline text. You can convert just a single equation by 
selecting the equation, then using Break Link from the right mouse button menu.

When a link is broken, the equation is written in text form with the unknown coefficients 
replaced by their point estimates. Any information relating to uncertainty of the coefficients 
will be lost. This will have no effect on deterministic solutions to the model, but may alter 
the results of stochastic simulations if the Include coefficient uncertainty option has been 
selected.

Working with the Model Structure

As with other objects in EViews, we can look at the information contained in the model 
object in several ways. Since a model is a set of equations that describe the relationship 
between a set of variables, the two primary views of a model are the equation view and the 
variable view. EViews also provides two additional views of the structure of the model: the 
block view and the text view.

Equation View

The equation view is used for displaying, selecting, and modifying the equations contained 
in the model. An example of the equation view can be seen on page 787.

Each line of the window is used to represent either a linked object or an inline text equation. 
Linked objects will appear similarly to how they do in the workfile, with an icon represent-
ing their type, followed by the name of the object. Even if the linked object contains many 
equations, it will use only one line in the view. Inline equations will appear with a “TXT” 
icon, followed by the beginning of the equation text in quotation marks.

The remainder of the line contains the equation number, followed by a symbolic representa-
tion of the equation, indicating which variables appear in the equation.

Any errors in the model will appear as red lines containing an error message describing the 
cause of the problem.



802—Chapter 42. Models
You can open any linked objects directly from the equation view. Simply select the line rep-
resenting the object using the mouse, then choose Open Link from the right mouse button 
menu.

The contents of a line can be examined in more detail using the equation properties dialog. 
Simply select the line with the mouse, then choose Properties… from the right mouse but-
ton menu. Alternatively, simply double click on the object to call up the dialog.

For a link to a single equation, 
the dialog shows the func-
tional form of the equation, 
the values of any estimated 
coefficients, and the standard 
error of the equation residual 
from the estimation. If the link 
is to an object containing 
many equations, you can 
move between the different 
equations imported from the 
object using the Endogenous 
list box at the top of the dia-
log. For an inline equation, the 
dialog simply shows the text 
of the equation.

The Edit Equation or Link Specification button allows you to edit the text of an inline 
equation or to modify a link to point to an object with a different name. A link is represented 
in text form as a colon followed by the name of the object. Note that you cannot modify the 
specification of a linked object from within the model object, you must work directly with 
the linked object itself.

In the bottom right of the dialog, there are a set of fields that allow you to set the stochastic 
properties of the residual of the equation. If you are only performing deterministic simula-
tions, then these settings will not affect your results in any way. If you are performing sto-
chastic simulations, then these settings are used in conjunction with the solution options to 
determine the size of the random innovations applied to this equation.

The Stochastic with S.D. option for Equation type lets you set a standard deviation for any 
random innovations applied to the equation. If the standard deviation field is blank or is set 
to “NA”, then the standard deviation will be estimated from the historical data. The Identity 
option specifies that the selected equation is an identity, and should hold without error even 
in a stochastic simulation. See “Stochastic Options” on page 824 below for further details.
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The equation properties dialog also gives you access to the property dialogs for the endoge-
nous variable and add factor associated with the equation. Simply click on the appropriate 
tab. These will be discussed in greater detail below.

In addition, the equation view offers search capability, allowing you to quickly locate and 
work with an equation of interest. You may access equation find access it either by clicking 
the Find button (on the far right of the button bar), or pressing CTRL-F to bring up the 
Model Find dialog: 

You may search for equations by name, by exogenous variable or by endogenous variable. 
For example if you have a linked equation called EQ01, you can type “Eq01” in the Find edit 
field, click on Find Next, and EViews will select that equation in the equation view. Simi-
larly you can type in GDP, and EViews will select the next equation (either linked or written 
as an inline expression in the model) that contains the variable GDP. 

The check boxes on the left allow you to modify which type of objects/variables to search. If 
we unselect Exogenous, and then search for GDP, EViews will find only equations which 
contain GDP as an endogenous variable.

Variable View

The variable view is used for adjusting options related to variables and for displaying and 
editing the series associated with the model (see the discussion in “Examining the Solution 
Results”  (p. 788)). The variable view lists all the variables contained in the model, with 
each line representing one variable. Each line begins with an icon classifying the variable as 
endogenous, exogenous or an add factor. This is followed by the name of the variable, the 
equation number associated with the variable, and the description of the variable. The 
description is read from the associated series in the workfile.

Note that the names and types of the variables in the model are determined fully by the 
equations of the model. The only way to add a variable or to change the type of a variable in 
the model is to modify the model equations.

You can adjust what is displayed in the variable view in a number of ways. By clicking on 
the Filter/Sort button just above the variable list, you can choose to display only variables 
that match a certain name pattern, or to display the variables in a particular order. For exam-
ple, sorting by type of variable makes the division into endogenous and exogenous variables 
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clearer, while sorting by override highlights which variables have been overridden in the 
currently active scenario.

The variable view also allows you to browse through the dependencies between variables in 
the model by clicking on the Dependencies button. Each equation in the model can be 
thought of as a set of links that connect other variables in the model to the endogenous vari-
able of the equation. Starting from any variable, we can travel up the links, showing all the 
endogenous variables that this variable directly feeds into, or we can travel down the links, 
showing all the variables upon which this variable directly depends. This may sometimes be 
useful when trying to find the cause of unexpected behavior. Note, however, that in a simul-
taneous model, every endogenous variable is indirectly connected to every other variable in 
the same block, so that it may be hard to understand the model as a whole by looking at any 
particular part.

You can quickly view or edit one or more of the series associated with a variable by double 
clicking on the variable. For several variables, simply select each of them with the mouse 
then double click inside the selected area.

Block Structure View

The block structure view of the model analyzes and displays any block structure in the 
dependencies of the model.

Block structure refers to whether the model can be split into a number of smaller parts, each 
of which can be solved for in sequence. For example, consider the system:

Because the variable Z does not appear in either of the first two equations, we can split this 
equation system into two blocks: a block containing the first two equations, and a block 
containing the third equation. We can use the first block to solve for the variables X and Y, 
then use the second block to solve for the variable Z. By using the block structure of the sys-
tem, we can reduce the number of variables we must solve for at any one time. This typi-
cally improves performance when calculating solutions.

Blocks can be classified further into recursive and simultaneous blocks. A recursive block is 
one which can be written so that each equation contains only variables whose values have 
already been determined. A recursive block can be solved by a single evaluation of all the 
equations in the block. A simultaneous block cannot be written in a way that removes feed-
back between the variables, so it must be solved as a simultaneous system. In our example 
above, the first block is simultaneous, since X and Y must be solved for jointly, while the 

block 1 x = y + 4

y = 2*x – 3

block 2 z = x + y
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second block is recursive, since Z depends only on X and Y, which have already been deter-
mined in solving the first block.

The block structure view displays the structure of the model, labeling each of the blocks as 
recursive or simultaneous. EViews uses this block structure whenever the model is solved. 
The block structure of a model may also be interesting in its own right, since reducing the 
system to a set of smaller blocks can make the dependencies in the system easier to under-
stand.

Text View

The text view of a model allows you to see the entire structure of the model in a single 
screen of text. This provides a quick way to input small models, or a way to edit larger mod-
els using copy-and-paste.

The text view consists of a series of lines. In a simple model, each line simply contains the 
text of one of the inline equations of the model. More complicated models may contain one 
of more of the following:

• A line beginning with a colon “:” represents a link to an external object. The colon 
must be followed by the name of an object in the workfile. Equations contained in the 
external object will be imported into the model whenever the model is opened, or 
when links are updated.

• A line beginning with “@ADD” specifies an add factor. The add factor command has 
the form: 

@add(v) endogenous_name add_name 

where endogenous_name is the name of the endogenous variable of the equation to 
which the add factor will be applied, and add_name is the name of the series. The 
option (v) is used to specify that the add factor should be applied to the endogenous 
variable. The default is to apply the add factor to the residual of the equation. See 
“Using Add Factors” on page 814 for details.

• A line beginning with “@INNOV”' specifies an innovation variance. The innovation 
variance has two forms. When applied to an endogenous variable it has the form: 

@innov endogenous_name number

where endogenous name is the name of the endogenous variable and number is the 
standard deviation of the innovation to be applied during stochastic simulation. When 
applied to an exogenous variable, it has the form: 

@innov exogenous_name number_or_series

where exogenous name is the name of the exogenous variable and number_or_series 
is either a number or the name of the series that contains the standard deviation to be 
applied to the variable during stochastic simulation. Note that when an equation in a 
model is linked to an external estimation object, the variance from the estimated 
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equation will be brought into the model automatically and does not require an 
@innov specification unless you would like to modify its value.

• The keyword “@TRACE”, followed by the names of the endogenous variables that 
you wish to trace, may be used to request model solution diagnostics. See “Diagnos-
tics” on page 828.

Users of early versions of EViews should note that two commands that were previously 
available, @assign and @exclude, are no longer part of the text form of the model. These 
commands have been removed because they now address options that apply only to specific 
model scenarios rather than to the model as a whole. When loading in models created by 
earlier versions of EViews, these commands will be converted automatically into scenario 
options in the new model object.

Print View

Print view (available from the PrintView button, or from View/Print View) offers a new 
way of looking at the underlying equations in your model. While similar to text view, print 
view offers display enhancements, but does not allow editing of the model. Selecting print 
view will bring up the Model Print View dialog:
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The dialog settings let you determine how you would like to view the equations. 

• Checking the Break links check box tells EViews to display linked equations as 
expressions rather than as linked objects. Note that this is only for display—the linked 
equations will remain linked in your model, but will be displayed as though they were 
broken.

• The Include identities, Include @innov statements, Include add-factors, and 
Include comments check boxes determine whether the respective model elements 
will be displayed in the view.

• Checking the Use Display names check box will replace all series names in the model 
with their display name. 

• The Number format dropdown allows you to specify the display format for coeffi-
cients in the equations. 

For example, the traditional text view of the model presented in “Text View,” on page 805 
may be compared to the print view which substitutes embedded equation and model defini-
tions and displays fewer significant digits:
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Dependency Graph View

This view provides a graphical representation of the relationships among the model's vari-
ables. The model is shown as a directed graph with nodes for each variable and edges 
between pairs of related variables. Edges follow the direction of information flow. For exam-
ple, in the below graph variable NOW depends on variable HILO (the equation for NOW 
includes HILO), resulting in a directed edge from HILO to NOW. Variables may be mutually 
dependent, in which case the edge between them will have arrowheads at both ends, e.g., 
variables BTE and XBTE. 

Computing the layout for the graph is computationally expensive and may take some time. If 
you select this view but wish to abort before the layout calculations are completed, hit the 
F1 key.
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The color of each edge summarizes the temporal (lag/lead) attributes of the dependency 
along a warm-cool spectrum:

Orange: Only lagged values are present.

Red: Lagged and contemporaneous values are present.

Black: Only contemporaneous values are present.

Blue: Lead and contemporaneous values are present.

Cyan: Only lead values are present.

If both lagged and lead values are present, the edge is shown in a either light or dark purple. 
If a lag or lead of length four or more is present, the edge is shown as a dotted line, e.g., the 
edge between variables BTE and XBTE.

The are several ways to adjust your view of the dependency graph and inspect additional 
information about the variables:

• Moving the mouse cursor over a node will highlight that node, all incident edges, and 
all adjacent nodes.

• Toggle hiding of a legend for edge colors.

• You may enlarge and shrink the graph using the mouse wheel (zoom in / zoom out) 
within a range of 1000% and 10% of the graph's natural size.
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• Left-click and hold allows you draw a zoom selection box. When you release the left 
mouse button the selected area will be enlarged and centered within the window.

• When the graph is larger than the size of the window, scroll bars will appear. In addi-
tion to clicking on the scroll bars, you can right-click and hold within the window to 
pan the graph.

• You may press the ESC key to resize the graph to fit within the window (subject to the 
aforementioned zoom limits).

• Single left-clicking on a node will show a tool tip containing more detailed informa-
tion about the associated variable's relationships.

• Double left-clicking on a node for an endogenous variable will open the properties 
dialog for that variable.

• Single right-clicking on the graph brings up a context menu. Through this menu you 
can:

Toggle hiding of exogenous variables in the graph.
Have EViews compute a different layout for the graph.
Export an image of the graph at the current zoom level.
Export a Graphviz DOT file for use with the GraphViz suite of open-source graph tools 

(not included or affiliated with EViews).

Specifying Scenarios

When working with a model, you will often want to compare model predictions under a 
variety of different assumptions regarding the paths of your exogenous variables, or with 
one or more of your equations excluded from the model. Model scenarios allow you to do 
this without overwriting previous data or changing the structure of your model.

The most important function of a scenario is to specify which series will be used to hold the 
data associated with a particular solution of the model. To distinguish the data associated 
with different scenarios, each scenario modifies the names of the model variables according 
to an aliasing rule. Typically, aliasing will involve adding an underline followed by a num-
ber, such as “_0” or “_1” to the variable names of the model. The data for each scenario will 
be contained in series in the workfile with the aliased names.

Model scenarios support the analysis of different assumptions for exogenous variables by 
allowing you to override a set of variables you would like to alter. Exogenous variables 
which are overridden will draw their values from series with names aliased for that sce-
nario, while exogenous variables which are not overridden will draw their values from 
series with the same name as the variable.

Scenarios also allow you to exclude one or more endogenous variables from the model. 
When an endogenous variable is excluded, the equation associated with that variable is 
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dropped from the model and the value of the variable is taken directly from the workfile 
series with the same name. Excluding an endogenous variable effectively treats the variable 
as an exogenous variable for the purposes of solving the model.

When excluding an endogenous variable, you can specify a sample range over which the 
variable should be excluded. One use of this is to handle the case where more recent histor-
ical data is available for some of your endogenous variables than others. By excluding the 
variables for which you have data, your forecast can use actual data where possible, and 
results from the model where data are not yet available.

Each model can contain many scenarios. You can view the scenarios associated with the 
current model by choosing View/Scenario Specification…as shown above on page 797.

There are two special scenarios associated with every model: actuals and baseline. These 
two scenarios have in common the special property that they cannot contain any overrides 
or excludes. They differ in that the actuals scenario writes the values for endogenous vari-
ables back into the series with the same name as the variables in the model, while the base-
line scenario modifies the names. When solving the model using actuals as your active 
scenario, you should be careful not to accidentally overwrite your historical data.

The baseline scenario gets its name from the fact that it provides the base case from which 
other scenarios are constructed. Scenarios differ from the baseline by having one or more 
variables overridden or excluded. By comparing the results from another scenario against 
those of the baseline case, we can separate out the movements in the endogenous variables 
that are due to the changes made in that particular scenario from movements which are 
present in the baseline itself.

The Select Scenario tab of the dialog allows you to select, create, copy, delete and rename 
the scenarios associated with the model. You may also apply the selected scenario to the 
baseline data, which involves copying the series associated with any overridden variables in 
the selected scenario on top of the baseline values. Applying a scenario to the baseline is a 
way of committing to the edited values of the selected scenario making them a permanent 
part of the baseline case.

The Scenario overrides tab provides a summary of variables which have been overridden in 
the selected scenario and equations which have been excluded. This is a useful way of see-
ing a complete list of all the changes which have been made to the scenario from the base-
line case.

The Aliasing tab allows you to examine the name aliasing rules associated with any sce-
nario. The page displays the complete set of aliases that will be applied to the different types 
of variables in the model.

Although the scenario dialog lets you see all the settings for a scenario in one place, you will 
probably alter most scenario settings directly from the variable view instead. For both exog-
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enous variables and add factors, you can select the variable from the variable view window, 
then use the right mouse button menu to call up the properties page for the variable. The 
override status of the variable can be adjusted using the Use override checkbox. Once a 
variable has been overridden, it will appear in red in the variable view.

The Description tab may be used to store notes describing the purpose of each scenario 
and, if desired, to include the description in the solution series. If the Export description to 
solution series check box is checked, any series that are generated during a solve under the 
scenario will have the scenario’s description added to their own description attribute.

Scenario Editing Tools

The Edit override right button menu item, available from the variables view of a model, lets 
you quickly exclude, override and edit endogenous and exogenous variables for the current 
scenario.

To simultaneously create an override for an exogenous variable and open it for editing, first 
select View/Variables to display the model in variables view, then select Edit override from 
the right mouse button menu. EViews will ask you to confirm that you wish to override the 
variable, and will then open an untitled group containing the original series and the newly 
created override series for the current scenario. Again the group is opened in compare mode 
(“Group Comparison Tools,” on page 551) to facilitate easy editing of the new series.
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Edit override may also be used for endogenous variables, in which case EViews will simul-
taneously exclude and override the variable for the current scenario.

You may quickly revert an overriden variable back to its original non-overriden values by 
using the Revert right button menu item.

Scenario List

The scenario list view of a model (available from View/Scenario View) displays a list of 
each of the model’s scenarios, along with their alias, overrides or excludes, and descriptions:



814—Chapter 42. Models
Using Add Factors

Normally, when a model is solved deterministically, the equations of the model are solved 
so that each of the equations of the model is exactly satisfied. When a model is solved sto-
chastically, random errors are added to each equation, but the random errors are still chosen 
so that their average value is zero.

If we have no information as to the errors in our stochastic equations that are likely to occur 
during the forecast period, then this behavior is appropriate. If, however, we have additional 
information as to the sort of errors that are likely during our forecast period, then we may 
incorporate that information into the model using add factors.

The most common use for add factors is to provide a smoother transition from historical 
data into the forecast period. Typically, add factors will be used to compensate for a poor fit 
of one or more equations of the model near the end of the historical data, when we suspect 
this will persist into the forecast period. Add factors provide an ad hoc way of trying to 
adjust the results of the model without respecifying or reestimating the equations of the 
model.

In reality, an add factor is just an extra exogenous variable which is included in the selected 
equation in a particular way. EViews allows an add factor to take one of two forms. If our 
equation has the form:

(42.3)

then we can provide an add factor for the equation intercept or residual by simply including 
the add factor at the end of the equation:

(42.4)

Alternatively, we may provide an add factor for the endogenous variable of the model by 
using the add factor as an offset:

(42.5)

where the sign of the add factor is reversed so that it acts in the same direction as for the 
previous case.

If the endogenous variable appears by itself on the left hand side of the equal sign, then the 
two types of add factor are equivalent. If the endogenous variable is contained in an expres-
sion, for example, a log transformation, then this is no longer the case. Although the two 
add factors will have a similar effect, they will be expressed in different units with the for-
mer in the units of the residual of the equation, and the latter in the units of the endogenous 
variable of the equation.

f yi  fi y x, 

f yi  fi y x,  a

f yi a–  fi y x, 
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There are two ways to include add factors. The easiest way is to go to the equation view of 
the model, then double click on the equation in which you would like to include an add fac-
tor. 

When the equation properties 
dialog appears, switch to the 
Add Factors tab. In the Factor 
type box, select whether you 
would like an intercept or an 
endogenous variable shift add 
factor. A message box will 
prompt for whether you 
would like to create a series in 
the workfile to hold the add 
factor values. Click on Yes to 
create the series.

The series will initially be 
filled with NAs. You can ini-
tialize the add factor using 
one of several methods by clicking on the Initialize Active Add Factor button. 

A dialog box will come up offering the fol-
lowing options:

• Zero: set the add factor to zero for 
every period.

• So that this equation has no residu-
als at actuals: set the values of the 
add factor so that the equation is 
exactly satisfied without error when 
the variables of the model are set to 
the values contained in the actual 
series (typically the historical data).

• So that this equation has no residu-
als at actives: set the values of the add factor so that the equation is exactly satisfied 
without error when the variables of the model are set to the values contained in the 
endogenous and exogenous series associated with the active scenario.

• So model solves the target variable to the values of the trajectory series: set the 
values of the add factor so that an endogenous variable of the model follows a partic-
ular target path when the model is solved.



816—Chapter 42. Models
You can also change the sample over which you would like the add factor to be initialized by 
modifying the Initialization sample box. Click on OK to accept the settings.

Once an add factor has been added to an equation, it will appear in the variable view of the 
model as an additional variable. If an add factor is present in any scenario, then it must be 
present in every scenario, although the values of the add factor can be overridden for a par-
ticular scenario in the same way as for an exogenous variable.

The second way to handle add factors is to assign, initialize or override them for all the 
equations in the model at the same time using the Proc/Add Factors menu from the model 
window. For example, to create a complete set of add factors that make the model solve to 
actual values over history, we can use Add Factors/Equation Assignment... to create add 
factors for every equation, then use Add Factors/Set Values... to set the add factors so that 
all the equations have no residuals at the actual values.

When solving a model with an add factor, any missing values in the add factor will be 
treated as zeros.

Locking the Model

Model locking allows you to disable changes to your model. To toggle model locking, simply 
select Protect/Unprotect model from the Proc menu. When you first lock the model, you 
will be prompted to enter a password (of at least 4 characters). To unlock a previously 
locked model, simply enter the previously entered password.

Once password protected, a number of features of the model are locked down. Notably, the 
text view of the model cannot be accessed, all existing scenarios become write-protected, 
equations and variables cannot be added/deleted or modified, links cannot be broken, and 
add-factors cannot be assigned or modified.

Note that the model may still be solved, new scenarios can still be created, modified, and 
deleted, and you may create an unprotected copy of the model.

It is important to note that once a model is password protected it may not be opened in ver-
sions of EViews prior to 9.5.

Solving the Model

Once the model specification is complete, you can solve the model. EViews can perform 
both deterministic and stochastic simulations.

A deterministic simulation consists of the following steps:

• The block structure of the model is analyzed.
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• The variables in the model are bound to series in the workfile, according to the over-
ride settings and name aliasing rules of the scenario that is being solved. If an endog-
enous variable is being tracked and a series does not already exist in the workfile, a 
new series will be created. If an endogenous variable is not being tracked, a tempo-
rary series will be created to hold the results.

• The equations of the model are solved for each observation in the solution sample, 
using an iterative algorithm to compute values for the endogenous variables.

• Any temporary series which were created are deleted.

• The results are rounded to their final values.

A stochastic simulation follows a similar sequence, with the following differences:

• When binding the variables, a temporary series is created for every endogenous vari-
able in the model. Additional series in the workfile are used to hold the statistics for 
the tracked endogenous variables. If bounds are being calculated, extra memory is 
allocated as working space for intermediate results.

• The model is solved repeatedly for different draws of the stochastic components of the 
model. If coefficient uncertainty is included in the model, then a new set of coeffi-
cients is drawn before each repetition (note that coefficient uncertainty is ignored in 
nonlinear equations, or linear equations specified with PDL terms). During the repeti-
tion, errors are generated for each observation in accordance with the residual uncer-
tainty and the exogenous variable uncertainty in the model. At the end of each 
repetition, the statistics for the tracked endogenous variables are updated to reflect 
the additional results.

• If a comparison is being performed with an alternate scenario, then the same set of 
random residuals and exogenous variable shocks are applied to both scenarios during 
each repetition. This is done so that the deviation between the two is based only on 
differences in the exogenous and excluded variables, not on differences in random 
errors.

Models Containing Future Values

So far, we have assumed that the structure of the model allows us to solve each period of the 
model in sequence. This will not be true in the case where the equations of the model con-
tain future (as well as past) values of the endogenous variables.

Consider a model where the equations have the form:

(42.6)

where  is the complete set of equations of the model,  is a vector of all the endogenous 
variables,  is a vector of all the exogenous variables, and the parentheses follow the usual 
EViews syntax to indicate leads and lags.

F y maxlag–   y 1–  y y 1   y maxlead  x, , , , , , ,  0

F y
x
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Since solving the model for any particular period requires both past and future values of the 
endogenous variables, it is not possible to solve the model recursively in one pass. Instead, 
the equations from all the periods across which the model will be solved must be treated as 
a simultaneous system, and we will require terminal as well as initial conditions. For exam-
ple, in the case with a single lead and a single lag and a sample that runs from  to , we 
must effectively solve the entire stacked system:

(42.7)

where the unknowns are , ,...  the initial conditions are given by  and the 
terminal conditions are used to determine . Note that if the leads or lags extend more 
than one period, we will require multiple periods of initial or terminal conditions.

To solve models such as these, EViews applies a Gauss-Seidel iterative scheme across all the 
observations of the sample. Roughly speaking, this involves looping repeatedly through 
every observation in the forecast sample, at each observation solving the model while treat-
ing the past and future values as fixed, where the loop is repeated until changes in the val-
ues of the endogenous variables between successive iterations become less than a specified 
tolerance.

This method is often referred to as the Fair-Taylor method, although the Fair-Taylor algo-
rithm includes a particular handling of terminal conditions (the extended path method) that 
is slightly different from the options provided by EViews. When solving the model, EViews 
allows the user to specify fixed end conditions by providing values for the endogenous vari-
ables beyond the end of the forecast sample, or to determine the terminal conditions endog-
enously by adding extra equations for the terminal periods which impose either a constant 
level, a linear trend, or a constant growth rate on the endogenous variables for values 
beyond the end of the forecast period.

Although this method is not guaranteed to converge, failure to converge is often a sign of the 
instability which results when the influence of the past or the future on the present does not 
die out as the length of time considered is increased. Such instability is often undesirable for 
other reasons and may indicate a poorly specified model.

Model Consistent Expectations

One source of models in which future values of endogenous variables may appear in equa-
tions are models of economic behavior in which expectations of future periods influence the 

s t

F ys 1– ys ys 1 x, , ,  0

F ys ys 1 ys 2 x, , ,  0

F ys 1 ys 2 ys 3 x, , ,  0


F yt 2– yt 1– yt x, , ,  0

F yt 1– yt yt 1 x, , ,  0

ys ys 1 yt ys 1–

yt 1
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decisions made in the current period. For example, when negotiating long term wage con-
tracts, employers and employees must consider expected changes in prices over the duration 
of the contract. Similarly, when choosing to hold a security denominated in foreign cur-
rency, an individual must consider how the exchange rate is expected to change over the 
time that they hold the security.

Although the way that individuals form expectations is obviously complex, if the model 
being considered accurately captures the structure of the problem, we might expect the 
expectations of individuals to be broadly consistent with the outcomes predicted by the 
model. In the absence of any other information, we may choose to make this relationship 
hold exactly. Expectations of this form are often referred to as model consistent expectations.

If we assume that there is no uncertainty in the model, imposing model consistent expecta-
tions simply involves replacing any expectations that appear in the model with the future 
values predicted by the model. In EViews, we can simply write out the expectation terms 
that appear in equations using the lead operator. A deterministic simulation of the model 
can then be run using EViews ability to solve models with equations which contain future 
values of the endogenous variables.

When we add uncertainty to the model, the situation becomes more complex. In this case, 
instead of the expectations of agents being set equal to the single deterministic outcome pre-
dicted by the model, the expectations of agents should be calculated based on the entire dis-
tribution of stochastic outcomes predicted by the model. To run a stochastic simulation of a 
model involving expectations would require a procedure like the following:

1. Take an initial guess as to a path for expectations over the forecast period (for exam-
ple, by calculating a solution for the expectations in the deterministic case)

2. Run a large number of stochastic repetitions of the model holding these expectations 
constant, calculating the mean paths of the endogenous variables over the entire set 
of outcomes.

3. Test if the mean paths of the endogenous variables are equal to the current guess of 
expectations within some tolerance. If not, replace the current guess of expectations 
with the mean of the endogenous variables obtained in step 2, and return to step 2.

At present, EViews does not have built in functionality for automatically carrying out this 
procedure. Because of this, EViews will not perform stochastic simulations if your model 
contains equations involving future values of endogenous variables. We hope to add this 
functionality to future revisions of EViews.

Models Containing MA Terms

Solving models with equations that contain MA terms requires that we first obtain fitted val-
ues for the equation innovations in the pre-forecast sample period. For example, to perform 
dynamic forecasting of the values of , beginning in period  using a simple MA( ):y S q



820—Chapter 42. Models
, (42.8)

you require values for the pre-forecast sample innovations, . Similarly, 
constructing a static forecast for a given period will require estimates of the  lagged inno-
vations at every period in the forecast sample.

Initialization Methods

If your equation was estimated with backcasting turned on, EViews will, by default, perform 
backcasting to obtain initial values for model solution. If your equation is estimated with 
backcasting turned off, or if the forecast sample precedes the estimation sample, the initial 
values will be set to zero.

You may examine the equation specification in the model to determine whether backcasting 
was employed in estimation. The specification will include either the expression “BACK-
CAST=”, or “INITMA=” followed by an observation identifier for the first period of the 
estimation sample. As one might guess, “BACKCAST=” is used to indicate the use of back-
casting in estimation; alternately, “INITMA=” indicates that the pre-sample values were ini-
tialized with zeros. 

If neither “BACKCAST=” nor 
“INITMA=” is specified, the 
model will error when solved 
since EViews will be unable 
to obtain initial values for the 
forecast.

Here we see that the MA(1) 
equation for CDRATE in our 
model was estimated using 
“1 69” as the backcast estima-
tion sample.

Backcast Methods

EViews offers alternate 
approaches for obtaining 
backcast estimates of the innovations when “BACKCAST=” is specified.

The estimation period method uses data for the estimation sample to compute backcast esti-
mates. The post-backcast sample innovations are initialized to zero and backward recursion 
is employed to obtain estimates of the pre-estimation sample innovations. A forward recur-
sion is then run to the end of the estimation sample and the resulting values are used as esti-
mates of the innovations.

ŷS f̂1eS 1–  f̂qeS q– 

eS 1– eS 2–  eS q–, , ,
q
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The alternative forecast available method offers different approaches for dynamic and static 
forecasting:

• For dynamic forecasting, EViews applies the backcasting procedure using data from 
the beginning of the estimation sample to either the beginning of the forecast period, 
or the end of the estimation sample, whichever comes first.

• For static forecasting, the backcasting procedure uses data from the beginning of the 
estimation sample to the end of the forecast period.

As before, the post-backcast sample innovations are set to zero and backward recursion is 
used to obtain estimates of the pre-estimation sample innovations, and forward recursion is 
used to obtain innovation estimates. Note that the forecast available method does not guar-
antee that the pre-sample forecast innovations match those employed in estimation.

See “Forecasting with MA Errors” on page 163 for additional discussion.

The backcast initialization method employed by EViews for an equation in model solution 
depends on a variety of factors:

• For equations estimated using EViews 6 and later, the initialization method is deter-
mined from the equation specification. If the equation was estimated using estimation 
sample backcasting, its specification will contain “BACKCAST=” and “ESTSMPL=” 
statements instructing EViews to backcast using the specified sample. 

The example dialog above shows an equation estimated using the estimation sample 
backcasting method.

• For equations estimated prior to EViews 6, the model will only contain the “BACK-
CAST=” statement so that by default, the equation will be initialized using forecast 
available.

• In both cases, you may override the default settings by changing the specification of 
the equation in the model. To ensure that the equation backcasts using the forecast 
available method, simply delete the “ESTSMPL=” portion of the equation specifica-
tion. To force the estimation sample method for model solution, you may add an 
“ESTSMPL=” statement to the equation specification.

Note that models containing post-EViews 6 equations solved in previous versions of EViews 
will always backcast using the forecast available method.

Basic Options

To begin solving a model, you can use Proc/Solve Model... or you can simply click on the 
Solve button on the model toolbar. EViews will display a tabbed dialog containing the solu-
tion options.
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The basic options page contains 
the most important options for 
the simulation. While the 
options on other pages can 
often be left at their default val-
ues, the options on this page 
will need to be set appropri-
ately for the task you are trying 
to perform.

At the top left, the Simulation 
type box allows you to deter-
mine whether the model should 
be simulated deterministically 
or stochastically. In a determin-
istic simulation, all equations in 
the model are solved so that 
they hold without error during the simulation period, all coefficients are held fixed at their 
point estimates, and all exogenous variables are held constant. This results in a single path 
for the endogenous variables which can be evaluated by solving the model once.

In a stochastic simulation, the equations of the model are solved so that they have residuals 
which match to randomly drawn errors, and, optionally, the coefficients and exogenous vari-
ables of the model are also varied randomly (see “Stochastic Options” on page 824 for 
details). For stochastic simulation, the model solution generates a distribution of outcomes 
for the endogenous variables in every period. We approximate the distribution by solving 
the model many times using different draws for the random components in the model then 
calculating statistics over all the different outcomes. 

Typically, you will first analyze a model using deterministic simulation, and then later pro-
ceed to stochastic simulation to get an idea of the sensitivity of the results to various sorts of 
error. You should generally make sure that the model can be solved deterministically and is 
behaving as expected before trying a stochastic simulation, since stochastic simulation can 
be very time consuming.

The next option is the Dynamics box. This option determines how EViews uses historical 
data for the endogenous variables when solving the model:

• When Dynamic solution is chosen, only values of the endogenous variables from 
before the solution sample are used when forming the forecast. Lagged endogenous 
variables and ARMA terms in the model are calculated using the solutions calculated 
in previous periods, not from actual historical values. A dynamic solution is typically 
the correct method to use when forecasting values several periods into the future (a 
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multi-step forecast), or evaluating how a multi-step forecast would have performed 
historically.

• When Static solution is chosen, values of the endogenous variables up to the previ-
ous period are used each time the model is solved. Lagged endogenous variables and 
ARMA terms in the model are based on actual values of the endogenous variables. A 
static solution is typically used to produce a set of one-step ahead forecasts over the 
historical data so as to examine the historical fit of the model. A static solution cannot 
be used to predict more than one observation into the future.

• When the Fit option is selected, values of the endogenous variables for the current 
period are used when the model is solved. All endogenous variables except the one 
variable for the equation being evaluated are replaced by their actual values. The fit 
option can be used to examine the fit of each of the equations in the model when con-
sidered separately, ignoring their interdependence in the model. The fit option can 
only be used for periods when historical values are available for all the endogenous 
variables.

In addition to these options, the Structural checkbox gives you the option of ignoring any 
ARMA specifications that appear in the equations of the model.

At the bottom left of the dialog is a box for the solution sample. The solution sample is the 
set of observations over which the model will be solved. Unlike in some other EViews proce-
dures, the solution sample will not be contracted automatically to exclude missing data. For 
the solution to produce results, data must be available for all exogenous variables over the 
course of the solution sample. If you are carrying out a static solution or a fit, data must also 
be available for all endogenous variables during the solution sample. If you are performing a 
dynamic solution, only pre-sample values are needed to initialize any lagged endogenous or 
ARMA terms in the model.

On the right-hand side of the dialog are controls for selecting which scenarios we would like 
to solve. By clicking on one of the Edit Scenario Options buttons, you can quickly examine 
the settings of the selected scenario. The option Solve for Alternate along with Active 
should be used mainly in a stochastic setting, where the two scenarios must be solved 
together to ensure that the same set of random shocks is used in both cases. Whenever two 
models are solved together stochastically, a set of series will also be created containing the 
deviations between the scenarios (this is necessary because in a non-linear model, the dif-
ference of the means need not equal the mean of the differences).

When stochastic simulation has been selected, additional checkboxes are available for 
selecting which statistics you would like to calculate for your tracked endogenous variables. 
A series for the mean will always be calculated. You can also optionally collect series for the 
standard deviation or quantile bounds. Quantile bounds require considerable working mem-
ory, but are useful if you suspect that your endogenous variables may have skewed distribu-
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tions or fat tails. If standard deviations or quantile bounds are chosen for either the active or 
alternate scenario, they will also be calculated for the deviations series.

Stochastic Options

The stochastic options page contains settings used during stochastic simulation. In many 
cases, you can leave these options at their default settings.

The Repetitions box, in the top 
left corner of the dialog, allows 
you to set the number of repeti-
tions that will be performed 
during the stochastic simula-
tion. A higher number of repeti-
tions will reduce the sampling 
variation in the statistics being 
calculated, but will take more 
time. The default value of one 
thousand repetitions is generally 
adequate to get a good idea of 
the underlying values, although 
there may still be some random 
variation visible between adja-
cent observations.

Also in the repetitions box is a field labeled % Failed reps before halting. Failed repetitions 
typically result from random errors driving the model into a region in which it is not 
defined, for example where the model is forced to take the log or square root of a negative 
number. When a repetition fails, EViews will discard any partial results from that repetition, 
then check whether the total number of failures exceeds the threshold set in the % Failed 
reps before halting box. The simulation continues until either this threshold is exceeded, or 
the target number of successful repetitions is met.

Note, however, that even one failed repetition indicates that care should be taken when 
interpreting the simulation results, since it indicates that the model is ill-defined for some 
possible draws of the random components. Simply discarding these extreme values may cre-
ate misleading results, particularly when the tails of the distribution are used to measure the 
error bounds of the system.
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The repetitions box also contains a field with the heading: Enter 
a name to save successful repetitions in a new WF page. If a 
name is provided, the values of the tracked endogenous variables 
for each successful repetition of the stochastic simulation will be 
copied into a new workfile page with the specified name. The 
new page is created with a panel structure where the values of 
the endogenous variables for individual repetitions are stacked 
on top of each other as cross sections within the panel. If the 
checkbox Delete any existing page with the same name is checked, any existing page with 
the specified page name will be deleted. If the checkbox is not checked, a number will be 
appended to the name of the new page so that it does not conflict with any existing page 
names.

The Confidence interval box sets options for how confidence 
intervals should be calculated, assuming they have been 
selected. The Calc from entire sample option uses the sample 
quantile as an estimate of the quantile of the underlying distribu-
tion. This involves storing complete tails for the observed out-
comes. This can be very memory intensive since the memory used increases linearly in the 
number of repetitions. The Reduced memory approx option uses an updating algorithm 
due to Jain and Chlamtac (1985). This requires much less memory overall, and the amount 
used is independent of the number of repetitions. The updating algorithm should provide a 
reasonable estimate of the tails of the underlying distribution as long as the number of repe-
titions is not too small.

The Interval size (2 sided) box lets you select the size of the confidence interval given by 
the upper and lower bounds. The default size of 0.95 provides a 95% confidence interval 
with a weight of 2.5% in each tail. If, instead, you would like to calculate the interquartile 
range for the simulation results, you should input 0.5 to obtain a confidence interval with 
bounds at the 25% and 75% quantiles.

The Innovation generation box on the right side of the dialog determines how the innova-
tions to stochastic equations will be generated. There are two basic methods available for 
generating the innovations. If Method is set to Normal Random Numbers the innovations 
will be generated by drawing a set of random numbers from the standard normal distribu-
tion. If Method is set to Bootstrap the innovations will be generated by drawing randomly 
(with replacement) from the set of actual innovations observed within a specified sample. 
Using bootstrapped innovations may be more appropriate than normal random numbers in 
cases where the equation innovations do not seem to follow a normal distribution, for exam-
ple if the innovations appear asymmetric or appear to contain more outlying values than a 
normal distribution would suggest. Note, however, that a set of bootstrapped innovations 
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drawn from a small sample may provide only a rough approximation to the true underlying 
distribution of the innovations.

When normal random numbers are used, a set of indepen-
dent random numbers are drawn from the standard normal 
distribution at each time period, then these numbers are 
scaled to match the desired variance-covariance structure of 
the system. In the general case, this involves multiplying the 
vector of random numbers by the Cholesky factor of the 
covariance matrix. If the matrix is diagonal, this reduces to 
multiplying each random number by its desired standard 
deviation.

The Scale variances to match equation specified standard deviations box lets you deter-
mine how the variances of the residuals in the equations are determined. If the box is not 
checked, the variances are calculated from the model equation residuals. If the box is 
checked, then any equation that contains a specified standard deviation will use that num-
ber instead (see page 802 for details on how to specify a standard deviation from the equa-
tion properties page). Note that the sample used for estimation in a linked equation may 
differ from the sample used when estimating the variances of the model residuals.

The Diagonal covariance matrix box lets you determine how the off diagonal elements of 
the covariance matrix are determined. If the box is checked, the off diagonal elements are 
set to zero. If the box is not checked, the off diagonal elements are set so that the correlation 
of the random draws matches the correlation of the observed equation residuals. If the vari-
ances are being scaled, this will involve rescaling the estimated covariances so that the cor-
relations are maintained.

The Estimation sample box allows you to specify the set of observations that will be used 
when estimating the variance-covariance matrix of the model residuals. By default, EViews 
will use the default workfile sample.

The Multiply covariance matrix field allows you to set an overall scale factor to be applied 
to the entire covariance matrix. This can be useful for seeing how the stochastic behavior of 
the model changes as levels of random variation are applied which are different from those 
that were observed historically, or as a means of trouble-shooting the model by reducing the 
overall level of random variation if the model behaves badly.
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When bootstrapped innovations are used, the dialog changes 
to show options available for bootstrapping. Similar options 
are available to those provided when using normal random 
numbers, although the meanings of the options are slightly 
different.

The field Bootstrap residual draw sample may be used to 
specify a sample period from which to draw the residuals 
used in the bootstrap procedure. If no sample is provided, 
the bootstrap sample will be set to include the set of observa-
tions from the start of the workfile to the last observation before the start of the solution 
sample. Note that if the bootstrap sample is different from the estimation sample for an 
equation, then the variance of the bootstrapped innovations need not match the variance of 
the innovations as estimated by the equation.

The Diagonal covariance matrix - draw resid independently for each equation checkbox 
specifies whether each equation draws independently from a separate observation of the 
bootstrap sample, or whether a single observation is drawn from the bootstrap sample for all 
the equations in the model. If the innovation is drawn independently for each equation, 
there will be no correlation between the innovations used in the different equations in the 
model. If the same observation is used for all residuals, then the covariance of the innova-
tions in the forecast period will match the covariance of the observed innovations within the 
bootstrap sample.

The Multiply bootstrap resids by option can be used to rescale all bootstrapped innovations 
by the specified factor before applying them to the equations. This can be useful for provid-
ing a broad adjustment to the overall level of uncertainty to be applied to the model, which 
can be useful for trouble-shooting if the model is producing errors during stochastic simula-
tion. Note that multiplying the innovation by the specified factor causes the variance of the 
innovation to increase by the square of the factor, so this option has a slightly different 
meaning in the bootstrap case than when using normally distributed errors.

As noted above, stochastic simulation may include both coefficient uncertainty and exoge-
nous variable uncertainty. There are very different ways methods of specifying these two 
types of uncertainty.

The Include coefficient uncertainty field at the bottom right 
of the Stochastic Options dialog specifies whether estimated 
coefficients in linked equations should be varied randomly 
during a stochastic simulation. When this option is selected, coefficients are randomly 
redrawn at the beginning of each repetition, using the coefficient variability in the estimated 
equation, if possible. This technique provides a method of incorporating uncertainty sur-
rounding the true values of the coefficients into variation in our forecast results. Note that 
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coefficient uncertainty is ignored in nonlinear equations and in linear equations estimated 
with PDL terms. 

We emphasize that the dynamic behavior of a model may be altered considerably when the 
coefficients in the model are varied randomly. A model which is stable may become unsta-
ble, or a model which converges exponentially may develop cyclical oscillations. One conse-
quence is that the standard errors from a stochastic simulation of a single equation may vary 
from the standard errors obtained when the same equation is forecast using the EViews 
equation object. This result arises since the equation object uses an analytic approach to cal-
culating standard errors based on a local linear approximation that effectively imposes sta-
tionarity on the original equation.

To specify exogenous variable uncertainty, you must provide information about the variabil-
ity of each relevant exogenous variable. First, display the model in variable view by selecting 
View/Variables or clicking on the Variables button in the toolbar. Next, select the exoge-
nous variable in question, and right mouse click, select Properties..., and enter the exoge-
nous variable variance in the resulting dialog. If you supply a positive value, EViews will 
incorporate exogenous variable uncertainty in the simulation; if the variance is not a valid 
value (negative or NA), the exogenous variable will be treated as deterministic. 

Tracked Variables

The Tracked Variables page of the dialog lets you examine and modify which endogenous 
variables are being tracked by the model. When a variable is tracked, the results for that 
variable are saved in a series in the workfile after the simulation is complete. No results are 
saved for variables that are not tracked.

Tracking is most useful when working with large models, where keeping the results for 
every endogenous variable in the model would clutter the workfile and use up too much 
memory.

By default, all variables are tracked. You can switch on selective tracking using the radio 
button at the top of the dialog. Once selective tracking is selected, you can type in variable 
names in the dialog below, or use the properties dialog for the endogenous variable to 
switch tracking on and off.

You can also see which variables are currently being tracked using the variable view, since 
the names of tracked variables appear in blue.

Diagnostics

The Diagnostics dialog page lets you set options to control the display of intermediate out-
put. This can be useful if you are having problems getting your model to solve.

When the Display detailed messages box is checked, extra output will be produced in the 
solution messages window as the model is solved.
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The traced variables list lets you specify a list of variables for which intermediate values will 
be stored during the iterations of the solution process. These results can be examined by 
switching to the Trace Output view after the model is complete. Tracing intermediate values 
may give you some idea of where to look for problems when a model is generating errors or 
failing to converge.

Boundaries

EViews 10 introduced the ability to specify boundaries for endogenous variables in a model 
through a Boundaries dialog page. Although the solver will not enforce the boundaries 
while solving the model, EViews will warn you if any variable crosses its boundaries (i.e., 
solves to a value higher than the upper boundary or less than the lower boundary) for any 
observation in the solve sample. Boundary violations can also be examined in more detail 
using the Check Solution Bounds view after the solve is complete.

Solver

The Solver dialog page sets options relating to the non-linear equation solver which is 
applied to the model.

The Solution algorithm box 
lets you select the algorithm 
that will be used to solve the 
model for a single period. The 
following choices are available:

• Gauss-Seidel: the Gauss-
Seidel algorithm is an 
iterative algorithm, 
where at each iteration 
we solve each equation 
in the model for the 
value of its associated 
endogenous variable, 
treating all other endoge-
nous variables as fixed. 
This algorithm requires 
little working memory and has fairly low computational costs, but requires the equa-
tion system to have certain stability properties for it to converge. Although it is easy to 
construct models that do not satisfy these properties, in practice, the algorithm gener-
ally performs well on most econometric models. If you are having difficulties with the 
algorithm, you might like to try reordering the equations, or rewriting the equations to 
change the assignment of endogenous variables, since these changes can affect the 
stability of the Gauss-Seidel iterations. (See “Gauss-Seidel,” on page 1098.)
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• Newton: Newton's method is also an iterative method, where at each iteration we 
take a linear approximation to the model, then solve the linear system to find a root of 
the model. This algorithm can handle a wider class of problems than Gauss-Seidel, 
but requires considerably more working memory and has a much greater computa-
tional cost when applied to large models. Newton's method is invariant to equation 
reordering or rewriting. (See “Newton's Method,” on page 1099.)

• Broyden: Broyden's method is a modification of Newton's method (often referred to 
as a quasi-Newton or secant method) where an approximation to the Jacobian is used 
when linearizing the model rather than the true Jacobian which is used in Newton's 
method. This approximation is updated at each iteration by comparing the equation 
residuals obtained at the new trial values of the endogenous variables with the equa-
tion residuals predicted by the linear model based on the current Jacobian approxima-
tion. Because each iteration in Broyden's method is based on less information than in 
Newton's method, Broyden's method typically requires more iterations to converge to 
a solution. Since each iteration will generally be cheaper to calculate, however, the 
total time required for solving a model by Broyden's method will often be less than 
that required to solve the model by Newton's method. Note that Broyden's method 
retains many of the desirable properties of Newton's method, such as being invariant 
to equation reordering or rewriting. (See “Broyden's Method,” on page 1100.)

Note that even if Newton or Broyden’s method is selected for solving within each period of 
the model, a Gauss-Seidel type method is used between all the periods if the model requires 
iterative forward solution. See “Models Containing Future Values” on page 817.

The Excluded variables/Initialize from Actuals checkbox controls where EViews takes val-
ues for excluded variables. By default, this box is checked and all excluded observations for 
solved endogenous variables (both in the solution sample and pre-solution observations) are 
initialized to the actual values of the endogenous variables prior to the start of a model solu-
tion. If this box is unchecked, EViews will initialize the excluded variables with values from 
the solution series (aliased series), so that you may set the values manually without editing 
the original series.

The Order simultaneous blocks for minimum feedback checkbox tells the solver to reor-
der the equations/variables within each simultaneous block in a way that will typically 
reduce the time required to solve the model. You should generally leave this box checked 
unless your model fails to converge, in which case you may want to see whether the same 
behavior occurs when the option is switched off.

The goal of the reordering is to separate a subset of the equations/variables of the simulta-
neous block into a subsystem which is recursive conditional on the values of the variables 
not included in the recursive subsystem. In mathematical notation, if  are the equations of 
the simultaneous block and  are the endogenous variables:

F
y
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(42.9)

the reordering is chosen to partition the system into two parts:

(42.10)

where  has been partitioned into  and  and  has been partitioned into  and .

The equations in  are chosen so that they form a recursive system in the variables in the 
first partition, , conditional on the values or the variables in the second partition, . By 
a recursive system we mean that the first equation in  may contain only the first element 
of , the second equation in  may contain only the first and second elements of , and 
so on.

The reordering is chosen to make the first (recursive) partition as large as possible, or, 
equivalently, to make the second (feedback) partition as small as possible. Finding the best 
possible reordering is a time consuming problem for a large system, so EViews uses an algo-
rithm proposed by Levy and Low (1988) to obtain a reordering which will generally be close 
to optimal, although it may not be the best of all possible reorderings. Note that in models 
containing hundreds of equations the recursive partition will often contain 90% or more of 
the equations/variables of the simultaneous block, with only 10% or less of the equations/
variables placed in the feedback partition.

The reordering is used by the solution algorithms in a variety of ways.

• If the Gauss-Seidel algorithm is used, the basic operations performed by the algorithm 
are unchanged, but the equations are evaluated in the minimum feedback order 
instead of the order that they appear in the model. While for any particular model, 
either order could require less iterations to converge, in practice many models seem to 
converge faster when the equations are evaluated using the minimum feedback order-
ing.

• If the Newton solution algorithm is used, the reordering implies that the Jacobian 
matrix used in the Newton step has a bordered lower triangular structure (it has an 
upper left corner that is lower triangular). This structure is used inside the Newton 
solver to reduce the number of calculations required to find the solution to the linear-
ized set of equations used by the Newton step.

• If the Broyden solution algorithm is used, the reordering is used to reduce the size of 
the equation system presented to the Broyden solver by using the equations of the 
recursive partition to 'substitute out' the variables of the recursive partition, produc-
ing a system which has only the feedback variables as unknowns. This more compact 
system of equations can generally be solved more quickly than the complete set of 
equations of the simultaneous block.

F y x,  0

F1 y1 y2 x, ,  0

F2 y1 y2 x, ,  0

F F1 F2 y y1 y2
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F1
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The Use Analytic Derivatives checkbox determines whether the solver will take analytic 
derivatives of the equations with respect to the endogenous variables within each simulta-
neous block when using solution methods that require the Jacobian matrix. If the box is not 
checked, derivatives will be obtained numerically. Analytic derivatives will often be faster to 
evaluate than numeric derivatives, but they will require more memory than numeric deriva-
tives since an additional expression must be stored for each non-zero element of the Jaco-
bian matrix. Analytic derivatives must also be recompiled each time the equations in the 
model are changed. Note that analytic derivatives will be discarded automatically if the 
expression for the derivative is much larger than the expression for the original equation, as 
in this case the numeric derivative will be both faster to evaluate and require less memory.

The Preferred solution starting values section lets you select the values to be used as start-
ing values in the iterative procedure. When Actuals is selected, EViews will first try to use 
values contained in the actuals series as starting values. If these are not available, EViews 
will try to use the values solved for in the previous period. If these are not available, EViews 
will default to using arbitrary starting values of 0.1. When Previous period’s solution is 
selected, the order is changed so that the previous periods values are tried first, and only if 
they are not available, are the actuals used.

The Solution control section allows you to set termination options for the solver. Max itera-
tions sets the maximum number of iterations that the solver will carry out before aborting. 
Convergence sets the threshold for the convergence test. If the largest relative change 
between iterations of any endogenous variable has an absolute value less than this thresh-
old, then the solution is considered to have converged. Stop on missing data means that the 
solver should stop as soon as one or more exogenous (or lagged endogenous) variables is 
not available. If this option is not checked, the solver will proceed to subsequent periods, 
storing NAs for this period's results.

The Forward solution section allows you to adjust options that affect how the model is 
solved when one or more equations in the model contain future (forward) values of the 
endogenous variables. The Terminal conditions section lets you specify how the values of 
the endogenous variables are determined for leads that extend past the end of the forecast 
period. If User supplied in Actuals is selected, the values contained in the Actuals series 
after the end of the forecast sample will be used as fixed terminal values. If no values are 
available, the solver will be unable to proceed. If Constant level is selected, the terminal 
values are determined endogenously by adding the condition to the model that the values of 
the endogenous variables are constant over the post-forecast period at the same level as the 
final forecasted values (  for ), where  is the first 
observation past the end of the forecast sample, and  is the maximum lead in the model). 
This option may be a good choice if the model converges to a stationary state. If Constant 
difference is selected, the terminal values are determined endogenously by adding the con-
dition that the values of the endogenous variables follow a linear trend over the post fore-
cast period, with a slope given by the difference between the last two forecasted values:

yt yt 1– t T T 1  T k 1–, ,, T
k
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for ). This option may be a good choice if the model is in log 
form and tends to converge to a steady state. If Constant growth rate is selected, the termi-
nal values are determined endogenously by adding the condition to the model that the 
endogenous variables grow exponentially over the post-forecast period, with the growth rate 
given by the growth between the final two forecasted values:

(42.12)

for ). This latter option may be a good choice if the model 
tends to produce forecasts for the endogenous variables which converge to constant growth 
paths.

The Solve in both directions option affects how the solver loops over periods when calcu-
lating forward solutions. When the box is not checked, the solver always proceeds from the 
beginning to the end of the forecast period during the Gauss-Seidel iterations. When the box 
is checked, the solver alternates between moving forwards and moving backwards through 
the forecast period. The two approaches will generally converge at slightly different rates 
depending on the level of forward or backward persistence in the model. You should choose 
whichever setting results in a lower iteration count for your particular model.

The Solution round-off section of the dialog controls how the results are rounded after con-
vergence has been achieved. Because the solution algorithms are iterative and provide only 
approximate results to a specified tolerance, small variations can occur when comparing 
solutions from models, even when the results should be identical in theory. Rounding can be 
used to remove some of this minor variation so that results will be more consistent. The 
default settings will normally be adequate, but if your model has one or more endogenous 
variables of very small magnitude, you will need to switch off the rounding to zero or 
rescale the variables so that their solutions are farther from zero.

Solve Control for Target

Normally, when solving a model, we start with a set of known values for our exogenous 
variables, then solve for the unknown values of the endogenous variables of the model. If 
we would like an endogenous variable in our model to follow a particular path, we can solve 
the model repeatedly for different values of the exogenous variables, changing the values 
until the path we want for the endogenous variable is produced. For example, in a macro-
economic model, we may be interested in examining what value of the personal tax rate 
would be needed in each period to produce a balanced budget over the forecast horizon.

The problem with carrying out this procedure by hand is that the interactions between vari-
ables in the model make it difficult to guess the correct values for the exogenous variables. It 
will often require many attempts to find the values that solve the model to give the desired 
results.

yt yt 1–– yt 1– yt 2––

t T T 1  T k 1–, ,,

yt yt 1––  yt 1– yt 1– yt 2––  yt 2–

t T T 1  T k 1–, ,,
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To make this process easier, EViews provides 
a special procedure for solving a model 
which automatically searches for the 
unknown values. Simply create a series in 
the workfile which contains the values you 
would like the endogenous variable to 
achieve, then select Proc/Solve Control for 
Target… from the menus. Enter the name of 
the exogenous variable you would like to 
modify in the Control Variable box, the 
name of the endogenous variable which you are targeting in the Target Variable box, and 
the name of the workfile series which contains the target values in the Trajectory Variable 
box. Set the sample to the range for you would like to solve, then click on OK.

The procedure may take some time to complete, since it involves repeatedly solving the 
model to search for the desired solution. It is also possible for the procedure to fail if it can-
not find a value of the exogenous variable for which the endogenous variable solves to the 
target value. If the procedure fails, you may like to try moving the trajectory series closer to 
values that you are sure the model can achieve.

Working with the Model Data

When working with a model, much of your time will be spent viewing and modifying the 
data associated with the model. Before solving the model, you will edit the paths of your 
exogenous variables or add factors during the forecast period. After solving the model, you 
will use graphs or tables of the endogenous variables to evaluate the results. Because there 
is a large amount of data associated with a model, you will also spend time simply manag-
ing the data.

Since all the data associated with a model is stored inside standard series in the workfile, 
you can use all of the usual tools in EViews to work with the data of your model. However, 
it is often more convenient to work directly from the model window.

Although there are some differences in details, working with the model data generally 
involves following the same basic steps. You will typically first use the variable view to 
select the set of variables you would like to work with, then use either the right mouse but-
ton menu or the model procedure menu to select the operation to perform.

Because there may be several series in the workfile associated with each variable in the 
model, you will then need to select the types of series with which you wish to work. The fol-
lowing types will generally be available:
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• Actuals: the workfile series with the same name as the variable name. This will typi-
cally hold the historical data for the endogenous variables, and the historical data and 
baseline forecast for the exogenous variables.

• Active: the workfile series that is used when solving the active scenario. For endoge-
nous variables, this will be the series with a name consisting of the variable name fol-
lowed by the scenario extension. For exogenous variables, the actual series will be 
used unless it has been overridden. In this case, the exogenous variable will also be 
the workfile series formed by appending the scenario extension to the variable name.

• Alternate: the workfile series that is used when solving the alternate scenario. The 
rules are the same as for active.

In the following sections, we discuss how different operations can be performed on the 
model data from within the variable view.

Editing Data

The easiest way to make simple changes to the data associated with a model is to open a 
series or group spreadsheet window containing the data, then edit the data by hand.

To open a series window from within the model, simply select the variable using the mouse 
in the variable view, then use the right mouse button menu to choose Open selected 
series…, followed by Actuals, Active Scenario or Alternate Scenario. If you select several 
series before using the option, an unnamed group object will be created to hold all the 
series.

To edit the data, click the Edit+/- button to make sure the spreadsheet is in edit mode. You 
can either edit the data directly in levels or use the Units button to work with a transformed 
form of the data, such as the differences or percentage changes.

To create a group which allows you to edit more than one of the series associated with a 
variable at the same time, you can use the Make Group/Table procedure discussed below to 
create a dated data table, then switch the group to spreadsheet view to edit the data.

More complicated changes to the data may require using a genr command to calculate the 
series by specifying an expression. Click the Genr button from the series window toolbar to 
call up the dialog, then type in the expression to generate values for the series and set the 
workfile sample to the range of values you would like to modify.

Displaying Data

The EViews model object provides two main forms in which to display data: as a graph or as 
a table. Both of these can be generated easily from the model window.
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From the variable view, 
select the variables you wish 
to display, then use the right 
mouse button menu or the 
main menu to select Proc 
and then Make Group/Table 
or Make Graph. 

The dialogs for the two 
procs are almost identical. 
Here we see the Make 
Graph dialog. We saw this 
dialog earlier in our macro 
model example. The major-
ity of fields in the dialog 
control which series you would like the table or graph to contain. At the top left of the graph 
is the Model Variables box, which is used to select the set of variables to place in the graph. 
By default, the table or graph will contain the variables that are currently selected in the 
variable view. You can expand this to include all model variables, or add or remove particu-
lar variables from the list of selected variables using the radio buttons and text box labeled 
From. You can also restrict the set of variables chosen according to variable type using the 
drop down menu next to Select. By combining these fields, it is easy to select sets of vari-
ables such as all of the endogenous variables of the model, or all of the overridden variables.

Once the set of variables has been determined, it is necessary to map the variable names 
into the names of series in the workfile. This typically involves adding an extension to each 
name according to which scenario the data is from and the type of data contained in the 
series. The options affecting this are contained in the Graph series (if you are making a 
graph) or Series types (if you are making a group/table) box at the right of the dialog.

The Solution series box lets you choose which solution results you would like to examine 
when working with endogenous variables. You can choose from a variety of series generated 
during deterministic or stochastic simulations.

The series of checkboxes below determine which scenarios you would like to display in the 
graphs, as well as whether you would like to calculate deviations between various scenarios. 
You can choose to display the actual series, the series from the active scenario, or the series 
from an alternate scenario (labeled “Compare”). You can also display either the difference 
between the active and alternate scenario (labeled “Deviations: Active from Compare”), or 
the ratio between the active and alternate scenario in percentage terms (labeled “% Devia-
tion: Active from Compare”).
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The final field in the Graph series or Series types box is the Transform listbox. This lets 
you apply a transformation to the data similar to the Transform button in the series spread-
sheet.

While the deviations and units options allow you to present a variety of transformations of 
your data, in some cases you may be interested in other transformations that are not directly 
available. Similarly, in a stochastic simulation, you may be interested in examining standard 
errors or confidence bounds on the transformed series, which will not be available when 
you apply transformations to the data after the simulation is complete. In either of these 
cases, it may be worth adding an identity to the model that generates the series you are 
interested in examining as part of the model solution.

For example, if your model contains a variable GDP, you may like to add a new equation to 
the model to calculate the percentage change of GDP:

pgdp = @pch(gdp)

After you have solved the model, you can use the variable PGDP to examine the percentage 
change in GDP, including examining the error bounds from a stochastic simulation. Note 
that the cost of adding such identities is relatively low, since EViews will place all such iden-
tities in a final recursive block which is evaluated only once after the main endogenous vari-
ables have already been solved.

The remaining option, at the bottom left of the dialog, lets you determine how the series will 
be grouped in the output. The options are slightly different for tables and graphs. For tables, 
you can choose to either place all series associated with the same model variable together, 
or to place each series of the same series type together. For graphs, you have the same two 
choices, and one additional choice, which is to place every series in its own graph.

In the graph dialog, you also have the option of setting a sample for the graph. This is often 
useful when you are plotting forecast results since it allows you to choose the amount of his-
torical data to display in the graph prior to the forecast results. By default, the sample is set 
to the workfile sample.

When you have finished setting the options, simply click on OK to create the new table or 
graph. All of EViews usual editing features are available to modify the table or graph for 
final presentation.

Managing Data

When working with a model, you will often create many series in the workfile for each vari-
able, each containing different types of results or the data from different scenarios. The 
model object provides a number of tools to help you manage these series, allowing you to 
perform copy, fetch, store and delete operations directly from within the model.
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Because the series names are related to the variable names in a consistent way, management 
tasks can often also be performed from outside the model by using the pattern matching fea-
tures available in EViews commands (see Appendix A. “Wildcards,” on page 771 of the 
Command and Programming Reference).

The data management opera-
tions from within the model 
window proceed very simi-
larly to the data display oper-
ations. First, select the 
variables you would like to 
work with from the variable 
view, then choose Copy, 
Store series…, Fetch 
series… or Delete series… 
from the right mouse button 
menu or the object proce-
dures menu. A dialog will 
appear, similar to the one used when making a table or graph.

In the same way as for the table and graph dialogs, the left side of the dialog is used to 
choose which of the model variables to work with, while the right side of the dialog is used 
to select one or more series associated with each variable. Most of the choices are exactly 
the same as for graphs and tables. One significant difference is that the checkboxes for 
active and comparison scenarios include exogenous variables only if they have been overrid-
den in the scenario. Unlike when displaying or editing the data, if an exogenous variable has 
not been overridden, the actual series will not be included in its place. The only way to 
store, fetch or delete any actual series is to use the Actuals checkbox.

After clicking on OK, you will receive the usual prompts for the store, fetch and delete oper-
ations. You can proceed as usual.

Comparing Solution Data

The Compare solutions menu item, available from the View menu, allows you to quickly 
view any differences between the solution values for different scenarios.
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Once you have solved your model for different scenarios, you may wish to quickly compare 
the results between those scenarios to see which variables differ. Clicking on the menu item 
View/Compare solutions... brings up a dialog that allows you to do this. The first part of 
the dialog is similar to that of the data display dialog above. Select which variables you 
would like to compare by using the Select drop-down box, and the From edit field. 

Having selected your variable, you may select which scenarios to compare using the Series 
to compare area. The first choice, using the Solution series drop-down is whether you wish 
to compare the deterministic solutions, or compare the means from a stochastic solve. Note 
you must have already performed the type of solve you choose prior to comparing it.

The Compare the Active Scenario drop-down lets you choose the set of variables for com-
parison. By default the drop-down will be set at the model’s current active scenario. Note 
changing this drop-down to another entry will change the active scenario for the model, as 
well as for comparison.

There are two choices for specifying the second set of variables. You may either select a 
comparison scenario (by selecting the Scenario radio button, and then selecting the sce-
nario in the drop-down), or you may specify a pattern matching scheme by selecting the 
Pattern radio button. With pattern matching, you should use the “*” wildcard to represent 
the variable names in the pattern. For example, if you wish to compare I_0 (the current 
active scenario) with a series called I_OLD, you would enter a pattern of “*_OLD”, having 
specified I as the variable to compare. Note that you may reference series stored in a data-
base using the standard dbname:: syntax, or series in another page using the standard 
pagename\ syntax. 

The series used for comparison should already exist in the workfile (or storage location if 
you specified another container with pattern matching). Note this means that you should 
have already solved the model for the specified scenario if applicable.
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The Include threshold edit box lets you set the tolerance level for detecting differences 
between the solutions. By default it is set to 0.1% - i.e. any relative difference less than 0.001 
will be ignored. You can specify a value of 0 to tell EViews to show all differences, no matter 
how small.

Finally the Comparison sample edit field lets you set the sample over which you wish to 
compare the series.

Clicking OK produces the comparison table:

The table lists any variables for which the percentage difference between the two series for 
each scenario is greater than the specified tolerance. 

In this case we are comparing the solution between the Baseline scenario (_0) and 
Scenario 1 (_1), and two variables, M and G, have a difference greater than the specified tol-
erance of 1e-04. The four columns in the table show details about the variables. The first 
shows the variable name. The second, Delta%, shows the maximum difference between the 
two series for each variable. The third and fourth columns, “First” and “Last”, give the date 
(or observation number) of the first period in which the two series differ and the last period 
in which the two series differ. Here, the first period in which M_0 differs from M_1 is 
1960Q1, and the last period in which they differ is 1999Q4.
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Part IX.  Panel and Pooled Data

Panel and pool data involve observations that possess both cross-section, and within-cross-
section identifiers. 

Generally speaking, we distinguish between the two by noting that pooled time-series, cross-
section data refer to data with relatively few cross-sections, where variables are held in 
cross-section specific individual series, while panel data correspond to data with large num-
bers of cross-sections, with variables held in single series in stacked form.

The discussion of these data is divided into parts. Pooled data structures are discussed first:

• Chapter 43. “Pooled Time Series, Cross-Section Data,” on page 843 outlines tools for 
working with pooled time series, cross-section data, and estimating standard equation 
specifications which account for the pooled structure of the data.

Data where the panel cross-sections are stacked are described separately:

• In Chapter 9. “Advanced Workfiles,” beginning on page 263 of User’s Guide I, we 
describe the basics of structuring a workfile for use with panel data. Once a workfile 
is structured as a panel workfile, EViews provides you with different tools for working 
with data in the workfile, and for estimating equation specifications using both the 
data and the panel structure.

• Chapter 44. “Working with Panel Data,” beginning on page 893, outlines the basics of 
working with panel workfiles.

• Chapter 45. “Panel Estimation,” beginning on page 917 describes least squares, instru-
mental variables, and GMM estimation in panel structured workfiles.

• Chapter 46. “Panel Cointegration Estimation,” beginning on page 973 documents 
tools for panel cointegrating regression estimation in EViews.

• Chapter 47. “Panel Statistics,” beginning on page 993 outlines the computation of 
other “panel workfile aware” statistics and tests.
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Chapter 43.  Pooled Time Series, Cross-Section Data

Data often contain information on a relatively small number of cross-sectional units 
observed over time. For example, you may have time series data on GDP for a number of 
European nations. Or perhaps you have state level data on unemployment observed over 
time. We term such data pooled time series, cross-section data.

EViews provides a number of specialized tools to help you work with pooled data. EViews 
will help you manage your data, perform operations in either the time series or the cross-
section dimension, and apply estimation methods that account for the pooled structure of 
your data.

The EViews object that manages time series/cross-section data is called a pool. The remain-
der of this chapter will describe how to set up your data to work with pools, and how to 
define and work with pool objects.

Note that the data structures described in this chapter should be distinguished from data 
where there are large numbers of cross-sectional units. This type of data is typically termed 
panel data. Working with panel structured data in EViews is described in Chapter 44. 
“Working with Panel Data,” on page 893 and Chapter 45. “Panel Estimation,” beginning on 
page 917.

The Pool Workfile

The first step in working with pooled data is to set up a pool workfile. There are several char-
acteristics of an EViews workfile that allow it to be used with pooled time series, cross-sec-
tion data.

First, a pool workfile is an ordinary 
EViews workfile structured to match 
the time series dimension of your data. 
The range of your workfile should rep-
resent the earliest and latest dates or 
observations you wish to consider for 
any of the cross-section units. For 
example, if you want to work with 
data for some firms from 1932 to 1954, 
and data for other firms from 1930 to 
1950, you should create a workfile 
ranging from 1930 to 1954.

Second, the pool workfile should con-
tain EViews series that follow a user-defined naming convention. For each cross-section spe-
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cific variable, you should have a separate series corresponding to each cross-section/
variable combination. For example, if you have time series data for an economic variable 
like investment that differs for each of 10 firms, you should have 10 separate investment 
series in the workfile with names that follow the user-defined convention.

Lastly, and most importantly, a pool workfile must contain one or more pool objects, each of 
which contains a (possibly different) description of the pooled structure of your workfile in 
the form of rules specifying the user-defined naming convention for your series.

There are various approaches that you may use to set up your pool workfile:

• First, you may simply create a new workfile in the usual manner, by describing, the 
time series structure of your data. Once you have a workfile with the desired struc-
ture, you may define a pool object, and use this object as a tool in creating the series 
of interest and importing data into the series.

• Second, you may create an EViews workfile containing your data in stacked form. 
Once you have your stacked data, you may use the built-in workfile reshaping tools to 
create a workfile containing the desired structure and series.

Both of these procedures require a bit more background on the nature of the pool object, 
and the way that your pooled data are held in the workfile. We begin with a brief description 
of the basic components of the pool object, and then return to a description of the task of 
setting up your workfile and data (“Setting up a Pool Workfile” on page 849).

The Pool Object

Before describing the pooled workfile in greater detail, we must first provide a brief descrip-
tion of the EViews pool object.

We begin by noting that the pool object serves two distinct roles. First, the pool contains a 
set of definitions that describe the structure of the pooled time series, cross-section data in 
your workfile. In this role, the pool object serves as a tool for managing and working with 
pooled data, much like the group object serves is used as a tool for working with sets of 
series. Second, the pool provides procedures for estimating econometric models using 
pooled data, and examining and working with the results from this estimation. In this role, 
the pool object is analogous to an equation object that is used to estimate econometric spec-
ifications.

In this section, we focus on the definitions that serve as the foundation for the pool object 
and simple tools for managing your pool object. The tools for working with data are 
described in “Working with Pooled Data,” beginning on page 856, and the role of the pool 
object in estimation is the focus of “Pooled Estimation,” beginning on page 864.
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Defining a Pool Object

There are two parts to the definitions in a pool object: the cross-section identifiers, and 
optionally, definitions of groups of identifiers.

Cross-section Identifiers

The central feature of a pool object is a list of cross-section members which provides a nam-
ing convention for series in the workfile. The entries in this list are termed cross-section iden-
tifiers. For example, in a cross-country study, you might use “_USA” to refer to the United 
States, “_KOR” to identify Korea, “_JPN” for Japan, and “_UK” for the United Kingdom. 
Since the cross-section identifiers will be used as a base in forming series names, we recom-
mend that they be kept relatively short.

Specifying the list cross-section identifiers in a pool tells EViews about the structure of your 
data. When using a pool with the four cross-section identifiers given above, you instruct 
EViews to work with separate time series data for each of the four countries, and that the 
data may be held in series that contain the identifiers as part of the series names.

The most direct way of creating a pool object is to select Object/New Object.../Pool. EViews 
will open the pool specification view into which you should enter or copy-and-paste a list of 
identifiers, with individual entries separated by spaces, tabs, or carriage returns. Here, we 
have entered four identifiers on separate lines.

There are no special restrictions on the 
labels that you can use for cross-section 
identifiers, though you must be able to 
form legal EViews series names contain-
ing these identifiers. 

Note that we have used the “_” character 
at the start of each of the identifiers in 
our list; this is not necessary, but you 
may find that it makes it easier to spot 
the identifier when it is used as the end 
of a series name.

Before moving on, it is important to note that a pool object is simply a description of the 
underlying structure of your data, so that it does not itself contain series or data. This sepa-
ration of the object and the data has important consequences.

First, you may use pool objects to define multiple sets of cross-section identifiers. Suppose, 
for example, that the pool object POOL01 contains the definitions given above. You may also 
have a POOL02 that contains the identifiers “_GER,” “_AUS,” “_SWTZ,” and a POOL03 that 
contains the identifiers “_JPN” and “_KOR”. Each of these three pool objects defines a differ-
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ent set of identifiers, and may be used to work with different sets of series in the workfile. 
Alternatively, you may have multiple pool objects in a workfile, each of which contain the 
same list of identifiers. A POOL04 that contains the same identifiers as POOL01 may be used 
to work with data from the same set of countries.

Second, since pool objects contain only definitions and not series data, deleting a pool will 
not delete underlying series data. You may, however, use a pool object to delete, create, and 
manipulate underlying series data.

Group Definitions

In addition to the main list of cross-section identifiers, you may define groups made up of 
subsets of your identifiers. To define a group of identifiers, you should enter the keyword 
“@GROUP” followed by a name for the group, and the subset of the pool identifiers that are 
to be used in the group. EViews will define a group using the specified name and any identi-
fiers provided. 

We may, for example, define the ASIA group containing the “_JPN” and “_KOR” identifiers, 
or the NORTHAMERICA group containing the “_USA” identifier by adding:

@group asia _jpn _kor

@group northamerica _usa

to the pool definition.

These subsets of cross-section identifiers may be used to define virtual series indicating 
whether a given observation corresponds to a given subgroup or not. The ASIA group, for 
example, can be used along with special tools to identify whether a given observation 
should be viewed as coming from Japan or Korea, or from one of the other countries in the 
pool. We describe this functionality in greater detail in “Pool Series” on page 848.

Viewing or Editing Definitions

You may, at any time, change the view of an existing pool object to examine the current list 
of cross-section identifiers and group definitions. Simply push the Define button on the tool-
bar, or select View/Cross-Section Identifiers. If desired, you can edit the list of identifiers or 
group definitions.

Copying a Pool Object 

Typically, you will work with more than one pool object. Multiple pools are used to define 
various subsamples of cross-section identifiers, or to work with different pooled estimation 
specifications.

To copy a pool object, open the original pool, and select Object/Copy Object… Alterna-
tively, you can highlight the name of the pool in the workfile window, and either select 
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Object/Copy Selected… in the main workfile toolbar, or right mouse-click and select 
Object/Copy... and enter the new name

Pooled Data

As noted previously, all of your pooled data will be held in ordinary EViews series. These 
series can be used in all of the usual ways: they may, among other things, be tabulated, 
graphed, used to generate new series, or used in estimation. You may also use a pool object 
to work with sets of the individual series. 

There are two classes of series in a pooled workfile: ordinary series and cross-section specific 
series.

Ordinary Series

An ordinary series is one that has common values across all cross-sections. A single series 
may be used to hold the data for each variable, and these data may be applied to every 
cross-section. For example, in a pooled workfile with firm cross-section identifiers, data on 
overall economic conditions such as GDP or money supply do not vary across firms. You 
need only create a single series to hold the GDP data, and a single series to hold the money 
supply variable.

Since ordinary series do not interact with cross-sections, they may be defined without refer-
ence to a pool object. Most importantly, there are no naming conventions associated with 
ordinary series beyond those for ordinary EViews objects.

Cross-section Specific Series

Cross-section specific series are those that have values that differ between cross-sections. A 
set of these series are required to hold the data for a given variable, with each series corre-
sponding to data for a specific cross-section. 

Since cross-section specific series interact with cross-sections, they should be defined in con-
junction with the identifiers in pool objects. Suppose, for example, that you have a pool 
object that contains the identifiers “_USA,” “_KOR,” “_JPN,” and “_UK”, and that you have 
time series data on GDP for each of the cross-section units. In this setting, you should have 
a four cross-section specific GDP series in your workfile.

The key to naming your cross-section specific series is to use names that are a combination 
of a base name and a cross-section identifier. The cross-section identifiers may be embedded 
at an arbitrary location in the series name, so long as this is done consistently across identi-
fiers.

You may elect to place the identifier at the end of the base name, in which case, you should 
name your series “GDP_USA,” “GDP_KOR,” “GDP_JPN,” and “GDP_UK”. Alternatively, you 
may choose to put the section identifiers in front of the name, so that you have the names 
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“_USAGDP,” “_KORGDP,” “_JPNGDP,” and “_UKGDP”. The identifiers may also be placed in 
the middle of series names—for example, using the names “GDP_USAINF,” “GDP_KORIN,” 
“GDP_JPNIN,” “GDP_UKIN”.

It really doesn’t matter whether the identifiers are used at the beginning, middle, or end of 
your cross-section specific names; you should adopt a naming style that you find easiest to 
manage. Consistency in the naming of the set of cross-section series is, however, absolutely 
essential. You should not, for example, name your four GDP series “GDP_USA”, 
“GDP_KOR”, “_JPNGDPIN”, “_UKGDP”, as this will make it impossible for EViews to refer 
to the set of series using a pool object.

Pool Series

Once your series names have been chosen to correspond with the identifiers in your pool, 
the pool object can be used to work with a set of series as though it were a single item. The 
key to this processing is the concept of a pool series.

A pool series is actually a set of series defined by a base name and the entire list of cross-
section identifiers in a specified pool. Pool series are specified using the base name, and a 
“?” character placeholder for the cross-section identifier. If your series are named 
“GDP_USA”, “GDP_KOR”, “GDP_JPN”, and “GDP_UK”, the corresponding pool series may 
be referred to as “GDP?”. If the names of your series are “_USAGDP”, “_KORGDP”, 
“_JPNGDP”, and “_UKGDP”, the pool series is “?GDP”.

When you use a pool series name, EViews understands that you wish to work with all of the 
series in the workfile that match the pool series specification. EViews loops through the list 
of cross-section identifiers in the specified pool, and substitutes each identifier in place of 
the “?”. EViews then uses the complete set of cross-section specific series formed in this 
fashion.

In addition to pool series defined with “?”, EViews provides a special function, @INGRP, 
that you may use to generate a group identity pool series that takes the value 1 if an obser-
vation is in the specified group, and 0 otherwise. 

Consider, for example, the @GROUP for “ASIA” defined using the identifiers “_KOR” and 
“_JPN”, and suppose that we wish to create a dummy variable series for whether an obser-
vation is in the group. One approach to representing these data is to create the following 
four cross-section specific series:

series asia_usa = 0

series asia_kor = 1

series asia_jpn = 1

series asia_uk = 0
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and to refer to them collectively as the pool series “ASIA_?”. While not particularly difficult 
to do, this direct approach becomes more cumbersome the greater the number of cross-sec-
tion identifiers.

More easily, we may use the special pool series expression:

@ingrp(asia)

to define a special virtual pool series in which each observation takes a 0 or 1 indicator for 
whether an observation is in the specified group. This expression is equivalent to creating 
the four cross-section specific series, and referring to them as “ASIA_?”.

We must emphasize that pool series specifiers using the “?” and the @INGRP function may 
only be used through a pool object, since they have no meaning without a list of cross-sec-
tion identifiers. If you attempt to use a pool series outside the context of a pool object, 
EViews will attempt to interpret the “?” as a wildcard character (see Appendix A. “Wild-
cards,” on page 771 in the Command and Programming Reference). The result, most often, 
will be an error message saying that your variable is not defined.

Setting up a Pool Workfile

Your goal in setting up a pool workfile is to obtain a workfile containing individual series for 
ordinary variables, sets of appropriately named series for the cross-section specific data, and 
pool objects containing the related sets of identifiers. The workfile should have frequency 
and range matching the time series dimension of your pooled data.

There are two basic approaches to setting up such a workfile. The direct approach involves 
first creating an empty workfile with the desired structure, and then importing data into 
individual series using either standard or pool specific import methods. The indirect 
approach involves first creating a stacked representation of the data in EViews, and then 
using EViews built-in reshaping tools to set up a pooled workfile. 

Direct Setup

The direct approach to setting up your pool workfile involves three distinct steps: first creat-
ing a workfile with the desired time series structure; next, creating one or more pool objects 
containing the desired cross-section identifiers; and lastly, using pool object tools to import 
data into individual series in the workfile.

Creating the Workfile and Pool Object

The first step in the direct setup is to create an ordinary EViews workfile structured to match 
the time series dimension of your data. The range of your workfile should represent the ear-
liest and latest dates or observations you wish to consider for any of the cross-section units. 
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Simply select File/New workfile... to bring up the Workfile Create dialog which you will 
use to describe the structure of your workfile. For additional detail, see “Creating a Workfile 
by Describing its Structure” on page 43 of User’s Guide I.

For example, to create a pool workfile that has annual data ranging from 1950 to 1992, sim-
ply select Annual in the Frequency dropdown menu, and enter “1950” as the Start date 
and “1992” as the End date. 

Next, you should create one or more pool objects containing cross-section identifiers and 
group definitions as described in “The Pool Object” on page 844.

Importing Pooled Data

Lastly, you should use one of the various methods for importing data into series in the work-
file. Before considering the various approaches, we require an understanding the various 
representations of pooled time series, cross-section data that you may encounter. 

Bear in mind that in a pooled setting, a given observation on a variable may be indexed 
along three dimensions: the variable, the cross-section, and the time period. For example, 
you may be interested in the value of GDP, for the U.K., in 1989.

Despite the fact that there are three dimensions of interest, you will eventually find yourself 
working with a two-dimensional representation of your pooled data. There is obviously no 
unique way to organize three-dimensional data in two-dimensions, but several formats are 
commonly employed.

Unstacked Data

In this form, observations on a given variable for a given cross-section are grouped together, 
but are separated from observations for other variables and other cross sections. For exam-
ple, suppose the top of our Excel data file contains the following:

Here, the base name “C” represents consumption, while “G” represents government expen-
diture. Each country has its own separately identified column for consumption, and its own 
column for government expenditure.

EViews pooled workfiles are structured to work naturally with data that are unstacked, since 
the sets of cross-section specific series in the pool workfile correspond directly to the multi-

year c_usa c_kor c_jpn g_usa g_jpn g_kor

1954 61.6 77.4 66 17.8 18.7 17.6

1955 61.1 79.2 65.7 15.8 17.1 16.9

1956 61.7 80.2 66.1 15.7 15.9 17.5

1957 62.4 78.6 65.5 16.3 14.8 16.3

      
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ple columns of unstacked source data. You may read unstacked data directly into EViews 
using the standard workfile creation procedures described in “Creating a Workfile by Read-
ing from a Foreign Data Source” on page 47 of User’s Guide I. Each cross-section specific 
variable should be read as an individual series, with the names of the resulting series follow 
the pool naming conventions given in your pool object. Ordinary series may be imported in 
the usual fashion with no additional complications.

In this example, we should use the standard EViews tools to read separate series for each 
column. We create the individual series “YEAR”, “C_USA”, “C_KOR”, “C_JPN”, “G_USA”, 
“G_JPN”, and “G_KOR”.

Stacked Data

Pooled data can also be arranged in stacked form, where all of the data for a variable are 
grouped together in a single column. 

In the most common form, the data for different cross-sections are stacked on top of one 
another, with all of the sequentially dated observations for a given cross-section grouped 
together. We may say that these data are stacked by cross-section:

Alternatively, we may have data that are stacked by date, with all of the observations of a 
given period grouped together:

id year c g

_usa 1954 61.6 17.8

_usa   
_usa   
_usa 1992 68.1 13.2

   
_kor 1954 77.4 17.6

_kor   
_kor 1992 na na
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Each column again represents a single variable, but within each column, all of the cross-sec-
tions for a given year are grouped together. If data are stacked by year, you should make cer-
tain that the ordering of the cross-sectional identifiers within a year is consistent across 
years.

There are to primary approaches to importing data into your pool series: you may read the 
data in stacked form then use EViews tools to restructure the data in pool form, or you may 
directly read or copy the data into a stacked representation of the pooled series.

Indirect Setup (Restructuring) of Stacked Data

The easiest approach to reading stacked pool data is to create an EViews workfile containing 
the data in stacked form, and then use the built-in workfile reshaping tools to create a pool 
workfile with the desired structure and data. (Alternately, you can perform the first step and 
simply work with the data in stacked form: see Chapter 44. “Working with Panel Data,” on 
page 893 for details.)

The first step in the indirect setup of a pool workfile is to create a workfile containing the 
contents of your stacked data file. You may manually create the workfile and import the 
stacked series data, or you may use EViews tools for opening foreign source data directly 
into a new workfile (“Creating a Workfile by Reading from a Foreign Data Source” on 
page 47 of User’s Guide I).

Once you have your stacked data in an EViews workfile, you may use the workfile reshaping 
tools to unstack the data into a pool workfile page. In addition to unstacking the data into 
multiple series, EViews will create a pool object containing identifiers obtained from pat-
terns in the series names. See “Reshaping a Workfile,” beginning on page 298 of User’s 
Guide I for a general discussion of reshaping, and “Unstacking a Workfile” on page 301 of 
User’s Guide I for a more specific discussion of the unstack procedure.

per id c g

1954 _usa 61.6 17.8

1954 _uk 62.4 23.8

1954 _jpn 66 18.7

1954 _kor 77.4 17.6

   
1992 _usa 68.1 13.2

1992 _uk 67.9 17.3

1992 _jpn 54.2 7.6

1992 _kor na na
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The indirect method is generally easier to use than the direct approach and has the advan-
tage of not requiring that the stacked data be balanced. It has the disadvantage of using 
more computer memory since EViews must have two copies of the source data in memory at 
the same time.

Direct Import of Stacked Data

An alternative approach is to enter or read the data directly into the workfile using a pool 
object. You may enter or copy-and-paste data from the source into and a stacked representa-
tion of your data, or you may use the pool object to describe how to read the stacked data 
into the unstacked workfile.

To enter data or copy-and-paste, you use the pool object to create a stacked representation of 
the data in EViews: 

• First, specify which time series observations will be included in your stacked spread-
sheet by setting the workfile sample.

• Next, open the pool, then select View/Spreadsheet View… EViews will prompt you 
for a list of series. You can enter ordinary series names or pool series names. If the 
series exist, then EViews will display the data in the series. If the series do not exist, 
then EViews will create the series or group of series, using the cross-section identifiers 
if you specify a pool series.

• EViews will open the stacked spreadsheet view of the pool series. If desired, click on 
the Order +/– button to toggle between stacking by cross-section and stacking by 
date.

• Click Edit +/– to turn on edit mode in the spreadsheet window, and enter your data, 
or cut-and-paste from another application.

For example, if we have a pool object that contains 
the identifiers “_USA”, “_UK”, “_JPN”, and “_KOR”, 
we can instruct EViews to create the series C_USA, 
C_UK, C_JPN, C_KOR, and G_USA, G_UK, G_JPN, 
G_KOR, and YEAR simply by entering the pool 
series names “C?”, “G?” and the ordinary series 
name “YEAR”, and pressing OK.

EViews will open a stacked spreadsheet view of the 
series in your list. Here we see the series stacked by cross-section, with the pool or ordinary 
series names in the column header, and the cross-section/date identifiers labeling each row. 
Note that since YEAR is an ordinary series, its values are repeated for each cross-section in 
the stacked spreadsheet.
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If desired, click on Order +/– to 
toggle between stacking methods to 
match the organization of the data 
to be imported. Click on Edit +/– to 
turn on edit mode, and enter or cut-
and-paste into the window.

Alternatively, you can import 
stacked data from a file using import 
tools built into the pool object. 
While the data in the file may be 
stacked either by cross-section or by 
period, EViews does require that the 
stacked data are “balanced,” and that the cross-sections ordering in the file matches the 
cross-sectional identifiers in the pool. By “balanced,” we mean that if the data are stacked 
by cross-section, each cross-section should contain exactly the same number of periods—if 
the data are stacked by date, each date should have exactly the same number of cross-sec-
tional observations arranged in the same order.

We emphasize that only the representation of the data in the import file needs to be bal-
anced; the underlying data need not be balanced. Notably, if you have missing values for 
some observations, you should make certain that there are lines in the file representing the 
missing values. In the two examples above, the underlying data are not balanced, since 
information is not available for Korea in 1992. The data in the file have been balanced by 
including an observation for the missing data.

To import stacked pool data from a file, first open the pool object, then select Proc/Import 
Pool data (ASCII, .XLS, .WK?)… It is important that you use the import procedure associ-
ated with the pool object, located on the pool proc menu, and not the standard file import pro-
cedure.

Select your input file in the usual fashion. If you select a spreadsheet file, EViews will open 
a spreadsheet import dialog prompting you for additional input.
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First, indicate whether the 
pool series are in rows or in 
columns, and whether the 
data are stacked by cross-
section, or stacked by date.

Next, in the pool series edit 
box, enter the names of the 
series you wish to import. 
This list may contain any 
combination of ordinary 
series names and pool series 
names.

Lastly, fill in the sample 
information, starting cell location, and optionally, the sheet name.

When you specify your series using pool series names, EViews will, if necessary, create and 
name the corresponding set of pool series using the list of cross-section identifiers in the 
pool object. If you list an ordinary series name, EViews will, if needed, create a single series 
to hold the data.

EViews will read the contents of your file into the specified pool variables using the sample 
information. When reading into pool series, the first set of observations in the file will be 
placed in the individual series corresponding to the first cross-section (if reading data that is 
grouped by cross-section), or the first sample observation of each series in the set of cross-
sectional series (if reading data that is grouped by date), and so forth. 

If you read data into an ordinary series, EViews will continually assign values into the corre-
sponding observation of the single series, so that upon completion of the import procedure, 
the series will contain the last set of values read from the file.

The basic technique for importing stacked data from ASCII text files is analogous, but the 
corresponding dialog contains many additional options to handle the complexity of text 
files.
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For a discussion of the text specific settings in the dialog, see “References” on page 177 of 
User’s Guide I.

Working with Pooled Data

The underlying series for each cross-section member are ordinary series, so all of the EViews 
tools for working with the individual cross-section series are available. In addition, EViews 
provides you with a number of specialized tools which allow you to work with your pool 
data. Using EViews, you can perform, in a single step, similar operations on all the series 
corresponding to a particular pooled variable.

Generating Pooled Data

You can generate or modify pool series using the pool series genr procedure. Click on Pool-
Genr on the pool toolbar and enter a formula as you would for a regular genr, using pool 
series names as appropriate. Using our example from above, entering:

ratio? = g?/g_usa

is equivalent to entering the following four commands:

ratio_usa = g_usa/g_usa

ratio_uk = g_uk/g_usa

ratio_jpn = g_jpn/g_usa

ratio_kor = g_kor/g_usa

Generation of a pool series applies the formula you supply using an implicit loop across 
cross-section identifiers, creating or modifying one or more series as appropriate. 
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You may use pool and ordinary genr together to generate new pool variables. For example, 
to create a dummy variable that is equal to 1 for the US and 0 for all other countries, first 
select PoolGenr and enter: 

dum? = 0

to initialize all four of the dummy variable series to 0. Then, to set the US values to 1, select 
Quick/Generate Series… from the main menu, and enter:

dum_usa = 1

It is worth pointing out that a superior method of creating this pool series is to use @GROUP 
to define a group called US containing only the “_USA” identifier (see “Group Definitions” 
on page 846), then to use the @INGRP function:

dum? = @ingrp(us)

to generate and implicitly refer to the four series (see “Pool Series” on page 848).

To modify a set of series using a pool, select PoolGenr, and enter the new pool series expres-
sion:

dum? = dum? * (g? > c?)

It is worth the reminder that the method used by the pool genr is to perform an implicit loop 
across the cross-section identifiers. This implicit loop may be exploited in various ways, for 
example, to perform calculations across cross-sectional units in a given period. Suppose, we 
have an ordinary series SUM which is initialized to zero. The pool genr expression:

sum = sum + c?

is equivalent to the following four ordinary genr statements:

sum = sum + c_usa

sum = sum + c_uk

sum = sum + c_jpn

sum = sum + c_kor

Bear in mind that this example is provided merely to illustrate the notion of implicit looping, 
since EViews provides built-in features to compute period-specific statistics.

Examining Your Data

Pool workfiles provide you with the flexibility to examine cross-section specific series as 
individual time series or as part of a larger set of series.

Examining Unstacked Data

Simply open an individual series and work with it using the standard tools available for 
examining a series object. Or create a group of series and work with the tools for a group 
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object. One convenient way to create groups of series is to use tools for creating groups out 
of pool and ordinary series; another is to use wildcards expressions in forming the group.

Examining Stacked Data

As demonstrated in “Stacked Data,” beginning on page 851, you may use your pool object to 
view your data in stacked spreadsheet form. Select View/Spreadsheet View…, and list the 
series you wish to display. The names can include both ordinary and pool series names. 
Click on the Order +/– button to toggle between stacking your observations by cross-sec-
tion and by date.

We emphasize that stacking your data only provides an alternative view of the data, and 
does not change the structure of the individual series in your workfile. Stacking data is not 
necessary for any of the data management or estimation procedures described below.

Calculating Descriptive Statistics

EViews provides convenient built-in features for computing various descriptive statistics for 
pool series using a pool object. To display the Pool Descriptive Statistics dialog, select 
View/Descriptive Statistics… from the pool toolbar.

In the edit box, you should list the ordinary and 
pooled series for which you want to compute the 
descriptive statistics. EViews will compute the 
mean, median, minimum, maximum, standard 
deviation, skewness, kurtosis, and the Jarque-Bera 
statistic for these series.

First, you should choose between the three sample 
options on the right of the dialog:

• Individual: uses the maximum number of 
observations available. If an observation on a 
variable is available for a particular cross-sec-
tion, it is used in computation. 

• Common: uses an observation only if data on the variable are available for all cross-
sections in the same period. This method is equivalent to performing listwise exclu-
sion by variable, then cross-sectional casewise exclusion within each variable.

• Balanced: includes observations when data on all variables in the list are available for 
all cross-sections in the same period. The balanced option performs casewise exclu-
sion by both variable and cross-section.

Next, you should choose the computational method corresponding to one of the four data 
structures:
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• Stacked data: display statistics for each variable in the list, computed over all cross-
sections and periods. These are the descriptive statistics that you would get if you 
ignored the pooled nature of the data, stacked the data, and computed descriptive sta-
tistics. 

• Stacked – means removed: compute statistics for each variable in the list after 
removing the cross-sectional means, taken over all cross-sections and periods.

• Cross-section specific: show the descriptive statistics for each cross-sectional vari-
able, computed across all periods. These are the descriptive statistics derived by com-
puting statistics for the individual series.

• Time period specific: compute period-specific statistics. For each period, compute the 
statistic using data on the variable from all the cross-sectional units in the pool.

Click on OK, and EViews will display a pool view containing tabular output with the 
requested statistics. If you select Stacked data or Stacked - means removed, the view will 
show a single column containing the descriptive statistics for each ordinary and pool series 
in the list, computed from the stacked data. If you select Cross-section specific, EViews will 
show a single column for each ordinary series, and multiple columns for each pool series. If 
you select Time period specific, the view will show a single column for each ordinary or 
pool series statistic, with each row of the column corresponding to a period in the workfile. 
Note that there will be a separate column for each statistic computed for an ordinary or pool 
series; a column for the mean, a column for the variance, etc.

You should be aware that the latter two methods may produce a great deal of output. Cross-
section specific computation generates a set of statistics for each pool series/cross-section 
combination. If you ask for statistics for three pool series and there are 20 cross-sections in 
your pool, EViews will display 60 columns of descriptive statistics. For time period specific 
computation, EViews computes a set of statistics for each date/series combination. If you 
have a sample with 100 periods and you provide a list of three pool series, EViews will com-
pute and display a view with columns corresponding to 3 sets of statistics, each of which 
contains values for 100 periods.

If you wish to compute period-specific statistics, you may save the results in series objects. 
See “Making Period Stats” on page 861.

Computing Unit Root Tests

EViews provides convenient tools for computing multiple-series unit root tests for pooled 
data using a pool object. You may use the pool to compute one or more of the following 
types of unit root tests: Levin, Lin and Chu (2002), Breitung (2000), Im, Pesaran and Shin 
(2003), Fisher-type tests using ADF and PP tests—Maddala and Wu (1999) and Choi (2001), 
and Hadri (2000).

To compute the unit root test, select View/Unit Root Test... from the menu of a pool object.
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Enter the name of an ordinary 
or pool series in the topmost 
edit field, then specify the 
remaining settings in the dialog.

These tests, along with the set-
tings in the dialog, are described 
in considerable detail in “Panel 
Unit Root Testing” on page 617.

Performing Cointegra-
tion Tests

Panel cointegration tests are 
available as a view of a group in 
a panel workfile or for a group 
of pooled series defined using a 
pool object. EViews allows you to conduct several different tests: Pedroni (1999, 2004), Kao 
(1999) and Fisher-type test using Johansen’s test methodology (Maddala and Wu, 1999). 

To compute the panel cointe-
gration test for pooled data, 
select Views/Cointegration 
Test… from the menu of a 
pool object. Enter the names 
of at least two pool series or a 
combination of at least two 
pool and ordinary series in the 
topmost Variables field, then 
specify the rest of the options.

The remaining options are 
identical to those encountered 
when performing panel 
cointegration testing using a 
group in a panel-structured 
workfile. For details, see “Ref-
erences,” beginning on 
page 1041.

In this example, specify two pool variables “IVM?” and “MM?” and one ordinary variable 
“X”, so that EViews tests for cointegration between the pool series IVM? against pool series 
MM? and the stacked common series X. 
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Making a Group of Pool Series

If you click on Proc/Make Group… and enter the names of ordinary and pool series. 
EViews will use the pool definitions to create an untitled group object containing the speci-
fied series. This procedure is useful when you wish to work with a set of pool series using 
the tools provided for groups.

Suppose, for example, that you wish to compute the covariance matrix for the C? series. 
Simply open the Make Group dialog, and enter the pool series name “C?”. EViews will cre-
ate a group containing the set of cross-section specific series, with names beginning with 
“C” and ending with a cross-section identifier.

Then, in the new group object, you may select View/Covariance Analysis... to compute the 
covariance matrix of the series in the group. EViews will perform the analysis using all of 
the individual series in the group.

Making Period Stats

To save period-specific statistics in series in the workfile, select Proc/Make Period Stats 
Series… from the pool window, and fill out the dialog.

In the edit window, list the series for which you 
wish to calculate period-statistics. Next, select the 
particular statistics you wish to compute, and 
choose a sample option. 

EViews will save your statistics in new series and 
will open an untitled group window to display the 
results. The series will be named automatically 
using the base name followed by the name of the 
statistic (MEAN, MED, VAR, SD, OBS, SKEW, 
KURT, JARQ, MAX, MIN). In this example, EViews 
will save the statistics using the names CMEAN, 
GMEAN, CVAR, GVAR, CMAX, GMAX, CMIN, and 
GMIN.

Making a System

Suppose that you wish to estimate a complex specification that cannot easily be estimated 
using the built-in features of the pool object. For example, you may wish to estimate a 
pooled equation imposing arbitrary coefficient restrictions, or using specialized GMM tech-
niques that are not available in pooled estimation.

In these circumstances, you may use the pool to create a system object using both common 
and cross-section specific coefficients, AR terms, and instruments. The resulting system 
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object may then be further customized, and estimated using all of the techniques available 
for system estimation.

Select Proc/Make System… 
and fill out the dialog. You 
may enter the dependent 
variable, common and cross-
section specific variables, 
and use the checkbox to 
allow for cross-sectional 
fixed effects. You may also 
enter a list of common and 
cross-section specific instru-
mental variables, and 
instruct EViews to add 
lagged dependent and inde-
pendent regressors as instru-
ments in models with AR 
specifications. 

When you click on OK, EViews will take your specification and create a new system object 
containing a single equation for each cross-section, using the specification provided.

Deleting/Storing/Fetching Pool Data

Pools may be used to delete, store, or fetch sets of series. Simply select Proc/Delete pool 
series…, Proc/Store pool series (DB)…, or Proc/Fetch pool series (DB)… as appropriate, 
and enter the ordinary and pool series names of interest.

If, for example, you instruct EViews to delete the pool series C?, EViews will loop through all 
of the cross-section identifiers and delete all series whose names begin with the letter “C” 
and end with the cross-section identifier.

Exporting Pooled Data

You can export your data into a disk file, or into a new workfile or workfile page, by revers-
ing one of the procedures described above for data input.
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To write pooled data in 
stacked form into an ASCII 
text, Excel, or Lotus work-
sheet file, first open the pool 
object, then from the pool 
menu, select Proc/Export 
Pool data (ASCII, .XLS, 
.WK?)…. Note that in order 
to access the pool specific 
export tools, you must select 
this procedure from the pool 
menu, not from the work-
file menu.

EViews will first open a file 
dialog prompting you to specify a file name and type. If you provide a new name, EViews 
will create the file; otherwise it will prompt you to overwrite the existing file. 

Once you have specified your file, a pool write dialog will be displayed. Here we see the 
Excel Spreadsheet Export dialog. Specify the format of your data, including whether to 
write series in columns or in rows, and whether to stack by cross-section or by period. Then 
list the ordinary series, groups, and pool series to be written to the file, the sample of obser-
vations to be written, and select any export options. When you click on OK, EViews will 
write the specified file.

Since EViews allows you to both read and write data that are unstacked, stacked by cross-
section, or stacked by date, you may use the pool import and export procedures to restruc-
ture your data in accordance with your needs.

Alternatively, you may use the workfile reshaping tools to stack the pooled data in a new 
workfile page. From the main workfile menu, select Proc/Reshape Current Page/Stack in 
New Page... to open the Workfile Stack dialog, and enter the name of a pool object in the 
top edit field, and the names of the ordinary series, groups, and pool series to be stacked in 
the second edit field.
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The Order of obs option allows you to 
order the data in Stacked form (stacking 
the data by series, which orders by cross-
section), or in Interleaved format 
(stacked the data by interleaving series, 
which orders the data by period or date).

The default naming rule for series in the 
destination is to use the base name. For 
example, if you stack the pool series 
“SALES?” and the individual series GEN-
DER, the corresponding stacked series 
will, by default, be named “SALES”, and 
“GENDER”. If use of the default naming 
convention will create problems in the 
destination workfile, you should use the 
Name for stacked series field to specify 
an alternative. If, for example, you enter “_NEW”, the target names will be formed by taking 
the base name, and appending the additional text, as in “SALES_NEW” and “GEN-
DER_NEW”.

See “Stacking a Workfile” on page 307 of User’s Guide I for a more detailed discussion of the 
workfile stacking procedure.

Pooled Estimation

EViews pool objects allow you to estimate your model using least squares or instrumental 
variables (two-stage least squares), with correction for fixed or random effects in both the 
cross-section and period dimensions, AR errors, GLS weighting, and robust standard errors, 
all without rearranging or reordering your data.

We begin our discussion by walking you through the steps that you will take in estimating a 
pool equation. The wide range of models that EViews supports means that we cannot 
exhaustively describe all of the settings and specifications. A brief background discussion of 
the supported techniques is provided in “Estimation Background,” beginning on page 879.

Estimating a Pool Equation

To estimate a pool equation specification, simply press the Estimate button on your pool 
object toolbar or select Proc/Estimate... from the pool menu, and the basic pool estimation 
dialog will open:
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First, you should specify the estimation settings in the lower portion of the dialog. Using the 
Method dropdown menu, you may choose between LS - Least Squares (and AR), ordinary 
least squares regression, TSLS - Two-Stage Least Squares (and AR), two-stage least squares 
(instrumental variable) regression. If you select the latter, the dialog will differ slightly from 
this example, with the provision of an additional tab (page) for you to specify your instru-
ments (see “Instruments” on page 869).

You should also provide an estimation sample in the Sample edit box. By default, EViews 
will use the specified sample string to form use the largest sample possible in each cross-sec-
tion. An observation will be excluded if any of the explanatory or dependent variables for 
that cross-section are unavailable in that period.

The checkbox for Balanced Sample instructs EViews to perform listwise exclusion over all 
cross-sections. EViews will eliminate an observation if data are unavailable for any cross-sec-
tion in that period. This exclusion ensures that estimates for each cross-section will be based 
on a common set of dates.

Note that if all of the observations for a cross-section unit are not available, that unit will 
temporarily be removed from the pool for purposes of estimation. The EViews output will 
inform you if any cross-section were dropped from the estimation sample.

You may now proceed to fill out the remainder of the dialog.
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Dependent Variable

List a pool variable, or an EViews expression containing ordinary and pool variables, in the 
Dependent Variable edit box. 

Regressors and AR terms

On the right-hand side of the dialog, you should list your regressors in the appropriate edit 
boxes:

• Common coefficients: — enter variables that have the same coefficient across all 
cross-section members of the pool. EViews will include a single coefficient for each 
variable, and will label the output using the original expression.

• Cross-section specific coefficients: — list variables with different coefficients for 
each member of the pool. EViews will include a different coefficient for each cross-
sectional unit, and will label the output using a combination of the cross-section iden-
tifier and the series name.

• Period specific coefficients: — list variables with different coefficients for each 
observed period. EViews will include a different coefficient for each period unit, and 
will label the output using a combination of the period identifier and the series name.

For example, if you include the ordinary variable TIME and POP? in the common coefficient 
list, the output will include estimates for TIME and POP?. If you include these variables in 
the cross-section specific list, the output will include coefficients labeled “_USA—TIME”, 
“_UK—TIME”, and “_USA—POP_USA”, “_UK—POP_UK”, etc.

Be aware that estimating your model with cross-section or period specific variables may gen-
erate large numbers of coefficients. If there are cross-section specific regressors, the number 
of these coefficients equals the product of the number of pool identifiers and the number of 
variables in the list; if there are period specific regressors, the number of corresponding coef-
ficients is the number of periods times the number of variables in the list.

You may include AR terms in either the common or cross-section coefficients lists. If the 
terms are entered in the common coefficients list, EViews will estimate the model assuming 
a common AR error. If the AR terms are entered in the cross-section specific list, EViews will 
estimate separate AR terms for each pool member. See “Specifying AR Terms” on page 112 
for a description of AR specifications.

Note that EViews only allows specification by list for pool equations. If you wish to estimate 
a nonlinear specification, you must first create a system object, and then edit the system 
specification (see “Making a System” on page 861).
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Fixed and Random Effects

You should account for individual and period effects using the Fixed and 
Random Effects dropdown menus. By default, EViews assumes that there 
are no effects so that the dropdown menus are both set to None. You may 
change the default settings to allow for either Fixed or Random effects in either the cross-
section or period dimension, or both.

There are some specifications that are not currently supported. You may not, for example, 
estimate random effects models with cross-section specific coefficients, AR terms, or weight-
ing. Furthermore, while two-way random effects specifications are supported for balanced 
data, they may not be estimated in unbalanced designs.

Note that when you select a fixed or random effects specification, EViews will automatically 
add a constant to the common coefficients portion of the specification if necessary, to ensure 
that the observation weighted sum of the effects is equal to zero.

Weights

By default, all observations are given equal weight in estimation. You may instruct EViews 
to estimate your specification with estimated GLS weights using the dropdown menu labeled 
Weights.

If you select Cross section weights, EViews will estimate a feasible GLS 
specification assuming the presence of cross-section heteroskedasticity. 
If you select Cross-section SUR, EViews estimates a feasible GLS specifi-
cation correcting for both cross-section heteroskedasticity and contem-
poraneous correlation. Similarly, Period weights allows for period heteroskedasticity, while 
Period SUR corrects for both period heteroskedasticity and general correlation of observa-
tions within a given cross-section. Note that the SUR specifications are each examples of 
what is sometimes referred to as the Parks estimator.
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Options

Clicking on the Options tab 
in the dialog brings up a 
page displaying a variety of 
estimation options for pool 
estimation. Settings that are 
not currently applicable will 
be grayed out.

Coef Covariance Method

By default, EViews reports 
conventional estimates of 
coefficient standard errors 
and covariances.

You may use the dropdown 
menu at the top of the page 
to select from the various 
robust methods available for computing the coefficient standard errors. Each of the methods 
is described in greater detail in “Robust Coefficient Covariances” on page 889. 

Note that the checkbox No d.f. correction permits to you com-
pute robust covariances without the leading degree of freedom 
correction term. This option may make it easier to match 
EViews results to those from other sources.

Weighting Options

If you are estimating a specification that includes a random effects specification, EViews will 
provide you with a Random effects method dropdown menu so that you may specify one of 
the methods for calculating estimates of the component variances. You may choose between 
the default Swamy-Arora, Wallace-Hussain, or Wansbeek-Kapteyn methods. See “Ran-
dom Effects” on page 883 for discussion of the differences between the methods. Note that 
the default Swamy-Arora method should be the most familiar from textbook discussions.

Details on these methods are provided in Baltagi (2005), Baltagi and 
Chang (1994), Wansbeek and Kapteyn (1989).

The checkbox labeled Keep GLS weights may be selected to require EViews to save all esti-
mated GLS weights with the equation, regardless of their size. By default, EViews will not 
save estimated weights in system (SUR) settings, since the size of the required matrix may 
be quite large. If the weights are not saved with the equation, there may be some pool views 
and procedures that are not available.
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Coefficient Name

By default, EViews uses the default coefficient vector C to hold the estimates of the coeffi-
cients and effects. If you wish to change the default, simply enter a name in the edit field. If 
the specified coefficient object exists, it will be used, after resizing if necessary. If the object 
does not exist, it will be created with the appropriate size. If the object exists but is an 
incompatible type, EViews will generate an error.

Iteration Control

The familiar Max Iterations and Convergence criterion edit boxes that allow you to set the 
convergence test for the coefficients and GLS weights.

If your specification contains AR terms, the AR starting coefficient values dropdown menu 
allows you to specify starting values as a fraction of the OLS (with no AR) coefficients, zero, 
or user-specified values.

If Display Settings is checked, EViews will display additional information about conver-
gence settings and initial coefficient values (where relevant) at the top of the regression out-
put.

The last set of radio buttons is used to determine the iteration settings for coefficients and 
GLS weighting matrices.

The first two settings, Simultaneous updating and Sequential updating should be 
employed when you want to ensure that both coefficients and weighting matrices are iter-
ated to convergence. If you select the first option, EViews will, at every iteration, update 
both the coefficient vector and the GLS weights; with the second option, the coefficient vec-
tor will be iterated to convergence, then the weights will be updated, then the coefficient 
vector will be iterated, and so forth. Note that the two settings are identical for GLS models 
without AR terms.

If you select one of the remaining two cases, Update coefs to convergence and Update 
coefs once, the GLS weights will only be updated once. In both settings, the coefficients are 
first iterated to convergence, if necessary, in a model with no weights, and then the weights 
are computed using these first-stage coefficient estimates. If the first option is selected, 
EViews will then iterate the coefficients to convergence in a model that uses the first-stage 
weight estimates. If the second option is selected, the first-stage coefficients will only be iter-
ated once. Note again that the two settings are identical for GLS models without AR terms.

By default, EViews will update GLS weights once, and then will update the coefficients to 
convergence.

Instruments

To estimate a pool specification using instrumental variables techniques, you should select 
TSLS - Two-Stage Least Squares (and AR) in the Method dropdown menu at the bottom of 
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the main (Specification) dialog page. EViews will respond by creating a three-tab dialog in 
which the middle tab (page) is used to specify your instruments.

As with the regression speci-
fication, the instrument list 
specification is divided into a 
set of Common, Cross-sec-
tion specific, and Period 
specific instruments. The 
interpretation of these lists is 
the same as for the regres-
sors; if there are cross-sec-
tion specific instruments, the 
number of these instruments 
equals the product of the 
number of pool identifiers 
and the number of variables 
in the list; if there are period 
specific instruments, the 
number of corresponding 
instruments is the number of periods times the number of variables in the list.

Note that you need not specify constant terms explicitly since EViews will internally add 
constants to the lists corresponding to the specification in the main page.

Lastly, there is a checkbox labeled Include lagged regressors for equations with AR terms 
that will be displayed if your specification includes AR terms. Recall that when estimating 
an AR specification, EViews performs nonlinear least squares on an AR differenced specifi-
cation. By default, EViews will add lagged values of the dependent and independent regres-
sors to the corresponding lists of instrumental variables to account for the modified 
differenced specification. If, however, you desire greater control over the set of instruments, 
you may uncheck this setting. 

Pool Equation Examples

For illustrative purposes, we employ the balanced firm-level data from Grunfeld (1958) that 
have been used extensively as an example dataset (e.g., Baltagi, 2005). The workfile (“Grun-
feld_Baltagi_pool.WF1”) contains annual observations on investment (I?), firm value (F?), 
and capital stock (K?) for 10 large U.S. manufacturing firms for the 20 years from 1935-54.

The pool identifiers for our data are “AR”, “CH”, “DM”, “GE”, “GM”, “GY”, “IB”, “UO”, 
“US”, “WH”.

We obviously cannot demonstrate all of the specifications that may be estimated using these 
data, but we provide a few illustrative examples.
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Fixed Effects

First, we estimate a model regressing I? on the common regressors F? and K?, with a cross-
section fixed effect. All regression coefficients are restricted to be the same across all cross-
sections, so this is equivalent to estimating a model on the stacked data, using the cross-sec-
tional identifiers only for the fixed effect.

The top portion of the output from this regression, which shows the dependent variable, 
method, estimation and sample information is given by:
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EViews displays both the estimates of the coefficients and the fixed effects. Note that EViews 
automatically includes a constant term so that the fixed effects estimates sum to zero and 
should be interpreted as deviations from an overall mean.

Note also that the estimates of the fixed effects do not have reported standard errors since 
EViews treats them as nuisance parameters for the purposes of estimation. If you wish to 
compute standard errors for the cross-section effects, you may estimate a model without a 
constant and explicitly enter the C in the Cross-section specific coefficients edit field.

The bottom portion of the output displays the effects specification and summary statistics 
for the estimated model.

Dependent Variable: I?   

Method: Pooled Least Squares   

Date: 12/03/03   Time: 12:21   

Sample: 1935 1954    

Included observations: 20   

Number of cross-sections used: 10   

Total pool (balanced) observations: 200   

Variable Coefficient Std. Error t-Statistic Prob.  

C -58.74394 12.45369 -4.716990 0.0000

F? 0.110124 0.011857 9.287901 0.0000

K? 0.310065 0.017355 17.86656 0.0000

Fixed Effects (Cross)     

AR--C -55.87287    

CH--C 30.93464    

DM--C 52.17610    

GE--C -176.8279    

GM--C -11.55278    

GY--C -28.47833    

IB--C 35.58264    

UO--C -7.809534    

US--C 160.6498    

WH--C 1.198282    
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A few of these summary statistics require discussion. First, the reported R-squared and F-
statistics are based on the difference between the residuals sums of squares from the esti-
mated model, and the sums of squares from a single constant-only specification, not from a 
fixed-effect-only specification. As a result, the interpretation of these statistics is that they 
describe the explanatory power of the entire specification, including the estimated fixed 
effects. Second, the reported information criteria use, as the number of parameters, the 
number of estimated coefficients, including fixed effects. Lastly, the reported Durbin-Watson 
stat is formed simply by computing the first-order residual correlation on the stacked set of 
residuals.

Robust Standard Errors

We may reestimate this specification using White cross-section standard errors to allow for 
general contemporaneous correlation between the firm residuals. The “cross-section” desig-
nation is used to indicate that non-zero covariances are allowed across cross-sections (clus-
tering by period). Simply click on the Options tab and select White cross-section as the 
coefficient covariance matrix, then reestimate the model. The relevant portion of the output 
is given by:

The new output shows the method used for computing the standard errors, and the new 
standard error estimates, t-statistic values, and probabilities reflecting the robust calculation 
of the coefficient covariances. 

Alternatively, we may adopt the Arellano (1987) approach of computing White coefficient 
covariance estimates that are robust to arbitrary within cross-section residual correlation 

 Effects Specification   

Cross-section fixed (dummy variables)   

R-squared 0.944073     Mean dependent var 145.9583 

Adjusted R-squared 0.940800     S.D. dependent var 216.8753 

S.E. of regression 52.76797     Akaike info criterion 10.82781 

Sum squared resid 523478.1     Schwarz criterion 11.02571 

Log likelihood -1070.781     Hannan-Quinn criter. 10.90790 

F-statistic 288.4996     Durbin-Watson stat 0.716733 

Prob(F-statistic) 0.000000    

White cross-section standard errors & covariance (d.f. corrected) 

Variable Coefficient Std. Error t-Statistic Prob.   

C -58.74394 19.61460 -2.994909 0.0031 

F? 0.110124 0.016932 6.504061 0.0000 

K? 0.310065 0.031541 9.830701 0.0000 
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(clustering by cross-section). Select the Options page and choose White period as the coef-
ficient covariance method. The coefficient results are given by.

We caution that the White period results assume that the number of cross-sections is large, 
which is not the case in this example. In fact, the resulting coefficient covariance matrix is of 
reduced rank, a fact that EViews notes in the output.

AR Estimation

We may add an AR(1) term to the specification, and compute estimates using Cross-section 
SUR PCSE methods to compute standard errors that are robust to more contemporaneous 
correlation. EViews will estimate the transformed model using nonlinear least squares, will 
form an estimate of the residual covariance matrix, and will use the estimate in forming 
standard errors. The top portion of the results is given by:

Note in particular the description of the sample adjustment where we show that the estima-
tion drops one observation for each cross-section when performing the AR differencing, as 
well as the description of the method used to compute coefficient covariances.

White period standard errors & covariance (d.f. corrected)  
WARNING: estimated coefficient covariance matrix is of reduced rank 

Variable Coefficient Std. Error t-Statistic Prob.  

C -58.74394 26.87312 -2.185974 0.0301
F? 0.110124 0.014793 7.444423 0.0000
K? 0.310065 0.051357 6.037432 0.0000

Dependent Variable: I?   
Method: Pooled Least Squares   
Date: 08/17/09   Time: 14:45   
Sample (adjusted) : 1936 1954   
Included observations: 19 after adjustments  
Cross-sections included: 10   
Total pool (balanced) observations: 190   
Cross-section SUR (PCSE) standard errors & covariance (d.f.  
        corrected)    
Convergence achieved after 14 iterations   

Variable Coefficient Std. Error t-Statistic Prob.  

C -63.45169 28.79868 -2.203285 0.0289
F? 0.094744 0.015577 6.082374 0.0000
K? 0.350205 0.050155 6.982469 0.0000

AR(1) 0.686108 0.105119 6.526979 0.0000
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Random Effects

Alternatively, we may pro-
duce estimates for the two 
way random effects specifi-
cation. First, in the Specifi-
cation page, we set both the 
cross-section and period 
effects dropdown menus to 
Random. Note that the dia-
log changes to show that 
weighted estimation is not 
available with random effects 
(nor is AR estimation).

Next, in the Options page we 
estimate the coefficient cova-
riance using the Ordinary 
method and we change the 
Random effects method to use the Wansbeek-Kapteyn method of computing the estimates 
of the random component variances.

Lastly, we click on OK to estimate the model.

The top portion of the dialog displays basic information about the specification, including 
the method used to compute the component variances, as well as the coefficient estimates 
and associated statistics:

The middle portion of the output (not depicted) displays the best-linear unbiased predictor 
estimates of the random effects themselves.

Dependent Variable: I?   

Method: Pooled EGLS (Two-way random effects)  

Date: 12/03/03   Time: 14:28   

Sample: 1935 1954    

Included observations: 20   

Number of cross-sections used: 10   

Total pool (balanced) observations: 200   

Wansbeek and Kapteyn estimator of component variances  

Variable Coefficient Std. Error t-Statistic Prob.   

C -63.89217 30.53284 -2.092573 0.0377 

F? 0.111447 0.010963 10.16577 0.0000 

K? 0.323533 0.018767 17.23947 0.0000 
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The next portion of the output describes the estimates of the component variances:

Here, we see that the estimated cross-section, period, and idiosyncratic error component 
standard deviations are 89.26, 15.78, and 51.72, respectively. As seen from the values of 
Rho, these components comprise 0.73, 0.02 and 0.25 of the total variance. Taking the cross-
section component, for example, Rho is computed as:

(43.1)

In addition, EViews reports summary statistics for the random effects GLS weighted data 
used in estimation, and a subset of statistics computed for the unweighted data.

Cross-section Specific Regressors

Suppose instead that we elect to estimate a specification with I? as the dependent variable, C 
and F? as the common regressors, and K? as the cross-section specific regressor, using cross-
section weighted least squares. The top portion of the output is given by:

 Effects Specification   

   S.D.  Rho  

Cross-section random 89.26257 0.7315

Period random  15.77783 0.0229

Idiosyncratic random 51.72452 0.2456

0.7315 89.262572 89.262572 15.777832 51.724522  
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Note that EViews displays results for each of the cross-section specific K? series, labeled 
using the equation identifier followed by the series name. For example, the coefficient 
labeled “AR--KAR” is the coefficient of KAR in the cross-section equation for firm AR.

Group Dummy Variables

In our last example, we consider the use of the @INGRP pool function to estimate an speci-
fication containing group dummy variables (see “Pool Series” on page 848). Suppose we 
modify our pool definition so that we have defined a group named “MYGROUP” containing 
the identifiers “GE”, “GM”, and “GY”. We may then estimate a pool specification using the 
common regressor list:

c f? k? @ingrp(mygrp)

where the latter pool series expression refers to a set of 10 implicit series containing dummy 
variables for group membership. The implicit series associated with the identifiers “GE”, 
“GM”, and “GY” will contain the value 1, and the remaining seven series will contain the 
value 0.

The results from this estimation are given by:

Dependent Variable: I?   

Method: Pooled EGLS (Cross-section weights)  

Date: 12/18/03   Time: 14:40   

Sample: 1935 1954    

Included observations: 20   

Number of cross-sections used: 10   

Total pool (balanced) observations: 200   

Linear estimation after one-step weighting matrix  

Variable Coefficient Std. Error t-Statistic Prob.   

C -4.696363 1.103187 -4.257089 0.0000 

F? 0.074084 0.004077 18.17140 0.0000 

AR--KAR 0.092557 0.007019 13.18710 0.0000 

CH--KCH 0.321921 0.020352 15.81789 0.0000 

DM--KDM 0.434331 0.151100 2.874468 0.0045 

GE--KGE -0.028400 0.034018 -0.834854 0.4049 

GM--KGM 0.426017 0.026380 16.14902 0.0000 

GY--KGY 0.074208 0.007050 10.52623 0.0000 

IB--KIB 0.273784 0.019948 13.72498 0.0000 

UO--KUO 0.129877 0.006307 20.59268 0.0000 

US--KUS 0.807432 0.074870 10.78444 0.0000 

WH--KWH -0.004321 0.031420 -0.137511 0.8908 
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We see that the mean value of I? for the three groups is substantially lower than for the 
remaining groups, and that the difference is statistically significant at conventional levels. 

Pool Equation Views and Procedures

Once you have estimated your pool equation, you may examine your output in the usual 
ways:

Representation

Select View/Representations to examine your specification. EViews estimates your pool as 
a system of equations, one for each cross-section unit.

Estimation Output

View/Estimation Output will change the display to show the results from the pooled esti-
mation.

As with other estimation objects, you can examine the estimates of the coefficient covari-
ance matrix by selecting View/Coef Covariance Matrix.

Testing 

EViews allows you to perform coefficient tests on the estimated parameters of your pool 
equation. Select View/Wald Coefficient Tests… and enter the restriction to be tested. Addi-
tional tests are described in the panel discussion “Panel Equation Testing” on page 943

Dependent Variable: I?   

Method: Pooled Least Squares   

Date: 08/22/06   Time: 10:47   

Sample: 1935 1954    

Included observations: 20   

Cross-sections included: 10   

Total pool (balanced) observations: 200   

Variable Coefficient Std. Error t-Statistic Prob.  

C -34.97580 8.002410 -4.370659 0.0000

F? 0.139257 0.005515 25.25029 0.0000

K? 0.259056 0.021536 12.02908 0.0000

@INGRP(MYGRP) -137.3389 14.86175 -9.241093 0.0000

R-squared 0.869338     Mean dependent var 145.9583

Adjusted R-squared 0.867338     S.D. dependent var 216.8753

S.E. of regression 78.99205     Akaike info criterion 11.59637

Sum squared resid 1222990.     Schwarz criterion 11.66234

Log likelihood -1155.637     Hannan-Quinn criter. 11.62306

F-statistic 434.6841     Durbin-Watson stat 0.356290

Prob(F-statistic) 0.000000    
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Residuals

You can view your residuals in spreadsheet or graphical format by selecting View/Residu-
als/Table or View/Residuals/Graph. EViews will display the residuals for each cross-sec-
tional equation. Each residual will be named using the base name RES, followed by the 
cross-section identifier.

If you wish to save the residuals in series for later use, select Proc/Make Resids. This proce-
dure is particularly useful if you wish to form specification or hypothesis tests using the 
residuals.

Residual Covariance/Correlation

You can examine the estimated residual contemporaneous covariance and correlation matri-
ces. Select View/Residual and then either Covariance Matrix or Correlation Matrix to 
examine the appropriate matrix.

Forecasting

To perform forecasts using a pool equation you will first make a model. Select Proc/Make 
Model to create an untitled model object that incorporates all of the estimated coefficients. If 
desired, this model can be edited. Solving the model will generate forecasts for the depen-
dent variable for each of the cross-section units. For further details, see Chapter 42. “Mod-
els,” on page 781.

Estimation Background

The basic class of models that can be estimated using a pool object may be written as:

, (43.2)

where  is the dependent variable, and  is a -vector of regressors, and  are the 
error terms for  cross-sectional units observed for dated periods 

. The  parameter represents the overall constant in the model, while the 
 and  represent cross-section or period specific effects (random or fixed). Identification 

obviously requires that the  coefficients have restrictions placed upon them. They may be 
divided into sets of common (across cross-section and periods), cross-section specific, and 
period specific regressor parameters. 

While most of our discussion will be in terms of a balanced sample, EViews does not require 
that your data be balanced; missing values may be used to represent observations that are 
not available for analysis in a given period. We will detail the unbalanced case only where 
deemed necessary.

We may view these data as a set of cross-section specific regressions so that we have  
cross-sectional equations each with  observations stacked on top of one another:
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(43.3)

for , where  is a -element unit vector,  is the -element identity 
matrix, and  is a vector containing all of the period effects, . 

Analogously, we may write the specification as a set of  period specific equations, each 
with  observations stacked on top of one another.

(43.4)

for , where  is a -element unit vector,  is the -element identity 
matrix, and  is a vector containing all of the cross-section effects, . 

For purposes of discussion we will employ the stacked representation of these equations. 
First, for the specification organized as a set of cross-section equations, we have:

(43.5)

where the matrices  and  are set up to impose any restrictions on the data and parame-
ters between cross-sectional units and periods, and where the general form of the uncondi-
tional error covariance matrix is given by:

(43.6)

If instead we treat the specification as a set of period specific equations, the stacked (by 
period) representation is given by,

(43.7)

with error covariance,

(43.8)

The remainder of this section describes briefly the various components that you may employ 
in an EViews pool specification.

Cross-section and Period Specific Regressors

The basic EViews pool specification in Equation (43.2) allows for  slope coefficients that 
are common to all individuals and periods, as well as coefficients that are either cross-sec-
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tion or period specific. Before turning to the general specification, we consider three extreme 
cases.

First, if all of the  are common across cross-sections and periods, we may simplify the 
expression for Equation (43.2) to:

(43.9)

There are a total of  coefficients in , each corresponding to an element of .

Alternately, if all of the  coefficients are cross-section specific, we have:

(43.10)

Note that there are  in each  for a total of  slope coefficients.

Lastly, if all of the  coefficients are period specific, the specification may be written as:

(43.11)

for a total of  slope coefficients.

More generally, splitting  into the three groups (common regressors , cross-section 
specific regressors , and period specific regressors ), we have:

(43.12)

If there are  common regressors,  cross-section specific regressors, and  period spe-
cific regressors, there are a total of  regressors in .

EViews estimates these models by internally creating interaction variables,  for each 
regressor in the cross-section regressor list and  for each regressor in the period-specific 
list, and using them in the regression. Note that estimating models with cross-section or 
period specific coefficients may lead to the generation of a large number of implicit interac-
tion variables, and may be computationally intensive, or lead to singularities in estimation.

AR Specifications

EViews provides convenient tools for estimating pool specifications that include AR terms. 
Consider a restricted version of Equation (43.2) on page 879 that does not admit period spe-
cific regressors or effects,

(43.13)

where the cross-section effect  is either not present, or is specified as a fixed effect. We 
then allow the residuals to follow a general AR process:

(43.14)
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for all , where the innovations  are independent and identically distributed, assuming 
further that there is no unit root. Note that we allow the autocorrelation coefficients  to be 
cross-section, but not period specific.

If, for example, we assume that  follows an AR(1) process with cross-section specific AR 
coefficients, EViews will estimate the transformed equation:

(43.15)

using iterative techniques to estimate ( ) for all . See “Specifying AR Terms” on 
page 112 for additional discussion.

We emphasize that EViews does place are restrictions on the specifications that admit AR 
errors. AR terms may not be estimated in specifications with period specific regressors or 
effects. Lastly, AR terms are not allowed in selected GLS specifications (random effects, 
period specific heteroskedasticity and period SUR). In those GLS specifications where AR 
terms are allowed, the error covariance assumption is for the innovations not the autoregres-
sive error.

Fixed and Random Effects

The presence of cross-section and period specific effects terms  and  may be handled 
using fixed or random effects methods.

You may, with some restrictions, specify models containing effects in one or both dimen-
sion, for example, a fixed effect in the cross-section dimension, a random effect in the period 
dimension, or a fixed effect in the cross-section and a random effect in the period dimen-
sion. Note, in particular, however, that two-way random effects may only be estimated if the 
data are balanced so that every cross-section has the same set of observations.

Fixed Effects

The fixed effects portions of specifications are handled using orthogonal projections. In the 
simple one-way fixed effect specifications and the balanced two-way fixed specification, 
these projections involve the familiar approach of removing cross-section or period specific 
means from the dependent variable and exogenous regressors, and then performing the 
specified regression using the demeaned data (see, for example Baltagi, 2005). More gener-
ally, we apply the results from Davis (2002) for estimating multi-way error components 
models with unbalanced data.

Note that if instrumental variables estimation is specified with fixed effects, EViews will 
automatically add to the instrument list, the constants implied by the fixed effects so that 
the orthogonal projection is also applied to the instrument list.
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Random Effects

The random effects specifications assumes that the corresponding effects  and  are real-
izations of independent random variables with mean zero and finite variance. Most impor-
tantly, the random effects specification assumes that the effect is uncorrelated with the 
idiosyncratic residual .

EViews handles the random effects models using feasible GLS techniques. The first step, 
estimation of the covariance matrix for the composite error formed by the effects and the 
residual (e.g.,  in the two-way random effects specification), uses one of 
the quadratic unbiased estimators (QUE) from Swamy-Arora, Wallace-Hussain, or Wans-
beek-Kapteyn. Briefly, the three QUE methods use the expected values from quadratic forms 
in one or more sets of first-stage estimated residuals to compute moment estimates of the 
component variances . The methods differ only in the specifications estimated 
in evaluating the residuals, and the resulting forms of the moment equations and estimators.

The Swamy-Arora estimator of the component variances, cited most often in textbooks, uses 
residuals from the within (fixed effect) and between (means) regressions. In contrast, the 
Wansbeek and Kapteyn estimator uses only residuals from the fixed effect (within) estima-
tor, while the Wallace-Hussain estimator uses only OLS residuals. In general, the three 
should provide similar answers, especially in large samples. The Swamy-Arora estimator 
requires the calculation of an additional model, but has slightly simpler expressions for the 
component variance estimates. The remaining two may prove easier to estimate in some set-
tings.

Additional details on random effects models are provided in Baltagi (2005), Baltagi and 
Chang (1994), Wansbeek and Kapteyn (1989). Note that your component estimates may dif-
fer slightly from those obtained from other sources since EViews always uses the more com-
plicated unbiased estimators involving traces of matrices that depend on the data (see 
Baltagi (2005) for discussion, especially “Note 3” on p. 28).

Once the component variances have been estimated, we form an estimator of the composite 
residual covariance, and then GLS transform the dependent and regressor data.

If instrumental variables estimation is specified with random effects, EViews will GLS trans-
form both the data and the instruments prior to estimation. This approach to random effects 
estimation has been termed generalized two-stage least squares (G2SLS). See Baltagi (2005, 
p. 113-116) and “Random Effects and GLS” on page 887 for additional discussion.

Generalized Least Squares

You may estimate GLS specifications that account for various patterns of correlation 
between the residuals. There are four basic variance structures that you may specify: cross-
section specific heteroskedasticity, period specific heteroskedasticity, contemporaneous 
covariances, and between period covariances.
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Note that all of the GLS specifications described below may be estimated in one-step form, 
where we estimate coefficients, compute a GLS weighting transformation, and then reesti-
mate on the weighted data, or in iterative form, where to repeat this process until the coeffi-
cients and weights converge.

Cross-section Heteroskedasticity

Cross-section heteroskedasticity allows for a different residual variance for each cross sec-
tion. Residuals between different cross-sections and different periods are assumed to be 0. 
Thus, we assume that:

(43.16)

for all , ,  and  with  and , where  contains  and, if estimated by 
fixed effects, the relevant cross-section or period effects ( ).

Using the cross-section specific residual vectors, we may rewrite the main assumption as:

(43.17)

GLS for this specification is straightforward. First, we perform preliminary estimation to 
obtain cross-section specific residual vectors, then we use these residuals to form estimates 
of the cross-specific variances. The estimates of the variances are then used in a weighted 
least squares procedure to form the feasible GLS estimates.

Period Heteroskedasticity

Exactly analogous to the cross-section case, period specific heteroskedasticity allows for a 
different residual variance for each period. Residuals between different cross-sections and 
different periods are still assumed to be 0 so that:

(43.18)

for all , ,  and  with , where  contains  and, if estimated by fixed effects, 
the relevant cross-section or period effects ( ).

Using the period specific residual vectors, we may rewrite the first assumption as:

(43.19)

We perform preliminary estimation to obtain period specific residual vectors, then we use 
these residuals to form estimates of the period variances, reweight the data, and then form 
the feasible GLS estimates.
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Contemporaneous Covariances (Cross-section SUR)

This class of covariance structures allows for conditional correlation between the contempo-
raneous residuals for cross-section  and , but restricts residuals in different periods to be 
uncorrelated. Specifically, we assume that:

(43.20)

for all , ,  and  with . The errors may be thought of as cross-sectionally cor-
related. Alternately, this error structure is sometimes referred to as clustered by period since 
observations for a given period are correlated (form a cluster). Note that in this specification 
the contemporaneous covariances do not vary over . 

Using the period specific residual vectors, we may rewrite this assumption as,

(43.21)

for all , where,

(43.22)

We term this a Cross-section SUR specification since it involves covariances across cross-sec-
tions as in a seemingly unrelated regressions type framework (where each equation corre-
sponds to a cross-section). 

Cross-section SUR generalized least squares on this specification (sometimes referred to as 
the Parks estimator) is simply the feasible GLS estimator for systems where the residuals are 
both cross-sectionally heteroskedastic and contemporaneously correlated. We employ resid-
uals from first stage estimates to form an estimate of . In the second stage, we perform 
feasible GLS.

Bear in mind that there are potential pitfalls associated with the SUR/Parks estimation (see 
Beck and Katz (1995)). For one, EViews may be unable to compute estimates for this model 
when you the dimension of the relevant covariance matrix is large and there are a small 
number of observations available from which to obtain covariance estimates. For example, if 
we have a cross-section SUR specification with large numbers of cross-sections and a small 
number of time periods, it is quite likely that the estimated residual correlation matrix will 
be nonsingular so that feasible GLS is not possible.
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It is worth noting that an attractive alternative to the SUR methodology estimates the model 
without a GLS correction, then corrects the coefficient estimate covariances to account for 
the contemporaneous correlation. See “Robust Coefficient Covariances” on page 889.

Note also that if cross-section SUR is combined with instrumental variables estimation, 
EViews will employ a Generalized Instrumental Variables estimator in which both the data 
and the instruments are transformed using the estimated covariances. See Wooldridge 
(2002) for discussion and comparison with the three-stage least squares approach.

Serial Correlation (Period SUR)

This class of covariance structures allows for arbitrary heteroskedasticity and serial correla-
tion between the residuals for a given cross-section, but restricts residuals in different cross-
sections to be uncorrelated. This error structure is sometimes referred to as clustered by 
cross-section since observations in a given cross-section are correlated (form a cluster).

Accordingly, we assume that:

(43.23)

for all , ,  and  with . Note that in this specification the heteroskedasticity and 
serial correlation does not vary across cross-sections .

Using the cross-section specific residual vectors, we may rewrite this assumption as,

(43.24)

for all , where,

(43.25)

We term this a Period SUR specification since it involves covariances across periods within a 
given cross-section, as in a seemingly unrelated regressions framework with period specific 
equations. In estimating a specification with Period SUR, we employ residuals obtained from 
first stage estimates to form an estimate of . In the second stage, we perform feasible 
GLS.

See “Contemporaneous Covariances (Cross-section SUR)” on page 885 for related discussion 
of errors clustered-by-period.
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Instrumental Variables

All of the pool specifications may be estimated using instrumental variables techniques. In 
general, the computation of the instrumental variables estimator is a straightforward exten-
sion of the standard OLS estimator. For example, in the simplest model, the OLS estimator 
may be written as:

(43.26)

while the corresponding IV estimator is given by:

(43.27)

where  is the orthogonal projection matrix onto the .

There are, however, additional complexities introduced by instruments that require some 
discussion.

Cross-section and Period Specific Instruments

As with the regressors, we may divide the instruments into three groups (common instru-
ments , cross-section specific instruments , and period specific instruments ). 

You should make certain that any exogenous variables in the regressor groups are included 
in the corresponding instrument groups, and be aware that each entry in the latter two 
groups generates multiple instruments.

Fixed Effects

If instrumental variables estimation is specified with fixed effects, EViews will automatically 
add to the instrument list any constants implied by the fixed effects so that the orthogonal 
projection is also applied to the instrument list. Thus, if  is the fixed effects transforma-
tion operator, we have:

(43.28)

where .

Random Effects and GLS

Similarly, for random effects and other GLS estimators, EViews applies the weighting to the 
instruments as well as the dependent variable and regressors in the model. For example, 
with data estimated using cross-sectional GLS, we have:
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(43.29)

where .

In the context of random effects specifications, this approach to IV estimation is termed gen-
eralized two-stage least squares (G2SLS) method (see Baltagi (2005, p. 113-116) for refer-
ences and discussion). Note that in implementing the various random effects methods 
(Swamy-Arora, Wallace-Hussain, Wansbeek-Kapteyn), we have extended the existing results 
to derive the unbiased variance components estimators in the case of instrumental variables 
estimation.

More generally, the approach may simply be viewed as a special case of the Generalized 
Instrumental Variables (GIV) approach in which data and the instruments are both trans-
formed using the estimated covariances. You should be aware that this has approach has the 
effect of altering the implied orthogonality conditions. See Wooldridge (2002) for discussion 
and comparison with a three-stage least squares approach in which the instruments are not 
transformed. See “GMM Details” on page 967 for an alternative approach.

AR Specifications

EViews estimates AR specifications by transforming the data to a nonlinear least squares 
specification, and jointly estimating the original and the AR coefficients.

This transformation approach raises questions as to what instruments to use in estimation. 
By default, EViews adds instruments corresponding to the lagged endogenous and lagged 
exogenous variables introduced into the specification by the transformation.

For example, in an AR(1) specification, we have the original specification,

(43.30)

and the transformed equation,

(43.31)

where  and  are introduced by the transformation. EViews will, by default, add 
these to the previously specified list of instruments .

You may, however, instruct EViews not to add these additional instruments. Note, however, 
that the order condition for the transformed model is different than the order condition for 
the untransformed specification since we have introduced additional coefficients corre-
sponding to the AR coefficients. If you elect not to add the additional instruments automati-

b̂GLS XiQ̂M
1–
Xi

i
 
  1–

XiQ̂M
1–
Yi

i
 
 

b̂GIV XiQ̂M
1– 2

PZi
Q̂M

1 2–
Xi

i
 
  1–

Xi Q̂M
1 2–

PZi
Q̂M

1 2–
Yi

i
 
 

Zi
 Q̂M

1– 2
Zi

Yit a Xit bi di e i t 

Yit r1 iYit 1– a 1 r1 i–  Xit r1 iXit 1–– bi di 1 r1 i–  h it  

Yit 1– Xit 1–

Zit



Pooled Estimation—889
cally, you should make certain that you have enough instruments to account for the 
additional terms.

Robust Coefficient Covariances

In this section, we describe the basic features of the various robust estimators, for clarity 
focusing on the simple cases where we compute robust covariances for models estimated by 
standard OLS without cross-section or period effects. The extensions to models estimated 
using instrumental variables, fixed or random effects, and GLS weighted least squares are 
straightforward.

White Robust Covariances

The White cross-section method assumes that the errors are contemporaneously (cross-sec-
tionally) correlated (period clustered). The method treats the pool regression as a multivari-
ate regression (with an equation for each cross-section), and computes robust standard 
errors for the system of equations. We may write the coefficient covariance estimator as:

(43.32)

where the leading term is a degrees of freedom adjustment depending on the total number 
of observations in the stacked data,  is the total number of stacked observations and  
is the total number of estimated parameters. 

This estimator is robust to cross-equation (contemporaneous) correlation and heteroskedas-
ticity. Specifically, the unconditional contemporaneous variance matrix  is 
unrestricted, may now vary with , with conditional variance matrix  that 
may depend on  in arbitrary, unknown fashion. See Wooldridge (2002, p. 148-153) and 
Arellano (1987).

Alternatively, the White period method assumes that the errors for a cross-section are het-
eroskedastic and serially correlated (cross-section clustered). The coefficient covariances are 
calculated using a White cross-section clustered estimator:

(43.33)

where, in contrast to Equation (43.32), the summations are taken over individuals and indi-
vidual stacked data instead of periods.

The estimator is designed to accommodate arbitrary heteroskedasticity and within cross-sec-
tion serial correlation. The corresponding multivariate regression (with an equation for each 
period) allows the unconditional variance matrix  to be unrestricted and 
varying with , with conditional variance matrix  depending on  in gen-
eral fashion. 
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In contrast, the White (diagonal) method is robust to observation specific heteroskedasticity 
in the disturbances, but not to correlation between residuals for different observations. The 
coefficient asymptotic variance is estimated as:

(43.34)

This method allows the unconditional variance matrix  to be an unrestricted 
diagonal matrix, with the conditional variances  depending on  in general 
fashion.

EViews allows you to compute non degree-of-freedom corrected versions of all of the robust 
coefficient covariance estimators. In these cases, the leading ratio term in the expressions 
above is dropped from the calculation. While this has no effect on the asymptotic validity of 
the estimates, it has the practical effect of lowering all of your standard error estimates.

PCSE Robust Covariances

The remaining methods are variants of the first two White statistics in which residuals are 
replaced by moment estimators for the unconditional variances. These methods, which are 
variants of the so-called Panel Corrected Standard Error (PCSE) methodology (Beck and 
Katz, 1995), are robust to unrestricted unconditional variance matrices  and , but 
place additional restrictions on the conditional variance matrices. 

A sufficient (though not necessary) condition for use of PCSE is that the conditional and 
unconditional variances are the same. (Note also that as with the SUR estimators above, we 
require that  and  not vary with  and , respectively.)

For example, the Cross-section SUR (PCSE) method handles cross-section correlation (period 
clustering) by replacing the outer product of the cross-section residuals in Equation (43.32) 
with an estimate of the (contemporaneous) cross-section residual covariance matrix :

(43.35)

Analogously, the Period SUR (PCSE) handles between period correlation (cross-section clus-
tering) by replacing the outer product of the period residuals in Equation (43.33) with an 
estimate of the period covariance :

(43.36)

The two diagonal forms of these estimators, Cross-section weights (PCSE), and Period 
weights (PCSE), use only the diagonal elements of the relevant  and . These covari-
ance estimators are robust to heteroskedasticity across cross-sections or periods, respec-
tively, but not to general correlation of residuals.
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The non degree-of-freedom corrected versions of these estimators remove the leading term 
involving the number of observations and number of coefficients.

References

Arellano, M. (1987). “Computing Robust Standard Errors for Within-groups Estimators,” Oxford Bulletin 
of Economics and Statistics, 49, 431-434.

Baltagi, Badi H. (2005). Econometric Analysis of Panel Data, Third Edition, West Sussex, England: John 
Wiley & Sons.

Baltagi, Badi H. and Young-Jae Chang (1994). “Incomplete Panels: A Comparative Study of Alternative 
Estimators for the Unbalanced One-way Error Component Regression Model,” Journal of Economet-
rics, 62, 67-89.

Beck, Nathaniel and Jonathan N. Katz (1995). “What to Do (and Not to Do) With Time-series Cross-sec-
tion Data,” American Political Science Review, 89(3), 634-647.

Breitung, Jörg (2000). “The Local Power of Some Unit Root Tests for Panel Data,” in B. Baltagi (ed.), 
Advances in Econometrics, Vol. 15: Nonstationary Panels, Panel Cointegration, and Dynamic Panels, 
Amsterdam: JAI Press, p. 161–178.

Choi, I. (2001). “Unit Root Tests for Panel Data,” Journal of International Money and Finance, 20: 249–
272.

Davis, Peter (2002). “Estimating Multi-way Error Components Models with Unbalanced Data Structures,” 
Journal of Econometrics, 106, 67-95.

Fisher, R. A. (1932). Statistical Methods for Research Workers, 4th Edition, Edinburgh: Oliver & Boyd.

Grunfeld, Yehuda (1958). “The Determinants of Corporate Investment,” Unpublished Ph.D Thesis, Depart-
ment of Economics, University of Chicago.

Hadri, Kaddour (2000). “Testing for Stationarity in Heterogeneous Panel Data,” Econometric Journal, 3, 
148–161.

Im, K. S., M. H. Pesaran, and Y. Shin (2003). “Testing for Unit Roots in Heterogeneous Panels,” Journal of 
Econometrics, 115, 53–74.

Kao, C. (1999). “Spurious Regression and Residual-Based Tests for Cointegration in Panel Data,” Journal 
of Econometrics, 90, 1–44.

Levin, A., C. F. Lin, and C. Chu (2002). “Unit Root Tests in Panel Data: Asymptotic and Finite-Sample 
Properties,” Journal of Econometrics, 108, 1–24.

Maddala, G. S. and S. Wu (1999). “A Comparative Study of Unit Root Tests with Panel Data and A New 
Simple Test,” Oxford Bulletin of Economics and Statistics, 61, 631–52.

Pedroni, P. (1999). “Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regres-
sors,” Oxford Bulletin of Economics and Statistics, 61, 653–70.

Pedroni, P. (2004). “Panel Cointegration; Asymptotic and Finite Sample Properties of Pooled Time Series 
Tests with an Application to the PPP Hypothesis,” Econometric Theory, 20, 597–625.

Wansbeek, Tom, and Arie Kapteyn (1989). “Estimation of the Error Components Model with Incomplete 
Panels,” Journal of Econometrics, 41, 341-361.

Wooldridge, Jeffrey M. (2002). Econometric Analysis of Cross Section and Panel Data, Cambridge, MA: The 
MIT Press.



892—Chapter 43. Pooled Time Series, Cross-Section Data



Chapter 44.  Working with Panel Data

EViews provides you with specialized tools for working with stacked data that have a panel 
structure. You may have, for example, data for various individuals or countries that are 
stacked one on top of another.

The first step in working with stacked panel data is to describe the panel structure of your 
data: we term this step structuring the workfile. Once your workfile is structured as a panel 
workfile, you may take advantage of the EViews tools for working with panel data, and for 
estimating equation specifications using the panel structure.

The following discussion assumes that you have an understanding of the basics of panel 
data. “Panel Data,” beginning on page 266 of User’s Guide I provides background on the 
characteristics of panel structured data.

We first review briefly the process of applying a panel structure to a workfile. The remainder 
of the discussion in this chapter focuses on the basics working with data in a panel workfile. 
Chapter 45. “Panel Estimation,” on page 917 outlines the features of equation estimation in 
a panel workfile.

Structuring a Panel Workfile

The first step in panel data analysis is to define the panel structure of your data. By defining 
a panel structure for your data, you perform the dual tasks of identifying the cross-section 
associated with each observation in your stacked data, and of defining the way that lags and 
leads operate in your workfile. 

While the procedures for structuring a panel workfile outlined below are described in 
greater detail elsewhere, an abbreviated review may prove useful (for additional detail, see 
“Describing a Balanced Panel Workfile” on page 46, “Dated Panels” on page 280, and 
“Undated Panels” on page 285 of User’s Guide I).
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There are two basic ways to create 
a panel structured workfile. First, 
you may create a new workfile 
that has a simple balanced panel 
structure. Simply select File/New/
Workfile... from the main EViews 
menu to open the Workfile Create 
dialog. Next, select Balanced 
Panel from the Workfile struc-
ture type dropdown menu, and 
fill out the dialog as desired. Here, 
we create a balanced quarterly 
panel (ranging from 1970Q1 to 
2020Q4) with 200 cross-sections. 
We also enter “Quarterly” in the 
Page name edit field.

When you click on OK, EViews will 
create an appropriately structured 
workfile with 40,800 observations (51 
years, 4 quarters, 200 cross-sections). 
You may then enter or import the data 
into the workfile.

More commonly, you will use the sec-
ond method of structuring a panel 
workfile, in which you first read 
stacked data into an unstructured 
workfile, and then apply a structure to 
the workfile. While there are a number 
of issues involved with this operation, let us consider a simple, illustrative example of the 
basic method.
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Suppose that we have data for the job 
training example considered by Wool-
dridge (2002), using data from Holzer, 
et al. (1993), which are provided in 
“Jtrain.WF1”.

These data form a balanced panel of 3 
annual observations on 157 firms. 
The data are first read into a 471 
observation, unstructured EViews 
workfile. The values of the series 
YEAR and FCODE may be used to 
identify the date and cross-section, 
respectively, for each observation.

To apply a panel structure to this workfile, simply double click on the “Range:” line at the 
top of the workfile window, or select Proc/Structure/Resize Current Page... to open the 
Workfile structure dialog. Select Dated Panel as our Workfile structure type.

Next, enter YEAR as the Date 
series and FCODE as the 
Cross-section ID series. Since 
our data form a simple bal-
anced dated panel, we need 
not concern ourselves with 
the remaining settings, so we 
may simply click on OK.

EViews will analyze the data 
in the specified Date series 
and Cross-section ID series 
to determine the appropriate 
structure for the workfile. The 
data in the workfile will be sorted by cross-section ID series, and then by date, and the panel 
structure will be applied to the workfile.
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Panel Workfile Display

The two most prominent visual changes in a panel structured workfile are the change in the 
range and sample information display at the top of the workfile window, and the change in 
the labels used to identify individual observations.

Range and Sample

The first visual change in a panel structured workfile is in the Range and Sample descrip-
tions at the top of workfile window.

For a dated panel workfile, EViews will 
list both the earliest and latest 
observed dates, the number of cross-
sections, and the total number of 
unique observations. Here we see the 
top portion of an annual workfile with observations from 1935 to 1954 for 10 cross-sections. 
Note that workfile sample is described using the earliest and latest observed annual fre-
quency dates (“1935 1954”).

In contrast, an undated panel work-
file will display an observation range 
of 1 to the total number of observa-
tions. The panel dimension state-
ment will indicate the largest 
number of observations in a cross-section and the number of cross-sections. Here, we have 
92 cross-sections containing up to 30 observations, for a total of 506 observations. Note that 
the workfile sample is described using the raw observation numbers (“1 506”) since there is 
no notion of a date pair in undated panels.
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You may, at any time, click on the Range display line or select Proc/Structure/Resize Cur-
rent Page... to bring up the Workfile Structure dialog so that you may modify or remove 
your panel structure.

Observation Labels

The left-hand side of every workfile contains observation labels that identify each observa-
tion. In a simple unstructured workfile, these labels are simply the integers from 1 to the 
total number of observations in the workfile. For dated, non-panel workfiles, these labels are 
representations of the unique dates associated with each observation. For example, in an 
annual workfile ranging from 1935 to 1950, the observation labels are of the form “1935”, 
“1936”, etc.

The observation labels in a panel workfile must reflect the fact that observations possess 
both cross-section and within-cross-section identifiers. Accordingly, EViews will form obser-
vation identifiers using both the cross-section and the cell ID values.

Here, we see the observation labels in an 
annual panel workfile formed using the 
cross-section identifiers and a two-digit 
year identifier.

Panel Workfile Information

When working with panel data, it is 
important to keep the basic structure of 
your workfile in mind at all times. 
EViews provides you with tools to access 
information about the structure of your 
workfile.

Workfile Structure

First, the workfile statistics view provides a convenient place for you to examine the struc-
ture of your panel workfile. Simply click on View/Statistics from the main menu to display 
a summary of the structure and contents of your workfile.
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The top portion of the display for our first example workfile is depicted above. The statistics 
view identifies the page as an annual panel workfile that is structured using the identifiers 
ID and DATE. There are 10 cross-sections with 20 observations each, for years ranging from 
1935 to 1954. For unbalanced data, the number of observations per cross-section reported 
will be the largest number observed across the cross-sections.

To return the display to the original workfile directory, select View/Workfile Directory from 
the main workfile menu.

Identifier Indices

EViews provides series expressions and functions that provide information about the cross-
section, cell, and observation IDs associated with each observation in a panel workfile.

Cross-section Index

The series expression @crossid provides index identifiers for each observation correspond-
ing to the cross-section to which the observation belongs. If, for example, there are 8 obser-
vations with cross-section identifier alpha series values (in order), “B”, “A”, “A”, “A”, “B”, 
“A”, “A”, and “B”, the command:

series cxid = @crossid

assigns a group identifier value of 1 or 2 to each observation in the workfile. Since the panel 
workfile is sorted by the cross-section ID values, observations with the identifier value “A” 
will be assigned a CXID value of 1, while “B” will be assigned 2.

A one-way tabulation of the CXID series shows the number of observations in each cross-
section or group:

Workfile Statistics   
Date: 06/17/07  Time: 16:04  
Name: GRUNFELD_BALTAGI_PANEL 
Number of pages: 1 

    
Page: Untitled   

 Workfile structure: Panel  - Annual 
 Indices: FN x DATEID   
 Panel dimension: 10 x 20   
 Range: 1935 1954 x 10   --   200 obs 

 Object Count Data Points

 series 7 1400
 coef 1 751
 Total 8 2151
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Cell Index

Similarly, @cellid may be used to obtain integers uniquely indexing cell IDs. @cellid 
numbers observations using an index corresponding to the ordered unique values of the cell 
or date ID values. Note that since the indexing uses all unique values of the cell or date ID 
series, the observations within a cross-section may be indexed non-sequentially.

Suppose, for example, we have a panel workfile with two cross-sections. There are 5 obser-
vations in the cross-section “A” with cell ID values “1991”, “1992”, “1993”, “1994”, and 
“1999”, and 3 observations in the cross-section “B” with cell ID values “1993”, “1996”, 
“1998”. There are 7 unique cell ID values (“1991”, “1992”, “1993”, “1994”, “1996”, “1998”, 
“1999”) in the workfile. 

The series assignment

series cellid = @cellid

will assign to the “A” observations in CELLID the values “1991”, “1992”, “1993”, “1994”, 
“1997”, and to the “B” observations the values “1993”, “1995”, and “1996”. 

A one-way tabulation of the CELLID series provides you with information about the number 
of observations with each index value:

Tabulation of CXID    

Date: 02/04/04   Time: 09:08   

Sample: 1 8    

Included observations: 8   

Number of categories: 2   

   Cumulative Cumulative

Value Count Percent Count Percent

1 5 62.50 5 62.50

2 3 37.50 8 100.00

Total 8 100.00 8 100.00
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Within Cross-section Observation Index

Alternately, @obsid returns an integer uniquely indexing observations within a cross-sec-
tion. The observations will be numbered sequentially from 1 through the number of obser-
vations in the corresponding cross-section. In the example above, with two cross-section 
groups “A” and “B” containing 5 and 3 observations, respectively, the command:

series cxid = @crossid

series withinid = @obsid

would number the 5 observations in cross-section “A” from 1 through 5, and the 3 observa-
tions in group “B” from 1 through 3.

Bear in mind that while @cellid uses information about all of the ID values in creating its 
index, @obsid only uses the ordered observations within a cross-section in forming the 
index. As a result, the only similarity between observations that share an @obsid value is 
their ordering within the cross-section. In contrast, observations that share a @cellid value 
also share values for the underlying cell ID.

It is worth noting that if a panel work-
file is balanced so that each cross-sec-
tion has the same cell ID values, 
@obsid and @cellid yield identical 
results.

Tabulation of CELLID   

Date: 02/04/04   Time: 09:11   

Sample: 1 8    

Included observations: 8   

Number of categories: 7   

   Cumulative Cumulative

Value Count Percent Count Percent

1 1 12.50 1 12.50

2 1 12.50 2 25.00

3 2 25.00 4 50.00

4 1 12.50 5 62.50

5 1 12.50 6 75.00

6 1 12.50 7 87.50

7 1 12.50 8 100.00

Total 8 100.00 8 100.00
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Workfile Observation Index

In rare cases, you may wish to enumerate the observations beginning at the first observation 
in the first cross-section and ending at the last observation in the last cross-section. 

series _id = @obsnum

The @obsnum keyword allows you to number the observations in the workfile in sequential 
order from 1 to the total number of observations.

Working with Panel Data

For the most part, you will find working with data in a panel workfile to be identical to 
working with data in any other workfile. There are, however, some differences in behavior 
that require discussion. In addition, we describe useful approaches to working with panel 
data using standard, non panel-specific tools.

Lags and Leads

For the most part, expressions involving lags and leads should operate as expected (see 
“Lags, Leads, and Panel Structured Data” on page 267 of User’s Guide I for a full discussion). 
In particular note that lags and leads do not cross group boundaries so that they will never 
involve data from a different cross-section (i.e., lags of the first observation in a cross-sec-
tion are always NAs, as are leads of the last observation in a cross-section).

Since EViews automatically sorts your data by cross-section and cell/date ID, observations 
in a panel dataset are always stacked by cross-section, with the cell IDs sorted within each 
cross-section. Accordingly, lags and leads within a cross-section are defined over the sorted 
values of the cell ID. Lags of an observation are always associated with lower value of the 
cell ID, and leads always involve a higher value (the first lag observation has the next lowest 
cell ID value and the first lead has the next highest value). 

Lags and leads are specified in the usual fashion, using an offset in parentheses. To assign 
the sum of the first lag of Y and the second lead of X to the series Z, you may use the com-
mand:

series z = y(-1) + x(2)

Similarly, you may use lags to obtain the name of the previous child in household cross-sec-
tions. The command:

alpha older = childname(-1)

assigns to the alpha series OLDER the name of the preceding observation. Note that since 
lags never cross over cross-section boundaries, the first value of OLDER in a household will 
be missing.
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Panel Samples

The description of the current workfile sample in the workfile window provides an obvious 
indication that samples for dated and undated workfiles are specified in different ways.

Dated Panel Samples

For dated workfiles, you may specify panel samples using date pairs to define the earliest 
and latest dates to be included. For example, in our dated panel example from above, if we 
issue the sample statement:

smpl 1940 1954

EViews will exclude all observations that are dated from 1935 through 1939. We see that the 
new sample has eliminated observations for those dates from each cross-section.

As in non-panel workfiles, you may combine the date specification with additional “if” con-
ditions to exclude additional observations. For example:

smpl 1940 1945 1950 1954 if i>50

uses any panel observations that are dated from 1940 to 1945 or 1950 to 1954 that have val-
ues of the series I that are greater than 50.

Additionally, you may use special keywords to refer to the first and last observations for 
cross-sections. For dated panels, the sample keywords @first and @last refer to the set of 
first and last observations for each cross-section. For example, you may specify the sample:

smpl @first 2000

to use data from the first observation in each cross-section and observations up through the 
end of the year 2000. Likewise, the two sample statements:

smpl @first @first+5

smpl @last-5 @last

use (at most) the first five and the last five observations in each cross-section, respectively.

Note that the included observations for each cross-section may begin at a different date, and 
that:

smpl @all

smpl @first @last

are equivalent.
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The sample statement keywords @firstmin and @lastmax are used to refer to the earliest 
of the start and latest of the end dates observed over all cross-sections, so that the sample:

smpl @firstmin @firstmin+20

sets the start date to the earliest observed date, and includes the next 20 observations in 
each cross-section. The command:

smpl @lastmax-20 @lastmax

includes the last observed date, and the previous 20 observations in each cross-section.

Similarly, you may use the keywords @firstmax and @lastmin to refer to the latest of the 
cross-section start dates, and earliest of the end dates. For example, with regular annual data 
that begin and end at different dates, you may balance the starts and ends of your data using 
the statement:

smpl @firstmax @lastmin

which sets the sample to begin at the latest observed start date, and to end at the earliest 
observed end date.

The special keywords are perhaps most usefully combined with observation offsets. By add-
ing plus and minus terms to the keywords, you may adjust the sample by dropping or add-
ing observations within each cross-section. For example, to drop the first observation from 
each cross-section, you may use the sample statement:

smpl @first+1 @last

The following commands generate a series containing cumulative sums of the series X for 
each cross-section:

smpl @first @first

series xsum = x

smpl @first+1 @last

xsum = xsum(-1) + x

The first two commands initialize the cumulative sum for the first observation in each cross-
section. The last two commands accumulate the sum of values of X over the remaining 
observations.

Similarly, if you wish to estimate your equation on a subsample of data and then perform 
cross-validation on the last 20 observations in each cross-section, you may use the sample 
defined by,

smpl @first @last-20

to perform your estimation, and the sample,

smpl @last-19 @last

to perform your forecast evaluation.
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Note that the processing of sample offsets for each cross-section follows the same rules as 
for non-panel workfiles “Sample Offsets” on page 140 of User’s Guide I.

Undated Panel Samples

For undated workfiles, you must specify the sample range pairs using observation numbers 
defined over the entire workfile. For example, in our undated 506 observation panel exam-
ple, you may issue the sample statement:

smpl 10 500

to drop the first 9 and the last 6 observations in the workfile from the current sample. 

One consequence of the use of observation pairs in undated panels is that the keywords 
@first, @firstmin, and @firstmax all refer to observation 1, and @last, @lastmin, and 
@lastmax, refer to the last observation in the workfile. Thus, in our example, the command:

smpl @first+9 @lastmax-6

will also drop the first 9 and the last 6 observations in the workfile from the current sample. 

Undated panel sample restrictions of this form are not particularly interesting since they 
require detailed knowledge of the pattern of observation numbers across those cross-sec-
tions. Accordingly, most sample statements in undated workfiles will employ “IF condi-
tions” in place of range pairs. 

For example, the sample statement,

smpl if townid<>10 and lstat >-.3

is equivalent to either of the commands,

smpl @all if townid<>10 and lstat >-.3

smpl 1 506 if townid<>10 and lstat >-.3

and selects all observations with TOWNID values not equal to 10, and LSTAT values greater 
than -0.3.

You may combine the sample “IF conditions” with the special functions that return informa-
tion about the observations in the panel. For example, we may use the @obsid workfile 
function to identify each observation in a cross-section, so that:

smpl if @obsid>1

drops the first observation for each cross-section.

Alternately, to drop the last observation in each cross-section, you may use:



Working with Panel Data—905
smpl if @obsid < @maxsby(townid, townid, "@all")

The @maxsby function returns the number of non-NA observations for each TOWNID value. 
Note that we employ the “@ALL” sample to ensure that we compute the @maxsby over the 
entire workfile sample.

Panel Spreadsheets

When looking at the spreadsheet view of a series in a panel workfile the default view will be 
to show the “stacked” form of the series - each cross-section’s data will be below the previ-
ous cross-section’s data. 

You may change this by clicking on the Wide +/- button (you will almost certainly need to 
widen the window to see the button as it is far to the right of the more commonly used but-
tons). The first time you click the button, EViews will change the display of the series such 
that each row of the spreadsheet contains data for a specific date, and each column contains 
data for a cross-section. 

Clicking the Wide +/- button a second time transposes this so cross-sections are now 
shown per row, and dates per column.
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A third click of the button takes the view back to the original stacked form.

Trends

EViews provides several functions that may be used to construct a time trend in your panel 
structured workfile. A trend in a panel workfile has the property that the values are initial-
ized at the start of a cross-section, increase for successive observations in the specific cross-
section, and are reset at the start of the next cross section. 

You may use the following to construct your time trend:

• The @obsid function may be used to return the simplest notion of a trend in which 
the values for each cross-section begin at one and increase by one for successive 
observations in the cross-section.

• The @trendc function computes trends in which values for observations with the ear-
liest observed date are normalized to zero, and values for successive observations are 
incremented based on the calendar associated with the workfile frequency.

• The @cellid and @trend functions return time trends in which the values increase 
based on a calender defined by the observed dates in the workfile.

See also “Panel Workfile Functions” on page 618 and “Panel Trend Functions” on page 618 
of the Command and Programming Reference for discussion.

By-Group Statistics

The “by-group” statistical functions (“By-Group Statistics” on page 580 of the Command 
and Programming Reference) may be used to compute the value of a statistic for observa-
tions in a subgroup, and to assign the computed value to individual observations. 

While not strictly panel functions, these tools deserve a place in the current discussion since 
they are well suited for working with panel data. To use the by-group statistical functions in 
a panel context, you need only specify the group ID series as the classifier series in the func-
tion.
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Suppose, for example, that we have the undated panel structured workfile with the group ID 
series TOWNID, and that you wish to assign to each observation in the workfile the mean 
value of LSTAT in the corresponding town. You may perform the series assignment using the 
command,

series meanlstat = @meansby(lstat, townid, "@all")

or equivalently,

series meanlstat = @meansby(lstat, @crossid, "@all")

to assign the desired values. EViews will compute the mean value of LSTAT for observations 
with each TOWNID (or equivalently @crossid, since the workfile is structured using 
TOWNID) value, and will match merge these values to the corresponding observations.

Likewise, we may use the by-group statistics functions to compute the variance of LSTAT or 
the number of non-NA values for LSTAT for each subgroup using the assignment state-
ments:

series varlstat = @varsby(lstat, townid, "@all")

series nalstat = @nasby(lstat, @crossid, "@all")

To compute the statistic over subsamples of the workfile data, simply include a sample 
string or object as an argument to the by-group statistic, or set the workfile sample prior to 
issuing the command,

smpl @all if zn=0

series meanlstat1 = @meansby(lstat, @cellid)

is equivalent to:

smpl @all

series meanlstat2 = @meansby(lstat, @cellid, "@all if zn=0")

In the former example, the by-group function uses the workfile sample to compute the sta-
tistic for each cell ID value, while in the latter, the optional argument explicitly overrides the 
workfile sample.

One important application of by-group statistics is to compute the “within” deviations for a 
series by subtracting off panel group means or medians. The following lines:

smpl @all

series withinlstat1 = lstat - @meansby(lstat, townid)

series withinlstat2 = lstat - @mediansby(lstat, townid)

compute deviations from the TOWNID specific means and medians. In this example, we 
omit the optional sample argument from the by-group statistics functions since the workfile 
sample is previously set to use all observations.
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Combined with standard EViews tools, the by-group statistics allow you to perform quite 
complex calculations with little effort. For example, the panel “within” standard deviation 
for LSTAT may be computed from the single command:

series temp = lstat - @meansby(lstat, townid, "@all")

scalar within_std = @stdev(temp)

while the “between” standard deviation may be calculated from

smpl if @obsid = 1

series temp = lstat - @meansby(lstat, @crossid, "@all")

scalar between_std = @stdev(temp)

The first line sets the sample to the first observation in each cross-section. The second line 
calculates the standard deviation of the group means using the single cross-sectional obser-
vations. Note that the group means are calculated over the entire sample. An alternative 
approach to performing this calculation is described in the next section.

Cross-section and Period Summaries

One of the most important tasks in working with panel data is to compute and save sum-
mary data, for example, computing means of a series by cross-section or period. In “By-
Group Statistics” on page 906, we outlined tools for computing by-group statistics using the 
cross-section ID and match merging them back into the original panel workfile page.

Additional tools are available for displaying tables summarizing the by-group statistics or for 
saving these statistics into new workfile pages.

In illustrating these tools, we will work 
with the familiar Grunfeld data containing 
data on R&D expenditure and other eco-
nomic measures for 10 firms for the years 
1935 to 1954 (provided in the workfile 
“Grunfeld_Baltagi.WF1”) These 200 obser-
vations form a balanced annual workfile 
that is structured using the firm number 
FN as the cross-section ID series, and the 
date series DATEID to identify the year.

Viewing Summaries

The easiest way to compute by-group statistics is to use the standard by-group statistics 
view of a series. Simply open the series window for the series of interest and select View/
Descriptive Statistics & Tests/Stats by Classification... to open the Statistics by Classifica-
tion dialog.
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First, you should enter the 
classifier series in the Series/
Group to classify edit field. 
Here, we use FN, so that 
EViews will compute means, 
standard deviations, and num-
ber of observations for each 
cross-section in the panel 
workfile. Note that we have 
unchecked the Group into 
bins options so that EViews 
will not combine periods. The 
result of this computation for 
the series F is given by:

Alternately, to compute statistics for each period in the panel, you should enter “DATEID” 
instead of “FN” as the classifier series.

Saving Summaries

Alternately, you may wish to compute the by-group panel statistics and save them in their 
own workfile page. The standard EViews tools for working with workfiles and creating 
series links make this task virtually effortless.

Descriptive Statistics for F  

Categorized by values of FN  

Date: 08/22/06   Time: 15:13  

Sample: 1935 1954   

Included observations: 200  

FN  Mean  Std. Dev.  Obs.

1 4333.845 904.3048 20

2 1971.825 301.0879 20

3 1941.325 413.8433 20

4 693.2100 160.5993 20

5 231.4700 73.84083 20

6 419.8650 217.0098 20

7 149.7900 32.92756 20

8 670.9100 222.3919 20

9 333.6500 77.25478 20

10 70.92100 9.272833 20

All 1081.681 1314.470 200



910—Chapter 44. Working with Panel Data
Creating Pages for Summaries

Since we will be computing both by-firm and by-period descriptive statistics, the first step is 
to create workfile pages to hold the results from our two sets of calculations. The firm page 
will contain observations corresponding to the unique values of the firm identifier found in 
the panel page; the annual page will contain observations corresponding to the observed 
years.

To create a page for the firm data, 
click on the New Page tab in the 
workfile window, and select Specify 
by Identifier series.... EViews opens 
the Workfile Page Create by ID dia-
log, with the identifiers pre-filled with 
the series used in the panel workfile 
structure—the Date series field con-
tains the name of the series used to 
identify dates in the panel, while the 
Cross-section ID series field contains 
the name of the series used to identify 
firms.

The default Method is set to Unique values of 
ID series from one page, which instructs 
EViews to simply look at the unique values of 
the ID series in the specified ID page. Alter-
nately, you may provide multiple pages and take 
the union or intersection of IDs (Union of common ID series from multiple pages and 
Intersection of common ID series from multiple pages). You may also elect to create 
observations associated with the crosses of values for multiple series; the different choices 
permit you to treat date and non-date series asymmetrically when forming these categories 
(Cross of two non-date ID series, Cross of one date and one non-date ID series, Cross of 
ID series with a date range). If you select the latter, the dialog will change, prompting you 
to specify a frequency, start date and end date.

To create a new workfile page using only the values in the FN series, you should delete the 
Date series specification “DATEID” from the dialog. Next, provide a name for the new page 
by entering “firm” in the Page edit field. Now click on OK.

EViews will examine the FN series to find its unique values, and will create and structure a 
workfile page to hold those values.
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Here, we see the newly created FIRM page and newly created FN series containing the 
unique values from FN in the other page. Note that the new page is structured as an 
Undated with ID series page, using the new FN series.

Repeating this process using the 
DATEID series will create an annual 
page. First click on the original panel 
page to make it active, then select New 
Page/Specify by Identifier series... to 
bring up the previous dialog. Delete 
the Cross-section ID series specifica-
tion “FN” from the dialog, provide a 
name for the new page by entering 
“annual” in the Page edit field, and 
click on OK. EViews creates the third 
page, a regular frequency annual page 
dated 1935 to 1954.

Computing Summaries using Links

Once the firm and annual pages have been created, it is a simple task to create by-group 
summaries of the panel data using series links. While links are described elsewhere in 
greater depth (Chapter 8. “Series Links,” on page 233 of User’s Guide I), we provide a brief 
description of their use in a panel data context.
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To create links containing the desired summaries, first click on the original panel page tab to 
make it active, select one or more series of interest, then right mouse click and select Copy. 
Next, click on either the firm or the annual page, right mouse click, and select Paste Spe-
cial.... Alternately, right-click to select the series then drag the selected series onto the tab 
for the destination page. EViews will open the Link Dialog, prompting you to specify a 
method for summarizing the data.

Suppose, for example, that you 
select the C01, F, and I series from 
the panel page and then Paste Spe-
cial... in the firm page. In this case, 
EViews analyzes the two pages, 
and determines that most likely, we 
wish to match merge the con-
tracted data from the first page into 
the second page. Accordingly, 
EViews sets the Merge by setting 
to General match merge criteria, 
and prefills the Source ID and Des-
tination ID series with two FN 
cross-section ID series. The default Contraction method is set to compute the mean values 
of the series for each value of the ID.

You may provide a different pattern to be used in naming the link series, a contraction 
method, and a sample over which the contraction should be calculated. Here, we create new 
series with the same names as the originals, computing means over the entire sample in the 
panel page. Click on OK to All to link all three series into the firm page, yielding:
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You may compute other summary statistics by repeating the copy-and-paste-special proce-
dure using alternate contraction methods. For example, selecting the Standard Deviation 
contraction computes the standard deviation for each cross-section and specified series and 
uses the linking to merge the results into the firm page. Saving them using the pattern “*SD” 
will create links named “C01SD”, “FSD”, and “ISD”.

Likewise, to compute summary statistics across cross-sections for each year, first create an 
annual page using New Page/Specify by Identifier series..., then paste-special the panel 
page series as links in the annual page.

Merging Data into the Panel

To merge data into the panel, simply create links from other pages into the panel page. Link-
ing from the annual page into the panel page will repeat observations for each year across 
firms. Similarly, linking from the cross-section firm page to the panel page will repeat obser-
vations for each firm across all years.

In our example, we may link the FSD link from the firm page back into the panel page. 
Select FSD, switch to the panel page, and paste-special. Click OK to accept the defaults in 
the Paste Special dialog.

EViews match merges the data from the firm page to the panel page, matching FN values. 
Since the merge is from one-to-many, EViews simply repeats the values of FSD in the panel 
page.
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Panel Data Analysis

EViews provides various degrees of support for the analysis of data in panel structured 
workfiles.

There is a small number of panel-specific analyses that are provided for data in panel struc-
tured workfiles. You may use EViews special tools for graphing dated panel data, perform 
unit root or cointegration tests, or estimate various panel equation specifications.

Alternately, you may apply EViews standard tools for by-group analysis to the stacked data. 
These tools do not use the panel structure of the workfile, per se, but used appropriately, the 
by-group tools will allow you to perform various forms of panel analysis.

In most other cases, EViews will simply treat panel data as a set of stacked observations. 
The resulting stacked analysis correctly handles leads and lags in the panel structure, but 
does not otherwise use the cross-section and cell or period identifiers in the analysis.

Discussion of specific features may be found in:

• Chapter 45. “Panel Estimation,” on page 917.

• Chapter 46. “Panel Cointegration Estimation,” on page 973.

• Chapter 47. “Panel Statistics,” on page 993.
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Chapter 45.  Panel Estimation

EViews allows you to estimate panel equations using linear or nonlinear squares or instru-
mental variables (two-stage least squares), with correction for fixed or random effects in 
both the cross-section and period dimensions, AR errors, GLS weighting, and robust stan-
dard errors. In addition, GMM tools may be used to estimate most of the these specifications 
with various system-weighting matrices. Specialized forms of GMM also allow you to esti-
mate dynamic panel data specifications. Note that all of the estimators described in this 
chapter require a panel structured workfile (“Structuring a Panel Workfile” on page 893).

We begin our discussion by briefly outlining the dialog settings associated with common 
panel equation specifications. While the wide range of models that EViews supports means 
that we cannot exhaustively describe all of the settings and specifications, we hope to pro-
vide you a roadmap of the steps you must take to estimate your panel equation.

More useful, perhaps, is the discussion that follows, which follows the estimation of some 
simple panel examples, and describes the use of the wizard for specifying dynamic panel 
data models.

A background discussion of the supported techniques is provided in “Estimation Back-
ground” in ”Pooled Estimation” on page 879, and in “Estimation Background,” beginning on 
page 966.

Estimating a Panel Equation

The first step in estimating a panel equation is to call up an equation dialog by clicking on 
Object/New Object.../Equation or Quick/Estimate Equation… from the main menu, or 
typing the keyword equation in the command window. You should make certain that your 
workfile is structured as a panel workfile. EViews will detect the presence of your panel 
structure and in place of the standard equation dialog will open the panel Equation Estima-
tion dialog. 

You should use the Method dropdown menu to choose between LS - Least Squares (LS and 
AR), TSLS - Two-Stage Least Squares (TSLS and AR), and GMM / DPD - Generalized 
Method of Moments / Dynamic Panel Data techniques. If you select the either of the latter 
two methods, the dialog will be updated to provide you with an additional page for specify-
ing instruments (see “Instrumental Variables Estimation” on page 920).

The remaining estimation supported estimation techniques do not account for the panel 
structure of your workfile, save for lags not crossing the boundaries between cross-section 
units.
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Least Squares Estimation

The basic least squares estimation dialog is a multi-page dialog with pages for the basic 
specification, panel estimation options, and general estimation options.

Least Squares Specification

You should provide an equa-
tion specification in the upper 
Equation specification edit 
box, and an estimation sam-
ple in the Sample edit box.

The equation may be speci-
fied by list or by expression as 
described in “Specifying an 
Equation in EViews” on 
page 6. 

In general, most of the speci-
fications allowed in non-
panel equation settings may 
also be specified here. You 
may, for example, include AR 
terms in both linear and nonlinear specifications, and may include PDL terms in equations 
specified by list. You may not, however, include MA terms in a panel setting.

Least Squares Panel Options

Next, click on the Panel 
Options tab to specify addi-
tional panel specific estima-
tion settings.

First, you should account for 
individual and period effects 
using the Effects specifica-
tion dropdown menus. By 
default, EViews assumes that 
there are no effects so that 
both dropdown menus are set 
to None. You may change the 
default settings to allow for 
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either Fixed or Random effects in either the cross-section or period dimension, or both. See 
the pool discussion of “Fixed and Random Effects” on page 882 for details.

You should be aware that when you select a fixed or random effects specification, EViews 
will automatically add a constant to the common coefficients portion of the specification if 
necessary, to ensure that the effects sum to zero.

Next, you should specify settings for GLS Weights. You may choose to 
estimate with no weighting, or with Cross-section weights, Cross-sec-
tion SUR, Period weights, Period SUR. The Cross-section SUR setting 
allows for contemporaneous correlation between cross-sections (cluster-
ing by period), while the Period SUR allows for general correlation of residuals across peri-
ods for a specific cross-section (clustering by individual). Cross-section weights and Period 
weights allow for heteroskedasticity in the relevant dimension. 

For example, if you select Cross section weights, EViews will estimate a feasible GLS speci-
fication assuming the presence of cross-section heteroskedasticity. If you select Cross-sec-
tion SUR, EViews estimates a feasible GLS specification correcting for heteroskedasticity 
and contemporaneous correlation. Similarly, Period weights allows for period heteroskedas-
ticity, while Period SUR corrects for heteroskedasticity and general correlation of observa-
tions within a cross-section. Note that the SUR specifications are both examples of what is 
sometimes referred to as the Parks estimator. See the pool discussion of “Generalized Least 
Squares” on page 883 for additional details.

Lastly, you should specify a method for computing coefficient 
covariances. You may use the dropdown menu labeled Coef 
covariance method to select from the various robust methods 
available for computing the coefficient standard errors. The 
covariance calculations may be chosen to be robust under vari-
ous assumptions, for example, general correlation of observations within a cross-section, or 
perhaps cross-section heteroskedasticity. Click on the checkbox No d.f. correction to per-
form the calculations without the leading degree of freedom correction term.

Each of the coefficient covariance methods is described in greater detail in “Robust Coeffi-
cient Covariances” on page 889 of the pool chapter.

You should note that some combinations of specifications and estimation settings are not 
currently supported. You may not, for example, estimate random effects models with cross-
section specific coefficients, AR terms, or weighting. Furthermore, while two-way random 
effects specifications are supported for balanced data, they may not be estimated in unbal-
anced designs.



920—Chapter 45. Panel Estimation
LS Options

Lastly, clicking on the 
Options tab in the dialog 
brings up a page displaying 
computational options for 
panel estimation. Settings 
that are not currently appli-
cable will be grayed out. 

These options control set-
tings for derivative taking, 
random effects component 
variance calculation, coeffi-
cient usage, iteration con-
trol, and the saving of 
estimation weights with the 
equation object.

These options are identical to those found in pool equation estimation, and are described in 
considerable detail in “Options” on page 868.

Instrumental Variables Estimation

To estimate a pool specification using instrumental variables techniques, you should select 
TSLS - Two-Stage Least Squares (and AR) in the Method dropdown menu at the bottom of 
the main (Specification) dialog page. EViews will respond by creating a four page dialog in 
which the third page is used to specify your instruments.

While the three original 
pages are unaffected by this 
choice of estimation method, 
note the presence of the new 
third dialog page labeled 
Instruments, which you will 
use to specify your instru-
ments. Click on the Instru-
ments tab to display the new 
page.

IV Instrument Specification

There are only two parts to 
the instrumental variables 
page. First, in the edit box 
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labeled Instrument list, you will list the names of the series or groups of series you wish to 
use as instruments.

Next, if your specification contains AR terms, you should use the checkbox to indicate 
whether EViews should automatically create instruments to be used in estimation from lags 
of the dependent and regressor variables in the original specification. When estimating an 
equation specified by list that contains AR terms, EViews transforms the linear model and 
estimates the nonlinear differenced specification. By default, EViews will add lagged values 
of the dependent and independent regressors to the corresponding lists of instrumental vari-
ables to account for the modified specification, but if you wish, you may uncheck this 
option.

See the pool chapter discussion of “Instrumental Variables” on page 886 for additional 
detail.

GMM Estimation

To estimate a panel specification using GMM techniques, you should select GMM / DPD - 
Generalized Method of Moments / Dynamic Panel Data in the Method dropdown menu at 
the bottom of the main (Specification) dialog page. Again, you should make certain that 
your workfile has a panel structure. EViews will respond by displaying a four page dialog 
that differs significantly from the previous dialogs.

GMM Specification

The specification page is 
similar to the earlier dia-
logs. As in the earlier dia-
logs, you will enter your 
equation specification in the 
upper edit box and your 
sample in the lower edit 
box.

Note, however, the presence 
of the Dynamic Panel Wiz-
ard... button on the bottom 
of the dialog. Pressing this 
button opens a wizard that 
will aid you in filling out the 
dialog so that you may 
employ dynamic panel data 
techniques such as the Arellano-Bond 1-step estimator for models with lagged endogenous 
variables and cross-section fixed effects. We will return to this wizard shortly (“GMM Exam-
ple” on page 936).
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GMM Panel Options

Next, click on the Panel Options dialog to specify additional settings for your estimation 
procedure.

As before, the dialog allows 
you to indicate the presence 
of cross-section or period 
fixed and random effects, to 
specify GLS weighting, and 
coefficient covariance calcu-
lation methods.

There are, however, notable 
changes in the available set-
tings.

First, when estimating with 
GMM, there are two addi-
tional choices for handling 
cross-section fixed effects. 
These choices allow you to 
indicate a transformation 
method for eliminating the effect from the specification.

You may select Difference to indicate that the estimation procedure 
should use first differenced data (as in Arellano and Bond, 1991), and 
you may use Orthogonal Deviations (Arellano and Bover, 1995) to per-
form an alternative method of removing the individual effects.

Second, the dialog presents you with a new dropdown menu so that you may specify 
weighting matrices that may provide for additional efficiency of GMM estimation under 
appropriate assumptions. Here, the available options depend on other settings in the dialog.

In most cases, you may select a method that computes weights under 
one of the assumptions associated with the robust covariance calcula-
tion methods (see “Least Squares Panel Options” on page 918). If you 
select White cross-section, for example, EViews uses GMM weights that 
are formed assuming that there is contemporaneous correlation between 
cross-sections.

If, however, you account for cross-section fixed effects by performing 
first difference estimation, EViews provides you with a modified set of 
GMM weights choices. In particular, the Difference (AB 1-step) weights 
are those associated with the difference transformation. Selecting these 
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weights allows you to estimate the GMM specification typically referred to as Arellano-Bond 
1-step estimation. Similarly, you may choose the White period (AB 1-step) weights if you 
wish to compute Arellano-Bond 2-step or multi-step estimation. Note that the White period 
weights have been relabeled to indicate that they are typically associated with a specific esti-
mation technique. 

Note also that if you estimate your model using difference or orthogonal deviation methods, 
some GMM weighting methods will no longer be available.

GMM Instruments

Instrument specification in GMM estimation follows the discussion above with a few addi-
tional complications.

First, you may enter your instrumental variables as usual by providing the names of series 
or groups in the edit field. In addition, you may tag instruments as period-specific predeter-
mined instruments, using the @dyn keyword, to indicate that the number of implied instru-
ments expands dynamically over time as additional predetermined variables become 
available.

To specify a set of dynamic instruments associated with the series X, simply enter 
“@DYN(X)” as an instrument in the list. EViews will, by default, use the series X(-2), X(-3), 
..., X(-T), as instruments for each period (where available). Note that the default set of 
instruments grows very quickly as the number of periods increases. With 20 periods, for 
example, there are 171 implicit instruments associated with a single dynamic instrument. To 
limit the number of implied instruments, you may use only a subset of the instruments by 
specifying additional arguments to @dyn describing a range of lags to be used.

For example, you may limit the maximum number of lags to be used by specifying both a 
minimum and maximum number of lags as additional arguments. The instrument specifica-
tion:

@dyn(x, -2, -5)

instructs EViews to include lags of X from 2 to 5 as instruments for each period.

If a single argument is provided, EViews will use it as the minimum number of lags to be 
considered, and will include all higher ordered lags. For example:

@dyn(x, -5)

includes available lags of X from 5 to the number of periods in the sample.

Second, in specifications estimated using transformations to remove the cross-section fixed 
effects (first differences or orthogonal deviations), use may use the @lev keyword to instruct 
EViews to use the instrument in untransformed, or level form. Tagging an instrument with 
“@LEV” indicates that the instrument is for the transformed equation If @lev is not pro-
vided, EViews will transform the instrument to match the equation transformation.
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If, for example, you estimate an equation that uses orthogonal deviations to remove a cross-
section fixed effect, EViews will, by default, compute orthogonal deviations of the instru-
ments provided prior to their use. Thus, the instrument list:

z1 z2 @lev(z3)

will use the transformed Z1 and Z2, and the original Z3 as the instruments for the specifica-
tion.

Note that in specifications where @dyn and @lev keywords are not relevant, they will be 
ignored. If, for example, you first estimate a GMM specification using first differences with 
both dynamic and level instruments, and then re-estimate the equation using LS, EViews 
will ignore the keywords, and use the instruments in their original forms.

GMM Options

Lastly, clicking on the Options tab in the dialog brings up a page displaying computational 
options for GMM estimation. These options are virtually identical to those for both LS and 
IV estimation (see “LS Options” on page 920). The one difference is in the option for saving 
estimation weights with the object. In the GMM context, this option applies to both the sav-
ing of GLS as well as GMM weights.

Pooled Mean Group ARDL Estimation

Autoregressive Distributed Lag (ARDL) models are standard least squares regressions which 
include lags of both the dependent variable and independent variables as regressors.

In panel settings with individual effects, standard regression estimation of ARDL models is 
problematic due to bias caused by correlation between the mean-differenced regressors and 
the error term. This bias only vanishes for large numbers of observations , and cannot be 
corrected by increasing the number of cross-sections, . To address this problem, a number 
of small –large , dynamic panel data GMM estimators have been developed (e.g., Arel-
lano-Bond, 1991).

In large  datasets, this assumptions underlying dynamic GMM are often inappropriate, 
and the estimator breaks down. In these cases, a popular alternative is the Pooled Mean 
Group (PMG) estimator of Pesaran, Shin and Smith (PSS, 1999). This model takes the 
cointegration form of the simple ARDL model and adapts it for a panel setting by allowing 
the intercepts, short-run coefficients and cointegrating terms to differ across cross-sections.

Specifically, the PMG model can be written as:

(45.1)
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(45.2)

Note that it is assumed that both the dependent variable and the regressors have the same 
number of lags in each cross-section. For notational convenience, it is also assumed that the 
regressors , have the same number of lags  in each cross-section, but this assumption is 
not strictly required for estimation.

PSS derive the concentrated (with respect to the long-run coefficients, , and the adjust-
ment coefficients, ) log-likelihood function:

(45.3)

where

(45.4)

where, with some abuse of notation, we define the j-th lags of  and  as  
and , respectively.

This log-likelihood can be maximized directly. However, PSS suggest an iterative procedure 
based upon the first derivatives of (2). Initial least squares estimates of based on the 
regression  (where  and  are the stacked forms of  and ) are used 
to compute estimates, using the first-derivative relationships, of and . These estimates 
are then used to compute new estimates of , and the process continues until convergence. 
Given the final estimates of ,  and , estimates of and  may be computed.

Although this iterative procedure's estimates converge to the full likelihood estimates, their 
covariance matrix does not. Fortunately, PSS (equation 13, page 625) provide the analytical 
form of the estimate of the covariance matrix based upon the coefficient estimates.

Estimating PMG Models in EViews

To estimate a Panel ARDL/PMG model in EViews, open the equation dialog by selecting 
Quick/Estimate Equation…, or by selecting Object/New Object…/Equation and selecting 
PMG/ARDL from the Method dropdown menu. EViews will then display the ARDL estima-
tion dialog:
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The first tab of the dialog, the Specification tab, allows you to specify the variables used in 
the regression, and whether to let EViews automatically detect the number of lags for each 
variable. Enter the dependent variable, followed by a space delimited list of dynamic regres-
sors (i.e. regressors which will have lag terms in the model) in the Dynamic Specification 
edit box. You may then select whether you wish EViews to automatically select the number 
of lags for each variable, or whether the number of lags is fixed, using the Automatic Selec-
tion and Fixed radio buttons.

If you choose automatic selection, you must then select the maximum number of lags to test 
for the dependent variable and regressors using the Max lags dropdown menu. If you select 
to use a fixed number of lags, the same menu may be used to select the number of lags for 
the dependent variable and regressors. Note that, unlike the non-panel form of ARDL model 
selection in EViews, each regressor will be given the same number of lags even when using 
automatic model selection.

The Fixed regressors area lets you specify any fixed/static variables (regressors without 
lags). The Trend specification dropdown may be used to specify whether the model 
includes a constant term, or a constant and trend, or neither. Finally, any other static regres-
sors should be entered in the List of fixed regressors box. 

The Options tab of the dialog lets you specify the type of model selection to be used if you 
chose automatic selection on the Specification tab. You may choose between the Akaike 
Information Criterion (AIC), Schwarz Criterion (SC), or Hannan-Quinn Criterion (HQ) as 
methods for selection.



Panel Estimation Examples—927
Once you have clicked the OK button on the estimation dialog, EViews will present you with 
the estimation results for both the long-run and short-run coefficients. The presented short-
run coefficients (and standard errors) are the mean (and standard deviation) of the cross-
section specific coefficients. A separate View menu item allows you to see the cross-section 
specific coefficients in detail.

Post-Estimation Views and Procedures

To view the individual cross-section short run coefficients, you can click on View->Cross-
section Short Run Coefficients. The resulting display shows a spool containing each cross-
section's coefficients, standard errors, t-statistics and p-values. 

The Model Selection Summary item on the View menu allows you to view either a Criteria 
Graph or a Criteria Table. The graph shows the model selection value for the twenty “best” 
with the lowest criterion value. The table form of the view shows the log-likelihood value, 
AIC, BIC and HQ values of the best twenty models in tabular form.

Panel Estimation Examples

Least Squares Examples

To illustrate the estimation of panel equations in EViews, we first consider an example 
involving unbalanced panel data from Harrison and Rubinfeld (1978) for the study of 
hedonic pricing (“Harrison_panel.WF1”). The data are well known and used as an example 
dataset in many sources (e.g., Baltagi (2005), p. 171).

The data consist of 506 census tract 
observations on 92 towns in the 
Boston area with group sizes rang-
ing from 1 to 30. The dependent 
variable of interest is the logarithm 
of the median value of owner occu-
pied houses (MV), and the regres-
sors include various measures of 
housing desirability.

We begin our example by structur-
ing our workfile as an undated panel. Click on the “Range:” description in the workfile win-
dow, select Undated Panel, and enter “TOWNID” as the Identifier series. EViews will 
prompt you twice to create a CELLID series to uniquely identify observations. Click on OK to 
both questions to accept your settings.
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EViews restructures your workfile so 
that it is an unbalanced panel work-
file. The top portion of the workfile 
window will change to show the 
undated structure which has 92 
cross-sections and a maximum of 30 observations in a cross-section.

Next, we open the equation 
specification dialog by select-
ing Quick/Estimate Equa-
tion from the main EViews 
menu. 

First, following Baltagi and 
Chang (1994) (also described 
in Baltagi, 2005), we esti-
mate a fixed effects specifica-
tion of a hedonic housing 
equation. The dependent 
variable in our specification 
is the median value MV, and 
the regressors are the crime 
rate (CRIM), a dummy vari-
able for the property along 
Charles River (CHAS), air pollution (NOX), average number of rooms (RM), proportion of 
older units (AGE), distance from employment centers (DIS), proportion of African-Ameri-
cans in the population (B), and the proportion of lower status individuals (LSTAT). Note that 
you may include a constant term C in the specification. Since we are estimating a fixed 
effects specification, EViews will add one if it is not present so that the fixed effects esti-
mates are relative to the constant term and add up to zero.

Click on the Panel Options tab and select Fixed for the Cross-section effects. To match the 
Baltagi and Chang results, we will leave the remaining settings at their defaults. Click on OK 
to accept the specification.
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The results for the fixed effects estimation are depicted here. Note that as in pooled estima-
tion, the reported R-squared and F-statistics are based on the difference between the residu-
als sums of squares from the estimated model, and the sums of squares from a single 
constant-only specification, not from a fixed-effect-only specification. Similarly, the reported 
information criteria report likelihoods adjusted for the number of estimated coefficients, 
including fixed effects. Lastly, the reported Durbin-Watson stat is formed simply by comput-
ing the first-order residual correlation on the stacked set of residuals.

We may click on the Estimate button to modify the specification to match the Wallace-Hus-
sain random effects specification considered by Baltagi and Chang. We modify the specifica-
tion to include the additional regressors (ZN, INDUS, RAD, TAX, PTRATIO) used in 
estimation, change the cross-section effects to be estimated as a random effect, and use the 
Options page to set the random effects computation method to Wallace-Hussain.

The top portion of the resulting output is given by:

Dependent Variable: MV   

Method: Panel Least Squares   

Date: 08/23/06   Time: 14:29   

Sample: 1 506    

Periods included: 30   

Cross-sections included: 92   

Total panel (unbalanced) observations: 506  

 Coefficient Std. Error t-Statistic Prob.   

C 8.993272 0.134738 66.74632 0.0000 

CRIM -0.625400 0.104012 -6.012746 0.0000 

CHAS -0.452414 0.298531 -1.515467 0.1304 

NOX -0.558938 0.135011 -4.139949 0.0000 

RM 0.927201 0.122470 7.570833 0.0000 

AGE -1.406955 0.486034 -2.894767 0.0040 

DIS 0.801437 0.711727 1.126045 0.2608 

B 0.663405 0.103222 6.426958 0.0000 

LSTAT -2.453027 0.255633 -9.595892 0.0000 

 Effects Specification   

Cross-section fixed (dummy variables)   

R-squared 0.918370     Mean dependent var 9.942268 

Adjusted R-squared 0.898465     S.D. dependent var 0.408758 

S.E. of regression 0.130249     Akaike info criterion -1.063668 

Sum squared resid 6.887683     Schwarz criterion -0.228384 

Log likelihood 369.1080     Hannan-Quinn criter. -0.736071 

F-statistic 46.13805     Durbin-Watson stat 1.999986 

Prob(F-statistic) 0.000000    
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Note that the estimates of the component standard deviations must be squared to match the 
component variances reported by Baltagi and Chang (0.016 and 0.020, respectively).

Next, we consider an example of 
estimation with standard errors 
that are robust to serial correlation. 
For this example, we employ data 
on job training grants 
(“Jtrain.WF1”) used in examples 
from Wooldridge (2002, p. 276 and 
282). 

As before, the first step is to struc-
ture the workfile as a panel work-
file. Click on Range: to bring up 

Dependent Variable: MV   

Method: Panel EGLS (Cross-section random effects)  

Date: 08/23/06   Time: 14:34   

Sample: 1 506    

Periods included: 30   

Cross-sections included: 92   

Total panel (unbalanced) observations: 506  

Wallace and Hussain estimator of component variances  

 Coefficient Std. Error t-Statistic Prob.  

C 9.684427 0.207691 46.62904 0.0000

CRIM -0.737616 0.108966 -6.769233 0.0000

ZN 0.072190 0.684633 0.105443 0.9161

INDUS 0.164948 0.426376 0.386860 0.6990

CHAS -0.056459 0.304025 -0.185703 0.8528

NOX -0.584667 0.129825 -4.503496 0.0000

RM 0.908064 0.123724 7.339410 0.0000

AGE -0.871415 0.487161 -1.788760 0.0743

DIS -1.423611 0.462761 -3.076343 0.0022

RAD 0.961362 0.280649 3.425493 0.0007

TAX -0.376874 0.186695 -2.018658 0.0441

PTRATIO -2.951420 0.958355 -3.079674 0.0022

B 0.565195 0.106121 5.325958 0.0000

LSTAT -2.899084 0.249300 -11.62891 0.0000

 Effects Specification   

   S.D.  Rho  

Cross-section random 0.126983 0.4496

Idiosyncratic random 0.140499 0.5504
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the dialog, and enter “YEAR” as the date identifier and “FCODE” as the cross-section ID. 

EViews will structure the workfile 
so that it is a panel workfile with 
157 cross-sections, and three 
annual observations. Note that 
even though there are 471 observa-
tions in the workfile, a large number of them contain missing values for variables of interest.

To estimate the fixed effect specification with robust 
standard errors (Wooldridge example 10.5, p. 276), 
click on specification Quick/Estimate Equation 
from the main EViews menu. Enter the list specifica-
tion:

lscrap c d88 d89 grant grant_1

in the Equation specification edit box on the main 
page and select Fixed in the Cross-section effects 
specification dropdown menu on the Panel Options 
page. 

Lastly, since we wish to compute standard errors 
that are robust to serial correlation (Arellano (1987), 
White (1980)), we choose White period as the Coef 
covariance method. To match the reported Wooldridge example, we must select No d.f. cor-
rection in the covariance calculation. Click on OK to accept the options. EViews displays the 
results from estimation:
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Note that EViews automatically adjusts for the missing values in the data. There are only 
162 observations on 54 cross-sections used in estimation. The top portion of the output indi-
cates that the results use robust White period standard errors with no d.f. correction. Notice 
that EViews warns you that the estimated coefficient covariances is not of full rank which 
occurs in this case since the number of periods is less than the number of cross-sections.

Alternately, we may estimate a first difference estimator for these data with robust standard 
errors (Wooldridge example 10.6, p. 282). Open a new equation dialog by clicking on 
Quick/Estimate Equation..., or modify the existing equation by clicking on the Estimate 
button on the equation toolbar. Enter the specification:

d(lscrap) c d89 d(grant) d(grant_1)

in the Equation specification edit box on the main page, select None in the Cross-section 
effects specification dropdown menu, White period and No d.f. correction for the coeffi-
cient covariance method on the Panel Options page. The results are given by:

Dependent Variable: LSCRAP   
Method: Panel Least Squares   
Date: 08/18/09   Time: 12:03   
Sample: 1987 1989    
Periods included: 3    
Cross-sections included: 54   
Total panel (balanced) observations: 162   
White period standard errors & covariance (no d.f. correction)  
WARNING: estimated coefficient covariance matrix is of reduced rank 

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.597434 0.062489 9.560565 0.0000
D88 -0.080216 0.095719 -0.838033 0.4039
D89 -0.247203 0.192514 -1.284075 0.2020

GRANT -0.252315 0.140329 -1.798022 0.0751
GRANT_1 -0.421589 0.276335 -1.525648 0.1301

 Effects Specification   

Cross-section fixed (dummy variables)    

R-squared 0.927572    Mean dependent var 0.393681
Adjusted R-squared 0.887876    S.D. dependent var 1.486471
S.E. of regression 0.497744    Akaike info criterion 1.715383
Sum squared resid 25.76593    Schwarz criterion 2.820819
Log likelihood -80.94602    Hannan-Quinn criter. 2.164207
F-statistic 23.36680    Durbin-Watson stat 1.996983
Prob(F-statistic) 0.000000    
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While current versions of EViews do not provide a full set of specification tests for panel 
equations, it is a straightforward task to construct some tests using residuals obtained from 
the panel estimation.

To continue with the Wooldridge example, we may test for AR(1) serial correlation in the 
first-differenced equation by regressing the residuals from this specification on the lagged 
residuals using data for the year 1989. First, we save the residual series in the workfile. Click 
on Proc/Make Residual Series... on the estimated equation toolbar, and save the residuals 
to the series RESID01.

Next, regress RESID01 on RESID01(-1), yielding:

Dependent Variable: D(LSCRAP)   
Method: Panel Least Squares   
Date: 08/18/09   Time: 12:05   
Sample (adjusted) : 1988 1989   
Periods included: 2    
Cross-sections included: 54   
Total panel (balanced) observations: 108   
White period standard errors & covariance (no d.f. correction)  

Variable Coefficient Std. Error t-Statistic Prob.  

C -0.090607 0.088082 -1.028671 0.3060
D89 -0.096208 0.111002 -0.866721 0.3881

D(GRANT) -0.222781 0.128580 -1.732624 0.0861
D(GRANT_1) -0.351246 0.264662 -1.327147 0.1874

R-squared 0.036518    Mean dependent var -0.221132
Adjusted R-squared 0.008725    S.D. dependent var 0.579248
S.E. of regression 0.576716    Akaike info criterion 1.773399
Sum squared resid 34.59049    Schwarz criterion 1.872737
Log likelihood -91.76352    Hannan-Quinn criter. 1.813677
F-statistic 1.313929    Durbin-Watson stat 1.498132
Prob(F-statistic) 0.273884    
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Under the null hypothesis that the original idiosyncratic errors are uncorrelated, the residu-
als from this equation should have an autocorrelation coefficient of -0.5. Here, we obtain an 
estimate of  which appears to be far from the null value. A formal Wald hypoth-
esis test rejects the null that the original idiosyncratic errors are serially uncorrelated. Per-
form a Wald test on the test equation by clicking on View/Coefficient Diagnostics/Wald-
Coefficient Restrictions... and entering the restriction “C(1)=-0.5” in the edit box:

The formal test confirms our casual observation, strongly rejecting the null hypothesis.

Instrumental Variables Example

To illustrate the estimation of instrumental variables panel estimators, we consider an exam-
ple taken from Papke (1994) for enterprise zone data for 22 communities in Indiana that is 
outlined in Wooldridge (2002, p. 306). 

Dependent Variable: RESID01   
Method: Panel Least Squares   
Date: 08/18/09   Time: 12:11   
Sample (adjusted) : 1989 1989   
Periods included: 1    
Cross-sections included: 54   
Total panel (balanced) observations: 54   

Variable Coefficient Std. Error t-Statistic Prob.  

RESID01(-1) 0.236906 0.133357 1.776481 0.0814

R-squared 0.056199    Mean dependent var 6.17E-18
Adjusted R-squared 0.056199    S.D. dependent var 0.571061
S.E. of regression 0.554782    Akaike info criterion 1.677863
Sum squared resid 16.31252    Schwarz criterion 1.714696
Log likelihood -44.30230    Hannan-Quinn criter. 1.692068
Durbin-Watson stat 0.000000    

r̂1 0.237

Wald Test:   
Equation: Untitled   
Null Hypothesis: C(1)=-0.5  

Test Statistic Value df Probability

t-statistic  5.525812  53  0.0000 
F-statistic  30.53460 (1, 53)  0.0000 
Chi-square  30.53460  1  0.0000 

    
Null Hypothesis Summary:  

Normalized Restriction (= 0) Value Std. Err. 

0.5 + C(1)  0.736906  0.133357 

Restrictions are linear in coefficients.  
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The panel workfile for this example 
is structured using YEAR as the 
period identifier, and CITY as the 
cross-section identifier. The result is 
a balanced annual panel for dates 
from 1980 to 1988 for 22 cross-sec-
tions.

To estimate the example specifica-
tion, create a new equation by enter-
ing the keyword tsls in the 
command line, or by clicking on 
Quick/Estimate Equation... in the main menu. Selecting TSLS - Two-Stage Least Squares 
(and AR) in the Method dropdown menu to display the instrumental variables estimator 
dialog, if necessary, and enter:

d(luclms) c d(luclms(-1)) d(ez)

to regress the difference of log unemployment claims (LUCLMS) on the lag difference, and 
the difference of enterprise zone designation (EZ). Since the model is estimated with time 
intercepts, you should click on the Panel Options page, and select Fixed for the Period 
effects.

Next, click on the Instruments tab, and add the names:

c d(luclms(-2)) d(ez)

to the Instrument list edit box. Note that adding the constant C to the regressor and instru-
ment boxes is not required since the fixed effects estimator will add it for you. Click on OK 
to accept the dialog settings. EViews displays the output for the IV regression:
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Note that the instrument rank in this equation is 8 since the period dummies also serve as 
instruments, so you have the 3 instruments specified explicitly, plus 5 for the non-collinear 
period dummy variables.

GMM Example

To illustrate the estimation of dynamic panel data models using GMM, we employ the unbal-
anced 1031 observation panel of firm level data (“Abond_pan.WF1”) from Layard and Nick-
ell (1986), previously examined by Arellano and Bond (1991). The analysis fits the log of 
employment (N) to the log of the real wage (W), log of the capital stock (K), and the log of 
industry output (YS). 

Dependent Variable: D(LUCLMS)   

Method: Panel Two-Stage Least Squares   

Date: 08/23/06   Time: 15:52   

Sample (adjusted): 1983 1988   

Periods included: 6   

Cross-sections included: 22   

Total panel (balanced) observations: 132  

Instrument list: C D(LUCLMS(-2)) D(EZ)   

 Coefficient Std. Error t-Statistic Prob.  

C -0.201654 0.040473 -4.982442 0.0000

D(LUCLMS(-1)) 0.164699 0.288444 0.570992 0.5690

D(EZ) -0.218702 0.106141 -2.060493 0.0414

 Effects Specification   

Period fixed (dummy variables)   

R-squared 0.280533     Mean dependent var -0.235098

Adjusted R-squared 0.239918     S.D. dependent var 0.267204

S.E. of regression 0.232956     Sum squared resid 6.729300

F-statistic 9.223709     Durbin-Watson stat 2.857769

Prob(F-statistic) 0.000000     Second-Stage SSR 6.150596

Instrument rank 8.000000    
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The workfile is structured as a dated 
annual panel using ID as the cross-sec-
tion identifier series and YEAR as the 
date classification series.

Since the model is assumed to be 
dynamic, we employ EViews tools for 
estimating dynamic panel data mod-
els. To bring up the GMM dialog, enter 
the keyword gmm in the command line, 
or select Quick/Estimate Equation... 
from the main menu, and choose 
GMM/DPD - Generalized Method of 
Moments / Dynamic Panel Data in the Method dropdown menu to display the IV estimator 
dialog.

Click on the button labeled Dynamic Panel Wizard... to bring up the DPD wizard. The DPD 
wizard is a tool that will aid you in filling out the general GMM dialog. The first page is an 
introductory screen describing the basic purpose of the wizard. Click Next to continue.

The second page of the 
wizard prompts you for 
the dependent variable 
and the number of its lags 
to include as explanatory 
variables. In this example, 
we wish to estimate an 
equation with N as the 
dependent variable and 
N(-1) and N(-2) as explan-
atory variables so we enter 
“N” and select “2” lags in 
the dropdown menu. Click 
on Next to continue to the 
next page, where you will 
specify the remaining 
explanatory variables.

In the next page, you will complete the specification of your explanatory variables. First, 
enter the list:

w w(-1) k ys ys(-1)
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in the regressor edit box to include these variables. Since the desired specification will 
include time dummies, make certain that the checkbox for Include period dummy vari-
ables is selected, then click on Next to proceed.

The next page of the wiz-
ard is used to specify a 
transformation to remove 
the cross-section fixed 
effect. You may choose to 
use first Differences or 
Orthogonal deviations. In 
addition, if your specifica-
tion includes period 
dummy variables, there is 
a checkbox asking 
whether you wish to trans-
form the period dummies, 
or to enter them in levels. 
Here we specify the first 
difference transformation, 
and choose to include untransformed period dummies in the transformed equation. Click on 
Next to continue.

The next page is where 
you will specify your 
dynamic period-specific 
(predetermined) instru-
ments. The instruments 
should be entered with the 
“@DYN” tag to indicate 
that they are to be 
expanded into sets of pre-
determined instruments, 
with optional arguments to 
indicate the lags to be 
included. If no arguments 
are provided, the default is 
to include all valid lags 
(from -2 to “-infinity”). 
Here, we instruct EViews that we wish to use the default lags for N as predetermined instru-
ments.
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You should now specify 
the remaining instruments. 
There are two lists that 
should be provided. The 
first list, which is entered 
in the edit field labeled 
Transform, should contain 
a list of the strictly exoge-
nous instruments that you 
wish to transform prior to 
use in estimating the trans-
formed equation. The sec-
ond list, which should be 
entered in the No trans-
form edit box should con-
tain a list of instruments 
that should be used directly without transformation. Enter the remaining instruments:

w w(-1) k ys ys(-1)

in the first edit box and click on Next to proceed to the final page.

The final page allows you 
to specify your GMM 
weighting and coefficient 
covariance calculation 
choices. In the first drop-
down menu, you will 
choose a GMM Iteration 
option. You may select 1-
step (for i.i.d. innova-
tions) to compute the 
Arellano-Bond 1-step esti-
mator, 2-step (update 
weights once), to com-
pute the Arellano-Bond 2-
step estimator, or n-step 
(iterate to convergence), 
to iterate the weight calculations. In the first case, EViews will provide you with choices for 
computing the standard errors, but here only White period robust standard errors are 
allowed. Clicking on Next takes you to the final page. Click on Finish to return to the Equa-
tion Estimation dialog.
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EViews has filled out the Equation Estimation dialog with our choices from the DPD wiz-
ard. You should take a moment to examine the settings that have been filled out for you 
since, in the future, you may wish to enter the specification directly into the dialog without 
using the wizard. You may also, of course, modify the settings in the dialog prior to continu-
ing. For example, click on the Panel Options tab and check the No d.f. correction setting in 
the covariance calculation to match the original Arellano-Bond results (Table 4(b), p. 290). 
Click on OK to estimate the specification.

The top portion of the output describes the estimation settings, coefficient estimates, and 
summary statistics. Note that both the weighting matrix and covariance calculation method 
used are described in the top portion of the output. 

The standard errors that we report here are the standard Arellano-Bond 2-step estimator 
standard errors. Note that there is evidence in the literature that the standard errors for the 
two-step estimator may not be reliable.

The bottom portion of the output displays additional information about the specification and 
summary statistics:

Dependent Variable: N   

Method: Panel Generalized Method of Moments  

Transformation: First Differences   

Date: 08/24/06   Time: 14:21   

Sample (adjusted): 1979 1984   

Periods included: 6   

Cross-sections included: 140   

Total panel (unbalanced) observations: 611  

White period instrument weighting matrix  

White period standard errors & covariance (no d.f. correction) 

Instrument list: @DYN(N, -2) W W(-1) K YS YS(-1)  

        @LEV(@SYSPER)   

 Coefficient Std. Error t-Statistic Prob.  

N(-1) 0.474150 0.088714 5.344699 0.0000

N(-2) -0.052968 0.026721 -1.982222 0.0479

W -0.513205 0.057323 -8.952838 0.0000

W(-1) 0.224640 0.080614 2.786626 0.0055

K 0.292723 0.042243 6.929542 0.0000

YS 0.609775 0.111029 5.492054 0.0000

YS(-1) -0.446371 0.125598 -3.553963 0.0004

@LEV(@ISPERIOD("1979")) 0.010509 0.006831 1.538482 0.1245

@LEV(@ISPERIOD("1980")) 0.014142 0.009924 1.425025 0.1547

@LEV(@ISPERIOD("1981")) -0.040453 0.012197 -3.316629 0.0010

@LEV(@ISPERIOD("1982")) -0.021640 0.011353 -1.906127 0.0571

@LEV(@ISPERIOD("1983")) -0.001847 0.010807 -0.170874 0.8644

@LEV(@ISPERIOD("1984")) -0.010221 0.010548 -0.968937 0.3330
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Note in particular the results labeled “J-statistic” and “Instrument rank”. Since the reported 
J-statistic is simply the Sargan statistic (value of the GMM objective function at estimated 
parameters), and the instrument rank of 38 is greater than the number of estimated coeffi-
cients (13), we may use it to construct the Sargan test of over-identifying restrictions. It is 
worth noting here that the J-statistic reported by a panel equation differs from that reported 
by an ordinary equation by a factor equal to the number of observations. Under the null 
hypothesis that the over-identifying restrictions are valid, the Sargan statistic is distributed 
as a , where  is the number of estimated coefficients and  is the instrument 
rank. The p-value of 0.22 in this example may be computed using “scalar pval = 
@chisq(30.11247, 25)”.

Pooled Mean Group Estimation

As an example of the pooled mean group estimator, we follow the application given in PSS 
estimating consumption functions for OECD countries in the years 1962–1993. The data are 
in the file “OECD.wf1”. The series CONS contains per capita real private consumption for 
each country. INF is a measure of inflation, and INC is per capita real disposable income. 
PSS estimate an ARDL(1,1,1) model with the natural log of CONS as the dependent variable 
and the logs of INF and INC as the two dynamic regressors, with a constant as a static 
regressor.

We can estimate this in EViews by clicking on Quick/Estimate Equation and then selecting 
PMG/ARDL in the method dropdown. We enter 

log(cons) log(inf) log(inc)

in the Dynamic Specification box, select the Fixed radio button to turn off model selection, 
and change the number of dependent lags and regressor lags to 1. To match PSS, we change 
the estimation sample to “1962 1993”. Leaving all other options at their default values, we 
click OK to estimate the model.

 Effects Specification   

Cross-section fixed (first differences)   

Period fixed (dummy variables)   

Mean dependent var -0.063168     S.D. dependent var 0.137637 

S.E. of regression 0.116243     Sum squared resid 8.080432 

J-statistic 30.11247     Instrument rank 38.000000 

x p k–  k p
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The results are as shown:

Dependent Variable: DLOG(CONS)   
Method: ARDL
Date: 03/11/15   Time: 09:44   
Sample: 1962 1993    
Included observations: 767   
Dependent lags: 1 (Fixed)   
Dynamic regressors (1 lag, fixed): LOG(INF) LOG(INC)    
Fixed regressors: C    

Variable Coefficient Std. Error t-Statistic Prob.*  

 Long Run Equation   

LOG(INF) -0.464856 0.056705 -8.197798 0.0000
LOG(INC) 0.904398 0.008687 104.1114 0.0000

 Short Run Equation   

COINTEQ01 -0.199949 0.032126 -6.223894 0.0000
D(INF) -0.018883 0.025371 -0.744295 0.4570

DLOG(INC) 0.327691 0.057425 5.706388 0.0000
C 0.154571 0.021679 7.130068 0.0000

Log likelihood 2327.084    

*Note: p-values and any subsequent tests do not account for model 
        selection.    
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The coefficient on the log of inflation is an estimate of the long-run inflation elasticity, and is 
negative (and strongly significant), as economic theory, and PSS, expect. We would expect 
the long run income elasticity (the coefficient on the log of income) to be equal to one, but 
the estimated value is slightly less at 0.904. We can perform a Wald test of unit elasticity by 
clicking on View/Coefficient Diagnostics/Wald Test, and entering the restriction of 
C(2)=1. This test rejects the null hypothesis of unit elasticity.

Panel Equation Testing

Omitted Variables Test

You may perform an F-test of the joint significance of variables that are presently omitted 
from a panel or pool equation estimated by list. Select View/Coefficient Diagnostics/Omit-
ted Variables - Likelihood Ratio... and in the resulting dialog, enter the names of the vari-
ables you wish to add to the default specification. If estimating in a pool setting, you should 
enter the desired pool or ordinary series in the appropriate edit box (common, cross-section 
specific, period specific). 

When you click on OK, EViews will first estimate the unrestricted specification, then form 
the usual F-test, and will display both the test results as well as the results from the unre-
stricted specification in the equation or pool window. 

Adapting Example 10.6 from Wooldridge (2002, p. 282) slightly, we may first estimate a 
pooled sample equation for a model of the effect of job training grants on LSCRAP using first 
differencing. The restricted set of explanatory variables includes a constant and D89. The 
results from the restricted estimator are given by:
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We wish to test the significance of the first differences of the omitted job training grant vari-
ables GRANT and GRANT_1. Click on View/Coefficient Diagnostics/Omitted Variables - 
Likelihood Ratio... and type “D(GRANT)” and “D(GRANT_1)” to enter the two variables in 
differences. Click on OK to display the omitted variables test results.

The top portion of the results contains a brief description of the test, the test statistic values, 
and the associated significance levels:

Here, the test statistics do not reject, at conventional significance levels, the null hypothesis 
that D(GRANT) and D(GRANT_1) are jointly irrelevant.

The remainder of the results shows summary information and the test equation estimated 
under the unrestricted alternative:

Dependent Variable: D(LSCRAP)   

Method: Panel Least Squares   

Date: 08/24/06   Time: 14:29   

Sample (adjusted): 1988 1989   

Periods included: 2   

Cross-sections included: 54   

Total panel (balanced) observations: 108  

 Coefficient Std. Error t-Statistic Prob.  

C -0.168993 0.078872 -2.142622 0.0344

D89 -0.104279 0.111542 -0.934881 0.3520

R-squared 0.008178     Mean dependent var -0.221132

Adjusted R-squared -0.001179     S.D. dependent var 0.579248

S.E. of regression 0.579589     Akaike info criterion 1.765351

Sum squared resid 35.60793     Schwarz criterion 1.815020

Log likelihood -93.32896     Hannan-Quinn criter. 1.785490

F-statistic 0.874003     Durbin-Watson stat 1.445487

Prob(F-statistic) 0.351974    

Omitted Variables Test   
Equation: UNTITLED    
Specification: D(LSCRAP) C D89   
Omitted Variables: GRANT GRANT_1   

 Value df Probability  

F-statistic  1.529525 (2, 104)  0.2215  
Likelihood ratio  3.130883  2  0.2090  
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Note that if appropriate, the alternative specification will be estimated using the cross-sec-
tion or period GLS weights obtained from the restricted specification. If these weights were 
not saved with the restricted specification and are not available, you may first be asked to 
reestimate the original specification.

Redundant Variables Test

You may perform an F-test of the joint significance of variables that are presently included 
in a panel or pool equation estimated by list. Select View/Coefficient Diagnostics/Redun-
dant Variables - Likelihood Ratio... and in the resulting dialog, enter the names of the vari-
ables in the current specification that you wish to remove in the restricted model.

When you click on OK, EViews will estimate the restricted specification, form the usual F-
test, and will display the test results and restricted estimates. Note that if appropriate, the 
alternative specification will be estimated using the cross-section or period GLS weights 
obtained from the unrestricted specification. If these weights were not saved with the speci-
fication and are not available, you may first be asked to reestimate the original specification.

To illustrate the redundant variables test, consider Example 10.4 from Wooldridge (2002, p. 
262), where we test for the redundancy of GRANT and GRANT_1 in a specification esti-
mated with cross-section random effects. The top portion of the unrestricted specification is 
given by:

F-test summary:    

 Sum of Sq. df 
Mean 

Squares  
Test SSR  1.017443  2  0.508721  
Restricted SSR  35.60793  106  0.335924  
Unrestricted SSR  34.59049  104  0.332601  
Unrestricted SSR  34.59049  104  0.332601  

LR test summary:    
 Value df   

Restricted LogL -93.32896  106   
Unrestricted LogL -91.76352  104   
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.

Note in particular that our unrestricted model is a random effects specification using Swamy 
and Arora estimators for the component variances, and that the estimates of the cross-sec-
tion and idiosyncratic random effects standard deviations are 1.390 and 0.4978, respectively.

If we select the redundant variables test, and perform a joint test on GRANT and GRANT_1, 
EViews displays the test results in the top of the results window:

Here we see that the statistic value of 1.832 does not, at conventional significance levels, 
lead us to reject the null hypothesis that GRANT and GRANT_1 are redundant in the unre-
stricted specification.

Dependent Variable: LSCRAP   

Method: Panel EGLS (Cross-section random effects)  

Date: 11/24/04   Time: 11:25   

Sample: 1987 1989    

Cross-sections included: 54   

Total panel (balanced) observations: 162  

Swamy and Arora estimator of component variances  

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.414833 0.242965 1.707379 0.0897

D88 -0.093452 0.108946 -0.857779 0.3923

D89 -0.269834 0.131397 -2.053577 0.0417

UNION 0.547802 0.409837 1.336635 0.1833

GRANT -0.214696 0.147500 -1.455565 0.1475

GRANT_1 -0.377070 0.204957 -1.839747 0.0677

 Effects Specification   

   S.D.  Rho  

Cross-section random 1.390029 0.8863

Idiosyncratic random 0.497744 0.1137

Redundant Variables Test   
Equation: UNTITLED    
Specification: LSCRAP C D88 D89 UNION GRANT GRANT_1  
Redundant Variables: GRANT GRANT_1   

 Value df Probability  

F-statistic  1.832264 (2, 156)  0.1635  

F-test summary:    

 Sum of Sq. df 
Mean 

Squares  

Test SSR  0.911380  2  0.455690  
Restricted SSR  39.70907  158  0.251323  
Unrestricted SSR  38.79769  156  0.248703  
Unrestricted SSR  38.79769  156  0.248703  
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The restricted test equation results are depicted in the bottom portion of the window. Here 
we see the top portion of the results for the restricted equation:

The important thing to note is that the restricted specification removes the test variables 
GRANT and GRANT_1. Note further that the output indicates that we are using existing esti-
mates of the random component variances (“Use pre-specified random component esti-
mates”), and that the displayed results for the effects match those for the unrestricted 
specification.

Fixed Effects Testing

EViews provides built-in tools for testing the joint significance of the fixed effects estimates 
in least squares specifications. To test the significance of your effects you must first estimate 
the unrestricted specification that includes the effects of interest. Next, select View/Fixed/
Random Effects Testing/Redundant Fixed Effects – Likelihood Ratio. EViews will estimate 
the appropriate restricted specifications, and will display the test output as well as the 
results for the restricted specifications.

Note that where the unrestricted specification is a two-way fixed effects estimator, EViews 
will test the joint significance of all of the effects as well as the joint significance of the 
cross-section effects and the period effects separately.

Let us consider Example 3.6.2 in Baltagi (2005), in which we estimate a two-way fixed 
effects model using data in “Gasoline.WF1”. The results for the unrestricted estimated gaso-
line demand equation are given by:

Restricted Test Equation:   
Dependent Variable: LSCRAP   
Method: Panel EGLS (Cross-section random effects)  
Date: 08/18/09   Time: 12:39   
Sample: 1987 1989    
Periods included: 3   
Cross-sections included: 54   
Total panel (balanced) observations: 162  
Use pre-specified random component estimates  
Swamy and Arora estimator of component variances  

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.419327 0.242949 1.725987 0.0863
D88 -0.168993 0.095791 -1.764187 0.0796
D89 -0.442265 0.095791 -4.616981 0.0000

UNION 0.534321 0.409752 1.304010 0.1941

 Effects Specification   
   S.D.  Rho  

Cross-section random 1.390029 0.8863
Idiosyncratic random 0.497744 0.1137
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Note that the specification has both cross-section and period fixed effects. When you select 
the fixed effect test from the equation menu, EViews estimates three restricted specifica-
tions: one with period fixed effects only, one with cross-section fixed effects only, and one 
with only a common intercept. The test results are displayed at the top of the results win-
dow:

Dependent Variable: LGASPCAR   

Method: Panel Least Squares   

Date: 08/24/06   Time: 15:32   

Sample: 1960 1978    

Periods included: 19   

Cross-sections included: 18   

Total panel (balanced) observations: 342  

 Coefficient Std. Error t-Statistic Prob.  

C -0.855103 0.385169 -2.220073 0.0272

LINCOMEP 0.051369 0.091386 0.562103 0.5745

LRPMG -0.192850 0.042860 -4.499545 0.0000

LCARPCAP -0.593448 0.027669 -21.44787 0.0000

 Effects Specification   

Cross-section fixed (dummy variables)   

Period fixed (dummy variables)   

R-squared 0.980564     Mean dependent var 4.296242

Adjusted R-squared 0.978126     S.D. dependent var 0.548907

S.E. of regression 0.081183     Akaike info criterion -2.077237

Sum squared resid 1.996961     Schwarz criterion -1.639934

Log likelihood 394.2075     Hannan-Quinn criter. -1.903027

F-statistic 402.2697     Durbin-Watson stat 0.348394

Prob(F-statistic) 0.000000    

Redundant Fixed Effects Tests   

Equation: Untitled   

Test cross-section and period fixed effects  

Effects Test Statistic  d.f. Prob. 

Cross-section F 113.351303 (17,303) 0.0000

Cross-section Chi-square 682.635958 17 0.0000

Period F 6.233849 (18,303) 0.0000

Period Chi-square 107.747064 18 0.0000

Cross-Section/Period F 55.955615 (35,303) 0.0000

Cross-Section/Period Chi-square 687.429282 35 0.0000
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Notice that there are three sets of tests. The first set consists of two tests (“Cross-section F” 
and “Cross-section Chi-square”) that evaluate the joint significance of the cross-section 
effects using sums-of-squares (F-test) and the likelihood function (Chi-square test). The cor-
responding restricted specification is one in which there are period effects only. The two sta-
tistic values (113.35 and 682.64) and the associated p-values strongly reject the null that the 
cross-section effects are redundant.

The next two tests evaluate the significance of the period dummies in the unrestricted model 
against a restricted specification in which there are cross-section effects only. Both forms of 
the statistic strongly reject the null of no period effects.

The remaining results evaluate the joint significance of all of the effects, respectively. Both 
of the test statistics reject the restricted model in which there is only a single intercept.

Below the test statistic results, EViews displays the results for the test equations. In this 
example, there are three distinct restricted equations so EViews shows three sets of esti-
mates.

Lastly, note that this test statistic is not currently available for instrumental variables and 
GMM specifications.

Hausman Test for Correlated Random Effects

A central assumption in random effects estimation is the assumption that the random effects 
are uncorrelated with the explanatory variables. One common method for testing this 
assumption is to employ a Hausman (1978) test to compare the fixed and random effects 
estimates of coefficients (for discussion see, for example Wooldridge 2002, p. 288), and Balt-
agi 2005, p. 66). 

To perform the Hausman test, you must first estimate a model with your random effects 
specification. Next, select View/Fixed/Random Effects Testing/Correlated Random Effects 
- Hausman Test. EViews will automatically estimate the corresponding fixed effects specifi-
cations, compute the test statistics, and display the results and auxiliary equations.

For example, Baltagi (2005) considers an example of Hausman testing (Example 1, p. 70), in 
which the results for a Swamy-Arora random effects estimator for the Grunfeld data (“Grun-
feld_baltagi_panel.WF1”) are compared with those obtained from the corresponding fixed 
effects estimator. To perform this test we must first estimate a random effects estimator, 
obtaining the results:
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Next we select the Hausman test from the equation menu by clicking on View/Fixed/Ran-
dom Effects Testing/Correlated Random Effects - Hausman Test. EViews estimates the cor-
responding fixed effects estimator, evaluates the test, and displays the results in the equation 
window. If the original specification is a two-way random effects model, EViews will test the 
two sets of effects separately as well as jointly.

There are three parts to the output. The top portion describes the test statistic and provides 
a summary of the results. Here we have:

The statistic provides little evidence against the null hypothesis that there is no misspecifica-
tion.

The next portion of output provides additional test detail, showing the coefficient estimates 
from both the random and fixed effects estimators, along with the variance of the difference 
and associated p-values for the hypothesis that there is no difference. Note that in some 
cases, the estimated variances can be negative so that the probabilities cannot be computed.

Dependent Variable: I   
Method: Panel EGLS (Cross-section random effects)  
Date: 08/18/09   Time: 12:50   
Sample: 1935 1954    
Periods included: 20   
Cross-sections included: 10   
Total panel (balanced) observations: 200   
Swamy and Arora estimator o f component variances  

Variable Coefficient Std. Error t-Statistic Prob.  

C -57.83441 28.88930 -2.001932 0.0467
F 0.109781 0.010489 10.46615 0.0000

C01 0.308113 0.017175 17.93989 0.0000

 Effects Specification   
   S.D.  Rho  

Cross-section random 84.20095 0.7180
Idiosyncratic random 52.76797 0.2820

Correlated Random Effects - Hausman Test  

Equation: Untitled   

Test cross-section random effects   

Test Summary 
Chi-Sq. 
Statistic Chi-Sq. d.f. Prob. 

Cross-section random 2.131366 2 0.3445
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The bottom portion of the output contains the results from the corresponding fixed effects 
estimation:

In some cases, EViews will automatically drop non-varying variables in order to construct 
the test statistic. These dropped variables will be indicated in this latter estimation output.

LM Tests for Random Effects 

Testing for the existence of cross-section (individual) and time effects is important in panel 
and pool regression settings since accounting for the presence of these effects is necessary 
for correct specification of the regression and proper inference. As a result, a large number 
of effects tests have been considered in the literature. See, for example, the survey by Baltagi 
(2008).

Cross-section random effects test comparisons:  
     

Variable Fixed  Random Var(Diff.) Prob.

F 0.110124 0.109781 0.000031 0.9506
C01 0.310065 0.308113 0.000006 0.4332

Cross-section random effects test equation:  
Dependent Variable: I   
Method: Panel Least Squares   
Date: 08/18/09   Time: 12:51   
Sample: 1935 1954    
Periods included: 20   
Cross-sections included: 10   
Total panel (balanced) observations: 200   

Variable Coefficient Std. Error t-Statistic Prob.  

C -58.74394 12.45369 -4.716990 0.0000
F 0.110124 0.011857 9.287901 0.0000

C01 0.310065 0.017355 17.86656 0.0000

 Effects Specification   

Cross-section fixed (dummy variables)    

R-squared 0.944073    Mean dependent var 145.9583
Adjusted R-squared 0.940800    S.D. dependent var 216.8753
S.E. of regression 52.76797    Akaike info criterion 10.82781
Sum squared resid 523478.1    Schwarz criterion 11.02571
Log likelihood -1070.781    Hannan-Quinn criter. 10.90790
F-statistic 288.4996    Durbin-Watson stat 0.716733
Prob(F-statistic) 0.000000    
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EViews offers testing for individual and time effects using both F-statistic (likelihood ratio) 
and Lagrange multiplier (LM) tests. The follow discussion describes LM testing for random 
effects (the F-statistic tests for fixed effects are described elsewhere in this manual).

The most popular random effects test is the Breusch-Pagan (1980) LM test. Honda (1985) 
derives component LM tests with one-sided alternatives, obtaining a uniformly most power-
ful (UMP) test statistic. Moulton and Randolph (1989) propose a standardized version of the 
Honda test that has improved asymptotic size. King and Wu (1997) introduce a locally mean 
most powerful (LMMP) one-sided LM test. In addition, Baltagi and Li (1992), Baltagi, Chang 
and Li (1999) extend the Breusch-Pagan, Honda, and King and Wu approaches to unbal-
anced designs.

The EViews panel effects (PE) test view computes the following LM tests: 

• Conventional LM (Breusch-Pagan, 1980)

• Uniformly most powerful LM (Honda, 1985)

• Standardized LM (Moulton and Randolph, 1989; Honda, 1991; Baltagi et al., 1999)

• Locally mean most powerful (LMMP) (King and Wu, 1997)

• Gourieroux, Holly, and Monfort (1982)

All of these tests may be computed from estimated regressions for equation objects in a 
panel structured workfile, or estimated pool objects in a non-panel workfile. Note that 
EViews offers these tests for equations estimated using both regression and instrumental 
variables so long as the equations are free of estimated effects, AR terms, and GLS weight-
ing, despite the fact that these LM tests are not, strictly speaking, applicable in the instru-
mental variables case. One should employ appropriate caution in the use of such results in 
this setting.

Background

Our discussion follows closely the survey by Baltagi (2008). We consider two-way error 
components disturbances:

 (45.5)

for cross-sections  and periods  where  are unobservable 
individual effects,  are unobservable time effects, and  is the remaining idiosyncratic 
disturbance.

The LM tests are derived under the assumption that the unobserved individual effects are 
distributed as independent , the unobservable time effects are independent 

, and the idiosyncratic disturbances are independent . The null hypothe-
ses to be tested are: no individual effects ( ); no time effects ( ); and 
no individual and time effects ( ).
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For the remaining discussion, it will be useful to write the component specification in 
stacked matrix form. Let . Then, define the cross-section resid-
ual vector  and stacked residuals , we 
have

(45.6)

where  is a  matrix of cross-section dummies,  is a  matrix 
of period dummies, and  is defined analogously to .

For a balanced panel,  and , where  is a -dimen-
sional identity matrix and  a -dimensional unit vector. We also have 

 and , for  a  matrix of ones.

Breusch-Pagan Two-Sided Test

Breusch and Pagan (1980) derive the two-sided LM test for error components in balanced 
panels. Define 

(45.7)

where  are the residuals obtained from the restricted model. Then defining

(45.8)

and 

(45.9)

we obtain the LM statistic for testing :

which is distributed as a  under the null. To test  and , we may use  and 
 respectively, both of which are distributed as a  under corresponding null.

Baltagi and Li (1990) derived corresponding statistics for unbalanced samples:

(45.10)
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ũũ
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 (45.11)

which simplifies for the balanced case where  and .

Honda UMP One-Sided Test

One shortcoming of the Breusch-Pagan test is that it assumes that the alternative hypothesis 
is two-sided even though the variance components cannot be negative. 

Honda(1985) derives a uniformly most powerful  statistic for  against a 
one-sided :

(45.12)

Similarly, for the one-sided test of  against  we have:

(45.13)

Note that both of these statistics are the square roots of the corresponding Breusch-Pagan 
LM statistics.

Honda’s statistics can be generalized to the unbalanced case yielding square roots of the 
unbalanced Breusch-Pagan LM statistics:

(45.14)

Honda does not derive a uniformly most powerful statistic  against the 
one-sided alternative, but does suggest a “handy” one-sided test statistic:

(45.15)

which also converges to a . 
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King and Wu

King and Wu (1997) propose locally mean most powerful (LMMP) one-sided test statistics 
 and  for  against a one-sided  and for  

against . These two statistics are identical to the corresponding Honda UMP sta-
tistics.

Baltagi, Chang, and Li (1992) derive the corresponding LMMP test for  
against the one-sided alternative:

(45.16)

and Baltagi, Chang, and Li (1999) obtain results for unbalanced case:

(45.17)

Standardized LM Tests

Moulton and Randolph (1989) showed that the asymptotic approximation for the one-sided 
statistics can be poor when the number of regressors is large or the inter-correlation of 
regressors is high. Alternatively, they propose a standardized one-sided LM (SLM) statistic 
which centers and scales the statistic so that its mean is zero and its variance is one. 

For  against a one-sided , they show that the standardized Honda (or 
King-Wu statistic) is given by:

(45.18)

Expressions for the expected value and variance may be found in Moulton and Randolph 
(1989) and Baltagi (2008).

The one-sided statistic  for  against a one-sided  is defined 
analogously:

(45.19)

For the two-way model, Honda (1991) proposes a standardized Honda-type SLM test statis-
tic, and Baltagi, Chang and Li (1999) describe a standardized King-Wu statistic. Under 

, these SLM statistics are asymptotically distributed as  and their 
critical values should be more accurate than those of the corresponding unstandardized 
tests. See Baltagi, Chang, and Li (1999) and Baltagi (2008) for details.
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Gourieroux, Holly, Monfort test

Gourieroux, Holly and Monfort (1982) and Baltagi, Chang and Li (1992) account for the pos-
sibility of negative estimates of the variance components with the following modification of 
the LM test under the null hypothesis  against the two-sided alternative

(45.20)

where  is a mixed  distribution with . 
The weights ,  and  are from Gourieroux et al. (1982),  is zero with proba-
bility one, and  and  are asymptotically independent of each other. The critical 
values of 7.289, 4.321, 2.952 for standard test sizes 0.01, 0.05 and 0.1 respectively, are 
obtained from Baltagi (2008).

Example 

The LM test for random effects view implements Lagrange multiplier tests of individual or/
and time effects based on the results of the pooling model. As an example we use the Grun-
feld (1958) data which contains 10 large US manufacturing firms over 20 years (1935–1954), 
which is available in the workfile “Grunfeld_Baltagi_panel.wf1” in the “Working with Panel 
Data” folder in your “Example Files” directory.

Following Grunfeld (1958), we consider the following investment equation:

(45.21)

where  denotes real gross investment for firm  in year ;  is the real value of the 
firm (share outstanding); and  is the real value of the capital stock. We estimate this 
model using ordinary pooled least squares on the specification:
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and name our equation EQ01. The results are shown as below:
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To test for the presence of individual and time effects in this model, we can click on View/
Fixed-Random Effects Testing/Omitted Random Effects - Lagrange Multiplier menu item. 
The results of the LM tests are shown as below:
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From the first column, we see that there is strong evidence that there are unaccounted for 
cross-section random effects in the pooled estimator residuals. All three of the cross-section 
tests have p-values well below conventional significance levels.

However, for testing time-specific effects, there is a marked difference between the results 
for the two-sided Breusch-Pagan and the one-sided tests, with the former suggesting the 
presence of effects, and the latter with negative values indicating that there are no time-
effects. These data clearly show the benefits of using one-sided tests in an empirical setting.

Panel Cross-section Dependence Test

It is commonly assumed that disturbances in panel data models are cross-sectionally inde-
pendent, especially when the cross-section dimension ( ) is large. There is, however, con-
siderable evidence that cross-sectional dependence is often present in panel regression 
settings.

Lagrange Multiplier Tests for Random Effects  
Null hypotheses: No effects  
Alternative hypotheses: Two-sided (Breusch-Pagan) and one-sided 
       (all others) alternatives

 Test Hypothesis 
Test Cross-section Time Both 

Breusch-Pagan  798.1615  6.453882  804.6154 
 (0.0000) (0.0111) (0.0000) 
    

Honda  28.25175 -2.540449  18.18064 
 (0.0000) -- (0.0000) 
    

Standardized Honda -- --  16.29814 
 -- -- (0.0000) 
    

King-Wu  28.25175 -2.540449  21.83221 
(0.0000) -- (0.0000)

    
Standardized King-Wu -- --  20.96591 

 -- -- (0.0000) 
    

Standardized  32.66605 -2.432565 -- 
 (0.0000) --  
    

Gourierioux, et al. -- --  798.1615 
   (< 0.01)* 

*Mixed chi-square asymptotic critical values for the Gourierioux, 
        et al. test statistic:  

1% 7.289   
5% 4.321   

10% 2.952

N
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Ignoring cross-sectional dependence in estimation can have serious consequences, with 
unaccounted for residual dependence resulting in estimator efficiency loss and invalid test 
statistics.

There are a variety of tests for cross-section dependence in the literature. EViews offers the 
following tests:

• Breusch-Pagan (1980) LM

• Pesaran (2004) scaled LM

• Baltagi, Feng, and Kao (2012) bias-corrected scaled LM

• Pesaran (2004) CD

These four tests may be computed from panel and pool equations estimated by least squares 
and instrumental variables. They may also be computed for series in a panel workfile.

Background

Following Pesaran (2004), suppose that we have a panel data model

 (45.22)

for  and  where  is a -dimensional column vector of 
regressors,  are the corresponding cross-section specific vectors of parameters to be esti-
mated. (Pesaran points out that while this specification has cross-section specific coeffi-
cients, the tests described below are also applicable to the more restrictive fixed and random 
effects models).

The general null hypothesis of no cross-section dependence may be stated in terms of the 
correlations between the disturbances in different cross-section units: 

(45.23)

For balanced samples,  is the product-moment correlation coefficients of the residuals

(45.24)

In the unbalanced case, Pesaran proposes use of the centered correlation coefficient

(45.25)
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ûit ûjt

t i j, 

Tkj


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where the notation  is used to indicate that we sum over the subset of  obser-
vations common to i and j, and the pairwise mean

(45.26)

is used to adjust for the fact that the residuals in pairwise subsets are not necessarily mean 
zero.

(Note that in practice EViews always employs centered correlations as in Equation (45.25) 
as this allows for estimation methods where the residuals are not constrained to have zero 
means in each cross-section. These results may differ from those that would have been 
obtained using the non-centered correlations in Equation (45.24). EViews will provide a 
message informing you when non-zero means are found.)

Breusch-Pagan LM

The most well-known cross-section dependence diagnostic is the Breusch-Pagan (1980) 
Lagrange Multiplier (LM) test statistic. In a seemingly unrelated regressions context, Breusch 
and Pagan show that under the null hypothesis in Equation (45.23), a LM statistic for depen-
dence is given by:

 (45.27)

where the  are the correlation coefficients obtained from the residuals of the model as 
described above. The asymptotic  distribution is obtained for  fixed as  for all 

, and follows from a normality assumption on the errors.

Pesaran Scaled LM 

It is well known that the standard Breusch-Pagan LM test statistic is not appropriate for test-
ing in large  settings. To address this shortcoming, Pesaran (2004) proposes a standard-
ized version of the LM statistic

 (45.28)

which is asymptotically standard normal as first  and then . 

Pesaran notes one shortcoming of the scaled LM which is that  is not centered 
at zero for finite , so that the statistic is likely to exhibit size distortion for small , 
and that the distortion will worsen for larger .
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Pesaran CD 

To address the size distortion of  and , Pesaran (2004) proposes an alternative sta-
tistic based on the average of the pairwise correlation coefficients :

(45.29)

which is asymptotically standard normal for  and  in any order.

Further, Pesaran points out that for a wide array of panel data models, the mean of CD is 
exactly equal to zero for all  and all , so that the CD test is likely to have good 
properties for both  and  small, and he provides Monte Carlo evidence to support this 
claim.

Baltagi, Feng, and Kao Bias-corrected Scaled LM

Baltagi, Feng, and Kao (2012) offer a simple asymptotic bias correction for the scaled LM test 
statistic:

(45.30)

For a fixed effects homogeneous panel data model with , , and 
, Baltagi, et al. show that the scaled LM has an asymptotic bias term 

of  resulting from the incidental parameters problem since, for small , 
the within residuals are estimated imprecisely. (Note that in Equation (45.30) we extend the 
slightly Baltagi, et al. scaled LM test to unbalanced designs by using the maximum of  
for  and requiring that  as ).

Note that EViews will not compute the biased corrected LM statistic unless the equation was 
estimated with cross-section fixed effects.

Example

We illustrate the use of cross-section dependence tests for equation objects using an empiri-
cal example from Baltagi (2008) examining gasoline demand in 18 OECD countries over the 
period 1960–1978 (Table 2.8, p. 29).

We download the data and create a panel-structured workfile by entering the following com-
mand in the EViews command window

wfopen http://www.wiley.com///wileychi/baltagi/supp/Gasoline.dat 
lastobs=342

and clicking on Finish in the import wizard to accept the default settings.
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The equation of interest is a cross-section fixed effects regression of log motor gasoline con-
sumption per auto (LNGASPCAR), on log real per capital income (LINCOMEP), log real 
motor gasoline price (LRPMG), log real motor gasoline price the log of the stock of cars per 
capita (LCARPCAP).

We estimate this fixed effect specification by entering the command:

equation gas.ls(cx=f) lgaspcar c lincomep lrpmg lcarpcap

which creates the equation object GAS and displays the estimation results:

Implicit in our approach to estimation in this example and in the validity of the computed t-
statistics is the assumption that the errors for different cross-sectional units are uncorrelated.

To test for the presence of cross-sectional dependence, we click on View/Residual Diagnos-
tics/Cross-section Dependence Test
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EViews will compute the cross-section dependence tests and display the results in the object 
window:

The top of the table displays the test hypothesis and information about the number of cross-
section and period observations in the panel. The bottom portion of the table contains the 
test results. 

The first line contains results for the Breusch-Pagan LM test. EViews shows the test statistic 
value, test degree-of-freedom, and the associated p-value. In this case, the value of the test 
statistic, 1027.14 is well into the upper tail of a , and we strongly reject the null of no 
correlation at conventional significance levels.

x
2
153
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The next two lines present results for the two scaled Breusch-Pagan tests. Both the Pesaran 
scaled Breusch-Pagan LM, and the Baltagi et al. bias-adjusted LM tests are asymptotically 
standard normal, and the test statistic results of 49.97 and 49.47 respectively, strongly reject 
the null at conventional levels. Note that in this example, the bias correction has a relatively 
small effect on the scaled LM statistic as  and  are of similar magnitude.

Since  is relatively small, we may instead wish to focus on the results for the asymptoti-
cally standard normal Pesaran CD test which are presented in the final line of the table. 
While the test statistic value of 3.25 is significantly below that of the scaled LM tests, the 
Pesaran CD test still rejects the null at conventional significance levels.

Arellano-Bond Serial Correlation Testing

For models estimated by GMM, you may compute the first and second order serial correla-
tion statistics proposed by Arellano and Bond (1991) as one method of testing for serial cor-
relation. The test is actually two separate statistics, one for first order correlation and one for 
second. If the innovations are i.i.d. we expect the first order statistic to be significant (with a 
negative auto-correlation coefficient), and the second order statistic to be insignificant. 

The statistics are calculated as:

(45.31)

(45.32)

(45.33)

where  is the average j-th order autocovariance. 

(Note that this test is only available for equations estimated by GMM using first difference 
cross-section effects.)

To perform the test click on View/Residual Diagnostics/Arellano-Bond Serial Correlation 
Test. EViews will then calculate the test statistics for both first and second order correlation 
and display them in one table.

As an illustration, we again use the workfile ABOND_PAN.WF1 which contains data on a 
firm level panel, as examined in Arellano and Bond (1991), and Doornik, Bond and Arellano 
(2006). The following command estimates the GMM example used in the “GMM Example” 
on page 936 section, but uses ordinary standard error estimates, instead of the White period 
standard errors used above:

gmm(cx=fd, per=f, gmm=perwhite, iter=oneb, levelper) n n(-1) n(-2) 
w w(-1) k ys ys(-1) @ @dyn(n,-2) w w(-1) k ys ys(-1)
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This equation replicates the estimates shown in Table 4(b), page 290, of Arellano Bond 
(1991). 

Once estimated we click on View/Residual Diagnostics/Arellano-Bond Serial Correlation 
Test to view the serial correlation test results. The table displays the results for a test of both 
first and second order serial correlation:

Dependent Variable: N   
Method: Panel Generalized Method of Moments  
Transformation: First Differences 
Date: 12/20/12   Time: 14:47   
Sample (adjusted): 1979 1984   
Periods included: 6    
Cross-sections included: 140   
Total panel (unbalanced) observations: 611  
White period instrument weighting matrix
Instrument specification: @DYN(N,-2) W W(-1) K YS YS(-1)  
        @LEV(@SYSPER)   
Constant added to instrument list   

Variable Coefficient Std. Error t-Statistic Prob.   

N(-1) 0.474150 0.085303 5.558409 0.0000 
N(-2) -0.052968 0.027284 -1.941324 0.0527 

W -0.513205 0.049345 -10.40027 0.0000 
W(-1) 0.224640 0.080063 2.805796 0.0052 

K 0.292723 0.039463 7.417748 0.0000 
YS 0.609775 0.108524 5.618813 0.0000 

YS(-1) -0.446371 0.124815 -3.576272 0.0004 
@LEV(@ISPERIOD("1979")) 0.010509 0.007251 1.449224 0.1478 
@LEV(@ISPERIOD("1980")) 0.014142 0.009959 1.420077 0.1561 
@LEV(@ISPERIOD("1981")) -0.040453 0.011551 -3.502122 0.0005 
@LEV(@ISPERIOD("1982")) -0.021640 0.011891 -1.819843 0.0693 
@LEV(@ISPERIOD("1983")) -0.001847 0.010412 -0.177358 0.8593 
@LEV(@ISPERIOD("1984")) -0.010221 0.011468 -0.891270 0.3731 

 Effects Specification   

Cross-section fixed (first differences)   
Period fixed (dummy variables)

Mean dependent var -0.063168    S.D. dependent var 0.137637 
S.E. of regression 0.116243    Sum squared resid 8.080432 
J-statistic 30.11247    Instrument rank 38 
Prob(J-statistic) 0.220105    
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Although the original 1991 Arellano Bond paper does not display results for the first order 
test, the same data are used as an example in Doornik, Bond and Arellano 2006 (page 11), 
which does display corrected results for both tests. 

The tests show that the first order statistic is statistically significant, whereas the second 
order statistic is not, which is what we would expect if the model error terms are serial 
uncorrelated in levels.

Estimation Background

The basic class of models that can be estimated using panel techniques may be written as:

(45.34)

The leading case involves a linear conditional mean specification, so that we have:

(45.35)

where  is the dependent variable, and  is a -vector of regressors, and  are the 
error terms for  cross-sectional units observed for dated periods 

. The  parameter represents the overall constant in the model, while the 
 and  represent cross-section or period specific effects (random or fixed).

Note that in contrast to the pool specifications described in Equation (43.2) on page 879, 
EViews panel equations allow you to specify equations in general form, allowing for nonlin-
ear coefficients mean equations with additive effects. Panel equations do not automatically 
allow for  coefficients that vary across cross-sections or periods, but you may, of course, 
create interaction variables that permit such variation.

Other than these differences, the pool equation discussion of “Estimation Background” on 
page 879 applies to the estimation of panel equations. In particular, the calculation of fixed 
and random effects, GLS weighting, AR estimation, and coefficient covariances for least 
squares and instrumental variables is equally applicable in the present setting.

Accordingly, the remainder of this discussion will focus on a brief review of the relevant 
econometric concepts surrounding GMM estimation of panel equations.

Arellano-Bond Serial Correlation Test   
Equation: Untitled    
Date: 02/04/13   Time: 23:58   
Sample: 1976 1984    
Included observations: 611   

Test order m-Statistic  rho     SE(rho) Prob. 

AR(1) -2.427825 -2.106427 0.867619 0.0152
AR(2) -0.332535 -0.075912 0.228281 0.7395
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GMM Details

The following is a brief review of GMM estimation and dynamic panel estimators. As 
always, the discussion is merely an overview. For detailed surveys of the literature, see 
Wooldridge (2002) and Baltagi (2005).

Background

The basic GMM panel estimators are based on moments of the form,

(45.36)

where  is a  matrix of instruments for cross-section , and,

(45.37)

In some cases we will work symmetrically with moments where the summation is taken 
over periods  instead of .

GMM estimation minimizes the quadratic form:

(45.38)

with respect to  for a suitably chosen  weighting matrix .

Given estimates of the coefficient vector, , an estimate of the coefficient covariance matrix 
is computed as, 

(45.39)

where  is an estimator of , and  is a  
derivative matrix given by:

(45.40)

In the simple linear case where , we may write the coefficient estimator 
in closed form as,
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(45.41)

with variance estimator,

(45.42)

for  of the general form:

(45.43)

The basics of GMM estimation involve: (1) specifying the instruments , (2) choosing the 
weighting matrix , and (3) determining an estimator for .

It is worth pointing out that the summations here are taken over individuals; we may equiv-
alently write the expressions in terms of summations taken over periods. This symmetry will 
prove useful in describing some of the GMM specifications that EViews supports.

A wide range of specifications may be viewed as specific cases in the GMM framework. For 
example, the simple 2SLS estimator, using ordinary estimates of the coefficient covariance, 
specifies:

(45.44)

Substituting, we have the familiar expressions,

(45.45)

and,

(45.46)

Standard errors that are robust to conditional or unconditional heteroskedasticity and con-
temporaneous correlation may be computed by substituting a new expression for ,

(45.47)
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2
MZZ 

1–


L ĵ
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so that we have a White cross-section robust coefficient covariance estimator. Additional 
robust covariance methods are described in detail in “Robust Coefficient Covariances” on 
page 889.

In addition, EViews supports a variety of weighting matrix choices. All of the choices avail-
able for covariance calculation are also available for weight calculations in the standard 
panel GMM setting: 2SLS, White cross-section, White period, White diagonal, Cross-section 
SUR (3SLS), Cross-section weights, Period SUR, Period weights. An additional differenced 
error weighting matrix may be employed when estimating a dynamic panel data specifica-
tion using GMM. 

The formulae for these weights are follow immediately from the choices given in “Robust 
Coefficient Covariances” on page 889. For example, the Cross-section SUR (3SLS) weighting 
matrix is computed as:

(45.48)

where  is an estimator of the contemporaneous covariance matrix. Similarly, the White 
period weights are given by:

(45.49)

These latter GMM weights are associated with specifications that have arbitrary serial cor-
relation and time-varying variances in the disturbances.

GLS Specifications

EViews allows you to estimate a GMM specification on GLS transformed data. Note that the 
moment conditions are modified to reflect the GLS weighting:

(45.50)

Dynamic Panel Data

Consider the linear dynamic panel data specification given by:

(45.51)

First-differencing this specification eliminates the individual effect and produces an equation 
of the form:
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(45.52)

which may be estimated using GMM techniques.

Efficient GMM estimation of this equation will typically employ a different number of instru-
ments for each period, with the period-specific instruments corresponding to the different 
numbers of lagged dependent and predetermined variables available at a given period. Thus, 
along with any strictly exogenous variables, one may use period-specific sets of instruments 
corresponding to lagged values of the dependent and other predetermined variables.

Consider, for example, the motivation behind the use of the lagged values of the dependent 
variable as instruments in Equation (45.52). If the innovations in the original equation are 
i.i.d., then in , the first period available for analysis of the specification, it is obvious 
that  is a valid instrument since it is correlated with , but uncorrelated with . 
Similarly, in , both  and  are potential instruments. Continuing in this vein, 
we may form a set of predetermined instruments for individual  using lags of the depen-
dent variable:

(45.53)

Similar sets of instruments may be formed for each predetermined variables.

Assuming that the  are not autocorrelated, the optimal GMM weighting matrix for the dif-
ferenced specification is given by,

(45.54)

where  is the matrix,

(45.55)

and where  contains a mixture of strictly exogenous and predetermined instruments. 
Note that this weighting matrix is the one used in the one-step Arellano-Bond estimator.
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Given estimates of the residuals from the one-step estimator, we may replace the  
weighting matrix with one estimated using computational forms familiar from White period 
covariance estimation:

(45.56)

This weighting matrix is the one used in the Arellano-Bond two-step estimator.

Lastly, we note that an alternative method of transforming the original equation to eliminate 
the individual effect involves computing orthogonal deviations (Arellano and Bover, 1995). 
We will not reproduce the details on here but do note that residuals transformed using 
orthogonal deviations have the property that the optimal first-stage weighting matrix for the 
transformed specification is simply the 2SLS weighting matrix:

(45.57)
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Chapter 46.  Panel Cointegration Estimation

The analysis of long-run cointegrating relationships has received considerable attention in 
modern time series analysis. In this chapter, we describe EViews’ tools for estimating cointe-
grating relationships using panel data. We consider various forms of the residual-based 
panel Fully Modified OLS (FMOLS) and Dynamic OLS (DOLS) estimators (Phillips and 
Moon, 1999; Pedroni, 2000, 2001; Kao and Chiang, 2000; Mark and Sul, 2003) that produce 
asymptotically unbiased, normally distributed coefficient estimates.

If you have not already done so, we recommend you familiarize yourself with the material in 
Chapter 26. “Cointegrating Regression,” beginning on page 267 which describes the closely 
related on-panel versions of the estimators in this chapter. In addition, Baltagi (2008), Balt-
agi and Kao (2000), and Breitung and Pesaran (2005) offer useful surveys of the literature.

Background

We will work with the standard triangular representation of a regression specification and 
assume the existence of a single cointegrating vector as in Hansen (1992). Consider a panel 
structure for the  dimensional time series vector process , with cointegrat-
ing equation

(46.1)

for cross-sections  and periods , where  are deterministic trend 
regressors and the  stochastic regressors  are governed by the system of equations:

(46.2)

The -vector of  regressors enter into both the cointegrating equation and the regres-
sors equations, while the -vector of  are deterministic trend regressors which are 
included in the regressors equations but excluded from the cointegrating equation (see 
“Cointegrating Regression” on page 267 for further discussion).

It is worth mentioning that most authors have focused attention on the leading case in 
which the deterministic trend terms in the panel cointegrating equation consist only of 
cross-section dummy variables:

(46.3)

Notice that the cointegrating relationship between  and  is assumed to be homogeneous 
across cross-sections, and that the specification allows for cross-section specific determinis-
tic effects. 
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Following Phillips and Moon (1999), we define the long run covariance matrices for the 
errors in cross-section  are strictly stationary and ergodic with zero 
mean, contemporaneous covariance matrix , one-sided long-run covariance matrix , 
and long-run covariance matrix , each of which we partition conformably with 

(46.4)

and define what Phillips and Moon term the long-run average covariance matrices 
, and . 

Lastly, and perhaps most importantly, we assume that there is independence in the errors 
across cross-sections.

Given this basic structure, we may define panel estimators of the cointegrating relationship 
coefficient  using extensions of single-equation FMOLS and DOLS methods. There are dif-
ferent variants for each of the estimators depending on the assumptions that one wishes to 
make about the long-run covariances and how one wishes to use the panel structure of the 
data.

We begin by describing how to estimate panel FMOLS and DOLS models in EViews. We then 
discuss the views and procedures associated with the panel equation and offer a simple 
example. Lastly, we provide technical details on the estimation methods.

Estimating Panel Cointegration in EViews

EViews offers two basic methods for estimating a single cointegrating vector in panel set-
tings: Fully Modified OLS (FMOLS) and Dynamic OLS (DOLS). 

To estimate your panel equation you must first be working with a panel structured workfile. 
Next, select Object/New Object.../Equation or Quick/Estimate Equation… then select 
COINTREG - Cointegrating Regression in the Method dropdown menu. Alternately, you 
may enter the cointreg keyword in the command window. 

EViews will open the panel version of the cointegrating equation dialog.
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This dialog is almost identical 
to the dialog for cointegrating 
regression in non-panel set-
tings. 

As before, there are three 
parts of the equation specifi-
cation: the equation and 
cointegrating regressors speci-
fication, the nonstationary 
estimation settings, and the 
sample settings (We ignore, 
for a moment, the related set-
tings on the Options tab.)

Since the sample specifica-
tion should be self-explana-
tory, we focus attention on 
the specification of the cointe-
grating and regressors equa-
tions and the nonstationary 
estimation settings.

Specifying the Equation

The Equation specification and Cointegrating regressors specification are used to describe 
your triangular regression specification.

Equation Specification

You should enter the name of the 
dependent variable, , followed by 
a list of cointegrating regressors, , 
in the Equation specification edit 
field, then use the Trend specifica-
tion drop-down menu to specify the 
deterministic trend components 
(None, Constant (Level), Linear Trend, Quadratic Trend). Your selection will include all 
trends up to the specified order. You may use the Deterministic regressors edit box to add 
deterministic trend regressors that are not offered in the pre-specified list.

y
X
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Cointegrating Regressors Specification

When performing FMOLS estimation you may use the Additional trends drop-down menu 
and the Additional deterministic regressors edit field to specify  deterministic trends 
that are included in the regressors equations but not in the cointegrating equation. 

You may also indicate whether you wish to estimate the regressors innovations  in 
Equation (46.2) indirectly by estimating the regressors equations in levels and then differ-
encing the residuals or directly obtain , by estimating the differenced regressors equa-
tions. Check the Estimate using differenced data box to estimate the regressors equations 
in differences.

Estimation Methods and Settings

The Nonstationary estimation settings section is used to specify the estimation method. 
You should use the Method dropdown menu to choose between FMOLS and DOLS estima-
tion. When you make your selection, the main dialog page and the options page will both 
change to display the options associated with your selection.

Fully-Modified OLS

To estimate your equation using 
panel FMOLS, select Fully-modi-
fied OLS (FMOLS) in the Nonsta-
tionary estimation settings 
dropdown menu. The main dialog 
and options pages will change to show the available settings.

First, you should choose between the pooled, weighted, and group mean (averaged) FMOLS 
estimators:

• Pooled estimation performs standard FMOLS on the pooled sample after removing the 
deterministic components from both the dependent variable and the regressors.

• Pooled (weighted) estimation accounts for heterogeneity by using cross-section spe-
cific estimates of the long-run covariances to reweight the data prior to computing 
pooled FMOLS.

• Grouped mean estimation computes the cross-section average of the individual cross-
section FMOLS estimates. 

See “Fully-Modified OLS,” on page 987 for a detailed description of the methods

Additionally, you may click on the Long-run variances: Options button to specify options 
for computing the long-run covariances. By default, EViews will estimate the individual and 
long-run average covariance matrices using a (non-prewhitened) kernel approach with a 
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Bartlett kernel function and Newey-West fixed bandwidth. To change the whitening or ker-
nel settings, click on the Options button and enter your changes in the sub-dialog. 

Here we have specified that the long-run covariances be computed using a nonparametric 
method with the quadratic-spectral kernel and a real-valued bandwidth chosen by Andrews’ 
automatic bandwidth selection method. Click on OK to accept the updated settings.

Lastly, you can specify the form of the first-stage cointegrating equation regression that 
EViews uses to obtain  for computing the long-run covariances. By default, the first-stage 
regression assumes homogeneous long-run coefficients, but you may allow for different 
coefficients by selecting the Heterogeneous first-stage long-run coefficients checkbox.

Clicking on the Options tab of the estimation dialog shows the settings for computing the 
coefficient covariance for the long-run coefficients and specifying the default coefficient 
name:

For pooled estimation, you may choose between the Default (homogeneous variances) 
moment estimator or a Sandwich (heterogeneous variances) method as described in 

ûit
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“Pooled FMOLS,” on page 987. You may also elect to apply or not apply a degrees-of-free-
dom adjustment to the estimated coefficient covariance.

The pooled weighted and grouped methods only offer the d.f. Adjustment option.

Dynamic OLS

To estimate your equation using DOLS, first fill out the equation specification, then select 
Dynamic OLS (DOLS) in the Nonstationary estimation settings dropdown menu. The dia-
log will change to display the settings for DOLS. 

You should use the Panel method 
drop-down to choose between the 
pooled, weighted, and group mean 
(averaged) DOLS estimators:

• Pooled estimation performs 
standard DOLS on the pooled sample of data after first removing the deterministic 
components from both the dependent variable and the regressors.

• Pooled (weighted) estimation accounts for heterogeneity by using cross-section spe-
cific estimates of the conditional long-run residual variances to reweight the moments 
for each cross-section when computing the pooled DOLS estimator.

• Grouped mean estimation computes the cross-section average of the individual cross-
section DOLS estimates. 

If you specify pooled weighted estimation, EViews will display a Long-run var wgts: 
Options button which will allow you to specify the settings used in computing the long-run 
variances for use as weights.

Next, you should specify the method of selecting leads and lags. By default, the Lag & lead 
method is Fixed with Lags and Leads each set to 1. You may specify a different number of 
lags or leads or you can use the dropdown to enable automatic information criterion selec-
tion of the lag and lead orders for each cross-section by selecting Akaike, Schwarz, or Han-
nan-Quinn. Note that the automatic lag selection method is conducted by estimating 
separate regressions for each cross-section. If you select None, EViews will estimate static 
OLS.

If you select one of the info criterion selection methods, you will be prompted for a maxi-
mum lag and lead length. You may enter a value, or you may retain the default entry “*” 
which instructs EViews to use an arbitrary observation-based rule-of-thumb for each cross-
section:

(B.1)int min Ti k–  3 12,( ) Ti 100 1 4 
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to set the maximum, where  is the number of coefficients in the equation. As in the non-
panel setting, we urge careful thought in the use of automatic selection methods since the 
purpose of including leads and lags is to remove long-run dependence, and automatic meth-
ods were not designed for this purpose.

When you are done modifying the main estimation settings, click on the Options tab of the 
dialog to see the options for computing the long-run coefficient covariance matrix estimates 
and specifying the default coefficient name:

For pooled estimation you will be prompted to specify the Default (homogeneous vari-
ances) moment estimator or a Sandwich (heterogeneous variances) method as described 
in “Pooled DOLS,” on page 990. You will also be prompted to specify the use of a Long-run 
variance estimator or Ordinary variance estimator for use in scaling the moment matrix or 
in computing the individual variance weights sandwich estimator, and to choose whether to 
perform a d.f. Adjustment.

Pooled weighted estimation offers only a choice of whether to perform the degree-of-free-
dom correction (since the long-run variance settings are specified on the first page of the 
dialog). 

Grouped estimation offers a variety of choices for computing the individual coefficient cova-
riance matrices.You may use the Individual covariances method drop-down to choose 
between the Default (rescaled OLS), Ordinary Least Squares, White, or HAC - Newey 
West.

The Default (rescaled OLS) method re-scales the ordi-
nary least squares coefficient covariance using an estima-
tor of the long-run variance of DOLS residuals 
(multiplying by the ratio of the long-run variance to the 
ordinary squared standard error). Alternately, you may 
employ a sandwich-style HAC (Newey-West) covariance 
matrix estimator. 

k
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In both cases, you may use the options button (labeled Options or HAC Options, respec-
tively) to override the default method for computing the long-run variance (non-prewhit-
ened Bartlett kernel and a Newey-West fixed bandwidth). You may also select White 
covariances or Ordinary Least Squares covariances. The latter two methods are offered pri-
marily for comparison purposes.

Working With a Panel Cointegrating Equation

Once you estimate your equation, EViews offers a variety of views and procedures for exam-
ining the properties of the equation, testing, forecasting, and generating data. Generally 
speaking, these views and procedures are the same as those available in other estimation 
settings such as least squares estimation. In some cases there have been modifications to 
account for the nature of panel cointegrating regression.

Views 

For the most part, the views of a cointegrating equation require little discussion. 

For example, the Estimation Output shows the estimated coeffi-
cients and summary statistics of the equation, the Representa-
tions view offers text descriptions of the estimated cointegrating 
equation, the Covariance Matrix displays the coefficient covari-
ance, and the Residual Diagnostics (Correlogram - Q-statistics, 
Correlogram Squared Residuals, Histogram - Normality Test) 
offer statistics based on residuals. 

That said, a few comments about the construction of these views 
are in order.

• The Estimation Output, Representations, Covariance Matrix views of an equation 
only show results for the cointegrating equation and the long-run coefficients. In the 
representations view, the presence of individual trend coefficients is represented by 
the presence of the expression “[CX=DETERM]”. Similarly, the Coefficient Diagnos-
tics do not include any of the deterministics. Note also that the short-run dynamics 
added in DOLS estimation are not included in these views. 

(Note that EViews while does not display the coefficients for the deterministics and 
short-run dynamics, the coefficients are used in constructing relevant measures such 
as fit statistics and residuals.)

• You may use the Individual Coefficients view to examine the estimated trend coeffi-
cients for each cross-section.

• The method used to compute residuals in the Actual, Fitted, Residual views and the 
Residual Diagnostics views differs depending on the estimation method. For FMOLS, 
the values are not based on the transformed data; the residuals are derived by substi-
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tuting the estimated coefficients into the original cointegrating equation and comput-
ing the residuals. For DOLS, the residuals from the cointegrating equation are adjusted 
for the deterministics and estimated short-run dynamics. Standardized residuals are 
simply the residuals divided through by the long-run variance estimate.

• The test statistics in the Residual Diagnostics are computed using the pooled residual 
data and probably should be used only for illustrative purposes.

Procedures

The procs for an equation estimated using panel cointegrating regression are a subset of 
those found in least squares estimation. 

While most of the relevant issues were discussed in the previ-
ous section (e.g., construction of residuals), you should note 
that:

• Forecasts constructed using the Forecast... procedure 
and models created using Make Model procedure fol-
low the Representations view in omitting DOLS short-
run dynamics. If you wish to construct forecasts that 
incorporate the short-run dynamics, you should use ordinary least squares to estimate 
an equation that explicitly includes the lags and leads of the cointegrating regressors.

• The forecast standard errors generated by the Forecast... proc and those obtained 
from solving models created using the Make Model... proc both employ the “S.E. of 
the regression” reported in the estimation output. This may not be appropriate.

• When creating a model from a panel equation with deterministic trends, EViews will 
create a series in the workfile containing the fitted values of the trend terms and will 
incorporate this series in the equation specification. If you wish to solve for your 
model with out-of-sample values, you will need to fill in the appropriate fitted values 
in the series.

Examples

To illustrate the estimation of panel cointegration models in EViews, we follow Kao, Chiang, 
and Chen (KCC, 1999) who apply panel cointegration analysis to the study of economic 
growth by estimating the cointegrating relationship for total factor productivity and domes-
tic and foreign R&D capital stock.

The KCC data, which we provide in the workfile “tfpcoint.WF1” consist of annual data on 
log total factor productivity (LTFP), log domestic (LRD), and log foreign (LFRD) R&D capital 
stock for 22 countries for the years 1971 to 1990. We consider estimation of simple pooled 
FMOLS and DOLS estimators for the cointegrating vectors as in Table 4(i) (p. 703) and Table 
5(i) (p. 704).
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To begin, display the panel cointegrating equation dialog, and fill out the top portion of the 
dialog as depicted below:

Following KCC, we assume a fixed effect specification with LTFP as the dependent variable 
and LRD and LFRD as the cointegrating regressors. To handle the fixed effect we specify a 
Constant (Level) in the Trend specification drop-down menu.

The default panel cointegration estimation method Pooled estimation using Fully-modified 
OLS (FMOLS) corresponds to the estimates in Table 4(i) of KCC, so we leave those settings 
unchanged. 

To match the KCC estimates, we click on Long-run variances: Options button to display the 
long-run covariance settings, and change the Kernel options by setting a user-specified 
bandwidth value of 6: 
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Click on OK to accept the changes. Since we wish to estimate the equation using the default 
coefficient covariances, we simply click on OK again to estimate the equation using the 
specified settings. EViews estimates the equation and displays the results:

The top portion of the dialog displays the estimation method and information about the 
sample employed in estimation. Just below the sample information EViews shows that the 
estimates are based on pooled estimation using only a constant as the cross-section specific 
trend regressor. The coefficient covariances are computed using the default settings, and the 
long-run covariances used a Bartlett kernel with the user-specified bandwidth.

Dependent Variable: LTFP   
Method: Panel Fully Modified Least Squares (FMOLS)  
Date: 01/14/13   Time: 15:23   
Sample (adjusted): 1972 1990   
Periods included: 19
Cross-sections included: 22   
Total panel (balanced) observations: 418   
Panel method: Pooled estimation   
Cointegrating equation deterministics: C   
Coefficient covariance computed using default method  
Long-run covariance estimates (Bartlett kernel, User bandwidth = 
        6.0000)    

Variable Coefficient Std. Error t-Statistic Prob.  

LRD 0.082284 0.017282 4.761167 0.0000
LFRD 0.114272 0.029055 3.933005 0.0001

R-squared 0.608017    Mean dependent var -0.016190
Adjusted R-squared 0.585135    S.D. dependent var 0.031831
S.E. of regression 0.020502    Sum squared resid 0.165613
Durbin-Watson stat 0.286810    Long-run variance 0.001347
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The middle section shows the coefficient estimates, standard errors, and t-statistics, which 
differ a bit from the results in KCC Table 4(i), as KCC report estimates for a slightly different 
model. As in KCC, both R&D variables, LRD and LFRD are positively related to LTFP, and the 
coefficients are statistically significant.

The bottom portion of the output shows various summary statistics. Note in particular, the 
reported “Long-run variance” which shows , the estimated long-run average variance of 

 conditional on , obtained from the DOLS residuals. The square root of this vari-
ance, 0.0367, is somewhat higher than the “S.E. of the regression” value of 0.0205, which is 
based on the ordinary estimator of the residual variance.

Clicking View/Representations shows the commands used to estimate the equation, along 
with a text representation of the long-run relationship:

Note the “[CX=DETERM]” component which shows that there are additional heteroge-
neous trend terms in the relationship (in this case the fixed effects). The presence of this 
term instructs EViews to use this information when constructing models, and when comput-
ing fits and forecasts.

Suppose, for example, we select Proc/Make Model from our estimated equation. EViews 
will create a model object containing the equation results:

q̂1.2

u1 i t u2 i t
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Notice the presence of EQ4I_EFCT in the model equation and in the workfile. Double-click-
ing on EQ4I in the model object displays the equation:

Notice that we have replaced the deterministic components “[CX=DETERM]” in the equa-
tion specification with the fitted values in the series EQ4I_EFCT. In this case EQ4I_EFCT just 
holds the estimated fixed effects, but more generally it will hold the fitted values for the 
deterministic terms in your regression.

To estimate the model using DOLS, we again display the equation dialog, fill out the top por-
tion as before:

and change the Method to Dynamic OLS (DOLS). To match the settings in KCC, we set the 
Panel Method to Pooled, and specify the Fixed lags and leads, with 2 lags and 1 lead:
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Click on OK to estimate the equation using the default covariance method. EViews will dis-
play the results:

Again, the top portion of the dialog shows the estimation method, sample, and information 
about settings employed in estimation. Note in particular that the default coefficient covari-
ance matrix computation uses an estimator of the long-run variance computed using a Bart-
lett kernel and fixed Newey-West bandwidth.

The long-run coefficients, standard errors, and t-statistics are close to their counterparts in 
KCC Table 5(i).

We may contrast these results to the group-mean estimates of the same specifications. The 
group-mean FMOLS results may be obtained by calling up the original FMOLS equation and 
selecting Grouped in the Panel method drop-down menu. The group-mean FMOLS coeffi-
cient results are given by:

Dependent Variable: LTFP   
Method: Panel Dynamic Least Squares (DOLS)  
Date: 01/15/13   Time: 15:36   
Sample (adjusted): 1974 1989   
Periods included: 16   
Cross-sections included: 22   
Total panel (balanced) observations: 352   
Panel method: Pooled estimation   
Cointegrating equation deterministics: C   
Fixed leads and lags specification (lead=1, lag=2)  
Coefficient covariance computed using default method  
Long-run variance (Bartlett kernel, Newey-West fixed bandwidth) used
        for coefficient covariances   

Variable Coefficient Std. Error t-Statistic Prob.  

LRD 0.109353 0.023067 4.740719 0.0000
LFRD 0.047674 0.037756 1.262690 0.2082

R-squared 0.932997     Mean dependent var -0.018869
Adjusted R-squared 0.851443     S.D. dependent var 0.034313
S.E. of regression 0.013225     Sum squared resid 0.034632
Long-run variance 0.000156    
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which differ markedly from the pooled estimates, suggesting that heterogeneity in the 
cointegrating equation or the long-run covariances may be important. Likewise, the corre-
sponding group-mean DOLS results,

differ by a fair amount from the pooled results.

Technical Details

Fully-Modified OLS

Phillips and Moon (1999), Pedroni (2000), and Kao and Chiang (2000) offer extensions of 
the Phillips and Hansen (1990) fully modified OLS estimator to panel settings.

Pooled FMOLS

The pooled FMOLS estimator outlined by Phillips and Moon (1999) is a straightforward 
extension of the standard Phillips and Hansen estimator. Given estimates of the average 
long-run covariances,  and , we may define the modified dependent variable and serial 
correlation correction terms

(46.5)

and 

(46.6)

where  and  are the corresponding data purged of the individual deterministic trends, 
and  is the long-run average variance of  conditional on . In the leading case of 
individual specific intercepts,  and  are the demeaned vari-
ables. 

The pooled FMOLS estimator is then given by

(46.7)

Variable Coefficient Std. Error t-Statistic Prob.  

LRD 0.319009 0.021539 14.81044 0.0000
LFRD -0.061544 0.022454 -2.740894 0.0064

Variable Coefficient Std. Error t-Statistic Prob.  

LRD 0.401746 0.063727 6.304167 0.0000
LFRD -0.093889 0.055137 -1.702828 0.0902
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It is worth noting the pooled estimator simply sums across cross-sections separately in the 
numerator and denominator.

The estimates of the long-run covariances may be obtained by standard approaches using 
the  residuals obtained from estimating Equation (46.1) and after removing the determin-
istic components in Equation (46.2). Note that EViews allows you to relax the assumption of 
common  in these first stage estimates. Given estimates of the individual long-run covari-
ances for each cross-section,  and , we form our estimators by taking simple cross-sec-
tion averages:

(46.8)

Phillips and Moon (1999) show that under appropriate assumptions, the asymptotic distri-
bution of the pooled estimator is asymptotically normal under sequential limits as 

. Then

(46.9)

for a constant  that depends on the deterministic variable specification, where  is the 
long-run variance of  conditional on , given by .

Instead of estimating the asymptotic variance directly using estimates of ,  and the 
corresponding  for every possible deterministic specification, EViews adopts the Pedroni 
(2000) and Mark and Sul (2003) approach of forming a consistent estimator using moments 
of the regressors:

(46.10)

where 

(46.11)

In related work, Mark and Sul (2003) propose a sandwich form of this estimator which 
allows for heterogeneous variances:

(46.12)

where 
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and the long-run variance estimates  are computed for each 
cross-section. Note that degree-of-freedom corrections may be applied to the  and  
for comparability with standard regression standard error of the regression estimators.

Weighted FMOLS

Pedroni (2000) and Kao and Chiang (2000) describe feasible pooled FMOLS estimators for 
heterogeneous cointegrated panels where the long-run variances differ across cross-sections.

We again use first-stage estimates of the long-run and regressors equations to obtain the 
residuals, estimate the individual long-run variances  and , and let

(46.14)

and

(46.15)

for , a preliminary estimate of the long-run coefficient.

Next, we form the weighted variables:

(46.16)

Then the estimator is given by

(46.17)

and the asymptotic covariance is estimated using a moment estimator as in Pedroni (2000):

(46.18)

Group-Mean FMOLS

Pedroni (2000, 2001) proposes a grouped-mean FMOLS estimator which averages over the 
individual cross-section FMOLS estimates:

(46.19)

Pedroni (1990) notes that in the presence of heterogeneity in the cointegrating relationships, 
the grouped-mean estimator offers the desirable property of providing consistent estimates 
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X̃itỹit l̂12 i– 
t 1

T


 
 
 

i 1

N





990—Chapter 46. Panel Cointegration Estimation
of the sample mean of the cointegrating vectors, in contrast to the pooled and weighted esti-
mators.

We estimate the asymptotic covariance matrix for this estimator by computing the variance 
of the average of the individual estimates:

(46.20)

It is worth noting that the basic t-statistics obtained using this covariance estimator differ 
from the t-statistic proposed by Pedroni (1991), which aggregates individual statistics across 
the cross-section dimension.

Dynamic OLS (DOLS)

Kao and Chiang (2000), Mark and Sul (1999, 2003), and Pedroni (2001) propose extensions 
of the Saikkonen (1992) and Stock and Watson (1993) DOLS estimator to panel data set-
tings. Panel DOLS involves augmenting the panel cointegrating regression equation with 
cross-section specific lags and leads of  to eliminate the asymptotic endogenity and 
serial correlation.

Pooled DOLS

Kao and Chiang (2000) describe the pooled DOLS estimator in which we use ordinary least 
squares to estimate an augmented cointegrating regression equation:

(46.21)

where  and  are the data purged of the individual deterministic trends. Note that the 
short-run dynamics coefficients  are allowed to be cross-section specific.

Let  be regressors formed by interacting the  terms with cross-section dummy 
variables, and let . Then the pooled DOLS estimator may be written as

(46.22)

Kao and Chiang (2000) show that the asymptotic distribution of this estimator is the same as 
for pooled FMOLS. We may estimate the asymptotic covariance matrix of the  using the 
corresponding sub-matrix of:

(46.23)

where

V̂FG
1

N
2

------ q̂1.2 i
1

T
2

------ X̃itX̃it
t 1

T

 
 
 

1–

i 1

N



Xit
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(46.24)

and  is an estimator of the long-run residual variance.

Alternately, Mark and Sul (2003) employ a sandwich estimator 

(46.25)

where 

(46.26)

employs the individual long-run variance estimates .

Weighted DOLS

Mark and Sul (1999) describe a simple weighted DOLS estimator which allows for heteroge-
neity in the long-run variances. Define the weighted regression:

(46.27)

for individual long-run variance estimates  obtained after preliminary DOLS estima-
tion.

In EViews, we estimate the asymptotic covariance matrix of the  using the correspond-
ing sub-matrix of:

(46.28)

Note that this very simple form of weighted estimation differs from the more complex esti-
mator described Kao and Chiang (2000), which mixes the FMOLS endogenity correction, 
weighting of both dependent variable and regressors, and the DOLS serial correlation correc-
tion. 

Group-mean DOLS

Pedroni (2001) extends the grouped estimator concept to DOLS estimation by averaging over 
the individual cross-section DOLS estimates:
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(46.29)

The asymptotic covariance matrix is obtained from the corresponding sub-matrix of the vari-
ance of the average of the individual estimators:

(46.30)

We again note that the basic t-statistics involving this covariance estimator differ from the t-
statistic proposed by Pedroni (1991) which aggregates individual statistics across the cross-
section dimension.
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Chapter 47.  Panel Statistics

EViews offers varying levels of support for computations in panel workfiles.

At the most basic level, in the absence of panel specific settings, if computation of a statistic 
is available in a panel workfile, EViews computes the statistic on the stacked data, account-
ing for seams between the data when evaluating lags and leads of variables. This class of 
computation implicitly assumes homogeneity across cross-sections.

In the most sophisticated settings, such as the equation estimators seen in Chapter 45. 
“Panel Estimation,” beginning on page 917 and Chapter 46. “Panel Cointegration Estima-
tion,” on page 973, EViews supports various procedures that account specifically for various 
aspects of the panel structure of the data.

In the remainder of this chapter we describe a few other calculations in EViews that are 
“panel aware” in the sense that there are settings that account for the panel structure of the 
data. Some of these topics are discussed elsewhere; in these cases, we simply provide a link 
to the relevant discussion.

Time Series Graphs

EViews provides tools for displaying time series graphs with panel data. You may use these 
tools to display a graph of the stacked data, individual or combined graphs for each cross-
section, or a time series graph of summary statistics for each period.

To display panel graphs for a series or group of series in a dated workfile, open the series or 
group window and click on View/Graph... to bring up the Graph Options dialog. In the 
Panel options section on the lower right of the dialog, EViews offers you a variety of choices 
for how you wish to display the data.
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Here we see the dialog for graphing a single series. Note in particular the panel workfile spe-
cific Panel options section which controls how the multiple cross-sections in your panel 
should be handled. If you select Stack cross sections EViews will display a single graph of 
the stacked data, labeled with both the cross-section and date. For example, with a Line & 
Symbol type graph, we have

Alternately, selecting Individual cross sections displays separate time series graphs for each 
cross-section, while Combined cross sections displays separate lines for each cross-section 
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in a single graph. We caution you that both types of panel graphs may become difficult to 
read when there are large numbers of cross-sections. For example, the individual graphs for 
the 10 cross-section panel data depicted here provide information on general trends, but lit-
tle in the way of detail:

Nevertheless, the graph does offer you the ability examine all of your cross-sections at-a-
glance. 

The remaining two options allow you to plot a single graph containing summary statistics 
for each period.

For line graphs, you may select Mean plus SD 
bounds, and then use the drop down menu on the 
lower right to choose between displaying no 
bounds, and 1, 2, or 3 standard deviation bounds. 
For other graph types such as area or spike, you 
may only display the means of the data by period.

For line graphs you may select Median plus quan-
tiles, and then use the drop down menu to choose 
additional extreme quantiles to be displayed. For 
other graph types, only the median may be plotted.

Suppose, for example, that we display a line graph 
containing the mean and 2 standard deviation 
bounds for the F series. EViews computes, for each period, the mean and standard deviation 
of F across cross-sections, and displays these in a time series graph:
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Similarly, we may display a spike graph of the medians of F for each period:

Displaying graph views of a group object in a panel workfile involves similar choices about 
the handling of the panel structure. 

By-Statistics

While not specifically panel aware, there are a variety of places in EViews where you may 
use a classification variable to compute statistics by-group. In these cases, you may use the 
@crossid identifier to compute statistics for each cross-section.

For example, you may open a series object and select View/Stats by Classification... to dis-
play summary statistics for various groups:
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Enter @crossid to compute statistics by cross-section:

Similarly, you may test equality of means across cross-sections (View/Equality Tests by 
Classification...). Simply open the series, then select View/Descriptive Statistics & Tests/

Descriptive Statistics for FRD  
Categorized by values of @CROSSID  
Date: 02/05/13   Time: 15:43  
Sample (adjusted): 1971 1990  
Included observations: 440 after adjustments 

@CROSSID  Mean  Std. Dev.  Obs.

1 0.823050 0.329523 20
2 0.857000 0.169526 20
3 0.893250 0.153560 20
4 0.870250 0.170139 20
5 0.913400 0.106301 20
6 0.839050 0.184148 20
7 0.865650 0.174743 20
8 0.860900 0.205281 20
9 0.844000 0.226664 20

10 0.882750 0.147099 20
11 0.940250 0.199533 20
12 0.876000 0.232249 20
13 0.973600 0.124876 20
14 0.781800 0.238805 20
15 0.820250 0.132656 20
16 0.834050 0.167274 20
17 0.863000 0.247619 20
18 0.799700 0.185269 20
19 0.662100 0.160519 20
20 0.853350 0.116893 20
21 0.854800 0.198757 20
22 0.865100 0.184872 20
All 0.853332 0.195387 440
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Equality Tests by Classification.... Enter FN in the Series/Group for Classify edit field, and 
select OK to continue. EViews will compute and display the results for an ANOVA for F, clas-
sifying the data by firm ID. The top portion of the ANOVA results is given by:

Note in this example that we have relatively few cross-sections with moderate numbers of 
observations in each firm. Data with very large numbers of group identifiers and few obser-
vations are not recommended for this type of testing. To test equality of means between 
periods, call up the dialog and enter either YEAR or DATEID as the series by which you will 
classify. 

Test for Equality of Means of F   

Categorized by values of FN   

Date: 08/22/06   Time: 17:11   

Sample: 1935 1954    

Included observations: 200   

Method df Value Probability

Anova F-test (9, 190) 293.4251 0.0000

Welch F-test* (9, 71.2051) 259.3607 0.0000

*Test allows for unequal cell variances   

     

Analysis of Variance    

Source of Variation df Sum of Sq. Mean Sq.

Between 9 3.21E+08 35640052

Within 190 23077815 121462.2

Total 199 3.44E+08 1727831.
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A graphical summary of 
the primary information 
in the ANOVA may be 
obtained by displaying 
boxplots by cross-section 
or period. For moderate 
numbers of distinct clas-
sifier values, the graphi-
cal display may prove 
informative. Select View/
Graph... to bring up the 
Graph Options dialog. 
Select Categorical graph 
from the drop down on 
the top left, select Box-
plot from the list of graph 
types, and enter FN in the 
Within graph edit field. Click OK to display the boxplots using the default settings.

One particularly useful set of non-panel specific tools that may be used for panel analysis 
are the by-group statistics functions (Chapter 13. “Operator and Function Reference,” begin-
ning on page 580 of the Command and Programming Reference). The by-group statistics 
which allow you to compute statistics by cross-section ID and match merge those results 
back to the original data. For example the simple expression

series ydemean = y - @meansby(y, @crossid)

computes the deviations from the cross-section means for the series Y and places the results 
in the series YDEMEAN.

Panel Covariances

Panel structured data employ more than one dimension to identify a given observation. In 
the most common case where the panel combines time series and cross-sectional data, we 
have data for cross-section units  and periods . In this setting, 
we focus on a single random variable , with individual observations denoted .

It is sometimes convenient to view the  for different cross-sections (or time periods) as 
being distinct random variables. This unstacking of a single random variable into multiple 
random variables permits us to define measures of association between cross-sections or 
periods for a given panel series.

For example, we may define the contemporaneous or between cross-section covariances for 
:

i 1  N, , t 1  T, ,
X Xit

X

X
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(47.1)

where  is the random variable associated with the  for the i-th 
cross-section, . The contemporaneous covariances are a measure of associa-
tion (dependence) between the data for different cross-sections at a given point in time. 

Similarly, we may define the period or within cross-section covariances for :

(47.2)

where , . The within cross-section covariances 
measure the association between the data in different periods for a given cross-section.

Panel covariances and correlations are widely used in panel data analysis. For example:

• Contemporaneous correlations between macroeconomic variables are often used to 
examine the nature of relationships between different countries (see for example, 
Obstfeld and Rogoff, 2001, p. 368).

• The contemporaneous covariances of residuals from panel regression are used in 
computing cross-sectional Zellner SUR-type estimators (Johnston and Dinardo, 1997, 
p. 318) and in tests of cross-section dependence (Pesaran, 2004). Similarly, panel 
covariances are used as a first step in obtaining common factors for unit root and 
other tests (Bai and Ng, 2004).

• Analogously, period covariances of residuals may be used to compute feasible GLS 
estimators that correct for within cross-section (cluster) correlation.

Once we unstack the data, the computation of estimates of panel measures of association for 
a single series follows the standard methods (cross-reference to groups). For example, the 
standard Pearson estimators for the contemporaneous cross-section covariance use variation 
across time to obtain estimates:

(47.3)

where  and .

The corresponding Pearson estimators of the period covariances use variation in the cross-
section dimension to provide estimates:

(47.4)

where  and .
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Other measures of association may be defined similarly. For discussion of the various meth-
ods that EViews supports, see “Covariance Analysis,” beginning on page 572 of User’s Guide 
I.

Telling EViews to compute measures of association for a series in a panel structured workfile 
is straightforward. Simply open the series, and select View/Panel Covariance... to display 
the dialog. Note that the workfile must be structured as a panel for the panel covariance 
menu entry to be available.

EViews will open the Cova-
riance Analysis dialog 
which provides options for 
controlling the computa-
tion, display, and saving of 
results.

For the most part, the dia-
log is unchanged from the 
covariance dialog for a 
group of series and the dis-
cussion of settings there is 
directly relevant (see 
“Covariance Analysis,” 
beginning on page 572) of 
User’s Guide I. 

The one notable difference in the current dialog are the radio buttons that allow you to 
choose whether to compute Contemporaneous covariances or Between periods covari-
ances.
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By changing the settings in the Statistics portion dialog, you may instruct EViews to com-
pute a variety of other measures of association (uncentered Pearson, Spearman rank correla-
tions and Kendall’s tau), as well as test statistics for whether the measure of association is 
zero. 

In addition, you may specify a sample to be used in computation and select whether you 
wish EViews to employ listwise deletion to balance the sample in the event that there are 
missing values in the series. If you will be working with series with missing observations 
you should bear in mind that:

• EViews will compute covariances for all of the cross-sections (for contemporaneous 
covariances) or periods (for between-period covariances) in the specified sample, 
even if there are no valid observations for a relevant cross-section or period. If you 
wish to exclude periods or cross-sections from the analysis, you should do so by set-
ting the sample.

• For cross-section covariances, checking the Balance sample - (listwise deletion) set-
ting instructs EViews to balance the data by removing data for periods where there 
are missing values for any cross-section. 

• For period covariances, the Balance sample - (listwise deletion) setting will remove 
data for entire cross-sections where there are missing observations for any period.

To illustrate, we follow Obstfeld and Rogoff (2001) in computing the cross-country correla-
tions for per capita consumption growth (DCPCH) for the Group of Seven countries over the 
period from 1973 to 1992. The data, which are from the Penn World Table 5.6, are provided 
for you in the workfile “PWT56_CONSUMP.wf1” in the Example Files folder in your EViews 
installation directory.

Open the workfile and the series DCPCH, select View/Panel covariance... and fill in the dia-
log as depicted above. Click on OK to compute the requested statistics and display the 
results.
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These results show the correlations in the values of DCPCH between cross-sections. 

Likewise, we may instruct EViews to compute the between period covariances, we obtain 
correlations between periods. Fill in the dialog as in the previous example, changing the 
Type to Between period covariances, and change the sample to “1973 1992” since data for 
DCPCH in 1972 are not available (due to the lag in the difference). 

Panel Covariance Analysis: Ordinary      
Series: DCPCH       
Date: 08/17/12   Time: 14:12      
Sample: 1973 1992       
Included observations: 140      
Analysis of contemporaneous (between cross-sections)  relationships  
Number of cross-sections employed: 7      

Covariance       
Correlation       

Observations CANADA U.S.A.  JAPAN FRANCE 
GERMANY, 

WEST ITALY  U.K.  

CANADA  0.000929       
 1.000000       
 20       
        

U.S.A.  0.000364 0.000344      
 0.643323 1.000000      
 20 20      
        

JAPAN  2.39E-05 0.000156 0.000280     
 0.046872 0.504028 1.000000     
 20 20 20     
        

FRANCE  7.83E-05 9.83E-05 0.000117 0.000107    
 0.248871 0.513199 0.680323 1.000000    
 20 20 20 20    
        

GERMANY, WEST 0.000211 0.000173 0.000114 9.58E-05 0.000283   
 0.411637 0.554703 0.403295 0.551423 1.000000   
 20 20 20 20 20   
        

ITALY  0.000236 4.42E-05 6.15E-05 4.88E-05 8.84E-05 0.000315  
 0.436899 0.134410 0.207144 0.266630 0.296038 1.000000  
 20 20 20 20 20 20  
        

U.K.  0.000364 0.000358 0.000293 0.000133 0.000198 0.000160 0.000885 
 0.401499 0.648652 0.588630 0.434526 0.394636 0.302919 1.000000 
 20 20 20 20 20 20 20 
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If you were to use the original sample of “1972 1992” the resulting between period correla-
tion matrix would contain only NAs (since the balanced sample option would remove all 
observations). Click on OK to accept the settings and compute the between covariances and 
correlations.

Panel Principal Components

In “Panel Covariances,” beginning on page 999, we discussed how a single panel variable 
could be unstacked into multiple random variables, allowing us to compute measures of 
association between different cross-sections or periods. We may extend this basic approach 
by computing the principal components of the panel variable using one of the measures of 
association.

The following discussion assumes that you are familiar with the tools for principal compo-
nents analysis in EViews. Background on the computation, display, and saving of principal 
components and scores is provided in “Principal Components,” beginning on page 590 of 
User’s Guide I.

Viewing Principal Components

To compute and display the principal components results for a panel series, open the 
series, and select View/Panel Principal Components... to display the dialog. Note that the 
workfile must be structured as a panel for the panel covariance menu entry to be available.



Panel Principal Components—1005
The first tab of the dialog, labeled Components, specifies the display, output, and selection 
settings for the principal components. The tab is virtually identical to the one displayed 
when you compute the principal components for a group of series (see “Performing Covari-
ance Analysis,” beginning on page 573). The one minor difference is in the edit field for the 
Maximum number of components to be retained. In the panel setting the edit field is filled 
with “*” which is a stand-in for the maximum number of components (number of cross-
sections or periods); in the group setting, this edit field is filled in with the number of vari-
ables.
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The second tab, labeled 
Calculation, controls the 
computation of the mea-
sure of association used in 
the principal components 
analysis.

Again, the dialog is mostly 
unchanged from the one 
used in the group principal 
components setting with 
the notable exception of 
the radio buttons that 
allow you to choose 
whether to compute Con-
temporaneous covari-
ances or Between periods 
covariances.

The default calculation computes the principal components using the contemporaneous 
(between cross-section) correlation matrix, but you may use the Type and Method drop-
downs choose to use the uncentered Pearson, Spearman rank correlations and Kendall’s 
tau.

Saving Component Scores

One common task is saving the principal components scores for use in subsequent analy-
sis. Accordingly, EViews provides easy to use tools for saving the scores from your panel 
principal components analysis in the workfile. As these tools are virtually identical to those 
documented in “Saving Component Scores” on page 597, here, we offer only an abbreviated 
description.

To save the component scores in the workfile, you will use panel principal components 
procedure. Click on Proc/Make Panel Principal Components... to display the dialog. 
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The dialog is virtually unchanged from the one displayed for saving principal components 
scores of a group; indeed the first tab is identical.

In the first tab you will describe the output you wish EViews:

• You should provide names for the series in which you wish to save the scores, and 
optionally, names for the loadings and eigenvector matrices, and the eigenvalues 
vector. 

• Importantly, the Scaling dropdown on the bottom of the dialog is used to determine 
the properties of your scores. By default, the scaling is set to Normalize loadings so 
that the scores have variances equal to the eigenvalues of the decomposition. You 
may instead elect to save normalized scores (Normalize scores), equal weighted 
scores and loadings (Symmetric weights), or user weighted loadings (User loading 
weight).

The second tab is used to describe the computation of the measure of association (used in 
the computation). The options are those for computing panel covariances as described in 
“Viewing Principal Components” on page 1004.

An Illustration

To illustrate, we compute principal components of the cross-country correlations for per 
capita consumption growth (DCPCH) for the Group of Seven countries over the period 
from 1973 to 1992 (Obstfeld and Rogoff, 2001). The data, which are from the Penn World 
Table 5.6, are provided for you in the workfile “PWT56_CONSUMP.wf1” in the Example 
Files folder in your EViews installation directory.
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Open the workfile and the series DCPCH, select View/Panel Principal Components... and 
click on OK to compute the principal components using the default settings and to display 
the basic results in table form:

Here we see header information describing the computation and two out of three of the 
sections of output. The first section provides a summary of the eigenvalues of the correla-
tion matrix, while the second section shows the corresponding eigenvectors. Not depicted 
here, but present in the actual output, is the estimated correlation matrix itself.

These results in the first section show that the first four components account for about 90% 
of the total scaled variance in the values of DCPCH between cross-sections. The second sec-
tion describes the linear combination coefficients. We see that the first principal component 
(labeled “PC1”) is a roughly-equal linear combination of all seven of the country per capita 
consumption growth. This component might be thought of as representing the common 
component in G7 consumption growth.

Alternately, we may instruct EViews to compute and graph the eigenvalues associated with 
the between period correlations. Click on View/Panel Principal Components... to display 
the dialog

Panel Principal Components Analysis      
Series: DCPCH       
Date: 08/29/12   Time: 15:55      
Sample: 1972 1992       
Included observations: 147      
Analysis of contemporaneous (between cross-section) relationships 
Computed using: Ordinary correlations      
Extracting 7 of 7 possible components      

Eigenvalues: (Sum = 7, Average = 1)      
    Cumulative Cumulative   

Number Value   Difference Proportion Value Proportion   

1 3.735308 2.644171 0.5336 3.735308 0.5336   
2 1.091137 0.246793 0.1559 4.826445 0.6895   
3 0.844344 0.214297 0.1206 5.670789 0.8101   
4 0.630047 0.258421 0.0900 6.300836 0.9001   
5 0.371627 0.163062 0.0531 6.672463 0.9532   
6 0.208565 0.089592 0.0298 6.881027 0.9830   
7 0.118973 ---     0.0170 7.000000 1.0000   

Eigenvectors (loadings):       
        

Cross-section PC 1  PC 2   PC 3  PC 4  PC 5  PC 6   PC 7   

CANADA 0.326828 0.680374 -0.151109 -0.035987 0.329621 -0.022346 0.544974 
U.S.A. 0.429951 0.113511 -0.499405 -0.018909 0.172759 0.356079 -0.629172 
JAPAN 0.386426 -0.539826 0.095487 0.196637 0.118652 0.556905 0.432733 

FRANCE 0.408552 -0.346313 0.187099 -0.283874 0.506102 -0.574024 -0.109172 
GERMANY, WEST 0.392449 0.019595 0.049549 -0.656370 -0.634238 0.030900 0.095454 

ITALY 0.280698 0.330954 0.793017 0.245221 -0.047112 0.154858 -0.310595 
U.K. 0.399098 -0.054291 -0.228706 0.623011 -0.432216 -0.456208 0.048876 
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go to the Display section, select Eigenvalues plots and check all of the display checkboxes 
so that EViews will display all three of the eigenvalue plots. Next, click on the Calculation 
tab and click on the Between periods covariances button so that EViews will unstack the 
data into different periods.

It is important to note that you must change the sample to “1973 1992” since data for 
DCPCH in 1972 are not available (DCPCH is a lagged difference). If you were to use the orig-
inal sample of “1972 1992”, the balanced sample option would remove all observations and 
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the resulting between period correlation matrix would contain only NAs. Principal compo-
nents analysis on this matrix would fail.

Click on OK to accept the settings. The results of this view (after rearranging the graphs 
slightly) are depicted below:

Panel Causality Testing

EViews offers panel specific forms of Granger causality tests (“Granger Causality” on 
page 610) of User’s Guide I.

In panel workfile settings, EViews performs panel data specific causality testing. In these 
settings, least squares regressions can take a number of different forms, depending upon 
assumptions made about the structure of the panel data. Since Granger Causality is com-
puted by running bivariate regressions, there are a number of different approaches to testing 
for Granger Causality in a panel context. 

In general, the bivariate regressions in a panel data context take the form:

(47.5)

(47.6)

yi t, a0 i, a1 i, yi t 1–,  ak i, yi t k–, b1 i, xi t 1–,  bk i, xi t k–, e i t,     

xi t, a0 i, a1 i, xi t 1–,  ak i, xi t k–, b1 i, yi t 1–,  bk i, yi t k–, e i t,     
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Where t denotes the time period dimension of the panel, and i denotes the cross-sectional 
dimension.

The different forms of panel causality test differ on the assumptions made about the homo-
geneity of the coefficients across cross-sections.

EViews offers two of the simplest approaches to causality testing in panels. The first is to 
treat the panel data as one large stacked set of data, and then perform the Granger Causality 
test in the standard way, with the exception of not letting data from one cross-section enter 
the lagged values of data from the next cross-section. This method assumes that all coeffi-
cients are same across all cross-sections, i.e.:

(47.7)

(47.8)

A second approach adopted by Dumitrescu-Hurlin (2012), makes an extreme opposite 
assumption, allowing all coefficients to be different across cross-sections:

(47.9)

(47.10)

This test is calculated by simply running standard Granger Causality regressions for each 
cross-section individually. The next step is to take the average of the test statistics, which are 
termed the Wbar statistic. They show that the standardized version of this statistic, appro-
priately weighted in unbalanced panels, follows a standard normal distribution. This is 
termed the  statistic.

(EViews does not provide built-in versions of other panel-causality tests since they are often 
based upon regressions using some assumptions on Equation (47.5), or in some cases two-
stage least squares regressions, often using a fixed or a random effects model. It is possible 
to perform these test by estimating the models using an EViews equation object and then 
perform Wald test coefficient restrictions on the appropriate coefficients.)

To perform the test, create a group containing the series of interest, then select View/
Granger Causality... to display the test dialog:

a0 i, a0 j, a1 i,, a1 j,  a, , l i, al j, i j,,  

b1 i, b1 j,  b, , l i, bl j i j, 

a0 i, a0 j, a1 i,, a1 j,  a, , l i, al j, i j,,  

b1 i, b1 j,  b, , l i, bl j i j, 

Zbar˜
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Select the Test type using the radio buttons and provide a number of Lags to include. Click 
on OK to accept the settings and compute the test.

Here we show results for the pairwise Dumitrescu-Hurlin tests using data from “gaso-
line.WF1” (which is available in your examples directory). We reject the null that LCARP-
CAP does not homogeneously cause LGASPCAR, but do not direct in the opposite direction.

Panel Long-run Variances

The computation of long-run covariances is described in great detail in Appendix F, “Long-
run Covariance Estimation” on page 1115 of User’s Guide I. The group view for computing 
the covariances is documented in “Long-run Covariance” on page 604 of User’s Guide I. In 
panel workfiles, EViews computes the Phillips and Moon (1999) long-run average covariance 
matrix obtained by averaging the long-run covariances across cross-sections. 

There is little difference between the settings for long-run covariances and variances in non-
panel and panel settings. You may, however, provide a name in the Panel matrix edit field 
to EViews to save a matrix containing the individual covariance estimates. Each row will 
contain the vec or vech of the results matrix for the corresponding cross-section.

Suppose, for example, that we create a group using the LCARPCAP and LGASPCAR series 
from the “gasoline.WF1” workfile. Select View/Long-run Covariance... to display the dia-
log, enter “pan_results” in the Panel matrix edit field, and leave the remaining settings at 
their defaults:

Pairwise Dumitrescu Hurlin Panel Causality Tests 
Date: 02/05/13   Time: 15:58  
Sample: 1960 1978   
Lags: 2   

 Null Hypothesis: W-Stat. Zbar-Stat. Prob.  

 LGASPCAR does not homogeneously cause LCARPCAP  2.81017  0.59203 0.5538 
 LCARPCAP does not homogeneously cause LGASPCAR 4.59763 3.17200 0.0015 
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The resulting long-run average covariances are shown in the group window:

and the individual cross-section results are stored in the matrix PAN_RESULTS, with the 
vech of the individual cross-section covariances stored in each row:
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Panel Unit Root Testing

EViews provides convenient tools for computing panel unit root tests. You may compute one 
or more of the following tests: Levin, Lin and Chu (2002), Breitung (2000), Im, Pesaran and 
Shin (2003), Fisher-type tests using ADF and PP tests—Maddala and Wu (1999), Choi 
(2001), and Hadri (2000).

These tests are described in detail in “Panel Unit Root Testing,” beginning on page 617.
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To compute the unit root test on 
a series, simply select View/
Unit Root Test… from the 
menu of a series object.

By default, EViews will com-
pute a Summary of all of the 
first five unit root tests, where 
applicable, but you may use the 
dropdown menu in the upper 
left hand corner to select an 
individual test statistic.

In addition, you may use the 
dialog to specify trend and 
intercept settings, to specify lag 
length selection, and to provide 
details on the spectral estimation used in computing the test statistic or statistics.

To begin, we open the F series in our example panel workfile, and accept the defaults to 
compute the summary of several unit root tests on the level of F. The results are given by

Note that there is a fair amount of disagreement in these results as to whether F has a unit 
root, even within tests that evaluate the same null hypothesis (e.g., Im, Pesaran and Shin vs. 
the Fisher ADF and PP tests).

Panel unit root test: Summary    

Date: 08/22/06   Time: 17:05   

Sample: 1935 1954    

Exogenous variables: Individual effects  

User specified lags at: 1   

Newey-West bandwidth selection using Bartlett kernel 

Balanced observations for each test   

   Cross-  

Method Statistic Prob.** sections Obs 

Null: Unit root (assumes common unit root process)   

Levin, Lin & Chu t*  1.71727  0.9570  10  180 

     

Null: Unit root (assumes individual unit root process)  

Im, Pesaran and Shin W-stat  -0.51923  0.3018  10  180 

ADF - Fisher Chi-square  33.1797  0.0322  10  180 

PP - Fisher Chi-square  41.9742  0.0028  10  190 

** Probabilities for Fisher tests are computed using an asympotic Chi 

        -square distribution. All other tests assume asymptotic normality. 
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To obtain additional information about intermediate results, we may rerun the panel unit 
root procedure, this time choosing a specific test statistic. Computing the results for the IPS 
test, for example, displays (in addition to the previous IPS results) ADF test statistic results 
for each cross-section in the panel:

Panel Cointegration Testing

EViews provides a number of procedures for computing panel cointegration tests. The fol-
lowing tests are available in EViews: Pedroni (1999, 2004), Kao (1999) and Fisher-type test 
using Johansen’s test methodology (Maddala and Wu (1999)). The details of these tests are 
described in “Panel Cointegration Details,” beginning on page 1038.

To compute a panel cointegration test, select View/Cointegration Test/Panel Cointegration 
Test… from the menu of an EViews group. You may use various options for specifying the 
trend specification, lag length selection and spectral estimation methods. 

To illustrate, we perform a Pedroni panel cointegration test. The only modification from the 
default settings that we make is to select Automatic selection for lag length. Click on OK to 
accept the settings and perform the test.

Intermediate ADF test results      

Cross      Max  

section t-Stat Prob. E(t) E(Var) Lag Lag Obs 

 1 -2.3596  0.1659 -1.511  0.953  1  1  18 

 2 -3.6967  0.0138 -1.511  0.953  1  1  18 

 3 -2.1030  0.2456 -1.511  0.953  1  1  18 

 4 -3.3293  0.0287 -1.511  0.953  1  1  18 

 5  0.0597  0.9527 -1.511  0.953  1  1  18 

 6  1.8743  0.9994 -1.511  0.953  1  1  18 

 7 -1.8108  0.3636 -1.511  0.953  1  1  18 

 8 -0.5541  0.8581 -1.511  0.953  1  1  18 

 9 -1.3223  0.5956 -1.511  0.953  1  1  18 

 10 -3.4695  0.0218 -1.511  0.953  1  1  18 

        

Average -1.6711  -1.511  0.953    
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The top portion of the output indicates the type of test, null hypothesis, exogenous vari-
ables, and other test options. The next section provides several Pedroni panel cointegration 
test statistics which evaluate the null against both the homogeneous and the heterogeneous 
alternatives. In this case, eight of the eleven statistics do not reject the null hypothesis of no 
cointegration at the conventional size of 0.05.

The bottom portion of the table reports auxiliary cross-section results showing intermediate 
calculating used in forming the statistics. For the Pedroni test this section is split into two 
sections. The first section contains the Phillips-Perron non-parametric results, and the sec-
ond section presents the Augmented Dickey-Fuller parametric results.

Pedroni Residual Cointegration Test   

Series: IVM MM     

Date: 12/13/06   Time: 11:43    

Sample: 1968M01 1995M12    

Included observations: 2688    

Cross-sections included: 8    

Null Hypothesis: No cointegration    

Trend assumption: No deterministic trend   

Lag selection: Automatic SIC with a max lag of 16   
Newey-West bandwidth selection with Bartlett 
kernel   

Alternative hypothesis: common AR coefs. (within-dimension)  

    Weighted  

  Statistic Prob. Statistic Prob. 

Panel v-Statistic  4.219500  0.0001  4.119485  0.0001 

Panel rho-Statistic -0.400152  0.3682 -2.543473  0.0157 

Panel PP-Statistic  0.671083  0.3185 -1.254923  0.1815 

Panel ADF-Statistic -0.216806  0.3897  0.172158  0.3931 

      

Alternative hypothesis: individual AR coefs. (between-dimension)  

      

  Statistic Prob.   

Group rho-Statistic -1.776207  0.0824   

Group PP-Statistic -0.824320  0.2840   

Group ADF-Statistic  0.538943  0.3450   
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Panel Cross-section Dependence Test

You may test for cross-section dependence in a series in a panel structured workfile. There 
are a variety of tests for cross-section dependence in the literature, and EViews offers the fol-
lowing tests:

• Breusch-Pagan (1980) LM

• Pesaran (2004) scaled LM

• Baltagi, Feng, and Kao (2012) bias-corrected scaled LM

• Pesaran (2004) CD

See “Panel Cross-section Dependence Test” on page 958 for discussion.

Panel Resampling

Resample... performs resampling on all of the series in the group. A description of the 
resampling procedure is provided in “Resample” on page 439 of User’s Guide I. When you 
resample from a panel workfile, EViews offers you an additional option of whether to resam-
ple across cross-sections or not. The default assumes that cross-sections are not identical so 

Cross section specific results    

Phillips-Peron results (non-parametric)   

      

Cross ID AR(1) Variance HAC  Bandwidth Obs

AUT 0.959 54057.16 46699.67 23.00 321

BUS 0.959 98387.47 98024.05 7.00 321

CON 0.966 144092.9 125609.0 4.00 321

CST 0.933 579515.0 468780.9 6.00 321

DEP 0.908 896700.4 572964.8 7.00 321

HOA 0.941 146702.7 165065.5 6.00 321

MAE 0.975 2996615. 2018633. 3.00 321

MIS 0.991 2775962. 3950850. 7.00 321

      

Augmented Dickey-Fuller results (parametric)   

      

Cross ID AR(1) Variance Lag Max lag Obs

AUT 0.983 48285.07 5 16 316

BUS 0.971 95843.74 1 16 320

CON 0.966 144092.9 0 16 321

CST 0.949 556149.1 1 16 320

DEP 0.974 647340.5 2 16 319

HOA 0.941 146702.7 0 16 321

MAE 0.976 2459970. 6 16 315

MIS 0.977 2605046. 3 16 318
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that the resampling is not done across cross-sections, but is instead performed on a cross-
section by cross-section basis.

Panel Stacked Analysis

A wide range of analyses are available in panel structured workfiles that have not been spe-
cifically redesigned to use the panel structure of your data. These tools allow you to work 
with and analyze the stacked data, while taking advantage of the support for handling lags 
and leads in the panel structured workfile.

We may, for example, take our exam-
ple panel workfile, create a group 
containing the series C01, F, and the 
expression I+I(-1), and then select 
View/Descriptive Stats/Individual 
Samples from the group menu. 
EViews displays the descriptive sta-
tistics for the stacked data.

Note that the calculations are per-
formed over the entire 200 observa-
tion stacked data, and that the 
statistics for I+I(-1) use only 190 
observations (200 minus 10 observa-
tions corresponding to the lag of the first observation for each firm).

Similarly, suppose you wish to per-
form a hypothesis testing on a sin-
gle series. Open the window for the 
series F, and select View/Descrip-
tive Statistics & Tests/Simple 
Hypothesis Tests.... Enter “120” in 
the edit box for testing the mean 
value of the stacked series against 
a null of 120. EViews displays the 
results of a simple hypothesis test 
for the mean of the 200 observa-
tion stacked data.

While a wide variety of stacked analyses are supported, various views and procedures are 
not available in panel structured workfiles. You may not, for example, perform seasonal 
adjustment or estimate ARCH or state space models with the stacked panel.
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Part X.  Advanced Multivariate Analysis

The following chapters describe specialized tools for multivariate analysis:

• Chapter 48. “Cointegration Testing,” on page 1023 documents testing for the presence 
of cointegrating relationships among non-stationary variables in non-panel and panel 
settings.

• Chapter 49. “Factor Analysis,” on page 1043 describes tools for multivariate analysis 
using factor analysis.

General tools for multivariate analysis using the group object, including summary statistics, 
covariance analysis and principal components, are discussed in Chapter 12. “Groups,” 
beginning on page 547 of User’s Guide I.



1022—Part X. Advanced Multivariate Analysis



Chapter 48.  Cointegration Testing

The finding that many macro time series may contain a unit root has spurred the develop-
ment of the theory of non-stationary time series analysis. Engle and Granger (1987) pointed 
out that a linear combination of two or more non-stationary series may be stationary. If such 
a stationary linear combination exists, the non-stationary time series are said to be cointe-
grated. The stationary linear combination is called the cointegrating equation and may be 
interpreted as a long-run equilibrium relationship among the variables.

This chapter describes several tools for testing for the presence of cointegrating relationships 
among non-stationary variables in non-panel and panel settings.

The first two parts of this chapter focus on cointegration tests employing the Johansen 
(1991, 1995) system framework or Engle-Granger (1987) or Phillips-Ouliaris (1990) residual 
based test statistics. The final section describes cointegration tests in panel settings where 
you may compute the Pedroni (1999), Pedroni (2004), and Kao (1999) tests as well as a 
Fisher-type test using an underlying Johansen methodology (Maddala and Wu, 1999).

The Johansen tests may be performed using a Group object or an estimated Var object. The 
residual tests may be computed using a Group object or an Equation object estimated using 
nonstationary regression methods. The panel tests may be conducted using a Pool object or 
a Group object in a panel workfile setting. Note that additional cointegration tests are 
offered as part of the diagnostics for an equation estimated using nonstationary methods. 
See “Testing for Cointegration” on page 282.

If cointegration is detected, Vector Error Correction (VEC) or nonstationary regression meth-
ods may be used to estimate the cointegrating equation. See “Vector Error Correction (VEC) 
Models” on page 726 and Chapter 26. “Cointegrating Regression,” beginning on page 267 
for details.

Johansen Cointegration Test 

EViews supports VAR-based cointegration tests using the methodology developed in Johan-
sen (1991, 1995) performed using a Group object or an estimated Var object. 

Consider a VAR of order :

(48.1)

where  is a -vector of non-stationary I(1) variables,  is a -vector of deterministic 
variables, and  is a vector of innovations. We may rewrite this VAR as,

(48.2)
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where:

(48.3)

Granger’s representation theorem asserts that if the coefficient matrix  has reduced rank 
, then there exist  matrices  and  each with rank  such that and 

 is I(0).  is the number of cointegrating relations (the cointegrating rank) and each 
column of  is the cointegrating vector. As explained below, the elements of  are known 
as the adjustment parameters in the VEC model. Johansen’s method is to estimate the  
matrix from an unrestricted VAR and to test whether we can reject the restrictions implied 
by the reduced rank of .

How to Perform a Johansen Cointegration Test

To carry out the Johansen cointegration test, select View/Cointegration Test/Johansen Sys-
tem Cointegration Test... from a group window or View/Cointegration Test... from a Var 
object window. The Cointegration Test Specification page prompts you for information 
about the test. 

The dialog will differ slightly 
depending on whether you 
are using a group or an esti-
mated Var object to perform 
your test. We show here the 
group dialog; the Var dialog 
has an additional page as 
described in “Imposing 
Restrictions” on page 1030.

Note that since this is a test 
for cointegration, this test is 
only valid when you are 
working with series that are 
known to be nonstationary. 
You may wish first to apply 
unit root tests to each series in the VAR. See “Unit Root Testing” on page 589 for details on 
carrying out unit root tests in EViews. 

Deterministic Trend Specification

Your series may have nonzero means and deterministic trends as well as stochastic trends. 
Similarly, the cointegrating equations may have intercepts and deterministic trends. The 
asymptotic distribution of the LR test statistic for cointegration does not have the usual 
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distribution and depends on the assumptions made with respect to deterministic trends. 
Therefore, in order to carry out the test, you need to make an assumption regarding the 
trend underlying your data.

For each row case in the dialog, the COINTEQ column lists the deterministic variables that 
appear inside the cointegrating relations (error correction term), while the OUTSIDE column 
lists the deterministic variables that appear in the VEC equation outside the cointegrating 
relations. Cases 2 and 4 do not have the same set of deterministic terms in the two columns. 
For these two cases, some of the deterministic term is restricted to belong only in the cointe-
grating relation. For cases 3 and 5, the deterministic terms are common in the two columns 
and the decomposition of the deterministic effects inside and outside the cointegrating space 
is not uniquely identified; see the technical discussion below. 

In practice, cases 1 and 5 are rarely used. You should use case 1 only if you know that all 
series have zero mean. Case 5 may provide a good fit in-sample but will produce implausi-
ble forecasts out-of-sample. As a rough guide, use case 2 if none of the series appear to have 
a trend. For trending series, use case 3 if you believe all trends are stochastic; if you believe 
some of the series are trend stationary, use case 4.

If you are not certain which trend assumption to use, you may choose the Summary of all 5 
trend assumptions option (case 6) to help you determine the choice of the trend assump-
tion. This option indicates the number of cointegrating relations under each of the 5 trend 
assumptions, and you will be able to assess the sensitivity of the results to the trend 
assumption.

We may summarize the five deterministic trend cases considered by Johansen (1995, p. 80–
84) as:

1. The level data  have no deterministic trends and the cointegrating equations do not 
have intercepts:

2. The level data  have no deterministic trends and the cointegrating equations have 
intercepts: 

3. The level data  have linear trends but the cointegrating equations have only inter-
cepts: 

4. The level data  and the cointegrating equations have linear trends: 

5. The level data  have quadratic trends and the cointegrating equations have linear 
trends: 

x
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The terms associated with  are the deterministic terms “outside” the cointegrating rela-
tions. When a deterministic term appears both inside and outside the cointegrating relation, 
the decomposition is not uniquely identified. Johansen (1995) identifies the part that 
belongs inside the error correction term by orthogonally projecting the exogenous terms 
onto the  space so that  is the null space of  such that . EViews uses a dif-
ferent identification method so that the error correction term has a sample mean of zero. 
More specifically, we identify the part inside the error correction term by regressing the 
cointegrating relations  on a constant (and linear trend). 

Exogenous Variables

The test dialog allows you to specify additional exogenous variables  to include in the test 
VAR. The constant and linear trend should not be listed in the edit box since they are speci-
fied using the five Trend Specification options. If you choose to include exogenous vari-
ables, be aware that the critical values reported by EViews do not account for these 
variables.

The most commonly added deterministic terms are seasonal dummy variables. Note, how-
ever, that if you include standard 0–1 seasonal dummy variables in the test VAR, this will 
affect both the mean and the trend of the level series . To handle this problem, Johansen 
(1995, page 84) suggests using centered (orthogonalized) seasonal dummy variables, which 
shift the mean without contributing to the trend. Centered seasonal dummy variables for 
quarterly and monthly series can be generated by the commands:

series d_q = @seas(q) - 1/4

series d_m = @seas(m) - 1/12

for quarter  and month , respectively.

Lag Intervals

You should specify the lags of the test VAR as pairs of intervals. Note that the lags are speci-
fied as lags of the first differenced terms used in the auxiliary regression, not in terms of the 
levels. For example, if you type “1 2” in the edit field, the test VAR regresses  on , 

, and any other exogenous variables that you have specified. Note that in terms of the 
level series  the largest lag is 3. To run a cointegration test with one lag in the level series, 
type “0 0” in the edit field.

Critical Values

By default, EViews will compute the critical values for the test using MacKinnon-Haug-
Michelis (1999) p-values. You may elect instead to report the Osterwald-Lenum (1992) at the 
5% and 1% levels by changing the radio button selection from MHM to Osterwald-Lenum.

a

a a a aa 0

byt

xt

yt

q m

yt yt 1–
yt 2–

yt



Johansen Cointegration Test—1027
Interpreting Results of a Johansen Cointegration Test

As an example, the header portion of the cointegration test output for the four-variable sys-
tem used by Johansen and Juselius (1990) for the Danish data is shown below. 

As indicated in the header of the output, the test assumes no trend in the series with a 
restricted intercept in the cointegration relation (We computed the test using assumption 2 
in the dialog, Intercept (no trend) in CE - no intercept in VAR), includes three orthogonal-
ized seasonal dummy variables D1–D3, and uses one lag in differences (two lags in levels) 
which is specified as “1 1” in the edit field.

Number of Cointegrating Relations

The next portion of the table reports results for testing the number of cointegrating relations. 
Two types of test statistics are reported. The first block reports the so-called trace statistics 
and the second block (not shown above) reports the maximum eigenvalue statistics. For 
each block, the first column is the number of cointegrating relations under the null hypothe-
sis, the second column is the ordered eigenvalues of the  matrix in (48.3), the third col-
umn is the test statistic, and the last two columns are the 5% and 1% critical values. The 
(nonstandard distribution) critical values are taken from MacKinnon-Haug-Michelis (1999) 
so they differ slightly from those reported in Johansen and Juselius (1990).

Date: 09/21/09   Time: 11:12   
Sample (adjusted): 1974Q3 1987Q3   
Included observations: 53 after adjustments   
Trend assumption: No deterministic trend (restricted constant)  
Series: LRM LRY IBO IDE     
Exogenous series: D1 D2 D3    
Warning: Critical values assume no exogenous series 
Lags interval (in first differences): 1 to 1   

P
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To determine the number of cointegrating relations  conditional on the assumptions made 
about the trend, we can proceed sequentially from  to  until we fail to 
reject. The result of this sequential testing procedure is reported at the bottom of each block.

The trace statistic reported in the first block tests the null hypothesis of  cointegrating rela-
tions against the alternative of  cointegrating relations, where  is the number of endoge-
nous variables, for . The alternative of  cointegrating relations 
corresponds to the case where none of the series has a unit root and a stationary VAR may 
be specified in terms of the levels of all of the series. The trace statistic for the null hypothe-
sis of  cointegrating relations is computed as:

(48.4)

where  is the i-th largest eigenvalue of the  matrix in (48.3) which is reported in the 
second column of the output table.

The second block of the output reports the maximum eigenvalue statistic which tests the 
null hypothesis of  cointegrating relations against the alternative of  cointegrating 
relations. This test statistic is computed as:

Unrestricted Cointegration Rank Test (Trace)   

Hypothesized  Trace 0.05  
No. of CE(s)  Eigenvalue Statistic Critical Value Prob.** 

None  0.433165  49.14436  54.07904  0.1282 
At most 1  0.177584  19.05691  35.19275  0.7836 
At most 2  0.112791  8.694964  20.26184  0.7644 
At most 3  0.043411  2.352233  9.164546  0.7071 

 Trace test indicates no cointegration at the 0.05 level  
 * denotes rejection of the hypothesis at the 0.05 level   
 **MacKinnon-Haug-Michelis (1999) p-values   

     
Unrestricted Cointegration Rank Test (Maximum Eigenvalue)  

Hypothesized  Max-Eigen 0.05  
No. of CE(s)  Eigenvalue Statistic Critical Value Prob.** 

None *  0.433165  30.08745  28.58808  0.0319 
At most 1  0.177584  10.36195  22.29962  0.8059 
At most 2  0.112791  6.342731  15.89210  0.7486 
At most 3  0.043411  2.352233  9.164546  0.7071 

 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level   
 **MacKinnon-Haug-Michelis (1999) p-values   
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(48.5)

for .

There are a few other details to keep in mind:

• Critical values are available for up to  series. Also note that the critical values 
depend on the trend assumptions and may not be appropriate for models that contain 
other deterministic regressors. For example, a shift dummy variable in the test VAR 
implies a broken linear trend in the level series .

• The trace statistic and the maximum eigenvalue statistic may yield conflicting results. 
For such cases, we recommend that you examine the estimated cointegrating vector 
and base your choice on the interpretability of the cointegrating relations; see Johan-
sen and Juselius (1990) for an example.

• In some cases, the individual unit root tests will show that some of the series are inte-
grated, but the cointegration test will indicate that the  matrix has full rank 
( ). This apparent contradiction may be the result of low power of the cointe-
gration tests, stemming perhaps from a small sample size or serving as an indication 
of specification error.

Cointegrating Relations

The second part of the output provides estimates of the cointegrating relations  and the 
adjustment parameters . As is well known, the cointegrating vector  is not identified 
unless we impose some arbitrary normalization. The first block reports estimates of  and 

 based on the normalization , where  is defined in Johansen (1995). Note 
that the transpose of  is reported under Unrestricted Cointegrating Coefficients so that 
the first row is the first cointegrating vector, the second row is the second cointegrating vec-
tor, and so on.

LRmax r r 1  T 1 lr 1– log–

 LRtr r k  LRtr r 1 k –
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 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  

LRM LRY IBO IDE C 
-21.97409  22.69811  -114.4173   92.64010  133.1615 
 14.65598 -20.05089  3.561148  100.2632 -62.59345 
 7.946552 -25.64080  4.277513 -44 .87727  62.74888 
 1.024493 -1.929761  24.99712 -14 .64825 -2.318655 

     
 Unrestricted Adjustment Coefficients (alpha):    

D(LRM)  0.009691  -0.000329   0.004406  0.001980 
D(LRY)  -0.005234  0.001348  0.006284  0.001082 
D(IBO) -0.001055 -0.000723   0.000438 -0.001536 
D(IDE) -0.001338 -0.002063  -0.000354 -4.65E-05 
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The remaining blocks report estimates from a different normalization for each possible num-
ber of cointegrating relations . This alternative normalization expresses 
the first  variables as functions of the remaining  variables in the system. Asymptotic 
standard errors are reported in parentheses for the parameters that are identified.

In our example, for one cointegrating equation we have:

Imposing Restrictions

Since the cointegrating vector  is not fully identified, you may wish to impose your own 
identifying restrictions. If you are performing your Johansen cointegration test using an esti-
mated Var object, EViews offers you the opportunity to impose restrictions on . Restric-
tions can be imposed on the cointegrating vector (elements of the  matrix) and/or on the 
adjustment coefficients (elements of the  matrix)

To perform the cointegration test from a Var object, you will first need to estimate a VAR 
with your variables as described in “Estimating a VAR in EViews” on page 689. Next, select 
View/Cointegration Test... from the Var menu and specify the options in the Cointegration 
Test Specification tab as explained above. Then bring up the VEC Restrictions tab. You will 
enter your restrictions in the edit box that appears when you check the Impose Restrictions 
box:

r 0 1  k 1–, , ,
r k r–

1 Cointegrating Equation(s):  Log likelihood  669.1154  

Normalized cointegrating coefficients (standard error in 
parentheses)  

LRM LRY IBO IDE C 
 1.000000 -1.032949  5.206919 -4.215880 -6.059932 

  (0.13897)  (0.55060)  (1.09082)  (0.86239) 
     

Adjustment coefficients (standard error in parentheses)  
D(LRM) -0.212955    

  (0.06435)    
D(LRY)  0.115022    

  (0.06739)    
D(IBO)  0.023177    

  (0.02547)    
D(IDE)  0.029411    

  (0.01717)    
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A full description of how to enter your restrictions is provided in “Imposing VEC Restric-
tions” on page 729.

Results of Restricted Cointegration Test

If you impose restrictions in the Cointegration Test view, the top portion of the output will 
display the unrestricted test results as described above. The second part of the output begins 
by displaying the results of the LR test for binding restrictions.

If the restrictions are not binding for a particular rank, the corresponding rows will be filled 
with NAs. If the restrictions are binding but the algorithm did not converge, the correspond-
ing row will be filled with an asterisk “*”. (You should redo the test by increasing the num-
ber of iterations or relaxing the convergence criterion.) For the example output displayed 
above, we see that the single restriction  is binding only under the assumption that 

Restrictions:  
     

a(3,1)=0 
     

     
Tests of cointegration restrictions: 

     

Hypothesized Restricted LR Degrees of  
No. of CE(s) Log-likehood Statistic Freedom Probability 

     

1  668.6698  0.891088 1  0.345183 
2  674.2964     NA         NA         NA     
3  677.4677     NA         NA         NA     
     

NA indicates restriction not binding. 

a31 0
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there is one cointegrating relation. Conditional on there being only one cointegrating relation, 
the LR test does not reject the imposed restriction at conventional levels.

The output also reports the estimated  and  imposing the restrictions. Since the cointe-
gration test does not specify the number of cointegrating relations, results for all ranks that 
are consistent with the specified restrictions will be displayed. For example, suppose the 
restriction is:

B(2,1) = 1 

Since this is a restriction on the second cointegrating vector, EViews will display results for 
ranks  (if the VAR has only  variables, EViews will return an 
error message pointing out that the “implied rank from restrictions must be of reduced 
order”).

For each rank, the output reports whether convergence was achieved and the number of 
iterations. The output also reports whether the restrictions identify all cointegrating parame-
ters under the assumed rank. If the cointegrating vectors are identified, asymptotic standard 
errors will be reported together with the parameters .

Single-Equation Cointegration Tests

You may use a group or an equation object estimated using cointreg to perform Engle and 
Granger (1987) or Phillips and Ouliaris (1990) single-equation residual-based cointegration 
tests. A description of the single-equation model underlying these tests is provided in “Back-
ground” on page 267. Details on the computation of the tests and the associated options 
may be found in “Residual-based Tests,” on page 282.

Briefly, the Engle-Granger and Phillips-Ouliaris residual-based tests for cointegration are 
simply unit root tests applied to the residuals obtained from a static OLS cointegrating 
regression. Under the assumption that the series are not cointegrated, the residuals are unit 
root nonstationary. Therefore, a test of the null hypothesis of no cointegration against the 
alternative of cointegration may be constructed by computing a unit root test of the null of 
residual nonstationarity against the alternative of residual stationarity. 

How to Perform a Residual-Based Cointegration Test

We illustrate the single-equation cointegration tests using Hamilton’s (1994) purchasing 
power parity example (p. 598) for the log of the U.S. price level (P_T), log of the Dollar-Lira 
exchange rate (S_T), and the log of the Italian price level (PSTAR_T) from 1973m1 to 
1989m10. We will use these data, which are provided in “Hamilton_rates.WF1”, to construct 
Engle-Granger and Phillips-Ouliaris tests assuming the constant is the only deterministic 
regressor in the cointegrating equation.

To carry out the Engle-Granger of Phillips-Ouliaris cointegration tests, first create a group, 
say G1, containing the series P_T, S_T, and PSTAR_T, then select View/Cointegration Test/

b a
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Single-Equation Cointegration Test from the group toolbar or main menu. The Cointegra-
tion Test Specification page opens to prompt you for information about the test.

The dropdown menu at the top allows 
you to choose between the default 
Engle-Granger test or the Phillips-
Ouliaris test. Below the dropdown are 
the options for the test statistic. The 
Engle-Granger test requires a specifica-
tion for the number of lagged differ-
ences to include in the test regression, 
and whether to d.f. adjust the standard 
error estimate when forming the ADF 
test statistics. To match Hamilton’s 
example, we specify a Fixed (User-
specified) lag specification of 12, and 
retain the default d.f. correction of the 
standard error estimate.

The right-side of the dialog is used to specify the form of the cointegrating equation. The 
main cointegrating equation is described in the Equation specification section. You should 
use the Trend specification dropdown to choose from the list of pre-specified deterministic 
trend variable assumptions (None, Constant (Level), Linear Trend, Quadratic Trend). If 
you wish to include deterministic regressors that are not offered in the pre-specified list, you 
may enter the series names or expressions in the Deterministic regressors edit box. For our 
example, we will leave the settings at their default values, with the Trend specification set 
to Constant (Level), and no additional deterministic regressors specified.

The Regressors specification section should be used to specify any deterministic trends or 
other regressors that should be included in the regressors equations but not in the cointe-
grating equation. In our example, Hamilton points to evidence of non-zero drift in the 
regressors, so we will select Linear trend in the Additional trends dropdown.

Click on OK to compute and display the test results.
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The top two portions of the output describe the test setup and summarize the test results. 
Regarding the test results, note that EViews computes both the Engle-Granger tau-statistic (t-
statistic) and normalized autocorrelation coefficient (which we term the z-statistic) for resid-
uals obtained using each series in the group as the dependent variable in a cointegrating 
regression. Here we see that the test results are broadly similar for different dependent vari-
ables, with the tau-statistic uniformly failing to reject the null of no cointegration at conven-
tional levels. The results for the z-statistics are mixed, with the residuals from the P_T 
equation rejecting the unit root null at the 5% level. On balance, however, the test statistics 
suggest that we cannot reject the null hypothesis of no cointegration. 

The bottom portion of the results show intermediate calculations for the test corresponding 
to each dependent variable. “Residual-based Tests,” on page 282 offers a discussion of these 
statistics. We do note that there are only 2 stochastic trends in the asymptotic distribution 
(instead of the 3 corresponding to the number of variables in the group) as a result of our 
assumption of a non-zero drift in the regressors.

Alternately, you may compute the Phillips-Ouliaris test statistic. Once again select View/
Cointegration Test/Single-Equation Cointegration Test from the Group toolbar or main 
menu, but this time choose Phillips-Ouliaris in the Test Method dropdown.

Date: 05/11/09   Time: 15:52   
Series: P_T S_T PSTAR_T    
Sample: 1973M01 1989M10   
Included observations: 202   
Null hypothesis: Series are not cointegrated  
Cointegrating equation deterministics: C    
Additional regressor deterministics: @TREND   
Fixed lag specification (lag=12)    

     
Dependent tau-statistic Prob.* z-statistic Prob.* 

P_T -2.730940  0.4021 -26.42791  0.0479 
S_T -2.069678  0.7444 -13.83563  0.4088 

PSTAR_T -2.631078  0.4548 -22.75737  0.0962 

*MacKinnon (1996) p-values.   
     

Intermediate Results:    
  P_T S_T PSTAR_T 

Rho - 1  -0.030478 -0.030082 -0.031846 
Rho S.E.  0.011160  0.014535  0.012104 
Residual variance  0.114656  5.934605  0.468376 
Long-run residual variance  2.413438  35.14397  6.695884 
Number of lags  12  12  12 
Number of observations  189  189  189 
Number of stochastic trends**  2  2  2 

**Number of stochastic trends in asymptotic distribution  
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The right-hand side of the dialog, 
which describes the cointegrating 
regression and regressors specifica-
tions, should be specified as before.

The left-hand side of the dialog 
changes to show a single Options but-
ton for controlling the estimation of 
the Long-run variance used in the 
Phillips-Ouliaris test, and the check-
box for d.f Adjustment of the variance 
estimates. The default settings instruct 
EViews to compute these long-run 
variances using a non-prewhitened 
Bartlett kernel estimator with a fixed Newey-West bandwidth. We match the Hamilton 
example settings by turning off the d.f. adjustment and by clicking on the Options button 
and using the Bandwidth method dropdown to specify a User-specified bandwidth value of 
13. 

Click on the OK button to accept the Options, then on OK again to compute the test statis-
tics and display the results:
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In contrast with the Engle-Granger tests, the results are quite similar for all six of the tests 
with the Phillips-Ouliaris test not rejecting the null hypothesis that the series are not cointe-
grated. As before, the bottom portion of the output displays intermediate results for the test 
associated with each dependent variable.

Panel Cointegration Testing

The extensive interest in and the availability of panel data has led to an emphasis on extend-
ing various statistical tests to panel data. Recent literature has focused on tests of cointegra-
tion in a panel setting. EViews will compute one of the following types of panel 
cointegration tests: Pedroni (1999), Pedroni (2004), Kao (1999) and a Fisher-type test using 
an underlying Johansen methodology (Maddala and Wu 1999).

Performing Panel Cointegration Tests in EViews

You may perform a cointegration test using either a Pool object or a Group in a panel work-
file setting. We focus here on the panel setting; conducting a cointegration test using a Pool 

Date: 05/11/09   Time: 16:01   
Series: P_T S_T PSTAR_T    
Sample: 1973M01 1989M10   
Included observations: 202   
Null hypothesis: Series are not cointegrated  
Cointegrating equation deterministics: C    
Additional regressor deterministics: @TREND   
Long-run variance estimate (Bartlett kernel, User bandwidth =  
        13.0000)    
No d.f. adjustment for variances   

     
Dependent tau-statistic Prob.* z-statistic Prob.* 

P_T -2.023222  0.7645 -7.542281  0.8039 
S_T -1.723248  0.8710 -6.457868  0.8638 

PSTAR_T -1.997466  0.7753 -7.474681  0.8078 

*MacKinnon (1996) p-values.   
     

Intermediate Results:    
  P_T S_T PSTAR_T 

Rho - 1  -0.016689 -0.014395 -0.017550 
Bias corrected Rho - 1 (Rho* -  1) -0.037524 -0.032129 -0.037187 
Rho*  S.E.  0.018547  0.018644  0.018617 
Residual variance  0.162192  6.411674  0.619376 
Long-run residual variance  0.408224  13.02214  1.419722 
Long-run residual autocovariance  0.123016  3.305234  0.400173 
Bandwidth  13.00000  13.00000  13.00000 
Number of observations  201  201  201 
Number of stochastic trends**  2  2  2 

**Number of stochastic trends in asymptotic distribution  
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involves only minor differences in specification (see “Performing Cointegration Tests,” 
beginning on page 860 for a discussion of testing in the pooled data setting).

To perform the panel cointegration test using a Group object you should first make certain 
you are in a panel structured workfile (Chapter 44. “Working with Panel Data,” on 
page 893). If you have a panel workfile with a single cross-section in the sample, you may 
perform one of the standard single-equation cointegration tests using your subsample.

Next, open an EViews group 
containing the series of inter-
est, and select Views/Cointe-
gration Test/Panel 
Cointegration Test… to dis-
play the cointegration dialog.

The dropdown menu at the 
top of the dialog box allow 
you to choose between three 
types of tests: Pedroni 
(Engle-Granger based), Kao 
(Engle-Granger based), 
Fisher (combined Johan-
sen). As you select different 
test types, the remainder of 
the dialog will change to pres-
ent you with different options. Here, we see the options associated with the Pedroni test.

(Note, the Pedroni test will only be available for groups containing seven or fewer series.)

The customizable options associated with Pedroni and Kao tests are very similar to the 
options found in panel unit root testing (“Panel Unit Root Testing” on page 617). 

The Deterministic trend specification portion of the dialog specifies the exogenous regres-
sors to be included in the second-stage regression. You should select Individual intercept if 
you wish to include individual fixed effects, Individual intercept and individual trend if 
you wish to include both individual fixed effects and trends, or No intercept or trend to 
include no regressors. The Kao test only allows for Individual intercept.

The Lag length section is used to determine the number of lags to be included in the second 
stage regression. If you select Automatic selection, EViews will determine the optimum lag 
using the information criterion specified in the dropdown menu (Akaike, Schwarz, Han-
nan-Quinn). In addition you may provide a Maximum lag to be used in automatic selec-
tion. An empty field will instruct EViews to calculate the maximum lag for each cross-
section based on the number of observations. The default maximum lag length for cross-sec-
tion  is computed as:i
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where  is the length of the cross-section . Alternatively, you may provide your own 
value by selecting User specified, and entering a value in the edit field.

The Pedroni test employs both parametric and non-parametric kernel estimation of the long 
run variance. You may use the Variance calculation and Lag length sections to control the 
computation of the parametric variance estimators. The Spectral estimation portion of the 
dialog allows you to specify settings for the non-parametric estimation. You may select from 
a number of kernel types (Bartlett, Parzen, Quadratic spectral) and specify how the band-
width is to be selected (Newey-West automatic, Newey-West fixed, User specified). The 
Newey-West fixed bandwidth is given by . The Kao test uses the Lag length 
and the Spectral estimation portion of the dialog settings as described below.

Here, we see the options for 
the Fisher test selection. 
These options are similar to 
the options available in the 
Johansen cointegration test 
(“Johansen Cointegration 
Test,” beginning on 
page 1023). 

The Deterministic trend 
specification section deter-
mines the type of exogenous 
trend to be used. 

The Lag intervals section 
specifies the lag-pair to be 
used in estimation. 

Panel Cointegration Details

Here, we provide a brief description of the cointegration tests supported by EViews. The 
Pedroni and Kao tests are based on Engle-Granger (1987) two-step (residual-based) cointe-
gration tests. The Fisher test is a combined Johansen test.

Pedroni (Engle-Granger based) Cointegration Tests

The Engle-Granger (1987) cointegration test is based on an examination of the residuals of a 
spurious regression performed using I(1) variables. If the variables are cointegrated then the 
residuals should be I(0). On the other hand if the variables are not cointegrated then the 
residuals will be I(1). Pedroni (1999, 2004) and Kao (1999) extend the Engle-Granger frame-
work to tests involving panel data. 

int min Ti k–  3 12,( ) Ti 100 1 4 

Ti i

4 T i 100 2 9
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Pedroni proposes several tests for cointegration that allow for heterogeneous intercepts and 
trend coefficients across cross-sections. Consider the following regression

(48.6)

for ; ; ; where  and  are assumed to be inte-
grated of order one, e.g. I(1). The parameters  and  are individual and trend effects 
which may be set to zero if desired.

Under the null hypothesis of no cointegration, the residuals  will be I(1). The general 
approach is to obtain residuals from Equation (48.6) and then to test whether residuals are 
I(1) by running the auxiliary regression,

(48.7)

or

(48.8)

for each cross-section. Pedroni describes various methods of constructing statistics for test-
ing for null hypothesis of no cointegration ( ). There are two alternative hypotheses: 
the homogenous alternative,  for all  (which Pedroni terms the within-dimen-
sion test or panel statistics test), and the heterogeneous alternative,  for all  (also 
referred to as the between-dimension or group statistics test). 

The Pedroni panel cointegration statistic  is constructed from the residuals from either 
Equation (48.7) or Equation (48.8). A total of eleven statistics with varying degree of proper-
ties (size and power for different  and ) are generated. 

Pedroni shows that the standardized statistic is asymptotically normally distributed,

(48.9)

where  and  are Monte Carlo generated adjustment terms.

Details for these calculations are provided in the original papers.

Kao (Engle-Granger based) Cointegration Tests

The Kao test follows the same basic approach as the Pedroni tests, but specifies cross-sec-
tion specific intercepts and homogeneous coefficients on the first-stage regressors.

In the bivariate case described in Kao (1999), we have

(48.10)
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for

(48.11)

(48.12)

for ; . More generally, we may consider running the first stage 
regression Equation (48.6), requiring the  to be heterogeneous,  to be homogeneous 
across cross-sections, and setting all of the trend coefficients  to zero.

Kao then runs either the pooled auxiliary regression,

(48.13)

or the augmented version of the pooled specification,

(48.14)

Under the null of no cointegration, Kao shows that following the statistics,

(48.15)

(48.16)

(48.17)

(48.18)

and for  (i.e. the augmented version),

(48.19)

converge to  asymptotically, where the estimated variance is  
with estimated long run variance .

The covariance of

 (48.20)

is estimated as
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ĵ0v

2

3 36ĵv
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(48.21)

and the long run covariance is estimated using the usual kernel estimator

(48.22)

where  is one of the supported kernel functions and  is the bandwidth.

Combined Individual Tests (Fisher/Johansen)

Fisher (1932) derives a combined test that uses the results of the individual independent 
tests. Maddala and Wu (1999) use Fisher’s result to propose an alternative approach to test-
ing for cointegration in panel data by combining tests from individual cross-sections to 
obtain at test statistic for the full panel.

If  is the p-value from an individual cointegration test for cross-section , then under the 
null hypothesis for the panel,

(48.23)

By default, EViews reports the  value based on MacKinnon-Haug-Michelis (1999) p-val-
ues for Johansen’s cointegration trace test and maximum eigenvalue test.
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Chapter 49.  Factor Analysis

Exploratory factor analysis is a method for explaining the covariance relationships amongst 
a number of observed variables in terms of a much smaller number of unobserved variables, 
termed factors.

EViews provides a wide range of tools for performing factor analysis, from computing the 
covariance matrix from raw data all the way through the construction of factor score esti-
mates. 

Factor analysis in EViews is carried out using the factor object. The remainder of this chap-
ter describes the use of the EViews factor object to perform exploratory factor analysis. 
Using the EViews factor object you may:

• Compute covariances, correlations, or other measures of association.

• Specify the number of factors.

• Obtain initial uniqueness estimates.

• Extract (estimate) factor loadings and uniquenesses.

• Examine diagnostics.

• Perform factor rotation.

• Estimate factor scores.

EViews provides a wide range of choices in each of these areas. You may, for example, select 
from a menu of automatic methods for choosing the number of factors to be retained, or you 
may specify an arbitrary number of factors. You may estimate your model using principal 
factors, iterated principal factors, maximum likelihood, unweighted least squares, general-
ized least squares, and noniterative partitioned covariance estimation (PACE). Once you 
obtain initial estimates, rotations may be performed using any of more than 30 orthogonal 
and oblique methods, and factor scores may be estimated in more than a dozen ways.

We begin with a discussion of the process of creating and specifying a factor object and 
using the object to estimate the model, perform factor rotation, and estimate factor scores. 
This section assumes some familiarity with the common factor model and the various issues 
associated with specification, rotation, and scoring. Those requiring additional detail may 
wish to consult “Background,” beginning on page 1074.

Next, we provide an overview of the views, procedures, and data members provided by the 
factor object, followed by an extended example highlighting selected features.

The remainder of the chapter provides relevant background information on the common fac-
tor model. Our discussion is necessarily limited; the literature on factor analysis is extensive, 
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to say the least, and we cannot possibly attempt a comprehensive overview. For those 
requiring a detailed treatment, Harman’s (1976) book length treatment is a standard refer-
ence. Other useful surveys include Gorsuch (1983) and Tucker and MacCallum (1977).

Creating a Factor Object

Factor analysis in EViews is carried out using a factor object. You may create and specify the 
factor object in a number of ways. The easiest methods are:

• Select Object/New Object from the workfile menu, choose Factor, and enter the spec-
ification in the Factor Specification dialog.

• Highlight several series, right-click, select Open/as Factor..., and enter the specifica-
tion in the dialog.

• Open an existing group object, select Proc/Make Factor..., and enter the specification 
in the dialog.

You may also use the commands factor or factest to create and specify your factor 
object.

Specifying the Model

There are two distinct parts of a factor object specification. The first part of the specification 
describes which measure of association or dispersion, typically a correlation or covariance 
matrix, EViews should fit using the factor model. The second part of the specification 
defines the properties of the factor model. 

The dispersion measure of interest is specified using the Data tab of the dialog, and the fac-
tor model is defined using the Estimation tab. The following sections describe these settings 
in detail.

Data Specification

The first item in the Data tab is the Type dropdown menu, which is used to specify whether 
you wish to compute a Correlation or Covariance matrix from the series data, or to provide 
a User-matrix containing a previously computed measure of association. 
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Covariance Specification

Here we see the dialog layout 
when Correlation or Covariance 
is selected. 

Most of these fields should be 
familiar from the Covariance 
Analysis view of a group. Addi-
tional details on all of these set-
tings may be found in 
“Covariance Analysis,” begin-
ning on page 572.

Method

You may use the Method drop-
down to specify the calculation 
method: ordinary Pearson 
covariances, uncentered covari-
ances, Spearman rank-order 
covariances, and Kendall’s tau measures of association.

Note that the computation of factor scores (“Scoring” on page 1084) is not supported for fac-
tor models fit to Spearman or Kendall’s tau measures. If you wish to compute scores for 
measures based on these methods you may, however, estimate a factor model fit to a user-
specified matrix.

Variables

You should enter the list of series or groups containing series that you wish to employ for 
analysis. 

(Note that when you create your factor object from a group object or a set of highlighted 
series, EViews assumes that you wish to compute a measure of association from the speci-
fied series and will initialize the edit field using the series names.)

Sample

You should specify a sample of observations and indicate whether you wish to balance the 
sample. By default, EViews will perform listwise deletion when it encounters missing val-
ues. This option is ignored when performing partial analysis (which may only be computed 
for balanced samples).

Partialing

Partial covariances or correlations may be computed for each pair of analysis variables by 
entering a list of conditioning variables in the edit field. 
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Computation of factor scores is not supported for models fit to partial covariances or correla-
tions. To compute scores for measures in this setting you may, however, estimate a factor 
model fit to a user-specified matrix.

Weighting

When you specify a weighting method, you will be prompted to enter the name of a weight 
series. There are five different weight choices: frequency, variance, standard deviation, 
scaled variance, and scaled standard deviation. 

Degrees-of-Freedom Correction

You may choose to compute covariances using the maximum likelihood estimator or the 
degree-of-freedom corrected formula. By default, EViews computes ML estimates (no d.f. 
correction) of the covariances. Note that this choice may be relevant even if you will be 
working with a correlation matrix since standardized data may be used when constructing 
factor scores.

User-matrix Specification

User-matrix in the Type drop-
down, the dialog changes, 
prompting you for the name of 
the matrix and optional informa-
tion for the number of observa-
tions, the degrees-of-freedom 
adjustment, and column names.

• You should specify the 
name of an EViews matrix 
object containing the mea-
sure of association to be 
fit. The matrix should be 
square and symmetric, 
though it need not be a 
sym matrix object.

• You may enter a scalar 
value for the number of observations, or a matrix containing the pairwise numbers of 
observations. A number of results will not be computed if a number of observations is 
not provided. If the pairwise number of observations is not constant, EViews will use 
the minimum number of observations when computing statistics.

• Column names may be provided for labeling results. If not provided, variables will be 
labeled “V1”, “V2”, etc. You need not provide names for all columns; the generic 
names will be replaced with the specified names in the order they are provided.
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Estimation Specification

The main estimation settings are displayed when you click on the Estimation tab of the Fac-
tor Specification dialog. There are four sections in the dialog allowing you to control the 
method, number of factors, initial communalities, and other options. We describe each in 
turn.

Method

In the Method dropdown menu, 
you should select your estima-
tion method. EViews supports 
estimation using Maximum 
likelihood, Generalized least 
squares, Unweighted least 
squares, Principal factors, Iter-
ated principal factors, and Par-
titioned (PACE) methods.

Depending on the method, dif-
ferent settings may appear in the 
Options section to the right. 

Number of Factors

EViews supports a variety of 
methods for selecting the num-
ber of factors. By default, 
EViews uses Velicer’s (1976) minimum average partial method (MAP). Simulation evidence 
suggests that MAP (along with parallel analysis) is more accurate than more commonly used 
methods such as Kaiser-Guttman (Zwick and Velicer, 1986). See “Number of Factors,” begin-
ning on page 1075 for a brief summary of the various methods.

You may change the default by selecting an alternative method from 
the dropdown menu. The dialog may change to prompt you for addi-
tional input:

• The Minimum eigenvalue method allows you to employ a 
modified Kaiser-Guttman rule that uses a different threshold. 
Simply enter your threshold in the Cutoff edit field.

• If you select Fraction of total variance, EViews will prompt you to enter the target 
threshold.

• If you select either Parallel analysis (mean) or Parallel analysis (quantile) from the 
dropdown menu, the dialog page will change to provide you with a number of addi-
tional options. 
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In the Number of factor 
sections, EViews will 
prompt you for the num-
ber of simulations to run, 
and, where appropriate, 
the quantile of the empiri-
cal distribution to use for 
comparison.

By default, EViews com-
pares the eigenvalues of 
the reduced matrix against 
simulated eigenvalues. 
This approach is in the 
spirit of Humphreys and 
Ilgen (1969), who use the 
SMC reduced matrix. If 
you wish to use the eigen-
values of the original (unreduced) matrix, simply check Use unreduced matrix.

The Options section of the page provides options for the random number generator 
and the random seed. While the Random generator dropdown should be self-explan-
atory, the Seed field requires some discussion.

By default, the first time that you estimate a given factor model, the Seed edit field 
will be blank; you may provide your own integer value, if desired. If an initial seed is 
not provided, EViews will randomly select a seed value at estimation time. The value 
of this initial seed will be saved with the factor object so that by default, subsequent 
estimation will employ the same seed. If you wish to use a different value, simply 
enter a new value in the Seed edit field or press the Clear button to have EViews draw 
a new random seed value. 

• For User-specified, you will be prompted to enter the actual number of factors that 
you wish to employ.

Initial Communalities

Initial estimates of the common variances are required for most estimation methods. For 
iterative methods like ML and GLS, the initial communalities are simply starting values for 
the estimation of uniquenesses. For principal factor estimation, the initial communalities are 
fundamental to the construction of the estimates (see “Principal Factors,” on page 1077).
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By default, EViews will compute SMC based estimates of the com-
munalities. You may select a different method using the Initial 
communalities dropdown menu. Most of the methods should be 
self-explanatory; a few require additional comment.

• Partitioned (PACE) performs a non-iterative PACE estimation of the factor model and 
uses the fitted estimates of the common variances. The number of factors used is 
taken from the main estimation settings.

• The Random diagonal fractions setting instructs EViews to use a different random 
fraction of each diagonal element of the original dispersion matrix.

• The User-specified uniqueness values will be subtracted from the original variances 
to form communality estimates. You will specify the name of the vector containing the 
uniquenesses in the Vector edit field. By default, EViews will look at the first ele-
ments of the C coefficient vector for uniqueness values. 

To facilitate the use of this option, EViews will place the estimated uniqueness values 
in the coefficient vector C. In addition, you may use the equation data member 
@unique to access the estimated uniqueness from a named factor object.

See “Communality Estimation,” on page 1078 for additional discussion.

Estimation Options

We have already seen the iteration control and random number options that are available for 
various estimation and number of factor methods. The remaining options concern the scal-
ing of results and the handling of Heywood cases.

Scaling

Some estimation methods guarantee that the sums of the uniqueness estimates and the esti-
mated communalities equal the diagonal dispersion matrix elements; for example, principal 
factors models compute the uniqueness estimates as the residual after accounting for the 
estimated communalities. 

In other cases, the uniqueness and loadings are both estimated directly. In these settings, it 
is possible for the sum of the components to differ substantively from the original variances.

You can enforce the adding up condition by checking the Scale estimates to match 
observed variances box. If this option is selected, EViews will automatically adjust your 
uniqueness and loadings estimates so the sum of the unique and common variances 
matches the diagonals of the dispersion matrix. Note that when scaling has been applied, 
the reported uniquenesses and loadings will differ from those used to compute fit statistics; 
the main estimation output will indicate the presence of scaled results.
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Heywood Case Handling

In the course of iterating principal factor estimation, one may encounter estimated commu-
nalities which implies that at least one unique variance is less than zero; these situations are 
referred to as Heywood cases. 

When you encounter a Heywood case in EViews, there are several approaches that you may 
take. By default, EViews will stop iterating and report the final set of estimates (Stop and 
report final), along with a warning that the results may be inappropriate. Alternately, you 
may instruct EViews to report the previous iteration’s results (Stop and report last), to set 
the results to zero and continue (Set to zero, continue), or to ignore the negative unique 
variance and continue (Ignore and continue).

Rotating Factors

You may perform factor rotation on an estimated factor object with two or more retained 
factors. Simply call up the Factor Rotation dialog by clicking on the Rotate button or by 
selecting Proc/Rotate... from the factor object menu, and select the desired rotation settings.

The Type and Method 
dropdowns may be used to 
specify the basic rotation 
method (see “Types of 
Rotation,” on page 1082 for 
a description of the sup-
ported methods). For some 
methods, you will also be 
prompted to enter parame-
ter values. 

In the depicted example, 
we specify an oblique Pro-
max rotation with a power 
parameter of 3.0. The Promax orthogonal pre-rotation step performs Varimax (Orthomax 
with a parameter of 1).

By default, EViews does not row weight the loadings prior to rotation. To standardize the 
data, simply change the Row weight dropdown menu to Kaiser or Cureton-Mulaik.

In addition, EViews uses the identity matrix (unrotated loadings) as the default starting 
value for the rotation iterations. The section labeled Starting values allows you to perform 
different initializations:

• You may instruct EViews to use an initial random rotation by selecting Random in the 
Starting values dropdown. The dialog changes to prompt you to specify the number 
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of random starting matrices to compare, the random number generator, and the initial 
seed settings. If you select random, EViews will perform the requested number of 
rotations, and will use the rotation that minimizes the criterion function.

As with the random number generator used in parallel analysis, the value of this ini-
tial seed will be saved with the factor object so that by default, subsequent rotation 
will employ the same random values. You may override this initialization by entering 
a value in the Seed edit field or press the Clear button to have EViews draw a new 
random seed value. 

• You may provide a user-specified initial rotation. Simply select User-specified in the 
Starting values dropdown, the provide the name of a  matrix to be used as 
the starting . 

• Lastly, if you have previously performed a rotation, you may use the existing results 
as starting values for a new rotation. You may, for example, perform an oblique Quar-
timax rotation starting from an orthogonal Varimax solution.

Once you have specified your rotation method you may click on OK. EViews will estimate 
the rotation matrix, and will present a table reporting the rotated loadings, factor correla-
tion, factor rotation matrix, loading rotation matrix, and rotation objective function values. 
Note that the factor structure matrix is not included in the table output; it may be viewed 
separately by selecting View/Structure Matrix from the factor object menu.

In addition EViews will save the results from the rotation with the factor object. Other rou-
tines that rely on estimated loadings such as factor scoring will offer you the option of using 
the unrotated or the rotated loadings. You may display your rotation results table at any time 
by selecting View/Rotation Results from the factor menu.

Estimating Scores

Factor score estimation may be performed as a factor object view or procedure. 

Viewing Scores

To display score coefficients or scores, click on the Score button on the factor toolbar, or 
select View/Scores... from the factor menu.

m m
T
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The scores view allows you to display: (1) a table showing the factor score coefficients, inde-
terminacy and validity indices, and univocality measures; (2) a table of factor score values 
for a set of observations; (3) a line graph of the scores; (4) scatterplots of scores on pairs of 
factors; (4) biplots of scores and loadings on pairs of factors. 

You should specify the display format by clicking in the list box to choose one of: Table 
summary, Spreadsheet, Line graph, Scatterplot, and Biplot graph.

Scores Coefficients

To estimate scores, you must first specify a method for computing the score coefficients. For 
a brief discussion of methods, see “Score Estimation” on page 1085. Details are provided in 
Gorsuch (1983), Ten Berge et. al (1999), Grice (2001), McDonald (1981), Green (1969).

You must first decide whether to use refined coefficients (Exact coefficients), to adjust the 
refined coefficients (Coarse coefficients), or to compute coarse coefficients based on the 
factor loadings (Coarse loadings). By default, EViews will compute scores estimates using 
exact coefficients.

Next, if rotated factors are available, they will be used as a default. You should check Use 
unrotated loadings to use the original loadings.

Depending on your selections, you will be prompted for additional information:

• If you select Exact coefficients or Coarse coefficients, EViews will prompt you for a 
Coef Method. You may choose between the following methods: Regression (Thur-
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stone’s regression, Ideal variables (Harmon’s idealized variables), Bartlett WLS 
(Bartlett weighted least squares), Anderson-Rubin (Ten Berge et al. generalized 
Anderson-Rubin-McDonald), and Green (Green, MSE minimizing). 

• If you select Coarse coefficients or Coarse loadings, EViews will prompt you for a 
coarse method and a cutoff value.

Simplified coefficient weights will be computed by recoding elements of the coeffi-
cient or loading matrix. In the Unrestricted method, values of the matrix that are 
greater (in absolute value) than some threshold are assigned sign-preserving values of 
-1 or 1; all other values are recoded at 0. 

The two remaining methods restrict the coefficient weights so that each variable loads 
on a single factor. If you select Unique - recode, only the element with the highest 
absolute value in a row is recoded to a non-zero value; if you select Unique - drop, 
variables with more than loading in excess of the threshold are set to zero.

See Grice (2001) for discussion.

You may instruct EViews to save the matrix of scores coefficients in the workfile by entering 
a valid EViews object name in the Save matrix of coefs edit field.

Scores Data

You will need to specify a set of observable variables to use in scoring and a sample of 
observations. The estimated scores will be computed by taking linear combination of the 
standardized observables over the specified samples.

If available, EViews will fill the Observables edit field with the names of the original vari-
ables used in computation. You will be prompted for whether to standardize the specified 
data using the moments obtained from estimation, or whether to standardize the data using 
the newly computed moments obtained from the data. In the typical case, where we score 
observations using the same data that we used in estimation, these moments will coincide. 
When computing scores for observations or variables that differ from estimation, the choice 
is of considerable importance.

If you have estimated your object from a user-specified matrix, you must enter the names of 
the variables you wish to use as observables. Since moments of the original data are not 
available in this setting, they will be computed from the specified variables.

Graph Options

When displaying graph views of your results, you will be prompted for which factors to dis-
play; by default, EViews will graph all of your factors. Scatterplots and biplots provide addi-
tional options for handling multiple graphs, for centering the graph around 0, and for biplot 
graphs, labeling obs and loading scaling that should be familiar from our discussion of prin-
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cipal components (see “Other Graphs (Variable Loadings, Component Scores, Biplots),” 
beginning on page 595).

Saving Scores

The score procedure allows you to save score values to series in the workfile. When saving 
scores using the Proc/Make Scores..., EViews opens a dialog that differs only slightly from 
the view dialog. Instead of a Display section, EViews provides an Output specification sec-
tion in which you should enter a list of scores to be saved or a list of indices for the scores in 
the edit field.

To save the first two factors as series AA and BB, you may enter “AA BB” in the edit field. If, 
instead, you provide the indices “1 2”, EViews will save the first two factors using the 
default names “F1” and “F2”, unless you have previously named your factors using Proc/
Name Factors....

Factor Views

EViews provides a number of factor object views that allow you to examine the properties of 
your estimated factor model.

Specification

The specification view provides a 
text representation of the estimation 
specification, as well as the rotation 
specifications and assigned factor 
names (if relevant). 

In this example, we see that we have 
estimated a ML factor model for 
seven variables, using a convergence 
criterion of 1e-07. The model was 
estimated using the default SMCs ini-
tial communalities and Velicer’s MAP 
criterion to select the number of factors.

In addition, the object has a valid rotation method, oblique Quartimax, that was estimated 
using the default 25 random oblique rotations. If no rotations had been performed, the rota-
tion specification would have read “Factor does not have a valid rotation.”

Lastly, we see that we have provided two factor names, “Verbal”, and “Spatial”, that will be 
used in place of the default names of the first two factors “F1” and “F2”.



Factor Views—1055
Estimation Output

Select View/Estimation Output to display the main estimation output (unrotated loadings, 
communalities, uniquenesses, variance accounted for by factors, selected goodness-of-fit 
statistics). Alternately, you may click on the Stats toolbar button to display this view.

Rotation Results

Click View/Rotation Results to show the output table produced when performing a rotation 
(rotated loadings, factor correlation, factor rotation matrix, loading rotation matrix, and 
rotation objective function values).

Goodness-of-fit Summary

Select View/Goodness-of-fit Summary to display a table of goodness-of-fit statistics. For 
models estimated by ML or GLS, EViews computes a large number of absolute and relative 
fit measures. For details on these measures, see “Model Evaluation,” beginning on 
page 1079.

Matrix Views

You may display spreadsheet views of various matrices of interest. These matrix views are 
divided into four groups: matrices based on the observed dispersion matrix, matrices based 
on the reduced matrix, fitted matrices, and residual matrices.

Observed Covariances

You may examine the observed matrices by selecting View/Observed Covariance Matrix/ 
and the desired sub-matrix:

• The Covariance entry displays the original dispersion matrix, while the Scaled Cova-
riance matrix scales the original matrix to have unit diagonals. In the case where the 
original matrix is a correlation, these two matrices will obviously be the same.

• Observations displays a matrix of the number of observations used in each pairwise 
comparison.

• If you select Anti-image Covariance, EViews will display the anti-image covariance of 
the original matrix. The anti-image covariance is computed by scaling the rows and 
columns of the inverse (or generalized inverse) of the original matrix by the inverse of 
its diagonals:

• Partial correlations will display the matrix of partial correlations, where every ele-
ment represents the partial correlation of the variables conditional on the remaining 
variables. The partial correlations may be computed by scaling the anti-image covari-
ance to unit diagonals and then performing a sign adjustment.

A diag S
1– 

1–
S

1–
diag S

1– 
1–


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Reduced Covariance

You may display the initial or final reduced matrices by selecting View/Reduced Covariance 
Matrix/ and Using Initial Uniqueness or Using Final Uniqueness.

Fitted Covariances

To display the fitted covariance matrices, select View/Fitted Covariance Matrix/ and the 
desired sub-matrix. Total Covariance displays the estimated covariance using both the com-
mon and unique variance estimates, while Common Covariance displays the estimate of the 
variance based solely on the common factors.

Residual Covariances

The different residual matrices are based on the total and the common covariance matrix. 
Select View/Residual Covariance Matrix/ and the desired matrix, Using Total Covariance, 
or Using Common Covariance. The residual matrix computed using the total covariance 
will generally have numbers close to zero on the main diagonal; the matrix computed using 
the common covariance will have numbers close to the uniquenesses on the diagonal (see 
“Scaling,” on page 1049 for caveats).

Factor Structure Matrix

The factor structure matrix reports the correlations between the variables and factors. The 
correlation is equal to the (possibly rotated) loadings matrix times the factor correlation 
matrix, ; for orthogonal factors, the structure matrix simplifies so that the correlation is 
given by the loadings matrix, .

Loadings Views

You may examine your rotated or unrotated loadings in spreadsheet or graphical form.

You may View/Loadings/Loadings Matrix to display the current loadings matrix in spread-
sheet form. If a rotation has been performed, then this view will show the rotated loadings, 
otherwise it will display the unrotated loadings. To view the unrotated loadings, you may 
always select View/Loadings/Unrotated Loadings Matrix.

LF

L
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To display the loadings as a graph, select View/
Loadings/Loadings Graph... The dialog will 
prompt you for a set of indices for the factors you 
wish to plot. EViews will produce pairwise plots of 
the factors, with the loadings displayed as lines 
from the origin to the points labeled with the vari-
able name.

By default, EViews will use the rotated solution if 
available; to override this choice, click on the Use 
unrotated solution checkbox.

The other settings allow you to control the handling of multiple graphs, and whether the 
graphs should be centered around the origin.

Scores

Select View/Scores... to compute estimates of factor score coefficients and to compute fac-
tor score values for observations. This view and the corresponding procedure are described 
in detail in “Estimating Scores,” on page 1051.

Eigenvalues

One important class of factor model diagnostics is an examination of eigenvalues of the 
unreduced and the reduced matrices. In addition to being of independent interest, these 
eigenvalues are central to various methods for selecting the number of factors.

Select View/Eigenvalues... to open the Eigenvalue 
Display dialog. By default, EViews will display a table 
view containing a description of the eigenvalues of 
the observed dispersion matrix.

The dialog options allow you to control the output for-
mat and method of calculation:

• You may change the Output format to display a 
graph of the ordered eigenvalues. By default, 
EViews will display the resulting Scree plot 
along with a line representing the mean eigen-
value.

• To base calculations on the scaled observed, initial reduced or final reduced matrix, 
select the appropriate item in the Eigenvalues of dropdown.

• For table display, you may include the corresponding eigenvectors and dispersion 
matrix in the output by clicking on the appropriate Additional output checkbox.
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• For graph display, you may also display the eigenvalue differences, and the cumula-
tive proportion of variance represented by each eigenvalue. The difference graphs also 
display the mean value of the difference; the cumulative proportion graph shows a 
reference line with slope equal to the mean eigenvalue.

Additional Views

Additional views allow you to examine:

• The matrix of maximum absolute correlations (View/Maximum Absolute Correla-
tion).

• The squared multiple correlations (SMCs) and the related anti-image covariance 
matrix (View/Squared Multiple Correlations).

• The Kaiser-Meyer-Olkin (Kaiser 1970; Kaiser and Rice, 1974; Dziuban and Shirkey, 
1974), measure of sampling adequacy (MSA) and corresponding matrix of partial cor-
relations (View/Kaiser’s Measure of Sampling Adequacy).

The first two views correspond to the calculations used in forming initial communality esti-
mates (see “Communality Estimation” on page 1078). The latter view is an “index of facto-
rial simplicity” that lies between 0 and 1 and indicates the degree to which the data are 
suitable for common factor analysis. Values for the MSA above 0.90 are deemed “marvel-
ous”; values in the 0.80s are “meritorious”; values in the 0.70s are “middling”; values the 
60s are “mediocre”, values in the 0.50s are “miserable”, and all others are “unacceptable” 
(Kaiser and Rice, 1974).

Factor Procedures

The factor procedures may be accessed either clicking on the Proc button on the factor tool-
bar or by selecting Proc from the main factor object menu, and selecting the desired proce-
dure:

• Specify/Estimate... is the main procedure for estimating the factor model. When 
selected, EViews will display the main Factor Specification dialog See “Specifying the 
Model” on page 1044.

• Rotate... is used to perform factor rotation using the Factor Rotation dialog. See 
“Rotating Factors” on page 1050.

• Make Scores... is used to save estimated factor scores as series in the workfile. See 
“Estimating Scores” on page 1051.

• Name Factors... may be used to provide user-specified labels for the factors. By 
default, the factors will be labeled “F1” and “F2” or “Factor 1” and “Factor 2”, etc. To 
provide your own names, select Proc/Name Factors... and enter a list of factor 
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names. EViews will use the specified names instead of the generic labels in table and 
graph output.

To clear a set of previously specified factor names, simply call up the dialog and delete 
the existing names.

• Clear Rotation removes an existing rotation from the object.

Factor Data Members

The factor object provides a number of views for examining the results of factor estimation 
and rotation. In addition to these views, EViews provides a number of object data members 
which allow you direct access to results. 

For example, if you have an estimated factor object, FACT1, you may save the unique vari-
ance estimates in a vector in the workfile using the command:

vector unique = fact1.@unique

The corresponding loadings may be saved by entering:

matrix load = fact1.@loadings

The rotated loadings may be accessed by:

matrix rload = fact1.@rloadings

The fitted and residuals matrices may be obtained by entering:

sym fitted = fact1.@fitted

sym resid = fact1.@resid

For a full list of the factor object data members, see “Factor Data Members” on page 186 in 
the Command and Programming Reference.

An Example

We illustrate the basic features of the factor object by analyzing a subset of the classic 
Holzinger and Swineford (1939) data, consisting of measures on 24 psychological tests for 
145 Chicago area children attending the Grant-White school (Gorsuch, 1983). A large num-
ber of authors have used these data for illustrating various features of factor analysis. The 
raw data are provided in the EViews workfile “Holzinger24.WF1”. We will work with a sub-
set consisting of seven of the 24 variables: VISUAL (visual perception), CUBES (spatial rela-
tions), PARAGRAPH (paragraph comprehension), SENTENCE (sentence completion), 
WORDM (word meaning), PAPER1 (paper shapes), and FLAGS1 (lozenge shapes). 

(As noted by Gorsuch (1983, p. 12), the raw data and the published correlations do not 
match; for example, the data in “Holzinger24.WF1” produces correlations that differ from 
those reported in Table 7.4 of Harman (1976). Here, we will assume that the raw data are 
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correct; later, we will show you how to work directly with the Harman reported correlation 
matrix.)

Specification and Estimation

Since we have previously created 
a group object G7 containing the 
seven series of interest, double 
click on G7 to open the group and 
select Proc/Make Factor.... 
EViews will open the main factor 
analysis specification dialog.

When the factor object created in 
this fashion, EViews will pre-
define a specification based on the 
series in the group. You may click 
on the Data tab to see the pre-
filled settings. Here, we see that 
EViews has entered in the names 
of the seven series in G7. 

The remaining default settings 
instruct EViews to calculate an ordinary (Pearson) correlation for all of the series in the 
group using a balanced version of the workfile sample. You may change these as desired, 
but for now we will use these settings.

Next, click on the Estimation 
tab to see the main factor analy-
sis settings. The settings may be 
divided into three main catego-
ries: Method (extraction), Num-
ber of factors, and Initial 
communalities. In addition, the 
Options section on the right of 
the dialog may be used to con-
trol miscellaneous settings.

By default, EViews will estimate 
a factor specification using max-
imum likelihood. The number of 
factors will be selected using 
Velicer’s minimum average par-
tial (MAP) method, and the 
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starting values for the communalities will be taken from the squared multiple correlations 
(SMCs). We will use the default settings for our example so you may click on OK to con-
tinue.

EViews estimates the model and displays the results view. Here, we see the top portion of 
the main results. The heading information provides basic information about the settings 
used in estimation, and basic status information. We see that the estimation used all 145 
observations in the workfile, and converged after five iterations.

Below the heading is a section displaying the estimates of the unrotated orthogonal load-
ings, communalities, and uniqueness estimates obtained from estimation.

We first see that Velicer’s MAP method has retained two factors, labeled “F1” and “F2”. A 
brief examination of the unrotated loadings indicates that PARAGRAPH, SENTENCE and 
WORDM load on the first factor, while VISUAL, CUES, PAPER1, and FLAGS1 load on the sec-
ond factor. We therefore might reasonably label the first factor as a measure of verbal ability 
and the second factor as an indicator of spatial ability. We will return to this interpretation 
shortly.

To the right of the loadings are communality and uniqueness estimates which apportion the 
diagonals of the correlation matrix into common (explained) and individual (unexplained) 
components. The communalities are obtained by computing the row norms of the loadings 
matrix, while the uniquenesses are obtained directly from the ML estimation algorithm. We 
see, for example, that 56% ( ) of the correlation for the VISUAL 
variable and 69% ( ) of the SENTENCE correlation are 
accounted for by the two common factors.

Factor Method: Maximum Likelihood   

Date: 09/11/06   Time: 12:00   

Covariance Analysis: Ordinary Correlation   

Sample: 1 145    

Included observations: 145   

Number of factors: Minimum average partial   

Prior communalities: Squared multiple correlation  

Convergence achieved after 5 iterations   

 Unrotated Loadings   

 F1 F2 Communality Uniqueness 

VISUAL  0.490722  0.567542  0.562912  0.437088 

CUBES  0.295593  0.342066  0.204384  0.795616 

PARAGRAPH  0.855444 -0.124213  0.747214  0.252786 

SENTENCE  0.817094 -0.154615  0.691548  0.308452 

WORDM  0.810205 -0.162990  0.682998  0.317002 

PAPER1  0.348352  0.425868  0.302713  0.697287 

FLAGS1  0.462895  0.375375  0.355179  0.644821 

0.563 0.491
2

0.568
2

0.692 0.817
2

0.155– 2
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The next section provides summary information on the total variance and proportion of 
common variance accounted for by each of the factors, derived by taking column norms of 
the loadings matrix. First, we note that the variance accounted for by the two factors is 3.55, 
which is close to 51% ( ) of the total variance (sum of the diagonals of the correla-
tion matrix). Furthermore, we see that the first factor F1 accounts for 77% ( ) of 
the common variance and the second factor F2 accounts for the remaining 23% 
( ).

The bottom portion of the output shows basic goodness-of-fit information for the estimated 
specification. The first column displays the discrepancy function, number of parameters, 
and degrees-of-freedom (against the saturated model) for the estimated specification For this 
extraction method (ML), EViews also displays the chi-square goodness-of-fit test and Bartlett 
adjusted version of the test. Both versions of the test have p-values of over 0.75, indicating 
that two factors adequately explain the variation in the data.

For purposes of comparison, EViews also presents results for the independence (no factor) 
model which show that a model with no factors does not adequately model the variances.

Basic Diagnostic Views

Once we have estimated our factor specification we may examine a variety of diagnostics. 
First, we will examine a variety of goodness-of-fit statistics and indexes by selecting View/
Goodness-of-fit Summary from the factor menu.

3.55 7.0
2.72 3.55

0.82 3.55

Factor Variance Cumulative Difference Proportion Cumulative 
F1 2.719663 2.719663 1.892380 0.766762 0.766762 
F2 0.827282 3.546945 --- 0.233238 1.000000 

Total  3.546945 3.546945  1.000000  

 Model Independence Saturated 

Discrepancy  0.034836  2.411261  0.000000 

Chi-square statistic  5.016316  347.2215 --- 

Chi-square prob.  0.7558  0.0000 --- 

Bartlett chi-square  4.859556  339.5859 --- 

Bartlett probability  0.7725  0.0000 --- 

Parameters  20  7  28 

Degrees-of-freedom  8  21 --- 
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As you can see, EViews computes a large number of absolute and relative fit measures. In 
addition to the discrepancy, chi-square and Bartlett chi-square statistics seen previously, 
EViews computes scaled information criteria, expected cross-validation indices, generalized 
fit indices, as well as various measures based on estimates of noncentrality. Also presented 
are incremental fit indices which compare the fit of the estimated model against the inde-
pendence model (see “Model Evaluation,” beginning on page 1079 for discussion).

In addition, you may examine various matrices associated with the estimation procedure. 
You may examine the computed correlation matrix, various reduced and fitted matrices, and 
a variety of residual matrices. For example, you may view the residual variance matrix by 
selecting View/Residual Covariance Matrix/Using Total Covariance.

Goodness-of-fit Summary   

Factor: FACTOR01   

Date: 09/13/06   Time: 15:36  

 Model Independence Saturated 

Parameters  20  7  28 

Degrees-of-freedom  8  21 --- 

Parsimony ratio  0.380952  1.000000 --- 

Absolute Fit Indices   

 Model Independence Saturated 

Discrepancy  0.034836  2.411261  0.000000 

Chi-square statistic  5.016316  347.2215 --- 

Chi-square probability  0.7558  0.0000 --- 

Bartlett chi-square statistic  4.859556  339.5859 --- 

Bartlett probability  0.7725  0.0000 --- 

Root mean sq. resid. (RMSR)  0.023188  0.385771  0.000000 

Akaike criterion -0.075750  2.104976  0.000000 

Schwarz criterion -0.239983  1.673863  0.000000 

Hannan-Quinn criterion -0.142483  1.929800  0.000000 

Expected cross-validation (ECVI)  0.312613  2.508483  0.388889 

Generalized fit index (GFI)  0.989890  0.528286  1.000000 

Adjusted GFI  0.964616 -0.651000 --- 

Non-centrality parameter -2.983684  326.2215 --- 

Gamma Hat  1.000000  0.306239 --- 

McDonald Noncentralilty  1.000000  0.322158 --- 

Root MSE approximation  0.000000  0.328447 --- 

Incremental Fit Indices   

 Model   

Bollen Relative (RFI)  0.962077   

Bentler-Bonnet Normed (NFI)  0.985553   

Tucker-Lewis Non-Normed (NNFI)  1.024009   

Bollen Incremental (IFI)  1.008796   

Bentler Comparative (CFI)  1.000000   
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Note that the diagonal elements of the residual matrix are zero since we have subtracted off 
the total fitted covariance (which includes the uniquenesses). To replace the (almost) zero 
diagonals with the uniqueness estimates, select instead View/Residual Covariance Matrix/
Using Common Covariance.

You may examine eigenvalues 
of relevant matrices using the 
eigenvalue view. EViews allows 
you to compute eigenvalues for 
a variety of matrices and display 
the results in tabular or graphi-
cal form, but for the moment 
we will simply produce a scree 
plot for the observed correlation 
matrix. Select View/Eigenval-
ues... and change the Output 
format to Graph. 

Click on OK to accept the set-
tings. EViews will display the 
scree plot for the data, along 
with a line indicating the aver-
age eigenvalue.

To examine the Kaiser Measure of Sampling Adequacy, select View/Kaiser’s Measure of 
Sampling Adequacy. The top portion of the display shows the individual measures and the 
overall of MSA (0.803) which falls in the category deemed by Kaiser to be “meritorious”.
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The bottom portion of the display shows the matrix of partial correlations:

Each cell of this matrix contains the partial correlation for the two variables, controlling for 
the remaining variables.

Factor Rotation

Factor rotation may be used to simplify the factor structure and to ease the interpretation of 
factors. For this example, we will consider one orthogonal and one oblique rotation. To per-
form a factor rotation, click on the Rotate button on the factor toolbar or select Proc/
Rotate... from the main factor menu.

Kaiser's Measure of Sampling Adequacy 

Factor: Untitled  

Date: 09/12/06   Time: 10:04 

 MSA   

VISUAL 0.800894  

CUBES 0.825519  

PARAGRAPH 0.785366  

SENTENCE 0.802312  

WORDM 0.800434  

PAPER1 0.800218  

FLAGS1 0.839796  

Kaiser's MSA 0.803024  

Partial Correlation:       

         

 VISUAL CUBES PARAGRAPH SENTENCE WORDM PAPER1 FLAGS1 

VISUAL 1.000000       

CUBES 0.169706 1.000000      

PARAGRAPH 0.051684 0.070761 1.000000     

SENTENCE 0.015776 -0.057423 0.424832 1.000000    

WORDM 0.070918 0.044531 0.420902 0.342159 1.000000   

PAPER1 0.239682 0.192417 0.102062 0.042837 -0.088688 1.000000  

FLAGS1 0.321404 0.047793 0.022723 0.105600 0.050006 0.102442 1.000000 
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The factor rotation dialog is 
used to specify the rotation 
method, row weighting, 
iteration control, and 
choice of initial loadings. 
We begin by accepting the 
defaults which rotate the 
initial loadings using 
orthogonal Varimax. 
EViews will perform the 
rotation and display the 
results.

The top portion of the dis-
played output provides information about the rotation and shows the rotated loadings.

As with the unrotated loadings, the variables PARAGRAPH, SENTENCE, and WORDM load 
on the first factor while VISUAL, CUBES, PAPER1, and FLAGS1 load on the second factor.

The remaining sections of the output display the rotated factor correlation, initial rotation 
matrix, the rotation matrices applied to the factors and loadings, and objective functions for 
the rotations. In this case, The factor correlation and initial rotation matrices are identity 
matrices since we are performing an orthogonal rotation from the unrotated loadings. The 
remaining results are presented below:

Rotation Method: Orthogonal Varimax 

Factor: Untitled  

Date: 09/12/06   Time: 10:31 

Initial loadings: Unrotated 

Convergence achieved after 4 iterations 

Rotated loadings: L * inv(T)' 

 F1 F2 

VISUAL  0.255573  0.705404 

CUBES  0.153876  0.425095 

PARAGRAPH  0.843364  0.189605 

SENTENCE  0.818407  0.147509 

WORDM  0.814965  0.137226 

PAPER1  0.173214  0.522217 

FLAGS1  0.298237  0.515978 
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Note that the factor rotation and loading rotation matrices are identical since we are per-
forming an orthogonal rotation.

Perhaps more interesting 
are the results for an 
oblique rotation. To replace 
the Varimax results with an 
oblique Quartimax/Quar-
timin rotation, select Proc/
Rotate... and change the 
Type dropdown to 
Oblique, and select Quarti-
max. We will make a few 
other changes in the dialog. 
We will use random 
orthogonal rotations as 
starting values for our rota-
tion, so that under Starting values, you should select Random. Set the random generator 
options as depicted and change the convergence tolerance to 1e-06. By default, EViews will 
perform 25 oblique rotations using random orthogonal rotation matrices as the starting val-
ues, and will select the results with the smallest objective function value. Click on OK to 
accept these settings. 

The top portion of the results shows information on the rotation method and initial loadings. 
Just below the header are the rotated loadings. Note that the relative importance of the 
VISUAL, CUBES, PAPER1, and FLAGS1 loadings on the second factor is somewhat more 
apparent for the oblique factors.

Factor rotation matrix: T 

 F1 F2 

F1  0.934003  0.357265 

F2 -0.357265  0.934003 

Loading rotation matrix: inv(T)' 

 F1 F2 

F1  0.934003  0.357265 

F2 -0.357265  0.934003 

Initial rotation objective:  1.226715  

Final rotation objective:  0.909893  
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The rotated factor correlation is:

with the large off-diagonal element indicating that the orthogonality factor restriction was 
very much binding.

The rotation matrices and objective functions are given by:

Note that in the absence of orthogonality, the factor rotation and loading rotation matrices 
differ.

Rotation Method: Oblique Quartimax 
Factor: FACTOR01  
Date: 10/16/09   Time: 11:12 
Initial loadings: Oblique Random (reps=25, 
        rng=kn, seed=1000) 
Results obtained from random draw 1 of 25 
Failure to improve after 18 iterations 

Rotated loadings: L * inv(T)' 
 F1 F2 

VISUAL -0.016856  0.759022 
CUBES -0.010310  0.457438 

PARAGRAPH  0.846439  0.033230 
SENTENCE  0.836783 -0.009926 

WORDM  0.837340 -0.021054 
PAPER1 -0.030042  0.565436 
FLAGS1  0.109927  0.530662 

Rotated factor correlation: T'T 

 F1 F2 

F1  1.000000  

F2  0.527078  1.000000 

Factor rotation matrix: T 
 F1 F2 

F1  0.984399  0.668380 
F2 -0.175949  0.743820 

Loading rotation matrix: inv(T)' 
 F1 F2 

F1  0.875271  0.207044 
F2 -0.786498  1.158366 

Initial rotation objective:  0.288147 

Final rotation objective:   0.010096 
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Once a rotation has been performed, the last set of 
rotated loadings will be available to all routines that 
use loadings. For example, to visualize the factor 
loadings, select View/Loadings/Loadings Graph... 
to bring up the loadings graph dialog. 

Here you will provide indices for the factor loadings 
you wish to display. Since there are only two fac-
tors, EViews has prefilled the dialog with “1 2” indi-
cating that it will plot the second factor against the 
first factor. 

By default, EViews will use the rotated loadings if available; note the checkbox allowing you 
to use the unrotated loadings. Check this box and click on OK to display the unrotated load-
ings graph.

As is customary, the loadings 
are displayed as lines from the 
origin to the points labeled with 
the variable name. Here we see 
visual evidence of our previous 
interpretation: the variables 
cluster naturally into two 
groups (factors), with factor 1 
representing verbal ability 
(PARAGRAPH, SENTENCE, 
WORDM), and factor 2 repre-
senting spatial ability (VISUAL, 
PAPER1, FLAGS1, CUBES).

Before displaying the oblique 
Quartimax rotated loadings, we 
will apply this labeling to the 
factors. Select Proc/Name Factors... and enter “Verbal” and “Spatial” in the dialog. EViews 
will subsequently label the factors using the specified names instead of the generic labels 
“Factor 1” and “Factor 2.”
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Now, let us display the graph of 
the rotated loadings. Click on 
View/Loadings Graph... and 
simply click on OK to accept the 
defaults. EViews displays the 
rotated loadings graph. Note the 
clear separation between the 
sets of tests.

Factor Scores

The factors used to explain the 
covariance structure of the 
observed data are unobserved, 
but may be estimated from the 
rotated or unrotated loadings 
and observable data.

Click on View/Scores... to bring up the factor score dialog. As you can see, there are several 
ways to estimate the factors and several views of the results. For now, we will focus on dis-
playing a summary of the factor score regression estimates, and in producing a biplot of the 
scores and loadings.

The default 
method of pro-
ducing scores 
is to use exact 
coefficients 
from Thur-
stone’s regres-
sion method, 
and to apply 
these coeffi-
cients to the 
observables 
data used in 
factor 
extraction.

In our exam-
ple, EViews 
will prefill the 
sample and observables information; all we need to do is to select our Display output set-
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ting, and the method for computing coefficients. Selecting Table summary, EViews pro-
duces output describing the score coefficient estimation.

The top portion of the output summarizes the factor score coefficient estimation settings and 
displays the factor coefficients used in computing scores:

We see that the VERBAL score for an individual is computed as a linear combination of the 
centered data for VISUAL, CUBES, etc., with weights given by the first column of coefficients 
(0.03, 0.01, etc.).

The next section contains the factor indeterminacy indices:

The indeterminacy indices show that the correlation between the estimated factors and the 
variables is high; the multiple correlation for the first factor well over 0.90, while the correla-
tion for the second factor is around 0.85. The minimum correlation indices are also reason-
able, suggesting that alternative factor score solutions are highly correlated. At a minimum, 
the correlation between two different measures of the SPATIAL factors will be nearly 0.50.

The following sections report the validity coefficients, the off-diagonal elements of the uni-
vocality matrix, and for comparison purposes, the theoretical factor correlation matrix and 
estimated scores correlation:

Factor Score Summary   

Factor: Untitled   

Date: 09/12/06   Time: 11:52  

Exact scoring coefficients  

Method: Regression (based on rotated loadings)  

Standardize observables using moments from estimation 

Sample: 1 145   

Included observations: 145  

Factor Coefficients:   

 VERBAL SPATIAL  

VISUAL  0.030492  0.454344  

CUBES  0.010073  0.150424  

PARAGRAPH  0.391755  0.101888  

SENTENCE  0.314600  0.046201  

WORDM  0.305612  0.035791  

PAPER1  0.011325  0.211658  

FLAGS1  0.036384  0.219118  

Indeterminancy Indices:   

 Multiple-R R-squared Minimum Corr.

VERBAL  0.940103  0.883794  0.767589 

SPATIAL  0.859020  0.737916  0.475832 
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The validity coefficients are both in excess of the Gorsuch (1983) recommended 0.80, and 
close to the stricter target of 0.90 advocated for using the estimated scores as replacements 
for the original variables. 

The univocality matrix reports the correlations between the factors and the factor scores, 
which should be similar to the corresponding elements of the factor correlation matrix. 
Comparing results, we see that univocality correlation of 0.539 between the SPATIAL factor 
and the VERBAL estimated scores is close to the population correlation value of 0.527. The 
correlation between the VERBAL factor and the SPATIAL estimated score is somewhat 
higher, 0.590, but still close to the population correlation. 

Similarly, the estimated scores correlation matrix should be close to the population factor 
correlation matrix. The off-diagonal values generally match, though as is often the case, the 
factor score correlation of 0.627 is a bit higher than the population value of 0.527.

To display a biplot of using these scores, select View/Scores... and select Biplot graph in 
the Display list box.

Validity Coefficients:   

 Validity   

VERBAL  0.940103   

SPATIAL  0.859020   

Univocality: (Rows=Factors; Columns=Factor scores) 

 VERBAL SPATIAL  

VERBAL ---  0.590135  

SPATIAL  0.539237 ---  

Estimated Scores Correlation:  

 VERBAL SPATIAL  

VERBAL  1.000000   

SPATIAL  0.627734  1.000000  

Factor Correlation:   

 VERBAL SPATIAL  

VERBAL  1.000000   

SPATIAL  0.527078  1.000000  
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The positive correlation between the VERBAL and SPATIAL scores is obvious. The outliers 
show that individual 96 scores high and individual 38 low on both spatial and verbal ability, 
while individual 52 scores poorly on spatial relative to verbal ability.

To save scores to 
the workfile, select 
Proc/Make 
Scores... and fill 
out the dialog. The 
procedure dialog 
differs from the 
view dialog only in 
the Output specifi-
cation section. 
Here, you should 
enter a list of scores 
to be saved or a list 
of indices for the 
scores. Since we 
have previously named our factors, we may specify the indices “1 2” and click on OK. 
EViews will open an untitled group containing the results saved in the series VERBAL and 
SPATIAL.
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Background

We begin with a brief sketch of the basic features of the common factor model. Our notation 
parallels the discussion in Johnston and Wichtern (1992). 

The Model

The factor model assumes that for individual , the observable multivariate -vector  is 
generated by:

(49.1)

where  is a  vector of variable means,  is a  matrix of coefficients,  is a 
 vector of standardized unobserved variables, termed common factors, and  is a 

 vector of errors or unique factors.

The model expresses the  observable variables  in terms of  unobservable com-
mon factors , and  unobservable unique factors . Note that the number of unobserv-
ables exceeds the number of observables. 

The factor loading or pattern matrix  links the unobserved common factors to the 
observed data. The j-th row of  represents the loadings of the j-th variable on the common 
factors. Alternately, we may view the row as the coefficients for the common factors for the 
j-th variable.

To proceed, we must impose additional restrictions on the model. We begin by imposing 
moment and covariance restrictions so that  and , , 

, and  where  is a diagonal matrix of unique variances. 
Given these assumptions, we may derive the fundamental variance relationship of factor 
analysis by noting that the variance matrix of the observed variables is given by:

 (49.2)

The variances of the individual variables may be decomposed into:

(49.3)

for each , where the  are taken from the diagonal elements of , and  is the cor-
responding diagonal element of .  represents common portion of the variance of the j-
th variable, termed the communality, while  is the unique portion of the variance, also 
referred to as the uniqueness.

Furthermore, the factor structure matrix containing the correlations between the variables 
and factors may be obtained from:
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 (49.4)

Initially, we make the further assumption that the factors are orthogonal so that  (we 
will relax this assumption shortly). Then:

(49.5)

Note that with orthogonal factors, the communalities  are given by the diagonal elements 
of  (the row-norms of ).

The primary task of factor analysis is to model the  observed variances and 
covariances of the  as functions of the  factor loadings in , and  specific variances 
in . Given estimates of  and , we may form estimates of the fitted total variance 
matrix, , and the fitted common variance matrix, . If  is the 
observed dispersion matrix, we may use these estimates to define the total variance residual 
matrix  and the common variance residual .

Number of Factors

Choosing the number of factors is generally agreed to be one of the most important deci-
sions one makes in factor analysis (Preacher and MacCallum, 2003; Fabrigar, et al., 1999; 
Jackson, 1993; Zwick and Velicer, 1986). Accordingly, there is a large and varied literature 
describing methods for determining the number of factors, of which the references listed 
here are only a small subset.

Kaiser-Guttman, Minimum Eigenvalue

The Kaiser-Guttman rule, commonly termed “eigenvalues greater than 1,” is by far the most 
commonly used method. In this approach, one computes the eigenvalues of the unreduced 
dispersion matrix, and retains as many factors as the number eigenvalues that exceed the 
average (for a correlation matrix, the average eigenvalue is 1, hence the commonly 
employed description). The criterion has been sharply criticized by many on a number of 
grounds (e.g., Preacher and MacCallum, 2003), but remains popular.

Fraction of Total Variance

The eigenvalues of the unreduced matrix may be used in a slightly different fashion. You 
may choose to retain as many factors are required for the sum of the first  eigenvalues to 
exceed some threshold fraction of the total variance. This method is used more often in prin-
cipal components analysis where researchers typically include components comprising 95% 
of the total variance (Jackson, 1993).
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Minimum Average Partial

Velicer’s (1976) minimum average partial (MAP) method computes the average of the 
squared partial correlations after  components have been partialed out (for 

). The number of factor retained is the number that minimizes this aver-
age. The intuition here is that the average squared partial correlation is minimized where the 
residual matrix is closest to being the identity matrix. 

Zwick and Velicer (1986) provide evidence that the MAP method outperforms a number of 
other methods under a variety of conditions.

Broken Stick

We may compare the relative proportions of the total variance that are accounted for by 
each eigenvalue to the expected proportions obtained by chance (Jackson, 1993). More pre-
cisely, the broken stick method compares the proportion of variance given by j-th largest 
eigenvalue of the unreduced matrix with the corresponding expected value obtained from 
the broken stick distribution. The number of factors retained is the number of proportions 
that exceed their expected values.

Standard Error Scree

The Standard Error Scree (Zoski and Jurs, 1996) is an attempt to formalize the visual com-
parisons of slopes used in the visual scree test. It is based on the standard errors of sets of 
regression lines fit to later eigenvalues; when the standard error of the regression through 
the later eigenvalues falls below the specified threshold, the remaining factors are assumed 
to be negligible.

Parallel Analysis

Parallel analysis (Horn, 1965; Humphreys and Ilgen, 1969; Humphreys and Montanelli, 
1975) involves comparing eigenvalues of the (unreduced or reduced) dispersion matrix to 
results obtained from simulation using uncorrelated data. 

The parallel analysis simulation is conducted by generating multiple random data sets of 
independent random variables with the same variances and number of observations as the 
original data. The Pearson covariance or correlation matrix of the simulated data is com-
puted and an eigenvalue decomposition performed for each data set. The number of factors 
retained is then based on the number of eigenvalues that exceed their simulated counter-
part. The threshold for comparison is typically chosen to be the mean values of the simu-
lated data as in Horn (1965), or a specific quantile as recommended by Glorfeld (1995).

Estimation Methods

There are several methods for extracting (estimating) the factor loadings and specific vari-
ances from an observed dispersion matrix. 

m
m 0  p 1–, ,
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EViews supports estimation using maximum likelihood (ML), generalized least squares 
(GLS), unweighted least squares (ULS), principal factors and iterated principal factors, and 
partitioned covariance matrix estimation (PACE). 

Minimum Discrepancy (ML, GLS, ULS)

One class of extraction methods involves minimizing a discrepancy function with respect to 
the loadings and unique variances (Jöreskog, 1977). Let  represent the observed disper-
sion matrix and let the fitted matrix be . Then the discrepancy func-
tions for ML, GLS, and ULS are given by:

(49.6)

Each estimation method involves minimizing the appropriate discrepancy function with 
respect to the loadings matrix  and unique variances . An iterative algorithm for this 
optimization is detailed in Jöreskog. The functions all achieve an absolute minimum value 
of 0 when , but in general this minimum will not be achieved.

The ML and GLS methods are scale invariant so that rescaling of the original data matrix or 
the dispersion matrix does not alter the basic results. The ML and GLS methods do require 
that the dispersion matrix be positive definite.

ULS does not require a positive definite dispersion matrix. The solution is equivalent to the 
iterated principal factor solution.

Principal Factors

The principal factor (principal axis) method is derived from the notion that the common fac-
tors should explain the common portion of the variance: the off-diagonal elements of the 
dispersion matrix and the communality portions of the diagonal elements. Accordingly, for 
some initial estimate of the unique variances , we may define the reduced dispersion 
matrix , and then fit this matrix using common factors (see, for exam-
ple, Gorsuch, 1993).

The principal factor method fits the reduced matrix using the first  eigenvalues and eigen-
vectors. Loading estimates,  are be obtained from the eigenvectors of the reduced matrix. 
Given the loading estimates, we may form a common variance residual matrix, 

. Estimates of the uniquenesses are obtained from the diagonal elements 
of this residual matrix.
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Communality Estimation

The construction of the reduced matrix is often described as replacing the diagonal elements 
of the dispersion matrix with estimates of the communalities. The estimation of these com-
munalities has received considerable attention in the literature. Among the approaches are 
(Gorsuch, 1993): 

• Fraction of the diagonals: use a constant fraction  of the original diagonal elements 
of . One important special case is to use ; the resulting estimates may be 
viewed as those from a truncated principal components solution.

• Largest correlation: select the largest absolution correlation of each variable with any 
other variable in the matrix. 

• Squared multiple correlations (SMC): by far the most popular method; uses the 
squared multiple correlation between a variable and the other variables as an estimate 
of the communality. SMCs provide a conservative communality estimate since they 
are a lower bound to the communality in the population. The SMC based communali-
ties are computed as , where  is the i-th diagonal element of 
the inverse of the observed dispersion matrix. Where the inverse cannot be computed 
we may employ instead the generalized inverse.

Iteration

Having obtained principal factor estimates based on initial estimates of the communalities, 
we may repeat the principal factors extraction using the row norms of  as updated esti-
mates of the communalities. This step may be repeated for a fixed number of iterations, or 
until the results are stable. 

While the approach is a popular one, some authors are strongly opposed to iterating princi-
pal factors to convergence (e.g., Gorsuch, 1983, p. 107–108). Performing a small number of 
iterations appears to be less contentious.

Partitioned Covariance (PACE) 

Ihara and Kano (1986) provide a closed-form (non-iterative) estimator for the common fac-
tor model that is consistent, asymptotically normal, and scale invariant. The method 
requires a partitioning of the dispersion matrix into sets of variables, leading Cudeck (1991) 
to term this the partitioned covariance matrix estimator (PACE).

Different partitionings of the variables may lead to different estimates. Cudeck (1991) and 
Kano (1990) independently propose an efficient method for determining a desirable partion-
ing.

Since the PACE estimator is non-iterative, it is especially well suited for estimation of large 
factor models, or for providing initial estimates for iterative estimation methods.
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Model Evaluation

One important step in factor analysis is evaluation of the fit of the estimated model. Since a 
factor analysis model is necessarily an approximation, we would like to examine how well a 
specified model fits the data, taking account the number of parameters (factors) employed 
and the sample size.

There are two general classes of indices for model selection and evaluation in factor analytic 
models. The first class, which may be termed absolute fit indices, are evaluated using the 
results of the estimated specification. Various criteria have been used for measuring absolute 
fit, including the familiar chi-square test of model adequacy. There is no reference specifica-
tion against which the model is compared, though there may be a comparison with the 
observed dispersion of the saturated model.

The second class, which may be termed relative fit indices, compare the estimated specifica-
tion against results for a reference specification, typically the zero common factor (indepen-
dence model).

Before describing the various indices we first define the chi-square test statistic as a function 
of the discrepancy function, , and note that a model with  variables 
and  factors has  free parameters (  factor loadings 
and  uniqueness elements, less  implicit zero correlation restrictions on the 
factors). Since there are  distinct elements of the dispersion matrix, there are a 
total of  remaining degrees-of-freedom.

One useful measure of the parsimony of a factor model is the parsimony ratio: 
, where  is the degrees of freedom for the independence model.

Note also that the measures described below are not reported for all estimation methods.

Absolute Fit

Most of the absolute fit measures are based on number of observations and conditioning 
variables, the estimated discrepancy function, , and the number of degrees-of-freedom.

Discrepancy and Chi-Square Tests

The discrepancy functions for ML, GLS, and ULS are given by Equation (49.6). Principal fac-
tor and iterated principal factor discrepancies are computed using the ULS function, but will 
generally exceed the ULS minimum value of .

Under the multivariate normal distributional assumptions and a correctly specified factor 
specification estimated by ML or GLS, the chi-square test statistic  is distributed as an 
asymptotic  random variable with  degrees-of-freedom (e.g., Hu and Bentler, 1995). A 
large value of the statistic relative to the  indicates that the model fits the data poorly 
(appreciably worse than the saturated model). 
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It is well known that the performance of the  statistic is poor for small samples and non-
normal settings. One popular adjustment for small sample size involves applying a Bartlett 
correction to the test statistic so that the multiplicative factor  in the definition of  is 
replaced by  (Johnston and Wichern, 1992).

Note that two distinct sets of chi-square tests that are commonly performed. The first set 
compares the fit of the estimated model against a saturated model; the second set of tests 
examines the fit of the independence model. The former are sometimes termed tests of 
model adequacy since they evaluate whether the estimated model adequately fits the data. 
The latter tests are sometimes referred to as test of sphericity since they test the assumption 
that there are no common factors in the data.

Information Criteria

Standard information criteria (IC) such as Akaike (AIC), Schwarz (SC), Hannan-Quinn (HQ) 
may be adapted for use with ML and GLS factor analysis. These indices are useful measures 
of fit since they reward parsimony by penalizing based on the number of parameters.

Construction of the EViews factor analysis information criteria measure employ a scaled ver-
sion of the discrepancy as the log-likelihood, , and begins by forming 
the standard IC. Following Akaike (1987), we re-center the criteria by subtracting off the 
value for the saturated model, and following Cudeck and Browne (1983) and EViews con-
vention, we further scale by the number of observations to eliminate the effect of sample 
size. The resulting factor analysis form of the information criteria are given by:

(49.7)

You should be aware that these statistics are often quoted in unscaled form, sometimes 
without adjusting for the saturated model. Most often, if there are discrepancies, multiplying 
the EViews reported values by  will line up results. Note also that the current definition 
uses the adjusted number of observations in the numerator of the leading term. 

When using information criteria for model selection, bear in mind that the model with the 
smallest value is considered most desirable.

Other Measures

The root mean square residual (RMSR) is given by the square root of the mean of the unique 
squared total covariance residuals. The standardized root mean square residual (SRMSR) is 
a variance standardized version of this RMSR that scales the residuals using the diagonals of 
the original dispersion matrix, then computes the RMSR of the scaled residuals (Hu and 
Bentler, 1999). 
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There are a number of other measures of absolute fit. We refer you to Hu and Bentler (1995, 
1999) and Browne and Cudeck (1993), McDonald and Marsh (1990), Marsh, Balla and 
McDonald (1988) for details on these measures and recommendations on their use. Note 
that where there are small differences in the various descriptions of the measures due to 
degree-of-freedom corrections, we have used the formulae provided by Hu and Bentler 
(1999).

Incremental Fit

Incremental fit indices measure the improvement in fit of the model over a more restricted 
specification. Typically, the restricted specification is chosen to be the zero factor or inde-
pendence model. 

EViews reports up to five relative fit measures: the generalized Tucker-Lewis Nonnormed Fit 
Index (NNFI), Bentler and Bonnet’s Normed Fit Index (NFI), Bollen’s Relative Fit Index 
(RFI), Bollen’s Incremental Fit Index (IFI), and Bentler’s Comparative Fit Index (CFI). See 
Hu and Bentler (1995)for details.

Traditionally, the rule of thumb was for acceptable models to have fit indices that exceed 
0.90, but recent evidence suggests that this cutoff criterion may be inadequate. Hu and 
Bentler (1999) provide some guidelines for evaluating values of the indices; for ML estima-
tion, they recommend use of two indices, with cutoff values close to 0.95 for the NNFI, RFI, 
IFI, CFI.

Rotation

The estimated loadings and factors are not unique; we may obtain others that fit the 
observed covariance structure identically. This observation lies behind the notion of factor 
rotation, in which we apply transformation matrices to the original factors and loadings in 
the hope of obtaining a simpler factor structure.

To elaborate, we begin with the orthogonal factor model from above:

(49.8)

where . Suppose that we pre-multiply our factors by a  rotation 
matrix  where . Then we may re-write the factor model Equation (49.1) as:

(49.9)

which is an observationally equivalent common factor model with rotated loadings 
 and factors , where the correlation of the rotated factors is given 

by:

(49.10)

See Browne (2001) and Bernaards and Jennrich (2005) for details.
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Types of Rotation

There are two basic types of rotation that involve different restrictions on . In orthogonal 
rotation, we impose  constraints on the transformation matrix  so that 

, implying that the rotated factors are orthogonal. In oblique rotation, we impose 
only  constraints on , requiring the diagonal elements of  equal 1. 

There are a large number of rotation methods. The majority of methods involving minimiz-
ing an objective function that measure the complexity of the rotated factor matrix with 
respect to the choice of , subject to any constraints on the factor correlation. Jennrich 
(2001, 2002) describes algorithms for performing orthogonal and oblique rotations by mini-
mizing complexity objective.

For example, suppose we form the  matrix  where every element  equals the 
square of a corresponding factor loading : . Intuitively, one or more measures of 
simplicity of the rotated factor pattern can be expressed as a function of these squared load-
ings. One such function defines the Crawford-Ferguson family of complexities:

(49.11)

for weighting parameter . The Crawford-Ferguson (CF) family is notable since it encom-
passes a large number of popular rotation methods (including Varimax, Quartimax, Equa-
max, Parsimax, and Factor Parsimony).

The first summation term in parentheses, which is based on the outer-product of the i-th 
row of the squared loadings, provides a measure of complexity. Those rows which have few 
non-zero elements will have low complexity compared to rows with many non-zero ele-
ments. Thus, the first term in the function is a measure of the row (variables) complexity of 
the loadings matrix. Similarly, the second summation term in parentheses is a measure of 
the complexity of the j-th column of the squared loadings matrix. The second term provides 
a measure of the column (factor) complexity of the loadings matrix. It follows that higher 
values for  assign greater weight to factor complexity and less weight to variable complex-
ity.

Along with the CF family, EViews supports the following rotation methods:

Method Orthogonal Oblique

Biquartimax • •

Crawford-Ferguson • •

Entropy •

Entropy Ratio •

Equamax • •
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EViews employs the Crawford-Ferguson variants of the Biquartimax, Equamax, Factor Parsi-
mony, Orthomax, Parsimax, Quartimax, and Varimax objective functions. For example, The 
EViews Orthomax objective for parameter  is evaluated using the Crawford-Ferguson 
objective with factor complexity weight . 

These forms of the objective functions yield the same results as the standard versions in the 
orthogonal case, but are better behaved (e.g., do not permit factor collapse) under direct 
oblique rotation (see Browne 2001, p. 118-119). Note that oblique Crawford-Ferguson Quarti-
max is equivalent to Quartimin.

The two orthoblique methods, the Promax and Harris-Kaiser both perform an initial orthog-
onal rotation, followed by a oblique adjustment. For both of these methods, EViews provides 
some flexibility in the choice of initial rotation. By default, EViews will perform an initial 
Orthomax rotation with the default parameter set to 1 (Varimax). To perform initial rotation 
with Quartimax, you should set the Orthomax parameter to 0. See Gorsuch (1993) and Har-
ris-Kaiser (1964) for details.

Some rotation methods require specification of one or more parameters. A brief description 
and the default value(s) used by EViews is provided below:

Factor Parsimony • •

Generalized Crawford-Ferguson • •

Geomin • •

Harris-Kaiser (case II) •

Infomax • •

Oblimax •

Oblimin •

Orthomax • •

Parsimax • •

Pattern Simplicity • •

Promax •

Quartimax/Quartimin • •

Simplimax • •

Tandem I •

Tandem II •

Target • •

Varimax • •

g

k g p
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Standardization

Weighting the rows of the initial loading matrix prior to rotation can sometimes improve the 
rotated solution (Browne, 2001). Kaiser standardization weights the rows by the inverse 
square roots of the communalities. Cureton-Mulaik standardization assigns weights between 
zero and one to the rows of the loading matrix using a more complicated function of the 
original matrix.

Both standardization methods may lead to instability in cases with small communalities.

Starting Values

Starting values for the rotation objective minimization procedures are typically taken to be 
the identity matrix (the unrotated loadings). The presence of local minima is a distinct pos-
sibility and it may be prudent to consider random rotations as alternate starting values. Ran-
dom orthogonal rotations may be used as starting values for orthogonal rotation; random 
orthogonal or oblique rotations may be used to initialize the oblique rotation objective min-
imization.

Scoring

The factors used to explain the covariance structure of the observed data are unobserved, 
but may be estimated from the loadings and observable data. These factor score estimates 
may be used in subsequent diagnostic analysis, or as substitutes for the higher-dimensional 
observed data.

Method Parameter Description

Crawford-Ferguson 1 Factor complexity weight (default=0, Quartimax).

Generalized Crawford-
Ferguson 

4 Vector of weights for (in order): total squares, vari-
able complexity, factor complexity, diagonal quartics 
(no default).

Geomin 1 Epsilon offset (default=0.01).

Harris-Kaiser (case II) 2 Power parameter (default=0, independent cluster 
solution).

Oblimin 1 Deviation from orthogonality (default=0, Quar-
timin).

Orthomax 1 Factor complexity weight (default=1, Varimax).

Promax 1 Power parameter (default=3).

Simplimax 1 Fraction of near-zero loadings (default=0.75).

Target 1  matrix of target loadings. Missing values cor-
respond to unrestricted elements. (No default.)

n

p m
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Score Estimation

We may compute factor score estimates  as a linear combination of observed data:

(49.12)

where  is a  matrix of factor score coefficients derived from the estimates of the 
factor model. Often, we will construct estimates using the original data so that  but 
this is not required; we may for example use coefficients obtained from one set of data to 
score individuals in a second set of data.

Various methods for estimating the score coefficients  have been proposed. The first class 
of factor scoring methods computes exact or refined estimates of the coefficient weights . 
Generally speaking, these methods optimize some property of the estimated scores with 
respect to the choice of . For example, Thurstone’s regression approach maximizes the 
correlation of the scores with the true factors (Gorsuch, 1983). Other methods minimize a 
function of the estimated errors  with respect to , subject to constraints on the esti-
mated factor scores. For example, Anderson and Rubin (1956) and McDonald (1981) com-
pute weighted least squares estimators of the factor scores, subject to the condition that the 
implied correlation structure of the scores , equals . 

The second set of methods computes coarse coefficient weights in which the elements of  
are restricted to be (-1, 0, 1) values. These simplified weights are determined by recoding 
elements of the factor loadings matrix or an exact coefficient weight matrix on the basis of 
their magnitudes. Values of the matrices that are greater than some threshold (in absolute 
value) are assigned sign-corresponding values of -1 or 1; all other values are recoded at 0 
(Grice, 2001).

Score Evaluation

There are an infinite number of factor score estimates that are consistent with an estimated 
factor model. This lack of identification, termed factor indeterminacy, has received consider-
able attention in the literature (see for example, Mulaik (1996); Steiger (1979)), and is a pri-
mary reason for the multiplicity of estimation methods, and for the development of 
procedures for evaluating the quality of a given set of scores (Gorsuch, 1983, p. 272).

See Gorsuch (1993) and Grice(2001) for additional discussion of the following measures.

Indeterminacy Indices 

There are two distinct types of indeterminacy indices. The first set measures the multiple 
correlation between each factor and the observed variables,  and its square . The 
squared multiple correlations are obtained from the diagonals of the matrix  
where  is the observed dispersion matrix and  is the factor structure matrix. 
Both of these indices range from 0 to 1, with high values being desirable. 
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The second type of indeterminacy index reports the minimum correlation between alternate 
estimates of the factor scores, . The minimum correlation measure ranges 
from -1 to 1. High positive values are desirable since they indicate that differing sets of fac-
tor scores will yield similar results.

Grice (2001) suggests that values for  that do not exceed 0.707 by a significant degree are 
problematic since values below this threshold imply that we may generate two sets of factor 
scores that are orthogonal or negatively correlated (Green, 1976).

Validity, Univocality, Correlational Accuracy

Following Gorsuch (1983), we may define  as the population factor correlation matrix, 
 as the factor score correlation matrix, and  as the correlation matrix of the known 

factors with the score estimates. In general, we would like these matrices to be similar. 

The diagonal elements of  are termed validity coefficients. These coefficients range from 
-1 to 1, with high positive values being desired. Differences between the validities and the 
multiple correlations are evidence that the computed factor scores have determinacies lower 
than those computed using the -values. Gorsuch (1983) recommends obtaining validity 
values of at least 0.80, and notes that values larger than 0.90 may be necessary if we wish to 
use the score estimates as substitutes for the factors. 

The off-diagonal elements of  allow us to measure univocality, or the degree to which 
the estimated factor scores have correlations with those of other factors. Off-diagonal values 
of  that differ from those in  are evidence of univocality bias.

Lastly, we obviously would like the estimated factor scores to match the correlations among 
the factors themselves. We may assess the correlational accuracy of the scores estimates by 
comparing the values of the  with the values of .

From our earlier discussion, we know that the population correlation .  
may be obtained from moments of the estimated scores. Computation of  is more com-
plicated, but follows the steps outlined in Gorsuch (1983).
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Appendix C.  Estimation and Solution Options

EViews estimates the parameters of a wide variety of nonlinear models, from nonlinear least 
squares equations, to maximum likelihood models, to GMM specifications. These types of 
nonlinear estimation problems do not have closed form solutions and must be estimated 
using iterative methods. EViews also solves systems of non-linear equations. Again, there 
are no closed form solutions to these problems, and EViews must use an iterative method to 
obtain a solution. 

Below, we provide details on the algorithms used by EViews in dealing with nonlinear esti-
mation and solution, and the optional settings that we provide to allow you to control esti-
mation.

Our discussion here is necessarily brief. For additional details, we direct you to the quite 
readable discussions in Press, et al. (1992), Quandt (1983), Thisted (1988), and Amemiya 
(1983).

Setting Estimation Options

When you estimate an equation in EViews, you enter specification information into the 
Specification tab of the Equation Estimation dialog. Clicking on the Options tab displays a 
dialog that allows you to set various options to control the estimation procedure. The con-
tents of the dialog will differ depending upon the options available for a particular estima-
tion procedure.

The default settings for the options will be taken from the global options (“Estimation 
Defaults” on page 871), or from the options used previously to estimate the object. 

The Options tab for binary models is depicted here. For other estimator and estimation tech-
niques (e.g. systems) the dialog will differ to reflect the different estimation options that are 
available.
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Optimization Method

A majority of the EViews nonlinear estimators offer you the choice of optimization method. 
For these estimators, the Optimization method dropdown menu lets you choose between 
the BFGS, Gauss-Newton, Newton-Raphson, and EViews Legacy methods. The default 
method is estimator specific.

In general, the differences between the estimates should be small for well-behaved nonlin-
ear specifications, but if you are experiencing optimization difficulties, you may wish to 
experiment with methods. Note that EViews legacy is a particular implementation of Gauss-
Newton with Marquardt or line search steps, and is provided for backward estimation com-
patibility.

The Step method allow you to choose the approach for choosing candidate iterative steps. 
The default method is Marquardt, but you may instead select Dogleg or Line Search.

See “Optimization Algorithms” on page 1095 for extensive discussion.

Iteration and Convergence

There are two common iteration stopping rules: based on the change in the objective func-
tion, or based on the change in parameters. The convergence rule used in EViews is based 
upon changes in the parameter values. This rule is generally conservative, since the change 
in the objective function may be quite small as we approach the optimum (this is how we 
choose the direction), while the parameters may still be changing.

The exact rule in EViews is based on comparing the norm of the change in the parameters 
with the norm of the current parameter values. More specifically, the convergence test is:
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(C.1)

where  is the vector of parameters,  is the 2-norm of , and tol is the specified toler-
ance. However, before taking the norms, each parameter is scaled based on the largest 
observed norm across iterations of the derivative of the least squares residuals with respect 
to that parameter. This automatic scaling system makes the convergence criteria more robust 
to changes in the scale of the data, but does mean that restarting the optimization from the 
final converged values may cause additional iterations to take place, due to slight changes in 
the automatic scaling value when started from the new parameter values.

The estimation process achieves convergence if the stopping rule is reached using the toler-
ance specified in the Convergence edit box of the Estimation Dialog or the Estimation 
Options Dialog. By default, the box will be filled with the tolerance value specified in the 
global estimation options, or if the estimation object has previously been estimated, it will 
be filled with the convergence value specified for the last set of estimates.

EViews may stop iterating even when convergence is not achieved. This can happen for two 
reasons. First, the number of iterations may have reached the prespecified upper bound. In 
this case, you should reset the maximum number of iterations to a larger number and try 
iterating until convergence is achieved. 

Second, EViews may issue an error message indicating a “Failure to improve”after a number 
of iterations. This means that even though the parameters continue to change, EViews could 
not find a direction or step size that improves the objective function. This can happen when 
the objective function is ill-behaved; you should make certain that your model is identified. 
You might also try other starting values to see if you can approach the optimum from other 
directions.

Lastly, EViews may converge, but warn you that there is a singularity and that the coeffi-
cients are not unique. In this case, EViews will not report standard errors or t-statistics for 
the coefficient estimates.

Starting Coefficient Values

Iterative estimation procedures require starting values for the coefficients of the model. 
There are no general rules for selecting starting values for parameters. Obviously, the closer 
to the true values, the better, so if you have reasonable guesses for parameter values, these 
can be useful. In some cases, you can obtain starting values by estimating a restricted ver-
sion of the model. In general, however, you may have to experiment to find good starting 
values.

EViews follows three basic rules for selecting starting values:

v i 1  v i – 2

v i  2

------------------------------------ tol

v x 2 x
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• For nonlinear least squares type problems, EViews uses the values in the coefficient 
vector at the time you begin the estimation procedure as starting values.

• For system estimators and ARCH, EViews uses starting values based upon preliminary 
single equation OLS or TSLS estimation. In the dialogs for these estimators, the drop-
down menu for setting starting values will not appear.

• For selected estimation techniques (binary, ordered, count, censored and truncated), 
EViews has built-in algorithms for determining the starting values using specific infor-
mation about the objective function. These will be labeled in the Starting coefficient 
values dropdown menu as EViews supplied.

In the latter two cases, you may change this default behavior by selecting an item from the 
Starting coefficient values drop down menu. You may choose fractions of the default start-
ing values, zero, or arbitrary User Supplied.

If you select User Supplied, EViews will use the values stored in the C coefficient vector at 
the time of estimation as starting values. To see the starting values, double click on the coef-
ficient vector in the workfile directory. If the values appear to be reasonable, you can close 
the window and proceed with estimating your model.

If you wish to change the starting values, first make certain that the spreadsheet view of the 
coefficient vector is in edit mode, then enter the coefficient values. When you are finished 
setting the initial values, close the coefficient vector window and estimate your model. 

You may also set starting coefficient values from the command window using the PARAM 
command. Simply enter the param keyword, followed by pairs of coefficients and their 
desired values:

param c(1) 153 c(2) .68 c(3) .15

sets C(1)=153, C(2)=.68, and C(3)=.15. All of the other elements of the coefficient vector 
are left unchanged.

Lastly, if you want to use estimated coefficients from another equation, select Proc/Update 
Coefs from Equation from the equation window toolbar. 

For nonlinear least squares problems or situations where you specify the starting values, 
bear in mind that:

• The objective function must be defined at the starting values. For example, if your 
objective function contains the expression 1/C(1), then you cannot set C(1) to zero. 
Similarly, if the objective function contains LOG(C(2)), then C(2) must be greater than 
zero.

• A poor choice of starting values may cause the nonlinear least squares algorithm to 
fail. EViews begins nonlinear estimation by taking derivatives of the objective func-
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tion with respect to the parameters, evaluated at these values. If these derivatives are 
not well behaved, the algorithm may be unable to proceed.

If, for example, the starting values are such that the derivatives are all zero, you will 
immediately see an error message indicating that EViews has encountered a “Near 
Singular Matrix”, and the estimation procedure will stop.

• Unless the objective function is globally concave, iterative algorithms may stop at a 
local optimum. There will generally be no evidence of this fact in any of the output 
from estimation.

If you are concerned with the possibility of local optima, you may wish to select vari-
ous starting values and see whether the estimates converge to the same values. One 
common suggestion is to estimate the model and then randomly alter each of the esti-
mated coefficients by some percentage, then use these new coefficients as starting val-
ues in estimation.

Derivative Computation

In many EViews estimation procedures, you can specify the form of the function for the 
mean equation or the objective function. For example, when estimating a regression model, 
you may specify an arbitrary nonlinear expression in the coefficients. In these cases, when 
estimating the model, EViews needs to compute derivatives of the user-specified function. 
EViews uses two techniques for evaluating derivatives: numeric (finite difference) and ana-
lytic. 

In most cases, you need not worry about the settings for the derivative computation. The 
EViews estimation engine will generally employ analytic expressions for the derivatives, if 
possible, or will compute high numeric derivatives, switching between lower precision com-
putation early in the iterative procedure and higher precision computation for later iterations 
and final computation. 

For the legacy optimizer, EViews may offer you with the option of computing analytic 
expressions for these derivatives (if possible), or computing finite difference numeric deriva-
tives in cases where the derivative is not constant. Furthermore, if numeric derivatives are 
computed, you can choose whether to favor speed of computation (fewer function evalua-
tions) or whether to favor accuracy (more function evaluations)

The some cases, EViews will offer you settings for controlling the derivative taking:

• By default, EViews will fill the options dialog with the global estimation settings. If 
the Use numeric only setting is chosen, EViews will only compute the derivatives 
using finite difference methods. If this setting is not checked, EViews will attempt to 
compute analytic derivatives, and will use numeric derivatives only where necessary.

• EViews will ignore the numeric derivative setting and use an analytic derivative 
whenever a coefficient derivative is a constant value.
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• For some procedures where the range of specifications allowed is limited (e.g., VARs, 
pools), EViews always uses analytic first and/or second derivatives, whatever the val-
ues of these settings.

• In a limited number of cases, EViews will always use numeric derivatives. For exam-
ple, selected GARCH (see “Derivative Methods” on page 250) and state space models 
always use numeric derivatives. As noted above, MA coefficient derivatives are 
always computed numerically.

• Logl objects always use numeric derivatives unless you provide the analytic deriva-
tives in the specification.

Where relevant, the estimation 
options dialog allows you to 
control the method of taking 
derivatives. For example, the 
options dialog for standard 
regression allows you to over-
ride the use of EViews analytic 
derivatives. If you elect to use 
EViews legacy estimation, the 
dialog will also allow you to 
choose between favoring speed 
or accuracy in the computa-
tion of any numeric derivatives 
(note that the additional LS 
and TSLS options are discussed 
in detail in Chapter 20. “Addi-
tional Regression Tools,” begin-
ning on page 23).

Computing the more accurate numeric derivatives requires additional objective function 
evaluations. EViews legacy computes numeric derivatives using either a one-sided finite dif-
ference (favor speed), or using a four-point routine using Richardson extrapolation (favor 
precision). Additional details are provided in Kincaid and Cheney (1996). The newer EViews 
engine computes derivatives in an adaptive method to achieve high precision.

Analytic derivatives will often be faster and more accurate than numeric derivatives, espe-
cially if the analytic derivatives have been simplified and carefully optimized to remove 
common subexpressions. Numeric derivatives will sometimes involve fewer floating point 
operations than analytic, and in these circumstances, may be faster.
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Optimization Algorithms

Given the importance of the proper setting of EViews estimation options, it may prove useful 
to review briefly various basic optimization algorithms used in nonlinear estimation. Recall 
that the problem faced in non-linear estimation is to find the values of parameters  that 
optimize (maximize or minimize) an objective function .

Iterative optimization algorithms work by taking an initial set of values for the parameters, 
say , then performing calculations based on these values to obtain a better set of param-
eter values, . This process is repeated for ,  and so on until the objective func-
tion  no longer improves between iterations.

There are three main parts to the optimization process: (1) obtaining the initial parameter 
values, (2) updating the candidate parameter vector  at each iteration, and (3) determining 
when we have reached the optimum.

If the objective function is globally concave so that there is a single maximum, any algo-
rithm which improves the parameter vector at each iteration will eventually find this maxi-
mum (assuming that the size of the steps taken does not become negligible). If the objective 
function is not globally concave, different algorithms may find different local maxima, but 
all iterative algorithms will suffer from the same problem of being unable to tell apart a local 
and a global maximum.

The main thing that distinguishes different algorithms is how quickly they find the maxi-
mum. Unfortunately, there are no hard and fast rules. For some problems, one method may 
be faster, for other problems it may not. EViews provides different algorithms, and will often 
let you choose which method you would like to use.

The following sections outline these methods. The algorithms used in EViews may be 
broadly classified into three types: second derivative methods, first derivative methods, and 
derivative free methods. EViews’ second derivative methods evaluate current parameter val-
ues and the first and second derivatives of the objective function for every observation. First 
derivative methods use only the first derivatives of the objective function during the itera-
tion process. As the name suggests, derivative free methods do not compute derivatives.

Second Derivative Methods

For binary, ordered, censored, and count models, EViews can estimate the model using 
Newton-Raphson or quadratic hill-climbing.

Newton-Raphson

Candidate values for the parameters  may be obtained using the method of Newton-
Raphson by linearizing the first order conditions  at the current parameter values, 

:

v

F v 

v 0 
v 1  v 2  v 3 

F

v

v 1 
F v

v i 
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 (C.2)

where  is the gradient vector , and  is the Hessian matrix .

If the function is quadratic, Newton-Raphson will find the maximum in a single iteration. If 
the function is not quadratic, the success of the algorithm will depend on how well a local 
quadratic approximation captures the shape of the function.

Quadratic hill-climbing (Goldfeld-Quandt)

This method, which is a straightforward variation on Newton-Raphson, is sometimes 
attributed to Goldfeld and Quandt. Quadratic hill-climbing modifies the Newton-Raphson 
algorithm by adding a correction matrix (or ridge factor) to the Hessian. The quadratic hill-
climbing updating algorithm is given by:

(C.3)

where  is the identity matrix and  is a positive number that is chosen by the algorithm.

The effect of this modification is to push the parameter estimates in the direction of the gra-
dient vector. The idea is that when we are far from the maximum, the local quadratic 
approximation to the function may be a poor guide to its overall shape, so we may be better 
off simply following the gradient. The correction may provide better performance at loca-
tions far from the optimum, and allows for computation of the direction vector in cases 
where the Hessian is near singular.

For models which may be estimated using second derivative methods, EViews uses qua-
dratic hill-climbing as its default method. You may elect to use traditional Newton-Raphson, 
or the first derivative methods described below, by selecting the desired algorithm in the 
Options menu.

Note that asymptotic standard errors are always computed from the unmodified Hessian 
once convergence is achieved.

First Derivative Methods

Second derivative methods may be computationally costly since we need to evaluate the 
 elements of the second derivative matrix at every iteration. Moreover, second 

derivatives calculated may be difficult to compute accurately. An alternative is to employ 
methods which require only the first derivatives of the objective function at the parameter 
values.

For selected other nonlinear models (ARCH and GARCH, GMM, State Space), EViews pro-
vides two first derivative methods: Gauss-Newton/BHHH or Marquardt.

g i  H i  v i 1  v i –  0

v i 1  v i  H i 
1–
g i –

g F v H 2
F v

2

v i 1  v i  H̃ i 
1–
g i – where H̃ i – H i – aI

I a

k k 1  2
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Nonlinear single equation and system models are estimated using the Marquardt method.

Gauss-Newton/BHHH

This algorithm follows Newton-Raphson, but replaces the negative of the Hessian by an 
approximation formed from the sum of the outer product of the gradient vectors for each 
observation’s contribution to the objective function. For least squares and log likelihood 
functions, this approximation is asymptotically equivalent to the actual Hessian when evalu-
ated at the parameter values which maximize the function. When evaluated away from the 
maximum, this approximation may be quite poor.

The algorithm is referred to as Gauss-Newton for general nonlinear least squares problems, 
and often attributed to Berndt, Hall, Hall and Hausman (BHHH) for maximum likelihood 
problems.

The advantages of approximating the negative Hessian by the outer product of the gradient 
are that (1) we need to evaluate only the first derivatives, and (2) the outer product is neces-
sarily positive semi-definite. The disadvantage is that, away from the maximum, this 
approximation may provide a poor guide to the overall shape of the function, so that more 
iterations may be needed for convergence. 

Marquardt

The Marquardt algorithm modifies the Gauss-Newton algorithm in exactly the same manner 
as quadratic hill climbing modifies the Newton-Raphson method (by adding a correction 
matrix (or ridge factor) to the Hessian approximation). 

The ridge correction handles numerical problems when the outer product is near singular 
and may improve the convergence rate. As above, the algorithm pushes the updated param-
eter values in the direction of the gradient.

For models which may be estimated using first derivative methods, EViews uses Marquardt 
as its default method. In many cases, you may elect to use traditional Gauss-Newton via the 
Options menu.

Note that asymptotic standard errors are always computed from the unmodified (Gauss-
Newton) Hessian approximation once convergence is achieved.

Choosing the step size

At each iteration, we can search along the given direction for the optimal step size. EViews 
performs a simple trial-and-error search at each iteration to determine a step size  that 
improves the objective function. This procedure is sometimes referred to as squeezing or 
stretching. 

Note that while EViews will make a crude attempt to find a good step,  is not actually opti-
mized at each iteration since the computation of the direction vector is often more important 

l

l
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than the choice of the step size. It is possible, however, that EViews will be unable to find a 
step size that improves the objective function. In this case, EViews will issue an error mes-
sage.

EViews also performs a crude trial-and-error search to determine the scale factor  for Mar-
quardt and quadratic hill-climbing methods.

Derivative free methods

Other optimization routines do not require the computation of derivatives. The grid search is 
a leading example. Grid search simply computes the objective function on a grid of parame-
ter values and chooses the parameters with the highest values. Grid search is computation-
ally costly, especially for multi-parameter models.

EViews uses (a version of) grid search for the exponential smoothing routine.

Nonlinear Equation Solution Methods

When solving a nonlinear equation system, EViews first analyzes the system to determine if 
the system can be separated into two or more blocks of equations which can be solved 
sequentially rather than simultaneously. Technically, this is done by using a graph represen-
tation of the equation system where each variable is a vertex and each equation provides a 
set of edges. A well known algorithm from graph theory is then used to find the strongly 
connected components of the directed graph.

Once the blocks have been determined, each block is solved for in turn. If the block contains 
no simultaneity, each equation in the block is simply evaluated once to obtain values for 
each of the variables.

If a block contains simultaneity, the equations in that block are solved by either a Gauss-
Seidel or Newton method, depending on how the solver options have been set.

Gauss-Seidel

By default, EViews uses the Gauss-Seidel method when solving systems of nonlinear equa-
tions. Suppose the system of equations is given by:

(C.4)

where  are the endogenous variables and  are the exogenous variables.

The problem is to find a fixed point such that . Gauss-Seidel employs an itera-
tive updating rule of the form:

a

x1 f1 x1 x2  xN z, , , , 

x2 f2 x1 x2  xN z, , , , 


xN fN x1 x2  xN z, , , , 

x z

x f x z, 



Nonlinear Equation Solution Methods—1099
. (C.5)

to find the solution. At each iteration, EViews solves the equations in the order that they 
appear in the model. If an endogenous variable that has already been solved for in that iter-
ation appears later in some other equation, EViews uses the value as solved in that iteration. 
For example, the k-th variable in the i-th iteration is solved by:

. (C.6)

The performance of the Gauss-Seidel method can be affected be reordering of the equations. 
If the Gauss-Seidel method converges slowly or fails to converge, you should try moving the 
equations with relatively few and unimportant right-hand side endogenous variables so that 
they appear early in the model.

Newton's Method

Newton’s method for solving a system of nonlinear equations consists of repeatedly solving 
a local linear approximation to the system.

Consider the system of equations written in implicit form:

(C.7)

where  is the set of equations,  is the vector of endogenous variables and  is the vector 
of exogenous variables.

In Newton’s method, we take a linear approximation to the system around some values  
and :

(C.8)

and then use this approximation to construct an iterative procedure for updating our current 
guess for :

(C.9)

where raising to the power of -1 denotes matrix inversion.

The procedure is repeated until the changes in  between periods are smaller than a speci-
fied tolerance.

Note that in contrast to Gauss-Seidel, the ordering of equations under Newton does not 
affect the rate of convergence of the algorithm.
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Broyden's Method

Broyden's Method is a modification of Newton's method which tries to decrease the calcula-
tional cost of each iteration by using an approximation to the derivatives of the equation sys-
tem rather than the true derivatives of the equation system when calculating the Newton 
step. That is, at each iteration, Broyden's method takes a step:

(C.10)

where  is the current approximation to the matrix of derivatives of the equation system.

As well as updating the value of  at each iteration, Broyden's method also updates the 
existing Jacobian approximation, , at each iteration based on the difference between the 
observed change in the residuals of the equation system and the change in the residuals pre-
dicted by a linear approximation to the equation system based on the current Jacobian 
approximation.

In particular, Broyden's method uses the following equation to update :

(C.11)

where . This update has a number of desirable properties (see Chapter 8 of 
Dennis and Schnabel (1983) for details).

In EViews, the Jacobian approximation is initialized by taking the true derivatives of the 
equation system at the starting values of . The updating procedure given above is repeated 
until changes in  between periods become smaller than a specified tolerance. In some 
cases the method may stall before reaching a solution, in which case a fresh set of deriva-
tives of the equation system is taken at the current values of , and the updating is contin-
ued using these derivatives as the new Jacobian approximation.

Broyden's method shares many of the properties of Newton's method including the fact that 
it is not dependent on the ordering of equations in the system and that it will generally con-
verge quickly in the vicinity of a solution. In comparison to Newton's method, Broyden's 
method will typically take less time to perform each iteration, but may take more iterations 
to converge to a solution. In most cases Broyden's method will take less overall time to solve 
a system than Newton's method, but the relative performance will depend on the structure 
of the derivatives of the equation system.
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Appendix D.  Gradients and Derivatives

Many EViews estimation objects provide built-in routines for examining the gradients and 
derivatives of your specifications. You can, for example, use these tools to examine the ana-
lytic derivatives of your nonlinear regression specification in numeric or graphical form, or 
you can save the gradients from your estimation routine for specification tests.

The gradient and derivative views may be accessed from most estimation objects by select-
ing View/Gradients and Derivatives or, in some cases, View/Gradients, and then selecting 
the appropriate view. 

If you wish to save the numeric values of your gradients and derivatives, you will need to 
use the gradient and derivative procedures. These procs may be accessed from the main 
Proc menu.

Note that all views and procs are not available for every estimation object or every estima-
tion technique.

Gradients

EViews provides you with the ability to examine and work with the gradients of the objec-
tive function for a variety of estimation objects. Examining these gradients can provide use-
ful information for evaluating the behavior of your nonlinear estimation routine, or can be 
used as the basis of various tests of specification.

Since EViews provides a variety of estimation methods and techniques, the notion of a gra-
dient is a bit difficult to describe in casual terms. EViews will generally report the values of 
the first-order conditions used in estimation. To take the simplest example, ordinary least 
squares minimizes the sum-of-squared residuals:

(D.1)

The first-order conditions for this objective function are obtained by differentiating with 
respect to , yielding

(D.2)

EViews allows you to examine both the sum and the corresponding average, as well as the 
value for each of the individual observations. Furthermore, you can save the individual val-
ues in series for subsequent analysis.

The individual gradient computations are summarized in the following table:

S b  yt Xt b– 2

t


b

2 yt Xt b– Xt–
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where  and  are the projection matrices corresponding to the expressions for the estima-
tors in Chapter 21. “Instrumental Variables and GMM,” beginning on page 69, and  is the 
log likelihood contribution function.

Note that the expressions for the regression gradients are adjusted accordingly in the pres-
ence of ARMA error terms.

Gradient Summary

To view the summary of the gradients, select View/Gradients and Derivatives/Gradient 
Summary, or View/Gradients/Summary. EViews will display a summary table showing the 
sum, mean, and Newton direction associated with the gradients. Here is an example table 
from a nonlinear least squares estimation equation:

There are several things to note about this table. The first line of the table indicates that the 
gradients have been computed at estimated parameters. If you ask for a gradient view for an 

Least squares

Weighted least squares

Two-stage least squares

Weighted two-stage least 
squares

Maximum likelihood

gt 2 yt ft Xt b, – 
ft Xt b, 

b
------------------------- 
 –

gt 2 yt ft Xt b, – wt
2 ft Xt b, 

b
------------------------- 
 –

gt 2 yt ft Xt b, – Pt

ft Xt b, 
b

------------------------- 
 –

gt 2 yt ft Xt b, – wtP̃twt

ft Xt b, 
b

------------------------- 
 –

gt

lt Xt b, 
b

-------------------------

P P̃
l

Gradients of the Objective Function  

Gradients evaluated at estimated parameters  

Equation: EQ01   

Method: Least Squares   

Specification: LOG(CS) = C(1) +C(2)*(GDP^C(3)-1)/C(3) 

Computed using analytic derivatives  

Coefficient Sum   Mean   Newton Dir.

C(1) 5.21E-10 2.71E-12 1.41E-14

C(2) 9.53E-09 4.96E-11 -3.11E-18

C(3) 3.81E-08 1.98E-10 2.47E-18
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estimation object that has not been successfully estimated, EViews will compute the gradi-
ents at the current parameter values and will note this in the table. This behavior allows you 
to diagnose unsuccessful estimation problems using the gradient values.

Second, you will note that EViews informs you that the gradients were computed using ana-
lytic derivatives. EViews will also inform you if the specification is linear, if the derivatives 
were computed numerically, or if EViews used a mixture of analytic and numeric tech-
niques. We remind you that all MA coefficient derivatives are computed numerically.

Lastly, there is a table showing the sum and mean of the gradients as well as a column 
labeled “Newton Dir.”. The column reports the non-Marquardt adjusted Newton direction 
used in first-derivative iterative estimation procedures (see “First Derivative Methods” on 
page 1096). 

In the example above, all of the values are “close” to zero. While one might expect these val-
ues always to be close to zero when evaluated at the estimated parameters, there are a num-
ber of reasons why this will not always be the case. First, note that the sum and mean 
values are highly scale variant so that changes in the scale of the dependent and indepen-
dent variables may lead to marked changes in these values. Second, you should bear in 
mind that while the Newton direction is related to the terms used in the optimization proce-
dures, EViews’ test for convergence does not directly use the Newton direction. Third, some 
of the iteration options for system estimation do not iterate coefficients or weights fully to 
convergence. Lastly, you should note that the values of these gradients are sensitive to the 
accuracy of any numeric differentiation.

Gradient Table and Graph

There are a number of situations in which you may wish to examine the individual contribu-
tions to the gradient vector. For example, one common source of singularity in nonlinear 
estimation is the presence of very small combined with very large gradients at a given set of 
coefficient values.

EViews allows you to examine your gradients in two ways: as a spreadsheet of values, or as 
line graphs, with each set of coefficient gradients plotted in a separate graph. Using these 
tools, you can examine your data for observations with outlier values for the gradients.

Gradient Series

You can save the individual gradient values in series using the Make Gradient Group proce-
dure. EViews will create a new group containing series with names of the form GRAD## 
where ## is the next available name.

Note that when you store the gradients, EViews will fill the series for the full workfile range. 
If you view the series, make sure to set the workfile sample to the sample used in estimation 
if you want to reproduce the table displayed in the gradient views.
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Application to LM Tests

The gradient series are perhaps most useful for carrying out Lagrange multiplier tests for 
nonlinear models by running what is known as artificial regressions (Davidson and MacKin-
non 1993, Chapter 6). A generic artificial regression for hypothesis testing takes the form of 
regressing:

(D.3)

where  are the estimated residuals under the restricted (null) model, and  are the esti-
mated coefficients. The  are a set of “misspecification indicators” which correspond to 
departures from the null hypothesis.

An example program (“GALLANT2.PRG”) for performing an LM auxiliary regression test is 
provided in your EViews installation directory.

Gradient Availability

The gradient views are currently available for the equation, logl, sspace and system objects. 
The views are not, however, currently available for equations estimated by GMM or ARMA 
equations specified by expression.

Derivatives

EViews employs a variety of rules for computing the derivatives used by iterative estimation 
procedures. These rules, and the user-defined settings that control derivative taking, are 
described in detail in “Derivative Computation” on page 1093.

In addition, EViews provides both object views and object procedures which allow you to 
examine the effects of those choices, and the results of derivative taking. These views and 
procedures provide you with quick and easy access to derivatives of your user-specified 
functions.

It is worth noting that these views and procedures are not available for all estimation tech-
niques. For example, the derivative views are currently not available for binary models since 
only a limited set of specifications are allowed.

Derivative Description

The Derivative Description view provides a quick summary of the derivatives used in esti-
mation. 

For example, consider the simple nonlinear regression model:

(D.4)

ũt  on 
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Following estimation of this single equation, we can display the description view by select-
ing View/Gradients and Derivatives.../Derivative Description. 

There are three parts to the output from this view. First, the line labeled “Specification:” 
describes the equation specification that we are estimating. You will note that we have writ-
ten the specification in terms of the implied residual from our specification. 

The next line describes the method used to compute the derivatives used in estimation. 
Here, EViews reports that the derivatives were computed analytically. 

Lastly, the bottom portion of the table displays the expressions for the derivatives of the 
regression function with respect to each coefficient. Note that the derivatives are in terms of 
the implied residual so that the signs of the expressions have been adjusted accordingly.

In this example, all of the derivatives were computed analytically. In some cases, however, 
EViews will not know how to take analytic derivatives of your expression with respect to 
one or more of the coefficient. In this situation, EViews will use analytic expressions where 
possible, and numeric where necessary, and will report which type of derivative was used 
for each coefficient. 

Suppose, for example, that we estimate:

(D.5)

where  is the standard normal density function. The derivative view of this equation is 

Derivatives of the Equation Specification 

Equation: EQ02 

Method: Least Squares 

Specification: RESID = Y - ((C(1)*(1-EXP(-C(2)*X)))) 

Computed using analytic derivatives 

Variable  Derivative of Specification 

C(1) -1 + exp(-c(2) * x) 

C(2) -c(1) * x * exp(-c(2) * x) 

yt c 1  1 f c 2 xt – exp–  et

f
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Here, EViews reports that it attempted to use analytic derivatives, but that it was forced to 
use a numeric derivative for C(2) (since it has not yet been taught the derivative of the 
@dnorm function).

If we set the estimation option so that we only compute fast numeric derivatives, the view 
would change to

to reflect the different method of taking derivatives.

If your specification contains autoregressive terms, EViews will only compute the deriva-
tives with respect to the regression part of the equation. The presence of the AR components 
is, however, noted in the description view.

Derivatives of the Equation Specification 

Equation: EQ02 

Method: Least Squares 

Specification: RESID = Y - ((C(1)*(1-EXP(-@DNORM(C(2)*X))))) 

Computed using analytic derivatives 

Use accurate numeric derivatives where necessary 

Variable  Derivative of Specification 

C(1) -1 + exp(-@dnorm(c(2) * x)) 

C(2) --- accurate numeric --- 

Derivatives of the Equation Specification 

Equation: EQ02 

Method: Least Squares 

Specification: RESID = Y - ((C(1)*(1-EXP(-C(2)*X)))) 

Computed using fast numeric derivatives 

Variable  Derivative of Specification 

C(1) --- fast numeric --- 

C(2) --- fast numeric --- 
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Recall that the derivatives of the objective function with respect to the AR components are 
always computed analytically using the derivatives of the regression specification, and the 
lags of these values.

One word of caution about derivative expressions. For many equation specifications, ana-
lytic derivative expressions will be quite long. In some cases, the analytic derivatives will be 
longer than the space allotted to them in the table output. You will be able to identify these 
cases by the trailing “...” in the expression.

To see the entire expression, you will have to create a table object and then resize the appro-
priate column. Simply click on the Freeze button on the toolbar to create a table object, and 
then highlight the column of interest. Click on Width on the table toolbar and enter in a 
larger number.

Derivative Table and Graph

Once we obtain estimates of the parameters of our nonlinear regression model, we can 
examine the values of the derivatives at the estimated parameter values. Simply select 
View/Gradients and Derivatives... to see a spreadsheet view or line graph of the values of 
the derivatives for each coefficient:

Derivatives of the Equation Specification 

Equation: EQ02 

Method: Least Squares 

Specification: [AR(1)=C(3)] = Y - (C(1)-EXP(-C(2)*X)) 

Computed using analytic derivatives 

Variable  Derivative of Specification* 

C(1) -1 

C(2) -x * exp(-c(2) * x) 

*Note: derivative expressions do not account for ARMA components 
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This spreadsheet view displays the value of the derivatives for each observation in the stan-
dard spreadsheet form. The graph view, plots the value of each of these derivatives for each 
coefficient.

Derivative Series

You can save the derivative values in series for later use. Simply select Proc/Make Deriva-
tive Group and EViews will create an untitled group object containing the new series. The 
series will be named DERIV##, where ## is a number associated with the next available free 
name. For example, if you have the objects DERIV01 and DERIV02, but not DERIV03 in the 
workfile, EViews will save the next derivative in the series DERIV03.

References
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Appendix E.  Information Criteria

As part of the output for most regression procedures, EViews reports various information 
criteria. The information criteria are often used as a guide in model selection (see for exam-
ple, Grasa 1989). 

The Kullback-Leibler quantity of information contained in a model is the distance from the 
“true” model and is measured by the log likelihood function. The notion of an information 
criterion is to provide a measure of information that strikes a balance between this measure 
of goodness of fit and parsimonious specification of the model. The various information cri-
teria differ in how to strike this balance. 

Definitions

The basic information criteria are given by:

Let  be the value of the log of the likelihood function with the  parameters estimated 
using  observations. The various information criteria are all based on –2 times the average 
log likelihood function, adjusted by a penalty function.

For factor analysis models, EViews follows convention (Akaike, 1987), re-centering the crite-
ria by subtracting off the value for the saturated model. The resulting factor analysis form of 
the information criteria are given by:

where  is the discrepancy function, and  is the number of degrees-of-freedom in the 
estimated dispersion matrix. Note that EViews scales the Akaike form of the statistic by 
dividing by .

In addition to the information criteria described above, there are specialized information cri-
teria that are used in by EViews when computing unit root tests:

Akaike info criterion (AIC)

Schwarz criterion (SC)

Hannan-Quinn criterion (HQ)

Akaike info criterion (AIC)

Schwarz criterion (SC)

Hannan-Quinn criterion (HQ)

Modified AIC (MAIC)

2 l T – 2 k T 
2 l T – k T log T
2 l T – 2k T log log T

l k
T

T k– D T 2 T df–

T k– D T T log T df–

T k– D T 2 T log ln T df–

D df

T

2 l T – 2 k t  T 
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where the modification factor  is computed as:

(E.1)

for  when computing the ADF test equation (38.7), and for  as defined in 
(“Autoregressive Spectral Density Estimator,” beginning on page 599) when estimating the 
frequency zero spectrum (see Ng and Perron, 2001, for a discussion of the modified informa-
tion criteria). 

Note also that:

• The definitions used by EViews may differ slightly from those used by some authors. 
For example, Grasa (1989, equation 3.21) does not divide the AIC by . Other 
authors omit inessential constants of the Gaussian log likelihood (generally, the terms 
involving ).

While very early versions of EViews reported information criteria that omitted ines-
sential constant terms, the current version of EViews always uses the value of the full 
likelihood function. All of your equation objects estimated in earlier versions of 
EViews will automatically be updated to reflect this change. You should, however, 
keep this fact in mind when comparing results from frozen table objects or printed 
output from previous versions.

• For systems of equations, where applicable, the information criteria are computed 
using the full system log likelihood. The log likelihood value is computed assuming a 
multivariate normal (Gaussian) distribution as:

 (E.2)

where

(E.3)

 is the number of equations. Note that these expressions are only strictly valid 
when you there are equal numbers of observations for each equation. When your sys-
tem is unbalanced, EViews replaces these expressions with the appropriate summa-
tions.

• The factor analysis forms of the statistics are often quoted in unscaled form, some-
times without adjusting for the saturated model. Most often, if there are discrepan-
cies, multiplying the EViews reported values by  will line up results.

Modified SIC (MSIC)

Modified Hannan-Quinn (MHQ)

2 l T – k t  T log T
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• Many estimation methods, including least squares regression, do not treat the error 
variance term, sigma, as an estimated coefficient, and as such omit this term from the 
calculation of .

Using Information Criteria as a Guide to Model Selection

As a user of these information criteria as a model selection guide, you select the model with 
the smallest information criterion. 

The information criterion has been widely used in time series analysis to determine the 
appropriate length of the distributed lag. Lütkepohl (1991, Chapter 4) presents a number of 
results regarding consistent lag order selection in VAR models.

You should note, however, that the criteria depend on the unit of measurement of the depen-
dent variable . For example, you cannot use information criteria to select between a model 
with dependent variable  and one with log( ).
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Appendix F.  Long-run Covariance Estimation

The long-run (variance) covariance matrix (LRCOV) occupies an important role in modern 
econometric analysis. This matrix is, for example, central to calculation of efficient GMM 
weighting matrices (Hansen 1982), heteroskedastic and autocorrelation (HAC) robust stan-
dard errors (Newey and West 1987), and is employed in unit root (Phillips and Perron 1988) 
and cointegration analysis (Phillips and Hansen 1990, Hansen 1992b).

EViews offers tools for computing symmetric LRCOV and the one-sided LRCOV using non-
parametric kernel (Newey-West 1987, Andrews 1991), parametric VARHAC (Den Haan and 
Levin 1997), and prewhitened kernel (Andrews and Monahan 1992) methods. In addition, 
EViews supports Andrews (1991) and Newey-West (1994) automatic bandwidth selection 
methods for kernel estimators, and information criteria based lag length selection methods 
for VARHAC and prewhitening estimation.

Technical Discussion

Our basic discussion and notation follows the framework of Andrews (1991) and Hansen 
(1992a). 

Consider a sequence of mean-zero random -vectors  that may depend on a 
-vector of parameters , and let  where  is the true value of . We are 

interested in estimating the LRCOV matrix ,

(F.1)

where

(F.2)

is the autocovariance matrix of  at lag . When  is second-order stationary,  equals 
 times the spectral density matrix of  evaluated at frequency zero (Hansen 1982, 

Andrews 1991, Hamilton 1994).

Closely related to  are two measures of the one-sided LRCOV matrix:

p Vt v  
K v Vt Vt v0  v0 v

Q

Q G j 
j –





G j  E VtVt j–   j 0

G j  G j–  j 0

Vt j Vt Q

2p Vt

Q
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(F.3)

The matrix , which we term the strict one-sided LRCOV, is the sum of the lag covari-
ances, while the  also includes the contemporaneous covariance . The two-sided 
LRCOV matrix  is related to the one-sided matrices through  and 

.

Despite the important role the one-sided LRCOV matrix plays in the literature, we will focus 
our attention on , since results are generally applicable to all three measures; exception 
will be made for specific issues that require additional comment.

In the econometric literature, methods for using a consistent estimator  and the corre-
sponding  to form a consistent estimate of  are often referred to as heteroske-
dasticity and autocorrelation consistent (HAC) covariance matrix estimators.

There have been three primary approaches to estimating :

1. The nonparametric kernel approach (Andrews 1991, Newey-West 1987) forms esti-
mates of  by taking a weighted sum of the sample autocovariances of the observed 
data.

2. The parametric VARHAC approach (Den Haan and Levin 1997) specifies and fits a 
parametric time series model to the data, then uses the estimated model to obtain the 
implied autocovariances and corresponding .

3. The prewhitened kernel approach (Andrews and Monahan 1992) is a hybrid method 
that combines the first two approaches, using a parametric model to obtain residuals 
that “whiten” the data, and a nonparametric kernel estimator to obtain an estimate of 
the LRCOV of the whitened data. The estimate of  is obtained by “recoloring” the 
prewhitened LRCOV to undo the effects of the whitening transformation.

Below, we offer a brief description of each of these approaches, paying particular attention 
to issues of kernel choice, bandwidth selection, and lag selection.

Nonparametric Kernel 

The class of kernel HAC covariance matrix estimators in Andrews (1991) may be written as:

(F.4)

where the sample autocovariances  are given by
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(F.5)

 is a symmetric kernel (or lag window) function that, among other conditions, is continous 
at the origin and satisfies  for all  with , and  is a bandwidth 
parameter. The leading  term is an optional correction for degrees-of-freedom 
associated with the estimation of the  parameters in .

The choice of a kernel function and a value for the bandwidth parameter completely charac-
terizes the kernel HAC estimator.

Kernel Functions

There are a large number of kernel functions that satisfy the required conditions. EViews 
supports use of the following kernel shapes:

Truncated uniform

Bartlett

Bohman

Daniell

Parzen

Parzen-Riesz

Ĝ j  1
T
---- V̂t V̂t j– 

t j 1

T

 j 0

Ĝ j  Ĝ j–  j 0

k
k x  1 x k 0  1 bT 0
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K v
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

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
if x 1.0
otherwise
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


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otherwise
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1 6x

2
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otherwise
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Note that  for  for all kernels with the exception of the Daniell and the 
Quadratic Spectral. The Daniell kernel is presented in truncated form in Neave (1972), but 
EViews uses the more common untruncated form. The Bartlett kernel is sometimes referred 
to as the Fejer kernel (Neave 1972).

A wide range of kernels have been employed in HAC estimation. The truncated uniform is 
used by Hansen (1982) and White (1984), the Bartlett kernel is used by Newey and West 
(1987), and the Parzen is used by Gallant (1987). The Tukey-Hanning and Quadratic Spec-
tral were introduced to the econometrics literature by Andrews (1991), who shows that the 
latter is optimal in the sense of minimizing the asymptotic truncated MSE of the estimator 
(within a particular class of kernels). The remaining kernels are discussed in Parzen (1958, 
1961, 1967).

Bandwidth

The bandwidth  operates in concert with the kernel function to determine the weights for 
the various sample autocovariances in Equation (F.4). While some authors restrict the band-
width values to integers, we follow Andrews (1991) who argues in favor of allowing real val-
ued bandwidths.

Parzen-Geometric

Parzen-Cauchy

Quadratic Spectral

Tukey-Hamming

Tukey-Hanning

Tukey-Parzen

k x 
1 1 x 
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otherwise
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12p
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otherwise
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To construct an operational nonparametric kernel estimator, we must choose a value for the 
bandwidth . Under general conditions (Andrews 1991), consistency of the kernel estima-
tor requires that  is chosen so that  and  as . Alternately, 
Kiefer and Vogelsang (2002) propose setting  in a testing context.

For the great majority of supported kernels  for  so that the band-
width acts indirectly as a lag truncation parameter. Relating  to the corresponding integer 
lag number of included lags  requires, however, examining the properties of the kernel at 
the endpoints . For kernel functions where  (e.g., Truncated, 
Parzen-Geometric, Tukey-Hanning),  is simply a real-valued truncation lag, with at most 

 autocovariances having non-zero weight. Alternately, for kernel functions 
where  (e.g., Bartlett, Bohman, Parzen), the relationship is slightly more com-
plex, with  autocovariances entering the estimator with non-zero weights.

The varying relationship between the bandwidth and the lag-truncation parameter implies 
that one should examine the kernel function when choosing bandwidth values to match 
computations that are quoted in lag truncation form. For example, matching Newey-West’s 
(1987) Bartlett kernel estimator which uses  weighted autocovariance lags requires setting 

. In contrast, Hansen’s (1982) or White’s (1984) estimators, which sum the 
first  unweighted autocovariances, should be implemented using the Truncated kernel 
with .

Automatic Bandwidth Selection

Theoretical results on the relationship between bandwidths and the asymptotic truncated 
MSE of the kernel estimator provide finer discrimination in the rates at which bandwidths 
should increase. The optimal bandwidths may be written in the form:

(F.6)

where  is a constant, and  is a parameter that depends on the kernel function that you 
select (Parzen 1958, Andrews 1991). For the Bartlett and Parzen-Geometric kernels  

 should grow (at most) at the rate . The Truncated kernel does not have an theoreti-
cal optimal rate, but Andrews (1991) reports Monte Carlo simulations that suggest that 

 works well. The remaining EViews supported kernels have  so their optimal 
bandwidths grow at rate  (though we point out that Daniell kernel does not satisfy the 
conditions for the optimal bandwidth theorems).

While theoretically useful, knowledge of the rate at which bandwidths should increase as 
 does not tell us the optimal bandwidth for a given sample size, since the constant 

 remains unspecified.

Andrews (1991) and Newey and West (1994) offer two approaches to estimating . We may 
term these techniques automatic bandwidth selection methods, since they involve estimating 
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the optimal bandwidth from the data, rather than specifying a value a priori. Both the 
Andrews and Newey-West estimators for  may be written as:

 (F.7)

where  and the constant  depend on properties of the selected kernel and  is an 
estimator of , a measure of the smoothness of the spectral density at frequency zero 
that depends on the autocovariances . Substituting into Equation (F.6), the resulting 
plug-in estimator for the optimal automatic bandwidth is given by:

(F.8)

The  that one uses depends on properties of the selected kernel function. The Bartlett and 
Parzen-Geometric kernels should use  since they have .  should be used 
for the other EViews supported kernels which have . The Truncated kernel does not 
have a theoretically proscribed choice, but Andrews recommends using . The Daniell 
kernel has , though we remind you that it does not satisfy the conditions for 
Andrews’s theorems. “Kernel Function Properties” on page 1125 summarizes the values of 

 and  for the various kernel functions.

It is of note that the Andrews and Newey-West estimators both require an estimate of  
that requires forming preliminary estimates of  and the smoothness of . Andrews and 
Newey-West offer alternative methods for forming these estimates.

Andrews Automatic Selection

The Andrews (1991) method estimates  parametrically: fitting a simple parametric time 
series model to the original data, then deriving the autocovariances  and corresponding 

 implied by the estimated model.

Andrews derives  formulae for several parametric models, noting that the choice 
between specifications depends on a tradeoff between simplicity and parsimony on one 
hand and flexibility on the other. EViews employs the parsimonius approach used by 
Andrews in his Monte Carlo simulations, estimating -univariate AR(1) models (one for 
each element of ), then combining the estimated coefficients into an estimator for .

For the univariate AR(1) approach, we have:

(F.9)

where  are parametric estimators of the smoothness of the spectral density for the -th 
variable (Parzen’s (1957) -th generalized spectral derivatives) at frequency zero. Estima-
tors for  are given by:
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(F.10)

for  and , where  are the estimated autocovariances at lag  
implied by the univariate AR(1) specification for the -th variable.

Substituting the univariate AR(1) estimated coefficients  and standard errors  into the 
theoretical expressions for , we have:

(F.11)

which may be inserted into Equation (F.8) to obtain expressions for the optimal bandwidths.

Lastly, we note that the expressions for  depend on the weighting vector  which gov-
erns how we combine the individual  into a single measure of relative smoothness. 
Andrews suggests using either  for all  or  for all but the instrument cor-
responding to the intercept in regression settings. EViews adopts the first suggestion, setting 

 for all .

Newey-West Automatic Selection

Newey-West (1994) employ a nonparametric approach to estimating . In contrast to 
Andrews who computes parametric estimates of the individual , Newey-West uses a 
Truncated kernel estimator to estimate the  corresponding to aggregated data.

First, Newey and West define, for various lags, the scalar autocovariance estimators:

(F.12)

The  may either be viewed as the sample autocovariance of a weighted linear combina-
tion of the data using weights , or as a weighted combination of the sample autocovari-
ances.

Next, Newey and West use the  to compute nonparametric truncated kernel estimators of 
the Parzen measures of smoothness:

(F.13)
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4 ŝs
4
r̂s

2

1 r̂s– 8
----------------------

s 1

p

 
 
 

ws

ŝs
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for . These nonparametric estimators are weighted sums of the scalar autoco-
variances  obtained above for  from  to , where , which Newey and West term 
the lag selection parameter, may be viewed as the bandwidth of a kernel estimator for .

The Newey and West estimator for  may then be written as:

(F.14)

for . This expression may be inserted into Equation (F.8) to obtain the expression 
for the plug-in optimal bandwidth estimator.

In comparing the Andrews estimator Equation (F.11) with the Newey-West estimator 
Equation (F.14) we see two very different methods of distilling results from the -dimen-
sions of the original data into a scalar measure . Andrews computes parametric esti-
mates of the generalized derivatives for the  individual elements, then aggregates the 
estimates into a single measure. In contrast, Newey and West aggregate early, forming linear 
combinations of the autocovariance matrices, then use the scalar results to compute non-
parametric estimators of the Parzen smoothness measures.

To implement the Newey-West optimal bandwidth selection method we require a value for 
, the lag-selection parameter, which governs how many autocovariances to use in forming 

the nonparametric estimates of . Newey and West show that  should increase at (less 
than) a rate that depends on the properties of the kernel. For the Bartlett and the Parzen-
Geometric kernels, the rate is . For the Quadratic Spectral kernel, the rate is . 
For the remaining kernels, the rate is  (with the exception of the Truncated and the 
Daniell kernels, for which the Newey-West theorems do not apply).

In addition, one must choose a weight vector . Newey-West (1987) leave open the choice 
of , but follow Andrew’s (1991) suggestion of  for all but the intercept in their 
Monte Carlo simulations. EViews differs from this choice slightly, setting  for all .

Parametric VARHAC

Den Haan and Levin (1997) advocate the use of parametric methods, notably VARs, for 
LRCOV estimation. The VAR spectral density estimator, which they term VARHAC, involves 
estimating a parametric VAR model to filter the , computing the contemporaneous covari-
ance of the filtered data, then using the estimates from the VAR model to obtain the implied 
autocovariances and corresponding LRCOV matrix of the original data. 

Suppose we fit a VAR( ) model to the . Let  be the  matrix of estimated -th 
order AR coefficients, . Then we may define the innovation (filtered) data and 
estimated innovation covariance matrix as:

(F.15)
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and

(F.16)

Given an estimate of the innovation contemporaneous variance matrix  and the VAR 
coefficients , we can compute the implied theoretical autocovariances  of . Sum-
ming the autocovariances yields a parametric estimator for , given by:

(F.17)

where 

(F.18)

Implementing VARHAC requires a specification for , the order of the VAR. Den Haan and 
Levin use model selection criteria (AIC or BIC-Schwarz) using a maximum lag of  to 
determine the lag order, and provide simulations of the performance of estimator using data-
dependent lag order.

The corresponding VARHAC estimators for the one-sided matrices  and  do not have 
simple expressions in terms of  and . We can, however, obtain insight into the 
construction of the one-sided VARHAC LRCOVs by examining results for the VAR(1) case. 
Given estimation of a VAR(1) specification, the estimators for the one-sided long-run vari-
ances may be written as:

(F.19)

Both estimators require estimates of the VAR(1) coefficient estimates , as well as an esti-
mate of , the contemporaneous covariance matrix of . 

One could, as in Park and Ogaki (1991) and Hansen (1992b), use the sample covariance 
matrix  so that the estimates of  and  employ a mix of para-
metric and non-parametric autocovariance estimates. Alternately, in keeping with the spirit 
of the parametric methodology, EViews constructs a parametric estimator  using the 
estimated VAR(1) coefficients  and .
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D̂ Ip Âj
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Prewhitened Kernel

Andrews and Monahan (1992) propose a simple modification of the kernel estimator which 
performs a parametric VAR prewhitening step to reduce autocorrelation in the data followed 
by kernel estimation performed on the whitened data. The resulting prewhitened LRVAR 
estimate is then recolored to undo the effects of the transformation. The Andrews and Mona-
han approach is a hybrid that combines the parametric VARHAC and nonparametric kernel 
techniques.

There is evidence (Andrews and Monahan 1992, Newey-West 1994) that this prewhitening 
approach has desirable properties, reducing bias, improving confidence interval coverage 
probabilities and improving sizes of test statistics constructed using the kernel HAC estima-
tors.

The Andrews and Monahan estimator follows directly from our earlier discussion. As in a 
VARHAC, we first fit a VAR( ) model to the  and obtain the whitened data (residuals):

(F.20)

In contrast to the VAR specification in the VARHAC estimator, the prewhitening VAR specifi-
cation is not necessarily believed to be the true time series model, but is merely a tool for 
obtaining  values that are closer to white-noise. (In addition, Andrews and Monahan 
adjust their VAR(1) estimates to avoid singularity when the VAR is near unstable, but 
EViews does not perform this eigenvalue adjustment.)

Next, we obtain an estimate of the LRCOV of the whitened data by applying a kernel estima-
tor to the residuals:

(F.21)

where the sample autocovariances  are given by

(F.22)

Lastly, we recolor the estimator to obtain the VAR prewhitened kernel LRCOV estimator:

(F.23)

The prewhitened kernel procedure differs from VARHAC only in the computation of the 
LRCOV of the residuals. The VARHAC estimator in Equation (F.17) assumes that the residu-
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als  are white noise so that the LRCOV may be estimated using the contemporaneous 
variance matrix , while the prewhitening kernel estimator in Equation (F.21) allows 
for residual heteroskedasticity and serial dependence through its use of the HAC estimator 

. Accordingly, it may be useful to view the VARHAC procedure as a special case of the 
prewhitened kernel with  and  for .

The recoloring step for one-sided prewhitened kernel estimators is complicated when we 
allow for HAC estimation of  (Park and Ogaki, 1991). As in the VARHAC setting, the 
expressions for one-sided LRCOVs are quite involved but the VAR(1) specification may be 
used to provide insight. Suppose that the VARHAC estimators of the one-sided LRCOV matri-
ces defined in Equation (F.19) are given by  and , and let  be the strict one-sided 
kernel estimator computed using the prewhitened data:

(F.24)

Then the prewhitened kernel one-sided LRCOV estimators are given by:

(F.25)
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Kernel Function Properties

Notes:  is the optimal rate of increase for the LRCOV kernel bandwidth. 
 is the optimal rate of increase for the lag selection parameter in the Newey-West (1987) 

automatic bandwidth selection procedure. The Truncated uniform kernel does not have theo-
retically proscribed values for  and , but Andrews (1991) reports Monte Carlo simula-
tions that suggest that these values work well. The Daniell kernel value for  does not 
follow from the theory since the kernel does not satisfy the conditions of the optimal bandwidth 
theorems.
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with missing values UI:188
Component GARCH UI:259
Component plots UI:595
Conditional independence UI:588
Conditional standard deviation

display graph of UI:253
Conditional variance UI:241, UI:243, UI:244

forecast UI:255
in the mean equation UI:245
make series from ARCH UI:256

Confidence ellipses UI:713, UI:176
Confidence interval UI:176

ellipses UI:176
for forecast UI:157
for stochastic model solution UI:825

Constant
in equation UI:6, UI:12
in ordered models UI:352

Contemporaneous covariance (in panels) UI:999
Contingency coefficient UI:588
Continuously updating GMM

single equation UI:85, UI:90
Contracting data UI:294
Convergence criterion UII:1090, UII:1103

default setting UI:871
in nonlinear least squares UI:55, UI:60
in pool estimation UI:869

Convert
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panel to pool UI:301
pool to panel UI:307

Copy UI:294
and paste UI:118, UI:798, 1:827
and paste See also OLE.
by link UI:295
by value UI:296
command UI:171
data UI:162
data cut-and-paste UI:148
database UI:343
objects UI:117
pool objects UI:846
table to clipboard UI:798
to and from database UI:325
to spool UI:803

Copy special 1:854
Correlogram UI:420, UI:423, UI:108

ARMA models UI:129
autocorrelation function UI:421
cross UI:603
partial autocorrelation function UI:422
Q-statistic UI:422
squared residuals UI:194, UI:253
VAR UI:703

Count models UI:377
estimation UI:378
forecasting UI:382
negative binomial (ML) UI:379
Poisson UI:378
QML UI:380
residuals UI:382

Covariance
matrix, of estimated coefficients UI:17
matrix, systems UI:661

Covariance analysis UI:572
details UI:580
panel UI:999

Covariance proportion UI:159
Cragg-Donald UI:94
Cramer’s V UI:588
Cramer-von Mises test UI:417
Create

database UI:319
dated data table UI:555
factor UI:1044
graph UI:751

group UI:133, UI:198
link UI:247
objects UI:105
page UI:82
series UI:124, UI:190
spool UI:801
table UI:789
text object UI:800
workfile UI:42

Cross correlation UI:603
Cross correlogram UI:603
Cross section

pool identifiers UI:845
specific series UI:847
summaries UI:908
SUR UI:885

Cross section dependence test UI:958, UI:1018
Cross-equation

coefficient restriction UI:646, UI:650
correlation UI:647, UI:648
weighting UI:646

CSV UI:799
C-test UI:93
Cubic

frequency conversion method UI:172, UI:173
CUE (continuously updating GMM) See Continu-

ously updating GMM
Cumulative distribution UI:696

computation UI:696
Cumulative statistics

functions UI:185
Customization

graphs UI:648
CUSUM

sum of recursive residuals test UI:226
sum of recursive squared residuals test UI:227

D

Daniell kernel
cointegrating regression UI:279
GMM estimation UI:90
long-run covariance estimation UI:607
panel cointegrating regression UI:979
robust standard errors UI:45
technical details UII:1117

Data
appending more UI:291
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cut and paste UI:150, UI:162
enter from keyboard UI:146, 1:885
export UI:161, UI:163
Federal Reserve Economic data UI:372
FRED UI:372
import UI:150
import as matrix UI:161
import as table UI:161, UI:800
irregular UI:263
keyboard entry UI:148
pool UI:850
regular UI:263
remove UI:294
structure UI:263

Database
alias UI:332
auto-search UI:333
auto-series UI:331
cache UI:393
copy UI:343
copy objects UI:325
create UI:319
data storage precision UI:870
default UI:322
default in search order UI:333
delete UI:343
delete objects UI:327
display all objects UI:320
ECB SDMX UI:366
Eurostat SDMX UI:366
export UI:325
fetch objects UI:323
field UI:336
foreign formats UI:345
frequency in query UI:338
group storage options UI:870
IMF SDMX UI:366
link UI:324, UI:325, UI:392
link options UI:395
maintenance UI:343
match operator in query UI:337
open UI:319
packing UI:344
previewing contents UI:107
queries UI:333
rebuild UI:345
registry UI:879
rename UI:343

rename object UI:327
repair UI:345
sharing violation UI:320
statistics UI:344
store objects UI:322
test integrity UI:345
UN SDMX UI:366
using auto-updating series with UI:207
window UI:319

Database registry UI:331, UI:879
Datastream UI:356
Date pairs UI:137
Date series UI:216
Dated data table UI:554

create UI:555
customization UI:567
customize UI:555
data format UI:559
example UI:568
fonts UI:563
formatting options UI:562
frequency conversion UI:561
headers UI:565
table options UI:556
templates UI:567
transformation methods UI:560

Dated import UI:152
Dates

default display format UI:871
display format UI:216
format in a spreadsheet See Display format
global options UI:864
match merging using UI:239

Default
database UI:9, UI:322
database in search order UI:333
directory UI:9, UI:877
set directory UI:95
setting global options UI:859
update directory UI:95
window appearance UI:860

Delete UI:119
database UI:343
graph element UI:767
objects from database UI:327
observation in series UI:132
page UI:91
series using pool UI:862
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spool objects UI:810
Demonstration

estimation UI:27
examining data UI:20
forecasting UI:34
getting data into EViews UI:17
specification test UI:30

Den Haan and Levin UII:1122
Denton

frequency conversion method UI:172, UI:174
Dependent variable

no variance in binary models UI:338
Derivatives UII:1093, UII:1106

checking UI:577
default methods UI:871
description UII:1106
in equation UI:19
in logl UI:570
in system UI:661
saving in series UII:1110

Description
field in database query UI:339

Descriptive statistics UI:183
balanced sample (pool) UI:858
by classification UI:405
by group UI:405
categorical graphs of UI:718
common sample (group) UI:572
common sample (pool) UI:858
cross-section specific UI:859
for a series UI:407
graphs of UI:718
group UI:572
individual samples (group) UI:572
individual samples (pool) UI:858
pooled UI:858
series UI:402
stacked data UI:859
tests UI:408
time period specific UI:859

Deselect all UI:106
Deterministic regressors UI:271

panel UI:975
DFBetas UI:231
DFGLS UI:595
Dickey-Fuller test UI:594

See also Unit root tests.

Diebold-Mariano Test UI:426
Difference from moving-average UI:495
Difference operator UI:184, UI:115

seasonal UI:185, UI:115
Differencing

fractional UI:105
Display filter UI:61, UI:263
Display format UI:125

group UI:134
Display mode

spools UI:815
Display name

field in database query UI:339
distdata UI:543
Distribution

empirical distribution function tests UI:417
tests UI:417

Distribution plot UI:695
save data UI:543

DOLS See Dynamic OLS (DOLS)
Doornik and Hansen factorization matrix UI:705
Dot plot UI:675
Drag and drop

existing file onto a new workfile UI:89
existing file onto an existing workfile UI:89
into a model UI:786
series into a group UI:135
within the same workfile UI:171

Drag(ging)
text in graph UI:758

DRI database
DRIpro UI:392
frequency UI:395
illegal names UI:395
object alias UI:341
queries UI:396
shadowing of object names UI:342
troubleshooting UI:397

DRIBase database UI:357
DRIPro link UI:356
Dropbox UI:96
Dual processor UI:878
Dumitrescu-Hurlin test UI:1011
Dummy variables UI:200

as binary dependent variable UI:331
as censoring point in estimation UI:360
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automatic creation UI:28
generating pool series dummies UI:857
pools UI:857
using @GROUP to create pool dummies 

UI:857
Dunn-Sidak UI:579
Durbin-Watson statistic UI:107

demonstration UI:30
for regression UI:14
lagged dependent variable UI:108

Durbin-Wu-Hausman test UI:93
Dynamic forecasting UI:160
Dynamic OLS (DOLS) UI:269, UI:278

panel UI:978, UI:990
Dynamic panel data UI:921
Dynamic switching models UI:511
Dynamic switching regression UI:510

E

Easy query UI:334
Economy.com UI:382
EcoWin database UI:357
Edit

group UI:135
series UI:131, UI:549
table UI:791

EGARCH UI:257
See also GARCH

EGLS (estimated GLS) UI:867, UI:885, UI:919
EHS test UI:93
EIA (U.S. Energy Administration) data UI:362
Eigenvalues

factor analysis UI:1057
plots UI:594

Elasticity at means UI:176
Elliot, Rothenberg, and Stock point optimal test 

UI:597
See also Unit root tests.

Embedded spools UI:804
Empirical CDF

graph UI:696
Empirical distribution tests UI:417
Empirical quantile graph UI:698
Empirical survivor graph UI:697
End field UI:64, UI:338
Endogeneity UI:235

test of UI:93
Endogenous variables UI:69

in models UI:781
Engle-Granger cointegration test UI:1032
Enterprise Edition UI:348, UI:349, UI:355, 

UI:356, UI:357, UI:371, UI:378, UI:382
Epanechnikov kernel UI:692
Equality tests UI:411

groups UI:589
mean UI:412
median UI:414
variance UI:416

Equation UI:5
add to model UI:786
automatic dummy variables in UI:28
coefficient covariance matrix UI:17
coefficient covariance scalar UI:16
coefficient p-values vector UI:17
coefficient standard error vector UI:17
coefficient t-statistic scalar UI:17
coefficient t-statistic vector UI:17
coefficient vector UI:17, UI:20
command string UI:17
create UI:5
derivatives UI:19
estimating in models UI:785
gradients UI:19
procedures UI:19
regression coefficients UI:11
regression summary statistics UI:13
residuals UI:20
results UI:11
retrieve previously estimated UI:20
r-squared UI:13
sample string UI:17
saved results UI:16
scalar results UI:16
specification UI:6
specification by list UI:6
specify by formula UI:7
specify with non-default coefs UI:9
specify with restrictions UI:8
specify without dependent variable UI:8
specifying a constant UI:6
store UI:20
text representation UI:18
t-statistic UI:12
updatetime UI:17
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vector and matrix results UI:17
views UI:18

Ergodic probabilities UI:510, UI:516
Error bar graph UI:676
Error-trend-seasonal smoothing

 See ETS smoothing
Estimation UI:9

as part of model UI:785
auto-series UI:197
behavior UII:1103
binary dependent variable UI:333
censored models UI:358
collinearity UI:22
convergence UII:1103
convergence problems UII:1091, UII:1092
count models UI:378
demonstration UI:27
derivative computation options UII:1093
derivatives UII:1106
failure to improve UII:1091
for pool UI:864
GLM UI:393
GMM UI:81
log likelihood UI:572
logl UI:572
missing data UI:10
multi-equation UI:646
near singular matrix problems UII:1093
nonlinear least squares UI:51
options UII:1089
ordered models UI:351
output UI:11
panel UI:917
residuals from equation UI:20
robust regression UI:429
sample UI:9
sample adjustment UI:10
single equation methods UI:9
starting values UII:1091
state space UI:759, UI:770
systems UI:646, UI:654
truncated models UI:367
two-stage least squares UI:69
user-defined I:823
VAR UI:689, UI:695
VEC UI:726

ETS smoothing UI:517
AMSE based UI:524

example UI:530
forecast details UI:526, UI:528
initial states UI:523
MLE based UI:524
model selection UI:525, UI:528
output UI:529
parameters UI:523, UI:528
performing in EViews UI:526
specification UI:527
technical details UI:517

Evaluating forecasts UI:424
Evaluation order UI:180

logl UI:569
EViews

auto-update UI:15, UI:879
EViews Databases UI:317
EViews Enterprise Edition UI:357, UI:371, 

UI:377, UI:382
EViews Forum UI:15
Examining data

demonstration UI:20
Excel

Add-in UI:164
reading EViews data in UI:164, 1:827

Excel file
importing data into matrix UI:161
importing data into table UI:161, UI:800
importing data into workfile UI:150
linking data from UI:55
opening as workfile UI:48
opening as workfile demo UI:17
saving as UI:161

Exogenous variable UI:69
in models UI:781
uncertainty UI:817, UI:828

Expectation-prediction table
binary models UI:340
ordered models UI:354

Expectations consistency in models UI:819
Expected dependent variable

censored models UI:363
truncated models UI:369

Expected latent variable
censored models UI:363
truncated models UI:369

Exponential GARCH (EGARCH) UI:257
See also GARCH
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Exponential regression UI:392
Exponential smoothing UI:511, UI:517

 See also ETS smoothing
 See also Smoothing.
double UI:513
Holt-Winters additive UI:514
Holt-Winters multiplicative UI:514
Holt-Winters no seasonal UI:515
single UI:513

Export UI:163, UI:315
database UI:325
pool data UI:862

Expression UI:179
for database fields UI:337
parentheses UI:180

Extending EViews
See Add-ins.

Extreme value
binary model UI:334
censored dependent variable models UI:359

F

Factor analysis UI:1043
background UI:1074
communalities UI:1048
creation UI:1044
data members UI:1059
details UI:1074
eigenvalues UI:1057
example UI:1059
goodness of fit UI:1055, UI:1079
graph scores UI:1053
Kaiser’s measure of sampling adequacy 

UI:1058
loading views UI:1056
method UI:1045, UI:1047
method details UI:1076
model evaluation UI:1079
PACE UI:1047
procedures UI:1058
reduced covariance UI:1056
rotation UI:1050
rotation (theory) UI:1081
scaling UI:1049
score estimation UI:1051
specification UI:1044
theory of UI:1074
views UI:1054

Factor and graph layout options UI:741
Factor breakpoint test UI:191
Factor display settings UI:737
Factset UI:371
Fair function UI:422
Fair-Taylor model solution UI:818
FAME database UI:371
Federal Reserve Economic Data UI:372
Fetch UI:120

from database UI:323
from pool UI:862

fetch UI:171
Fields in database UI:336

description UI:339
display_name UI:339
end UI:338
expressions UI:337
freq UI:338
history UI:339
last_update UI:339
last_write UI:339
name UI:337
remarks UI:339
source UI:339
start UI:338
type UI:337
units UI:339

Files
default locations UI:877
open session on double click UI:862
opening/saving on a cloud location UI:96

Filter
Hodrick-Prescott UI:538
Markov switching UI:508
state space models UI:756
switching regression UI:507
workfile objects UI:73

FIML UI:648
system UI:678

First derivative methods UII:1096
Fisher-ADF UI:625
Fisher-Johansen UI:1041
Fisher-PP UI:625
Fit lines (graph) UI:640
Fitted index

binary models UI:345
censored models UI:363
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truncated models UI:369
Fitted probability

binary models UI:345
Fitted values

of equation UI:18
Fixed effects

panel estimation UI:919
pool UI:867
pool description UI:882
test UI:947

Fixed variance parameter
negative binomial QML UI:381
normal QML UI:381

Flatten
spools UI:811

FMOLS See Fully modified OLS (FMOLS)
Fonts

defaults UI:864
tables UI:795
text in graph UI:757, UI:782

Forecast
AR specification UI:162
ARIMA UI:496
ARIMA using X-13 UI:455
automatic with ARIMA models UI:496
automatic with ETS smoothing UI:526, UI:528
auto-series UI:168
averaging UI:505
backcasting UI:163
binary models UI:345
by exponential smoothing UI:517
censored models UI:363
Chow test UI:222
combination testing UI:426
combining UI:505
conditional variance UI:255
count models UI:382
demonstration UI:34
dynamic UI:160, UI:758
equations with formula UI:167
error UI:155
ETS smoothing UI:526, UI:528
evaluation UI:424, UI:157
example UI:150
expressions and auto-updating series UI:167
fitted values UI:154
from estimated equation UI:147
GLM UI:406

innovation initialization in models UI:819
interval UI:157
lagged dependent variables UI:160
MA specification UI:163
Markov switching UI:524
missing values UI:155
models UI:790
nonlinear models UI:173
n-step ahead UI:758
n-step test UI:228
one-step test UI:228
ordered models UI:356
out-of-sample UI:154
PDLs UI:173
smoothed UI:759
standard error UI:156, UI:170
state space UI:758
static UI:161
structural UI:162
switching regression UI:524
system UI:662
truncated models UI:369
VAR/VEC UI:712, UI:728
variance UI:155
with AR errors UI:163

Foreign data
import into workfile UI:150
open as workfile UI:17

Format
tables UI:794

Formula
forecast UI:167
implicit assignment UI:191
normalize UI:192
specify equation by UI:7

Forward solution for models UI:817
Fractional difference

Specification UI:116
Fractional integration UI:105
Frame UI:649

size UI:650
FRED UI:372
Freedman-Diaconis UI:686
Freeze UI:119

create graph from view UI:751
Freq

field in database query UI:338
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Frequency (Band-Pass) filter UI:539
Frequency conversion UI:118, UI:170, UI:864

Chow-Lin UI:172, UI:175
constant match UI:172
cubic UI:172, UI:173
dated data table UI:561
default settings UI:176
Denton UI:172
DRI database UI:395
linear UI:172, UI:173
links UI:254
Litterman UI:172, UI:175
methods UI:171
panels UI:245
point UI:172, UI:174
propagate NAs UI:172
quadratic UI:173
quandratic UI:172
undated series UI:176
using links UI:243

Frequency spectrum UI:131
Frequency weights UI:395
Frequency zero spectrum estimation UI:598
F-statistic UI:184, UI:189

for regression UI:15
F-test

for variance equality UI:416
Full Information Maximum Likelihood UI:678
Full information maximum likelihood UI:648
Fully modified OLS (FMOLS) UI:269, UI:271

panel UI:976, UI:987

G

GARCH UI:243
ARCH-M model UI:245
asymmetric component model UI:260
backcasting UI:249
component models (CGARCH) UI:259
estimation in EViews UI:246
examples UI:251
exponential GARCH (EGARCH) UI:257
GARCH(1,1) model UI:243
GARCH(p,q) model UI:245
initialization UI:249
Integrated GARCH (IGARCH) UI:256
mean equation UI:247
multivariate UI:586

power ARCH (PARCH) UI:258
procedures UI:254
robust standard errors UI:250
test for UI:198
threshold (TARCH) UI:256
variance equation UI:247

Gauss file UI:48
Gauss-Newton UII:1097
Gauss-Seidel algorithm UI:829, UII:1098
Generalized error distribution UI:257
Generalized least squares See GLS
Generalized linear models

example UI:397
forecasting UI:406
link function UI:394, UI:411
overview UI:391
performing in EViews UI:393
quasi-likelihood ratio test UI:382
residuals UI:405
robust standard errors UI:396
specification UI:393
technical details UI:409
testing UI:407
variance factor UI:388

Generalized method of moments, See GMM.
Generalized residual

binary models UI:345
censored models UI:363
count models UI:382
GLM UI:405
ordered models UI:356
score vector UI:346
truncated models UI:369

Generate series UI:190
by command UI:192
dynamic assignment UI:191
for pool UI:856
implicit assignment UI:191
implicit formula UI:191
using samples UI:190

Geometric moving average UI:197
GiveWin data UI:377
Glejser heteroskedasticity test UI:198
GLM

See Generalized linear models.
Global breakpoint

estimation with UI:442
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tests UI:210
Global optimum UII:1093
GLS

detrending UI:595
pool estimation details UI:883
weights UI:919

GMM UI:81, UI:679
bandwidth selection (single equation) UI:90
bandwidth selection (system) UI:655
breakpoint test UI:96
continuously updating (single equation) UI:85, 

UI:90
diagnostics UI:92
dropped instruments UI:92
estimate single equation by UI:81
estimate system by UI:648
HAC weighting matrix (single equation) UI:90
HAC weighting matrix (system) UI:680
instrument orthogonality test UI:93
instrument summary UI:92
iterate to convergence (single equation) UI:85, 

UI:90
J-statistic (single equation) UI:82
kernel options (single equation) UI:90
kernel options (system) UI:655
multi-equation UI:648
N-step (single equation) UI:85, UI:90
one-step (single equation) UI:85, UI:90
panels UI:921
prewhitening option (single equation) UI:90
prewhitening option (system) UI:656, UI:682
regressor endogeneity test UI:93
robust standard errors UI:86
system UI:679
tests UI:92
user-specified weight matrix UI:90
weak instruments UI:94
White weighting matrix (single equation) 

UI:90
White weighting matrix (system) UI:680
Windmeijer standard errors UI:87

Godfrey heteroskedasticity test UI:197
Goldfeld-Quandt UII:1096
Gompit models UI:334
Goodness-of-fit

adjusted R-squared UI:13
Andrews test UI:342, UI:388
factor analysis UI:1055

forecast UI:157
Hosmer-Lemeshow test UI:342, UI:388
R-squared UI:13

Google Drive UI:96
Gradients UII:1103

details UII:1103
in equation UI:19, UI:661
in logl UI:576
saving in series UII:1105
summary UII:1104

Granger causality test UI:610
panel UI:1010
VAR UI:702

Graph
align multiple UI:784
analytical graphs UI:685
area band UI:672
area graph UI:670
arrows UI:759
automating UI:788
auto-updating UI:752
auxiliary graphs UI:704
average shifted histogram UI:690
axis borders UI:625
axis control UI:772
axis label format UI:656
axis See also Axis.
background color UI:771
background printing UI:771
bar graph UI:670
basic customization UI:648
border UI:771
boxplot UI:701
bubble plot UI:677
categorical UI:771
categorical See also Categorical graphs.
color settings UI:771
combining UI:756
combining graphs UI:756
confidence ellipse UI:713
coordinates for positioning elements UI:757
creating UI:751, UI:752
custom obs labels UI:773
customization UI:756
customize axis labels UI:656
customizing lines and symbols UI:776
data option UI:623
date label format UI:658
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date label frequency UI:657
date label positioning UI:660
dot plot UI:675
drawing lines and shaded areas UI:758
empirical CDF UI:696
empirical log survivor UI:697
empirical quantile UI:698
empirical survivor UI:697
error bar UI:676
fill areas UI:667
first vs. all UI:637
fit lines UI:640
font UI:757
font options UI:782
frame UI:649
frame border UI:650
frame color UI:649
frame fill UI:771
freeze UI:751
freezing UI:752
frequency UI:625
grid lines UI:771
groups UI:630
high-low-open-close UI:676
histogram UI:685
histogram edge polygon UI:689
histogram polygon UI:688
identifying points UI:619
indentation UI:771
kernel density UI:691
kernel regression UI:707
legend UI:663
legend font UI:665
legend options UI:775
legend placement UI:664
legend settings UI:775
legend text UI:665
line formats UI:665
line graph UI:669
lines UI:759
link frequency UI:625
location UI:651
means UI:623
merging multiple UI:106
mixed frequency data UI:634
mixed line UI:673
modifying UI:768
multiple graph options UI:784

multiple series option UI:632
nearest neighbor regression UI:709
non-consecutive observations UI:771
observation graphs UI:669
observations to label UI:657
orientation UI:624
orthogonal regression UI:712
pairwise data UI:636
panel data UI:993
panel data options UI:627
pie UI:683
place text in UI:757
position UI:651, UI:784
print in color UI:786
printing UI:786
quantile-quantile UI:699, UI:700, UI:701
raw data UI:623
regression line UI:704
remove custom date labels UI:775
remove elements UI:767
rotate UI:624
rotation UI:657
sample break plotting options UI:771
saving UI:787
scale UI:657
scatter UI:677
scatterplot matrix UI:638
scores UI:1053
seasonal UI:683
series UI:621
series view UI:402
settings for multiple graphs UI:783
shade options UI:782
size UI:650
slider bar (pasting with) 1:834
sorting UI:766
sorting observations UI:766
spike UI:673
stacked UI:637
symbol graph UI:669
symbols UI:665
templates UI:778
text justification UI:757
text options UI:782
theoretical distribution UI:695
type UI:622, UI:631, UI:669, UI:769
update settings UI:753
XY area UI:681
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XY bar UI:682
XY line UI:680
XY pairs UI:637

Grid lines UI:661
table UI:794

Grid search UII:1098
Group UI:198, UI:547

add member UI:547
adding series UI:548
adding to UI:135
auto-series UI:197
create UI:133, UI:198
display format UI:134
display type UI:125
edit mode default UI:868
edit series UI:549
editing UI:135
element UI:199
graph view UI:572
graphing UI:630
make system of equations UI:612
number of series UI:199
pool UI:848
rearranging series UI:548
row functions UI:199
spreadsheet view UI:548
spreadsheet view defaults UI:868
summaries UI:554

Group into bins option UI:406, UI:585
Group-mean DOLS UI:991
Group-mean FMOLS UI:989
Groupwise heteroskedasticity UI:589
Gumbel UI:696

H

HAC
cointegrating regression UI:279
GMM estimation UI:90
panel cointegrating regression UI:979
robust standard errors UI:32, UI:45
system GMM UI:681

Hadri UI:623
Hannan-Quinn criterion UII:1111

for equation UI:15
Hansen instability test UI:287
Harvey heteroskedasticity test UI:198
Hat matrix UI:231

Hatanaka two-step estimator UI:143
Hausman test UI:235, UI:949
Haver Analytics Database UI:377
Heckit modelSee Heckman selection
Heckman selection UI:371

example UI:374
ML estimation UI:372
performing in EViews UI:373
two-step model UI:371

Heckman two-step UI:371
Help UI:14

EViews Forum UI:15
help system UI:14
World Wide Web UI:15

Heteroskedasticity
binary models UI:349
cross-sectional details UI:884
groupwise UI:589
of known form UI:47
period details UI:884
robust standard errors UI:32
tests of UI:197
White's test UI:199
wizard UI:200

Heteroskedasticity consistent covariances UI:36
Heywood cases UI:1050
Hide

objects in spool UI:807
High frequency data UI:45
High-breakdown estimation UI:426
High-low-open-close graph UI:676
Hildreth-Lu UI:143
Histogram UI:402

as axis UI:625
average shifted graph UI:690
bin width UI:686
edge polygon graph UI:689
graph UI:685
normality test UI:194
polygon graph UI:688
save data UI:543
variable width UI:682

Historical decomposition UI:711
History

command window UI:8
field in database query UI:339

Hodrick-Prescott filter UI:538, UI:539



1144—Index
Holt-Winters
additive UI:514
ETS framework UI:520
likelihood based UI:520
multiplicative UI:514
no-seasonal UI:515

Honda random effects test UI:951
Hosmer-Lemeshow test UI:342, UI:388
HTML UI:799

open page as workfile UI:48
save table as web page UI:799

Huber covariance UI:428
Huber function UI:423
Huber M-estimator UI:421, UI:422
Huber/White standard errors UI:387, UI:396
Hypothesis test

stability UII:489
Hypothesis tests

 See also Test.
ARCH UI:198
Bartlett test UI:416
BDS independence UI:424, UI:636
binomial sign test UI:410
Brown-Forsythe UI:416
chi-square test UI:414
Chow breakpoint UI:206
coefficient based UI:176
coefficient p-value UI:12
CUSUM UI:226
CUSUM of squares UI:227
demonstration UI:30
descriptive statistic tests UI:408
distribution UI:417
F-test UI:416
Hausman test UI:235
heteroskedasticity UI:197
irrelevant or redundant variable UI:190
Kruskal-Wallis test UI:414
Levene test UI:416
mean UI:408
median UI:410
multi-sample equality UI:411
nonnested UI:237
normality UI:194
omitted variables UI:189
Ramsey RESET UI:224
residual based UI:193
Siegel-Tukey test UI:416

single sample UI:408
stability test UI:205
unit root UI:423, UI:424, UI:589
unknown breakpoint UI:208
Van der Waerden test UI:410, UI:415
variance UI:409
Wald coefficient restriction test UI:182
White heteroskedasticity UI:199
Wilcoxon rank sum test UI:414
Wilcoxon signed ranks test UI:410

I

Icon UI:103
Identification

Box-Jenkins UI:106
GMM UI:82
nonlinear models UI:59

Identity
in model UI:782
in system UI:651

If condition in samples UI:138
IGARCH UI:256
IHS Global Insight data UI:378, UI:379
IHS Magellan data UI:379
Im, Pesaran and Shin UI:624
Import data UI:146

append to end UI:157
as matrix UI:161
as table UI:161, UI:800
dated read UI:152
for pool objects UI:850
from ASCII UI:150
from spreadsheet UI:150
from workfile UI:150
matched read UI:155
name conflicts UI:161
options UI:159
See also Foreign data.
sequential read UI:157
using a pool object UI:854

Impulse response UI:707
 See also VAR.
ARMA models UI:130
generalized impulses UI:709
standard errors UI:708
structural decomposition UI:709
transformation of impulses UI:709
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user specified impulses UI:709
Incorrect functional form UI:199, UI:224
Indentation

spools UI:810
Independence test UI:424, UI:636
Index

fitted from binary models UI:345
fitted from censored models UI:363
fitted from truncated models UI:369

Individual sample UI:187
Influence statistics UI:231
Information criterion

Akaike UI:15, UII:1111
Hannan-Quinn UII:1111
Schwarz UI:15, UII:1111

Innovation UI:100
Insert

observation UI:132
Insertion point UI:7
Instrumental variable UI:69

dropped instruments UI:92
for 2SLS with AR specification UI:74
for nonlinear 2SLS UI:77
identification (single equation) UI:71
identification (systems) UI:653
in systems UI:651
order condition UI:71
rank UI:72
summary of UI:92
tests UI:92
using PDL specifications UI:25
weak UI:78
weak instruments UI:94
with pooled data UI:886

Integer dependent variable UI:377
Integrated series UI:589
Integrity (database) UI:345
Intercept in equation UI:6, UI:12
Interpolate UI:441
Intraday data UI:45

in samples UI:140
Invalid date identifiers UI:287
Inverted AR roots UI:126
Inverted MA roots UI:126
Irregular data UI:263
Irrelevant variable test UI:190

Iterate to convergence GMM
single equation UI:85, UI:90

Iteration UII:1090
failure to improve message UII:1091
in models UI:832
in nonlinear least squares UI:55
optimization method UII:1090

J

Jarque-Bera statistic UI:404, UI:194, UI:254
in VAR UI:704

JPEG UI:787
J-statistic

2sls UI:72
GMM UI:82
panel equation UI:941

J-test UI:237

K

Kaiser’s measure of sampling adequacy UI:1058
Kaiser-Guttman UI:1075
Kalman filter UI:757
Kao panel cointegration test UI:1039
K-class UI:77

estimation of UI:79
Kendall’s tau UI:572

theory UI:581
Kernel

cointegrating regression UI:279
functions UII:1117
GMM estimation UI:90
graph UI:708
long-run covariance estimation UI:606, UI:607
panel cointegrating regression UI:979
robust standard errors UI:45
system GMM HAC UI:655, UI:681
technical details UII:1117

Kernel density graph UI:691
save data UI:543

Kernel functions UI:692
Kernel regression UI:707

save data UI:543
Keyboard

data entry UI:146
focus option UI:862

Keyboard focus UI:862
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Klein model
GMM UI:90
LIML UI:80

Kolmogorov-Smirnov test UI:417
KPSS unit root test UI:597
Kruskal-Wallis test UI:414
Kullback-Leibler UII:1111
Kurtosis UI:404
Kwiatkowski, Phillips, Schmidt, and Shin test 

UI:597

L

Label
See Label object

Label object UI:116
automatic update option UI:865
capitalization UI:116

LAD UI:541
output UI:544
performing in EViews UI:541
quantile process views UI:547

Lag
dynamic assignment UI:191
exclusion test UI:702
forecasting UI:160
panel data UI:901
series UI:184

Lag length
VAR UI:703

Lag structure
VAR UI:702

Lagged dependent variable
and serial correlation UI:99
Durbin-Watson statistic UI:108

Lagged dependent variable models
See ARD

Lagged series in equation UI:7
Lagrange multiplier

test for serial correlation UI:108
Large sample test UI:175
Last_update

field in database query UI:339
Last_write

field in database query UI:339
Latent variable

binary model UI:332

censored models UI:357
ordered models UI:350

LaTeX
save graph as UI:787

Lead
series UI:184

Least absolute deviations estimation  See LAD
Least squares

panels UI:918
See also Equation.
See also OLS.

Levene test UI:416
Leverage plots UI:230
Leverages

estimation in presence of high UI:421
Levin, Lin and Chu UI:621
Likelihood UI:14
Likelihood specification UI:575
Lilliefors test UI:417
Limit points UI:353

censored dependent variables UI:359
make covariance matrix UI:356
make vector UI:356
non-ascending UI:354

Limited dependent variable UI:331
Limited information maximum likelihood (LIML) 

See LIML
LIML UI:77

Bekker standard errors UI:79
dropped instruments UI:92
estimation of UI:79
instrument summary UI:92
linear objective UI:78
minimum eigenvalue UI:78, UI:81
nonlinear objective UI:78
weak instruments UI:94

Line drawing UI:758
Line graph UI:669
Linear

frequency conversion method UI:172, UI:173
Linearity tests

smooth transition UII:489
Link UI:233

basic concepts UI:233
breaking UI:260
create by command UI:255
create by copy-and-paste UI:118
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creation UI:247
data from foreign formats UI:48, UI:55, 

UI:150, UI:154
frequency conversion UI:243, UI:254
match merging UI:234
modifying UI:259
to databases UI:324, UI:325
working with UI:257

Link function UI:394, UI:411
Linked equations in models UI:800
Linking objects from Excel and other file formats 

UI:48, UI:55, UI:150, UI:154
Linking objects to Excel, Word See OLE.
List

specifying equation by UI:6
Litterman

frequency conversion method UI:172, UI:175
Litterman/Minnesota prior UI:734, UI:747
Ljung-Box Q-statistic UI:422

serial correlation test UI:108
LM test

ARCH UI:198
auxiliary regression UI:195, UII:1106
serial correlation UI:108, UI:195

LMMP test for random effects UI:951
Lo and MacKinlay variance ratio test UI:627
Load

workfile UI:81
Loadings UI:1056
Local optimum UII:1093
Local regression UI:710
Local weighting option UI:711
LOESS UI:710, UI:711
Log likelihood

 See also Logl.
average UI:336
censored models UI:358
exponential UI:381
for binary models UI:332
for regression (normal errors) UI:14
negative binomial UI:379
normal UI:381
ordered models UI:351
Poisson model UI:379
restricted UI:336
truncated models UI:367

Logical expression UI:182

in easy query UI:335
Logistic function UI:423
Logistic regression UI:392
Logit models UI:334
Logl UI:565

analytical derivatives UI:570
convergence UI:577
derivatives UI:570
errors UI:578
estimation UI:572
examples UI:580
gradients UI:576
limitations UI:579
order of evaluation UI:569
parameters UI:568
specification UI:567
starting values UI:573
step size UI:571
troubleshooting UI:578
views UI:575

Long name UI:115
for series UI:431

Long-run covariance UII:1115
cointegrating regression UI:279
GMM estimation UI:90
group UI:604
panel cointegrating regression UI:979
series UI:423
technical discussion UII:1115

Long-run relationships
ARDL models UI:296

Long-run varianceSee Long-run covariance
LOWESS UI:710, UI:711
LR statistic UI:189, UI:336, UI:365, UI:367, 

UI:382
QLR UI:385

M

MA roots
inverted UI:126

MA specification
backcasting UI:120
forecast UI:163
in ARIMA models UI:101, UI:114
in model solution UI:819
in two stage least squares UI:75

MADMED
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definition UI:424
MADZERO

definition UI:424
MAE UI:425
Mann-Whitney test UI:414
MAPE UI:425
Marginal significance level UI:12, UI:175
Markov switching UI:505, UI:507

AR UI:511, UI:512
autoregressive models UI:511, UI:512
dynamic regression UI:511
estimation in EViews UI:513
example UI:525
expected durations UI:521
filtering UI:508
forecast UI:524
initial probabilities UI:510, UI:516
mean models UI:511
regime probabilities UI:508, UI:523, UI:525
smoothing UI:509
transition probabilities UI:521
transition results UI:521, UI:525
views available UI:521

Marquardt UII:1097
Match merge UI:234

by date UI:239
many-to-many UI:237
many-to-one UI:236
one-to-many UI:235
panels UI:241
using links UI:234

Match operator in database query UI:337
Match-merge

as import UI:155
Matlab I:823
Maximization See Optimization (user-defined).
Maximum

number of observations UI:877
Maximum likelihood

 See also Logl.
 See also Optimization (user-defined).
full information UI:648
quasi-generalized pseudo-maximum likelihood 

UI:385, UI:403
quasi-maximum likelihood UI:380, UI:391
user specified UI:565

McFadden R-squared UI:336

Mean UI:403
equality test UI:412
hypothesis test of UI:408

Mean absolute error UI:425, UI:158
Mean absolute percentage error UI:425, UI:158
Mean equation (GARCH) UI:247
Mean square error UI:506, UI:526, UI:158
Measurement equation UI:756
Measurement error UI:69, UI:224
Median UI:403

equality test UI:414
hypothesis test of UI:410

Median function UI:423
Memory allocation UI:877
Memory, running out of UI:877
Menu UI:114

objects UI:115
Merge UI:118

 See Match merge.
graphs UI:106
into panel workfiles UI:913
store option UI:323

Messages UI:859
M-estimation UI:421

performing in EViews UI:429
tuning constants UI:422
weight functions UI:422

Meta data
See Attributes

Metafile
save graph as Windows metafile. UI:787

Micro TSP
opening workfiles UI:315

Microsoft Excel
See Excel.

Microsoft PowerPoint
pasting graphs and data into 1:827

Microsoft Word
pasting graphs and data into 1:827

MIDAS
Almon weighting UI:315
beta weighting UI:316, UI:317
example UI:323
exponential Almon weighting UI:316
PDL weighting UI:315
regression UI:313
step weighting UI:315
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Minimization See Optimization (user-defined).
Minimum discrepancy UI:1077
Missing values UI:187

forecasting UI:155
handling in estimation UI:10
in frequency conversion UI:172
in models UI:832
in observation graphs UI:626
interpolate UI:441
recoding UI:189
relational comparisons involving UI:188
test UI:188

Mixed data sampling
regression UI:313

Mixed frequency graph UI:634
Mixed line graph UI:673
MLE

See Logl
MM-estimation UI:428

performing in EViews UI:429
Model

excluding variables UI:813
overriding variables UI:812

Model averaging UI:505
Model consistent expectations UI:819
Model selection

ARDL models UI:302
ARIMA models UI:496
ARIMA using X-13 UI:451, UI:454
ETS smoothing UI:525, UI:528
TAR estimation UI:468

Models
add factors UI:781, UI:794, UI:814
adding equations UI:786
aliasing UI:783, UI:811
binding variables UI:783
block structure UI:804
boundaries UI:829
Broyden solution UII:1100
Broyden solver UI:830
coefficient uncertainty UI:801, UI:817, UI:827
comparing solutions UI:838
convergence test UI:832
creating UI:799
definition UI:645
demonstration UI:347
dependency graph UI:808

derivatives UI:832
diagnostic messages and iteration history 

UI:828
dynamic solution UI:822
dynamic solve UI:789
editing scenarios UI:812
endogenous variables UI:781
equation view UI:801
estimating equations UI:785
excluding variables UI:810
exogenous variable UI:781
exogenous variable uncertainty UI:817, UI:828
Fair-Taylor solution UI:818
fit option for solution UI:823
forecasting with UI:790
future values UI:817
Gauss-Seidel solution UII:1098
Gauss-Seidel solver UI:829
handling of ARMA terms UI:823
identities UI:782
initialize excluded variables UI:830
inline equations UI:800
intercept shift add factor UI:814
linked equations UI:800
MA error terms UI:819
missing value handling UI:832
Newton solution UII:1099
Newton’s method UI:830
overriding variables UI:783, UI:811, UI:817
properties of equations UI:802
roundoff of solution UI:833
scenarios UI:347, UI:797, UI:810
scenarios (example) UI:347
simultaneous and recursive blocks UI:804
solution methods UI:829
solve (dynamic) UI:789
solve (static) UI:787
solving UI:816
solving to match target UI:833
starting values UI:832
static solution UI:823
static solve UI:787
stochastic equations UI:782
stochastic simulation UI:822
stochastic solution UI:824
text description of UI:805, UI:806
text keywords UI:805, UI:806
tracking variables UI:828
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updating links UI:801
variable dependencies UI:804
variable shift add factor UI:814
variable view UI:803

Moment condition UI:82
Moment selection criteria UI:95
Moody’s Economy.com UI:382
MoveReg decomposition UI:472
Moving statistics

functions UI:185
geometric mean UI:197

MSAR UI:511, UI:512
MSE UI:506, UI:526, UI:158
MSI UI:511
MSM UI:511
Multicollinearity UI:22

coefficient variance decomposition UI:180
test of UI:179, UI:180

Multiple processors UI:878
Multivariate ARCH UI:648

N

NA See NAs and Missing data.
Nadaraya-Watson UI:708
Name

object UI:115
reserved UI:115

Name field in database query UI:337
Naming objects

spool UI:806
NAs UI:187

forecasting UI:155
inequality comparison UI:188
See also Missing data
test UI:188

Near singular matrix UI:22
binary models UI:339
logl UI:569, UI:577, UI:579
nonlinear models UI:59, UII:1093
polynomial distributed lag UI:24
RESET test UI:225

Nearest neighbor regression UI:709, UI:710
Negative binomial count model UI:379
Network proxy server UI:876
Newey-West automatic bandwidth

cointegrating regression UI:279

GMM estimation UI:90
long-run covariance estimation UI:607, 

UII:1121
panel cointegrating regression UI:979
system GMM UI:681

Newey-West consistent covariance
cointegrating regression UI:279
GLM estimation UI:396
GMM estimation UI:90
panel cointegrating regression UI:979
robust standard errors UI:45
system GMM UI:681

Newton’s method UI:830, UII:1099
Newton-Raphson UII:1095, UII:1097
Noninvertible MA process UI:126, UI:138
Nonlinear coefficient restriction

Wald test UI:187
Nonlinear least squares UI:51

coefficient covariance UI:54
convergence criterion UI:55
forecast standard errors UI:157
iteration option UI:55
optimization method option UI:55
specification UI:53
starting values UI:56
two stage UI:76
two stage with AR specification UI:77
weighted UI:58
weighted two stage UI:77, UI:88
with AR specification UI:58, UI:139

Nonnested tests UI:237
Nonparametric kernel

technical details UII:1116
Non-unique identifiers UI:287
Normality test UI:404, UI:417, UI:194, UI:254, 

UI:704
VAR UI:704

Normalize formula UI:192
Normal-Wishart prior UI:735, UI:749
Nowcasting UI:313
N-step forecast test UI:228
N-step GMM

single equation UI:85, UI:90
Null hypothesis UI:175
Number format

See Display format
Numbers
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relational comparison UI:182
N-way table UI:588

chi-square tests UI:587

O

Object UI:101
allow multiple untitled UI:861
basics UI:102
closing untitled UI:861
copy UI:117
create UI:105
data UI:102, UI:123
delete UI:119
freeze UI:119
icon UI:103
label See Label object
naming UI:116
open UI:106
preview UI:107, UI:325
print UI:119
procedure UI:103
sample UI:145
show UI:107
store UI:120
type UI:104
window UI:112

Object linking and embedding
See OLE.

Objects menu UI:115
Observation equation UI:756, UI:761
Observation graphs UI:626, UI:669

missing values UI:626
Observation identifiers UI:304
Observation number UI:128
Observation scale UI:657
Observations, number of

maximum UI:877
ODBC UI:48
OLE 1:827

copy special 1:854
embedding (definition) 1:828
linking (definition) 1:828
paste EViews object 1:832
pasting graphs 1:829
pasting numerical data 1:843
pasting with the workfile sample 1:850
using 1:828

OLS (ordinary least squares)
 See also Equation.
adjusted R-squared UI:13
coefficient standard error UI:12
coefficient t-statistic UI:12
coefficients UI:11
standard error of regression UI:14
sum of squared residuals UI:14
system estimation UI:646, UI:675

Omitted variables test UI:189, UI:224
panel UI:943

OneDrive UI:96
One-step forecast test UI:228
One-step GMM

single equation UI:85, UI:90
One-way frequency table UI:419
Open

database UI:319
foreign data as matrix UI:161
foreign data as table UI:161, UI:800
multiple objects UI:106
object UI:106
options UI:315
workfile UI:81

Operator UI:179
arithmetic UI:179
conjunction (and, or) UI:183
difference UI:184
lag UI:184
lead UI:184
parentheses UI:180
relational UI:182

Optimization
methods UII:1090

Optimization algorithms
BHHH UII:1097
first derivative methods UII:1096
Gauss-Newton UII:1097
Goldfeld-Quandt UII:1096
grid search UII:1098
Marquardt UII:1097
Newton-Raphson UII:1095
second derivative methods UII:1095
starting values UII:1091
step size UII:1097

Option settings
allow only one untitled UI:861
backup workfiles UI:78, UI:870
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date notation UI:864
default fonts UI:864
EViews sessions on open UI:862
external program interface UI:875
fonts UI:864
frequency conversion UI:864
keyboard focus UI:862
messages UI:859
network proxy server UI:876
print setup UI:880
program execution mode UI:872
series auto label UI:865
snapshots UI:863
spreadsheet data display UI:868
spreadsheet view defaults UI:867
start page UI:859
warn on close UI:861
window appearance UI:860

Optmization (user-defined) I:823
Or operator UI:139, UI:183
Order condition

2sls UI:71
GMM UI:82

Order of evaluation
logl UI:569

Order of stacked data UI:853
Ordered dependent variable UI:350

error messages UI:354
estimation UI:351
expectation-prediction tables UI:354
forecasting UI:356
limit points UI:356
log likelihood UI:351
variable frequencies UI:354
views UI:354

Ordinary residual
binary models UI:345
censored models UI:363
count models UI:382
GLM UI:405
truncated models UI:368

Orientation UI:624
Orthogonal regression UI:712
Orthogonality condition UI:82, UI:680
Outliers

detection of UI:230, UI:231
detection of in X-13 UI:449

robust estimation in presence of UI:421
Over identification UI:82
Overdispersion UI:380, UI:387, UI:417

specification test UI:383

P

PACE UI:1047
details UI:1078

Pack database UI:344
Packable space UI:320, UI:344
Page

create new UI:82
delete page UI:91
rename UI:91
reorder UI:91

Page breaks UI:819
Pairwise graphs UI:636
Panel

random components test UI:951
residual cross-section dependence test UI:958, 

UI:1018
Panel cointegrating regression UI:973

equation specification UI:975
examples UI:981
performing in EViews UI:974
PMG models UI:924
technical details UI:973, UI:987

Panel data UI:893
analysis UI:914
balanced UI:270
cell identifier UI:899
cointegration testing UI:1016, UI:1036
convert to pool UI:301
covariance analysis UI:999
create workfile of UI:46
cross-section identifiers UI:898
cross-section summaries UI:908
dated UI:269
duplicate identifiers UI:268, UI:285
dynamic panel data UI:921
estimation See Panel estimation.
fixed effects test UI:947
frequency conversion UI:245
GMM estimation UI:921
graphs UI:993
group identifier UI:898
Hausman test UI:949
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identifiers UI:266
instrumental variables estimation UI:920
irregular UI:270
lags UI:267, UI:901
lags and leads UI:901
least squares estimation UI:918
merging data into UI:913
nested UI:272
period summaries UI:908
pool comparison UI:843
regular UI:270
samples in panel workfiles UI:902
See also Panel workfile.
statistics UI:906
testing UI:943
time trend UI:906
trends UI:906
unbalanced UI:270
undated UI:269
unit root tests UI:617, UI:1014
within-group identifier UI:900
workfile structure UI:266

Panel estimation UI:917
examples UI:927
GLS weights UI:919
GMM UI:921
GMM (example) UI:936
GMM details UI:967
least squares UI:918
PMG UI:924
TSLS UI:920

Panel unit root See Panel data - unit root tests.
Panel vs. pool UI:843
Panel workfile

 See also Panel data.
create UI:893
dated UI:280
display UI:896
nested UI:272
structure UI:893, UI:897
undated UI:285
undated with ID UI:284

Parallel analysis UI:1047
Param (command) UI:57, UI:654, UII:1092
Parameters

logl UI:568
PARCH UI:258
Park added variable test UI:290

Parks estimator UI:885
Partial analysis UI:577
Partial autocorrelation UI:422, UI:106
Partial covariance analysis UI:577
Parzen kernel

cointegrating regression UI:279
GMM estimation UI:90
long-run covariance estimation UI:607
panel cointegrating regression UI:979
robust standard errors UI:45
technical details UII:1117

Parzen-Cauchy kernel
cointegrating regression UI:279
GMM estimation UI:90
long-run covariance estimation UI:607
panel cointegrating regression UI:979
robust standard errors UI:45
technical details UII:1118

Parzen-Geometric kernel
cointegrating regression UI:279
GMM estimation UI:90
long-run covariance estimation UI:607
panel cointegrating regression UI:979
robust standard errors UI:45
technical details UII:1117

Parzen-Riesz kernel
cointegrating regression UI:279
GMM estimation UI:90
long-run covariance estimation UI:607
panel cointegrating regression UI:979
robust standard errors UI:45
technical details UII:1117

Paste UI:118
data as new workfile UI:47
existing series UI:149
into Excel, Word  See OLE.
new series UI:148

Paste special
 See also OLE.
EViews object 1:832
graphs 1:830
spreadsheets 1:835
tables 1:835

Paste special  See OLE.
PcGive data UI:377
PDF

save graph as UI:787
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PDL
mixed frequencies UI:315

PDL (polynomial distributed lag) UI:23, UI:157
far end restriction UI:24
forecast standard errors UI:157
instrumental variables UI:25
near end restriction UI:24
specification UI:24

Pearson covariance UI:572
Pedroni panel cointegration test UI:1017, 

UI:1038
Period

summaries UI:908
SUR UI:886

Perron unit root test UI:601
Pesaran scaled LM test UI:958, UI:1018
Pesaran, Shin and Smith UI:924
Phillips-Ouliaris cointegration test UI:1032
Phillips-Perron test UI:596
Pie graph UI:683
PMG UI:924
PNG UI:787
Point

frequency conversion method UI:172, UI:174
Poisson count model UI:378
Polynomial distributed lags, See PDL.
Pool UI:843

? placeholder UI:848
and cross-section specific series UI:847
AR specification UI:866
balanced data UI:854, UI:858
balanced sample UI:865
base name UI:847
coefficient test UI:878
cointegration UI:860
common coefficients UI:866
convergence criterion UI:869
convert to panel UI:307
copy UI:846
creating UI:849
cross-section UI:845
cross-section specific coefficients UI:866
defining UI:845
defining groups of identifiers UI:846
descriptive statistics UI:858
dummy variable UI:857
editing definitions UI:846

estimation UI:864
estimation details UI:879
export data UI:862
fixed effects UI:867, UI:882
generate series UI:856
group UI:848
import UI:850
import data UI:850
import stacked data UI:854
instrumental variables UI:869, UI:886
make group UI:861
make system UI:861
naming series UI:847
object UI:844
options UI:868
order UI:853
period-specific coefficients UI:866
pool series UI:848
procedures UI:878
random effects UI:867, UI:883
residuals UI:879
restructure UI:852
series UI:848
setup UI:849
special group identity series UI:848
specification UI:845
stacked data UI:851
tests UI:878
unstacked data UI:850
workfile UI:843

Pool data
panel comparison UI:843

Pool vs. panel UI:843
Pooled Mean Group estimation UI:924
Portmanteau test

VAR UI:704
PostScript UI:787

save graph as PostScript file UI:787
PowerPoint

pasting graphs and data into 1:827
Prais-Winsten UI:143
Precedence of evaluation UI:180
Predetermined variable UI:69
Prediction table

binary models UI:340
ordered models UI:354

Preview objects UI:107, UI:325
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Prewhitening
cointegrating regression UI:279
GMM estimation UI:90
long-run covariance estimation UII:1123
panel cointegrating regression UI:979
robust standard errors UI:45
system GMM UI:656, UI:682
technical details UII:1123

Principal components UI:590
Principal factors UI:1077
Print

graphs UI:786
mode UI:819
objects UI:119
settings UI:880
setup options UI:880
spool UI:819, UI:881
tables UI:798
to a spool UI:802

Probability response curve UI:346
Probit models UI:334
Procedures UI:103
Process graphs (quantile regression) UI:548
Processors

multiple UI:878
Program

auto indent UI:872
backup files UI:872
execution option UI:872, UI:875, UI:876
syntax coloring UI:872
tab settings UI:872

Proxy server UI:876
P-value UI:175

for coefficient t-statistic UI:12

Q

QML UI:380, UI:391, UI:413
QQ-plot UI:699, UI:700, UI:701

save data UI:543
Q-statistic

Ljung-Box UI:422
residual serial correlation test UI:704
serial correlation test UI:108

Quadratic
frequency conversion method UI:172, UI:173

Quadratic hill-climbing UII:1096
Quadratic spectral kernel UI:681

cointegrating regression UI:279
GMM estimation UI:90
long-run covariance estimation UI:607
panel cointegrating regression UI:979
robust standard errors UI:45
technical details UII:1118

Qualitative dependent variable UI:331
Quandt breakpoint test UI:208
Quantile method UI:696
Quantile process coefficients UI:548

technical details UI:562
Quantile process views UI:547

technical details UI:562
Quantile regression UI:541

example UI:544
output UI:544
performing in EViews UI:541
process coefficients UI:548
quantile process views UI:547
slope equality test UI:550
symmetric quantiles test UI:551
technical details UI:553

Quantiles
from series UI:435, UI:436

Quasi-generalized pseudo-maximum likelihood 
UI:385

Quasi-likelihood ratio test UI:382, UI:385
Quasi-maximum likelihood UI:380

robust standard errors UI:387
Queries on database UI:333

advanced query UI:335
DRI UI:396
easy query UI:334
examples UI:340
logical expressions UI:335
wildcard characters UI:334

Quiet mode UI:873

R

R I:823
R project I:823
Ramsey RESET test UI:224
Random components test UI:951
Random effects

LM test for UI:951
panel estimation UI:919
pool UI:867



1156—Index
pool descriptions UI:883
test for correlated effects (Hausman) UI:949

Random walk UI:589
Rank condition for identification UI:71
Ranks

observations in series or vector UI:186
Ratio to moving-average UI:495
RATS data

4.x native format UI:382
portable format UI:383

Read UI:850
data from foreign file as matrix UI:161
data from foreign file as table UI:161, UI:800

Reading EViews data (in other applications) 
UI:164

Rebuild database UI:345
Recursive coefficient UI:229

save as series UI:229
Recursive estimation

least squares UI:225
using state space UI:764

Recursive least squares UI:225
Recursive residual UI:225, UI:226

CUSUM UI:226
CUSUM of squares UI:227
n-step forecast test UI:228
one-step forecast test UI:228
save as series UI:229

Reduced covariance UI:1056
Redundant variables test UI:190

panel UI:945
Regime probabilities UI:523

outputting UI:525
Regime switching UI:506
Registry UI:331
Regression

 See also Equation.
adjusted R-squared UI:13
breakpoint estimation UI:441
coefficient standard error UI:12
coefficients UI:11
collinearity UI:22
forecast UI:147
F-statistic UI:15
line on graph UI:704
log likelihood UI:14
quantile UI:541

residuals from UI:20
standard error of UI:14
sum of squared residuals UI:14
t-statistic for coefficient UI:12

Regular data UI:263
Relational operators

and missing values UI:188
Remarks

field in database query UI:339
Removing data UI:294
Rename UI:115

database UI:343
objects in database UI:327
page UI:91
workfile page UI:91

Reorder
page UI:91

Repair database UI:345
Representations view

equation UI:18
Resample UI:439
Reserved names UI:115
RESET test UI:224
Reshaping a workfile UI:298
Residuals

binary models UI:345
censored dependent variable models UI:362
count models UI:382
default series RESID UI:20
display of in equation UI:20
estimation in presence of large UI:421
from estimated equation UI:20
from two stage least squares UI:72
generalized UI:345, UI:363, UI:369, UI:382
GLM UI:405
make series or group containing UI:19
of equation UI:18
ordinary UI:345, UI:363, UI:368, UI:382
plot UI:18
plots of UI:230
pool UI:879
recursive UI:225, UI:226
standardized UI:18, UI:345, UI:363, UI:368, 

UI:382
studentized UI:231
sum of squares UI:14
symmetrically trimmed UI:365
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system UI:663
tests of UI:193
truncated dependent variable UI:368
unconditional UI:125

Resize
spools UI:809
table columns and rows UI:794
workfile UI:275, UI:288

Restricted estimation UI:8
Restricted log likelihood UI:336
Restructuring UI:852
Results

display or retrieve UI:16
Rich Text Format UI:799
RMSE UI:425, UI:158
Rn-squared statistic

definition UI:425
Robust least squares UI:421

Andrews function UI:422
Bisquare function UI:422
Cauchy function UI:422
example UI:434
Fair function UI:422
Huber function UI:423
Logistic function UI:423
Median function UI:423
M-estimation UI:421
Talworth function UI:423
Welsch function UI:423

Robust regression See Robust least squares.
Robust standard errors UI:32

Bollerslev-Wooldridge for GARCH UI:250
cluster UI:39
clustered UI:919
GLM UI:387, UI:396
GMM UI:86
Huber-White (QML) UI:387, UI:396

Robustness iterations UI:706, UI:711
Root mean square error UI:425, UI:158
Rotate

factors UI:1050, UI:1081
graphs UI:624

Rotation of factors UI:1050
details UI:1081

Row
functions UI:199
height UI:794

R-squared
adjusted UI:13
for regression UI:13
from two stage least squares UI:73
McFadden UI:336
negative UI:252
uncentered UI:195, UI:199
with AR specification UI:125

RTF UI:799
create UI:881
redirecting print to UI:881

Rw-squared statistic
definition UI:425

S

SAIC UI:507
Sample
@all UI:138
@first UI:138
adjustment in estimation UI:10
all observations UI:138
balanced UI:865
breaks UI:626
change UI:137
command UI:139
common UI:187
current UI:61
date pairs UI:137
first observation UI:138
if condition UI:138
individual UI:187
intraday data UI:140
last observation UI:138
range pairs UI:137
selection and missing values UI:139
specifying sample object UI:145
specifying samples in panel workfiles UI:902
used in estimation UI:9
using sample objects in expressions UI:145
with expressions UI:140
workfile UI:136

SAR specification UI:102, UI:106
SAR(p)

estimation UI:113
SARMA UI:102
SAS file UI:48
Save
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backup workfile UI:76
graphs UI:787
options UI:315
save as new workfile UI:76
spool UI:820
tables UI:799
workfile UI:75
workfile as foreign file UI:161
workfile precision and compression UI:77

Scalar UI:202
Scale factor UI:362
Scaled coefficients UI:176
Scaling

factor analysis UI:1049
Scatterplot UI:677

categorical UI:729
matrix of UI:638
with confidence ellipse UI:713
with kernel regression fit UI:707
with nearest neighbor fit UI:709
with orthogonal regression line UI:712
with regression line UI:704

Scenarios UI:797
simple example UI:347

Schwarz criterion UII:1111
for equation UI:15

Score coefficients UI:1052
Score vector UI:346
Scores UI:1051
Seasonal

ARMA terms UI:102
difference UI:185, UI:115
graphs UI:683

Seasonal adjustment UI:444
additive UI:495
Census X-11 (historical) UI:490
Census X-12 UI:481
Census X-13 UI:444
MoveReg decomposition UI:472
multiplicative UI:495
STL decomposition UI:463
Tramo/Seats UI:490
weekly UI:472

Second derivative methods UII:1095
Seemingly unrelated regression UI:647, UI:676
Select

all UI:106

object UI:105
Selection model See  Heckman selection
Sensitivity of binary prediction UI:341
Sequential breakpoint

estimation with UI:442
tests UI:212

Serial correlation
ARIMA models UI:104
Durbin-Watson statistic UI:14, UI:107
first order UI:100
higher order UI:101
nonlinear models UI:139
switching models UI:511
theory UI:99
two stage regression UI:139

Serial correlation test
equations UI:107, UI:195
panels UI:964
VARs UI:704

Series UI:401
adjust values UI:433
auto-series UI:193
auto-updating UI:203
auto-updating and databases UI:207
auto-updating and forecasting UI:167
binning UI:435
classification UI:435
comparison UI:433
create UI:124, UI:190
cross-section specific UI:847
delete observation UI:132
description of UI:123
descriptive statistics UI:402
difference UI:184
display format UI:125
display type UI:125
dynamic assignment UI:191
edit in differences UI:549
edit mode default UI:868
editing UI:131, 1:885
fill values UI:433
functions UI:181
generate by command UI:192
graph UI:402, UI:621
implicit assignment UI:191
in pool objects UI:848
insert observation UI:132
interpolate UI:441



S—1159
lag UI:184
lead UI:184
pooled UI:848
previewing contents UI:107
procs UI:434
properties UI:432
ranking UI:186
resample UI:439
setting graph axis UI:652
smpl+/- UI:128
spreadsheet view UI:402
spreadsheet view defaults UI:867
using expressions in place of UI:193

S-estimation UI:426
performing in EViews UI:429
tuning constants UI:427
weight function UI:426

SETAR UI:461
Shade region of graph UI:758
Shadowing of object names UI:342
Sharing violation UI:320
Show object view UI:106
Siddiqui difference quotient UI:543, UI:556
Siegel-Tukey test UI:416
Sign test UI:410
Signal equation UI:761
Signal variables

views UI:774
Silverman bandwidth UI:693
Sims-Zha prior UI:735, UI:750
Simultaneous equations See systems.
Singular matrix

error in binary estimation UI:339
error in estimation UI:22, UI:59, UII:1093
error in logl UI:569, UI:577, UI:579
error in PDL estimation UI:24
error in RESET test UI:225

Skewness UI:403
Slope equality test (quantile regression) UI:550

technical details UI:562
SMA specification UI:102, UI:106
Smooth threshold autoregression UII:477
Smooth transition regression

transition functions UII:478
Smoothed AIC weights UI:507
Smoothing

ETS model UI:517
likelihood based UI:517
Markov switching UI:509
methods UI:511
parameters UI:512
state space UI:757

Smpl command UI:139
Smpl+/- UI:128
Snapshots

defaults UI:863
Solve

Broyden UI:830
Gauss-Seidel UII:1098
Newton-Raphson UII:1095

Sort
display UI:551
observations in a graph UI:625, UI:766
spreadsheet display UI:551
valmaps UI:223
workfile UI:315

Source
field in database query UI:339

Sparse label option UI:406, UI:586
Spearman rank correlation UI:572
Spearman rank-order

theory UI:581
Specification

by formula UI:7
by list UI:6
of equation UI:6
of nonlinear equation UI:53
of systems UI:650

Specification test
for binary models UI:349
for overdispersion UI:383
for tobit UI:365
of equation UI:175
RESET (Ramsey) UI:224
White UI:199

Specificity of binary prediction UI:341
Spectrum estimation UI:598, UI:599
Spike graph UI:673
Spool UI:801

add to UI:802
appending UI:803
comments UI:806
copying to UI:803
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create UI:801
customization UI:813
delete objects UI:810
display mode UI:815
embedding UI:804
extract UI:810
flatten tree hierarchy UI:811
hiding objects UI:807
indentation UI:810
management UI:802
naming objects UI:806
order UI:810
print UI:881
print size UI:820
print to UI:802
printing UI:819
properties UI:813
rearrange UI:810
redirecting print to UI:881
resize UI:809
saving UI:820

Spreadsheet
file import UI:150
file import as matrix UI:161
file import as table UI:161, UI:800
series UI:402
sort display default UI:868
sort display order UI:551
view option UI:867, UI:868

Spreadsheet view
alpha UI:215
display type UI:125
group UI:548

SPSS file UI:48
SSAR UI:513
SSCP UI:574
Stability test UI:205

Bai Perron tests UI:210
Chow breakpoint UI:206
Chow forecast UI:222
RESET UI:224
smooth transition UII:494
with unequal variance UI:234

Stacked data UI:851
balanced UI:854
descriptive statistics UI:859
order UI:853

Stacking data UI:307

Standard deviation UI:403
Standard error

for estimated coefficient UI:12
forecast UI:156, UI:170
of the regression UI:14
See also Robust standard errors.
VAR UI:708

Standard errors
cluster-robust UI:39

Standardized coefficients UI:176
Standardized residual UI:18

binary models UI:345
censored models UI:363
count models UI:382
GLM UI:405
truncated models UI:368

STAR UII:477
Start

field in database query UI:338
field in workfile details UI:64

Start page UI:859
Starting values

(G)ARCH models UI:249
binary models UI:337
for ARMA estimation UI:118, UI:124
for coefficients UI:57, UII:1091
for nonlinear least squares UI:54, UI:56
for systems UI:654
logl UI:573
param statement UI:57, UII:1092
state space UI:765
user supplied UI:119, UI:124

Stata file UI:48
State equation UI:756, UI:760
State space UI:755
@mprior UI:765
@vprior UI:765
estimation UI:759, UI:770
filtering UI:756
forecasting UI:758
interpreting UI:771
observation equation UI:756
representation UI:755
specification UI:755, UI:760
specification (automatic) UI:768
starting values UI:765
state equation UI:756
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views UI:773
State variables UI:755
State views UI:774
Static forecast UI:161
Static OLS UI:268, UI:269
Stationary time series UI:589
Status line UI:9
Step size UII:1097

logl UI:571
Step weights UI:315
Stepwise UI:60

swapwise UI:65
uni-directional UI:64

STL decomposition UI:463
Stochastic equations

in model UI:782
Store UI:120

as .DB? file UI:323
from pool UI:862
in database UI:322
merge objects UI:323

Structural change
estimation in the presence of UI:441
tests of UI:205, UI:210

Structural forecast UI:162
Structural solution of models UI:823
Structural VAR UI:714

estimation UI:723
factorization matrix UI:705

Structuring a workfile UI:263
Studentized residual UI:231
Subtitle

Breusch-Pagan LM test UI:960
Sum of squared residuals

for regression UI:14
Summarizing data UI:554
Summary statistics

for regression variables UI:13
SUR UI:647, UI:676
Survivor function UI:697

log UI:697
save data UI:543

Swapwise UI:65
Switching regression UI:505

dynamic models UI:510
estimation in EViews UI:513

expected durations UI:521
filtering UI:507
forecast UI:524
initial probabilities UI:516
regime probabilities UI:506, UI:523, UI:525
serial correlation UI:511
transition probabilities UI:521
transition results UI:521, UI:525
views available UI:521

Symbol graph UI:669
Symmetric quantiles test UI:551

technical details UI:563
Symmetrically trimmed residuals UI:365
Syntax coloring UI:872
System UI:645

ARCH UI:648
covariance matrix UI:661
create UI:648, UI:649
cross-equation weighting UI:646
definition UI:645
derivatives UI:661
estimation UI:646, UI:654
estimation methods (technical) UI:674
FIML UI:678
forecast UI:662
full information maximum likelihood UI:648
GMM UI:679
gradients UI:661
Instruments UI:651
make system from group UI:612
OLS UI:646, UI:675
options UI:658
residuals UI:663
specification UI:650
specify from VAR UI:713
SUR UI:647, UI:676
three stage least squares UI:647, UI:678
two stage least squares UI:647, UI:677
views UI:661
weighted least squares UI:647, UI:675

System options UI:877

T

Tab settings UI:872
Table UI:789

cell annotation UI:796
cell format UI:794
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cell merging UI:797
color UI:795
column resize UI:794
column width See Column width.
comments UI:796
copy UI:798
copy to other windows programs UI:798
customization UI:793
edit UI:791
editing UI:791
font UI:795
formatting UI:794
gridlines UI:794
merging UI:797
paste as unformatted text UI:799
print UI:798
read data from foreign source UI:800
row resize UI:794
save to disk UI:799
selecting cells UI:789
sort rows UI:792
title UI:794

Tabs
See Page

Tabulation
n-way UI:585
one-way UI:419

Talworth function UI:423
TAR UI:461
TARCH UI:256
Template

dated data tables UI:567
graphs UI:778

Test
 See also Hypothesis tests, Specification test 

and Goodness of fit
ARCH UI:198
Arrelano-Bond serial correlation UI:964
breakpoint UI:206, UI:208, UI:210
coefficient UI:176
cross-section dependence UI:958, UI:1018
Durbin-Wu-Hausman UI:93
Granger causality UI:610, UI:1010
Hansen instability UI:287
heteroskedasticity UI:197
multiple breakpoint UI:210
Park added variable UI:290
pooled UI:878

RESET UI:224
residual UI:193
stability tests UI:205
unit root with break UI:601
variance ratio UI:627
White UI:199

Text UI:800
Text file

import as matrix UI:161
import as table UI:161, UI:800
open as workfile UI:48

Theil inequality coefficient UI:425, UI:158
Themes UI:860
Theoretical distribution graph UI:695

save data UI:543
Three stage least squares See 3sls (Three Stage 

Least Squares)
Threshold autoregression UI:461
Threshold GARCH (TARCH) UI:256
Threshold regression UI:461

smooth UII:477
Time series functions UI:184
Title bar UI:6, UI:61, UI:113
To (lag range) UI:7
Tobit UI:357
Toolbar UI:61, UI:113
Tracking model variables UI:828
TRAMO/SEATS

in X-13 UI:454, UI:458
Tramo/Seats UI:490
Transition equation UI:756
Transition results

Markov switching UI:521
outputting UI:525
switching regression UI:521

Transpose UI:548
Trend

panel data UI:906
See also @trend.

Truncated dependent variable UI:367
estimation UI:367
fitted index UI:369
forecasting UI:369
log likelihood UI:367
residuals UI:368

Truncation point UI:368
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TSD data format UI:348
TSP portable data format UI:385
t-statistics

retrieve from equation UI:12
Tukey UI:696
Tukey-Hamming kernel

cointegrating regression UI:279
GMM estimation UI:90
long-run covariance estimation UI:607
panel cointegrating regression UI:979
robust standard errors UI:45
technical details UII:1118

Tukey-Hanning kernel
cointegrating regression UI:279
GMM estimation UI:90
long-run covariance estimation UI:607
panel cointegrating regression UI:979
robust standard errors UI:45
technical details UII:1118

Tukey-Parzen kernel
cointegrating regression UI:279
GMM estimation UI:90
long-run covariance estimation UI:607
panel cointegrating regression UI:979
robust standard errors UI:45
technical details UII:1118

Tuning constants
M-estimation UI:422
S-estimation UI:427

Type
field in database query UI:337

U

U.S. Energy Information Administration data 
UI:362

UMP random effects test UI:951
Unconditional residual UI:125
Undo UI:433
Uni-directional UI:64
Unit root test UI:423, UI:424, UI:589

augmented Dickey-Fuller UI:594
Dickey-Fuller UI:594
Dickey-Fuller GLS detrended UI:595
Elliot, Rothenberg, and Stock UI:597
KPSS UI:597
panel data UI:617, UI:1014
Phillips-Perron UI:596, UI:597

pooled data UI:859
trend assumption UI:595
with breakpoints UI:601

Units
field in database query UI:339

Unstacked data UI:850
Unstacking data UI:301
Unstacking identifiers UI:303
Untitled UI:115, UI:116
Update

automatic UI:203
coefficient vector UI:19, UII:1092
from Database UI:120
graphs UI:753
group UI:548

Updating graphs UI:752
Urzua factorization matrix UI:705
User defined menus

See Add-ins.
User objects I:823
User specified GMM weight matrix UI:90
User supplied starting values UI:119, UI:124
User-defined optimization See Optimization (user-

defined).

V

Valmap UI:219
cautions UI:230
find label for value UI:228
find numeric value for label UI:229
find string value for label UI:229
functions UI:228
properties UI:224
sorting UI:223

Value map See Valmap.
Van der Waerden UI:696
Van der Waerden test UI:410, UI:415
VAR

AR roots UI:702
autocorrelation LM test UI:704
autocorrelation test UI:704
coefficients UI:728
cointegration UI:1023
correlograms UI:703
estimation UI:689, UI:695
estimation output UI:691, UI:699
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factorization matrix in normality test UI:705
forecasting UI:712, UI:728
Granger causality test UI:702
historical decomposition UI:711
impulse response UI:707
Jarque-Bera normality test UI:704
lag exclusion test UI:702
lag length UI:703
lag length choice UI:703
lag structure UI:702
linear restrictions UI:693
mathematical model UI:687
response standard errors UI:708
See also Impulse response, Structural VAR.
variance decomposition UI:710

VARHAC UI:604
technical details UII:1122

Variance
equality test UI:416
hypothesis test of UI:409

Variance decomposition UI:180, UI:710
Variance equation See ARCH and GARCH.
Variance factor UI:388
Variance inflation factor (VIF) UI:179
Variance proportion UI:158
Variance ratio test UI:627

example UI:629
technical details UI:633

VEC UI:726
estimating UI:726

Vector autoregression
See VAR.

Vector error correction model See VEC and VAR.
Verbose mode UI:873
View

default UI:106
Vogelsang-Perron unit root tests UI:601
Volatility UI:244

W

Wald test UI:182
coefficient restriction UI:182
demonstration UI:30
formula UI:187
F-statistic UI:188
joint restriction UI:184
nonlinear restriction UI:187

structural change with unequal variance 
UI:234

Warning on close option UI:861
Watson test UI:417
Weak instruments UI:78, UI:94
Weight functions

M-estimation UI:422
S-estimation UI:426

Weighted least squares UI:47
cross-equation weighting UI:646
nonlinear UI:58
nonlinear two stage UI:77, UI:88
pool UI:867
system estimation UI:675
two stage in systems UI:647, UI:677
weight scaling UI:49
weight type UI:49

Weighting matrix
GMM UI:83, UI:90
heteroskedasticity and autocorrelation consis-

tent (HAC) in system GMM UI:680
heteroskedasticity and autocorrelation consis-

tent (HAC) robust standard errors UI:45
kernel options (system) UI:681
system GMM UI:680
White (cointegrating regression) UI:279
White (GMM) UI:90
White (panel cointegrating regression) UI:979
White (robust standard errors) UI:33
White (system GMM) UI:680

Welsch function UI:423
White heteroskedasticity consistent covariance 

matrix
cointegrating regression UI:279
GMM UI:90
panel cointegrating regression UI:979
robust standard errors UI:33
system GMM UI:680

White heteroskedasticity test UI:199
VAR UI:706

Whitening UI:606, UI:613
Width of table column UI:794
Wilcoxon test

rank sum UI:414
signed ranks UI:410

Wildcard characters UI:73
in easy query UI:334
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Windmeijer standard errors UI:87
Window

active UI:113
database UI:319
EViews main UI:5
object UI:115

Within deviations UI:906, UI:914
Within factors UI:737

identification UI:741
Word

pasting graphs and data into 1:827
Work area UI:10
Workfile

append to UI:291
applying structure to UI:273
attributes UI:62
automatic backup UI:78, UI:870
common structure errors UI:286
comparing UI:92
contract UI:294
copy from UI:294
create UI:42
description of UI:41
details display UI:62
directory UI:61
export UI:315
filtering objects UI:73
load existing from disk UI:81
multi-page UI:82
observation numbers UI:128
panel UI:893
pool UI:843, UI:852
remove structure UI:288
reshape UI:298
resize UI:275, UI:288
sample UI:136
save UI:75
sorting UI:315
stacking UI:307
statistics UI:75
storage defaults UI:869
storage precision and compression UI:869
structure settings UI:274
structuring UI:263
summary view UI:75
undated UI:265
unstacking UI:301
window UI:60

World Bank data UI:386
Write UI:862

X

X-11 UI:490
using X-12 UI:483
using X-13 UI:451

X-12 UI:481
X-13 UI:444

ARIMA estimation UI:455
ARIMA forcasting UI:455
arima models UI:450
automatic outliers UI:449
example UI:461
manual ARIMA UI:450
output options UI:459
seasonal adjustment method UI:456
TRAMO based ARIMA UI:454
transformations UI:446
user defined regressors UI:447
variable options UI:445
X-11 based ARIMA UI:451

XY (area) graph UI:681
XY (bar) graph UI:682
XY (line) graph UI:680

Y

Yates’ continuity correction UI:414

Z

Zivot-Andrews unit root test UI:601
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