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Preface

The first volume of the EViews User’s Guide describes the basics of using EViews and
describes a number of tools for basic statistical analysis using series and group objects.

The second volume of the EViews User’s Guide, offers a description of EViews’ interactive
tools for advanced statistical and econometric analysis. The material in User’s Guide II may
be divided into several parts:

Part V. “Basic Single Equation Analysis” on page 3 discusses the use of the equation
object to perform standard regression analysis, ordinary least squares, weighted least
squares, nonlinear least squares, basic time series regression, specification testing and
forecasting.

Part VI. “Advanced Single Equation Analysis,” beginning on page 241 documents two-
stage least squares (TSLS) and generalized method of moments (GMM), autoregres-
sive conditional heteroskedasticity (ARCH) models, single-equation cointegration
equation specifications, discrete and limited dependent variable models, generalized
linear models (GLM), robust least squares, least squares regression with breakpoints,
threshold regression, switching regression, quantile regression, and user-specified
likelihood estimation.

Part VII. “Advanced Univariate Analysis,” on page 587 describes advanced tools for
univariate time series analysis, including unit root tests in both conventional and
panel data settings, variance ratio tests, and the BDS test for independence.

Part VIII. “Multiple Equation Analysis” on page 643 describes estimation and forecast-
ing with systems of equations (least squares, weighted least squares, SUR, system
TSLS, 3SLS, FIML, GMM, multivariate ARCH), vector autoregression and error correc-
tion models (VARs and VECs), state space models and model solution.

Part IX. “Panel and Pooled Data” on page 841 documents working with and estimat-
ing models with time series, cross-sectional data. The analysis may involve small
numbers of cross-sections, with series for each cross-section variable (pooled data) or
large numbers systems of cross-sections, with stacked data (panel data).

Part X. “Advanced Multivariate Analysis,” beginning on page 1021 describes tools for
testing for cointegration and for performing Factor Analysis.
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Part V. Basic Single Equation Analysis

The following chapters describe the EViews features for basic single equation and single
series analysis.

Chapter 19. “Basic Regression Analysis,” beginning on page 5 outlines the basics of
ordinary least squares estimation in EViews.

Chapter 20. “Additional Regression Tools,” on page 23 discusses special equation
terms such as PDLs and automatically generated dummy variables, robust standard
errors, weighted least squares, and nonlinear least square estimation techniques.

Chapter 21. “Instrumental Variables and GMM,” on page 69 describes estimation of
single equation Two-stage Least Squares (TSLS), Limited Information Maximum Like-
lihood (LIML) and K-Class Estimation, and Generalized Method of Moments (GMM)
models.

Chapter 22. “Time Series Regression,” on page 99 describes a number of basic tools
for analyzing and working with time series regression models: testing for serial cor-
relation, estimation of ARMAX and ARIMAX models, and diagnostics for equations
estimated using ARMA terms.

Chapter 23. “Forecasting from an Equation,” beginning on page 147 outlines the fun-
damentals of using EViews to forecast from estimated equations.

Chapter 24. “Specification and Diagnostic Tests,” beginning on page 175 describes
specification testing in EViews.

The chapters describing advanced single equation techniques for autoregressive conditional
heteroskedasticity, and discrete and limited dependent variable models are listed in Part VI.
“Advanced Single Equation Analysis”.

Multiple equation estimation is described in the chapters listed in Part VIII. “Multiple Equa-
tion Analysis”.

Part IX. “Panel and Pooled Data” on page 841 describes estimation in pooled data settings
and panel structured workfiles.



4—Part V. Basic Single Equation Analysis




Chapter 19. Basic Regression Analysis

Single equation regression is one of the most versatile and widely used statistical tech-
niques. Here, we describe the use of basic regression techniques in EViews: specifying and
estimating a regression model, performing simple diagnostic analysis, and using your esti-
mation results in further analysis.

Subsequent chapters discuss testing and forecasting, as well as advanced and specialized
techniques such as weighted least squares, nonlinear least squares, ARIMA/ARIMAX mod-
els, two-stage least squares (TSLS), generalized method of moments (GMM), GARCH mod-
els, and qualitative and limited dependent variable models. These techniques and models all
build upon the basic ideas presented in this chapter.

You will probably find it useful to own an econometrics textbook as a reference for the tech-
niques discussed in this and subsequent documentation. Standard textbooks that we have
found to be useful are listed below (in generally increasing order of difficulty):

e Pindyck and Rubinfeld (1998), Econometric Models and Economic Forecasts, 4th edition.
e Johnston and DiNardo (1997), Econometric Methods, 4th Edition.

e Wooldridge (2013), Introductory Econometrics: A Modern Approach, Sth Edition.

e Greene (2008), Econometric Analysis, 6th Edition.

e Davidson and MacKinnon (1993), Estimation and Inference in Econometrics.

Where appropriate, we will also provide you with specialized references for specific topics.

Equation Objects

Single equation regression estimation in EViews is performed using the equation object. To
create an equation object in EViews: select Object/New Object.../Equation or Quick/Esti-
mate Equation... from the main menu, or simply type the keyword equation in the com-
mand window.

Next, you will specify your equation in the Equation Specification dialog box that appears,
and select an estimation method. Below, we provide details on specifying equations in
EViews. EViews will estimate the equation and display results in the equation window.

The estimation results are stored as part of the equation object so they can be accessed at
any time. Simply open the object to display the summary results, or to access EViews tools
for working with results from an equation object. For example, you can retrieve the sum-of-
squares from any equation, or you can use the estimated equation as part of a multi-equa-
tion model.
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Specifying an Equation in EViews

When you create an equation object, a specification dialog box is displayed.

You need to specify three things Equation Estimation
in this dialog: the equation Specification | Options
specification, the estimation e

method, and the sample to be Dependent variable followed by list of regressors induding ARMA
i i X and POL terms, OR an explicit equation like ¥ =c{1)+c{2)*X.
used in estimation.

In the upper edit box, you can
specify the equation: the depen-
dent (left-hand side) and inde-
pendent (right-hand side)
variables and the functional
form. There are two basic ways
of specifying an equation: “by
list” and “by formula” or “by
expression”. The list method is
easier but may only be used
with unrestricted linear specifi-
cations; the formula method is more general and must be used to specify nonlinear models
or models with parametric restrictions.

Estimation settings

Method: | |5 - Least Squares (NLS and ARMA) ]

Sample: [ 1g50mp1 1989M 12

Specifying an Equation by List

The simplest way to specify a linear equation is to provide a list of variables that you wish to
use in the equation. First, include the name of the dependent variable or expression, fol-
lowed by a list of explanatory variables. For example, to specify a linear consumption func-
tion, CS regressed on a constant and INC, type the following in the upper field of the
Equation Specification dialog:

cs ¢ inc

Note the presence of the series name C in the list of regressors. This is a built-in EViews
series that is used to specify a constant in a regression. EViews does not automatically
include a constant in a regression so you must explicitly list the constant (or its equivalent)
as a regressor. The internal series C does not appear in your workfile, and you may not use
it outside of specifying an equation. If you need a series of ones, you can generate a new
series, or use the number 1 as an auto-series.

You may have noticed that there is a pre-defined object C in your workfile. This is the
default coefficient vector—when you specify an equation by listing variable names, EViews
stores the estimated coefficients in this vector, in the order of appearance in the list. In the



Specifying an Equation in EViews—7

example above, the constant will be stored in C(1) and the coefficient on INC will be held in
C(2).

Lagged series may be included in statistical operations using the same notation as in gener-
ating a new series with a formula—put the lag in parentheses after the name of the series.
For example, the specification:

cs cs(-1) ¢ inc

tells EViews to regress CS on its own lagged value, a constant, and INC. The coefficient for
lagged CS will be placed in C(1), the coefficient for the constant is C(2), and the coefficient
of INC is C(3).

You can include a consecutive range of lagged series by using the word “to” between the
lags. For example:

cs ¢ ¢cs(-1 to -4) inc

regresses CS on a constant, CS(-1), CS(-2), CS(-3), CS(-4), and INC. If you don't include the
first lag, it is taken to be zero. For example:

cs ¢ inc(to -2) inc(-4)

regresses CS on a constant, INC, INC(-1), INC(-2), and INC(-4).

You may include auto-series in the list of variables. If the auto-series expressions contain
spaces, they should be enclosed in parentheses. For example:

log(cs) c log(cs(-1)) ((inc+inc(-1)) / 2)

specifies a regression of the natural logarithm of CS on a constant, its own lagged value, and
a two period moving average of INC.

Typing the list of series may be cumbersome, especially if you are working with many
regressors. If you wish, EViews can create the specification list for you. First, highlight the
dependent variable in the workfile window by single clicking on the entry. Next, CTRL-click
on each of the explanatory variables to highlight them as well. When you are done selecting
all of your variables, double click on any of the highlighted series, and select Open/Equa-
tion..., or right click and select Open/as Equation.... The Equation Specification dialog
box should appear with the names entered in the specification field. The constant C is auto-
matically included in this list; you must delete the C if you do not wish to include the con-
stant.

Specifying an Equation by Formula

You will need to specify your equation using a formula when the list method is not general
enough for your specification. Many, but not all, estimation methods allow you to specify
your equation using a formula.
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An equation formula in EViews is a mathematical expression involving regressors and coef-
ficients. To specify an equation using a formula, simply enter the expression in the dialog in
place of the list of variables. EViews will add an implicit additive disturbance to this equa-
tion and will estimate the parameters of the model using least squares.

When you specify an equation by list, EViews converts this into an equivalent equation for-
mula. For example, the list,

log(cs) ¢ log(cs(-1)) log(inc)
is interpreted by EViews as:

log(cs) = c(l) + c(2)*log(cs(-1)) + c(3)*log(inc)
Equations do not have to have a dependent variable followed by an equal sign and then an
expression. The “ =" sign can be anywhere in the formula, as in:

log(urate) - c(l)*dmr = c(2)
The residuals for this equation are given by:

e = log(urate) — c¢(1)dmr — ¢(2). (19.1)

EViews will minimize the sum-of-squares of these residuals.

If you wish, you can specify an equation as a simple expression, without a dependent vari-
able and an equal sign. If there is no equal sign, EViews assumes that the entire expression
is the disturbance term. For example, if you specify an equation as:

c(l)*x + c(2)*y + 4*z

EViews will find the coefficient values that minimize the sum of squares of the given expres-
sion, in this case (C(1)*X + C(2)*Y +4*Z). While EViews will estimate an expression of this
type, since there is no dependent variable, some regression statistics (e.g. R-squared) are not
reported and the equation cannot be used for forecasting. This restriction also holds for any
equation that includes coefficients to the left of the equal sign. For example, if you specify:

x + c(l)*y = c(2)*z
EViews finds the values of C(1) and C(2) that minimize the sum of squares of (X+ C(1)*Y-
C(2)*Z). The estimated coefficients will be identical to those from an equation specified
using:

x = —c(l)*y + c(2)*z
but some regression statistics are not reported.
The two most common motivations for specifying your equation by formula are to estimate
restricted and nonlinear models. For example, suppose that you wish to constrain the coeffi-

cients on the lags on the variable X to sum to one. Solving out for the coefficient restriction
leads to the following linear model with parameter restrictions:
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y = c(l) + c(2)*x + c(3)*x(-1) + c(4)*x(-2) + (1-c(2)-c(3)-c(4))
*x (=3)
To estimate a nonlinear model, simply enter the nonlinear formula. EViews will automati-
cally detect the nonlinearity and estimate the model using nonlinear least squares. For
details, see “Nonlinear Least Squares” on page 51.

One benefit to specifying an equation by formula is that you can elect to use a different coef-
ficient vector. To create a new coefficient vector, choose Object/New Object... and select
Matrix-Vector-Coef from the main menu, type in a name for the coefficient vector, and click
OK. In the New Matrix dialog box that appears, select Coefficient Vector and specify how
many rows there should be in the vector. The object will be listed in the workfile directory
with the coefficient vector icon (the little 3).

You may then use this coefficient vector in your specification. For example, suppose you cre-
ated coefficient vectors A and BETA, each with a single row. Then you can specify your
equation using the new coefficients in place of C:

log(cs) = a(l) + beta(l)*log(cs(-1))
Estimating an Equation in EViews

Estimation Methods

Having specified your equation, you now need to choose an estimation method. Click on the
Method: entry in the dialog and you will see a drop-down menu listing estimation methods.

Standard, single-equation regression is per- LS - Least Squares (NLS and ARMA)
i TSLS - Two-Stage Least Squares (TSMLS and ARMA)
formed using least squares. The other meth- GMM - Generalized Method of Moments
. K LIML - Limited Information Maximum Likelihood and K-Class
ods are described in subsequent chapters. COINTREG - Cointegrating Regression

ARCH - Autoregressive Conditional Heteroskedasticity
BINARY - Binary Choice (Logit, Probit, Extreme Value)
ORDERED - Ordered Choice

Equatlons estlmated by C01ntegrat1ng regres— CEMSORED - Censored or Truncated Data (incuding Tobit)
. . . . COUNT - Integer Count Data
sion, GLM or stepwise, or equations includ- OREG - Quantie Regression {nduding LAD)
ing MA terms, may only be specified by list s e e e
i g . ROBUSTLS - Robust Least Squares
and may not be SpeCIﬁEd by eXpresleH. AH HECKIT - Heckman Selection {(Generalized Tobit)

other types of equations (among others, ordi-  Fresin - seiag Ao

nary least squares and two-stage least ARDL < e eesve ok Lag Model

squares, equations with AR terms, GMM, and

ARCH equations) may be specified either by list or expression. Note that some equations,
such as quantile regression may be specified by expression, but only linear specifications are

permitted.

Estimation Sample

You should also specify the sample to be used in estimation. EViews will fill out the dialog
with the current workfile sample, but you can change the sample for purposes of estimation
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by entering your sample string or object in the edit box (see “Samples” on page 136 of
User’s Guide I for details). Changing the estimation sample does not affect the current work-
file sample.

If any of the series used in estimation contain missing data, EViews will temporarily adjust
the estimation sample of observations to exclude those observations (listwise exclusion).
EViews notifies you that it has adjusted the sample by reporting the actual sample used in
the estimation results:

Dependent Variable: Y

Method: Least Squares

Date: 08/08/09 Time: 14:44

Sample (adjusted): 1959M01 1989M12
Included observations: 340 after adjustments

Here we see the top of an equation output view. EViews reports that it has adjusted the sam-
ple. Out of the 372 observations in the period 1959M01-1989M12, EViews uses the 340
observations with valid data for all of the relevant variables.

You should be aware that if you include lagged variables in a regression, the degree of sam-
ple adjustment will differ depending on whether data for the pre-sample period are available
or not. For example, suppose you have nonmissing data for the two series M1 and IP over
the period 1959M01-1989M12 and specify the regression as:

ml c ip ip(-1) ip(-2) ip(-3)

If you set the estimation sample to the period 1959M01-1989M12, EViews adjusts the sam-
ple to:

Dependent Variable: M1
Method: Least Squares
Date: 08/08/09 Time: 14:45
Sample: 1960M01 1989M12
Included observations: 360

since data for IP(-3) are not available until 1959M04. However, if you set the estimation
sample to the period 1960M01-1989M12, EViews will not make any adjustment to the sam-
ple since all values of IP(-3) are available during the estimation sample.

Some operations, most notably estimation with MA terms and ARCH, do not allow missing
observations in the middle of the sample. When executing these procedures, an error mes-
sage is displayed and execution is halted if an NA is encountered in the middle of the sam-
ple. EViews handles missing data at the very start or the very end of the sample range by
adjusting the sample endpoints and proceeding with the estimation procedure.

Estimation Options

EViews provides a number of estimation options. These options allow you to weight the esti-
mating equation, to compute heteroskedasticity and auto-correlation robust covariances,
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and to control various features of your estimation algorithm. These options are discussed in
detail in “Estimation Options” on page 54.

Equation Output

When you click OK in the Equation Specification dialog, EViews displays the equation win-
dow displaying the estimation output view (the examples in this chapter are obtained using
the workfile “Basics.WF1”):

Dependent Variable: LOG(M1)
Method: Least Squares

Date: 08/08/09 Time: 14:51
Sample: 1959M01 1989M12
Included observations: 372

Variable Coefficient Std. Error t-Statistic Prob.
C -1.699912 0.164954  -10.30539 0.0000
LOG(IP) 1.765866 0.043546 40.55199 0.0000
TB3 -0.011895 0.004628 -2.570016 0.0106
R-squared 0.886416 Meandependentvar 5.663717
Adjusted R-squared 0.885800 S.D. dependent var 0.553903
S.E. of regression 0.187183 Akaike info criterion -0.505429
Sum squared resid 12.92882 Schwarz criterion -0.473825
Log likelihood 97.00979 Hannan-Quinn criter. -0.492878
F-statistic 1439.848 Durbin-W atson stat 0.008687

Prob(F-statistic) 0.000000

Using matrix notation, the standard regression may be written as:

y= XB+e (19.2)
where y is a T-dimensional vector containing observations on the dependent variable, X
is a T x k matrix of independent variables, 8 is a k-vector of coefficients, and € is a

T -vector of disturbances. 7' is the number of observations and % is the number of right-
hand side regressors.

In the output above, y is log(M1), X consists of three variables C, log(IP), and TB3, where
T =372 and k& = 3.

Coefficient Results

Regression Coefficients

The column labeled “Coefficient” depicts the estimated coefficients. The least squares
regression coefficients b are computed by the standard OLS formula:

b= (X'X) ' X'y (19.3)
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If your equation is specified by list, the coefficients will be labeled in the “Variable” column
with the name of the corresponding regressor; if your equation is specified by formula,
EViews lists the actual coefficients, C(1), C(2), etc.

For the simple linear models considered here, the coefficient measures the marginal contri-
bution of the independent variable to the dependent variable, holding all other variables
fixed. If you have included “C” in your list of regressors, the corresponding coefficient is the
constant or intercept in the regression—it is the base level of the prediction when all of the
other independent variables are zero. The other coefficients are interpreted as the slope of
the relation between the corresponding independent variable and the dependent variable,
assuming all other variables do not change.

Standard Errors

The “Std. Error” column reports the estimated standard errors of the coefficient estimates.
The standard errors measure the statistical reliability of the coefficient estimates—the larger
the standard errors, the more statistical noise in the estimates. If the errors are normally dis-
tributed, there are about 2 chances in 3 that the true regression coefficient lies within one
standard error of the reported coefficient, and 95 chances out of 100 that it lies within two
standard errors.

The covariance matrix of the estimated coefficients is computed as:

var(b) = s(X'X)"'; & = &/(T—k); &= y— Xb (19.4)
where € is the residual. The standard errors of the estimated coefficients are the square
roots of the diagonal elements of the coefficient covariance matrix. You can view the whole
covariance matrix by choosing View/Covariance Matrix.
t-Statistics

The t-statistic, which is computed as the ratio of an estimated coefficient to its standard
error, is used to test the hypothesis that a coefficient is equal to zero. To interpret the ¢-statis-
tic, you should examine the probability of observing the #-statistic given that the coefficient
is equal to zero. This probability computation is described below.

In cases where normality can only hold asymptotically, EViews will often report a z-statistic
instead of a t-statistic.

Probability

The last column of the output shows the probability of drawing a #-statistic (or a z-statistic)
as extreme as the one actually observed, under the assumption that the errors are normally
distributed, or that the estimated coefficients are asymptotically normally distributed.

This probability is also known as the p-value or the marginal significance level. Given a p-
value, you can tell at a glance if you reject or accept the hypothesis that the true coefficient
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is zero against a two-sided alternative that it differs from zero. For example, if you are per-
forming the test at the 5% significance level, a p-value lower than 0.05 is taken as evidence
to reject the null hypothesis of a zero coefficient. If you want to conduct a one-sided test, the
appropriate probability is one-half that reported by EViews.

For the above example output, the hypothesis that the coefficient on TB3 is zero is rejected
at the 5% significance level but not at the 1% level. However, if theory suggests that the
coefficient on TB3 cannot be positive, then a one-sided test will reject the zero null hypothe-
sis at the 1% level.

The p-values for t-statistics are computed from a t-distribution with 7 — &k degrees of free-
dom. The p-value for zstatistics are computed using the standard normal distribution.

Summary Statistics

R-squared

The R-squared (Rz) statistic measures the success of the regression in predicting the values
of the dependent variable within the sample. In standard settings, R’ may be interpreted as
the fraction of the variance of the dependent variable explained by the independent vari-
ables. The statistic will equal one if the regression fits perfectly, and zero if it fits no better
than the simple mean of the dependent variable. It can be negative for a number of reasons.
For example, if the regression does not have an intercept or constant, if the regression con-
tains coefficient restrictions, or if the estimation method is two-stage least squares or ARCH.

EViews computes the (centered) R2 as:

2 €'e

T
=1-— Yy = /T 19.5
T (19:5)

t=1

where ¥ is the mean of the dependent (left-hand) variable.

Adjusted R-squared

. . 2 . 2 .
One problem with using R™ as a measure of goodness of fit is that the R” will never
. 2
decrease as you add more regressors. In the extreme case, you can always obtain an R” of
one if you include as many independent regressors as there are sample observations.

—2
The adjusted R’ , commonly denoted as R , penalizes the R’ for the addition of regressors
which do not contribute to the explanatory power of the model. The adjusted R*is com-
puted as:

52 2, T-1
R = 1—(1—R)m (19.6)

=2
The R is never larger than the R’ , can decrease as you add regressors, and for poorly fit-
ting models, may be negative.
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Standard Error of the Regression (S.E. of regression)

The standard error of the regression is a summary measure based on the estimated variance
of the residuals. The standard error of the regression is computed as:
€'e
s = 19.7
T-% (19.7)

Sum-of-Squared Residuals

The sum-of-squared residuals can be used in a variety of statistical calculations, and is pre-
sented separately for your convenience:

T
ee = 3 (y- X/b) (19.8)
t=1

Log Likelihood

EViews reports the value of the log likelihood function (assuming normally distributed
errors) evaluated at the estimated values of the coefficients. Likelihood ratio tests may be
conducted by looking at the difference between the log likelihood values of the restricted
and unrestricted versions of an equation.

The log likelihood is computed as:

| = ——g(l +log(27) + log (8'¢/ T)) (19.9)

When comparing EViews output to that reported from other sources, note that EViews does
not ignore constant terms in the log likelihood.

Durbin-Watson Statistic

The Durbin-Watson statistic measures the serial correlation in the residuals. The statistic is
computed as
T T

DW = Y (&4-6.1)/ 3 & (19.10)

t=2 t=1

See Johnston and DiNardo (1997, Table D.5) for a table of the significance points of the dis-
tribution of the Durbin-Watson statistic.

As a rule of thumb, if the DW is less than 2, there is evidence of positive serial correlation.
The DW statistic in our output is very close to one, indicating the presence of serial correla-
tion in the residuals. See “Background,” beginning on page 99, for a more extensive discus-
sion of the Durbin-Watson statistic and the consequences of serially correlated residuals.
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There are better tests for serial correlation. In “Testing for Serial Correlation” on page 107,
we discuss the ()-statistic, and the Breusch-Godfrey LM test, both of which provide a more
general testing framework than the Durbin-Watson test.

Mean and Standard Deviation (S.D.) of the Dependent Variable

The mean and standard deviation of y are computed using the standard formulae:

T T
_ _\2
y= /T s,= [Y (=9 /(T-1) (19.11)
t=1 t=1
Akaike Information Criterion
The Akaike Information Criterion (AIC) is computed as:

AIC = =21/ T+2k/T (19.12)
where [ is the log likelihood (given by Equation (19.9) on page 14).

The AIC is often used in model selection for non-nested alternatives—smaller values of the
AIC are preferred. For example, you can choose the length of a lag distribution by choosing
the specification with the lowest value of the AIC. See Appendix E. “Information Criteria,”
on page 1111, for additional discussion.

Schwarz Criterion

The Schwarz Criterion (SC) is an alternative to the AIC that imposes a larger penalty for
additional coefficients:

SC = 21/ T+ (KogT)/ T (19.13)

Hannan-Quinn Criterion
The Hannan-Quinn Criterion (HQ) employs yet another penalty function:

HQ = - 2(1/ T) + 2klog(log(T))/ T (19.14)

F-Statistic

The F-statistic reported in the regression output is from a test of the hypothesis that all of
the slope coefficients (excluding the constant, or intercept) in a regression are zero. For ordi-
nary least squares models, the F-statistic is computed as:

R*/(k-1)
(1-RY)/(T-k)

j (19.15)

Under the null hypothesis with normally distributed errors, this statistic has an F-distribu-
tion with £ — 1 numerator degrees of freedom and 7 — k£ denominator degrees of freedom.



16—Chapter 19. Basic Regression Analysis

The p-value given just below the F*statistic, denoted Prob(F-statistic), is the marginal sig-
nificance level of the F-test. If the p-value is less than the significance level you are testing,
say 0.05, you reject the null hypothesis that all slope coefficients are equal to zero. For the
example above, the p-value is essentially zero, so we reject the null hypothesis that all of the
regression coefficients are zero. Note that the F'test is a joint test so that even if all the ¢-sta-
tistics are insignificant, the F-statistic can be highly significant.

Note that since the F-statistic depends only on the sums-of-squared residuals of the esti-
mated equation, it is not robust to heterogeneity or serial correlation. The use of robust esti-
mators of the coefficient covariances (“Robust Standard Errors” on page 32) will have no
effect on the F-statistic. If you do choose to employ robust covariance estimators, EViews
will also report a robust Wald test statistic and p-value for the hypothesis that all non-inter-
cept coefficients are equal to zero.

Working With Equation Statistics

The regression statistics reported in the estimation output view are stored with the equation.

These equation data members are accessible through special “@-functions”. You can retrieve
any of these statistics for further analysis by using these functions in genr, scalar, or matrix

expressions. If a particular statistic is not computed for a given estimation method, the func-
tion will return an NA.

There are three kinds of “@-functions”: those that return a scalar value, those that return
matrices or vectors, and those that return strings.

Selected Keywords that Return Scalar Values

@aic Akaike information criterion

@coefcov(i,j) covariance of coefficient estimates ¢ and j

@coefs(i) i-th coefficient value

@dw Durbin-Watson statistic

@f F-statistic

@fprob F-statistic probability.

@hq Hannan-Quinn information criterion

@jstat J-statistic — value of the GMM objective function (for
GMM)

@logl value of the log likelihood function

@meandep mean of the dependent variable

@ncoef number of estimated coefficients

@12 R-squared statistic

@rbar2 adjusted R-squared statistic
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@rlogl retricted (constant only) log-likelihood.
@regobs number of observations in regression
@schwarz Schwarz information criterion

@sddep standard deviation of the dependent variable
@se standard error of the regression

@ssr sum of squared residuals

@stderrs(i) standard error for coefficient ¢

@tstats(i) t-statistic value for coefficient 7

c(i)

i-th element of default coefficient vector for equation (if
applicable)

Selected Keywords that Return Vector or Matrix Objects

@coefcov matrix containing the coefficient covariance matrix
@coefs vector of coefficient values

@stderrs vector of standard errors for the coefficients
@tstats vector of {-statistic values for coefficients

@pvals vector of p-values for coefficients

Selected Keywords that Return Strings

@command full command line form of the estimation command

@smpl description of the sample used for estimation

@updatetime string representation of the time and date at which the
equation was estimated

See also “Equation” (p. 33) in the Object Reference for a complete list.

Functions that return a vector or matrix object should be assigned to the corresponding
object type. For example, you should assign the results from @tstats to a vector:

vector tstats

egl.@tstats

and the covariance matrix to a matrix:

matrix mycov

eqgl.@cov

You can also access individual elements of these statistics:

scalar pvalue

scalar varl

1-Q@cnorm(@abs (egl.@tstats (4)))

egl.@covariance(1,1)

For documentation on using vectors and matrices in EViews, see Chapter 11. “Matrix Lan-
guage,” on page 261 of the Command and Programming Reference.
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Working with Equations

The follow description outlines common views and procedures that are available for an esti-
mated equation. Specialized estimators may support only a subset of these views and procs,

while perhaps offering others.

Views of an Equation

¢ Representations. Displays the equation in three basic forms: EViews command form
showing the command associated with the equation, as an algebraic equation with
symbolic coefficients, and as an equation with a text representation of the estimated

values of the coefficients.

You can cut-and-paste
from the representations
view into any application
that supports the Windows
clipboard.

¢ Estimation Output. Dis-
plays the equation output
results described above.

e Actual, Fitted, Residual.
These views display the
actual and fitted values of

=  Equation: EQ1 Workfile: BASICS:Basics\ | = || & |5
[ViewlProclObject] [PrintINameIFreeze] [EstimateIForecastIStatisesids]
Estimation Command:

LS LOG(M1) C LOG(IP) TB3

Estimation Equation:

LOG(M1) = C(1) + C{2FLOG(IP) + C(3)*TB3

Substituted Coeflicients:

LOG(M1)=-1.69991200512 + 1.76586641142*LOG(IP) - 0.0118951916682
*TB3

the dependent variable and the residuals from the regression in tabular and graphical
form. Actual, Fitted, Residual Table displays these values in table form.

Note that the actual value
is always the sum of the
fitted value and the resid-
ual. Actual, Fitted, Resid-
ual Graph displays a
standard EViews graph of
the actual values, fitted
values, and residuals,
along with dotted lines
showing at plus and minus
one estimated standard
error. Residual Graph

=  Equation: EQ1 Workfile: BASICS:Basics\, [ = [ = |=3]
[ViewlProclObject] [PrintINameIFreeze] [EstimateIForecastIStatisesids]
obs Actual Fitted | Residual Residual Plot

1959M01 | 4.93375 459436 033940 ! ! ~
1959M02 | 493735 4.62985 0.30750 ! !
1959M03 | 4.93950 4.65208 0.28742 ! !
1959M04 | 493950 4.68837 025113 ! !
1959M05 | 4.94663 471733 022930 ! !
1959M06 | 4.95018 4.71262 023756 ! !
1959M07 | 4.95371 467101 028271 ! !
1959M08 | 4.95512 4.60767 034745 ! !
1959M09 | 494876 4.60006 0.34870 ! !
1959M10 | 4.94521 458403 036118 ! !
1959M11 | 4.94450 459269 0.35180 ! !
1959M12 | 4.94164 4.69686 024478 ! ! e
1960M01 | < >

plots only the residuals, while the Standardized Residual Graph plots the residuals
divided by the estimated residual standard deviation.
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ARMA structure.... Provides views which describe the estimated ARMA structure of
your residuals. Details on these views are provided in “ARMA Structure” on page 128.

Gradients and Derivatives. Provides views which describe the gradients of the objec-
tive function and the information about the computation of any derivatives of the
regression function. Details on these views are provided in Appendix D. “Gradients
and Derivatives,” on page 1103.

Covariance Matrix. Displays the covariance matrix of the coefficient estimates as a
spreadsheet view. To save this covariance matrix as a matrix object, use the @coef-
cov member of the equation, as in

sym mycov = eqgl.@coefcov

Coefficient Diagnostics, Residual Diagnostics, and Stability Diagnostics. These are
views for specification and diagnostic tests and are described in detail in Chapter 24.
“Specification and Diagnostic Tests,” beginning on page 175.

Procedures of an Equation

Specify/Estimate.... Brings up the Equation Specification dialog box so that you can
modify your specification. You can edit the equation specification, or change the esti-
mation method or estimation sample.

Forecast.... Forecasts or fits values using the estimated equation. Forecasting using
equations is discussed in Chapter 23. “Forecasting from an Equation,” on page 147.

Make Residual Series.... Saves the residuals from the regression as a series in the
workfile. Depending on the estimation method, you may choose from three types of
residuals: ordinary, standardized, and generalized. For ordinary least squares, only
the ordinary residuals may be saved.

Make Regressor Group. Creates an untitled group comprised of all the variables used
in the equation (with the exception of the constant).

Make Gradient Group. Creates a group containing the gradients of the objective func-
tion with respect to the coefficients of the model.

Make Derivative Group. Creates a group containing the derivatives of the regression
function with respect to the coefficients in the regression function.

Make Model. Creates an untitled model containing a link to the estimated equation if
a named equation or the substituted coefficients representation of an untitled equa-
tion. This model can be solved in the usual manner. See Chapter 42. “Models,” on
page 781 for information on how to use models for forecasting and simulations.

Update Coefs from Equation. Places the estimated coefficients of the equation in the
coefficient vector. You can use this procedure to initialize starting values for various
estimation procedures.
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Residuals from an Equation

The residuals from the default equation are stored in a series object called RESID. RESID
may be used directly as if it were a regular series, except in estimation.

RESID will be overwritten whenever you estimate an equation and will contain the residuals
from the latest estimated equation. To save the residuals from a particular equation for later
analysis, you should save them in a different series so they are not overwritten by the next
estimation command. For example, you can copy the residuals into a regular EViews series
called RES1 using the command:

series resl = resid

There is an even better approach to saving the residuals. Even if you have already overwrit-
ten the RESID series, you can always create the desired series using EViews’ built-in proce-
dures if you still have the equation object. If your equation is named EQ1, open the equation
window and select Proc/Make Residual Series..., or enter:

eqgl.makeresid resl

to create the desired series.

Storing and Retrieving an Equation

As with other objects, equations may be stored to disk in data bank or database files. You
can also fetch equations from these files.

Equations may also be copied-and-pasted to, or from, workfiles or databases.

EViews even allows you to access equations directly from your databases or another work-
file. You can estimate an equation, store it in a database, and then use it to forecast in sev-
eral workfiles.

See Chapter 4. “Object Basics,” beginning on page 101 and Chapter 10. “EViews Databases,”
beginning on page 317, both in User’s Guide I, for additional information about objects,
databases, and object containers.

Using Estimated Coefficients

The coefficients of an equation are listed in the representations view. By default, EViews will
use the C coefficient vector when you specify an equation, but you may explicitly use other
coefficient vectors in defining your equation.

These stored coefficients may be used as scalars in generating data. While there are easier

ways of generating fitted values (see “Forecasting from an Equation” on page 147), for pur-
poses of illustration, note that we can use the coefficients to form the fitted values from an
equation. The command:

series cshat = eql.c(l) + egl.c(2)*gdp
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forms the fitted value of CS, CSHAT, from the OLS regression coefficients and the indepen-
dent variables from the equation object EQ1.

Note that while EViews will accept a series generating equation which does not explicitly
refer to a named equation:

series cshat = c(1l) + c(2)*gdp

and will use the existing values in the C coefficient vector, we strongly recommend that you
always use named equations to identify the appropriate coefficients. In general, C will con-
tain the correct coefficient values only immediately following estimation or a coefficient
update. Using a named equation, or selecting Proc/Update Coefs from Equation, guaran-
tees that you are using the correct coefficient values.

An alternative to referring to the coefficient vector is to reference the @coefs elements of
your equation (see “Selected Keywords that Return Scalar Values” on page 16). For example,
the examples above may be written as:

series cshat=eqgl.Qcoefs(1l)+egl.Qcoefs (2) *gdp
EViews assigns an index to each coefficient in the order that it appears in the representations
view. Thus, if you estimate the equation:
equation eq0l.ls y=c(10)+b(5)*y(-1)+a(7)*inc
where B and A are also coefficient vectors, then:
® cg0l.Q@coefs (1) contains C(10)
® cg0l.Q@coefs (2) contains B(5)

® cq0l.Q@coefs (3) contains A(7)

This method should prove useful in matching coefficients to standard errors derived from
the @stderrs elements of the equation (see “Equation Data Members” on page 37 of the
Object Reference). The @Gcoefs elements allow you to refer to both the coefficients and the
standard errors using a common index.

If you have used an alternative named coefficient vector in specifying your equation, you
can also access the coefficient vector directly. For example, if you have used a coefficient
vector named BETA, you can generate the fitted values by issuing the commands:

equation eg02.1ls cs = beta(l) + beta(2)*gdp
series cshat = beta(l) + beta(2)*gdp

where BETA is a coefficient vector. Again, however, we recommend that you use the @coefs
elements to refer to the coefficients of EQ02. Alternatively, you can update the coefficients in
BETA prior to use by selecting Proc/Update Coefs from Equation from the equation win-
dow. Note that EViews does not allow you to refer to the named equation coefficients
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EQO02.BETA(1) and EQ02.BETA(2). You must instead use the expressions, EQ02.@COEFS(1)
and EQ02.@COEFS(2).

Estimation Problems

Exact Collinearity

If the regressors are very highly collinear, EViews may encounter difficulty in computing the
regression estimates. In such cases, EViews will issue an error message “Near singular
matrix.” When you get this error message, you should check to see whether the regressors
are exactly collinear. The regressors are exactly collinear if one regressor can be written as a
linear combination of the other regressors. Under exact collinearity, the regressor matrix X
does not have full column rank and the OLS estimator cannot be computed.

You should watch out for exact collinearity when you are using dummy variables in your
regression. A set of mutually exclusive dummy variables and the constant term are exactly
collinear. For example, suppose you have quarterly data and you try to run a regression with
the specification:

y ¢ x @seas(l) @seas(2) @seas(3) @seas(4)

EViews will return a “Near singular matrix” error message since the constant and the four
quarterly dummy variables are exactly collinear through the relation:

c = @seas(l) + @seas(2) + @seas(3) + @seas(4)

In this case, simply drop either the constant term or one of the dummy variables.

The textbooks listed above provide extensive discussion of the issue of collinearity.
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Chapter 20. Additional Regression Tools

This chapter describes additional tools that may be used to augment the techniques
described in Chapter 19. “Basic Regression Analysis,” beginning on page 5.

e This first portion of this chapter describes special EViews expressions that may be
used in specifying and estimating models with Polynomial Distributed Lags (PDLs) or
dummy variables.

¢ In the second section, we describe methods for heteroskedasticity consistent, het-
eroskedasticity and autocorrelation consistent, and cluster robust covariance estima-
tion.

¢ Next, we describe weighted least squares and nonlinear least squares estimation.

¢ Lastly, we document tools for performing variable selection using stepwise regression.

Note that parts of this chapter refer to estimation of models which have autoregressive (AR)
and moving average (MA) error terms. These concepts are discussed in greater depth in
Chapter 22. “Time Series Regression,” on page 99.

Special Equation Expressions

EViews provides you with special expressions that may be used to specify and estimate
equations with PDLs, dummy variables, or ARMA errors. We consider here terms for incor-
porating PDLs and dummy variables into your equation, and defer the discussion of ARMA
estimation to “Time Series Regression” on page 99.

Polynomial Distributed Lags (PDLs)
A distributed lag is a relation of the type:

Y, = Wb+ Lz, + L2+ ... + BTt E (20.1)
The coefficients 3 describe the lag in the effect of  on y. In many cases, the coefficients

can be estimated directly using this specification. In other cases, the high collinearity of cur-
rent and lagged values of x will defeat direct estimation.

You can reduce the number of parameters to be estimated by using polynomial distributed
lags (PDLs) to impose a smoothness condition on the lag coefficients. Smoothness is
expressed as requiring that the coefficients lie on a polynomial of relatively low degree. A
polynomial distributed lag model with order p restricts the 3 coefficients to lie on a p-th
order polynomial of the form,

. _ . _\2 . _
By =1 +12(i—0)+v3(-0) + ... +7,,(-0) (20.2)

for j = 1,2, ..., k, where ¢ is a pre-specified constant given by:
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5 = { (k)/2 if kis even (20.3)
(k-1)/2 if kis odd

The PDL is sometimes referred to as an Almon lag. The constant ¢ is included only to avoid
numerical problems that can arise from collinearity and does not affect the estimates of 3.

This specification allows you to estimate a model with £ lags of x using only p parameters
(if you choose p > k, EViews will return a “Near Singular Matrix” error).

If you specify a PDL, EViews substitutes Equation (20.2) into (20.1), yielding,
Y = wl+y121+ Yozt ot Y1201 T €& (20.4)

where:

2= TyF Tt Ty

29 = —¢x;+(1-¢)z,_+...+(k-0)z,_,,

(20.5)

21 = Oz +(1-0)'z,_ + .+ (k-0)'z,_

Once we estimate  from Equation (20.4), we can recover the parameters of interest 3, and
their standard errors using the relationship described in Equation (20.2). This procedure is
straightforward since (8 is a linear transformation of .

The specification of a polynomial distributed lag has three elements: the length of the lag %,
the degree of the polynomial (the highest power in the polynomial) p, and the constraints
that you want to apply. A near end constraint restricts the one-period lead effect of = on y
to be zero:

By = vi+7a(-1-0)+ ..+, (-1-2)" = 0. (20.6)

A far end constraint restricts the effect of z on y to die off beyond the number of specified
lags:
Bri1 = 1i+va(k+1-0)+ . +7,, (k+1-28)" = 0. (20.7)

If you restrict either the near or far end of the lag, the number of v parameters estimated is
reduced by one to account for the restriction; if you restrict both the near and far end of the
lag, the number of y parameters is reduced by two.

By default, EViews does not impose constraints.

How to Estimate Models Containing PDLs

You specify a polynomial distributed lag by the pdl term, with the following information in
parentheses, each separated by a comma in this order:
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e The name of the series.
¢ The lag length (the number of lagged values of the series to be included).
¢ The degree of the polynomial.

¢ A numerical code to constrain the lag polynomial (optional):

1 constrain the near end of the lag to zero.
2 constrain the far end.
3 constrain both ends.

You may omit the constraint code if you do not want to constrain the lag polynomial. Any
number of pdl terms may be included in an equation. Each one tells EViews to fit distrib-
uted lag coefficients to the series and to constrain the coefficients to lie on a polynomial.
For example, the commands:

ls sales c pdl (orders,8,3)

fits SALES to a constant, and a distributed lag of current and eight lags of ORDERS, where
the lag coefficients of ORDERS lie on a third degree polynomial with no endpoint con-
straints. Similarly:

ls div c¢ pdl(rev,12,4,2)
fits DIV to a distributed lag of current and 12 lags of REV, where the coefficients of REV lie

on a 4th degree polynomial with a constraint at the far end.

The pd1l specification may also be used in two-stage least squares. If the series in the pdl is
exogenous, you should include the PDL of the series in the instruments as well. For this pur-
pose, you may specify pdl (*) as an instrument; all pd1 variables will be used as instru-
ments. For example, if you specify the TSLS equation as,

sales ¢ inc pdl(orders(-1),12,4)
with instruments:
fed fed(-1) pdl(*)

the distributed lag of ORDERS will be used as instruments together with FED and FED(-1).

Polynomial distributed lags cannot be used in nonlinear specifications.

Example

We may estimate a distributed lag model of industrial production (IP) on money (M1) in the
workfile “Basics.WF1” by entering the command:

ls ip ¢ ml1(0 to -12)
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which yields the following results:

Dependent Variable: IP

Method: Least Squares

Date: 08/08/09 Time: 15:27

Sample (adjusted): 1960M01 1989M12
Included observations: 360 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
C 40.67568 0.823866 49.37171 0.0000
M1 0.129699 0.214574 0.604449 0.5459
M1(-1) -0.045962 0.376907 0.121944 0.9030
M1(-2) 0.033183 0.397099 0.083563 0.9335
M1(-3) 0.010621 0.405861 0.026169 0.9791
M1(-4) 0.031425 0.418805 0.075035 0.9402
M1(-5) -0.048847 0431728 0.113143 0.9100
M1(-6) 0.053880 0.440753 0.122245 0.9028
MA1(-7) -0.015240 0436123  -0.034944 0.9721
M1(-8) -0.024902 0.423546  -0.058795 0.9531
M1(-9) -0.028048 0.413540 -0.067825 0.9460
M1(-10) 0.030806 0.407523 0.075593 0.9398
M1(-11) 0.018509 0.389133 0.047564 0.9621
M1(-12) -0.057373 0.228826  -0.250728 0.8022
R-squared 0.852398 Meandependentvar 71.72679
Adjusted R-squared 0.846852 S.D. dependent var 1953063
S.E. of regression 7.643137 Akaike info criterion 6.943606
Sum squared resid 20212.47 Schwarz criterion 7.094732
Log likelihood -1235.849 Hannan-Quinn criter. 7.003697
F-statistic 153.7030 Durbin-W atson stat 0.008255
Prob(F-statistic) 0.000000

Taken individually, none of the coefficients on lagged M1 are statistically different from zero.
Yet the regression as a whole has a reasonable R’ with a very significant F-statistic (though
with a very low Durbin-Watson statistic). This is a typical symptom of high collinearity
among the regressors and suggests fitting a polynomial distributed lag model.

To estimate a fifth-degree polynomial distributed lag model with no constraints, set the sam-
ple using the command,

smpl 1959m01 1989ml2

then estimate the equation specification:
ip ¢ pdl(ml,12,5)

by entering the expression in the Equation Estimation dialog and estimating using Least
Squares.

The following result is reported at the top of the equation window:
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Dependent Variable: IP
Method: Least Squares

Date: 08/08/09 Time: 15:35
Sample (adjusted): 1960M01 1989M12
Included observations: 360 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
C 40.67311 0.815195 49.89374 0.0000
PDLO1 -4.66E-05 0.055566  -0.000839 0.9993
PDL02 -0.015625 0.062884  -0.248479 0.8039
PDLO3 -0.000160 0.013909  -0.011485 0.9908
PDLO4 0.001862 0.007700 0.241788 0.8091
PDLO5 2.58E-05 0.000408 0.063211 0.9496
PDLO6 -4.93E-05 0.000180  -0.273611 0.7845
R-squared 0.852371 Mean dependent var 71.72679
Adjusted R-squared 0.849862 S.D. dependentvar 19.53063
S.E. of regression 7.567664 Akaike info criterion 6.904899
Sum squared resid 20216.15 Schwarz criterion 6.980462
Log likelihood -1235.882 Hannan-Quinn criter. 6.934944
F-statistic 339.6882 Durbin-Watson stat 0.008026
Prob(F -statistic) 0.000000

This portion of the view reports the estimated coefficients vy of the polynomial in
Equation (20.2) on page 23. The terms PDLO01, PDL02, PDLO03, ..., correspond to 2, 2y, ...
in Equation (20.4).

The implied coefficients of interest 3 ; in equation (1) are reported at the bottom of the
table, together with a plot of the estimated polynomial:

= Equation: UNTITLED Workfile: BASICS:Basics\, | = | & |3
[ViewlProclObject] [PrintINameIFreeze] [EstimateIForecastIStatisesids]

Lag Distribution of... i Coefficient Std. Error t-Statistic "

! 0 0.10270 0.14677 0.69970

! 1 0.01159 0.10948 0.10587

2 -0.00215 010138 -0.02123

! 3 0.00920 0.06150 0.14955

! 4 0.01766 0.07435 0.23756

! 5 0.01363 0.06974 0.19547

G -4 7E-05 0.05557  -0.00084

! 7 -0.01399 0.07080  -0.19764

! 8 001821 007537  -0.24158

! 9  -0.00798 0.06399  -0.12475

! 10 0.01017 0.10454 0.09726

l 11 0.01260 0.11069 0.11386

! 12 -0.04737 015693  -0.30182

Sum of Lags 0.08780 0.00297 205534
v

The Sum of Lags reported at the bottom of the table is the sum of the estimated coefficients
on the distributed lag and has the interpretation of the long run effect of M1 on IP, assuming

stationarity.
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Note that selecting View/Coefficient Diagnostics for an equation estimated with PDL terms
tests the restrictions on 7, not on 3. In this example, the coefficients on the fourth-
(PDLO5) and fifth-order (PDL06) terms are individually insignificant and very close to zero.
To test the joint significance of these two terms, click View/Coefficient Diagnostics/Wald
Test-Coefficient Restrictions... and enter:

c(6)=0, c(7)=0
in the Wald Test dialog box (see “Wald Test (Coefficient Restrictions)” on page 182 for an

extensive discussion of Wald tests in EViews). EViews displays the result of the joint test:

Wald Test:
Equation: Untitled
Null Hyp othesis: C(6)=0, C(7)=0

Test Statistic Value df Probability
F-statistic 0.039852 (2, 353) 0.9609
Chi-square 0.079704 2 0.9609

Null Hyp othesis Summary:

Normalized Restriction (= 0) Value Std. Err.
C(6) 2.58E-05 0.000408
C(7) -4.93E-05 0.000180

Restrictions are linear in coefficients.

There is no evidence to reject the null hypothesis, suggesting that you could have fit a lower
order polynomial to your lag structure.

Automatic Categorical Dummy Variables
EViews equation specifications support expressions of the form:

@expand (serl[, ser2, ser3, ...][, drop_spec])

When used in an equation specification, @expand creates a set of dummy variables that
span the unique integer or string values of the input series.

For example consider the following two variables:
e SEX is a numeric series which takes the values 1 and 0.

e REGION is an alpha series which takes the values “North”, “South”, “East”, and
“West”.

The equation list specification

income age (@expand (sex)
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is used to regress INCOME on the regressor AGE, and two dummy variables, one for
“SEX=0" and one for “SEX=1".
Similarly, the @Gexpand statement in the equation list specification,
income @expand(sex, region) age
creates 8 dummy variables corresponding to:
sex =0, region = "North"
sex =0, region = "South"
sex =0, region = "East"
sex =0, region = "West"
sex =1, region = "North"
sex =1, region = "South"
sex=1, region = "East"
sex =1, region = "West"
Note that our two example equation specifications did not include an intercept. This is

because the default @expand statements created a full set of dummy variables that would
preclude including an intercept.

You may wish to drop one or more of the dummy variables. @expand takes several options

for dropping variables.

The option @dropfirst specifies that the first category should be dropped so that:
@expand (sex, region, @dropfirst)

no dummy is created for “SEX =0, REGION = "North"”.

Similarly, @droplast specifies that the last category should be dropped. In:
@expand (sex, region, @droplast)

no dummy is created for “SEX=1, REGION = "WEST"”.

You may specify the dummy variables to be dropped, explicitly, using the syntax

@drop (vall[, val2, val3,...]) , where each argument specified corresponds to a successive
category in @expand. For example, in the expression:

@expand (sex, region, @drop(0,"West"), @drop(l,"North"))

no dummy is created for “SEX =0, REGION = "West"” and “SEX =1, REGION = "North"”.

g

When you specify drops by explicit value you may use the wild card to indicate all val-

ues of a corresponding category. For example:

@expand (sex, region, @drop(l,*))
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specifies that dummy variables for all values of REGION where “SEX = 1" should be
dropped.

We caution you to take some care in using @expand since it is very easy to generate exces-
sively large numbers of regressors.

@expand may also be used as part of a general mathematical expression, for example, in
interactions with another variable as in:
2*@expand (x)
log (x+y) *@expand (z)
a*@expand (x) /b
Also useful is the ability to renormalize the dummies
@expand (x)-.5
Somewhat less useful (at least its uses may not be obvious) but supported are cases like:
log (x+y*@expand(z))
(Rexpand (x) -@expand (y) )
As with all expressions included on an estimation or group creation command line, they

should be enclosed in parentheses if they contain spaces. Thus, the following expressions
are valid,

a*expand (x)
(a * Qexpand(x))
while this last expression is not,

a * (@expand(x)

Example

Following Wooldridge (2000, Example 3.9, p. 106), we regress the log median housing price,
LPRICE, on a constant, the log of the amount of pollution (LNOX), and the average number
of houses in the community, ROOMS, using data from Harrison and Rubinfeld (1978). The
data are available in the workfile “Hprice2. WF1”.

We expand the example to include a dummy variable for each value of the series RADIAL,
representing an index for community access to highways. We use @expand to create the
dummy variables of interest, with a list specification of:

lprice lnox rooms @expand(radial)

We deliberately omit the constant term C since the @expand creates a full set of dummy
variables. The top portion of the results is depicted below:
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Dependent Variable: LPRICE
Method: Least Squares
Date: 08/08/09 Time: 22:11
Sample: 1 506

Included observations: 506

Variable Coefficient Std. Error t-Statistic Prob.
LNOX -0.487579 0.084998  -5.736396 0.0000
ROOMS 0.284844 0.018790 15.15945 0.0000
RADIAL=1 8.930255 0.205986 43.35368 0.0000
RADIAL=2 9.030875 0.209225 43.16343 0.0000
RADIAL=3 9.085988 0.199781 45.47970 0.0000
RADIAL=4 8.960967 0.198646 4511016 0.0000
RADIAL=5 9.110542 0.209759 43.43330 0.0000
RADIAL=6 9.001712 0.205166 43.87528 0.0000
RADIAL=7 9.013491 0.206797 43.58621 0.0000
RADIAL=8 9.070626 0.214776 42.23297 0.0000
RADIAL=24 8.811812 0.217787 40.46069 0.0000

Note that EViews has automatically created dummy variable expressions for each distinct
value in RADIAL. If we wish to renormalize our dummy variables with respect to a different
omitted category, we may include the C in the regression list, and explicitly exclude a value.
For example, to exclude the category RADIAL = 24, we use the list:

lprice c¢ lnox rooms @expand(radial, @drop(24))

Estimation of this specification yields:
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Dependent Variable: LPRICE
Method: Least Squares
Date: 08/08/09 Time: 22:15
Sample: 1 506

Included observations: 506

Variable Coefficient Std. Error t-Statistic Prob.
C 8.811812 0.217787 40.46069 0.0000
LNOX -0.487579 0.084998  -5.736396 0.0000
ROOMS 0.284844 0.018790 15.15945 0.0000
RADIAL=1 0.118444 0.072129 1642117 0.1012
RADIAL=2 0.219063 0.066055 3.316398 0.0010
RADIAL=3 0.274176 0.059458 4611253 0.0000
RADIAL=4 0.149156 0.042649 3497285 0.0005
RADIAL=5 0.298730 0.037827 7.897337 0.0000
RADIAL=6 0.189901 0.062190 3.053568 0.0024
RADIAL=7 0.201679 0.077635 2597794 0.0097
RADIAL=8 0.258814 0.066166 3.911591 0.0001
R-squared 0.573871 Meandependentvar 9.941057
Adjusted R-squared 0.565262 S.D. dependent var 0.409255
S.E. of regression 0.269841 Akaike info criterion 0.239530
Sum squared resid 36.04295 Schwarz ciiterion 0.331411
Log likelihood -49.60111 Hannan-Quinn criter. 0.275566
F-statistic 66.66195 Durbin-W atson stat 0.671010

Prob(F-statistic) 0.000000

Robust Standard Errors

In the linear least squares regression model, the variance-covariance matrix of the estimated

coefficients may be written as:
V(B) = B(B-B)B-B) = (X'X) X'QX(X'X)"
where Q = E(ee').

If the error terms, €, are homoskedastic and uncorrelated so that F(ee') = oI , the cova-

riance matrix simplifies to the familiar expression

V(B) = (X' X) P (X X)X X)) = (X X)L
By default, EViews estimates the coefficient covariance matrix under the assumptions
underlying Equation (20.9), so that

I
~ _ t
Q = -Tt;lf I=s1 (20.10)

and

VB) = (XX (X200 X = £(x X! (20.11)
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2 . . . .
where s~ is the standard degree-of-freedom corrected estimator of the residual variance.

We may instead employ robust estimators of the coefficient variance V() which relax the
assumptions of heteroskedasticity and/or zero correlation. Broadly speaking, EViews offers
three classes of robust variance estimators that are:

e Robust in the presence of heteroskedasticity. Estimators in this first class are termed
Heteroskedasticity Consistent (HC) Covariance estimators.

® Robust in the presence of correlation between observations in different groups or clus-
ters. This second class consists of the family of Cluster Robust (CR) variance estima-
tors.

e Robust in the presence of heteroskedasticity and serial correlation. Estimators in the
third class are referred to as Heteroskedasticity and Autocorrelation Consistent Covari-
ance (HAC) estimators.

All of these estimators are special cases of sandwich estimators of the coefficient covari-
ances. The name follows from the structure of the estimators in which different estimates of
 are sandwiched between two instances of an outer moment matrix.

It is worth emphasizing all three of these approaches alter the estimates of the coefficient
standard errors of an equation but not the point estimates themselves.

Lastly, our discussion here focuses on the linear model. The extension to nonlinear regres-
sion is described in “Nonlinear Least Squares” on page 51.

Heteroskedasticity Consistent Covariances
First, we consider coefficient covariance estimators that are robust to the presence of het-

eroskedasticity.

We divide our discussion of HC covariance estimation into two groups: basic estimators,
consisting of White (1980) and degree-of-freedom corrected White (Davidson and
MacKinnon 1985), and more general estimators that account for finite samples by adjusting
the weights given to residuals on the basis of leverage (Long and Ervin, 2000; Cribari-Neto
and da Silva, 2011).

Basic HC Estimators

White (1980) derives a heteroskedasticity consistent covariance matrix estimator which pro-
vides consistent estimates of the coefficient covariances in the presence of (conditional) het-
eroskedasticity of unknown form, where

Q = E(ee') = diag(a?, 03, e O'QT) (20.12)

Recall that the coefficient variance in question is
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V(B) = EB-B)(B-B) = (X'X) ' X2X(X'X)'

Under the basic White approach. we estimate the central matrix & = X'QX using either
the d.f. corrected form

T
2 T A2 ,
tI)Wl = “T—_‘—K z etXtXt (2013)
t=1
or the uncorrected form
T
S = Y & XX/ (20.14)

t=1

where €, are the estimated residuals, 7T is the number of observations, k is the number of
regressors, and 7/ (T - k) is the conventional degree-of-freedom correction.

~

The estimator of ® is then used to form the heteroskedasticity consistent coefficient covari-
ance estimator. For example, the degree-of-freedom White heteroskedasticity consistent
covariance matrix estimator is given by

T

Lwor = (X'X)_l(?% > éthXt'j(X'X)‘1 (20.15)
t=1

Estimates using this approach are typically referred to as White or Huber-White or (for the
d.f. corrected case) White-Hinkley covariances and standard errors.

Example

To illustrate the computation of White covariance estimates in EViews, we employ an exam-
ple from Wooldridge (2000, p. 251) of an estimate of a wage equation for college professors.
The equation uses dummy variables to examine wage differences between four groups of
individuals: married men (MARRMALE), married women (MARRFEM), single women (SIN-
GLEFEM), and the base group of single men. The explanatory variables include levels of
education (EDUC), experience (EXPER) and tenure (TENURE). The data are in the workfile

“Wooldridge.WF1”.

To select the White covariance estimator, specify the equation e

as before, then select the Options tab and select Huber-White method: - Huber-ithite e
in the Covariance method drop-down. You may, if desired, Information | opG \
use the checkbox to remove the default d.f. Adjustment, but [¥]d.f. Adjustment

in this example, we will use the default setting. (Note that the
Information matrix combo setting is not important in linear
specifications).

The output for the robust covariances for this regression are shown below:
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Dependent Variable: LOG(WAGE)

Method: Least Squares

Date: 31/05/17 Time: 12:15

Sample: 1 526

Included observations: 526

White-Hinkley (HC1) heteroskedasticity consistent standard errors
and covariance

Variable Coefficient Std. Error t-Statistic Prob.
C 0.321378 0.109469 2.935791 0.0035
MARRMALE 0.212676 0.057142 3.721886 0.0002
MARRFEM -0.198268 0.058770  -3.373619 0.0008
SINGFEM -0.110350 0.057116  -1.932028 0.0539
EDUC 0.078910 0.007415 10.64246 0.0000
EXPER 0.026801 0.005139 5.215010 0.0000
EXPER?2 -0.000535 0.000106  -5.033361 0.0000
TENURE 0.029088 0.006941 4.190731 0.0000
TENURE"2 -0.000533 0.000244  -2.187835 0.0291
R-squared 0.460877 Mean dependent var 1.623268
Adjusted R-squared 0.452535 S.D. dependent var 0.531538
S.E. of regression 0.393290 Akaike info criterion 0.988423
Sum squared resid 79.96799 Schwarz criterion 1.061403
Log likelihood -250.9552 Hannan-Quinn criter. 1.016998
F-statistic 55.24559 Durbin-Watson stat 1.784785
Prob(F-statistic) 0.000000 Wald F-statistic 51.69553

Prob(Wald F-statistic) 0.000000

As Wooldridge notes, the heteroskedasticity robust standard errors for this specification are
not very different from the non-robust forms, and the test statistics for statistical significance
of coefficients are generally unchanged. While robust standard errors are often larger than
their usual counterparts, this is not necessarily the case, and indeed in this example, there
are some robust standard errors that are smaller than their conventional counterparts.

Notice that EViews reports both the conventional residual-based F-statistic and associated
probability and the robust Wald test statistic and p-value for the hypothesis that all non-
intercept coefficients are equal to zero.

Recall that the familiar residual F*statistic for testing the null hypothesis depends only on
the coefficient point estimates, and not their standard error estimates, and is valid only
under the maintained hypotheses of no heteroskedasticity or serial correlation. For ordinary
least squares with conventionally estimated standard errors, this statistic is numerically
identical to the Wald statistic. When robust standard errors are employed, the numerical
equivalence between the two breaks down, so EViews reports both the non-robust conven-
tional residual and the robust Wald F-statistics.

EViews reports the robust F-statistic as the Wald F-statistic in equation output, and the cor-
responding p-value as Prob(Wald F-statistic). In this example, both the non-robust F:statis-
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tic and the robust Wald show that the non-intercept coefficients are jointly statistically
significant.

Alternative HC Estimators

The two familiar White covariance estimators described in “Basic HC Estimators” on
page 33 are two elements of a wider class of HC methods (Long and Ervin, 2000; Cribari-
Neto and da Silva, 2011).

This general class of heteroskedasticity consistent sandwich covariance estimators may be
written as:
T
N ~ L ~
The = LXZX)I[EZ(dﬁg X;X;j(XQX)I (20.16)
t=1

where d, are observation-specific weights that are chosen to improve finite sample perfor-
mance.

The various members of the class are obtained through different choices for the weights. For
example, the standard White and d.f. corrected White estimators are obtained by setting
d, = 1and d, = T/(T- k) for all ¢, respectively.

EViews allows you to estimate your covariances using several choices for d,. In addition to
the standard White covariance estimators from above, EViews supports the bias-correcting

HC2, pseudo-jackknife HC3 (MacKinnon and White, 1985), and the leverage weighting HC4,
HC4m, and HCS5 (Cribari-Neto, 2004; Cribaro-Neto and da Silva, 2011; Cribari-Neto, Souza,

and Vasconcellos, 2007 and 2008).

The weighting functions for the various HC estimators supported by EViews are provided

below:
Method d,
HCO - White 1
HC1 - White with d.f. correction T/(T-F)
HC2 - bias corrected -1/2
(1-"hy)

HC3 - pseudo-jackknife =il
(1-hy)

HC4 - relative leverage -6,/2
8 (1-h)"
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HC4m —8,/2
(1-h) "

HCS —8,/4
(1-hy '

User - user-specified arbitrary

where h, = X,/(X' XX . are the diagonal elements of the familiar “hat matrix”
H= XXX "X.

Note that the HCO and HC1 methods correspond to the basic White estimators outlined ear-
lier.

Note that HC4, HC4m, and HCS all depend on an exponential discounting factor ¢, that dif-
fers across methods:

e For HC4,
6, = min(Th;/k, 4)

is a truncated function of the ratio between &, and the mean h (Cribari-Neto, 2004;
p. 230).

¢ For HC4m,
6, = min(Th,/k, ;) + min(Th,/ k, ky)

where «; and «, are pre-specified parameters (Cribari-Neto and da Silva, 2011). Fol-
lowing Cribari-Neto and da Silva,

EViews chooses default values of k;, = 1.0 and «x, = 1.5.
e For HC5,
6, = min(Th,/ k, max(4, k Th,,./k))

is similar to the HC4 version of 4,, but with observation specific truncation that
depends on the maximal leverage and a pre-specified parameter k (Cribari-Neto,
Souza, and Vasconcellos, 2007 and 2008).

EViews employs a default value of k = 0.7.

Lastly, to allow for maximum flexibility, EViews allows you to provide user-specified d, in
the form of a series containing those values.

Each of the weight choices modifies the effects of high leverage observations on the calcula-
tion of the covariance. See Cribari-Neto (2004), Cribari-Neto and da Silva (2011), and Crib-
ari-Neto, Souza, and Vasconcellos (2007, 2008) for discussion of the effects of these choices.
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Note that the full set of HC estimators is only available for linear regression models. For non-
linear regression models, the leverage based methods are not available and only user-speci-
fied may be computed.

Example

To illustrate the use of the alternative HC estimators, we continue with the Wooldridge
example (“Example” on page 34) considered above. We specify the equation variables as
before, then select the Options tab and click on the Covariance method drop-down and
select HC (Various):

Coeffident covariance

Covariance -
method: Ordinary Y]

Ordinary

Huber-White

HAC (Newey-West]
[CAERLITE HE fyarious)

|Cluster robust_[» |

The dialog will change to show you additional options for selecting the HC method:

Coeffident covariance
Covariance

method: HC (various) Y]

OPG

HC method:  |HC2 (bias adjusted) ¥
HCO {ordinary)
HC1 (d.f. adjusted

hias adjusted
Optimization |HC3 (pseudo-jackknife)
H

HC4m
HCS
User-spedfied

Note that the HCO (ordinary) and HC1 (d.f. adjusted) items replicate the Huber-White
option from the original Covariance method dropdown and are included in this list for com-
pleteness. If desired, change the method from the default HC2 (bias adjusted), and if neces-
sary, specify values for the parameters. For example, if you select User-specified, you will be
prompted to provide the name of a series in the workfile containing the values of the
weights d,.

Continuing with our example, we use the Covariance method dropdown to select the HC5
method, and retain the default value k = 0.7 . Click on OK to estimate the model with
these settings producing the following results:
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Dependent Variable: LOG(WAGE)

Method: Least Squares

Date: 31/05/17 Time: 12:11

Sample: 1 526

Included observations: 526

Cribari-Neto et al. (H5) heteroskedasticity-consistent standard errors
& covariance (k=.7)

Variable Coefficient Std. Error t-Statistic Prob.
C 0.321378 0.110175 2.916988 0.0037
MARRMALE 0.212676 0.057869 3.675129 0.0003
MARRFEM -0.198268 0.059220  -3.347974 0.0009
SINGFEM -0.110350 0.057236  -1.927970 0.0544
EDUC 0.078910 0.007502 10.51918 0.0000
EXPER 0.026801 0.005147 5.206623 0.0000
EXPER?2 -0.000535 0.000107  -4.995281 0.0000
TENURE 0.029088 0.009312 3.123691 0.0019
TENURE"2 -0.000533 0.000387  -1.378837 0.1685
R-squared 0.460877 Mean dependent var 1.623268
Adjusted R-squared 0.452535 S.D. dependent var 0.531538
S.E. of regression 0.393290 Akaike info criterion 0.988423
Sum squared resid 79.96799 Schwarz criterion 1.061403
Log likelihood -250.9552 Hannan-Quinn criter. 1.016998
F-statistic 55.24559 Durbin-Watson stat 1.784785
Prob(F-statistic) 0.000000 Wald F-statistic 51.54430

Prob(Wald F-statistic) 0.000000

The effects on statistical inference resulting from a different HC estimator are minor, though
the quadratic effect of TENURE is no longer significant at conventional test levels.

Cluster-Robust Covariances

In many settings, observations may be grouped into different groups or “clusters” where
errors are correlated for observations in the same cluster and uncorrelated for observations
in different clusters. EViews offers support for consistent estimation of coefficient covari-
ances that are robust to either one and two-way clustering.

We begin with a single clustering classifier and assume that
E(ee;) =0

20.1
E(ee;) = 0 (20.17)

for all 4 and j in the same cluster, and all ¢ and A that are in different clusters. If we
assume that the number of clusters G goes to infinity, we may compute a cluster-robust
(CR) covariance estimate that is robust to both heteroskedasticity and to within-cluster cor-
relation (Liang and Zeger, 1986; Wooldridge, 2003; Cameron and Miller, 2015).
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As with the HC and HAC estimators, the cluster-robust estimator is based upon a sandwich
form with an estimator the central matrix & = X'QX:
G
dcp = Z X,/ Deges D)X, (20.18)
g=1

where X is the T x k matrix of regressors for the T observations in the g-th cluster, €
isa T, vector of errors, and D isa T x T, diagonal matrix of weights for the observa-
tions in the cluster. The resulting family of CR variance estimators is given by:
G
Lor = (X’X)_l( > Xg'DgégEg'z)nggJ(X'X)‘1 (20.19)

g=1

4

The EViews supported weighting functions for the various CR estimators are analogues to
those available for HC estimation:

Method d,
CRO - Ordinary 1
(C(f\elfa_u 1ftl)mte sample corrected G (T-1
(G-1) (T-k
CR2 - bias corrected (1- ht)_l/Q
CR3 - pseudo-jackknife (1- ht)71
CR4 - relative leverage -8,/2
8 (1-h) "
CR4m -8,/2
(1-h) "
CR5 -5,/4
(1-hy)
User - user-specified arbitrary

where h, = Xt'(X'X)_lXt are the diagonal elements of H = X(X’X)_IX’. For further
discussion and detailed definitions of the discounting factor 6, in the various methods, see
“Alternative HC Estimators” on page 36. See Cameron and Miller (CM 2015, p. 342) for dis-
cussion of bias adjustments in the context of cluster robust estimation.

Note that the EViews CR3 differs slightly from the CR3 described by CM in not including the
~ G/ (G -1) factor, and that we have defined the CR4, CR4m and CRS estimators which
employ weights that are analogues to those defined for HC covariance estimation.
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We may easily extend the robust variance calculation to two-way clustering to handle cases
where observations are correlated within two different clustering dimensions (Petersen
2009, Thompson 2011, Cameron, Gelbach, and Miller 2015).

It is easily shown that the variance estimator for clustering by A and B may be written as:
~ ~ A ~ B ~ANB
Yor = Xcr+Xcr—-Xor (20.20)
where the EJCR is used to indicate the estimator obtained assuming clustering along the
given dimension. Thus, the estimator is formed by adding the covariances obtained by clus-
tering along each of the two dimensions individually, and subtracting off the covariance
obtained by defining clusters for the intersection of the two dimensions.

Note that EViews does not perform the eigenvalue adjustment in cases where the resulting
estimate is not positive semidefinite.

If you elect to compute cluster-robust covariance estimates, EViews will adjust the ¢-statistic
probabilities in the main estimation output to account for the clustering and will note this
adjustment in the output comments. Following Cameron and Miller (CM, 2015), the proba-
bilities are computed using the #-distribution with G — 1 degrees-of-freedom in the one-way
cluster case, and by min(G 4, Gp) — 1 degrees-of-freedom under two-way clustering. Bear
in mind that CM note that even with these adjustments, the tests tend to overreject the null.

Furthermore, when cluster-robust covariances are computed, EViews will not display the
residual-based F*statistic for the test of significance of the non-intercept regressors. The
robust Wald-based F-statistic will be displayed.

Example

We illustrate the computation of cluster-robust covariance estimation in EViews using the
test data provided by Petersen via his website:

http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.htm

The data are provided as an EViews workfile “Petersen_cluster. WF1”. There are 5000 obser-
vations on four variables in the workfile, the dependent variable Y, independent variable X,
and two cluster variables, a firm identifier (FIRMID), and time identifier (YEAR). There are
500 firms, and 10 periods in the balanced design.

First, create the equation object in EViews by selecting Object/New Object.../Equation or

Quick/Estimate Equation... from the main menu, or simply type the keyword equation in
the command window. Enter, the regression specification “Y C X” in the Specification edit
field, and click on OK to estimate the equation using standard covariance settings.

The results of this estimation are given below:


http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.htm
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Dependent Variable: Y
Method: Least Squares
Date: 30/05/17 Time: 15:44
Sample: 1 5000

Included observations: 5000

Variable Coefficient Std. Error t-Statistic Prob.

C 0.029680 0.028359 1.046560 0.2954

X 1.034833 0.028583 36.20414 0.0000
R-squared 0.207766 Mean dependent var 0.035238
Adjusted R-squared 0.207607 S.D. dependent var 2.252704
S.E. of regression 2.005277 Akaike info criterion 4.229841
Sum squared resid 20097.64 Schwarz criterion 4.232448
Log likelihood -10572.60 Hannan-Quinn criter. 4.230755
F-statistic 1310.740 Durbin-Watson stat 1.096121
Prob(F-statistic) 0.000000

Next, to estimate the equation with FIRMID cluster-robust covariances, click on the Esti-
mate button on the equation toolbar to display the estimation dialog, and then click on the
Options tab to show the Coefficient covariance options.

Equation Estimation

Spedification | Options

Coeffident covariance Weights

Covariance

Type:
method: Cluster robust v Type None W
OPG
Cluster firmid Eviews default

series:

CRmethod:  |CR1 (finite sample)  w

Optimization
Gauss-Newton
Marguardt
Coeffident name
500
C
1e-08

Display settings in output

Select Cluster robust in the Covariance method dropdown, enter “FIRMID” in the Cluster
series edit field, and select a CR method. Here, we choose the CR1 (finite sample) method
which employs a simple d.f. style adjustment to the basic cluster covariance estimate. Click
on OK to estimate the equation using these settings.
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The results are displayed below:

Dependent Variable: Y

Method: Least Squares

Date: 30/05/17 Time: 15:50

Sample: 1 5000

Included observations: 5000

CR1 (finite sample adjusted) cluster-robust standard errors &
covariance

Cluster series: FIRMID (500 clusters)

Standard errors and t-statistic probabilities adjusted for clustering

Variable Coefficient Std. Error t-Statistic Prob.
C 0.029680 0.067013 0.442897 0.6580
X 1.034833 0.050596 20.45298 0.0000
R-squared 0.207766 Mean dependent var 0.035238
Adjusted R-squared 0.207607 S.D. dependent var 2.252704
S.E. of regression 2.005277 Akaike info criterion 4.229841
Sum squared resid 20097.64 Schwarz criterion 4.232448
Log likelihood -10572.60 Hannan-Quinn criter. 4.230755
Durbin-Watson stat 1.096121 Wald F-statistic 418.3244

Prob(Wald F-statistic) 0.000000

The top portion of the equation output describes both the cluster method (CR1) and the
cluster series (FIRMID), along with the number of clusters (500) observed in the estimation
sample. In addition, EViews indicates that the reported coefficient standard errors, and ¢-sta-
tistic probabilities have been adjusted for the clustering. As noted earlier, the probabilities
are computed using the ¢-distribution with G—1 = 499 degrees-of-freedom.

Note also that EViews no longer displays the ordinary F-statistic and associated probability,
but instead shows the robust Wald F-statistic and probability.
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Dependent Variable: Y

Method: Least Squares

Date: 30/05/17 Time: 15:50

Sample: 1 5000

Included observations: 5000

CR1 (finite sample adjusted) cluster-robust standard errors &
covariance

Cluster series: FIRMID (500 clusters), YEAR (10 clusters)

Standard errors and t-statistic probabilities adjusted for clustering

Variable Coefficient Std. Error t-Statistic Prob.
C 0.029680 0.065064 0.456163 0.6591
X 1.034833 0.053558 19.32173 0.0000
R-squared 0.207766 Mean dependent var 0.035238
Adjusted R-squared 0.207607 S.D. dependent var 2.252704
S.E. of regression 2.005277 Akaike info criterion 4.229841
Sum squared resid 20097.64 Schwarz criterion 4.232448
Log likelihood -10572.60 Hannan-Quinn criter. 4.230755
Durbin-Watson stat 1.096121 Wald F-statistic 373.3291

Prob(Wald F-statistic) 0.000000

For two-way clustering, we create an equation with the same regression specification, click
on the Options tab, and enter the two cluster series identifiers “FIRMID YEAR” in the Clus-
ter series edit field. Leaving the remaining options at their current settings, click on OK to
compute and display the estimation results:

Dependent Variable: Y

Method: Least Squares

Date: 30/05/17 Time: 15:23

Sample: 1 5000

Included observations: 5000

CR1 (finite sample adjusted) cluster-robust standard errors &
covariance

Cluster series: FIRMID (500 clusters), YEAR (10 clusters)

Standard errors and t-statistic probabilities adjusted for clustering

Variable Coefficient Std. Error t-Statistic Prob.
X 1.034833 0.053558 19.32173 0.0000
C 0.029680 0.065064 0.456163 0.6591
R-squared 0.207766 Mean dependent var 0.035238
Adjusted R-squared 0.207607 S.D. dependent var 2.252704
S.E. of regression 2.005277 Akaike info criterion 4.229841
Sum squared resid 20097.64 Schwarz criterion 4.232448
Log likelihood -10572.60 Hannan-Quinn criter. 4.230755
Durbin-Watson stat 1.096121 Wald F-statistic 373.3291

Prob(Wald F-statistic) 0.000000
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The output shows that the cluster-robust covariance computation is now based on two-way
clustering using the 500 clusters in FIRMID and the 10 clusters in YEAR. The #-statistic prob-
abilities are now based on the #-distribution with min(500, 10) — 1 = 9 degrees-of-free-
dom.

Notice in all of these examples that the coefficient point estimates and basic fit measures are
unchanged. The only changes in results are in the estimated standard errors, and the associ-
ated t-statistics, probabilities, and the F-statistics and probabilities.

Lastly, we note that the standard errors and corresponding statistics in the EViews two-way
results differ slightly from those reported on the Petersen website. These differences appear
to be the result of slightly different finite sample adjustments in the computation of the three
individual matrices used to compute the two-way covariance. When you select the CR1
method, EViews adjusts each of the three matrices using the CR1 finite sample adjustment;
Petersen’s example appears to apply CR1 to the one-way cluster covariances, while the joint
two-way cluster results are computing using CRO.

HAC Consistent Covariances (Newey-West)

The White covariance matrix described above assumes that the residuals of the estimated
equation are serially uncorrelated.

Newey and West (1987b) propose a covariance estimator that is consistent in the presence
of both heteroskedasticity and autocorrelation (HAC) of unknown form, under the assump-
tion that the autocorrelations between distant observations die out. NW advocate using ker-
nel methods to form an estimate of the long-run variance, E(X'ee’ X/ T).

EViews incorporates and extends the Newey-West approach by allowing you to estimate the
HAC consistent coefficient covariance estimator given by:

Saw = (XX) ' TAXX)™ (20.21)

where A is any of the LRCOV estimators described in Appendix F. “Long-run Covariance
Estimation,” on page 1115.

To use the Newey-West HAC method, select the Options tab EteflienEaiai. s

and select HAC (Newey-West) in the Coefficient covariance metbor " |HAC (Newey-West) v
matrix drop-down. As before, you may use the checkbox to Information | opG v
remove the default d.f. Adjustment. [¥]d.f. Adjustment | HAC options

Press the HAC options button to change the options for the
LRCOV estimate.
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We illustrate the computation of HAC covariances
using an example from Stock and Watson (2007,
p. 620). In this example, the percentage change of
the price of orange juice is regressed upon a con-
stant and the number of days the temperature in
Florida reached zero for the current and previous
18 months, using monthly data from 1950 to 2000
The data are in the workfile “Stock_wat.WF1”.

Stock and Watson report Newey-West standard
errors computed using a non pre-whitened Bartlett
Kernel with a user-specified bandwidth of 8 (note
that the bandwidth is equal to one plus what
Stock and Watson term the “truncation parame-
ter” m).

The results of this estimation are shown below:

HAC Options
Whitening options
Lag spedification: Mone
Kernel options
Kernel: Bartlett

Bandwidth method: | User-specified

Bandwidth value: 8

|:| Truncate to integer
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Dependent Variable: 100*D(LOG(PQOJ))

Method: Least Squares

Date: 02/10/13 Time: 06:44

Sample: 1950M01 2000M12

Included observations: 612

HAC standard errors & covariance (Bartlett kernel, User bandwidth =

8.0000)

Variable Coefficient Std. Error t-Statistic Prob.
FDD 0.503798 0.139563 3.609818 0.0003
FDD(-1) 0.169918 0.088943 1.910407 0.0566
FDD(-2) 0.067014 0.060693 1.104158 0.2700
FDD(-3) 0.071087 0.044894 1.583444 0.1139
FDD(-4) 0.024776 0.031656 0.782679 0.4341
FDD(-5) 0.031935 0.030763 1.038086 0.2997
FDD(-6) 0.032560 0.047602 0.684014 0.4942
FDD(-7) 0.014913 0.015743 0.947323 0.3439
FDD(-8) -0.042196 0.034885  -1.209594 0.2269
FDD(-9) -0.010300 0.051452  -0.200181 0.8414
FDD(-10) -0.116300 0.070656  -1.646013 0.1003
FDD(-11) -0.066283 0.053014  -1.250288 0.2117
FDD(-12) -0.142268 0.077424  -1.837518 0.0666
FDD(-13) -0.081575 0.042992  -1.897435 0.0583
FDD(-14) -0.056372 0.035300  -1.596959 0.1108
FDD(-15) -0.031875 0.028018  -1.137658 0.2557
FDD(-16) -0.006777 0.055701  -0.121670 0.9032
FDD(-17) 0.001394 0.018445 0.075584 0.9398
FDD(-18) 0.001824 0.016973 0.107450 0.9145
C -0.340237 0.273659  -1.243289 0.2143
R-squared 0.128503 Mean dependent var -0.115821
Adjusted R-squared 0.100532 S.D. dependent var 5.065300
S.E. of regression 4.803944 Akaike info criterion 6.008886
Sum squared resid 13662.11 Schwarz criterion 6.153223
Log likelihood -1818.719  Hannan-Quinn criter. 6.065023
F-statistic 4.594247 Durbin-Watson stat 1.821196
Prob(F-statistic) 0.000000 Wald F-statistic 2.257876

Prob(Wald F-statistic) 0.001769

Note in particular that the top of the equation output documents the use of HAC covariance
estimates along with relevant information about the settings used to compute the long-run
covariance matrix.

The HAC robust Wald p-value is slightly higher than the corresponding non-robust F-statis-
tic p-value, but are significant at conventional test levels.
Weighted Least Squares

Suppose that you have heteroskedasticity of known form, where the conditional error vari-
ances are given by of . The presence of heteroskedasticity does not alter the bias or consis-
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tency properties of ordinary least squares estimates, but OLS is no longer efficient and
conventional estimates of the coefficient standard errors are not valid.

If the variances a? are known up to a positive scale factor, you may use weighted least
squares (WLS) to obtain efficient estimates that support valid inference. Specifically, if

Yy, = ¢,/ +¢€
E(e;] X)) = 0 (20.22)
Var(e,| X;) = 0?

and we observe h, = (wf , the WLS estimator for 8 minimizes the weighted sum-of-
squared residuals:

1
S(8) = Zg(yt—xt'ﬁf
! (20.23)

Zwt(yt - xt'B)Z
t

with respect to the k-dimensional vector of parameters 8, where the weights w, = 1/h,
are proportional to the inverse conditional variances. Equivalently, you may estimate the
regression of the square-root weighted transformed data y,* = ﬁt -y, on the trans-
formed z,* = ﬁt- z;.

In matrix notation, let W be a diagonal matrix containing the scaled w along the diagonal
and zeroes elsewhere, and let y and X be the matrices associated with y, and z,. The
WLS estimator may be written,

Bwis = (X' WX) ' X' Wy (20.24)
and the default estimated coefficient covariance matrix is:
Swis = sS(XWX)! (20.25)
where
5 = g (5= XBuwss) Wy~ XBuys) (20.26)

is a d.f. corrected estimator of the weighted residual variance.

To perform WLS in EViews, open the equation estimation dialog and select a method that
supports WLS such as LS—Least Squares (NLS and ARMA), then click on the Options tab.
(You should note that weighted estimation is not offered in equations containing ARMA
specifications, nor is it available for some equation methods, such as those estimated with
ARCH, binary, count, censored and truncated, or ordered discrete choice techniques.)



Weighted Least Squares—49

You will use the three parts of the Weights section of the Options tab to specify your
weights.
Mone

Inverse std, dev,
Inverse variance

The Type dropdown is used to specify the form in which the weight data
are provided. If, for example, your weight series VARWGT contains values
proportional to the conditional variance, you should select Variance.

Alternately, if your series INVARWGT contains the values proportional to
the inverse of the standard deviation of the residuals you should choose Inverse std. dev.

Next, you should enter an expression for your weight series in the Weight series edit field.

Lastly, you should choose a scaling method for the weights. There are Average
three choices: Average, None, and (in some cases) EViews default. If you  [Eviews defaut
select Average, EViews will, prior to use, scale the weights prior so that

the w; sum to T'. The EViews default specification scales the weights so the square roots
of the w, sum to T'. (The latter square root scaling, which offers backward compatibility to
EViews 6 and earlier, was originally introduced in an effort to make the weighted residuals
@ - (y,— z,/B) comparable to the unweighted residuals.) Note that the EViews default

method is only available if you select Inverse std. dev. as weighting Type.

Unless there is good reason to do so, we recommend that you employ Inverse std.
dev. weights with EViews default scaling, even if it means you must transform your
weight series. The other weight types and scaling methods were introduced in EViews
7, so equations estimated using the alternate settings may not be read by prior ver-
sions of EViews.

We emphasize the fact that by, ¢ and £y, are almost always invariant to the scaling of
weights. One important exception to this invariance occurs in the special case where some
of the weight series values are non-positive since observations with non-positive weights
will be excluded from the analysis unless you have selected EViews default scaling, in
which case only observations with zero weights are excluded.

As an illustration, we consider a simple example taken from Gujarati (2003, Example 11.7, p.
416) which examines the relationship between compensation (Y) and index for employment
size (X) for nine nondurable manufacturing industries. The data, which are in the workfile
“Gujarati_wls.WF1”, also contain a series SIGMA believed to be proportional to the standard
deviation of each error.

To estimate WLS for this specification, open an equation dialog and enter
y C X

as the equation specification.



50—Chapter 20. Additional Regression Tools

Click on the Options tab, and fill out the Weights section as Weights

depicted here. We select Inverse std. dev. as our Type, and spec- Type: | Inverse std. dev. v

ify “1/SIGMA” for our Weight series. Lastly, we select EViews Welght | 1/sigma

default as our Scaling method. Scaling:  |EViews default v
Average

Click on OK to estimate the specified equation. The results are

given by:

Dependent Variable: Y

Method: Least Squares

Date: 06/17/09 Time: 10:01

Sample: 19

Included observations: 9

Weighting series: 1/SIGMA

Weight type: Inverse standard deviation (EViews default scaling)

Variable Coefficient Std. Error t-Statistic Prob.
C 3406.640 80.98322 42.06600 0.0000
X 154.1526 16.95929 9.089565 0.0000

Weighted Statistics

R-squared 0.921893 Mean dependent var 4098417
Adjusted R-squared 0.910734 S.D. dependent var 629.1767
S.E. of regression 126.6652 Akaike info criterion 12.71410
Sum squared resid 112308.5 Schwarz criterion 12.75793
Log likelihood -55.21346 Hannan-Quinn criter. 12.61952
F-statistic 82.62018 Durbin-Watson stat 1.183941
Prob(F -statistic) 0.000040 Weighted mean dep. 4039404

Unweighted Statistics

R-squared 0.935499 Mean dependent var 4161.667
Adjusted R-squared 0.926285 S.D. dependent var 420.5954
S.E. of regression 114.1939 Sum squared resid 91281.79
Durbin-Watson stat 1.141034

The top portion of the output displays the estimation settings which show both the specified
weighting series and the type of weighting employed in estimation. The middle section
shows the estimated coefficient values and corresponding standard errors, #-statistics and
probabilities.

The bottom portion of the output displays two sets of statistics. The Weighted Statistics
show statistics corresponding to the actual estimated equation. For purposes of discussion,
there are two types of summary statistics: those that are (generally) invariant to the scaling
of the weights, and those that vary with the weight scale.
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The “R-squared”, “Adjusted R-squared”, “F-statistic” and “Prob(F-stat)”, and the “Durbin-
Watson stat”, are all invariant to your choice of scale. Notice that these are all fit measures
or test statistics which involve ratios of terms that remove the scaling.

One additional invariant statistic of note is the “Weighted mean dep.” which is the weighted

mean of the dependent variable, computedZ as:
WYy
Yo = . (20.27)
Wy
The weighted mean is the value of the estimated intercept in the restricted model, and is
used in forming the reported F-test.

» o«

The remaining statistics such as the “Mean dependent var.”, “Sum squared resid”, and the
“Log likelihood” all depend on the choice of scale. They may be thought of as the statistics
computed using the weighted data, y* = A/Ef/- y, and z* = ﬁt - x,. For example, the
mean of the dependent variable is %omputed as (Z y,*)/ T, and the sum-of-squared resid-
uals is given by Zwt( y* — 2;*'B8)" . These values should not be compared across equa-
tions estimated using different weight scaling.

Lastly, EViews reports a set of Unweighted Statistics. As the name suggests, these are statis-
tics computed using the unweighted data and the WLS coefficients.

Nonlinear Least Squares
Suppose that we have the regression specification:
Yy = Mz, B) + e, (20.28)

where f is a general function of the explanatory variables z, and the parameters (3. Least
squares estimation chooses the parameter values that minimize the sum of squared residu-
als:

S(B) = (v~ flz, B) = (y- X, 8))'(y- f(X, B)) (20.29)
t

We say that a model is linear in parameters if the derivatives of f with respect to the param-
eters do not depend upon (3 ; if the derivatives are functions of 3, we say that the model is
nonlinear in parameters.

For example, consider the model given by:
Yy, = By + BylogL, + Bslog K, + ¢,. (20.30)

It is easy to see that this model is linear in its parameters, implying that it can be estimated
using ordinary least squares.

In contrast, the equation specification:
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ﬂ,) 3
Yy = BlLt‘Kf‘Ht (20.31)

has derivatives that depend upon the elements of 3. There is no way to rearrange the terms
in this model so that ordinary least squares can be used to minimize the sum-of-squared
residuals. We must use nonlinear least squares techniques to estimate the parameters of the
model.

Nonlinear least squares minimizes the sum-of-squared residuals with respect to the choice
of parameters 3. While there is no closed form solution for the parameters, estimates my be
obtained from iterative methods as described in “Optimization Algorithms,” beginning on
page 1095.

Estimates of the coefficient covariance take the general form:
SNLLS = cA'BA™ (20.32)

where A is an estimate of the information, B is the variance of the residual weighted gradi-
ents, and c is a scale parameter.

For the ordinary covariance estimator, we assume that A = B. Then we have

-1

SNiLs = cA (20.33)

where c is an estimator of the residual variance (with or without degree-of-freedom correc-
tion).

As in Amemiya (1983), we may estimate A using the outer-product of the gradients (OPG)
so we have

R ’ -1
YNLLS = C- (%%ﬁﬁ)} (20.34)

where the derivatives are evaluated at by g.

Similarly, we may set A to the one-half of the Hessian matrix of second derivatives of the
sum-of-squares function:

2 -1
YnLLs = c¢- (% . gﬁség,)) (20.35)

evaluated at by g.

Alternately, we may assume distinct A and B and employ a White or HAC sandwich esti-
mator for the coefficient covariance as in “Robust Standard Errors,” beginning on page 32.
In this case, A is estimated using the OPG or Hessian, and the B is a robust estimate of the
variance of the gradient weighted residuals. In this case, ¢ is a scalar representing the
degree-of-freedom correction, if employed.
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For additional discussion of nonlinear estimation, see Pindyck and Rubinfeld (1998, p. 265-
273), Davidson and MacKinnon (1993), or Amemiya(1983).

Estimating NLS Models in EViews

It is easy to tell EViews that you wish to estimate the parameters of a model using nonlinear
least squares. EViews automatically applies nonlinear least squares to any regression equa-
tion that is nonlinear in its coefficients. Simply select Object/New Object.../Equation, enter
the equation in the equation specification dialog box, and click OK. EViews will do all of the
work of estimating your model using an iterative algorithm.

A full technical discussion of iterative estimation procedures is provided in Appendix C.
“Estimation and Solution Options,” beginning on page 1089.

Specifying Nonlinear Least Squares

For nonlinear regression models, you will have to enter your specification in equation form
using EViews expressions that contain direct references to coefficients. You may use ele-
ments of the default coefficient vector C (e.g. C(1), C(2), C(34), C(87)), or you can define
and use other coefficient vectors. For example:

y = c(l) + c(2)*(k"c(3)+1"c(4))

is a nonlinear specification that uses the first through the fourth elements of the default
coefficient vector, C.

To create a new coefficient vector, select Object/New Object.../Matrix-Vector-Coef in the
main menu and provide a name. You may now use this coefficient vector in your specifica-
tion. For example, if you create a coefficient vector named CF, you can rewrite the specifica-
tion above as:

y = cf(11) + cf(12)*(k"cf(13)+1"cf(14))
which uses the eleventh through the fourteenth elements of CF.
You can also use multiple coefficient vectors in your specification:
y = c(11) + c(12)*(k*cf(1l)+1"cf(2))
which uses both C and CF in the specification.

It is worth noting that EViews implicitly adds an additive disturbance to your specification.
For example, the input

y = (c(l)*x + c(2)*z + 4)"2

is interpreted as y, = (c(1)z, + c(2)z, + 4)2 + €,, and EViews will minimize:

S(e(1), e(2)) = 3 (- (c(Day+ e(2)z,+4)°) (2036)
t
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If you wish, the equation specification may be given by a simple expression that does not
include a dependent variable. For example, the input,

(c(l)y*x + c(2)*z + 4)"2
is interpreted by EViews as —(c(1)z;, + ¢(2)z, + 4)2 = ¢€,, and EViews will minimize:

S(e(1), e(2)) = Y {~(c(D)z; + o(2)z,+4)°) (20.37)
t

While EViews will estimate the parameters of this last specification, the equation cannot be
used for forecasting and cannot be included in a model. This restriction also holds for any
equation that includes coefficients to the left of the equal sign. For example, if you specify,

X + c(l)*y = z"c(2)

EViews will find the values of C(1) and C(2) that minimize the sum of squares of the
implicit equation:
z,+c(1)y,— 25(2) = ¢ (20.38)

The estimated equation cannot be used in forecasting or included in a model, since there is
no dependent variable.

Estimation Options

Clicking on the Options tab displays the nonlinear least squares estimation options:

Equation Estimation
Spedification | Options
Coeffident covariance Weights
Covariance - Type: None v
method: Ordinary Y]
Information | gpg v
matrix:
EViews default
d.f. Adjustment =
Optimization
imizati Derivatives
prtaahio Gauss-Mewton W
method:
Step method: | Marguardt v
[ use numeric only
Maximum jterations: 500
Conyergence tolerance: | 1e-§ Coeffident name

|:| Display settings in output €

Coefficient Covariance

EViews allows you to compute ordinary coefficient covariances using the inverse of either
the OPG of the mean function or the observed Hessian of the objective function, or to com-
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pute robust sandwich estimators for the covariance matrix using White or HAC (Newey-
West) estimators.

e The topmost Covariance method dropdown menu should be used to choose between
the default Ordinary or the robust Huber-White or HAC (Newey-West) methods.

¢ In the Information matrix menu you should choose between the OPG and the Hes-
sian - observed estimators for the information.

¢ If you select HAC (Newey-West), you will be presented with a HAC options button
that, if pressed, brings up a dialog to allow you to control the long-run variance com-
putation.

Coeffident covariance

Covariance
method:

Information | gpg v
matrix:

d.f. Adjustment | HAC options

HAC (Newey-West) w

See “Robust Standard Errors,” beginning on page 32 for a discussion of White and HAC
standard errors.

You may use the d.f. Adjustment checkbox to enable or disable the degree-of-freedom cor-
rection for the coefficient covariance. For the Ordinary method, this setting amounts to
determining whether the residual variance estimator is or is not degree-of-freedom cor-
rected. For the sandwich estimators, the degree-of-freedom correction is applied to the entire
matrix.

Optimization

You may control the iterative process by specifying the optimization method, convergence
criterion, and maximum number of iterations.

Optimization

s 2l Gauss-MNewton b4
method:

Step method: | Marguardt v
Maximum jterations: 500
Conyergence tolerance: | 1e-§

|:| Display settings in output

The Optimization method dropdown menu lets you choose between the default Gauss-
Newton and BFGS, Newton-Raphson, and EViews legacy methods.

In general, the differences between the estimates should be small for well-behaved nonlin-
ear specifications, but if you are experiencing trouble, you may wish to experiment with
methods. Note that EViews legacy is a particular implementation of Gauss-Newton with
Marquardt or line search steps, and is provided for backward estimation compatibility.
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The Step method allow you to choose the approach for choosing candidate iterative steps.
The default method is Marquardt, but you may instead select Dogleg or Line Search.

See “Optimization Method” on page 1090, and “Optimization Algorithms” on page 1095 for
related discussion.

EViews will report that the estimation procedure has converged if the convergence test value
is below your convergence tolerance. See for details. While there is no best choice of conver-
gence tolerance, and the choice is somewhat individual, as a guideline note that we gener-
ally set ours something on the order of 1e-8 or so and then adjust it upward if necessary for
models with difficult to compute numeric derivatives.

See “Iteration and Convergence” on page 1090 for additional discussion.

In most cases, you need not change the maximum number of iterations. However, for some
difficult to estimate models, the iterative procedure may not converge within the maximum
number of iterations. If your model does not converge within the allotted number of itera-
tions, simply click on the Estimate button, and, if desired, increase the maximum number of
iterations. Click on OK to accept the options, and click on OK to begin estimation. EViews
will start estimation using the last set of parameter values as starting values.

These options may also be set from the global options dialog. See Appendix A, “Estimation
Defaults” on page 871 for details.

Derivative Methods

Estimation in EViews requires computation of the derivatives of the regression function with
respect to the parameters.

In most cases, you need not worry about the settings for the derivative computation. The
EViews estimation engine will employ analytic expressions for the derivatives, if possible, or
will compute high numeric derivatives, switching between lower precision computation
early in the iterative procedure and higher precision computation for later iterations and
final computation. You may elect to use only numeric derivatives.

See “Derivative Computation” on page 1093 for additional discussion.

Starting Values

Iterative estimation procedures require starting values for the coefficients of the model. The
closer to the true values the better, so if you have reasonable guesses for parameter values,
these can be useful. In some cases, you can obtain good starting values by estimating a
restricted version of the model using least squares. In general, however, you may need to
experiment in order to find starting values.

There are no general rules for selecting starting values for parameters so there are no set-
tings in this page for choosing values. EViews uses the values in the coefficient vector at the
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time you begin the estimation procedure as starting values for the iterative procedure. It is
easy to examine and change these coefficient starting values. To see the current starting val-
ues, double click on the coefficient vector in the workfile directory. If the values appear to
be reasonable, you can close the window and proceed with estimating your model.

If you wish to change the starting values, first make certain that the spreadsheet view of
your coefficients is in edit mode, then enter the coefficient values. When you are finished
setting the initial values, close the coefficient vector window and estimate your model.

You may also set starting coefficient values from the command window using the PARAM
command. Simply enter the PARAM keyword, following by each coefficient and desired
value. For example, if your default coefficient vector is C, the statement:

param c(l) 153 c(2) .68 c(3) .15
sets C(1) =153, C(2) =.68, and C(3) =.15.

See Appendix C, “Estimation and Solution Options” on page 1089, for further details.

Output from NLS

Once your model has been estimated, EViews displays an equation output screen showing
the results of the nonlinear least squares procedure. Below is the output from a regression of
LOG(CS) on C, and the Box-Cox transform of GDP using the data in the workfile “Chow_-
var.WF1”:

Dependent Variable: LOG(CS)

Method: Least Squares (Gauss-Newton / Marquardt steps)

Date: 03/09/15 Time: 11:25

Sample: 1947Q1 1994Q4

Included observations: 192

Convergence achieved after 68 iterations

Coefficient covariance computed using outer product of gradients
LOG(CS)=C(1)+C(2)*(GDPAC(3)-1)/C(3)

Coefficient Std. Error t-Statistic Prob.

C(1) 2.839332 0.281733 10.07810 0.0000
C(2) 0.259119 0.041680 6.216837 0.0000
C(3) 0.182315 0.020335 8.965475 0.0000
R-squared 0.997260 Mean dependent var 7.472280
Adjusted R-squared 0.997231 S.D. dependent var 0.463744
S.E. of regression 0.024403 Akaike info criterion -4.572707
Sum squared resid 0.112552 Schwarz criterion -4.521808
Log likelihood 441.9798 Hannan-Quinn criter. -4.552093
F-statistic 34393.45 Durbin-Watson stat 0.136871

Prob(F-statistic) 0.000000
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If the estimation procedure has converged, EViews will report this fact, along with the num-
ber of iterations that were required. If the iterative procedure did not converge, EViews will
report “Convergence not achieved after” followed by the number of iterations attempted.

Below the line describing convergence, and a description of the method employed in com-
puting the coefficient covariances, EViews will repeat the nonlinear specification so that you
can easily interpret the estimated coefficients of your model.

EViews provides you with all of the usual summary statistics for regression models. Pro-
vided that your model has converged, the standard statistical results and tests are asymptot-
ically valid.

NLS with ARMA errors

EViews will estimate nonlinear regression models with autoregressive error terms. Simply
select Object/New Object.../Equation... or Quick/Estimate Equation... and specify your
model using EViews expressions, followed by an additive term describing the AR correction
enclosed in square brackets. The AR term should consist of a coefficient assignment for each
AR term, separated by commas. For example, if you wish to estimate,

CS, = ¢, + GDP,* + u,

Uy = C3Uyp_q + c4u,,72+et

(20.39)

you should enter the specification:

cs = c(l) + gdp®c(2) + [ar(l)=c(3), ar(2)=c(4)]
See “Initializing the AR Errors,” on page 142 for additional details. EViews does not cur-
rently estimate nonlinear models with MA errors, nor does it estimate weighted models with

AR terms—if you add AR terms to a weighted nonlinear model, the weighting series will be
ignored.

Weighted NLS

Weights can be used in nonlinear estimation in a manner analogous to weighted linear least
squares in equations without ARMA terms. To estimate an equation using weighted nonlin-
ear least squares, enter your specification, press the Options button and fill in the weight
specification.

EViews minimizes the sum of the weighted squared residuals:

SB) = > wly, - flz, B = (y-f(X, B)) W(y- f(X, B)) (20.40)
t

with respect to the parameters (8, where w, are the values of the weight series and W is
the diagonal matrix of weights. The first-order conditions are given by,
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B w(y- sx.8)) = 0 (20.41)

and the default OPG d.f. corrected covariance estimate is computed as:

fIWNLLs = SQ(Q%%})’W?%%—B—))_I (20.42)

and the corresponding Hessian estimate is

2 -1
CWwNLLS = 82(% . 68;6}96(5’)) (20.43)

for the weighted objective function given in Equation (20.41).

One may elect, of course, to compute a White or HAC sandwich estimator for the coefficient
covariance as in “Robust Standard Errors,” beginning on page 32.

Solving Estimation Problems

EViews may not be able to estimate your nonlinear equation on the first attempt. Some-
times, the nonlinear least squares procedure will stop immediately. Other times, EViews
may stop estimation after several iterations without achieving convergence. EViews might
even report that it cannot improve the sums-of-squares. While there are no specific rules on
how to proceed if you encounter these estimation problems, there are a few general areas
you might want to examine.

Starting Values

If you experience problems with the very first iteration of a nonlinear procedure, the prob-
lem is almost certainly related to starting values. See the discussion in “Starting Values” on
page 56 for details on how to examine and change your starting values.

Model Identification

If EViews goes through a number of iterations and then reports that it encounters a “Near
Singular Matrix”, you should check to make certain that your model is identified. Models are
said to be non-identified if there are multiple sets of coefficients which identically yield the
minimized sum-of-squares value. If this condition holds, it is impossible to choose between
the coefficients on the basis of the minimum sum-of-squares criterion.

For example, the nonlinear specification:
2
Y, = BBy + Brz, + €y (20.44)

is not identified, since any coefficient pair (83;, 85) is indistinguishable from the pair
(-84, —B,) in terms of the sum-of-squared residuals.
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For a thorough discussion of identification of nonlinear least squares models, see Davidson
and MacKinnon (1993, Sections 2.3, 5.2 and 6.3).

Optimization Algorithm

In general, the choice of optimization algorithm should have little effect on the computation
of estimates. That said, if you are experiencing trouble, you may wish to experiment with
different methods. In addition, you may wish to experiment with different optimizers to
ensure that your estimates are robust to the choice of optimization method.

Note that EViews legacy is a particular implementation of Gauss-Newton with Marquardt or
line search steps, and is provided for backward estimation compatibility.

See “Optimization” on page 55 for discussion.

Convergence Criterion

EViews may report that it is unable to improve the sums-of-squares. This result may be evi-
dence of non-identification or model misspecification. Alternatively, it may be the result of
setting your convergence criterion too low, which can occur if your nonlinear specification is
particularly complex.

If you wish to change the convergence criterion, enter the new value in the Options tab. Be
aware that increasing this value increases the possibility that you will stop at a local mini-
mum, and may hide misspecification or non-identification of your model.

See “Setting Estimation Options” on page 1089, for related discussion.

Stepwise Least Squares Regression

EViews allows you to perform automatic variable selection using stepwise regression. Step-
wise regression allows some or all of the variables in a standard linear multivariate regres-
sion to be chosen automatically, using various statistical criteria, from a set of variables.

There is a fairly large literature describing the benefits and the pitfalls of stepwise regres-
sion. Without making any recommendations ourselves, we refer the user to Derksen and
Keselman (1992), Roecker (1991), Hurvich and Tsai (1990).

Stepwise Least Squares Estimation in EViews

To perform a Stepwise selection procedure (STEPLS) in EViews select Object/New Object/
Equation, or press Estimate from the toolbar of an existing equation. From the Equation
Specification dialog choose Method: STEPLS - Stepwise Least Squares. EViews will display
the following dialog:



Stepwise Least Squares Regression—61

The Specification page allows
you to provide the basic
STEPLS regression specifica-
tion. In the upper edit field you
should first specify the depen-
dent variable followed by the
always included variables you
wish to use in the final regres-
sion. Note that the STEPLS
equation must be specified by
list.

You should enter a list of vari-
ables to be used as the set of

potentially included variables
in the second edit field.

Next, you may use the Options

Equation Estimation

Spedfication | Options

Equation spedification

Dependent variable followed by list of always induded regressors

List of search regressors

Estimation settings

Method: | STEPLS - Stepwise Least Squares he

Sample: | 1 100

tab to control the stepwise estimation method.

The Selection Method portion
of the Options page is used to
specify the STEPLS method.

By default, EViews will esti-
mate the stepwise specifica-
tion using the Stepwise-
Forwards method. To change
the basic method, change the
Selection Method dropdown
menu; the dropdown allows
you to choose between: Uni-
directional, Stepwise, Swap-
wise, and Combinatorial.

The other items on this dialog
tab will change depending
upon which method you
choose. For the Uni-directional

Equation Estimation

Spedification | Options

Selection Method

Stepwise

Stopping Criteria
(@ pvalue (tstat
p-value forwards: 0.5

p-value backwards: | 0.5

Use number of regressors

Mumber of regressors 5
to select:

Weights
Type: |MNone W

EViews default

Maximum steps

Forwards: 1000
Backwards: 1000

Total: 2000

and Stepwise methods you may specify the direction of the method using the Forwards and
Backwards radio buttons. These two methods allow you to provide a Stopping Criteria
using either a p-value or ¢-statistic tolerance for adding or removing variables. You may also
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choose to stop the procedures once they have added or removed a specified number of
regressors by selecting the Use number of regressors option and providing a number of the
corresponding edit field.

You may also set the maximum number of steps taken by the procedure. To set the maxi-
mum number of additions to the model, change the Forwards steps, and to set the maxi-
mum number of removals, change the Backwards steps. You may also set the total number
of additions and removals. In general it is best to leave these numbers at a high value. Note,
however, that the Stepwise routines have the potential to repetitively add and remove the
same variables, and by setting the maximum number of steps you can mitigate this behav-
ior.

The Swapwise method lets you choose whether you wish to use Max R-squared or Min R-
squared, and choose the number of additional variables to be selected. The Combinatorial
method simply prompts you to provide the number of additional variables. By default both
of these procedures have the number of additional variables set to one. In both cases this
merely chooses the single variable that will lead to the largest increase in R-squared.

For additional discussion, see “Selection Methods,” beginning on page 64.

Lastly, each of the methods lets you choose a Weight series to perform weighted least
squares estimation. Simply check the Use weight series option, then enter the name of the
weight series in the edit field. See “Weighted Least Squares” on page 47 for details.

Example

As an example we use the following code to generate a workfile with 40 independent vari-
ables (X1-X40), and a dependent variable, Y, which is a linear combination of a constant,
variables X11-X15, and a normally distributed random error term.
create u 100
rndseed 1
group xs
for !i=1 to 40
series x!i=nrnd
$name="x"+@str (!1)
xs.add {%name}
next
series y = nrnd + 3
for !i=11 to 15
y =y + 'i*x{!i}

next

The 40 independent variables are contained in the group XS.
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Given this data we can use a forwards stepwise routine to choose the “best” 5 regressors,
after the constant, from the group of 40 in XS. We do this by entering “Y C” in the first Spec-
ification box of the estimation dialog, and “XS” in the List of search regressors box. In the
Stopping Criteria section of the Options tab we check Use Number of Regressors, and
enter “5” as the number of regressors. Estimating this specification yields the results:

Dependent Variable: Y

Method: Stepwise Regression

Date: 08/08/09 Time: 22:39

Sample: 1 100

Included observations: 100

Number of always included regressors: 1

Number of search regressors: 40

Selection method: Stepwise forwards

Stopping criterion: p-value forwards/backwards = 0.5/0.5
Stopping criterion: Number of search regressors =5

Variable Coefficient Std. Error t-Statistic Prob.*

C 2973731 0.102755 28.93992 0.0000

X15 14.98849 0.091087 164.5517 0.0000

X14 14.01298 0.091173 153.6967 0.0000

X12 11.85221 0.101569 116.6914 0.0000

X13 12.88029 0.102182 126.0526 0.0000

X11 11.02252 0.102758 107.2664 0.0000

R-squared 0.999211 Meandependentvar -0.992126

Adjusted R-squared 0.999169 S.D. dependent var 33.58749

S.E. of regression 0.968339 Akaike info criterion 2.831656

Sum squared resid 88.14197 Schwarz ciiterion 2.987966

Log likelihood -135.5828 Hannan-Quinn criter. 2.894917

F-statistic 23802.50 Durbin-W atson stat 1.921653
Prob(F-statistic) 0.000000

Selection Summary

Added X15
Added X14
Added X12
Added X13
Added X11

*Note: p-values and subsequent tests do not account for stepwise
selection.

The top portion of the output shows the equation specification and information about the
stepwise method. The next section shows the final estimated specification along with coeffi-
cient estimates, standard errors and ¢-statistics, and p-values. Note that the stepwise routine
chose the “correct” five regressors, X11-X15. The bottom portion of the output shows a sum-
mary of the steps taken by the selection method. Specifications with a large number of steps
may show only a brief summary.
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Selection Methods

EViews allows you to specify variables to be included as regressors along with a set of vari-
ables from which the selection procedure will choose additional regressors. The first set of
variables are termed the “always included” variables, and the latter are the set of potential
“added variables”. EViews supports several procedures for selecting the added variables.

Uni-directional-Forwards

The Uni-directional-Forwards method uses either a lowest p-value or largest ¢-statistic crite-
rion for adding variables.

The method begins with no added regressors. If using the p-value criterion, we select the
variable that would have the lowest p-value were it added to the regression. If the p-value is
lower than the specified stopping criteria, the variable is added. The selection continues by
selecting the variable with the next lowest p-value, given the inclusion of the first variable.
The procedure stops when the lowest p-value of the variables not yet included is greater
than the specified forwards stopping criterion, or the number of forward steps or number of
added regressors reach the optional user specified limits.

If using the largest ¢-statistic criterion, the same variables are selected, but the stopping cri-
terion is specified in terms of the statistic value instead of the p-value.

Uni-directional-Backwards

The Uni-directional-Backwards method is analogous to the Uni-directional-Forwards
method, but begins with all possible added variables included, and then removes the vari-
able with the highest p-value. The procedure continues by removing the variable with the
next highest p-value, given that the first variable has already been removed. This process
continues until the highest p-value is less than the specified backwards stopping criteria, or
the number of backward steps or number of added regressors reach the optional user speci-
fied limits.

The largest ¢-statistic may be used in place of the lowest p-value as a selection criterion.

Stepwise-Forwards

The Stepwise-Forwards method is a combination of the Uni-directional-Forwards and Back-
wards methods. Stepwise-Forwards begins with no additional regressors in the regression,
then adds the variable with the lowest p-value. The variable with the next lowest p-value
given that the first variable has already been chosen, is then added. Next both of the added
variables are checked against the backwards p-value criterion. Any variable whose p-value
is higher than the criterion is removed.

Once the removal step has been performed, the next variable is added. At this, and each suc-
cessive addition to the model, all the previously added variables are checked against the
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backwards criterion and possibly removed. The Stepwise-Forwards routine ends when the
lowest p-value of the variables not yet included is greater than the specified forwards stop-
ping criteria (or the number of forwards and backwards steps or the number of added
regressors has reached the corresponding optional user specified limit).

You may elect to use the largest ¢-statistic in place of the lowest p-value as the selection cri-
terion.

Stepwise-Backwards

The Stepwise-Backwards procedure reverses the Stepwise-Forwards method. All possible
added variables are first included in the model. The variable with the highest p-value is first
removed. The variable with the next highest p-value, given the removal of the first variable,
is also removed. Next both of the removed variables are checked against the forwards p-
value criterion. Any variable whose p-value is lower than the criterion is added back in to
the model.

Once the addition step has been performed, the next variable is removed. This process con-
tinues where at each successive removal from the model, all the previously removed vari-
ables are checked against the forwards criterion and potentially re-added. The Stepwise-
Backwards routine ends when the largest p-value of the variables inside the model is less
than the specified backwards stopping criterion, or the number of forwards and backwards
steps or number of regressors reaches the corresponding optional user specified limit.

The largest t-statistic may be used in place of the lowest p-value as a selection criterion.

Swapwise-Max R-Squared Increment

The Swapwise method starts with no additional regressors in the model. The procedure
starts by adding the variable which maximizes the resulting regression R-squared. The vari-
able that leads to the largest increase in R-squared is then added. Next each of the two vari-
ables that have been added as regressors are compared individually with all variables not
included in the model, calculating whether the R-squared could be improved by swapping
the “inside” with an “outside” variable. If such an improvement exists then the “inside”
variable is replaced by the “outside” variable. If there exists more than one swap that would
improve the R-squared, the swap that yields the largest increase is made.

Once a swap has been made the comparison process starts again. Once all comparisons and
possible swaps are made, a third variable is added, with the variable chosen to produce the
largest increase in R-squared. The three variables inside the model are then compared with
all the variables outside the model and any R-squared increasing swaps are made. This pro-
cess continues until the number of variables added to the model reaches the user-specified
limit.
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Swapwise-Min R-Squared Increment

The Min R-squared Swapwise method is very similar to the Max R-squared method. The dif-
ference lies in the swapping procedure. Whereas the Max R-squared swaps the variables that
would lead to the largest increase in R-squared, the Min R-squared method makes a swap
based on the smallest increase. This can lead to a more lengthy selection process, with a
larger number of combinations of variables compared.

Combinatorial

For a given number of added variables, the Combinatorial method evaluates every possible
combination of added variables, and selects the combination that leads to the largest R-
squared in a regression using the added and always included variables as regressors. This
method is more thorough than the previous methods, since those methods do not compare
every possible combination of variables, and obviously requires additional computation.
With large numbers of potential added variables, the Combinatorial approach can take a
very long time to complete.

Issues with Stepwise Estimation

The set of search variables may contain variables that are linear combinations of other vari-
ables in the regression (either in the always included list, or in the search set). EViews will

drop those variables from the search set. In a case where two or more of the search variables
are collinear, EViews will select the variable listed first in the list of search variables.

Following the Stepwise selection process, EViews reports the results of the final regression,
i.e. the regression of the always-included and the selected variables on the dependent vari-
able. In some cases the sample used in this equation may not coincide with the regression
that was used during the selection process. This will occur if some of the omitted search
variables have missing values for some observations that do not have missing values in the
final regression. In such cases EViews will print a warning in the regression output.

The p-values listed in the final regression output and all subsequent testing procedures do
not account for the regressions that were run during the selection process. One should take
care to interpret results accordingly.

Invalid inference is but one of the reasons that stepwise regression and other variable selec-
tion methods have a large number of critics amongst statisticians. Other problems include
an upwardly biased final R-squared, possibly upwardly biased coefficient estimates, and nar-
row confidence intervals. It is also often pointed out that the selection methods themselves
use statistics that do not account for the selection process.
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Chapter 21. Instrumental Variables and GMM

This chapter describes EViews tools for estimating a single equation using Two-stage Least
Squares (TSLS), Limited Information Maximum Likelihood (LIML) and K-Class Estimation,
and Generalized Method of Moments (GMM).

There are countless references for the techniques described in this chapter. Notable textbook
examples include Hayashi (2000), Hamilton (1994), Davidson and MacKinnon (1993). Less
technical treatments may be found in Stock and Watson (2007) and Johnston and DiNardo

(1997).

Background

A fundamental assumption of regression analysis is that the right-hand side variables are
uncorrelated with the disturbance term. If this assumption is violated, both OLS and
weighted LS are biased and inconsistent.

There are a number of situations where some of the right-hand side variables are correlated
with disturbances. Some classic examples occur when:

¢ There are endogenously determined variables on the right-hand side of the equation.

¢ Right-hand side variables are measured with error.

For simplicity, we will refer to variables that are correlated with the residuals as endogenous,
and variables that are not correlated with the residuals as exogenous or predetermined.

The standard approach in cases where right-hand side variables are correlated with the
residuals is to estimate the equation using instrumental variables regression. The idea
behind instrumental variables is to find a set of variables, termed instruments, that are both
(1) correlated with the explanatory variables in the equation, and (2) uncorrelated with the
disturbances. These instruments are used to eliminate the correlation between right-hand
side variables and the disturbances.

There are many different approaches to using instruments to eliminate the effect of variable
and residual correlation. EViews offers three basic types of instrumental variable estimators:
Two-stage Least Squares (TSLS), Limited Information Maximum Likelihood and K-Class Esti-
mation (LIML), and Generalized Method of Moments (GMM).

Two-stage Least Squares

Two-stage least squares (TSLS) is a special case of instrumental variables regression. As the
name suggests, there are two distinct stages in two-stage least squares. In the first stage,
TSLS finds the portions of the endogenous and exogenous variables that can be attributed to
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the instruments. This stage involves estimating an OLS regression of each variable in the
model on the set of instruments. The second stage is a regression of the original equation,
with all of the variables replaced by the fitted values from the first-stage regressions. The
coefficients of this regression are the TSLS estimates.

You need not worry about the separate stages of TSLS since EViews will estimate both stages
simultaneously using instrumental variables techniques. More formally, let Z be the matrix
of instruments, and let ¥ and X be the dependent and explanatory variables. The linear
TSLS objective function is given by:

V(B) = (y- XB) X2 2)" Z'(y- XB) (21.1)
Then the coefficients computed in two-stage least squares are given by,
brsps = (X' U227 2X) X422 2y, (21.2)

and the standard estimated covariance matrix of these coefficients may be computed using:

A _ -1
Sosis = s (X222 7 X) (21.3)
where s is the estimated residual variance (square of the standard error of the regression).
If desired, s may be replaced by the non-d.f. corrected estimator. Note also that EViews
offers both White and HAC covariance matrix options for two-stage least squares.

Estimating TSLS in EViews

To estimate an equation using Equation Estimation
Two-stage Least Squares, open
the equation specification box Equation specification

by choosing Object/New ey it e e
Object.../Equation... or

Quick/Estimate Equation...

Choose TSLS from the Method:

dropdown menu and the dialog Instrument list

will change to include an edit

window where you will list the

Spedfication | Options

Instruments. Indude a constant

Alternately, type the ts1s key- Estimation settings

word in the command window Method: | 1515 - Two-Stage Least Squares (TSNLS and ARMA) v
and hit ENTER. Sample: | 1920 1941

In the Equation specification

edit box, specify your depen- Cancd
dent variable and independent

variables and enter a list of instruments in the Instrument list edit box.
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There are a few things to keep in mind as you enter your instruments:

¢ In order to calculate TSLS estimates, your specification must satisfy the order condi-
tion for identification, which says that there must be at least as many instruments as
there are coefficients in your equation. There is an additional rank condition which
must also be satisfied. See Davidson and MacKinnon (1993) and Johnston and
DiNardo (1997) for additional discussion.

¢ For econometric reasons that we will not pursue here, any right-hand side variables
that are not correlated with the disturbances should be included as instruments.

e EViews will, by default, add a constant to the instrument list. If you do not wish a
constant to be added to the instrument list, the Include a constant check box should
be unchecked.

To illustrate the estimation of two-stage least squares, we use an example from Stock and
Watson 2007 (p. 438), which estimates the demand for cigarettes in the United States in
1995. (The data are available in the workfile “Sw_cig. WF1”.) The dependent variable is the
per capita log of packs sold LOG(PACKPC). The exogenous variables are a constant, C, and
the log of real per capita state income LOG(PERINC). The endogenous variable is the log of
real after tax price per pack LOG(RAVGPRC). The additional instruments are average state
sales tax RTAXSO, and cigarette specific taxes RTAXS. Stock and Watson use the White cova-
riance estimator for the standard errors.

The equation specification is then,

log(packpc) ¢ log(ravgprs) log(perinc)
and the instrument list is:

c log(perinc) rtaxso rtaxs

This specification satisfies the order condition for identification, which requires that there
are at least as many instruments (four) as there are coefficients (three) in the equation spec-
ification. Note that listing C as an instrument is redundant, since by default, EViews auto-
matically adds it to the instrument list.

To specify the use of White heteroskedasticity robust standard grﬁgarv
Wi
errors, we will select White in the Coefficient covariance matrix HAC (Newey-West)

dropdown menu on the Options tab. By default, EViews will esti-
mate the using the Ordinary method with d.f. Adjustment as specified in Equation (21.3).

Output from TSLS

Below we show the output from a regression of LOG(PACKPC) on a constant and
LOG(RAVGPRS) and LOG(PERINC), with instrument list “LOG(PERINC) RTAXSO RTAXS”.
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Dependent Variable: LOG(P ACKPC)

Method: Two-Stage Least Squares

Date: 04/15/09 Time: 14:17

Sample: 148

Included observations: 48

White heteroskeda sticity-consistent standard errors & covariance
Instrument specification: LOG (PERINC) RTAXSO RTAXS
Constant added to instrument list

Variable Coefficient Std. Error t-Statistic Prob.
C 9.894956 0.959217 10.31566 0.0000
LOG(RAVGPRS) -1.277424 0.249610 -5.117680 0.0000
LOG(PERINC) 0.280405 0.253890 1.104436 0.2753
R-squared 0.429422 Mean dependent var 4538837
Adjusted R-squared 0.404063 S.D. dependent var 0.243346
S.E. of regression 0.187856 Sum squared resid 1.583044
F-statistic 13.28079 Durbin-Watson stat 1.946351
Prob(F-statistic) 0.000029 Second-Stage SSR 1.845868
Instrument rank 4 J-statistic 0.311833
Prob(J-statistic) 0.576557

EViews identifies the estimation procedure, as well as the list of instruments in the header.
This information is followed by the usual coefficient, t-statistics, and asymptotic p-values.

The summary statistics reported at the bottom of the table are computed using the formulae
outlined in “Summary Statistics” on page 13. Bear in mind that all reported statistics are
only asymptotically valid. For a discussion of the finite sample properties of TSLS, see John-
ston and DiNardo (1997, p. 355-358) or Davidson and MacKinnon (1993, p. 221-224).

Three other summary statistics are reported: “Instrument rank”, the “J-statistic” and the
“Prob(J-statistic)”. The Instrument rank is simply the rank of the instrument matrix, and is
equal to the number of instruments used in estimation. The J-statistic is calculated as:

lTu'Z ($72/T) Z'u (21.4)

where u are the regression residuals. See “Generalized Method of Moments,” beginning on
page 81 for additional discussion of the J-statistic.

EViews uses the structural residuals u, = y,— ¢,'bpg; ¢ in calculating the summary statis-
tics. For example, the default estimator of the standard error of the regression used in the
covariance calculation is:

s = Su/(T-F). (21.5)
t
These structural, or regression, residuals should be distinguished from the second stage

residuals that you would obtain from the second stage regression if you actually computed
the two-stage least squares estimates in two separate stages. The second stage residuals are
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givenby u, = ¢,—2,'brg; g, where the g, and z, are the fitted values from the first-stage
regressions.

We caution you that some of the reported statistics should be interpreted with care. For

example, since different equation specifications will have different instrument lists, the
2 . . . .

reported R~ for TSLS can be negative even when there is a constant in the equation.

TSLS with AR errors

You can adjust your TSLS estimates to account for serial correlation by adding AR terms to
your equation specification. EViews will automatically transform the model to a nonlinear
least squares problem, and estimate the model using instrumental variables. Details of this
procedure may be found in Fair (1984, p. 210-214). The output from TSLS with an AR(1)
specification using the default settings with a tighter convergence tolerance looks as follows:

Dependent Variable: LOG(P ACKPC)

Method: Two-Stage Least Squares

Date: 08/25/09 Time: 15:04

Sample (adjusted): 2 48

Included observations: 47 after adjustments

White heteroskedasticity-consistent standard errors & covariance
Instrument specification: LOG (PERINC) RTAXSO RTAXS
Constant added to instrument list

Lagged dependent variable & regressors added to instrument

list

Variable Coefficient Std. Error t-Statistic Prob.
C 10.02006 0.996752 10.05272 0.0000
LOG(RAVGPRS) -1.309245 0.271683  -4.819022 0.0000
LOG(PERINC) 0.291047 0.290818 1.000785 0.3225
AR(1) 0.026532 0.133425 0.198852 0.8433
R-squared 0.431689 Mean dependent var 4537196
Adjusted R-squared 0.392039 S.D. dependent var 0.245709
S.E. of regression 0.191584 Sum squared resid 1578284
Durbin-Watson stat 1.951380 Instrument rank 7
J-statistic 1.494632 Prob(J-statistic) 0.683510
Inverted AR Roots .03

The Options button in the estimation box may be used to change the iteration limit and con-
vergence criterion for the nonlinear instrumental variables procedure.

First-order AR errors

Suppose your specification is:

Yy z,/ B+ wy + u,

Uy = P1U_1+ €

(21.6)
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where z, is a vector of endogenous variables, and w;, is a vector of predetermined vari-
ables, which, in this context, may include lags of the dependent variable z, . is a vector of
instrumental variables not in w, that is large enough to identify the parameters of the
model.

In this setting, there are important technical issues to be raised in connection with the
choice of instruments. In a widely cited result, Fair (1970) shows that if the model is esti-
mated using an iterative Cochrane-Orcutt procedure, all of the lagged left- and right-hand
side variables (y,_, z,_, w,_) must be included in the instrument list to obtain consis-
tent estimates. In this case, then the instrument list should include:

(W Zgs Yy 15 Ty_ 15 Wy_1) - (21.7)

EViews estimates the model as a nonlinear regression model so that Fair’s warning does not
apply. Estimation of the model does, however, require specification of additional instru-
ments to satisfy the instrument order condition for the transformed specification. By default,
the first-stage instruments employed in TSLS are formed as if one were running Cochrane-
Orcutt using Fair’s prescription. Thus, if you omit the lagged left- and right-hand side terms
from the instrument list, EViews will, by default, automatically add the lagged terms as
instruments. This addition will be noted in your output.

You may instead instruct EViews not to add the lagged left- and right-hand side terms as
instruments. In this case, you are responsible for adding sufficient instruments to ensure the
order condition is satisfied.

Higher Order AR errors

The AR(1) results extend naturally to specifications involving higher order serial correlation.
For example, if you include a single AR(4) term in your model, the natural instrument list
will be:

(Wy 2 Yy gy Ty_ gy Wy_y) (21.8)
If you include AR terms from 1 through 4, one possible instrument list is:
(Wys 24 Yy 1y +oes Yi gp Tp_ 1y ooes Ty gy Wy_ 15 veny wt_4) (21.9)

Note that while conceptually valid, this instrument list has a large number of overidentifying
instruments, which may lead to computational difficulties and large finite sample biases
(Fair (1984, p. 214), Davidson and MacKinnon (1993, p. 222-224)). In theory, adding instru-
ments should always improve your estimates, but as a practical matter this may not be so in
small samples.

In this case, you may wish to turn off the automatic lag instrument addition and handle the
additional instrument specification directly.
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Examples

Suppose that you wish to estimate the consumption function by two-stage least squares,
allowing for first-order serial correlation. You may then use two-stage least squares with the
variable list,

cons ¢ gdp ar(l)
and instrument list:
c gov log(ml) time cons(-1) gdp(-1)

Notice that the lags of both the dependent and endogenous variables (CONS(-1) and GDP (-
1)), are included in the instrument list.

Similarly, consider the consumption function:
cons c¢ cons(-1) gdp ar(l)
A valid instrument list is given by:
c gov log(ml) time cons(-1) cons(-2) gdp(-1)

Here we treat the lagged left and right-hand side variables from the original specification as
predetermined and add the lagged values to the instrument list.

Lastly, consider the specification:
cons ¢ gdp ar(l to 4)
Adding all of the relevant instruments in the list, we have:

c gov log(ml) time cons(-1) cons(-2) cons(-3) cons(-4) gdp(-1)
gdp (-2) gdp(-3) gdp(-4)

TSLS with MA errors

You can also estimate two-stage least squares variable problems with MA error terms of var-
ious orders. To account for the presence of MA errors, simply add the appropriate terms to
your specification prior to estimation.

Illustration

Suppose that you wish to estimate the consumption function by two-stage least squares,
accounting for first-order moving average errors. You may then use two-stage least squares
with the variable list,

cons ¢ gdp ma(l)
and instrument list:
c gov log(ml) time

EViews will add both first and second lags of CONS and GDP to the instrument list.
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Technical Details

Most of the technical details are identical to those outlined above for AR errors. EViews
transforms the model that is nonlinear in parameters (employing backcasting, if appropri-
ate) and then estimates the model using nonlinear instrumental variables techniques.

Recall that by default, EViews augments the instrument list by adding lagged dependent and
regressor variables corresponding to the AR lags. Note however, that each MA term involves
an infinite number of AR terms. Clearly, it is impossible to add an infinite number of lags to
the instrument list, so that EViews performs an ad hoc approximation by adding a truncated
set of instruments involving the MA order and an additional lag. If for example, you have an
MA(5), EViews will add lagged instruments corresponding to lags 5 and 6.

Of course, you may instruct EViews not to add the extra instruments. In this case, you are
responsible for adding enough instruments to ensure the instrument order condition is satis-
fied.

Nonlinear Two-stage Least Squares

Nonlinear two-stage least squares refers to an instrumental variables procedure for estimat-
ing nonlinear regression models involving functions of endogenous and exogenous variables
and parameters. Suppose we have the usual nonlinear regression model:

y, = flz, B) +ey, (21.10)

where 8 is a k-dimensional vector of parameters, and z, contains both exogenous and
endogenous variables. In matrix form, if we have m > k instruments z,, nonlinear two-
stage least squares minimizes:

Y(B) = (y-[X.B)) 222" Z(y- (X, B)) (21.11)
with respect to the choice of 3.

While there is no closed form solution for the parameter estimates, the parameter estimates
satisfy the first-order conditions:

G(B) 222" Z'(y- (X, B)) = 0 (21.12)
with estimated covariance given by:
ErsNLLS = 32( G(bTSNLLS)’Z(Z’Z)le’ G( bTSNLLS))f1 . (21.13)
How to Estimate Nonlinear TSLS in EViews

To estimate a Nonlinear equation using TSLS simply select Object/New Object.../Equa-
tion... or Quick/Estimate Equation... Choose TSLS from the Method dropdown menu,
enter your nonlinear specification and the list of instruments. Click OK.
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With nonlinear two-stage least squares estimation, you have a great deal of flexibility with
your choice of instruments. Intuitively, you want instruments that are correlated with the
derivatives G(@) . Since G is nonlinear, you may begin to think about using more than just
the exogenous and predetermined variables as instruments. Various nonlinear functions of
these variables, for example, cross-products and powers, may also be valid instruments. One
should be aware, however, of the possible finite sample biases resulting from using too
many instruments.

Nonlinear Two-stage Least Squares with ARMA errors

While we will not go into much detail here, note that EViews can estimate non-linear TSLS
models where there are ARMA error terms.

To estimate your model, simply open your equation specification window, and enter your
nonlinear specification, including all ARMA terms, and provide your instrument list. For
example, you could enter the regression specification:

cs = exp(c(l) + gdp”c(2)) + [ar(l)=c(3), ma(l)=c(4)]
with the instrument list:
c gov

EViews will transform the nonlinear regression model as described in “Specifying AR
Terms” on page 112, and then estimate nonlinear TSLS on the transformed specification. For
nonlinear models with AR errors, EViews uses a Gauss-Newton algorithm. See “Optimiza-
tion Algorithms” on page 1095 for further details.

Weighted Nonlinear Two-stage Least Squares

Weights may be used in nonlinear two-stage least squares estimation, provided there are no
ARMA terms. Simply add weighting to your nonlinear TSLS specification above by pressing
the Options button and entering the weight specification (see “Weighted Least Squares” on
page 47).

The objective function for weighted TSLS is,
Y(B) = (y- (X, B)) W AZ WZ) " ZW(y-f(X,B)). (21.14)
The default reported standard errors are based on the covariance matrix estimate given by:
Swrsvirs = (G WA Z W2 22 Wa(b)) (21.15)

where b= byrgnrrs-

Limited Information Maximum Likelihood and K-Class Estimation

Limited Information Maximum Likelihood (LIML) is a form of instrumental variable estima-
tion that is quite similar to TSLS. As with TSLS, LIML uses instruments to rectify the prob-
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lem where one or more of the right hand side variables in the regression are correlated with
residuals.

LIML was first introduced by Anderson and Rubin (1949), prior to the introduction of two-
stage least squares. However traditionally TSLS has been favored by researchers over LIML
as a method of instrumental variable estimation. If the equation is exactly identified, LIML
and TSLS will be numerically identical. Recent studies (for example, Hahn and Inoue 2002)
have, however, found that LIML performs better than TSLS in situations where there are
many “weak” instruments.

The linear LIML estimator minimizes
(y-XB)' A2 2) ' Z'(y— XB)
(y—XB)'(y— XB)

with respect to B, where y is the dependent variable, X are explanatory variables, and Z are
instrumental variables.

Y =T

(21.16)

Computationally, it is often easier to write this minimization problem in a slightly different-
form. Let W = (y, X) and B = (-1, B)'. Then the linear LIML objective function can be
written as:

B W U2 2) " 7 WB
B'W WB
Let N\ be the smallest eigenvalue of ( W’ I/V)_1 w'zZ(z' Z)_1 Z' W. The LIML estimator of 3

is the eigenvector corresponding to A, with a normalization so that the first element of the
eigenvector equals -1.

¥(8) = (21.17)

The non-linear LIML estimator maximizes the concentrated likelihood function:

L = —g(log(u’u) +log| X AX - X' AZ(z Az 77 AX]) (21.18)

where u, = y,— f(X,, B) are the regression residuals and A = - u( u'u)f1 u'.

The default estimate of covariance matrix of instrumental variables estimators is given by
the TSLS estimate in Equation (21.3).

K-Class

K-Class estimation is a third form of instrumental variable estimation; in fact TSLS and LIML
are special cases of K-Class estimation. The linear K-Class objective function is, for a fixed
k, given by:

Y(B) = (y—XB)' (I-kMy(y—- XB) (21.19)
The corresponding K-Class estimator may be written as:

B, = (X'(I-kM)X) ' X'(I-kM,)y (21.20)
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where P, = Z(Z'2)' 7 and My, = I- X Z'2) "' 2" = I-P,.

If £ = 1, then the K-Class estimator is the TSLS estimator. If £ = 0, then the K-Class esti-
mator is OLS. LIML is a K-Class estimator with £ = A, the minimum eigenvalue described
above.

The obvious K-Class covariance matrix estimator is given by:
£ = S(X(I-kMH)X)™" (21.21)

Bekker (1994) offers a covariance matrix estimator for K-Class estimators with normal error
terms that is more robust to weak instruments. The Bekker covariance matrix estimate is
given by:

Ypexkk = H YH (21.22)
where
H=XP,X-a(X'X)
; , , , (21.23)
Y=s5((1-a)X'P,X+a X' M;X)
for
/P r
o = Z ,Zu and X = X—UU,X.
U u'u

Hansen, Hausman and Newey (2006) offer an extension to Bekker’s covariance matrix esti-
mate for cases with non-normal error terms.

Estimating LIML and K-Class in EViews

To estimate a LIML or K-Class equation in EViews, create an equation by choosing Object/
New Object.../Equation... or Quick/Estimate Equation, and choose LIML from the
Method box.

Alternately, you may enter the keyword 1im1 in the command window then hit ENTER.
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In the Equation specifica- Equation Estimation
tion edit box, specify your

K Spedification | Options
dependent variable and

. Equation spedification
exogenous Varlables’ and Dependent variable followed by list of regressors induding ARMA

in the Instrument list edit and POL terms, OR an explicit equation like ¥ =c{1)+c(2)*X.
box, provide a list of s ryin

instruments. Endogenous

variables should be entered R

in both the Equation speci- opi-1) k{-1) x(-D mwa g t

fication box and the

Instrument list box.
Indude a constant

For K-Class estimation, K (eave blank for LIML):
enter the value of k£ in the
box labeled K (leave blank
for LIML). If no value is
entered in this box, LIML is
performed.

Estimation settings
Method: |LIML - Limited Information Maximum Likelihood and K-Class v

Sample: | 1920 1941

If you wish to estimate a Cancel
non-linear equation, then

enter the expression for the non-linear equation in the Equation specification box. Note
that non-linear K-Class estimation is currently not permitted; only non-linear LIML may be
performed.

If you do not wish to include a constant as one of the instruments, uncheck the Include a
Constant checkbox.

Different standard error calculations may be chosen by changing the Standard Errors drop-
down menu on the Options tab of the estimation dialog. Note that if your equation was non-
linear, only IV based standard errors may be calculated. For linear estimation you may also

choose K-Class based, Bekker, or Hansen, Hausman and Newey standard errors.

As an example of LIML estimation, we estimate part of Klein’s Model I, as published in
Greene (2008, p. 385). We estimate the Consumption equation, where consumption (CONS)
is regressed on a constant, private profits (Y), lagged private profits (Y(-1)), and wages (W)
using data in the workfile “Klein.WF1”. The instruments are a constant, lagged corporate
profits (P(-1)), lagged capital stock (K(-1)), lagged GNP (X(-1)), a time trend (TM), Govern-
ment wages (WG), Government spending (G) and taxes (T). In his reproduction of the Klein
model, Greene uses K-Class standard errors. The results of this estimation are as follows:
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Dependent Variable: CONS

Method: LIML / K-Class

Date: 05/27/09 Time: 11:16

Sample (adjusted): 1921 194 1

Included observations: 21 after adjustments

Covariance type: K-Class

Instrument specification: C P(-1) K(-1) X(-1) TM WG G T

Variable Coefficient Std. Error t-Statistic Prob.

C 17.14765 1.840295 9.317882 0.0000

Y -0.222513 0201748  -1.102927 0.2854

Y(-1) 0.396027 0.173598 2281293 0.0357

w 0.822559 0.055378 14.85347 0.0000
R-squared 0.956572 Mean dependent var 53.99524
Adjusted R-squared 0.948909 S.D. dependent var 6.860866
S.E. of regression 1.550791 Sum squared resid 40.88419
Durbin-Watson stat 1.487859 LIML min. eigenvalue 1.4987 46

EViews identifies the LIML estimation procedure, along with the choice of covariance matrix
type and the list of instruments in the header. This information is followed by the usual
coefficient, ¢-statistics, and asymptotic p-values.

The standard summary statistics reported at the bottom of the table are computed using the
formulae outlined in “Summary Statistics” on page 13. Along with the standard statistics,
the LIML minimum eigenvalue is also reported, if the estimation type was LIML.

Generalized Method of Moments

We offer here a brief description of the Generalized Method of Moments (GMM) estimator,
paying particular attention to issues of weighting matrix estimation and coefficient covari-
ance calculation. Or treatment parallels the excellent discussion in Hayashi (2000). Those
interested in additional detail are encouraged to consult one of the many comprehensive
surveys of the subject.

The GMM Estimator

The starting point of GMM estimation is the assumption that there are a set of L moment
conditions that the K -dimensional parameters of interest, 3 should satisfy. These moment
conditions can be quite general, and often a particular model has more specified moment
conditions than parameters to be estimated. Thus, the vector of L > K moment conditions
may be written as:

E(m(y,B)) = 0. (21.24)
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In EViews (as in most econometric applications), we restrict our attention to moment condi-
tions that may be written as an orthogonality condition between the residuals of an equa-
tion, u,(8) = w(y, X, B),and a set of K instruments Z,:

E(Zu,(B)) = 0 (21.25)

The traditional Method of Moments estimator is defined by replacing the moment conditions
in Equation (21.24) with their sample analog:

mi(8) = 7.3 Zu(B) = 77u(B) = 0 (21.26)
t

and finding the parameter vector 3 which solves this set of L equations.

When there are more moment conditions than parameters (L > K), the system of equations
given in Equation (21.26) may not have an exact solution. Such as system is said to be ove-
ridentified. Though we cannot generally find an exact solution for an overidentified system,
we can reformulate the problem as one of choosing a 8 so that the sample moment m ()
is as “close” to zero as possible, where “close” is defined using the quadratic form:

JB, W) = T my(B) Wi my(B)

Zu(B) 2 W7 7'u()

(21.27)

as a measure of distance. The possibly random, symmetric and positive-definite L x L
matrix Wy is termed the weighting matrix since it acts to weight the various moment con-
ditions in constructing the distance measure. The Generalized Method of Moments estimate
is defined as the 3 that minimizes Equation (21.27).

As with other instrumental variable estimators, for the GMM estimator to be identified, there
must be at least as many instruments as there are parameters in the model. In models where
there are the same number of instruments as parameters, the value of the optimized objec-
tive function is zero. If there are more instruments than parameters, the value of the opti-
mized objective function will be greater than zero. In fact, the value of the objective
function, termed the J-statistic, can be used as a test of over-identifying moment conditions.

Under suitable regularity conditions, the GMM estimator is consistent and JT asymptoti-
cally normally distributed,

JT(B - By) = N(O, V) (21.28)
The asymptotic covariance matrix V of /T(8 — B,) is given by
v=@w'y rwliswis.xw'ny (21.29)

for
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W = plim Wy

1,
L = plim TZ Vu(B) (21.30)
g = phmlTZ'u(ﬁ)u(ﬁ)'z

where S is both the asymptotic variance of ﬁmT( B) and the long-run covariance matrix
of the vector process{ Z,u,(3)} .

In the leading case where the u,(3) are the residuals from a linear specification so that
w(B) = y,— X,'B, the GMM objective function is given by

J(B, Wp) = lT(y—XB)'ZW}lZ'(y—XB) (21.31)

_1 -1 _1
and the GMM estimator yields the unique solution 8 = (X'ZW; 2'X) X' ZWr Z'y.
The asymptotic covariance matrix is given by Equation (21.27), with

T - plimlT(Z'X) (21.32)

It can be seen from this formation that both two-stage least squares and ordinary least
squares estimation are both special cases of GMM estimation. :f2he two-stage least squares
objective is simply the GMM objective function multiplied by ¢ using weighting matrix
Wr = (6" Z'Z/ T). Ordinary least squares is equivalent to two-stage least squares objec-
tive with the instruments set equal to the derivatives of u,(8), which in the linear case are
the regressors.

Choice of Weighting Matrix

An important aspect of specifying a GMM estimator is the choice of the weighting matrix,
W . While any sequence of symmetric positive definite weighting matrices W, will yield
a consistent estimate of 3, Equation (21.29) implies that the choice of W affects the
asymptotic variance of the GMM estimator. Hansen (1992) shows that an asymptotically effi-
cient, or optimal GMM estimator of 3 may be obtained by choosing W so that it con-
verges to the inverse of the long-run covariance matrix S:

pimW,; = S (21.33)

Intuitively, this result follows since we naturally want to assign less weight to the moment
conditions that are measured imprecisely. For a GMM estimator with an optimal weighting
matrix, the asymptotic covariance matrix of 8 is given by

v=(s'y rstssts. (xSt

) (21.34)
= (Z'S'T)y
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Implementation of optimal GMM estimation requires that we obtain estimates of S~ '
EViews offers four basic methods for specifying a weighting matrix:

¢ Two-stage least squares: the two-stage least squares weighting matrix is given by
Wy = (0" Z'Z/ T) where ¢ is an estimator of the residual variance based on an
initial estimate of 3. The estimator for the variance will be s> or the no d.f. corrected
equivalent, depending on your settings for the coefficient covariance calculation.

¢ White: the White weighting matrix is a heteroskedasticity consistent estimator of the
long-run covariance matrix of { Z,u,(8)} based on an initial estimate of 3.

¢ HAC - Newey-West: the HAC weighting matrix is a heteroskedasticity and autocor-
relation consistent estimator of the long-run covariance matrix of { Z,u,(8)} based
on an initial estimate of 3.

¢ User-specified: this method allows you to provide your own weighting matrix (speci-
fied as a sym matrix containing a scaled estimate of the long-run covariance

U=1T%).

For related discussion of the White and HAC - Newey West robust standard error estima-
tors, see “Robust Standard Errors” on page 32.

Weighting Matrix Iteration

As noted above, both the White and HAC weighting matrix estimators require an initial con-
sistent estimate of 3. (Technically, the two-stage least squares weighting matrix also
requires an initial estimate of 3, though these values are irrelevant since the resulting 32
does not affect the resulting estimates).

Accordingly, computation of the optimal GMM estimator with White or HAC weights often
employs a variant of the following procedure:

1. Calculate initial parameter estimates 3, using TSLS

2. Use the B estimates to form residuals ()

3. Form an estimate of the long-run covariance matrix of { Z,u,(8¢)}, 57(By), and use
it to compute the optimal weighting matrix W, = 54(8;)

4. Minimize the GMM objective function with weighting matrix Wy = S4(8;)

JB1:Bo) = 7.u(B))' Z81(By)" 2 u(B)) (21.35)

with respect to 3, to form updated parameter estimates.

We may generalize this procedure by repeating steps 2 through 4 using 8, as our initial

parameter estimates, producing updated estimates 8, . This iteration of weighting matrix
and coefficient estimation may be performed a fixed number of times, or until the coeffi-
cients converge so that 8; = ,_; to a sufficient degree of precision.
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An alternative approach due to Hansen, Heaton and Yaron (1996) notes that since the opti-
mal weighting matrix is dependent on the parameters, we may rewrite the GMM objective
function as

) = Fu(BY ZS1(8)" Z'u(B) (2136

where the weighting matrix is a direct function of the 3 being estimated. The estimator
which minimizes Equation (21.36) with respect to 8 has been termed the Continuously
Updated Estimator (CUE).

Linear Equation Weight Updating

For equations that are linear in their coefficients, EViews offers three weighting matrix
updating options: the N-step Iterative, the Iterate to Convergence, and the Continuously
Updating method.

As the names suggests, the N-Step Iterative method repeats steps 2-5 above N times, while
the Iterate to Convergence repeats the steps until the parameter estimates converge. The
Continuously Updating approach is based on Equation (21.36).

Somewhat confusingly, the N-Step Iterative method with a single weight step is sometimes
referred to in the literature as the 2-step GMM estimator, the first step being defined as the
initial TSLS estimation. EViews views this as a 1-step estimator since there is only a single
optimal weight matrix computation.

Non-linear Equation Weight Updating

For equations that are non-linear in their coefficients, EViews offers five different updating
algorithms: Sequential N-Step Iterative, Sequential Iterate to Convergence, Simultaneous
Iterate to Convergence, 1-Step Weight Plus 1 Iteration, and Continuously Updating. The
methods for non-linear specifications are generally similar to their linear counterparts, with
differences centering around the fact that the parameter estimates for a given weighting
matrix in step 4 must now be calculated using a non-linear optimizer, which itself involves
iteration.

All of the non-linear weighting matrix update methods begin with B, obtained from two-
stage least squares estimation in which the coefficients have been iterated to convergence.

The Sequential N-Step Iterative procedure is analogous to the linear N-Step Iterative proce-
dure outlined above, but with the non-linear optimization for the parameters in each step 4
iterated to convergence. Similarly, the Sequential Iterate to Convergence method follows
the same approach as the Sequential N-Step Iterative method, with full non-linear optimi-
zation of the parameters in each step 4.

The Simultaneous Iterate to Convergence method differs from Sequential Iterate to Con-
vergence in that only a single iteration of the non-linear optimizer, rather than iteration to
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convergence, is conducted in step 4. The iterations are therefore simultaneous in the sense
that each weight iteration is paired with a coefficient iteration.

1-Step Weight Plus 1 Iteration performs a single weight iteration after the initial two-stage
least squares estimates, and then a single iteration of the non-linear optimizer based on the
updated weight matrix.

The Continuously Updating approach is again based on Equation (21.36).

Coefficient Covariance Calculation

Having estimated the coefficients of the model, all that is left is to specify a method of com-
puting the coefficient covariance matrix. We will consider two basic approaches, one based
on a family of estimators of the asymptotic covariance given in Equation (21.29), and a sec-
ond, due to Windmeijer (2000, 2005), which employs a bias-corrected estimator which take
into account the variation of the initial parameter estimates.

Conventional Estimators

Using Equation (21.29) and inserting estimators and sample moments, we obtain an estima-
tor for the asymptotic covariance matrix of 3; :

Vi(By, By) = A B(5¥)A™ (21.37)
where

A

Vu(By) Z51(By) " Z'Vu(B,)
B = Vu(B) Z85:(Bo) " 5 5:(Bo) " Z'Vu(By)

Notice that the estimator depends on both the final coefficient estimates 3; and the 3,
used to form the estimation weighting matrix, as well as an additional estimate of the long-
run covariance matrix S* . For weight update methods which iterate the weights until the
coefficients converge the two sets of coefficients will be identical.

(21.38)

EViews offers six different covariance specifications of this form, Estimation default, Esti-
mation updated, Two-stage Least Squares, White, HAC (Newey-West), and User defined,
each corresponding to a different estimator for 5*.

Of these, Estimation default and Estimation update are the most commonly employed
coefficient covariance methods. Both methods compute 5* using the estimation weighting
matrix specification (i.e. if White was chosen as the estimation weighting matrix, then
White will also be used for estimating 5*).

¢ Estimation default uses the previously computed estimate of the long-run covariance
matrix to form §* = S;(B,) . The asymptotic covariance matrix simplifies consider-
o -1
ably in this case so that V7(8) = A4 .
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¢ Estimation updated performs one more step 3 in the iterative estimation procedure,
computing an estimate of the long-run covariance using the final coefficient estimates
to obtain §* = 5;(f;) . Since this method relies on the iterative estimation proce-
dure, it is not available for equations estimated by CUE.

In cases, where the weighting matrices are iterated to convergence, these two approaches
will yield identical results.

The remaining specifications compute estimates of 5* at the final parameters (8, using the
indicated long-run covariance method. You may use these methods to estimate your equa-
tion using one set of assumptions for the weighting matrix W, = 8(8,), while you com-
pute the coefficient covariance using a different set of assumptions for 5* = 5(8;) .

The primary application for this mixed weighting approach is in computing robust standard
errors. Suppose, for example, that you want to estimate your equation using TSLS weights,
but with robust standard errors. Selecting Two-stage least squares for the estimation
weighting matrix and White for the covariance calculation method will instruct EViews to
compute TSLS estimates with White coefficient covariances and standard errors. Similarly,
estimating with Two-stage least squares estimation weights and HAC - Newey-West covari-
ance weights produces TSLS estimates with HAC coefficient covariances and standard
€ITOTS.

Note that it is possible to choose combinations of estimation and covariance weights that,
while reasonable, are not typically employed. You may, for example, elect to use White esti-
mation weights with HAC covariance weights, or perhaps HAC estimation weights using one
set of HAC options and HAC covariance weights with a different set of options. It is also pos-
sible, though not recommended, to construct odder pairings such as HAC estimation weights
with TSLS covariance weights.

Windmeijer Estimator

Various Monte Carlo studies (e.g. Arellano and Bond 1991) have shown that the above cova-
riance estimators can produce standard errors that are downward biased in small samples.
Windmeijer (2000, 2005) observes that part of this downward bias is due to extra variation
caused by the initial weight matrix estimation being itself based on consistent estimates of
the equation parameters.

Following this insight it is possible to calculate bias-corrected standard error estimates
which take into account the variation of the initial parameter estimates. Windmeijer pro-
vides two forms of bias corrected standard errors; one for GMM models estimated in a one-
step (one optimal GMM weighting matrix) procedure, and one for GMM models estimated
using an iterate-to-convergence procedure.

The Windmeijer corrected variance-covariance matrix of the one-step estimator is given by:

Vipasiep = Vi+ DygVi+ ViDyy + Dy VoD, (21.39)
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-1 S . .
Vi, = A, the estimation default covariance estimator
Wyr = 57(B;), the updated weighting matrix (at final parameter estimates)

“1 gy -1 o . .
Vo = A7 BA ™, the estimation updated covariance estimator where 5* = S,(8,)

=
[

= 857(By), the estimation weighting matrix (at initial parameter estimates)

Wor (82 Z'Z/ T), the initial weighting matrix
oW, = Wi/ 0B,
D, g is a matrix whose jth column is given by D, ;:
Dyg ;= - ViVu(By)' ZWor oW, WorZ'u(By) - V
The Windmeijer iterate-to-convergence variance-covariance matrix is given by:
Viwie = (I-Dp) ' Ve(I- Dy (21.40)
where:

_ -1
Vo= (Vu(B)' Z WclT Z'u(B)) , the estimation default covariance estimator

Wer = 87(B), the GMM weighting matrix at converged parameter estimates

Weighted GMM
Weights may also be used in GMM estimation. The objective function for weighted GMM is,
1 -1
S(B) = 7(y= X, B))AZSy Z'Aly- (X, B)) (21.41)

where S is the long-run covariance of w;* Z,e, where we now use A to indicate the diag-
onal matrix with observation weights w,* .

The default reported standard errors are based on the covariance matrix estimate given by:
A _ -1
Swaomn = (GDYAZ 8, Z'AG(b)) (21.42)
where b= byoa-

Estimation by GMM in EViews

To estimate an equation by GMM, either create a new equation object by selecting Object/
New Object.../Equation, or press the Estimate button in the toolbar of an existing equation.
From the Equation Specification dialog choose Estimation Method: GMM. The estimation
specification dialog will change as depicted below.
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To obtain GMM estimates in Equation Estimation
EViews, you need to write the
moment condition as an orthog- S

Onahty condition between an Dependent followed by regressors, AR and POL terms, OR an explidt equation.
expression including the param-

eters and a set of instrumental

variables. There are two ways Instrument list

you can write the orthogonality

condition: with and without a

Spedfication | Options

Indude a constant
dependent variable.
Estimation weighting matrix Weight updating
If you specify the equation White ¥ N-Step Iterative v
either by listing variable names Numiber of iterations: | 1
or by an expression with an Estimation settings
equal sign, EViews will inter- Method: |GMM - Generalized Method of Moments v
pret the moment condition as Sample: | 1970 1941
an orthogonality condition
between the instruments and Cancel

the residuals defined by the
equation. If you specify the equation by an expression without an equal sign, EViews will
orthogonalize that expression to the set of instruments.

You must also list the names of the instruments in the Instrument list edit box. For the
GMM estimator to be identified, there must be at least as many instrumental variables as
there are parameters to estimate. EViews will, by default, add a constant to the instrument
list. If you do not wish a constant to be added to the instrument list, the Include a constant
check box should be unchecked.

For example, if you type,
Equation spec: y c x

Instrument list: ¢ z w

the orthogonality conditions are given by:

S (yy—ce(1)-c(2)z) = 0
Sy = (1) = c(2)z)z, = 0 (21.43)
> (yy—e(1) - e(2)z)w, = 0

If you enter the specification,
Equation spec: c (1) *log(y)+x"~c(2)

Instrument list: ¢ z z(-1)
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the orthogonality conditions are:
c(2

3 (e(D)logy, + z;) = 0

> (e(Dlogy, + ;)

c(2
Z(c(l)logyt + xt( ))thl

I
o

(21.44)

Il
o

Beneath the Instrument list box there are two dropdown menus that let you set the Estima-
tion weighting matrix and the Weight updating.

The Estimation weight matrix dropdown specifies the type of GMM weighting matrix that
will be used during estimation. You can choose from Two-stage least squares, White, HAC
(Newey-West), and User-specified. If you select HAC (Newey West) then a button appears
that lets you set the weighting matrix computation options. If you select User-specified you
must enter the name of a symmetric matrix in the workfile containing an estimate of the
weighting matrix (long-run covariance) scaled by the number of observations I/ = T8).
Note that the matrix must have as many columns as the number of instruments specified.

The U matrix can be retrieved from any equation estimated by GMM using the @instwgt
data member (see “Equation Data Members” on page 37 of the Command and Programming
Reference). @instwgt returns U which is an implicit estimator of the long-run covariance
scaled by the number of observations.

For example, for GMM equations estimated using the Two-stage least squares weighting
matrix, will contain 82(Z’ Z) (where the estimator for the variance will use s~ or the no
d.f. corrected equivalent, depending on your options for coefficient covariance calculation).
Equations estimated with a White weighting matrix will return ZQQZtZt’ .

Storing the user weighting matrix from one equation, and using it during the estimation of a
second equation may prove useful when computing diagnostics that involve comparing J-
statistics between two different equations.

The Weight updating dropdown menu lets you set the estimation algorithm type. For linear
equations, you can choose between N-Step Iterative, Iterate to Convergence, and Continu-
ously Updating. For non-linear equations, the choice is between Sequential N-Step Itera-
tive, Sequential Iterate to Convergence, Simultaneous Iterate to Convergence, 1-Step
Weight Plus 1 Iteration, and Continuously Updating.

To illustrate estimation of GMM models in EViews, we estimate the same Klein model intro-
duced in “Estimating LIML and K-Class in EViews,” on page 79, as again replicated by
Greene 2008 (p. 385). We again estimate the Consumption equation, where consumption
(CONS) is regressed on a constant, private profits (Y), lagged private profits (Y(-1)), and
wages (W) using data in “Klein.WF1”. The instruments are a constant, lagged corporate
profits (P(-1)), lagged capital stock (K(-1)), lagged GNP (X(-1)), a time trend (TM), Govern-
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ment wages (WG), Government spending (G) and taxes (T). Greene uses the White weight-
ing matrix, and an N-Step Iterative updating procedure, with N set to 2. The results of this
estimation are shown below:

Dependent Variable: CONS

Method: Generalized Method of Moments

Date: 04/21/09 Time: 12:17

Sample (adjusted): 1921 1941

Included observations: 21 after adjustments

Linear estimation with 2 weight updates

Estimation weighting matrix: White

Standard errors & covariance computed using estimation weighting
matrix

No df. adjustment for standard errors & covariance

Instrument specification: C P(-1) K(-1) X(-1) TMWG G T

Variable Coefficient Std. Error t-Statistic Prob.

Cc 14.31902 0.896606 15.97025 0.0000

Y 0.090243 0.061598 1.465032 0.1612

Y(-1) 0.143328 0.065493 2.188443 0.0429

w 0.863930 0.029250 29.53616 0.0000
R-squared 0.976762 Mean dependent var 53.99524
Adjusted R-squared 0.972661 S.D. dependent var 6.860866
S.E. of regression 1.134401 Sum squared resid 21.87670
Durbin-Watson stat 1.420878 Instrument rank 8
J-statistic 3.742084  Prob(J-statistic) 0442035

The EViews output header shows a summary of the estimation type and settings, along with
the instrument specification. Note that in this case the header shows that the equation was
linear, with a 2 step iterative weighting update performed. It also shows that the weighing
matrix type was White, and this weighting matrix was used for the covariance matrix, with
no degree of freedom adjustment.

Following the header the standard coefficient estimates, standard errors, ¢-statistics and
associated p-values are shown. Below that information are displayed the summary statistics.
Apart from the standard statistics shown in an equation, the instrument rank (the number of
linearly independent instruments used in estimation) is also shown (8 in this case), and the
J-statistic and associated p-value is also shown.

As a second example, we also estimate the equation for Investment. Investment (I) is
regressed on a constant, private profits (Y), lagged private profits (Y(-1)) and lagged capital
stock (K-1)). The instruments are again a constant, lagged corporate profits (P(-1)), lagged
capital stock (K(-1)), lagged GNP (X(-1)), a time trend (TM), Government wages (WG), Gov-
ernment spending (G) and taxes (T).

Unlike Greene, we will use a HAC weighting matrix, with pre-whitening (fixed at 1 lag), a
Tukey-Hanning kernel with Andrews Automatic Bandwidth selection. We will also use the
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Continuously Updating weighting updating procedure. The output from this equation is
show below:

Dependent Variable: |

Method: Generalized Method of Moments

Date: 08/10/09 Time: 10:48

Sample (adjusted): 1921 194 1

Included observations: 21 after adjustments

Continuously updating weights & coefficients

Estimation weighting matrix: HAC (Prewhitening with lags = 1, Tukey
-Hanning kernel, Andrews band width = 2.1803)

Standard errors & covariance computed using estimation weighting
matrix

Convergence achieved after 30 iterations

No d.f. adjustment for standard errors & covariance

Instrument specification: C P(-1) K(-1) X(-1) TMWG G T

Variable Coefficient Std. Error t-Statistic Prob.

C 22.20609 5.693625 3.900168 0.0012

Y -0.261377 0.277758  -0.941024 0.3599

Y(-1) 0.935801 0.235666 3.970878 0.0010

K(-1) -0.157050 0.024042  -6.532236 0.0000
R-squared 0.659380 Mean dependent var 1.266667
Adjusted R-squared 0.599271 S.D. dependent var 3551948
S.E. of regression 2.248495 Sum squared resid 85.94740
Durbin-Watson stat 1.804037 Instrument rank 8
J-statistic 1.949180 Prob(J-statistic) 0.745106

Note that the header information for this equation shows slightly different information from
the previous estimation. The inclusion of the HAC weighting matrix yields information on
the prewhitening choice (lags = 1), and on the kernel specification, including the band-
width that was chosen by the Andrews procedure (2.1803). Since the CUE procedure is
used, the number of optimization iterations that took place is reported (39).

IV Diagnostics and Tests

EViews offers several IV and GMM specific diagnostics and tests.

Instrument Summary

The Instrument Summary view of an equation is available for non-panel equations esti-
mated by GMM, TSLS or LIML. The summary will display the number of instruments speci-
fied, the instrument specification, and a list of the instruments that were used in estimation.

For most equations, the instruments used will be the same as the instruments that were
specified in the equation, however if two or more of the instruments are collinear, EViews
will automatically drop instruments until the instrument matrix is of full rank. In cases
where instruments have been dropped, the summary will list which instruments were
dropped.
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The Instrument Summary view may be found under View/IV Diagnostics & Tests/Instru-
ment Summary.

Instrument Orthogonality Test

The Instrument Orthogonality test, also known as the C-test or Eichenbaum, Hansen and
Singleton (EHS) Test, evaluates the othogonality condition of a sub-set of the instruments.
This test is available for non-panel equations estimated by TSLS or GMM.

Recall that the central assumption of instrumental variable estimation is that the instru-
ments are orthogonal to a function of the parameters of the model:

E(Z'uw(B)) = 0 (21.45)

The Instrument Orthogonality Test evaluates whether this condition possibly holds for a
subset of the instruments but not for the remaining instruments

E(Z,"w(B)) = 0

(21.46)
E(Zyu(B))=0

Where Z = (Z,, Z,), and Z; are instruments for which the condition is assumed to hold.

The test statistic, C, is calculated as the difference in J-statistics between the original
equation and a secondary equation estimated using only Z; as instruments:

Cr = %’U(B)’ZW_Tl 2" u(B) - %U(B)’Z1 W_Tll 21" u(B) (21.47)

where 8 are the parameter estimates from the original TSLS or GMM estimation, and W
is the original weighting matrix, 3 are the estimates from the test equation, and W_Tll is the
matrix for the test equation formed by taking the subset of W_T1 corresponding to the instru-
ments in Z; . The test statistic is Chi-squared distributed with degrees of freedom equal to
the number of instruments in Z, .

To perform the Instrumental Orthogonality Test in EViews, click on View/IV Diagnostics
and Tests/Instrument Orthogonality Test. A dialog box will the open up asking you to
enter a list of the Z, instruments for which the orthogonality condition may not hold. Click
on OK and the test results will be displayed.

Regressor Endogeneity Test

The Regressor Endogeneity Test, also known as the Durbin-Wu-Hausman Test, tests for the
endogeneity of some, or all, of the equation regressors. This test is available for non-panel
equations estimated by TSLS or GMM.

A regressor is endogenous if it is explained by the instruments in the model, whereas exoge-
nous variables are those which are not explained by instruments. In EViews” TSLS and GMM
estimation, exogenous variables may be specified by including a variable as both a regressor
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and an instrument, whereas endogenous variable are those which are specified in the
regressor list only.

The Endogeneity Test tests whether a subset of the endogenous variables are actually exoge-
nous. This is calculated by running a secondary estimation where the test variables are
treated as exogenous rather than endogenous, and then comparing the J-statistic between
this secondary estimation and the original estimation:

Hy = lTu(;S’)’ZW‘T1 Z'u(B) - lTu(ﬁ)’ZW’TI*Z'u(ﬁ) (21.48)

where B are the parameter estimates from the original TSLS or GMM estimation obtained
using weights W, and B are the estimates from the test equation estimated using Z, the
instruments augmented by the variables which are being tested, and Wy is the weighting
matrix from the secondary estimation.

Note that in the case of GMM estimation, the matrix W}l* should be a sub-matrix of W_T1
to ensure positivity of the test statistic. Accordingly, in computing the test statistic, EViews
first estimates the secondary equation to obtain 3, and then forms a new matrix W}i s
which is the subset of W_T1 corresponding to the original instruments Z. A third estimation
is then performed using the subset matrix for weighting, and the test statistic is calculated
as:

Hy = %U(B)’Z Wr Z'u(B) - %u(ﬁ*)’Z’ W Z'u(B*) (21.49)

The test statistic is distributed as a Chi-squared random variable with degrees of freedom
equal to the number of regressors tested for endogeneity.

To perform the Regressor Endogeneity Test in EViews, click on View/IV Diagnostics and
Tests/Regressor Endogeneity Test. A dialog box will the open up asking you to enter a list
of regressors to test for endogeneity. Once you have entered those regressors, hit OK and the
test results are shown.

Weak Instrument Diagnostics

The Weak Instrument Diagnostics view provides diagnostic information on the instruments
used during estimation. This information includes the Cragg-Donald statistic, the associated
Stock and Yugo critical values, and Moment Selection Criteria (MSC). The Cragg-Donald sta-
tistic and its critical values are available for equations estimated by TSLS, GMM or LIML,
but the MSC are available for equations estimated by TSLS or GMM only.

The Cragg-Donald statistic is proposed by Stock and Yugo as a measure of the validity of the
instruments in an IV regression. Instruments that are only marginally valid, known as weak
instruments, can lead to biased inferences based on the IV estimates, thus testing for the

presence of weak instruments is important. For a discussion of the properties of IV estima-
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tion when the instruments are weak, see, for example, Moreira 2001, Stock and Yugo 2004 or
Stock, Wright and Yugo 2002.

Although the Cragg-Donald statistic is only valid for TSLS and other K-class estimators,
EViews also reports for equations estimated by GMM for comparative purposes.

The Cragg-Donald statistic is calculated as:

o - (T-Fk —ky) X Mo XY 2o XN Mo ZA (Mo Z N (Mo Z)) "
=\ T K Mo X (M Xp) My ZA(MZy) (M Z7)) ™ (21.50)

(MyZ) (M Xp)(Xy My, Xp)
where:
Z, = instruments that are not in the regressor list
Xy = (XX’ Zyz)
Xx = exogenous regressors (regressors in both the regressor and instrument lists)
X = endogenous regressors (regressors that are not in instrument list)
My, = I- XZ(XZ'XZ)_lXZ'
My = I- XX(XX’XX)_IXX,

k; = number of columns of Xy

ky = number of columns of Z,

The statistic does not follow a standard distribution, however Stock and Yugo provide a
table of critical values for certain combinations of instruments and endogenous variable
numbers. EViews will report these critical values if they are available for the specified num-
ber of instruments and endogenous variables in the equation.

Moment Selection Criteria (MSC) are a form of Information Criteria that can be used to com-
pare different instrument sets. Comparison of the MSC from equations estimated with differ-
ent instruments can help determine which instruments perform the best. EViews reports
three different MSCs: two proposed by Andrews (1999)—a Schwarz criterion based, and a
Hannan-Quinn criterion based, and the third proposed by Hall, Inoue, Jana and Shin
(2007)—the Relevant Moment Selection Criterion. They are calculated as follows:

SIC-based = Jp—(c—k)In(T)
HQIQ-based = J;—2.01(c— k)In(In(71))
Relevant MSC = In(|TQ)(1/7)(c - k)In(7)
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where ¢ = the number of instruments, £ = the number of regressors, 7' = the number of
observations, 2 = the estimation covariance matrix,

-

and b is equal 1 for TSLS and White GMM estimation, and equal to the bandwidth used in
HAC GMM estimation.

To view the Weak Instrument Diagnostics in EViews, click on View/IV Diagnostics & Tests/
Weak Instrument Diagnostics.

GMM Breakpoint Test

The GMM Breakpoint test is similar to the Chow Breakpoint Test, but it is geared towards
equations estimated via GMM rather than least squares.

EViews calculates three different types of GMM breakpoint test statistics: the Andrews-Fair
(1988) Wald Statistic, the Andrews-Fair LR-type Statistic, and the Hall and Sen (1999) O-Sta-
tistic. The first two statistics test the null hypothesis that there are no structural breaks in
the equation parameters. The third statistic tests the null hypothesis that the over-identifying
restrictions are stable over the entire sample.

All three statistics are calculated in a similar fashion to the Chow Statistic - the data are par-
titioned into different subsamples, and the original equation is re-estimated for each of these
subsamples. However, unlike the Chow Statistic, which is calculated on the basis that the
variance-covariance matrix of the error terms remains constant throughout the entire sample
(i.e s> is the same between subsamples), the GMM breakpoint statistic lets the variance-
covariance matrix of the error terms vary between the subsamples.

The Andrews-Fair Wald Statistic is calculated, in the single breakpoint case, as:

1

AF - (1 1 Nt
1 = (0,-10,) le +T2V2 (6,-65) (21.51)

Where 0, refers to the coefficient estimates from subsample ¢, 7, refers to the number of
observations in subsample i, and V, is the estimate of the variance-covariance matrix for

subsample 7. Z
The Andrews-Fair LR-type statistic is a comparison of the J-statistics from each of the subsa-
mple estimations:

AFy = Jp=(J;+ Jy) (21.52)
Where Jj is a J-statistic calculated with the original equation’s residuals, but a GMM

weighting matrix equal to the weighted (by number of observations) sum of the estimated
weighting matrices from each of the subsample estimations.
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The Hall and Sen O-Statistic is calculated as:
Op = J, + J, (21.53)

The first two statistics have an asymptotic x2 distribution with (m — 1)k degrees of free-
dom, where m is the number of subsamples, and k is the number of coefficients in the orig-
inal equation. The O-statistic also follows an asymptotic X2 distribution, but with

2 x (g—(m—-1)k) degrees of freedom.

To apply the GMM Breakpoint test, click on View/Breakpoint Test.... In the dialog box that
appears simply enter the dates or observation numbers of the breakpoint you wish to test.
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Chapter 22. Time Series Regression

In this chapter, we turn our attention to the analysis of single equation models for time
series data, focusing on the estimation of Autoregressive-Moving Average (ARMA), Autore-
gressive-Integrated-Moving Average (ARIMA), and Autoregressive-Fractionally Integrated-
Moving Average (ARFIMA) specifications, and the computation of equation diagnostics for
these models.

Before turning to the EViews implementation of these features, we provide brief background
for the models and related diagnostics. Those desiring additional detail are encouraged to
consult one or more of the many book length treatments of time series methods (Box, Jen-
kins, and Reinsel, 2008; Hamilton, 1994).

Related topics are discussed elsewhere in this volume; see, for example, Chapter 38. “Uni-
variate Time Series Analysis,” on page 589, Chapter 40. “Vector Autoregression and Error
Correction Models,” on page 687, Chapter 41. “State Space Models and the Kalman Filter,”
on page 755 for material on additional time series topics.

Background

A common occurrence in time series regression is the presence of correlation between resid-
uals and their lagged values. This serial correlation violates the standard assumption of
regression theory which requires uncorrelated regression disturbances. Among the problems
associated with unaccounted for serial correlation in a regression framework are:

e OLS is no longer efficient among linear estimators. Intuitively, since prior residuals
help to predict current residuals, we can take advantage of this information to form a
better prediction of the dependent variable.

e Standard errors computed using the textbook OLS formula are not correct, and are
generally understated.

e If there are lagged dependent variables on the right-hand side of the equation specifi-
cation, OLS estimates are biased and inconsistent.

A popular framework for modeling serial dependence is the Autoregressive-Moving Average
(ARMA) and Autoregressive-Integrated-Moving Average (ARIMA) models popularized by
Box and Jenkins (1976) and generalized to Autoregressive-Fractionally Integrated-Moving
Average (ARFIMA) specifications.

(Note that ARMA and ARIMA models which allow for explanatory variables in the mean are
sometimes termed ARIMAX and ARIMAX. We will generally use ARMA to refer to models
both with and without explanatory variables unless there is a specific reason to distinguish
between the two types.)
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Autoregressive (AR) Models

An autoregressive model of order p, denoted AR(p) has the form
Y, =p Y, +p0Y, o+ ... +pth_p+et
! (22.1)
= z p; Y, j+e€
i=1
where ¢, are the independent and identically distributed innovations for the process and the
autoregressive parameters p, characterize the nature of the dependence. Note that the auto-

correlations of a stationary AR(p) are infinite, but decline geometrically so they die off
quickly, and the partial autocorrelations for lags greater than p are zero.

It will be convenient for the discussion to follow to define a lag operator L such that:

L'y, = v, (22.2)
and to rewrite the AR(p) as
p .
Y, = LYi+e
= et (22.3)
j=1
p(L)Y, = ¢
where
p .
p(L)y =1-% oL’ (22.4)
j=1

is a lag polynomial that characterizes the AR process.If we add a mean to the model, we
obtain:

Pp(L)(Yi—py) = ¢ (22.5)

The AR(1) Model

The simplest and most widely used regression model with serial correlation is the first-order
autoregressive, or AR(1), model. If the mean u, = X,'B is a linear combination of regres-
sors X, and parameters 3, the AR(1) model may be written as:

Y, = X/B+uy

(22.6)
U, = pU,_qt+e€

The parameter p is the first-order serial correlation coefficient.

Substituting the second equation into the first, we obtain the regression form
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X/B+pL(Y,-X/B)+e¢
X/B+p(Y,_-X,_,'B)+¢

Y,

(22.7)

In the representation it is easy to see that the AR(1) model incorporates the residual from
the previous observation into the regression model for the current observation.

Rearranging terms and using the lag operator, we have the polynomial form

(1-pL)(Y,- X/B) = ¢

Higher-Order AR Models

(22.8)

A regression model with an autoregressive process of order p, AR(p), is given by:

Y, = X/B+y
Up = U+ Pl ot P U, €
Substituting and rearranging terms, we get the regression
P
Y, = X/B+ ij( Y, ;-X,_/B)+e
j=1

and the polynomial form

p
(1 - z ijjj(Yt— X,/'B) = ¢
j=1
Moving Average (MA) Models
A moving average model of order ¢, denoted MA(¢) has the form

Y, = e, +0,e, | +p0y¢, 5+ ... +0qY,/7q

q
€+ Z 0]vet_j

Jj=1

= 0(L)e,

where €, are the innovations, and
q -
0(L) = 1+ GjL]

j=1

(22.9)

(22.10)

(22.11)

(22.12)

(22.13)

is the moving average polynomial with parameters 6, that characterize the MA process.
Note that the autocorrelations of an MA model are zero for lags greater than ¢.
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You should pay particular attention to the definition of the lag polynomial when comparing
results across different papers, books, or software, as the opposite sign convention is some-
times employed for the § coefficients.
Adding a mean to the model, we get the mean adjusted form:

Y,—p = 6(L)e, (22.14)

The MA(1) Model
The MA(1) model assumes that the current disturbance term wu, is a weighted sum of the
current and lagged innovations €, and €,_ :

Y, = X/B+u,

(22.15)
u, = €,+0€,_,

The parameter 0 is the first-order moving average coefficient. Substituting, the MA(1) may
be written as

Y, = X/B+e€,+0€_, (22.16)
and

Y,-X/B = (1+0L)e, (22.17)
Autoregressive Moving Average (ARMA) Models

We may combine the AR and the MA specifications to define an autoregressive model mov-
ing average (ARMA) model:
p(L)(Y,—ny) = 0(Le, (22.18)

We term this model an ARMA(p, ¢) to indicate that there are p lags in the AR and ¢ terms
in the MA.

The ARMA(1, 1) Model

The simplest ARMA model is first-order autoregressive with a first-order moving average
€eITOr:

Y,

X,/B+ vy,
(22.19)
U = pU,_ +€,+0€_,

The parameter p is the first-order serial correlation coefficient, and the 6 is the moving
average coefficient. Substituting, the ARMA(1, 1) may be written as
Y, = X/B+pu,_,+e€,+0¢_,

(22.20)
= Xt,B +,D( Yt—l - Xt—l’B) + Et"r Oet_l

or equivalently,
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(1-pL)(Y,— X,/B) = (1+0L)e, (22.21)

Seasonal ARMA Terms

Box and Jenkins (1976) recommend the use of seasonal autoregressive (SAR) and seasonal

moving average (SMA) terms for monthly or quarterly data with systematic seasonal move-
ments. Processes with SAR and SMA terms are ARMA models constructed using products of
lag polynomials. These products produce higher order ARMA models with nonlinear restric-
tions on the coefficients.

Seasonal AR Terms

A SAR(p) term is a seasonal autoregressive term with lag p. A SAR adds to an existing AR
specification a polynomial with a lag of p:

1-¢,L" (22.22)
The SAR is not intended to be used alone. The SAR allows you to form the product of lag

polynomials, with the resulting lag structure defined by the product of the AR and SAR lag
polynomials.

For example, a second-order AR process without seasonality is given by,
Y, =0 Y,_1+0,Y,_5+€, (22.23)
which can be represented using the lag operator L as:
(1—p,L—p,LY)Y, = ¢, (22.24)
For quarterly data, we might wish to add a SAR(4) term because we believe that there is cor-

relation between a quarter and the quarter the year previous. Then the resulting process
would be:

2 4
(1=pL-p, L)1 -9, L)Y, = €. (22.25)

Expanded terms, we see that the process is equivalent to:
Yi=p Yy 40Y, ot Yuy y=dyp) Yy 50400V, ¢+e. (22.26)

The parameter ¢, is associated with the seasonal part of the process. Note that this is an
AR(6) process with nonlinear restrictions on the coefficients.
Seasonal MA Terms

Similarly, SMA( ¢) can be included in your specification to specify a seasonal moving aver-
age term with lag ¢ . The resulting the MA lag structure is obtained from the product of the
lag polynomial specified by the MA terms and the one specified by any SMA terms.

For example, second-order MA process without seasonality may be written as
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Y, = e, +0pe, | +05¢ (22.27)

t-2°
or using lag operators:

Y, = (1+6,L+6,L%)¢,. (22.28)
To take account of seasonality in a quarterly workfile you may wish to add an SMA(4). Then
the resulting process is:

Y, = (146,L+60,0°)(1+w,L'e, (22.29)
The process is equivalent to:
Y, =Y, +0,Y, +0,Y, ,+w0,Y, ;+w0,Y, s+w0,0,Y, . (22.30)
The parameter w, is associated with the seasonal part of an MA(6) process which has non-
linear restrictions on the coefficients.
Integrated Models

A time series Y, is said to be integrated of order 0 or I(0), if it may be written as a MA pro-
cess Y, = 0(L)e,, with coefficients such that

Z |07.| < (22.31)
i=1

Roughly speaking, an /(0) process is a moving average with autocovariances that die off
sufficiently quickly, a condition which is necessary for stationarity (Hamilton, 2004).

Y, is said to be integrated of order d or I(d), if its d-th integer difference, (1 — L)d Y, is
I(0), and the d— 1 difference is not.

Typically, one assumes that d is an integer and that d = 1 or d = 2 so that first or sec-
ond differencing the original series yields a stationary series. We will consider both integer
and non-integer integration in turn.

ARIMA Model

An ARIMA(p, d, q) model is defined as an I(d) process whose d-th integer difference fol-
lows a stationary ARMA(p, ¢q) process. In polynomial form we have:

p(L)(1 - L)' (Y,~ ) = 0(L)e, (2232)

Example
The ARIMA(1,1,1) Model

An ARIMA(1,1,1) model for Y, assumes that the first difference of Y, is an ARMA(1,1).
(1-pL)(1-L)Y,-X,/B) = €,+0¢,_, (22.33)
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Rearranging, and noting that (1 - L)Y, = AY, and (1 - L)X, = AX, we may write this
specification as

AY, = AX/B+p(AY,_ | -AX, '8)+¢€,+0¢,_, (22.34)
or
AY, = AX/B+y,
(22.35)
u, = pu,_,+e,+0e,_,
ARFIMA Model

Stationary processes are said to have long memory when autocorrelations are persistent,
decaying more slowly than the rate associated with ARMA models. Modeling long term
dependence is difficult for standard ARMA specifications as it requires non-parsimonious,
large-order ARMA representations that are generally accompanied by undesirable short-run
dynamics (Sowell, 1992).

One popular approach to modeling long memory processes is to employ the notion of frac-
tional integration (Granger and Joyeux, 1980; Hosking, 1981). A fractionally integrated
series is one with long-memory that is not /(1) .

Following Granger and Joyeux (1981) and Hosking (1981), we may define a discrete time
fractional difference operator which depends on the parameter d:

o d_wd)_kk S T(—d+k)
=(1-L)" = Z(k -1)'L ZI‘( d)I‘(k+1)L (22.36)
k=0
for -1/2<d<1/2 and I the gamma function.

If the fractional d-difference operator applied to a process produces a random walk we say
that the process is an ARFIMA(O, d, 0). Hosking notes that for an ARFIMA(0, d, 0):

e when d = 1/2, the process is non-stationary but invertible
e when 0 < d < 1/2, the process has long memory but is stationary and invertible

e when —-1/2 < d < 0, the process has short memory, with all negative auto-correla-
tions and partial auto correlations, and is invertible

e when d = 0, the process is white noise

More generally, if d-th order fractional differencing results in an ARMA(p, ¢), the process is
said to be ARFIMA(p, d, ¢). In polynomial form we have:

p(L)(1 - L)' (Y,~ ) = 0(L)e, (2237)

Notice that the ARFIMA specification is identical to the standard Box-Jenkins ARIMA formu-
lation in Equation (22.32), but allowing for non-integer d. Note also that the range restric-
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tion on d is non-binding as we may apply integer differencing or summing until d is in the
desired range.

By combining fractional differencing with a traditional ARMA specification, the ARFIMA
model allows for flexible dynamic patterns. Crucially, when —1/2 < d < 1/2, the autocor-
relations and partial autocorrelations of the ARFIMA process decay more slowly (hyperboli-
cally) than the rates associated with ARMA specifications. Thus, the ARFIMA model allows
you to model slowing decaying long-run dependence using the d parameter and more rap-
idly decaying short-run dynamics using a parsimonious ARMA(p, q).

The Box-Jenkins (1976) Approach to ARIMA Modeling

In Box-Jenkins ARIMA modeling and forecasting, you assemble a complete forecasting
model by using combinations of the three ARIMA building blocks described above. The first
step in forming an ARIMA model for a series of residuals is to look at its autocorrelation
properties. You can use the correlogram view of a series for this purpose, as outlined in
“Correlogram” on page 420 of User’s Guide I.

This phase of the ARIMA modeling procedure is called identification (not to be confused
with the same term used in the simultaneous equations literature). The nature of the cor-
relation between current values of residuals and their past values provides guidance in
selecting an ARIMA specification.

The autocorrelations are easy to interpret—each one is the correlation coefficient of the cur-
rent value of the series with the series lagged a certain number of periods. The partial auto-
correlations are a bit more complicated; they measure the correlation of the current and
lagged series after taking into account the predictive power of all the values of the series
with smaller lags. The partial autocorrelation for lag 6, for example, measures the added pre-
dictive power of u,_, when wu,, ..., u,_5 are already in the prediction model. In fact, the
partial autocorrelation is precisely the regression coefficient of u,_¢ in a regression where
the earlier lags are also used as predictors of u,.

If you suspect that there is a distributed lag relationship between your dependent (left-hand)
variable and some other predictor, you may want to look at their cross correlations before
carrying out estimation.

The next step is to decide what kind of ARIMA model to use. If the autocorrelation function
dies off smoothly at a geometric rate, and the partial autocorrelations were zero after one
lag, then a first-order autoregressive model is appropriate. Alternatively, if the autocorrela-
tions were zero after one lag and the partial autocorrelations declined geometrically, a first-
order moving average process would seem appropriate. If the autocorrelations appear to
have a seasonal pattern, this would suggest the presence of a seasonal ARMA structure.
Along these lines, Box and Jenkins (1976) recommend the use of seasonal autoregressive
(SAR) and seasonal moving average (SMA) terms for monthly or quarterly data with system-
atic seasonal movements.



Testing for Serial Correlation—107

For example, we can examine the correlogram of the DRI Basics housing series in the
“Hs.WF1” workfile by setting the sample to “1959m01 1984m12” then selecting View/Cor-
relogram... from the HS series toolbar. Click on OK to accept the default settings and dis-
play the result.

The “wavy” cyclica] corre]ogram ¥ Series: HS  Worknile: HS::Hs\
Wlth a SeaSOIlal ﬁ.equency Suggests View | Proc | Object | Properties | | Print | Name | Freeze | | Sample | Genr [ Sheet | Graph | 5
- Correlogram of HS
fitting a seasonal ARMA model to
Date: 08/08/08 Time: 2314
HS. Sample: 1959M01 198412
Included abservations: 312
The goal of ARIMA analysis is a par- Autocarrelation  Partial Correlation AC  PAC  Q-Btat Prab
simonious representation of the pro- | ] | 1 0860 0.860 23345 0.000
. . ) == 2 0BED -0.308 370.89 0.000
cess governing the residual. You = g 3 0.454 -0.102 436.22 0.000
= s 4 0306 0106 466.00 0.000
should use only enough AR and MA 1= B . D543 Di%e 434Td 000D
; ; = o B 0198 -0.119 497.40 0.000
terI.nS to fit the pro.pert.les of th.e 'm o 7 0184 0.07% &02.20 0.000
residuals. The Akaike information 'a '‘a 8 0193 0114 52029 0.000
o o 1= ] S| 9 0286 0.320 &46.80 0.000
criterion and Schwarz criterion pro- == = 10 0436 0225 E08.5¢ 0.000
. . . ) '@ 11 0586 0141 720.38 0.000
vided with each set of estimates may == g 12 0648 -0115 857.70 0.000
. ) — [ 13 0528 -0.476 949.28 0.000
also be used as a gulde for the appro- | [ = 14 0324 -0.256 983.78 0.000
. . h o 15 0110 -0.109 987.76 0.000
priate lag order selection. IK e 16 -0.046 -0.062 988.45 0.000
5[ 1] 17 -0111 0121 99252 0.000
s : o o 18 -0164 -0101 10015 0.000
After fitting a candidate ARIMA spec- =1 1, 15 0186 0002 10133 0000
ification, you should verify that there = b 20 D188 D081 10252 0.000

are no remaining autocorrelations
that your model has not accounted for. Examine the autocorrelations and the partial auto-
correlations of the innovations (the residuals from the ARIMA model) to see if any important
forecasting power has been overlooked. EViews provides several views for diagnostic checks
after estimation.

Testing for Serial Correlation

Before you use an estimated equation for statistical inference (e.g. hypothesis tests and fore-
casting), you should generally examine the residuals for evidence of serial correlation.
EViews provides several methods of testing a specification for the presence of serial correla-
tion.

The Durbin-Watson Statistic

EViews reports the Durbin-Watson (DW) statistic as a part of the standard regression output.
The Durbin-Watson statistic is a test for first-order serial correlation. More formally, the DW
statistic measures the linear association between adjacent residuals from a regression model.
The Durbin-Watson is a test of the hypothesis o = 0 in the specification:

Uy = PU,_ 1+ €. (22.38)
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If there is no serial correlation, the DW statistic will be around 2. The DW statistic will fall
below 2 if there is positive serial correlation (in the worst case, it will be near zero). If there
is negative correlation, the statistic will lie somewhere between 2 and 4.

Positive serial correlation is the most commonly observed form of dependence. As a rule of
thumb, with 50 or more observations and only a few independent variables, a DW statistic
below about 1.5 is a strong indication of positive first order serial correlation. See Johnston
and DiNardo (1997, Chapter 6.6.1) for a thorough discussion on the Durbin-Watson test and
a table of the significance points of the statistic.

There are three main limitations of the DW test as a test for serial correlation. First, the dis-
tribution of the DW statistic under the null hypothesis depends on the data matrix x. The
usual approach to handling this problem is to place bounds on the critical region, creating a
region where the test results are inconclusive. Second, if there are lagged dependent vari-
ables on the right-hand side of the regression, the DW test is no longer valid. Lastly, you
may only test the null hypothesis of no serial correlation against the alternative hypothesis
of first-order serial correlation.

Two other tests of serial correlation—the )-statistic and the Breusch-Godfrey LM test—over-
come these limitations, and are preferred in most applications.

Correlograms and Q-statistics

If you select View/Residual Diagnostics/Correlogram-Q-statistics on the equation toolbar,
EViews will display the autocorrelation and partial autocorrelation functions of the residu-
als, together with the Ljung-Box (J-statistics for high-order serial correlation. If there is no
serial correlation in the residuals, the autocorrelations and partial autocorrelations at all lags
should be nearly zero, and all @-statistics should be insignificant with large p-values.

Note that the p-values of the )-statistics will be computed with the degrees of freedom
adjusted for the inclusion of ARMA terms in your regression. There is evidence that some
care should be taken in interpreting the results of a Ljung-Box test applied to the residuals
from an ARMAX specification (see Dezhbaksh, 1990, for simulation evidence on the finite
sample performance of the test in this setting).

Details on the computation of correlograms and ()-statistics are provided in greater detail in
Chapter 11. “Series,” on page 422 of User’s Guide I.

Serial Correlation LM Test

Selecting View/Residual Diagnostics/Serial Correlation LM Test... carries out the
Breusch-Godfrey Lagrange multiplier test for general, high-order, ARMA errors. In the Lag
Specification dialog box, you should enter the highest order of serial correlation to be
tested.
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The null hypothesis of the test is that there is no serial correlation in the residuals up to the
specified order. EViews reports a statistic labeled “F-statistic” and an “Obs*R-squared”

(N R? —the number of observations times the R-square) statistic. The N R statistic has an
asymptotic X2 distribution under the null hypothesis. The distribution of the F-statistic is
not known, but is often used to conduct an informal test of the null.

See “Serial Correlation LM Test” on page 195 for further discussion of the serial correlation
LM test.

Example

As an example of the application of serial correlation testing procedures, consider the fol-
lowing results from estimating a simple consumption function by ordinary least squares
using data in the workfile “Uroot. WF1”:

Dependent Variable: CS
Method: Least Squares
Date: 08/10/09 Time: 11:06
Sample: 1948Q3 1988Q4
Included observations: 162

Variable Coefficient Std. Error t-Statistic Prob.
Cc -9.227624 5.898177  -1.564487 0.1197
GDP 0.038732 0.017205 2251193 0.0257
CS(-1) 0.952049 0.024484 38.88516 0.0000
R-squared 0.999625 Mean dependent var 1781675
Adjusted R-squared 0.999621 S.D. dependent var 694.5419
S.E. of regression 13.53003 Akaike info criterion 8.066046
Sum squared resid 29106.82 Schwarz criterion 8.123223
Log likelihood -650.3497 Hannan-Quinn criter. 8.089261
F-statistic 2120471  Durbin-Watson stat 1.672255

Prob(F-statistic) 0.000000

A quick glance at the results reveals that the coefficients are statistically significant and the
fit is very tight. However, if the error term is serially correlated, the estimated OLS standard
errors are invalid and the estimated coefficients will be biased and inconsistent due to the
presence of a lagged dependent variable on the right-hand side. The Durbin-Watson statistic
is not appropriate as a test for serial correlation in this case, since there is a lagged depen-
dent variable on the right-hand side of the equation.

Selecting View/Residual Diagnostics/Correlogram-Q-statistics for the first 12 lags from
this equation produces the following view:
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Bl Equation: EQ €5 Workfile: UROOT::Urooth
[ [ | [ Est\mateForecast Stats | Resids

Correlogram of Residuals

Date: 08/0&/09 Time: 22:67
Sample: 194803 198804
Included observations: 162

Autocorrelation Partial Correlation A FAC  Q-Stat  Prob

= =

=
=

0163 01683 43653 0.037
0202 0180 11134 0.004
0212 01685 18.631 0.000
0.040 -0.044 18.904 0.001
-0.018 -0.082 18.956 0.002
-0.001 -0.027 184956 0.004
-0.040 -0.017 19226 0.008
-0.211 -00184 26873 0.0
9 -0.083 -0.005 27.563 0.001
10 -0.024 0072 27667 0.002
11 -0.080 0.039 28111 0.003
12 -0.077 -0.083 291581 0.004

=
L

o--=

1]

=

=
1
1
|
|
|
|
|
|
1

5-- -

The correlogram has spikes at lags up to three and at lag eight. The @)-statistics are signifi-
cant at all lags, indicating significant serial correlation in the residuals.

Selecting View/Residual Diagnostics/Serial Correlation LM Test... and entering a lag of 4
yields the following result (top portion only):

Breusch-Godfrey Serial Comelation LM Test:

F-statistic 3.654696 Prob. F(4,155) 0.0071
Obs*R-squared 13.96215 Prob. Chi-Square(4) 0.0074

The test rejects the hypothesis of no serial correlation up to order four. The (-statistic and
the LM test both indicate that the residuals are serially correlated and the equation should
be re-specified before using it for hypothesis tests and forecasting.

Estimating ARIMA and ARFIMA Models in EViews

EViews estimates ARIMA models for linear and nonlinear equations specifications defined
by list or expression, and ARFIMA models for linear specifications defined by list.

Before you use the tools described in this section, you may first wish to examine your model
for other signs of misspecification. Serial correlation in the errors may be evidence of serious
problems with your specification. In particular, you should be on guard for an excessively
restrictive specification that you arrived at by experimenting with ordinary least squares.
Sometimes, adding improperly excluded variables to your regression will eliminate the serial
correlation. For a discussion of the efficiency gains from the serial correlation correction and
some Monte-Carlo evidence, see Rao and Griliches (1969).
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To estimate an ARMA, ARIMA, or ARFIMA model in EViews, open an equation object by
clicking on Quick/Estimate Equation... or Object/New Object.../Equation in the main
EViews menu, or type equation in the command line:

Equation Estimation
Spedfication | Options
Equation spedification

Dependent variable followed by list of regressors induding ARMA
and POL terms, OR an explict equation like ¥ =c{1)+c(2)*.

dlog(gnp) cd

Estimation settings

Method: | |5 - Least Squares (NLS and ARMA) ]

Sample: 194741 198904

Putting aside the Equation specification for a moment, consider the Estimation settings
section at the bottom of the dialog

e When estimating ARMA models, you may choose LS - Least Squares (NLS and
ARMA), TSLS - Two-Stage Least Squares (TSNLS and ARMA), or GMM - General-
ized Method of Moments in the estimation Method dropdown menu.

Note that some estimation techniques and methods (notable maximum likelihood and
fractional integration) are only available under the least squares option.

e Enter the sample specification in the Sample edit dialog.

As the focus of our discussion will be on the equation specification for standard ARIMA and
ARFIMA models and on the corresponding settings on the Options tab, the remainder of our
discussion will assume you have selected the LS — Least Squares (NLS and ARMA) method
in the dropdown menu. We will make brief comments about other specifications when
appropriate.

Equation Specification

EViews estimates general ARIMA and ARFIMA specifications that allow for right-hand side
explanatory variables (ARIMAX and ARFIMAX).

You should enter your equation specification in the top edit field. As with other equation
specifications, you may enter your equation by listing the dependent variable followed by
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explanatory variables and special keywords, or you may provide an explicit expression for
the equation.

To specify your ARIMA model, you will:

¢ Difference your dependent variable, if necessary, to account for the integer order of
integration.

¢ Describe your structural regression model (dependent variables and mean regressors)
and add AR, SAR, MA, SMA terms, as necessary.

To specify your ARFIMA model you will:

e Difference your dependent variable, if necessary, to account for an integer order of
integration.

e Describe your structural regression model (dependent variables and regressors) and
add any ordinary and seasonal ARMA terms, if desired.

e Add the d keyword to the specification to indicate that you would like to estimate and
use a fractional difference parameter d.
Specifying AR Terms
To specify an AR term in EViews, you will use the keyword ar, followed by the desired lag
or lag range enclosed in parentheses. You must explicitly instruct EViews to use each AR lag
you wish to include.

First-Order AR

For specifications defined by list, simply add the ar keywords to the list. For example, to
estimate a simple consumption function with AR(1) errors, and enter your list of variables
as usual, adding the keyword expression AR (1) to the end of your list.

For the specification:
CS,

Uy = PU;_q + €

¢+ cgGDP,+ u,

(22.39)

with the series CS and GDP in the workfile, you may specify your equation as:
cs ¢ gdp ar(l)

For specifications defined by expression, specify your model using EViews expressions, fol-
lowed by an additive term describing the AR lag coefficient assignment enclosed in square
brackets. For the revised specification:

CS,

Uy = pU;_q + €

Cs
¢+ GDP,” + u,

(22.40)
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you would enter
cs = c(l) + gdp®c(2) + [ar(l)=c(3)]
Higher-Order AR

Estimating higher order AR models is only slightly more complicated. To estimate an AR(k),
you should enter your specification, followed by expressions for each AR lag you wish to
include. You may use the to keyword to define a lag range.

If you wish to estimate a model with autocorrelations from one to five:

CS, = ¢, +c,GDP,+ v,
(22.41)
Uy = PU;_1 T PoUs_ot oo T P5U; 5+ €

you may define your specification using:
cs ¢ gdp ar(l) ar(2) ar(3) ar(4) ar(5)
or more concisely
cs ¢ gdp ar(l to 5)
The latter form specifies a lag range from 1 to 5 using the to keyword.
We emphasize the fact that you must explicitly list AR lags that you wish to include. By
requiring that you enter all of the desired AR terms, EViews allows you the flexibility to

restrict lower order correlations to be zero. For example, if you have quarterly data and want
only to include a single term to account for seasonal autocorrelation, you could enter

cs ¢ gdp ar(4)

For specifications defined by expression, you must list the coefficient assignment for each of
the lags separately, separated by commas:

CS, = ¢, + GDPtC2 + u, (22.42)

Uy = PqU;_1 T PoUi_ot oo T P5U;_5 T €

you would enter

cs = c(1) + gdp*c(2) + [ar(l)=c(3), ar(2)=c(4), ar(3)=c(5),
ar(4)=c(6), ar(5)=c(7)]

Seasonal AR

Seasonal AR terms may be added using the sar keyword, followed by a lag or lag range
enclosed in parentheses. The specification

cs ¢ gdp ar(l) sar(4)

will define an AR(5) model with coefficient restrictions as described above (“Seasonal
ARMA Terms” on page 102).
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Note that in the absence ordinary AR terms, the sar is equivalent to an ar. Thus,
cs ¢ gdp ar(4)

cs ¢ gdp sar(4)

are equivalent specifications.

Specifying MA Terms

To specify an MA term in EViews, you will use the keyword ma, followed by the desired lag
or lag range enclosed in parentheses. You must explicitly instruct EViews to use each MA lag
you wish to include. You may use the to keyword to define a lag range.

For specifications defined by list,:

CS, = ¢, +c;GDP,+ u,
(22.43)
u, = €, +0i€e, | +05e

you would specify the equation as
cs ¢ gdp ma(l) ma(2)
or more concisely as
cs ¢ gdp ma(l to 2)

For specifications defined by expression, the MA keywords require coefficient assignments
for each lag so that they must be entered individually. Thus, for

s,

Uy

C.
¢+ GDP,” + u,

(22.44)

€, +0€, |+, ,

you would enter
cs = c(l) + gdp”c(2) + [ma(l)=c(3), ma(2)=c(4)]

Seasonal MA terms may be added using the sma keyword, followed by a lag enclosed in
parentheses. The specification

cs ¢ gdp ma(l) ma(4)

will define an MA(5) model with coefficient restrictions as described above (“Seasonal
ARMA Terms” on page 102). Note that in the absence of ordinary MA terms, the sma is
equivalent to an ma. Thus,

cs ¢ gdp ma (4)
cs ¢ gdp sma(4)

are equivalent specifications.
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Specifying Differencing
There are two distinct methods of specifying differencing in EViews:
¢ For integer differencing, you will apply the difference operator to the dependent and

explanatory variables either before estimation, or by using series expressions in the
equation specification.

¢ For fractional differencing, you will, include the d keyword in the by-list equation
specification to indicate that the dependent and explanatory variables should be frac-
tionally differenced.

Integer Differencing

The d operator may be used to specify integer differences of series. To specify first differenc-
ing, simply include the series name in parentheses after d. For example, d (gdp) specifies
the first difference of GDP, or GDP-GDP(-1).

Higher-order and seasonal differencing may be specified using the two optional parameters,
n and s. d(x,n) specifies the n-th order difference of the series X:

d(z,n) = (1-1L)"z, (22.45)

where L is the lag operator. For example, d (gdp, 2) specifies the second order difference of
GDP:

d(gdp,2) = gdp - 2*gdp(-1) + gdp(-2)
d(x,n,s) specifies n-th order ordinary differencing of X with a multiplicative seasonal dif-
ference at lag s:

d(z,n,s) = (1-L)"(1-L"x. (22.46)

For example, d (gdp, 0, 4) specifies zero ordinary differencing with a seasonal difference at
lag 4, or GDP-GDP(-4).

If you need to work in logs, you can also use the d1og operator, which returns differences in
the log values. For example, dlog (gdp) specifies the first difference of log(GDP) or
log(GDP)-log(GDP(-1)). You may also specify the n and s options as described for the sim-
ple d operator, dlog (x,n, s).

There are two ways to estimate ARIMA models in EViews. First, you may generate a new
series containing the differenced data, and then estimate an ARMA model using the new
data. For example, to estimate a Box-Jenkins ARIMA(1, 1, 1) model for M1 you can first cre-
ate the difference series by typing in the command line:

series dml = d(ml)

and then use this series when you enter your equation specification:

dml ¢ ar(l) ma(l)
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Alternatively, you may include the difference operator d directly in the estimation specifica-
tion. For example, the same ARIMA(1,1,1) model can be estimated using the command:

d(ml) c ar(l) ma(l)

The latter method should generally be employed for an important reason. If you define a
new variable, such as DM1 above, and use it in your estimation procedure, then when you
forecast from the estimated model, EViews will produce forecasts of the dependent variable
DM1. That is, you will get a forecast of the differenced series. If you are really interested in
forecasts of the level variable, in this case M1, you will have to manually transform the fore-
casted value and adjust the computed standard errors accordingly.

Furthermore, if any other transformation or lags of the original series M1 are included as
regressors, EViews will not know that they are related to DM1. If, however, you specify the
model using the difference operator expression for the dependent variable, d (m1), the fore-
casting procedure will provide you with the option of forecasting the level variable, in this
case M1.

The difference operator may also be used in specifying exogenous variables and can be used
in equations with or without ARMA terms. Simply include the series expression in the list of
regressors. For example:

d(cs, 2) c d(gdp,2) d(gdp(-1),2) d(gdp(-2),2) time
is a valid specification that employs the difference operator on both the left-hand and right-
hand sides of the equation.
Fractional Differencing

If you wish to perform fractional differencing as part of ARFIMA estimation, simply add the
d keyword to the existing specification.

Note that fractional integration models may only be estimated in equations specified by list.
You may not specify an ARFIMA model using expression.

Specification Examples

For example, to estimate a second-order autoregressive and first-order moving average error
process ARMA (2, 1), you would include expressions for the AR(1), AR(2), and MA(1) terms
along with the dependent variable (INC) and your other regressors (in this case C and GOV):

inc ¢ gov ar(l to 2) ma(l)

Once again, you need not use AR and MA terms consecutively. For example, if you want to
fit a fourth-order autoregressive model, you could use AR(4) by itself, resulting in a
restricted ARMA(4, 0):

inc ¢ gov ar (4)

You may also specify a pure moving average model by using only MA terms. Thus:
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inc ¢ gov ma(l) ma(2)
indicates an ARMA(0, 2) model for the errors of the INC equation.

The traditional Box-Jenkins or ARMA models do not have right-hand side variables except
for the constant. In this case, your list of regressors would just contain a C in addition to the
AR and MA terms. For example:

log(inc) c ar(l) ar(2) ma(l) ma(2)

is a standard Box-Jenkins ARIMA (2, 1, 2) model for log INC.

You may specify an range of MA terms to include using the to keyword. The following
ARFIMA(O, 1, 5) specification includes all of the MA terms from 1 to 5, along with the mean
regressor DLOG(GDP):

dlog(inc) dlog(cs) c dlog(gdp) ma(l to 5)

For equations specified by expression, simply enter the explicit equation involving the possi-
bly differenced dependent variable, and add any expressions for AR and MA terms in square
brackets:

dlog(cs) = c(l) + dlog(gdp)“c(2) + [ar(l)=c(3), ar(2)=c(4),
ma (1)=c(5), ma(2)=c(6)]

To estimate an ARFIMA(2, d, 1) (fractionally integrated second-order autoregressive, first-
order moving average error model), you would include expressions for the AR(1), AR(2),
and MA(1) terms and the d keyword along with the dependent variable (INC) and other
regressors (C and GOV):

log(inc) c log(gov) ar(l to 2) ma(l) d
Estimation Options

Clicking on the Options tab displays a variety of estimation options. The available options
will differ depending on whether your equation is specified by list or by expression and
whether there are ARMA and fractional differencing components. For the remainder of this
discussion, we will assume that you have included ARMA or fractional differencing in the
equation specification, and we discuss in turn the settings available for each specification
method.

Equations Specified By List

If your equation is specified by list, clicking on the Options tab displays a dialog page that
offers settings for controlling the ARMA estimation, for computing the coefficient covari-
ance, for optimization, and for setting the default coefficient name.
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Equation Estimation
Spedification | Options
Coeffident covariance ARMA
Ordinary Method: | ML W
Information | gpg v Starting ARMA coeffident values:
matrix:
Automatic W

[d.f. Adjustment
Estimation algorithm

Optimization

method: ERES hd

Step method: | Marguardt v

Maximum jterations: 500

Coeffident name

Conyergence tolerance: | 1e-7

|:| Display settings in output €

ARMA

The ARMA section of the page controls the method for estimating your ARMA components
and setting starting values.

ARMA Method
The Method dropdown specifies the objective function used in the estimation method:

¢ For models without fractional differencing, you may choose between the default ML
(maximum likelihood), GLS (generalized least squares), and CLS (conditional least
squares) estimation.

¢ For models with fractional differencing, you may choose between the default ML and
GLS estimation (CLS is not available for ARFIMA models).

See “Estimation Method Details” on page 140 for discussion of these objective functions.
Starting Values

The nonlinear estimation techniques used to estimate ARMA and ARFIMA models require
starting values for all coefficient estimates. Normally, EViews determines its own starting
values and for the most part this is an issue with which you need not be concerned. There
are, however, occasions where you may want to override the default starting values.

First, estimation will sometimes halt when the maximum number of iterations is reached,
despite the fact that convergence is not achieved. Resuming the estimation with starting val-
ues left over from previous estimation instructs EViews to continue from where it left off
instead of starting over. You may also want to try different starting values to ensure that the
estimates are a global rather than a local minimum. You might also want to supply starting
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values if you have a rough idea of what the answers should be, and want to speed up the
estimation process.

The Starting ARMA coefficient values dropdown will offer choices for overriding the
default EViews starting values. The available starting value options will differ depending on
the ARMA method selected above:

e If you select ML or GLS estimation as your method, you will be presented with the
choice of Automatic, EViews fixed, Random, and User-specified.

ARMA
Method: | ML W

Starting ARMA coeffident values:

Automatic W

For User-specified, all of the coefficients are taken from the values in the coefficient
vector in the workfile as described below.

For each of the remaining methods, the mean coefficients are obtained from simple
OLS regression.

The default EViews Automatic initializes the ARMA coefficients using least squares
regression of residuals against lagged residuals (for AR terms) and innovations (for
MA terms), where innovations are obtained by first regressing residuals against many
lags of residuals. EViews fixed sets the ARMA coefficients to arbitrary fixed values of
0.0025 for ordinary ARMA and 0.01 for seasonal ARMA terms. Random generates ran-
domized ARMA coefficients.

For ARFIMA estimation, the fractional difference parameter is initialized using the
Geweke and Porter-Hundlak (1983) log periodogram regression (Automatic), a fixed
value of 0.1 (EViews fixed), or a randomly generated uniform —[0.5, 0.5] (Ran-
dom).

¢ If you select the CLS estimation method, the starting values dropdown will let you
choose between OLS/TLS, .8 x OLS/TSLS, .5 x OLS/TSLS, .3 x OLS/TSLS, Zero, and
User-specified.

ARMA
Method: |CLS W

Starting ARMA coeffident values:
OLS/TS5LS v

For the User-specified selection, all of the coefficients are initialized from the values
in the coefficient vector in the workfile as described below.
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For the variants of OLS/TSLS, EViews will initialize the mean coefficients at the spec-
ified fraction of the simple OLS or TSLS estimates while Zero sets the mean coeffi-
cients to zero.

Coefficients for ARMA terms are always set to arbitrary fixed values of 0.0025 for ordi-

nary ARMA and 0.01 for seasonal ARMA terms.

For you to usefully set user-specified starting values, you will need a little more information
about how EViews assigns coefficients for the ARMA terms.
EViews assigns coefficient numbers to the variables in the following order:
e First are the coefficients of the variables, in order of entry.
e Next is the ARFIMA coefficient.
e Next come the AR terms in the order of entry.
e The SAR, MA, and SMA coefficients follow, in that order.
(Following estimation, you can always see the assignment of coefficients by looking at the
Representations view of your equation.)
Thus the following two specifications will have their coefficients in the same order:
y ¢ x ma(2) ma(l) sma(4) ar(l)
y sma(4) c ar(l) ma(2) x ma(l)

By default EViews uses the built-in C coefficient vector, but this may be overridden (see
“Coefficient Name” on page 122). To set initial values, you may edit the corresponding ele-
ments of the coefficient vector in the workfile, or you may also assign values in the vector
using the param command:

param c(l) 50 c(2) .8 c(3) .2 c(4) .6 c(5) .1 c(6) .5
The starting values will be 50 for the constant, 0.8 for X, 0.2 for AR(1), 0.6 for MA(2), 0.1
for MA(1) and 0.5 for SMA(4).
Backcasting

If your specification includes MA terms and the ARMA estimation method is CLS, EViews
will display a checkbox for whether or not to use backcasting to initialize the MA innova-
tions. By default, EViews performs backcasting as described in “Initializing MA Innova-
tions” on page 144, but you can unselect this option to set the presample innovations to
their unconditional expectation of zero.

Coefficient Covariance

The Coefficient covariance section of the page controls the computation of the estimates of
the precision of your coefficient estimates.
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The options that are available will depend on the ARMA estimation method.

e For ML or GLS estimation, covariances are always calculated by taking the inverse of
the an estimate of the information matrix.

Coeffident covariance
Ordinary

Information | ecgian - ghserved v
matrix:

d.f. Adjustment

The default setting for Information matrix estimation uses the outer product of the
gradients (OPG), but you may instead use the dropdown to use the observed Hessian
(Hessian - observed).

¢ For CLS estimation, you may choose a Covariance method using the dropdown
menu.

Coeffident covariance

Covariance
method:

Information | ecgian - ghserved v
matrix:

d.f. Adjustment | HAC options

HAC (Newey-West) w

The default Ordinary method takes the inverse of the estimate of the information
matrix. Alternately you may choose to compute Huber-White or HAC (Newey-West)
sandwich covariances.

In the latter case, EViews will display a HAC options button which you may use to
access various settings for controlling the long-run covariance estimation.

The Information matrix dropdown menu will offer you the choice between comput-
ing the information matrix estimate using the outer product of the gradients (OPG) or
the observed Hessian (Hessian - observed).

If you select GLS or CLS estimation, the covariance matrix will, by default, employ a degree-
of-freedom correction. If you select ML estimation the default computation will not employ

degree-of-freedom correction. In all three cases, the d.f. Adjustment checkbox may be used
to modify the computation.

Estimation Algorithm

EViews provides a number of options that allow you to control the iterative procedure of the
estimation algorithm. In general, you can rely on the EViews choices, but on occasion you
may wish to override the default settings.

The Estimation algorithm section of the dialog contains settings for the numeric optimiza-
tion of your likelihood or least squares objective function.
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Estimation algorithm

Optimzation | opG - gHHH v
Step method: | Marguardt v
Maximum jterations: 500
Conyergence tolerance: | 1e-10

Display settings in output

By default, EViews estimates ARMA and ARFIMA models using the Broyden, Fletcher, Gold-
farb and Shanno (BFGS) algorithm. You may use the Optimization method dropdown to
select a different method:

e For models estimated using ML and GLS, you may choose to estimate your model
using BFGS, OPG-BHHH (Gauss-Newton using the outer-product of the gradient),
Kohn-Ansley (transformation to pseudo-GLS regression model), and Newton-Raph-
son.

e For models estimated using CLS, you may choose between BFGS, Gauss-Newton,
Newton-Raphson, and EViews. The latter employs OPG/BHHH with a Marquardt
diagonal adjustment.

e For all but EViews, the Step method combo lets you choose between the default Mar-
quardt, Dogleg, and Line Search determined steps. The default method is Mar-
quardt.

In addition, you can use the Maximum iterations and Convergence tolerance edit fields to
change the stopping rules from their global default settings. Checking the Display settings
in output box instructs EViews to put information about starting values and other optimiza-
tion settings at the top of your equation output.

Coefficient Name

For equations specified by list EViews will, by default, use the built-in C vector to hold coef-
ficient estimates. You may change this assignment by entering the name of a coefficient
object in the Coefficient name edit field.

If the coefficient does not exist, EViews will create it and size it appropriately. If the coeffi-
cient already exists, it will be resized if necessary so that it is large enough to hold the
results. If an object of a different type with that name is present in the workfile, EViews will
issue an error message.

Equation Specified By Expression

If your equation is specified by expression, clicking on the Options tab displays a dialog
page that offers a subset of the settings that are available for equations specified by list.
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Equation Estimation
Spedification | Options
Coeffident covariance ARMA
Covariance |y per yyhite v as
method:
Information | gpg v Starting ARMA coeffident values:
matrix:
OLS/TS5LS v

d.f. Adjustment

Estimation algorithm

Optimization

method: Mewton-Raphson

Step method: | Marguardt v
Maximum jterations: 500

Conyergence tolerance: | 1e-10 Coeffident name

Display settings in output c

You may use the page to control the computation of the coefficient covariance, the optimiza-
tion method, the ARMA starting coefficient values, and the default coefficient name.

Coefficient Covariance

The Coefficient covariance section of the page allows you to specify a Covariance method
using the dropdown menu. You may choose to compute the default Ordinary, or the Huber-
White, or HAC (Newey-West) sandwich covariances. If you select HAC (Newey-West),
EViews will display a HAC options button which you may use to access various settings for
controlling the long-run covariance estimation.

As before, the Information matrix dropdown menu will offer you the choice between com-
puting the information matrix estimate using the outer product of the gradients (OPG) or the
observed Hessian (Hessian - observed).

By default, EViews will apply a degree-of-freedom correction to the estimated covariance
matrix. You may uncheck the d.f. Adjustment checkbox to remove this correction.

Estimation Algorithm

By default, EViews estimates by-expression ARMA and ARFIMA models using BFGS. You
may use the Optimization method dropdown to choose between BFGS, Gauss-Newton,
Newton-Raphson, and EViews, the latter of which employs Gauss-Newton with a Mar-
quardt diagonal adjustment.

Where appropriate, the Step method combo lets you choose between the default Mar-
quardt, Dogleg, and Line Search determined steps.
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The Maximum iterations and Convergence tolerance edit fields may be used to limit the
number of iterations and to set the algorithm stopping rule. Checking the Display settings
in output box instructs EViews to put information about starting values and other optimiza-
tion settings at the top of your equation output.

ARMA Method

You will not be able to specify an ARMA method as ARMA equations specified by expression
may only use the CLS objective.

Starting Values

The starting value dropdown menu lets you choose between the default OLS/TLS, and .8 x
OLS/TSLS, .5 x OLS/TSLS, .3 x OLS/TSLS, Zero, and User-specified.

For the variants of OLS/TSLS, EViews will initialize the mean coefficients at the specified
fraction of the simple OLS or TSLS estimates (ignoring ARMA terms), while Zero sets the
mean coefficients to zero. Coefficients for ARMA terms are always set to arbitrary fixed val-
ues of 0.0025 for ordinary ARMA and 0.01 for seasonal ARMA terms.

For the User-specified selection, the coefficients are initialized from the values in the coeffi-
cient vector in the workfile.

Estimation Output
EViews displays a variety of results in the output view following estimation.

The top portion of the output displays information about the optimization technique, ARMA
estimation method, the coefficient covariance calculation, and if requested, the starting val-
ues used to initialize the optimization procedure.

Dependent Variable: DLOG(GNP)

Method: ARMA Maximum Likelihood (BFGS)

Date: 02/06/15 Time: 10:20

Sample: 1947Q2 1989Q4

Included observations: 171

Convergence achieved after 8 iterations

Coefficient covariance computed using outer product of gradients

The next section shows the estimated coefficients, coefficient standard errors, and t-statis-
tics. In addition to the estimates of the ARMA coefficients, EViews will display estimates of

the fractional integration parameter for ARFIMA models, and the estimate of the error vari-
ance if the ARMA estimation method is maximum likelihood, labeled SIGMASQ.
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Variable Coefficient Std. Error t-Statistic Prob.
C 0.008051 0.003814 2.111053 0.0362
D 0.288756 0.057164 5.051407 0.0000

All of these results may be interpreted in the usual manner.

In the section directly below the coefficient estimates are the usual descriptive statistics for
the dependent variable, along with a variety of summary and descriptive statistics for the

estimated equation.

R-squared 0.099981
Adjusted R-squared 0.094656
S.E. of regression 0.010238
Sum squared resid 0.017713
Log likelihood 541.7179
F-statistic 18.77385
Prob(F-statistic) 0.000025

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.
Durbin-Watson stat

0.008032
0.010760
-6.312490
-6.275746
-6.297581
1.824729

Note that all of the equation summary results involving residuals differ from those com-
puted in standard OLS settings so that some care should be taken in interpreting results. To
understand the issues, keep in mind that there are two different residuals associated with an
ARMA model. The first are the estimated unconditional residuals:

L Xt’B’

(22.47)

which are computed using the original explanatory variables and the estimated coefficients,
3. These residuals are the errors that you would obtain if you made a prediction of the
value of Y, using contemporaneous information while ignoring the information contained

in the lagged residuals.

Generally, there is little reason to examine the unconditional residuals, and EViews does not
automatically compute them following estimation.

The second set of residuals are the estimated one-period ahead forecast errors, € . As the
name suggests, these residuals represent the forecast errors you would make if you com-
puted forecasts using a prediction of the residuals based upon past values of your data, in
addition to the contemporaneous information. In essence, you improve upon the uncondi-
tional forecasts and residuals by taking advantage of the predictive power of the lagged

residuals.

For ARMA models, the computed residuals, and all of the residual-based regression statis-
tics—such as the R’ , the standard error of regression, and the Durbin-Watson statistic—
reported by EViews are based on the estimated one-period ahead forecast errors, €.
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Lastly, to aid in the interpretation of the results for ARMA and ARFIMA models, EViews dis-
plays a the reciprocal roots of the AR and MA polynomials in the lower block of the results.
EViews reports these roots as Inverted AR Roots and Inverted MA Roots at the bottom of
the regression output. For our general ARMA model with the lag polynomials p(L) and
0(L), the reported roots are the roots of the polynomials:

p(z) =0 and 0(z") = 0. (22.48)

The roots, which may be imaginary, should have modulus no greater than one. The output
will display a warning message if any of the roots violate this condition.

If p has a real root whose absolute value exceeds one or a pair of complex reciprocal roots
outside the unit circle (that is, with modulus greater than one), it means that the autoregres-
sive process is explosive.

For example, in the simple AR(1) model, the estimated parameter p is the serial correlation
coefficient of the unconditional residuals. For a stationary AR(1) model, the true p lies
between -1 (extreme negative serial correlation) and + 1 (extreme positive serial correla-
tion).

If 6 has reciprocal roots outside the unit circle, we say that the MA process is noninvertible,
which makes interpreting and using the MA results difficult. However, noninvertibility poses
no substantive problem, since as Hamilton (1994a, p. 65) notes, there is always an equiva-
lent representation for the MA model where the reciprocal roots lie inside the unit circle.
Accordingly, you should try to re-estimate your model with different starting values until
you get a moving average process that satisfies invertibility. Alternatively, you may wish to
turn off MA backcasting (see “Initializing MA Innovations” on page 144).

If the estimated MA process has roots with modulus close to one, it is a sign that you may

have over-differenced the data, which introduced an MA unit root. The process will be diffi-
cult to estimate and even more difficult to forecast. If possible, you should re-estimate with
one less round of differencing, perhaps using ARFIMA to account for long-run dependence.

Consider the following example output from ARMA estimation:
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Dependent Variable: CP

Method: ARMA Maximum Likelihood (BFGS)

Date: 03/01/15 Time: 15:25

Sample: 1954M01 1993M07

Included observations: 475

Convergence achieved after 117 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.
C 5.836704 1.750241 3.334801 0.0009
AR(1) 0.973815 0.007755 125.5649 0.0000
SAR(4) 0.225555 0.049713 4.537146 0.0000
MA(1) 0.466481 0.016635 28.04168 0.0000
MA(4) -0.344940 0.043602  -7.911135 0.0000
SIGMASQ 0.249337 0.007393 33.72769 0.0000
R-squared 0.974433 Mean dependent var 6.331116
Adjusted R-squared 0.974161 S.D. dependent var 3.126173
S.E. of regression 0.502520 Akaike info criterion 1.483257
Sum squared resid 118.4349  Schwarz criterion 1.535846
Log likelihood -346.2736  Hannan-Quinn criter. 1.503938
F-statistic 3575.030 Durbin-Watson stat 1.986429
Prob(F-statistic) 0.000000
Inverted AR Roots .97 .69 .00-.69i -.00+.69i
-.69
Inverted MA Roots .67 11+ 748 - 11-74i -.92

This estimation result corresponds to the following specification,

Yy, = 5.84 + u,
(22.49)
(1-0.97L)(1 - 0.23L" Y u, = (1+0.47L)(1-0.34L")e,

or equivalently, to:

y, = 0118 +0.97y,_, +0.23y,_, - 0.22y, . +¢, (22.50)
+047e,_,-0.34e,_,—0.17¢,_5

Note the signs of the MA terms, which may be reversed from those in some textbooks. Note
also that the inverted AR roots have moduli very close to one, which is typical for many
macro time series models.

Equation Diagnostics

In addition to the usual views and procs for an equation such as coefficient confidence
ellipses, Wald tests, omitted and redundant variables tests, EViews offers diagnostics for
examining the properties of your ARMA model and the properties of the estimated innova-
tions.
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ARMA Structure

This set of views provides access to several diagnostic views that help you assess the struc-
ture of the ARMA portion of the estimated equation. The view is currently available only for
models specified by list that includes at least one AR or MA term and estimated by least
squares. There are three views available: roots, correlogram, and impulse response.

To display the ARMA structure, select View/ ARMA Diagnostic Views
ARMA Structure... from the menu of an

Select a diagnostic:

estimated equation. If the equation type Inverse roots of  Display
supports this view and there are no ARMA fﬁ;ﬁfﬂiﬁmnse ARIMA pelynomis . f;:f:
components in the specification, EViews Frequency Spectrum
will open the ARMA Diagnostic Views dia-
log:

oK Cancel

On the left-hand side of the dialog, you will
select one of the three types of diagnostics.
When you click on one of the types, the

right-hand side of the dialog will change to show you the options for each type.

Roots

The roots view displays the inverse roots of the AR and/or MA characteristic polynomial.
The roots may be displayed as a graph or as a table by selecting the appropriate radio but-
ton.

The graph view plots the roots in the complex plane where the horizontal axis is the real
part and the vertical axis is the imaginary part of each root.

If the estimated ARMA process is = Equation: SARMA Workfile: ARMAT:Ar.. [ = |[ & | % |
(Covarlance) Statlonary’ then all AR [ViewlProclObject] [PrintINameIFreeze] [EstimateIForecastIStatisesids]
roots should lie inside the unit circle.

If the estimated ARMA process is
invertible, then all MA roots should lie

Inverse Roots of AR/MA Polynomial(s)

inside the unit circle. The table view 1.0

displays all roots in order of decreas- a ¢

ing modulus (square root of the sum 7

of squares of the real and imaginary a5d . d
*  MA roots

parts).

-0.5
For imaginary roots (which come in

conjugate pairs), we also display the =S
cycle corresponding to that root. The
cycle is computed as 27/ a, where 15 10 05 00 05 10 15
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a = atan(i/1),and ¢ and r are the imaginary and real parts of the root, respectively.
The cycle for a real root is infinite and is not reported.

Inverse Roots of AR/MA Polynomial(s)
Specification: R C AR(1) SAR(4) MA(1) MA(4)
Date: 03/01/15 Time: 16:19

Sample: 1954M01 1994M12

Included observations: 470

AR Root(s) Modulus Cycle
0.987785 0.987785
0.617381 0.617381
-0.617381 0.617381
2.60e-17 + 0.617381i 0.617381 4.000000

No root lies outside the unit circle.
ARMA model is stationary.

MA Root(s) Modulus Cycle
-0.815844 0.815844
-0.112642 + 0.619634i 0.629790 3.589119
0.557503 0.557503

No root lies outside the unit circle.
ARMA model is invertible.

Correlogram

The correlogram view compares the autocor-

ARMA Diagnostic Views
relation pattern of the structural residuals

Select a diagnostic:

and that of the estimated model for a speci- Roots Carrelogram F?Jjﬂf:ph
fied number of periods (recall that the struc- mlmpufs;'Rz_;sponse Lags: |24

tural residuals are the residuals after Frequency Spectrum

removing the effect of the fitted exogenous

regressors but not the ARMA terms). For a

properly specified model, the residual and Tz e

theoretical (estimated) autocorrelations and
partial autocorrelations should be “close™.

To perform the comparison, simply select the Correlogram diagnostic, specify a number of
lags to be evaluated, and a display format (Graph or Table).
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Here, we have specified a graphical & Equation: SARMA Workfile: ARMAT:Ar... [ = || & | 5 |
Comparlson over 2‘4 peHOdS/lagS‘ The [VlewlProclObJect] [Prlnt NameIFreeze] [EstlmateIForecastIStatisemds]
graph view plots the autocorrelations "

and partial autocorrelations of the
sample structural residuals and those
that are implied from the estimated
ARMA parameters. If the estimated B e == 'g
ARMA model is not stationary, only [ Aol — Tresrena]

the sample second moments from the
structural residuals are plotted.

Autocormelation

The table view displays the numerical
values for each of the second
moments and the difference between

Partial autocomelation

LIS B B S S B
2 4 B & W 12 W ® 18 W 1 M

from the estimated theoretical. If the
estimated ARMA model is not station-

ary, the theoretical second moments
implied from the estimated ARMA parameters will be filled with NAs.

Note that the table view starts from lag zero, while the graph view starts from lag one.

Impulse Response

The ARMA impulse response view traces the response of the ARMA part of the estimated
equation to shocks in the innovation.

An impulse response function traces the response to a one-time shock in the innovation.
The accumulated response is the accumulated sum of the impulse responses. It can be inter-
preted as the response to step impulse where the same shock occurs in every period from
the first.

To compute the impulse response (and accu- ARMA Diagnostic Views
mulated responses), select the Impulse

Select a diagnostic:

Response diagnostic, enter the number of Roots W= ﬂ?ﬂf:ph
K . . Correlogram odse &
periods, and display type, and define the limpuise Response | RAREER () Table

. Frequency Spectrum
shock. For the latter, you have the choice of Impulse

using a one standard deviation shock (using (&) One standard deviation

the standard error of the regression for the
estimated equation), or providing a user speci-
fied value. Note that if you select a one stan-
dard deviation shock, EViews will take
account of innovation uncertainty when estimating the standard errors of the responses.

() User spedfied: | 1.0

oK Cancel
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If the estimated ARMA model is sta- | @ Equation: SARMA Workfile: ARMAT:A. | & || & || 52 |
tionary, the irnpulse responses will [ViewIProcIObject] [PrintINameIFreeze] [EstimateIForecastIStatisesids]
asymptote to zero, while the accu- Response to One 5.D. Innovation

mulated responses will asymptote to [ R e a S

its long-run value. These asymptotic
values will be shown as dotted hori-
zontal lines in the graph view.

For a highly persistent near unit root 26 s 0 e W e e W 2
but stationary process, the asymp-

totes may not be drawn in the graph
for a short horizon. For a table view, “

the asymptotic values (together with 20 i

its standard errors) will be shown at
the bottom of the table. If the esti-
mated ARMA process is not station-
ary, the asymptotic values will not be
displayed since they do not exist.

ARMA Frequency Spectrum

The ARMA frequency spectrum view of an ARMA equation shows the spectrum of the esti-
mated ARMA terms in the frequency domain, rather than the typical time domain. Whereas
viewing the ARMA terms in the time domain lets you view the autocorrelation functions of
the data, viewing them in the frequency domain lets you observe more complicated cyclical
characteristics.

The spectrum of an ARMA process can be written as a function of its frequency, A, where
A\ is measured in radians, and thus takes values from —7 to w. However since the spec-
trum is symmetric around 0, it is EViews displays it in the range [0, 7] .

To show the frequency spectrum, select View/ARMA Structure... from the equation toolbar,
choose Frequency spectrum from the Select a diagnostic list box, and then select a display
format (Graph or Table).

If a series is white noise, the frequency spectrum should be flat, that is a horizontal line.
Here we display the graph of a series generated as random normals, and indeed, the graph is
approximately a flat line.
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EH Equation: WHITE Workfile: UNTITLED::Untitledy

Bl

View | Proc| Object | | Print | Mame | Freeze | | Estimate Forecaststats Residg

ARMA Freguency Spectrum

20

.02 A

.04+

0o

o] 12 Pi Fi

If a series has strong AR components, the shape of the frequency spectrum will contain
peaks at points of high cyclical frequencies. Here we show a typical AR(2) model, where the
data were generated such that p; = 0.7 and p, = -0.5.

Bl Equation: AR2 Workfile: UNTITLED::Untitled\ EEX
ViewProcObject PrintNameFreeze EstimateForecastStatsResid

ARMA Freguency Spectrum

.09

.02 A

.07 A

L

.05+

.04+

.03+

.0z A

014

0o

o] 12 Pi Fi

Q-statistics

If your ARMA model is correctly specified, the residuals from the model should be nearly
white noise. This means that there should be no serial correlation left in the residuals. The
Durbin-Watson statistic reported in the regression output is a test for AR(1) in the absence of
lagged dependent variables on the right-hand side. As discussed in “Correlograms and Q-sta-
tistics” on page 108, more general tests for serial correlation in the residuals may be carried
out with View/Residual Diagnostics/Correlogram-Q-statistic and View/Residual Diag-
nostics/Serial Correlation LM Test....
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For the example seasonal ARMA model, the 12-period residual correlogram looks as follows:

.

= Equation: SARMA Workfile: ARMAT:ArmaT\,

|= || = || =

[Viewl Proc]Ohject] [PrinthameIFreeze] [EstimatelFore(astlStatsIResids]

Correlogram of Residuals

Date: 03/0115 Time: 16:24

Sample: 1954101 1994M12

Included observations: 475

Q-statistic probabilities adjusted for 4 ARMA terms

Autocorrelation Partial Correlation AC PAC

Q-Stat

Prob

-0.010 -0.010
-0.032 -0.033
-0.060 -0.060
0.022 0.020
0.158 0155
-0.178 -0.182
-0.126 -0.123
-0.030 -0.021
01671 0141
-0.022 -0.058
0.052 0118
-0.022 -0.001
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0.0506
05566
2 2667
24994
14528
20.840
37 BB0
37.986
50.643
50875
52185
52426

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

The correlogram has a significant spike at lag 5, and all subsequent ()-statistics are highly
significant. This result clearly indicates the need for respecification of the model.

Examples

To illustrate the estimation of ARIMA and ARFIMA specifications in EViews we consider
examples from Sowell (1992a) which model the natural logarithm of postwar quarterly U.S.
real GDP from 194791 to 1989g4. Sowell estimates a number of models which are compared
using AIC and SIC. We will focus on the ARMA(3, 2) and ARFIMA(3, d, 2) specifications

(Table 2, p. 288 and Table 3, p. 289).

To estimate the ARMA(3, 2) we open an equation dialog by selecting Object/New Object/
Equation, by selecting Quick/Estimate Equation..., or by typing the command keyword

equation in the command line. EViews will display the least squares dialog:
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Equation Estimation
Spedfication | Options
Equation spedification

Dependent variable followed by list of regressors induding ARMA
and POL terms, OR an explict equation like ¥ =c({1)+c(2)*x.

dlog(gnp) ar{1to 3)ma(lto 2) ¢

Estimation settings

Method: | |5 - Least Squares (MLS and ARMA) Y]

Sample: 194741 198904

oK Cancel

We enter the expression for the dependent variable, followed by the AR and MA terms using
ranges that include all of the desired terms, and C to indicate that we wish to include an
intercept. Next, we click on the Options tab to display the estimation settings.

Equation Estimation

Spedification | Options

Coeffident covariance ARMA
Ordinary Method: | ML W
Information |Hessian - observed v Starting ARMA coeffident values:
matrix:
Automatic W

[d.f. Adjustment

Estimation algorithm
Optimization

method: BFGS e
Step method: | Marguardt v
Maximum iterations: 500
Convergence tolerance: | 1e-§ EoeflideuCune
|:| Display settings in output €
oK Cancel

First, we instruct EViews to compute coefficient standard errors using the observed Hessian
by setting the Information matrix dropdown to Hessian - observed. In addition, we set the
Optimization method to BFGS, the Convergence tolerance to “le-8”, and the ARMA
Method to ML. Click on OK to estimate the model.
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EViews will perform the iterative maximum likelihood estimation using BFGS and will dis-
play the estimation results:

Dependent Variable: DLOG(GNP)

Method: ARMA Maximum Likelihood (BFGS)

Date: 03/01/15 Time: 20:18

Sample: 1947Q2 1989Q4

Included observations: 171

Convergence achieved after 18 iterations

Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error t-Statistic Prob.
C 0.008008 0.001189 6.732176 0.0000
AR(1) 0.599278 0.148087 4.046797 0.0001
AR(2) -0.671335 0.178976  -3.750983 0.0002
AR(3) 0.137677 0.104632 1.315814 0.1901
MA(1) -0.277643 0.121744  -2.280545 0.0239
MA(2) 0.793977 0.118172 6.718800 0.0000
SIGMASQ 9.24E-05 9.99E-06 9.245754 0.0000
R-squared 0.197098 Mean dependent var 0.008032
Adjusted R-squared 0.167724 S.D. dependent var 0.010760
S.E. of regression 0.009816  Akaike info criterion -6.366372
Sum squared resid 0.015801 Schwarz criterion -6.237766
Log likelihood 551.3248 Hannan-Quinn criter. -6.314189
F-statistic 6.709856  Durbin-Watson stat 1.998281
Prob(F-statistic) 0.000002
Inverted AR Roots .24 18+.74i .18-.74i
Inverted MA Roots .14+.88i .14-.88i

The top portion of the output displays information about the estimation method, optimiza-
tion, and covariance calculation.

The next section contains the coefficient estimates, standard errors, ¢-statistics and corre-
sponding p-value. (It is worth pointing out that the reported ARMA coefficients use a differ-
ent sign convention than those in Sowell so that the ARMA coefficients all have the opposite
sign).

Notice that since we estimated the model using ML, EViews displays the estimate of the
error variance as one of the estimated coefficients. You should be aware that the EViews
reported p-value for SIGMASQ is for the two-sided test, despite the fact that SIGMASQ must
be non-negative. (If desired, you may use the reported coefficient, standard error, and the
@CTDIST function to compute the appropriate one-sided p-value.)

The final section shows the inverted AR and MA roots.

It may be instructive to compare these results to those obtained from an alternative condi-
tional least squares approach to estimating the specification. To reestimate your equation
using CLS, click on the Estimate button to bring up the dialog, then on the Options tab to
show the estimation options. In the ARMA section of the page, we have:
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Select CLS in the Method dropdown, and click on OK to estimate the new specification.

ARMA

Method: |CLS

v

Starting ARMA coeffident values:

OLS/TSLS

v

Backcast MA terms

Click on OK to accept the changes and re-estimate the model.

Dependent Variable: DLOG(GNP)
Method: ARMA Conditional Least Squares (BFGS / Marquardt steps)
Date: 03/01/15 Time: 21:00
Sample (adjusted): 1948Q1 1989Q4
Included observations: 168 after adjustments
Convergence achieved after 38 iterations

Coefficient covariance computed using observed Hessian
MA Backcast: 1947Q3 1947Q4

Variable Coefficient Std. Error t-Statistic Prob.
C 0.007994 0.001254 6.373517 0.0000
AR(1) 0.563811 0.176602 3.192556 0.0017
AR(2) -0.673101 0.161797  -4.160159 0.0001
AR(3) 0.158506 0.108283 1.463812 0.1452
MA(1) -0.242197 0.153644  -1.576346 0.1169
MA(2) 0.814550 0.098533 8.266750 0.0000
R-squared 0.200837 Mean dependent var 0.008045
Adjusted R-squared 0.176172  S.D. dependent var 0.010845
S.E. of regression 0.009844  Akaike info criterion -6.368908
Sum squared resid 0.015698 Schwarz criterion -6.257337
Log likelihood 540.9882 Hannan-Quinn criter. -6.323627
F-statistic 8.142440 Durbin-Watson stat 1.994105
Prob(F-statistic) 0.000001
Inverted AR Roots .27 .15-76i .15+.76i
Inverted MA Roots .12-.89i .12+.89i

The top of the new equation output now reports that estimation was performed using CLS
and that the MA errors were initialized using backcasting. Despite the different objectives,
we see that the CLS ARMA coefficient estimates are generally quite similar to those obtained
from exact ML estimation. Lastly, we note that the estimate of the variance is not reported as

part of the coefficient output for CLS estimation.

Next, following Sowell, we estimate an ARFIMA(3, d, 2). Once again, click on the Estimate

button to bring up the dialog:
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Equation Estimation
Spedfication | Options

Equation spedification

Dependent variable followed by list of regressors induding ARMA
and POL terms, OR an explict equation like ¥ =c({1)+c(2)*x.

dlog(gnp) ar{1to 3) ma(lto 2) cd

Estimation settings

Method: | |5 - Least Squares (MLS and ARMA) Y]

Sample: 194741 198904

oK Cancel

and add the special d keyword to the list of regressors to tell EViews that you wish to esti-
mate the fractional integration parameter. Click on OK to estimate the updated equation.

Dependent Variable: DLOG(GNP)

Method: ARMA Maximum Likelihood (BFGS)

Date: 03/01/15 Time: 21:18

Sample: 1947Q2 1989Q4

Included observations: 171

Convergence achieved after 29 iterations

Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error t-Statistic Prob.

C 0.007886 0.000373 21.15945 0.0000

D -0.606793 0.306851 -1.977481 0.0497

AR(1) 1.195165 0.351233 3.402768 0.0008

AR(2) -0.939049 0.295641 -3.176311 0.0018

AR(3) 0.516754 0.178254 2.898971 0.0043

MA(1) -0.291411 0.125001 -2.331272 0.0210

MA(2) 0.811038 0.114772 7.066532 0.0000

SIGMASQ 9.02E-05 9.76E-06 9.239475 0.0000

R-squared 0.216684 Mean dependent var 0.008032

Adjusted R-squared 0.183044 S.D. dependent var 0.010760

S.E. of regression 0.009725 Akaike info criterion -6.373358

Sum squared resid 0.015416  Schwarz criterion -6.226380

Log likelihood 552.9221 Hannan-Quinn criter. -6.313720

F-statistic 6.441378  Durbin-Watson stat 1.995509

Prob(F-statistic) 0.000001

Inverted AR Roots .82 A9+.770 19-77i

Inverted MA Roots .15-.89i .15+.89i
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Notice first that EViews has switched from CLS estimation to ML since ARFIMA models may
only be estimated using ML or GLS.

Turning to the estimate of the fractional differencing parameter, we see that it is negative
and statistically significantly different from zero at the 5% level. Thus, we can reject the unit
root hypothesis under this specification. Alternately, we cannot reject the time trend null
hypothesis that d = -1.0.

(Note: the results reported in Sowell differ slightly, presumably due to differences in the
nonlinear optimization procedure in general, and the estimate of the observed Hessian in
particular—for what it is worth, the EViews likelihood is slightly higher than the likelihood
reported by Sowell. Notably, Sowell’s conclusions differ slightly from than those outlined
here, as he finds that the unit root and trend hypotheses are both consistent with the
ARFIMA estimates. Sowell does not reject the zero null at the 5% level, but does reject at the
10% level. See Sowell for detailed interpretation of results.)

Additional Topics

Dealing with Estimation Problems

Since EViews uses nonlinear estimation algorithms to estimate ARMA models, all of the dis-
cussion in Chapter 20, “Solving Estimation Problems” on page 59, is applicable, especially
the advice to try alternative starting values.

There are a few other issues to consider that are specific to estimation of ARMA and
ARFIMA models.

First, MA models are notoriously difficult to estimate. In particular, you should avoid high
order MA terms unless absolutely required for your model as they are likely to cause estima-
tion difficulties. For example, a single large autocorrelation spike at lag 57 in the correlogram
does not necessarily require you to include an MA(57) term in your model unless you know
there is something special happening every 57 periods. It is more likely that the spike in the
correlogram is simply the product of one or more outliers in the series. By including many
MA terms in your model, you lose degrees of freedom, and may sacrifice stability and reli-
ability of your estimates.

If the underlying roots of the MA process have modulus close to one, you may encounter
estimation difficulties, with EViews reporting that it cannot improve the sum-of-squares or
that it failed to converge in the maximum number of iterations. This behavior may be a sign
that you have over-differenced the data. You should check the correlogram of the series to
determine whether you can re-estimate with one less round of differencing.

Lastly, if you continue to have problems, you may wish to turn off MA backcasting.



Additional Topics—139

For a discussion of how to estimate TSLS specifications with ARMA errors, see “Nonlinear
Two-stage Least Squares” on page 76.

Nonlinear Models with ARMA errors

EViews will estimate nonlinear ordinary and two-stage least squares models with autore-
gressive error terms. For details, see the discussion in “Nonlinear Least Squares,” beginning
on page 51.

Weighted Models with ARMA errors

EViews does not offer built-in procedures to automatically estimate weighted models with
ARMA error terms. You can, of course, always construct weighted series and then perform
estimation using the weighted data and ARMA terms. Note that this procedure implies a
very specific assumption about the properties of your data.

Two-Stage Regression Models with Serial Correlation

By combining two-stage least squares or two-stage nonlinear least squares with AR terms,
you can estimate models where there is correlation between regressors and the innovations
as well as serial correlation in the residuals.

If the original regression model is linear, EViews uses the Marquardt algorithm to estimate
the parameters of the transformed specification. If the original model is nonlinear, EViews
uses Gauss-Newton to estimate the AR corrected specification.

For further details on the algorithms and related issues associated with the choice of instru-
ments, see the discussion in “TSLS with AR errors,” beginning on page 73.

Nonlinear Models with ARMA Errors

EViews can estimate nonlinear regression models with ARMA errors. For example, suppose
you wish to estimate the following nonlinear specification with an AR(2) error:

CS, = ¢, + GDP,* + u,

Uy = C3’U/t71+ C4Ut72+6t

(22.51)

Simply specify your model using EViews expressions, followed by an additive term describ-
ing the AR correction enclosed in square brackets. The AR term should contain a coefficient
assignment for each AR lag, separated by commas:

cs = c(l) + gdp®c(2) + [ar(l)=c(3), ar(2)=c(4)]
EViews transforms this nonlinear model by differencing, and estimates the transformed non-

linear specification using a Gauss-Newton iterative procedure (see “Initializing the AR
Errors” on page 142).
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Estimation Method Details

In “ARMA Method” on page 118 we described how EViews lets you choose between maxi-
mum likelihood (ML), generalized least squares (GLS), and conditional least squares (CLS)
estimation for ARIMA and ARFIMA estimation.

Recall that for the general ARIMA(p, d, ¢) model we have
d
p(L)(1- L)' (Y, - ) = 0(L)e,

(22.52)
p(L)u, = 6(L)e,
for the unconditional residuals
d
Uy = (1-10) (Yt_#t)
p g (22.53)
=VY-VX/B
and innovations

€ = Uy—PyUp_1— ... —p Uy, +01€, 1 +0€ (22.54)

We will use the expressions for the unconditional residuals and innovations to describe
three objective functions that may be used to estimate the ARIMA model.

(For simplicity of notation our discussion abstracts from SAR and SMA terms and coeffi-
cients. It is straightforward to allow for the inclusion of these seasonal terms).

Maximum Likelihood (ML)

Estimation of ARIMA and ARFIMA models is often performed by exact maximize likelihood
assuming Gaussian innovations.

The exact Gaussian likelihood function for an ARIMA or ARFIMA model is given by

log (B, p, 0, 0°, d) = — glog(27r) - %loglﬂl - %u'Q_lu

(22.55)

~ Slog(2) - Slog|8l - S8, », 0, d)

where YV = (Y}, Y,, ..., Y;) and v = (uy, Uy, ..., up)', where @ is the symmetric
Toeplitz covariance matrix for the 7T draws from the ARMA/ARFIMA process for the uncon-
ditional residuals (Doornik and Ooms 2003). Note that direct evaluation of this function
requires the inversion of a large 7 x T matrix @ which is impractical for large T for both
storage and computational reasons.

The ARIMA model restricts d to be a known integer. The ARFIMA model treats d as an esti-
mable parameter.
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ARIMA ML

It is well-known that for ARIMA models where d is a known integer, we may employ the
Kalman filter to efficiently evaluate the likelihood. The Kalman filter works with the state
space prediction error decomposition form of the likelihood, which eliminates the need to
invert the large matrix Q.

See Hamilton (2004, Chapter 13, p. 372) or Box, Jenkins, and Reinsel (2008, 7.4, p. 275) for
extensive discussion.

ARFIMA ML

Sowell (1992) and Doornik and Ooms (2003) offer detailed descriptions of the evaluation of
the likelihood for ARFIMA models. In particular, practical evaluation of Equation (22.55)
requires that we address several computational issues.

First, we must compute the autocovariances of the ARFIMA process that appear in the
which an involve an infinite order MA representation. Fortunately, Hosking (1981) and Sow-
ell (1992) describe closed-form alternatives and Sowell (1992) derives efficient recursive
algorithms using hypergeometric functions.

Second, we must compute the determinant of the variance matrix and generalized (inverse
variance weighted) residuals in a manner that is computationally and storage efficient.
Doornik and Ooms (2003) describe a Levinson-Durbin algorithm for efficiently performing
this operation with minimal operation count while eliminating the need to store the full
Tx T matrix Q.

Third, where possible we follow Doornik and Ooms (2003) in concentrate the likelihood
. . . 2
with respect to the regression coefficients 3 and the scale parameter o~ .

Generalized Least Squares (GLS)

Since the exact likelihood function in Equation (22.55) depends on the data, and the mean
and ARMA parameters only through the last term in the expression, we may ignore the ines-
sential constants and the log determinant term to define a generalized least squares objec-
tive function

S(B,p,0,d) = Q' (22.56)
and the ARFIMA estimates may be obtained by minimizing S(8, p, 6, d).

Conditional Least Squares (CLS)

Box and Jenkins (1976) and Box, Jenkins, and Reinsel (2008, Section 7.1.2 p 232.) point out
that conditional on pre-sample values for the AR and MA errors, the normal conditional like-
lihood function may be maximized by minimizing the sum of squares of the innovations.
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The recursive innovation equation in Equation (22.54) is easy to evaluate given parameter
values, lagged values of the differenced Y,, X,, and estimates of the lagged innovations.

Note, however that neither the u, nor the can be substituted in the first period as they are
not available until we start up the difference equation.

We discuss below methods for starting up the recursion by specifying presample values of
u, and €,. Given these presample values, the conditional likelihood function for normally
distributed innovations is given by

T
T 1
logl(8,p,0,0") = - Flog(27¢") - = 3 €
t=1

2 (22.57)

T 1
- 5log(2m0") - —5(8, p. )
20

Notice that the conditional likelihood function depends on the data and the mean and
ARMA parameters only through the conditional least squares function S(8, p, ), so that
the conditional likelihood may be maximized by minimizing S(83, o, ) .

Coefficient standard errors for the CLS estimation are the same as those for any other non-

linear least squares routine: ordinary inverse of the estimate of the information matrix, or a
White robust or Newey-West HAC sandwich covariance estimator. In all three cases, one can
use either the Gauss-Newton outer-product of the Jacobians, or the Newton-Raphson nega-
tive of the Hessian to estimate the information matrix.

In the remainder of this section we discuss the initialization of the recursion. EViews initial-
izes the AR errors using lagged data (adjusting the estimation sample if necessary), and ini-
tializes the MA innovations using backcasting or the unconditional (zero) expectation.

Initializing the AR Errors

Consider an AR(p) regression model of the form:

Y, = X/B+uy,
(22.58)
Uy = Py, F Pl 5t TP U T E,
for t = 1,2, ..., T. Estimation of this model using conditional least squares requires com-
putation of the innovations €, for each period in the estimation sample.
We can rewrite out model as
€ =Y, = X/B-(pyu,_;+pou,_o+...+p,u;_,) (22.59)

so we can see that we require p pre-sample values to evaluate the AR process at ¢t = 1
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Typically conditional least squares employs lagged values of the variables in the model to
initialize the process. For example, to estimate an AR(1) model, one may transforms the lin-
ear model,

Y, = X/B+u,

(22.60)
U, = pu,_q +e€

into a nonlinear model by substituting the second equation into the first, writing u,_, in
terms of observables and rearranging terms:

Y,

X,/'B+pu,_,+e,
X/B+p(Y,_-X, {'B)+e¢ (22.61)
pY, 1+ (X,—pX, )B+e

so that the innovation recursion written in terms of observables is given by
e = (Yi-pY, ) (X;-pX,_))'B (22.62)

Notice that we require observation on the Y, and X, in the period before the start of the
recursion. If these values are not available, we must adjust the period of interest to begin at
t = 2 so that the values of the observed data in ¢ = 1 may be substituted into the equa-
tion to obtain an expression for u, .

Higher order AR specifications are handled analogously. For example, a nonlinear AR(3) is
estimated using nonlinear least squares on the innovations given by:
Y= (oY, 1+0Y, o+p3Y, 3)+ (X, B)-p (X, 1,8) (22.63)
=02 f(X; 9, B) = p3f(X;_3,B)+e

It is important to note that textbooks often describe techniques for estimating linear AR
models like Equation (22.58). The most widely discussed approaches, the Cochrane-Orcutt,
Prais-Winsten, Hatanaka, and Hildreth-Lu procedures, are multi-step approaches designed
so that estimation can be performed using standard linear regression. These approaches pro-
ceed by obtaining an initial consistent estimate of the AR coefficients p and then estimating
the remaining coefficients via a second-stage linear regression.

All of these approaches suffer from important drawbacks which occur when working with

models containing lagged dependent variables as regressors, or models using higher-order

AR specifications; see Davidson and MacKinnon (1993, p. 329-341), Greene (2008, p. 648-
652).

In contrast, the EViews conditional least squares estimates the coefficients p and 8 are esti-
mated simultaneously by minimizing the nonlinear sum-of-squares function S(8, p, 8)
(which maximizes the conditional likelihood). The nonlinear least squares approach has the
advantage of being easy-to-understand, generally applicable, and easily extended to models
that contain endogenous right-hand side variables and to nonlinear mean specifications.
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Thus, for a nonlinear mean AR(1) specification, EViews transforms the nonlinear model,
Y, = (X, B)+u,

(22.64)
U, = pU,_q T+ €
into the alternative nonlinear regression form
Y, =pY, (+AX,B)-pf(X,_{,8)+e¢ (22.65)
yielding the innovation specification:
€ = (Y,=poY, ) - ([X, B)-pf(X,_1,8)) (22.66)
Similarly, for higher order ARs, we have:
€, = Y, — (0 Y, +pY,_o+p3Y,_3)+ (X, B) (22.67)

— (01 (X, 1, B) + 0o f(X,_ 5, B) + p3/(X,_3, B))

For additional detail, see Fair (1984, p. 210-214), and Davidson and MacKinnon (1993, p.
331-341).

Initializing MA Innovations

Consider an MA( ¢ ) regression model of the form:
Y, = X/B+u,

(22.68)
u; = €, +0€, | +05e

+ ... +9qet7

t-2 q

for t = 1,2, ..., T. Estimation of this model using conditional least squares requires com-
putation of the innovations e, for each period in the estimation sample.

Computing the innovations is a straightforward process. Suppose we have an initial estimate
of the coefficients, (8, 8), and estimates of the pre-estimation sample values of ¢:

{€_(g-1y E(go2) - €0} (22.69)
Then, after first computing the unconditional residuals @, = Y, - X,'B, we may use for-
ward recursion to solve for the remaining values of the innovations:

~

€& = Uy —016_1— ... -0, _, (22.70)

fort = 1,2, ..., T.

All that remains is to specify a method of obtaining estimates of the pre-sample values of ¢ :

{€_ (4= 1) €-(g_2) -++» €0} (22.71)
One may employ backcasting to obtain the pre-sample innovations (Box and Jenkins, 1976).
As the name suggests, backcasting uses a backward recursion method to obtain estimates of
e for this period.
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To start the recursion, the ¢ values for the innovations beyond the estimation sample are set
to zero:

€ET+1 = €742 = ... = €744 = 0 (2272)
EViews then uses the actual results to perform the backward recursion:
€ = t,—0161— ... — 064, (22.73)

fort = T,...,0,...,—(¢—1). The final ¢ values, {€g, ..., €.(4-2), E(4—1)} » Which we
use as our estimates, may be termed the backcast estimates of the pre-sample innovations.
(Note that if your model also includes AR terms, EViews will p -difference the %, to elimi-
nate the serial correlation prior to performing the backcast.)

Alternately, one obvious method is to turn backcasting off and to set the pre-sample € to
their unconditional expected values of 0:

€E(g-1) = . = € =0, (22.74)

Whichever methods is used to initialize the presample values, the sum-of-squared residuals
(SSR) is formed recursively as a function of the 8 and 6, using the fitted values of the
lagged innovations:

T

SB.0) = 3 (Y- X/B-08 1—..—0%_ )" (22.75)
t=q+1

and the expression is minimized with respect to 3 and 6.

The backcast step, forward recursion, and minimization procedures are repeated until the
estimates of 8 and 6 converge.
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Chapter 23. Forecasting from an Equation

This chapter describes procedures for forecasting and computing fitted values from a single
equation. The techniques described here are for forecasting with equation objects estimated
using regression methods. Forecasts from equations estimated by specialized techniques,
such as ARCH, binary, ordered, tobit, and count methods, are discussed in the correspond-
ing chapters.

Forecasting from a series using exponential smoothing methods is explained in “Exponential
Smoothing” on page 511 of User’s Guide I, and forecasting using multiple equations and
models is described in Chapter 42. “Models,” on page 781. Additional tools for performing
forecast evaluation are described in “Forecast Evaluation” on page 424 of User’s Guide I.

Forecasting from Equations in EViews

To illustrate the process of forecasting from an estimated equation, we begin with a simple
example. Suppose we have data on the logarithm of monthly housing starts (HS) and the
logarithm of the S&P index (SP) over the period 1959M01-1996MO0. The data are contained
in the workfile “Housel.WF1” which contains observations for 1959M01-1998M12 so that
we may perform out-of-sample forecasts.

We estimate a regression of HS on a constant, SP, and the lag of HS, with an AR(1) to correct
for residual serial correlation, using data for the period 1959M01-1990MO01, and then use the
model to forecast housing starts under a variety of settings. Following estimation, the equa-
tion results are held in the equation object EQO1:
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Dependent Variable: HS

Method: Least Squares

Date: 08/09/09 Time: 07:45

Sample (adjusted): 1959M03 1990MO01
Included observations: 371 after adjustments
Convergence achieved after 6 iterations

Variable Coefficient Std. Error t-Statistic Prob.
C 0.321924 0.117278 2744973 0.0063
HS(-1) 0.952653 0.016218 58.74151 0.0000
SP 0.005222 0.007588 0.688248 04917
AR(1) -0.271254 0.052114  -5.205025 0.0000
R-squared 0.861373 Meandependentvar 7.324051
Adjusted R-squared 0.860240 S.D. dependent var 0.220996
S.E. of regression 0.082618 Akaike info criterion -2.138453
Sum squared resid 2.505050 Schwarz criterion -2.096230
Log likelihood 400.6830 Hannan-Quinn criter. -2.121683
F-statistic 760.1338 Durbin-W atson stat 2.013460
Prob(F-statistic) 0.000000
Inverted AR Roots -27

Note that the estimation sample is adjusted by two observations to account for the first dif-
ference of the lagged endogenous variable used in deriving AR(1) estimates for this model.

To get a feel for the fit of the model, select View/Actual, Fitted, Residual..., then choose
Actual, Fitted, Residual Graph:

View | Proc| Object | [ Print [ Mame | Freeze | | Estimate | Forecast | Stats | Resids

-3 e

B0 B2 B4 B6 B3 VO V2 V4 V6 V& B0 82 B4 86 85

[ —Residusl —— actuasl ——Fitted |

The actual and fitted values depicted on the upper portion of the graph are virtually indistin-
guishable. This view provides little control over the process of producing fitted values, and
does not allow you to save your fitted values. These limitations are overcome by using
EViews built-in forecasting procedures to compute fitted values for the dependent variable.
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How to Perform a Forecast

To forecast HS from this equation, push the Forecast button on the equation toolbar, or
select Proc/Forecast....

At the top of the Forecast dialog,

EViews displays information about Forecast of
. Equation: E1 Series: Y
the forecast. Here, we show a basic duatan e
version of the dialog showing that Series names feted
. Forecast name: | hsf Static forecast
we are forecasting values for the P (no dynamics in equation)

dependent series HS using the esti-
mated EQO1. More complex settings
are described in “Forecasting from
Equations with Expressions” on
page 167. Output

Insert actuals for out-of-sample Graph: |Forecast ~
observations

Coef uncertainty in 5.E. calc

Forecast sample

1959m06 1996mi1

You should provide the following

. . Forecast evaluation
information:

Cancel

¢ Forecast name. Fill in the edit
box with the series name to be
given to your forecast. EViews suggests a name, but you can change it to any valid
series name. The name should be different from the name of the dependent variable,
since the forecast procedure will overwrite data in the specified series.

e S.E. (optional). If desired, you may provide a name for the series to be filled with the
forecast standard errors. If you do not provide a name, no forecast errors will be
saved.

¢ GARCH (optional). For models estimated by ARCH, you will be given a further option
of saving forecasts of the conditional variances (GARCH terms). See Chapter 25.
“ARCH and GARCH Estimation,” on page 243 for a discussion of GARCH estimation.

¢ Forecasting method. You have a choice between Dynamic and Static forecast meth-
ods. Dynamic calculates dynamic, multi-step forecasts starting from the first period in
the forecast sample. In dynamic forecasting, previously forecasted values for the
lagged dependent variables are used in forming forecasts of the current value (see
“Forecasts with Lagged Dependent Variables” on page 160 and “Forecasting with
ARMA Errors” on page 162). This choice will only be available when the estimated
equation contains dynamic components, e.g., lagged dependent variables or ARMA
terms. Static calculates a sequence of one-step ahead forecasts, using the actual,
rather than forecasted values for lagged dependent variables, if available.

You may elect to always ignore coefficient uncertainty in computing forecast standard
errors (when relevant) by unselecting the Coef uncertainty in S.E. calc box.
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In addition, in specifications that contain ARMA terms, you can set the Structural
option, instructing EViews to ignore any ARMA terms in the equation when forecast-
ing. By default, when your equation has ARMA terms, both dynamic and static solu-
tion methods form forecasts of the residuals. If you select Structural, all forecasts will
ignore the forecasted residuals and will form predictions using only the structural part
of the ARMA specification.

e Sample range. You must specify the sample to be used for the forecast. By default,
EViews sets this sample to be the workfile sample. By specifying a sample outside the
sample used in estimating your equation (the estimation sample), you can instruct
EViews to produce out-of-sample forecasts.

Note that you are responsible for supplying the values for the independent variables
in the out-of-sample forecasting period. For static forecasts, you must also supply the
values for any lagged dependent variables.

e Output. You can choose to see the forecast output as a graph (with either just the
forecast values, or forecast values alongside actuals) or a numerical forecast evalua-
tion, or both. Forecast evaluation is only available if the forecast sample includes
observations for which the dependent variable is observed.

¢ Insert actuals for out-of-sample observations. By default, EViews will fill the fore-
cast series with the values of the actual dependent variable for observations not in the
forecast sample. This feature is convenient if you wish to show the divergence of the
forecast from the actual values; for observations prior to the beginning of the forecast
sample, the two series will contain the same values, then they will diverge as the fore-
cast differs from the actuals. In some contexts, however, you may wish to have fore-
casted values only for the observations in the forecast sample. If you uncheck this
option, EViews will fill the out-of-sample observations with missing values.

Note that when performing forecasts from equations specified using expressions or auto-
updating series, you may encounter a version of the Forecast dialog that differs from the
basic dialog depicted above. See “Forecasting from Equations with Expressions” on page 167
for details.

An lllustration

Suppose we produce a dynamic forecast using EQO1 over the sample 1959M01 to 1996MO01.
The forecast values will be placed in the series HSF, and EViews will display a graph of the
forecasts and the plus and minus two standard error bands, as well as a forecast evaluation:
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B3| Equation: EQ01, Workfile: HOUSE1::Houselk

Estimate [ Forecast Stats | Resids

a0

EE

7.6

I+

3

7.0+ -".
.

fid

?4_\_/_~/—v—/J/

________ Forecast: HSF
e Actual: HS

e Forecast zample: 1953001 1996001

Adjusted cample: 1050M032 100601

Included observations: 443

Root Mean Squared Errar 0.247310

Mean Absolute Ermar 0.195950

Mean Abs. Percent Enor - 2.705110

Theil Inequality Coefficient 0.016934
Bias Proporion 0.037762
“ariance Froporion 0.426211
Covariance Proportion  0.5326037

T
1960

T
1965

T T T T T
1875 1980 1985 1890 1995

—HEF ----x 2 5E

T
1970

This is a dynamic forecast for the period from 1959M01 through 1996MO01. For every period,
the previously forecasted values for HS(-1) are used in forming a forecast of the subsequent
value of HS. As noted in the output, the forecast values are saved in the series HSF. Since
HSF is a standard EViews series, you may examine your forecasts using all of the standard
tools for working with series objects.

For example, we may examine the actual versus fitted values by creating a group containing
HS and HSF, and plotting the two series. Select HS and HSF in the workfile window, then
right-mouse click and select Open/as Group. Then select View/Graph... and select Line &
Symbol in the Graph Type/Basic type page to display a graph of the two series:

(G| Group: UNTITLED. ‘Workfile: HOUSET::House 1l

ViewProc Object Print Mame | Freeze

BEEFE

Diefault v Optionssamplasheet Stats

g0

T8

T8

744

T2

7.0

R

BB

1960 1985 1970 1975 1980 1985 1990 1995

—H$ _——HsF

Note the considerable difference between this actual and fitted graph and the Actual, Fitted,
Residual Graph depicted above.
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To perform a series of one-step ahead forecasts, click on Forecast on the equation toolbar,
and select Static forecast. Make certain that the forecast sample is set to “1959m01
1995m06”. Click on OK. EViews will display the forecast results:

View | Proc | Object | | Print | Name | Freeze | | Estimate | Forecast | Stats | Resids

Forecast: HSF

Actual: HS

Forecast sample: 1853001 1996005

Adjusted sample: 1959003 1996 002

Included obsenvations: 443

Root Mean Squared Emor 0.050H7

Mean Absalute Erar 0 061006

Mean Abs. Percent Emor 0.241182

Theil Inequality Coeflicient 0.005511
Bias Proportion 0.001=2687
Wariance Propottion 0.044145
Covariance Propotion  0.9539338

T T T T T T T T
1960 1066 1970 1975 1920 1025 1000 1995

—HSF -2 5E

We may also compare the actual and fitted values from the static forecast by examining a
line graph of a group containing HS and the new HSF.

I Group: UNTITLED. Workfile: HOUSE1::Houselk

View | Proc| Object | | Print | Name | Freeze | | Default | |Options | Sample | Sheet | Stats

a0

7.8
7.6
7.4
7.2 !
7.0

6.5+

85 A
1960 1965 1970 1975 1980 1985 1990 1995

—HS ——H3F

The one-step ahead static forecasts are more accurate than the dynamic forecasts since, for
each period, the actual value of HS(-1) is used in forming the forecast of HS. These one-step

ahead static forecasts are the same forecasts used in the Actual, Fitted, Residual Graph dis-
played above.

Lastly, we construct a dynamic forecast beginning in 1990M02 (the first period following the
estimation sample) and ending in 1996M01. Keep in mind that data are available for SP for
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this entire period. The plot of the actual and the forecast values for 1989M01 to 1996MO01 is
given by:

B Group: UNTITLED Workifile: HOUSE2::House2\

75

744

7.3

7.2

7.1

7.0+

6.9+

6.6

6.7

BG4

LR NNy LA R LR L AR R L R
1990 19 1992 1943 1994 18995

—Hs — HSF

T
1989

Since we use the default settings for out-of-forecast sample values, EViews backfills the fore-
cast series prior to the forecast sample (up through 1990M01), then dynamically forecasts
HS for each subsequent period through 1996MO01. This is the forecast that you would have
constructed if, in 1990M01, you predicted values of HS from 1990M02 through 1996M01,
given knowledge about the entire path of SP over that period.

The corresponding static forecast is displayed below:

B Group: UNTITLED Workfile: HOUSE2::House2y

74

7.3

724

7.1

7.0+

6.9

B8+

6.7

66

LA L RN L RN RN RRN LR RR LLRR LA AR R AR LR
1989 1990 1991 1992 1993 1934 18995

—Hs —HSF

Again, EViews backfills the values of the forecast series, HSF1, through 1990M01. This fore-
cast is the one you would have constructed if, in 1990M01, you used all available data to
estimate a model, and then used this estimated model to perform one-step ahead forecasts
every month for the next six years.
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The remainder of this chapter focuses on the details associated with the construction of
these forecasts, the corresponding forecast evaluations, and forecasting in more complex set-
tings involving equations with expressions or auto-updating series.

Forecast Basics

EViews stores the forecast results in the series specified in the Forecast name field. We will
refer to this series as the forecast series.

The forecast sample specifies the observations for which EViews will try to compute fitted or
forecasted values. If the forecast is not computable, a missing value will be returned. In
some cases, EViews will carry out automatic adjustment of the sample to prevent a forecast
consisting entirely of missing values (see “Adjustment for Missing Values” on page 155,
below). Note that the forecast sample may or may not overlap with the sample of observa-
tions used to estimate the equation.

For values not included in the forecast sample, there are two options. By default, EViews fills
in the actual values of the dependent variable. If you turn off the Insert actuals for out-of-
sample option, out-of-forecast-sample values will be filled with NAs.

As a consequence of these rules, all data in the forecast series will be overwritten during the
forecast procedure. Existing values in the forecast series will be lost.

Computing Point Forecasts

For each observation in the forecast sample, EViews computes the fitted value of the depen-
dent variable using the estimated parameters, the right-hand side exogenous variables, and
either the actual or estimated values for lagged endogenous variables and residuals. The
method of constructing these forecasted values depends upon the estimated model and user-
specified settings.

To illustrate the forecasting procedure, we begin with a simple linear regression model with
no lagged endogenous right-hand side variables, and no ARMA terms. Suppose that you
have estimated the following equation specification:

y ¢ X z
Now click on Forecast, specify a forecast period, and click OK.

For every observation in the forecast period, EViews will compute the fitted value of Y using
the estimated parameters and the corresponding values of the regressors, X and Z:

b, = e(1)+e(2)x,+2(3)z. (23.1)
You should make certain that you have valid values for the exogenous right-hand side vari-

ables for all observations in the forecast period. If any data are missing in the forecast sam-
ple, the corresponding forecast observation will be an NA.
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Adjustment for Missing Values

There are two cases when a missing value will be returned for the forecast value. First, if
any of the regressors have a missing value, and second, if any of the regressors are out of the
range of the workfile. This includes the implicit error terms in AR models.

In the case of forecasts with no dynamic components in the specification (i.e. with no lagged
endogenous or ARMA error terms), a missing value in the forecast series will not affect sub-
sequent forecasted values. In the case where there are dynamic components, however, a sin-
gle missing value in the forecasted series will propagate throughout all future values of the
series.

As a convenience feature, EViews will move the starting point of the sample forward where
necessary until a valid forecast value is obtained. Without these adjustments, the user
would have to figure out the appropriate number of presample values to skip, otherwise the
forecast would consist entirely of missing values. For example, suppose you wanted to fore-
cast dynamically from the following equation specification:

y ¢ y(=1) ar(l)

If you specified the beginning of the forecast sample to the beginning of the workfile range,
EViews will adjust forward the forecast sample by 2 observations, and will use the pre-fore-
cast-sample values of the lagged variables (the loss of 2 observations occurs because the
residual loses one observation due to the lagged endogenous variable so that the forecast for
the error term can begin only from the third observation.)

Forecast Errors and Variances
Suppose the “true” model is given by:

Yy = 7,/B+e, (23.2)
where ¢, is an independent, and identically distributed, mean zero random disturbance,

and (8 is a vector of unknown parameters. Below, we relax the restriction that the € ’s be
independent.

The true model generating y is not known, but we obtain estimates b of the unknown
parameters (3. Then, setting the error term equal to its mean value of zero, the (point) fore-
casts of yare obtained as:

v, = z/b. (23.3)
Forecasts are made with error, where the error is simply the difference between the actual

and forecasted value e, = y,— z,'b. Assuming that the model is correctly specified, there
are two sources of forecast error: residual uncertainty and coefficient uncertainty.
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Residual Uncertainty

The first source of error, termed residual or innovation uncertainty, arises because the inno-
vations € in the equation are unknown for the forecast period and are replaced with their
expectations. While the residuals are zero in expected value, the individual values are non-
zero; the larger the variation in the individual residuals, the greater the overall error in the
forecasts.

The standard measure of this variation is the standard error of the regression (labeled “S.E.
of regression” in the equation output). Residual uncertainty is usually the largest source of
forecast error.

In dynamic forecasts, innovation uncertainty is compounded by the fact that lagged depen-
dent variables and ARMA terms depend on lagged innovations. EViews also sets these equal
to their expected values, which differ randomly from realized values. This additional source
of forecast uncertainty tends to rise over the forecast horizon, leading to a pattern of increas-
ing forecast errors. Forecasting with lagged dependent variables and ARMA terms is dis-
cussed in more detail below.

Coefficient Uncertainty

The second source of forecast error is coefficient uncertainty. The estimated coefficients b of
the equation deviate from the true coefficients 8 in a random fashion. The standard error of
the estimated coefficient, given in the regression output, is a measure of the precision with
which the estimated coefficients measure the true coefficients.

The effect of coefficient uncertainty depends upon the exogenous variables. Since the esti-
mated coefficients are multiplied by the exogenous variables z in the computation of fore-
casts, the more the exogenous variables deviate from their mean values, the greater is the

forecast uncertainty.

Forecast Variability

The variability of forecasts is measured by the forecast standard errors. For a single equation
without lagged dependent variables or ARMA terms, the forecast standard errors are com-

puted as:
forecast se = s,/1+ zt’(X'X)_IIt (23.4)

where s is the standard error of regression. These standard errors account for both innova-
tion (the first term) and coefficient uncertainty (the second term). Point forecasts made from
linear regression models estimated by least squares are optimal in the sense that they have
the smallest forecast variance among forecasts made by linear unbiased estimators. More-
over, if the innovations are normally distributed, the forecast errors have a ¢-distribution and
forecast intervals can be readily formed.
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If you supply a name for the forecast standard errors, EViews computes and saves a series of
forecast standard errors in your workfile. You can use these standard errors to form forecast
intervals. If you choose the Do graph option for output, EViews will plot the forecasts with
plus and minus two standard error bands. These two standard error bands provide an
approximate 95% forecast interval; if you (hypothetically) make many forecasts, the actual
value of the dependent variable will fall inside these bounds 95 percent of the time.

Additional Details

EViews accounts for the additional forecast uncertainty generated when lagged dependent
variables are used as explanatory variables (see “Forecasts with Lagged Dependent Vari-
ables” on page 160).

There are cases where coefficient uncertainty is ignored in forming the forecast standard
error. For example, coefficient uncertainty is always ignored in equations specified by
expression, for example, nonlinear least squares, and equations that include PDL (polyno-
mial distributed lag) terms (“Forecasting with Nonlinear and PDL Specifications” on

page 173).

In addition, forecast standard errors do not account for GLS weights in estimated panel
equations.

Forecast Evaluation

Suppose we construct a dynamic forecast for HS over the period 1990M02 to 1996M01 using
our estimated housing equation. If the Forecast evaluation option is checked, and there are
actual data for the forecasted variable for the forecast sample, EViews reports a table of sta-
tistical results evaluating the forecast:

Forecast: HSF

Actual: HS

Sample: 1990M02 1996M01
Include observations: 72

Root Mean Squared Error 0.318700
Mean Absolute Error 0.297261
Mean Absolute Percentage Error 4.205889
Theil Inequality Coefficient 0.021917
Bias Proportion 0.869982
Variance Proportion 0.082804
Covariance Proportion 0.047214

Note that EViews cannot compute a forecast evaluation if there are no data for the depen-
dent variable for the forecast sample.

The forecast evaluation is saved in one of two formats. If you turn on the Do graph option,
the forecasts are included along with a graph of the forecasts. If you wish to display the eval-
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uations in their own table, you should turn off the Do graph option in the Forecast dialog
box.

Suppose the forecast sampleis j = T+ 1, T+ 2, ..., T+ h, and denote the actual and
forecasted value in period ¢ as y, and ,, respectively. The reported forecast error statistics
are computed as follows:

Root Mean Squared Error T+ h
S (w-y)'/h
t=T+1
Mean Absolute Error T+h
> =l /h
t=T+1
Mean Absolute Percentage T+h
Error 100 3 |LZYn
t=T+1 Ye
Theil Inequality Coefficient T+ 7
> W-v)/h
t=T+1
T+h T+h
S oul/h+ | S gtk
t=T+1 t=T+1

The first two forecast error statistics depend on the scale of the dependent variable. These
should be used as relative measures to compare forecasts for the same series across different
models; the smaller the error, the better the forecasting ability of that model according to
that criterion. The remaining two statistics are scale invariant. The Theil inequality coeffi-
cient always lies between zero and one, where zero indicates a perfect fit.

The mean squared forecast error can be decomposed as:
2 A _\2 2
S W=y b= (/D) =) + (5= )" +2(1 = )5y, (23.5)

where Z@t/h’ Y, sy, s, are the means and (biased) standard deviations of ¥, and v,
and r is the correlation between % and y. The proportions are defined as:

Bias Proportion

(Su/ M-
> (- )/ h
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Variance Proportion 2
P (s,= )
2
> (- )/ h
Covariance Proportion 2(1-1)s, 5,
2
> (- y) /b

e The bias proportion tells us how far the mean of the forecast is from the mean of the
actual series.

e The variance proportion tells us how far the variation of the forecast is from the vari-
ation of the actual series.

e The covariance proportion measures the remaining unsystematic forecasting errors.
Note that the bias, variance, and covariance proportions add up to one.

If your forecast is “good”, the bias and variance proportions should be small so that most of
the bias should be concentrated on the covariance proportions. For additional discussion of
forecast evaluation, see Pindyck and Rubinfeld (1998, p. 210-214).

For the example output, the bias proportion is large, indicating that the mean of the forecasts
does a poor job of tracking the mean of the dependent variable. To check this, we will plot
the forecasted series together with the actual series in the forecast sample with the two stan-
dard error bounds. Suppose we saved the forecasts and their standard errors as HSF and
HSFSE, respectively. Then the plus and minus two standard error series can be generated by
the commands:

smpl 1990m02 1996m01
series hsf high = hsf + 2*hsfse

series hsf low = hsf - 2*hsfse

Create a group containing the four series. You can highlight the four series HS, HSF,
HSF_HIGH, and HSF_LOW, double click on the selected area, and select Open Group, or you
can select Quick/Show... and enter the four series names. Once you have the group open,
select View/Graph... and select Line & Symbol from the left side of the dialog.



160—Chapter 23. Forecasting from an Equation
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The forecasts completely miss the downturn at the start of the 1990’s, but, subsequent to the
recovery, track the trend reasonably well from 1992 to 1996.

Forecasts with Lagged Dependent Variables

Forecasting is complicated by the presence of lagged dependent variables on the right-hand
side of the equation. For example, we can augment the earlier specification to include the
first lag of Y:

y ¢ xzy(-1)

and click on the Forecast button and fill out the series names in the dialog as above. There
is some question, however, as to how we should evaluate the lagged value of Y that appears
on the right-hand side of the equation. There are two possibilities: dynamic forecasting and
static forecasting.

Dynamic Forecasting

If you select dynamic forecasting, EViews will perform a multi-step forecast of Y, beginning
at the start of the forecast sample. For our single lag specification above:

¢ The initial observation in the forecast sample will use the actual value of lagged Y.
Thus, if S is the first observation in the forecast sample, EViews will compute:

¥ = (D) +e(2)zg+e(3)zg+ e(d)ys_ 1, (23.6)

where y4_, is the value of the lagged endogenous variable in the period prior to the
start of the forecast sample. This is the one-step ahead forecast.

¢ Forecasts for subsequent observations will use the previously forecasted values of Y:

Vgrp = (1) +2(2)zg, 1+ 2(3)2g, p+ (D Vg, iy - (23.7)
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¢ These forecasts may differ significantly from the one-step ahead forecasts.

If there are additional lags of Y in the estimating equation, the above algorithm is modified
to account for the non-availability of lagged forecasted values in the additional period. For
example, if there are three lags of Y in the equation:

* The first observation (.5) uses the actual values for all three lags, yg_3, ¥g_,, and
Ys-1-

¢ The second observation (.5 + 1) uses actual values for y4_, and, yg_; and the fore-
casted value Jg of the first lag of yg, .

* The third observation (S + 2) will use the actual values for yg_ , and forecasted val-
ues f¢,, and ¥4 for the first and second lags of yg_ 5.

¢ All subsequent observations will use the forecasted values for all three lags.

The selection of the start of the forecast sample is very important for dynamic forecasting.
The dynamic forecasts are true multi-step forecasts (from the start of the forecast sample),
since they use the recursively computed forecast of the lagged value of the dependent vari-
able. These forecasts may be interpreted as the forecasts for subsequent periods that would
be computed using information available at the start of the forecast sample.

Dynamic forecasting requires that data for the exogenous variables be available for every
observation in the forecast sample, and that values for any lagged dependent variables be
observed at the start of the forecast sample (in our example, y4_, , but more generally, any
lags of y). If necessary, the forecast sample will be adjusted.

Any missing values for the explanatory variables will generate an NA for that observation
and in all subsequent observations, via the dynamic forecasts of the lagged dependent vari-
able.

Lastly, we note that for non-linear dynamic forecasting, EViews produces what Tong and
Lim (1980) term the “eventual forecasting function” in which the lagged forecasted values
are substituted recursively into the one-step ahead function. This approach differs from the
simulation based approaches to multi-step forecasting which employs stochastic simulation.
If you wish to obtain the latter forecasts, click on the Stochastic simulation checkbox and
enter the number of Repetitions and Failed reps prop. before halting as desired.

Static Forecasting
Static forecasting performs a series of one-step ahead forecasts of the dependent variable:
e For each observation in the forecast sample, EViews computes:

Ui = e()+ ez, + 23)2g, 4+ (D) yYsi o (23.8)

always using the actual value of the lagged endogenous variable.



162—Chapter 23. Forecasting from an Equation

Static forecasting requires that data for both the exogenous and any lagged endogenous vari-
ables be observed for every observation in the forecast sample. As above, EViews will, if
necessary, adjust the forecast sample to account for pre-sample lagged variables. If the data
are not available for any period, the forecasted value for that observation will be an NA. The
presence of a forecasted value of NA does not have any impact on forecasts for subsequent
observations.

A Comparison of Dynamic and Static Forecasting

Both methods will always yield identical results in the first period of a multi-period forecast.
Thus, two forecast series, one dynamic and the other static, should be identical for the first
observation in the forecast sample.

The two methods will differ for subsequent periods only if there are lagged dependent vari-
ables or ARMA terms.

Forecasting with ARMA Errors

Forecasting from equations with ARMA components involves some additional complexities.
When you use the AR or MA specifications, you will need to be aware of how EViews han-
dles the forecasts of the lagged residuals which are used in forecasting.

Structural Forecasts

By default, EViews will forecast values for the residuals using the estimated ARMA struc-
ture, as described below.

For some types of work, you may wish to assume that the ARMA errors are always zero. If
you select the structural forecast option by checking Structural (ignore ARMA), EViews
computes the forecasts assuming that the errors are always zero. If the equation is estimated
without ARMA terms, this option has no effect on the forecasts.

Forecasting with AR Errors

For equations with AR errors, EViews adds forecasts of the residuals from the equation to
the forecast of the structural model that is based on the right-hand side variables.

In order to compute an estimate of the residual, EViews requires estimates or actual values
of the lagged residuals. For the first observation in the forecast sample, EViews will use pre-
sample data to compute the lagged residuals. If the pre-sample data needed to compute the
lagged residuals are not available, EViews will adjust the forecast sample, and backfill the
forecast series with actual values (see the discussion of “Adjustment for Missing Values” on
page 155).
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If you choose the Dynamic option, both the lagged dependent variable and the lagged resid-
uals will be forecasted dynamically. If you select Static, both will be set to the actual lagged
values. For example, consider the following AR(2) model:
Yy, = z,/B+u
o ' (23.9)
Up = Pyl g T Pl o+ €

Denote the fitted residuals as e, = y,— z,'b, and suppose the model was estimated using
dataupto t = S—1. Then, provided that the z, values are available, the static and

dynamic forecasts for ¢ = S, S+ 1, ..., are given by:
Static Dynamic
Us Tg'b+preg_ 1+ Paes_s Tg'b+preg_ 1+ Paes_s
Ugin Tg, ' b+preg+preg Tg "D+ prlig+ poeg
Usea | @sgio'b+preg, +Paey Tgio'b+Prlg, | +Pallg

where the residuals %, = %, — z,'b are formed using the forecasted values of y,. For subse-
quent observations, the dynamic forecast will always use the residuals based upon the
multi-step forecasts, while the static forecast will use the one-step ahead forecast residuals.

Forecasting with MA Errors

In general, you need not concern yourselves with the details of MA forecasting, since
EViews will do all of the work for you. However, for those of you who are interested in the
details of dynamic forecasting, the following discussion should aid you in relating EViews
results with those obtained from other sources.

We begin by noting that the key step in computing forecasts using MA terms is to obtain fit-
ted values for the innovations in the pre-forecast sample period. For example, if you are per-
forming dynamic forecasting of the values of y, beginning in period S, with a simple
MA( q) process:

Ug = Preg 1+ ... +Dees_ o (23.10)

you will need values for the pre-forecast sample innovations, e€g_1, €g_9, ..., €g_ g+ Simi-
larly, constructing a static forecast for a given period will require estimates of the ¢ lagged
innovations at every period in the forecast sample.

If your equation is estimated with backcasting turned on, EViews will perform backcasting
to obtain these values. If your equation is estimated with backcasting turned off, or if the
forecast sample precedes the estimation sample, the initial values will be set to zero.
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Backcast Sample

The first step in obtaining pre-forecast innovations is obtaining estimates of the pre-estima-
tion sample innovations: €, €_, €_y, ..., € - (For notational convenience, we normalize
the start and end of the estimation sampleto ¢ = 1 and ¢t = T, respectively.)

EViews offers two different approaches for obtaining esti- Forecast sample
mates—you may use the MA backcast dropdown menu to 1954m01 1994m1z
choose between the default Estimation period and the Fore- MA backzast: | Estimation period  +

cast available (v5) methods.

The Estimation period method uses data for the estimation sample to compute backcast
estimates. Then as in estimation (“Initializing MA Innovations” on page 144), the g values
for the innovations beyond the estimation sample are set to zero:

ET+1 = ET+2 = ... = ET+(1 =0 (2311)
EViews then uses the unconditional residuals to perform the backward recursion:
€ = U —01eri1— ... =06, (23.12)

fort = T,...,0,...,—(q— 1) to obtain the pre-estimation sample residuals. Note that
absent changes in the data, using Estimation period produces pre-forecast sample innova-
tions that match those employed in estimation (where applicable).

The Forecast available (v5) method offers different approaches for dynamic and static fore-
casting:

¢ For dynamic forecasting, EViews applies the backcasting procedure using data from
the beginning of the estimation sample to either the beginning of the forecast period,
or the end of the estimation sample, whichever comes first.

¢ For static forecasting, the backcasting procedure uses data from the beginning of the
estimation sample to the end of the forecast period.

For both dynamic and static forecasts, the post-backcast sample innovations are initialized
to zero and the backward recursion is employed to obtain estimates of the pre-estimation
sample innovations. Note that Forecast available (v5) does not guarantee that the pre-sam-
ple forecast innovations match those employed in estimation.

Pre-Forecast Innovations

Given the backcast estimates of the pre-estimation sample residuals, forward recursion is
used to obtain values for the pre-forecast sample innovations.

For dynamic forecasting, one need only obtain innovation values for the ¢ periods prior to
the start of the forecast sample; all subsequent innovations are set to zero. EViews obtains
estimates of the pre-sample eg_ 1, €g_5, ..., €g_ g using the recursion:
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€= @, — 01— ... =0, (23.13)
for t = 1,..., S—1, where § is the beginning of the forecast period

Static forecasts perform the forward recursion through the end of the forecast sample so that
innovations are estimated through the last forecast period. Computation of the static forecast
for each period uses the ¢ lagged estimated innovations. Extending the recursion produces a
series of one-step ahead forecasts of both the structural model and the innovations.

Additional Notes

Note that EViews computes the residuals used in backcast and forward recursion from the
observed data and estimated coefficients. If EViews is unable to compute values for the
unconditional residuals u, for a given period, the sequence of innovations and forecasts will
be filled with NAs. In particular, static forecasts must have valid data for both the dependent
and explanatory variables for all periods from the beginning of estimation sample to the end
of the forecast sample, otherwise the backcast values of the innovations, and hence the fore-
casts will contain NAs. Likewise, dynamic forecasts must have valid data from the beginning
of the estimation period through the start of the forecast period.

Example

As an example of forecasting from ARMA models, consider forecasting the monthly new
housing starts (HS) series. The estimation period is 1959M01-1984M12 and we forecast for
the period 1985M01-1991M12. We estimated the following simple multiplicative seasonal
autoregressive model,

hs ¢ ar(l) sar(1l2)

yielding:



166—Chapter 23. Forecasting from an Equation

Dependent Variable: HS
Method: Least Squares

Date: 08/08/06 Time: 17:42

Sample (adjusted): 1960M02 1984M12

Included observations: 299 after adjustments
Convergence achieved after 5 iterations

Coefficient Std. Error t-Statistic Prob.
C 7.317283 0.071371 102.5243 0.0000
AR(1) 0.935392 0.021028 44.48403 0.0000
SAR(12) -0.113868 0.060510 -1.881798 0.0608
R-squared 0.862967  Mean dependent var 7.313496
Adjusted R-squared 0.862041  S.D. dependent var 0.239053
S.E. of regression 0.088791  Akaike info criterion -1.995080
Sum squared resid 2.333617  Schwarz criterion -1.957952
Log likelihood 301.2645  Hannan-Quinn criter. -1.980220
F-statistic 932.0312  Durbin-Watson stat 2.452568
Prob(F-statistic) 0.000000
Inverted AR Roots .94 .81-.22i .81+.22i .59-.59i
.59+.59i .22+.81i .22-81i -.22+.81i
-.22-.81i -.59+.59i -.59-.59i -.81-.22i
-.81+.22i

To perform a dynamic forecast from this estimated model, click Forecast on the equation
toolbar, enter “1985m01 1991m12” in the Forecast sample field, then select Forecast evalu-
ation and unselect Forecast graph. The forecast evaluation statistics for the model are

shown below:

: HOUSE2::House2t  [2)([E](®)
Estimate [|Forecast || Stats

Forecast Evaluation

Actual: HS

Forecast HSF

Forecast sample: 1985M01 1991012
Included observations: 84

Root Mean Squared Error
Mean Absolute Errar
Mean Absolute Percentage Errar 2276588
Theil Ineguality Coefficient
Bias Proportion
Wariance Proporion
Covariance Propartion

0.210180
0162446

0.014396
0.076041
0.883149
0.040809
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The large variance proportion indicates that the forecasts are not tracking the variation in
the actual HS series. To plot the actual and forecasted series together with the two standard
error bands, you can type:

smpl 1985m01 1991ml2

plot hs hs f hs f+2*hs se hs f-2*hs se

where HS_F and HS_SE are the forecasts and standard errors of HS.

Bl Graph: UNTITLED. Workfile: HOUSE2::House21
AddText [|Line/Shade |Remove | | Template || Options || 2o
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—Hs HS_F
———HS_F+2*HS_SE —-—HS_F-2*HS_SE

As indicated by the large variance proportion, the forecasts track the seasonal movements in
HS only at the beginning of the forecast sample and quickly flatten out to the mean forecast
value.

Forecasting from Equations with Expressions

One of the most useful EViews innovations is the ability to estimate and forecast from equa-
tions that are specified using expressions or auto-updating series. You may, for example,
specify your dependent variable as LOG(X), or use an auto-updating regressor series EXPZ
that is defined using the expression EXP(Z). Using expressions or auto-updating series in
equations creates no added complexity for estimation since EViews simply evaluates the
implicit series prior to computing the equation estimator.

The use of expressions in equations does raise issues when computing forecasts from equa-
tions. While not particularly complex or difficult to address, the situation does require a
basic understanding of the issues involved, and some care must be taken when specifying
your forecast.
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In discussing the relevant issues, we distinguish between specifications that contain only
auto-series expressions such as LOG(X), and those that contain auto-updating series such as
EXPZ.

Forecasting using Auto-series Expressions

When forecasting from an equation that contains only ordinary series or auto-series expres-
sions such as LOG(X), issues arise only when the dependent variable is specified using an
expression.

Point Forecasts

EViews always provides you with the option to forecast the dependent variable expression.
If the expression can be normalized (solved for the first series in the expression), EViews
also provides you with the option to forecast the normalized series.

For example, suppose you estimated an equation with the specification:
(log(hs)+sp) c hs(-1)

If you press the Forecast button, EViews will open a dialog prompting you for your forecast

specification.

The resulting Forecast dialog is a Forecast ®
slightly more complex version of the R

basic dialog, providing you with a UNTLTLED

new section allowing you to choose Series to forecast

between two series to forecast: the ©rs Otosiroy+sp

normalized series, HS, or the equa- Series names Method

: : Forecast name: | hsf (& Dynamic forecast

tion dependent variable, - O static Forecast

LOG (HS) +SP. 5.E. {optional):

Coef uncertainty in 5.E., calc

Simply select the radio button for the

Forecast sample Cukpuk
desired forecast series. Note that you PP — Forecast graTh
. . +|Fi {4 i
are not provided with the opportu- Srecast svalatan
Hlty to forecast SP directly since HS, [¥]Insert actuals for out-of-sample ohservations
the first series that appears on the

left-hand side of the estimation
equation, is offered as the choice of
normalized series.

It is important to note that the Dynamic forecast method is available since EViews is able to
determine that the forecast equation has dynamic elements, with HS appearing on the left-
hand side of the equation (either directly as HS or in the expression LOG(HS) + SP) and on
the right-hand side of the equation in lagged form. If you select dynamic forecasting, previ-
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ously forecasted values for HS(-1) will be used in forming forecasts of either HS or
LOG(HS) + SP.

If the formula can be normalized, EViews will compute the forecasts of the transformed
dependent variable by first forecasting the normalized series and then transforming the fore-
casts of the normalized series. This methodology has important consequences when the for-
mula includes lagged series. For example, consider the following two models:

series dhs = d(hs)
equation egl.ls d(hs) c sp
equation eg2.ls dhs c sp

The dynamic forecasts of the first difference D(HS) from the first equation will be numeri-
cally identical to those for DHS from the second equation. However, the static forecasts for
D(HS) from the two equations will not be identical. In the first equation, EViews knows that
the dependent variable is a transformation of HS, so it will use the actual lagged value of HS
in computing the static forecast of the first difference D(HS). In the second equation, EViews
simply views DY as an ordinary series, so that only the estimated constant and SP are used
to compute the static forecast.

One additional word of caution-when you have dependent variables that use lagged values
of a series, you should avoid referring to the lagged series before the current series in a
dependent variable expression. For example, consider the two equation specifications:

d(hs) c sp
(-hs(-1)+hs) c sp

Both specifications have the first difference of HS as the dependent variable and the estima-
tion results are identical for the two models. However, if you forecast HS from the second
model, EViews will try to calculate the forecasts of HS using leads of the actual series HS.
These forecasts of HS will differ from those produced by the first model, which may not be
what you expected.

In some cases, EViews will not be able to normalize the dependent variable expression. In
this case, the Forecast dialog will only offer you the option of forecasting the entire expres-
sion. If, for example, you specify your equation as:

log(hs)+1/log(hs) = c(l) + c(2)*hs(-1)

EViews will not be able to normalize the dependent variable for forecasting. The corre-
sponding Forecast dialog will reflect this fact.
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This version of the dialog only allows [ Y

you to forecast the dependent vari- Farecast of
. . . . Equation: UMTITLED Series: LOGIHS 1 /LOG(HS)
able expression, since EViews is
unable to normalize and solve for Series names Method
. Forecast name: | hsf Static Forecast
HS. Note also that Only static fore- {no dynamics in equation)
5.E. {optional):

casts are available for this case since
EViews is unable to solve for lagged

values of HS on the right hand-side. Forecast sample Output
19900z 1996ma1 Forecast graph
Forecast evaluation

Plotted Standard Errors

Insert actuals For out-of-sample observations

When you select Forecast graph in
the forecast dialog, EViews will plot oK Cancel
the forecasts, along with plus and
minus two standard error bands.
When you estimate an equation with an expression for the left-hand side, EViews will plot
the standard error bands for either the normalized or the unnormalized expression, depend-
ing upon which term you elect to forecast.

If you elect to predict the normalized dependent variable, EViews will automatically account
for any nonlinearity in the standard error transformation. The next section provides addi-
tional details on the procedure used to normalize the upper and lower error bounds.

Saved Forecast Standard Errors

If you provide a name in this edit box, EViews will store the standard errors of the underly-
ing series or expression that you chose to forecast.

When the dependent variable of the equation is a simple series or an expression involving
only linear transformations, the saved standard errors will be exact (except where the fore-
casts do not account for coefficient uncertainty, as described below). If the dependent vari-
able involves nonlinear transformations, the saved forecast standard errors will be exact if
you choose to forecast the entire formula. If you choose to forecast the underlying endoge-
nous series, the forecast uncertainty cannot be computed exactly, and EViews will provide a
linear (first-order) approximation to the forecast standard errors.

Consider the following equations involving a formula dependent variable:
d(hs) c sp
log(hs) c sp

For the first equation, you may choose to forecast either HS or D(HS). In both cases, the
forecast standard errors will be exact, since the expression involves only linear transforma-
tions. The two standard errors will, however, differ in dynamic forecasts since the forecast
standard errors for HS take into account the forecast uncertainty from the lagged value of
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HS. In the second example, the forecast standard errors for LOG(HS) will be exact. If, how-
ever, you request a forecast for HS itself, the standard errors saved in the series will be the
approximate (linearized) forecast standard errors for HS.

Note that when EViews displays a graph view of the forecasts together with standard error
bands, the standard error bands are always exact. Thus, in forecasting the underlying depen-
dent variable in a nonlinear expression, the standard error bands will not be the same as
those you would obtain by constructing series using the linearized standard errors saved in
the workfile.

Suppose in our second example above that you store the forecast of HS and its standard
errors in the workfile as the series HSHAT and SE_HSHAT. Then the approximate two stan-
dard error bounds can be generated manually as:

series hshat highl = hshat + 2*se hshat

series hshat lowl = hshat - 2*se hshat

These forecast error bounds will be symmetric about the point forecasts HSHAT.

On the other hand, when EViews plots the forecast error bounds of HS, it proceeds in two
steps. It first obtains the forecast of LOG(HS) and its standard errors (named, say, LHSHAT
and SE_LHSHAT) and forms the forecast error bounds on LOG (HS):

lhshat + 2*se lhshat

lhshat - 2*se lhshat

It then normalizes (inverts the transformation) of the two standard error bounds to obtain
the prediction interval for HS:
series hshat high2 = exp(hshat + 2*se hshat)

series hshat low2 = exp(hshat - 2*se hshat)

Because this transformation is a non-linear transformation, these bands will not be symmet-
ric around the forecast.

To take a more complicated example, suppose that you generate the series DLHS and LHS,
and then estimate three equivalent models:

series dlhs = dlog (hs)

series lhs = log(hs)

equation egl.ls dlog(hs) c sp

equation eg2.1ls d(lhs) c sp

equation eg3.1ls dlhs c sp

The estimated equations from the three models are numerically identical. If you choose to
forecast the underlying dependent (normalized) series from each model, EQ1 will forecast
HS, EQ2 will forecast LHS (the log of HS), and EQ3 will forecast DLHS (the first difference of
the logs of HS, LOG(HS)-LOG(HS(-1)). The forecast standard errors saved from EQ1 will be



172—Chapter 23. Forecasting from an Equation

linearized approximations to the forecast standard error of HS, while those from the latter
two will be exact for the forecast standard error of LOG(HS) and the first difference of the
logs of HS.

Static forecasts from all three models are identical because the forecasts from previous peri-
ods are not used in calculating this period's forecast when performing static forecasts. For
dynamic forecasts, the log of the forecasts from EQ1 will be identical to those from EQ2 and
the log first difference of the forecasts from EQ1 will be identical to the first difference of the
forecasts from EQ2 and to the forecasts from EQ3. For static forecasts, the log first difference
of the forecasts from EQ1 will be identical to the first difference of the forecasts from EQ2.
However, these forecasts differ from those obtained from EQ3 because EViews does not
know that the generated series DLY is actually a difference term so that it does not use the
dynamic relation in the forecasts.

Forecasting with Auto-updating series

When forecasting from an equation that contains auto-updating series defined by formulae,
the central question is whether EViews interprets the series as ordinary series, or whether it
treats the auto-updating series as expressions.

Suppose for example, that we have defined auto-updating series LOGHS and LOGHSLAG, for
the log of HAS and the log of HS(-1), respectively,
frml loghs = log(hs)
frml loghslag = log(hs(-1))
and that we employ these auto-updating series in estimating an equation specification:
loghs ¢ loghslag
It is worth pointing out this specification yields results that are identical to those obtained
from estimating an equation using the expressions directly using LOG(HS) and LOG(HS(-
1)):
log(hs) c log(hs(-1))
The Forecast dialog for the first equation specification (using LOGHS and LOGHSLAG) con-
tains an additional dropdown menu allowing you to specify whether to interpret the auto-

updating series as ordinary series, or whether to look inside LOGHS and LOGHSLAG to use
their expressions.
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By default, the dropdown menu is
set to Ignore formulae within
series, so that LOGHS and
LOGHSLAG are viewed as ordinary
series. Note that since EViews
ignores the expressions underlying
the auto-updating series, you may
only forecast the dependent series
LOGHS, and there are no dynamics
implied by the equation.

Alternatively, you may instruct
EViews to use the expressions in
place of all auto-updating series by
changing the dropdown menu set-
ting to Substitute formulae within
series.

If you elect to substitute the formu-
lae, the Forecast dialog will change
to reflect the use of the underlying
expressions as you may now choose
between forecasting HS or LOG(HS).
We also see that when you use the
substituted expressions you are able
to perform either dynamic or static
forecasting.

It is worth noting that substituting
expressions yields a Forecast dialog
that offers the same options as if you
were to forecast from the second
equation specification above—using
LOG(HS) as the dependent series

Forecast

Forecast equation

UMTITLED Ignore Formulae within series "

Seties to forecast
LOGHS

Method

Static forecast
{no dynamics in equation)

Series names
Forecask name: hisf

5.E. {optional):

Coef uncertainty in 5.E., calc

Forecast sample Cukpuk
1939mD6 1996m01 Farecast araph
Forecast exvaluation

Insert actuals For out-of-sample observations

%

Forecast

Forecast equation
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Seties names Method

(%) Dynamic forecast

Forecask name: hisf
() Static Forecast

5.E. {optional):

Coef uncertainty in 5.E., calc

Forecast sample Cukpuk
1983m06 1996m01 Forecast graph
Forecast exvaluation

Insert actuals For out-of-sample observations

Cancel

]

expression, and LOG(HS(-1)) as an independent series expression.

Forecasting with Nonlinear and PDL Specifications

As explained above, forecast errors can arise from two sources: coefficient uncertainty and

innovation uncertainty. For linear regression models, the forecast standard errors account for
both coefficient and innovation uncertainty. However, if the model is specified by expression
(or if it contains a PDL specification), then the standard errors ignore coefficient uncertainty.



174—Chapter 23. Forecasting from an Equation

EViews will display a message in the status line at the bottom of the EViews window when

forecast standard errors only account for innovation uncertainty.

For example, consider the three specifications:
log(y) c x
y = c(l) + c(2)*x
y = exp(c(l) *x)
y ¢ x pdl(z, 4, 2)

Forecast standard errors from the first model account for both coefficient and innovation
uncertainty since the model is specified by list, and does not contain a PDL specification.
The remaining specifications have forecast standard errors that account only for residual

uncertainty.

Note also that for non-linear dynamic forecasting, EViews produces what Tong and Lim
(1980) term the “eventual forecasting function” in which the lagged forecasted values are
substituted recursively into the one-step ahead function. If you wish to obtain simulation-
based multi-step forecasting, you may create a model from your equation using Proc/Make
Model, and then use the resulting model to perform the dynamic stochastic simulation.
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Chapter 24. Specification and Diagnostic Tests

Empirical research is usually an interactive process. The process begins with a specification
of the relationship to be estimated. Selecting a specification usually involves several choices:
the variables to be included, the functional form connecting these variables, and if the data
are time series, the dynamic structure of the relationship between the variables.

Inevitably, there is uncertainty regarding the appropriateness of this initial specification.
Once you estimate your equation, EViews provides tools for evaluating the quality of your
specification along a number of dimensions. In turn, the results of these tests influence the
chosen specification, and the process is repeated.

This chapter describes the extensive menu of specification test statistics that are available as
views or procedures of an equation object. While we attempt to provide you with sufficient
statistical background to conduct the tests, practical considerations ensure that many of the
descriptions are incomplete. We refer you to standard statistical and econometric references
for further details.

Background

Each test procedure described below involves the specification of a null hypothesis, which is
the hypothesis under test. Output from a test command consists of the sample values of one
or more test statistics and their associated probability numbers (p-values). The latter indi-
cate the probability of obtaining a test statistic whose absolute value is greater than or equal
to that of the sample statistic if the null hypothesis is true. Thus, low p-values lead to the
rejection of the null hypothesis. For example, if a p-value lies between 0.05 and 0.01, the
null hypothesis is rejected at the 5 percent but not at the 1 percent level.

Bear in mind that there are different assumptions and distributional results associated with
each test. For example, some of the test statistics have exact, finite sample distributions
(usually ¢ or F-distributions). Others are large sample test statistics with asymptotic X2 dis-
tributions. Details vary from one test to another and are given below in the description of
each test.

The View button on the equation toolbar gives you a choice among three categories of tests
to check the specification of the equation. For some equations estimated using particular
methods, only a subset of these categories will be available.

Additional tests are discussed elsewhere in the User’s Guide. Coefficient Diagnostics ,
These tests include unit root tests (“Performing Unit Root Tests Residual Diagnostics v
in EViews” on page 590), the Granger causality test (“Granger Stability Diagnostics v

Causality” on page 610 of User’s Guide I), tests specific to
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binary, order, censored, and count models (Chapter 29. “Discrete and Limited Dependent
Variable Models,” on page 331), and the tests for cointegration (“Testing for Cointegration”
on page 282).

Coefficient Diagnostics

These diagnostics provide information and evaluate restrictions on the estimated coeffi-
cients, including the special case of tests for omitted and redundant variables.

Scaled Coefficients Scaled Coefficients

. . . Confidence Intervals...
The Scaled Coefficients view displays the coeffi-

cient estimates, the standardized coefficient esti- Variance Inflation Factors

mates and the elasticity at means. The Coefficient Variance Decomposition
standardized coefficients are the point estimates of
the coefficients standardized by multiplying by the N I
standard deviation of the dependent variable Redundant Variables Test - Likelihoad Ratia...
divided by the standard deviation of the regressor. Factor Breakpaint Test..

Confidence Ellipse...

Wald Test- Coefficient Restrictions. ..

The elasticity at means are the point estimates of
the coefficients scaled by the mean of the dependent variable divided by the mean of the
regressor.

Confidence Intervals and Confidence Ellipses

The Confidence Intervals view displays a table of confidence intervals for each of the coef-
ficients in the equation.

The Confidence Intervals dialog allows you to enter the Confidence Intervals

size of the confidence levels. These can be entered a space -

delimited list of decimals, or as the name of a scalar or vec- 90,95 .99

tor in the workfile containing confidence levels. You can [¥] Arrange in pairs

also choose how you would like to display the confidence

intervals. By default they will be shown in pairs where the Lok ] [Lconca |

low and high values for each confidence level are shown
next to each other. By unchecking the Arrange in pairs checkbox you can choose to display
the confidence intervals concentrically.

The Confidence Ellipse view plots the joint confidence region of any two functions of esti-
mated parameters from an EViews estimation object. Along with the ellipses, you can
choose to display the individual confidence intervals.

We motivate our discussion of this view by pointing out that the Wald test view (View/Coef-
ficient Diagnostics/Wald - Coefficient Restrictions...) allows you to test restrictions on the
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estimated coefficients from an estimation object. When you perform a Wald test, EViews
provides a table of output showing the numeric values associated with the test.

An alternative approach to displaying the results of a Wald test is to display a confidence
interval. For a given test size, say 5%, we may display the one-dimensional interval within
which the test statistic must lie for us not to reject the null hypothesis. Comparing the reali-
zation of the test statistic to the interval corresponds to performing the Wald test.

The one-dimensional confidence interval may be generalized to the case involving two
restrictions, where we form a joint confidence region, or confidence ellipse. The confidence
ellipse may be interpreted as the region in which the realization of two test statistics must lie
for us not to reject the null.

To display confidence ellipses in EViews, simply select View/Coefficient Diagnostics/Confi-
dence Ellipse... from the estimation object toolbar. EViews will display a dialog prompting
you to specify the coefficient restrictions and test size, and to select display options.

The first part of the dialog is identical to that found in [ R oRaTTws =
the Wald test view—here, you will enter your coeffi- Castfitiant srpressians sepamiedl s
cient restrictions into the edit box, with multiple el ). 2T

restrictions separated by commas. The computation eft). ef2). <f3)

of the confidence ellipse requires a minimum of two

restrictions. If you provide more than two restrictions,

EViews will display all unique pairs of confidence Confidence levels Individual intervals
H Example: 0.95 0.90 ) No plat

ellipses. — OLine

() Shade
In this simple example depicted here using equation

EQO1 from the workfile “Cellipse. WF1”, we provide a ok [ Cancel |
(comma separated) list of coefficients from the esti-
mated equation. This description of the restrictions
takes advantage of the fact that EViews interprets any expression without an explicit equal
sign as being equal to zero (so that “C(1)” and “C(1) =0” are equivalent). You may, of
course, enter an explicit restriction involving an equal sign (for example, “C(1) + C(2) =
C(3)/27).

Next, select a size or sizes for the confidence ellipses. Here, we instruct EViews to construct
a 95% confidence ellipse. Under the null hypothesis, the test statistic values will fall outside
of the corresponding confidence ellipse 5% of the time.

Lastly, we choose a display option for the individual confidence intervals. If you select Line
or Shade, EViews will mark the confidence interval for each restriction, allowing you to see,
at a glance, the individual results. Line will display the individual confidence intervals as
dotted lines; Shade will display the confidence intervals as a shaded region. If you select
None, EViews will not display the individual intervals.



178—Chapter 24. Specification and Diagnostic Tests

The output depicts three confidence ellipses that result from pairwise tests implied by the
three restrictions (“C(1) =07, “C(2) =07, and “C(3)=0").

Notice first the presence of the dot-
ted lines showing the corresponding o012
confidence intervals for the individ- ota ]
ual coefficients. ot

c@)

The next thing that jumps out from 0187

this example is that the coefficient
estimates are highly correlated—if

the estimates were independent, the 8] \
-6 5 -4

-.020

-.022

ellipses would be exact circles.

C@®)

You can easily see the importance of
this correlation. For example, focus- 64
ing on the ellipse for C(1) and C(3)

depicted in the lower left-hand cor- ‘ ‘ ‘
ner, an estimated C(1) of -.65 is suf- £
ficient reject the hypothesis that oo ce)

C(1) =0 (since it falls below the end

of the univariate confidence interval). If C(3) =.8, we cannot reject the joint null that
C(1) =0, and C(3) =0 (since C(1) =-.65, C(3) =.8 falls within the confidence ellipse).

EViews allows you to display more than one size for your confidence ellipses. This feature
allows you to draw confidence contours so that you may see how the rejection region
changes at different probability values. To do so, simply enter a space delimited list of confi-
dence levels. Note that while the coefficient restriction expressions must be separated by
commas, the contour levels must be separated by spaces.

Confidence Ellipse ﬁ| o

Coefficient exprezzions separated by commas .80+
Example: C[1], C[3}-2"C(2)

c(2). e(3)
.70
@
o
.65
Confidence levels Individual intervals 604
Example: 0,95 0.90 () Noplot
030705 O'line 551
() Shade
50 T T T T T
-.022 -020 -018 -016 -014 -012 -010
Ok ] [ Cancel ]

C@2)
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Here, the individual confidence intervals are depicted with shading. The individual intervals
are based on the largest size confidence level (which has the widest interval), in this case,
0.9.

Computational Details

Consider two functions of the parameters f,(8) and f,(83), and define the bivariate func-

tion f(B) = (£1(B), f2(B))-

The size « joint confidence ellipse is defined as the set of points b such that:
, -1
(b= f(B))'(V(B) Nb-f(B)) = ¢, (24.1)

where (3 are the parameter estimates, V() is the covariance matrix of 8, and ¢, is the
size « critical value for the related distribution. If the parameter estimates are least-squares
based, the F(2, n— 2) distribution is used; if the parameter estimates are likelihood based,
the x2( 2) distribution will be employed.

The individual intervals are two-sided intervals based on either the ¢-distribution (in the
cases where c,, is computed using the F-distribution), or the normal distribution (where c,
is taken from the X2 distribution).

Variance Inflation Factors

Variance Inflation Factors (VIFs) are a method of measuring the level of collinearity
between the regressors in an equation. VIFs show how much of the variance of a coefficient
estimate of a regressor has been inflated due to collinearity with the other regressors. They
can be calculated by simply dividing the variance of a coefficient estimate by the variance of
that coefficient had other regressors not been included in the equation.

There are two forms of the Variance Inflation Factor: centered and uncentered. The centered
VIF is the ratio of the variance of the coefficient estimate from the original equation divided
by the variance from a coefficient estimate from an equation with only that regressor and a
constant. The uncentered VIF is the ratio of the variance of the coefficient estimate from the
original equation divided by the variance from a coefficient estimate from an equation with
only one regressor (and no constant). Note that if you original equation did not have a con-
stant only the uncentered VIF will be displayed.

The VIF view for EQO1 from the “Cellipse. WF1” workfile contains:
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Variance Inflation Factors
Date: 08/10/09 Time: 14:35
Sample: 1968 1982
Included observations: 15

Coefficient Uncentered
Variable Variance VIF

X1 0.002909 1010.429
X2 3.72E-06 106.8991
X3 0.002894 1690.308
X4 1.43E-06 31.15205
X5 1.74E-06 28.87596

The centered VIF is numerically identical to 1/(1 — RQ) where R’ is the R-squared from
the regression of that regressor on all of the other regressors in the equation.

Note that since the VIFs are calculated from the coefficient variance-covariance matrix, any
robust standard error options will be present in the VIFs.

Coefficient Variance Decomposition

The Coefficient Variance Decomposition view of an equation provides information on the
eigenvector decomposition of the coefficient covariance matrix. This decomposition is a use-
ful tool to help diagnose potential collinearity problems amongst the regressors. The decom-
position calculations follow those given in Belsley, Kuh and Welsch (BKW) 2004 (Section
3.2). Note that although BKW use the singular-value decomposition as their method to
decompose the variance-covariance matrix, since this matrix is a square positive semi-defi-
nite matrix, using the eigenvalue decomposition will yield the same results.

In the case of a simple linear least squares regression, the coefficient variance-covariance
matrix can be decomposed as follows:

var(B) = o(X'X) " = VSV (24.2)

where S is a diagonal matrix containing the eigenvalues of X' X, and V is a matrix whose
columns are equal to the corresponding eigenvectors.

The variance of an individual coefficient estimate is then:

var(B;) = 022 U?j (24.3)
J

where I is the jth eigenvalue, and v, is the (4,7)-th element of V.

We term the j-th condition number of the covariance matrix, «

__min(g,) ey

J ”j

i
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If we let:
2
;=2 (24.5)
K
and
¢, = z%. (24.6)
J
then we can term the variance-decomposition proportion as:
¢,
T = jj (24.7)

These proportions, together with the condition numbers, can then be used as a diagnostic
tool for determining collinearity between each of the coefficients.

Belsley, Kuh and Welsch recommend the following procedure:

e Check the condition numbers of the matrix. A condition number smaller than 1/900
(0.001) could signify the presence of collinearity. Note that BKW use a rule of any
number greater than 30, but base it on the condition numbers of X, rather than
xx".

e [f there are one or more small condition numbers, then the variance-decomposition
proportions should be investigated. Two or more variables with values greater than
0.5 associated with a small condition number indicate the possibility of collinearity
between those two variables.

To view the coefficient variance decomposition in EViews, select View/Coefficient Diagnos-
tics/Coefficient Variance Decomposition. EViews will then display a table showing the
Eigenvalues, Condition Numbers, corresponding Variance Decomposition Proportions and,
for comparison purposes, the corresponding Eigenvectors.

As an example, we estimate an equation using data from Longley (1967), as republished in
Greene (2008). The workfile “Longley. WF1” contains macro economic variables for the US
between 1947 and 1962, and is often used as an example of multicollinearity in a data set.
The equation we estimate regresses Employment on Year (YEAR), the GNP Deflator
(PRICE), GNP, and Armed Forces Size (ARMED). The coefficient variance decomposition for
this equation is show below.
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Coefficient Variance Decomposition
Date: 07/16/09 Time: 12:42
Sample: 1947 1962

Included observations: 16

Eigenvalues 17208.87  0.208842 0.054609  1.88E-07
Condition 109E-11  9.02E-07 345E-06 1.000000

Variance Decomposition Proportions

Associated Eigenvalue

Variable 1 2 3 4
YEAR 0.988939 0.010454 0.000607 2.60E-13
PRICE 1.000000 9.20E-09 5.75E-10  7.03E-19
GNP 0.978760 0.002518 0.017746  0.000975
ARMED 0.037677 0.441984 0.520339 9.31E-11

Eigenvectors

Associated Eigenvalue

Variable 1 2 3 4
YEAR 0.030636 -0.904160 -0.426067 -0.004751
PRICE -0.999531 -0.027528 -0.013451 -0.000253

GNP 0.000105 0.001526  0.007921 -0.999967

ARMED 0.000434 0.426303 -0.904557 -0.006514

The top line of the table shows the eigenvalues, sorted from largest to smallest, with the
condition numbers below. Note that the final condition number is always equal to 1. Three
of the four eigenvalues have condition numbers smaller than 0.001, with the smallest condi-
tion number being very small: 1.09E-11, which would indicate a large amount of collinearity.

The second section of the table displays the decomposition proportions. The proportions
associated with the smallest condition number are located in the first column. Three of these
values are larger than 0.5, indeed they are very close to 1. This indicates that there is a high
level of collinearity between those three variables, YEAR, PRICE and GNP.

Wald Test (Coefficient Restrictions)

The Wald test computes a test statistic based on the unrestricted regression. The Wald statis-
tic measures how close the unrestricted estimates come to satisfying the restrictions under
the null hypothesis. If the restrictions are in fact true, then the unrestricted estimates should
come close to satisfying the restrictions.
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How to Perform Wald Coefficient Tests

To demonstrate the calculation of Wald tests in EViews, we consider simple examples. Sup-
pose a Cobb-Douglas production function has been estimated in the form:

log@ = A+ alogL + BlogK + ¢, (24.8)

where (), K and L denote value-added output and the inputs of capital and labor respec-
tively. The hypothesis of constant returns to scale is then tested by the restriction:
a+B =1.

Estimation of the Cobb-Douglas production function using annual data from 1947 to 1971 in
the workfile “Coef_test. WF1” provided the following result:

Dependent Variable: LOG(Q)
Method: Least Squares
Date: 08/10/09 Time: 11:46
Sample: 1947 1971

Included observations: 25

Variable Coefficient Std. Error t-Statistic Prob.
Cc -2.327939 0410601  -5.669595 0.0000
LOG(L) 1.591175 0.167740 9.485970 0.0000
LOG(K) 0.239604 0.105390 2273498 0.0331
R-squared 0.983672 Mean dependent var 4767586
Adjusted R-squared 0.982187 S.D. dependent var 0.326086
S.E. of regression 0.043521 Akaike info criterion -3.318997
Sum squared resid 0.041669 Schwarz criterion -3.172732
Log likelihood 44.48746 Hannan-Quinn criter. -3.278429
F-statistic 662.6819 Durbin-Watson stat 0.637300
Prob(F-statistic) 0.000000

The sum of the coefficients on LOG(L) and LOG(K) appears to be in excess of one, but to
determine whether the difference is statistically relevant, we will conduct the hypothesis test
of constant returns.

To carry out a Wald test, choose View/Coefficient Diagnostics/Wald-Coefficient Restric-
tions... from the equation toolbar. Enter the restrictions into the edit box, with multiple
coefficient restrictions separated by commas. The restrictions should be expressed as equa-
tions involving the estimated coefficients and constants. The coefficients should be referred
to as C(1), C(2), and so on, unless you have used a different coefficient vector in estimation.

If you enter a restriction that involves a series name, EViews will prompt you to enter an
observation at which the test statistic will be evaluated. The value of the series will at that
period will be treated as a constant for purposes of constructing the test statistic.

To test the hypothesis of constant returns to scale, type the following restriction in the dialog
box:
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c(2) + c(3) =1
and click OK. EViews reports the following result of the Wald test:
Wald Test:

Equation: EQ1
Null Hyp othesis: C(2) + C(3) = 1

Test Statistic Value df Probability
t-statistic 10.95526 22 0.0000
F-statistic 120.0177 (1, 22) 0.0000
Chi-square 120.0177 1 0.0000

Null Hyp othesis Summary:

Normalized Restriction (= 0) Value Std. Err.

-1 +C(2) + C(3) 0.830779  0.075834

Restrictions are linear in coefficients.

EViews reports an F-statistic and a Chi-square statistic with associated p-values. In cases
with a single restriction, EViews reports the {-statistic equivalent of the F-statistic. See
“Wald Test Details” on page 187 for a discussion of these statistics. In addition, EViews
reports the value of the normalized (homogeneous) restriction and an associated standard
error. In this example, we have a single linear restriction so the F-statistic and Chi-square
statistic are identical, with the p-value indicating that we can decisively reject the null
hypothesis of constant returns to scale.

To test more than one restriction, separate the restrictions by commas. For example, to test
the hypothesis that the elasticity of output with respect to labor is 2/3 and the elasticity with
respect to capital is 1/3, enter the restrictions as,

c(2)=2/3, c(3)=1/3

and EViews reports:
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Wald Test:
Equation: EQ1
Null Hyp othesis: C(2)=2/3, C(3)=1/3

Test Statistic Value df Probability
F-statistic 106.6113 (2, 22) 0.0000
Chi-square 213.2226 2 0.0000

Null Hyp othesis Summary:

Normalized Restriction (= 0) Value Std. Err.
-2/3+ C(2) 0.924508 0.167740
-1/3+ C(3) -0.093729 0.105390

Restrictions are linear in coefficients.

Note that in addition to the test statistic summary, we report the values of both of the nor-
malized restrictions, along with their standard errors (the square roots of the diagonal ele-
ments of the restriction covariance matrix).

As an example of a nonlinear model with a nonlinear restriction, we estimate a general pro-
duction function of the form:

log @ = B, + Bolog(BsK" + (1 - B5) L") + e (24.9)

and test the constant elasticity of substitution (CES) production function restriction
B, = 1/06,. This is an example of a nonlinear restriction. To estimate the (unrestricted)
nonlinear model, you may initialize the parameters using the command

param c(l) -2.6 c(2) 1.8 c(3) le-4 c(4) -6
then select Quick/Estimate Equation... and then estimate the following specification:
log(g) = c(1l) + c(2)*log(c(3)*k"c(4)+(1-c(3))*1"c(4))

to obtain
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Dependent Variable: LOG(Q)

Method: Least Squares

Date: 08/10/09 Time: 13:39

Sample: 1947 1971

Included observations: 25

Convergence achieved after 288 iterations
LOG(Q)=C(1)+C(2)*LOG( C(3)*KAC(4)+(1-C(3))*L C(4) )

Coefficient Std. Error t-Statistic Prob.

C(1) -2.655953 0.337610  -7.866935 0.0000

C(2) -0.301579 0.245596  -1.227944 0.2331

C(3) 4.37E-05 0.000318 0.137553 0.8919

C(4) -6.121195 5.100604  -1.200092 02435
R-squared 0.985325 Mean dependent var 4.767586
Adjusted R-squared 0.983229 S.D. dependent var 0.326086
S.E. of regression 0.042229 Akaike info criterion -3.345760
Sum squared resid 0.037450 Schwarz criterion -3.150740
Log likelihood 45.82200 Hannan-Quinn criter. -3.291670
F-statistic 470.0092 Durbin-Watson stat 0.725156
Prob(F-statistic) 0.000000

To test the nonlinear restriction 8, = 1/8,, choose View/Coefficient Diagnostics/Wald-
Coefficient Restrictions... from the equation toolbar and type the following restriction in
the Wald Test dialog box:

c(2)=1/c(4)
The results are presented below:
Wald Test:

Equation: Untitled
Null Hypothesis: C(2) = 1/C(4)

Test Statistic Value df Probability
t-statistic -1.259105 21 0.2218
F-statistic 1.5685344 (1,21) 0.2218
Chi-square 1.585344 1 0.2080

Null Hyp othesis Summary:

Normalized Restriction (= 0) Value Std. Err.

C(2)- 1/C(4) 0138212 0.109770

Delta method computed using analytic derivatives.

We focus on the p-values for the statistics which show that we fail to reject the null hypoth-
esis. Note that EViews reports that it used the delta method (with analytic derivatives) to
compute the Wald restriction variance for the nonlinear restriction.
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It is well-known that nonlinear Wald tests are not invariant to the way that you specify the
nonlinear restrictions. In this example, the nonlinear restriction 8, = 1/, may equiva-
lently be written as 8,8, = 1 or 8, = 1/, (for nonzero 8, and 3, ). For example,
entering the restriction as,

c(2)*c(4)=1

yields:

Wald Test:
Equation: Untitled
Null Hyp othesis: C(2)*C(4)=1

Test Statistic Value df Probability
t-statistic 11.11048 21 0.0000
F-statistic 123.4427 (1, 21) 0.0000
Chi-square 123.4427 1 0.0000

Null Hyp othesis Summary:

Normalized Restriction (= 0) Value Std. Err.

-1 +C(2)*C(4) 0.846022  0.076146

Delta method computed using analytic derivatives.

so that the test now decisively rejects the null hypothesis. We hasten to add that this type of
inconsistency in results is not unique to EViews, but is a more general property of the Wald
test. Unfortunately, there does not seem to be a general solution to this problem (see David-
son and MacKinnon, 1993, Chapter 13).

Wald Test Details

Consider a general nonlinear regression model:
y = f(B)+e (24.10)

where y and e are T-vectors and (3 is a k-vector of parameters to be estimated. Any
restrictions on the parameters can be written as:

Hy: g(B) =0, (24.11)

where g is a smooth function, ¢: R' > R", imposing ¢ restrictions on 3. The Wald statis-
tic is then computed as:

W = o8) (242 v L) o), (24.12)
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where T is the number of observations and b is the vector of unrestricted parameter esti-
mates, and where V is an estimate of the b covariance. In the standard regression case, V
is given by:

V(b) = s (Z 28 op (24.13)

where u is the vector of unrestricted residuals, and s” is the usual estimator of the unre-
stricted residual variance, § = (uw'u)/ (N - k), but the estimator of V' may differ. For
example, ¥ may be a robust variance matrix estimator computing using White or Newey-
West techniques.

8f(6)8f(ﬁq

More formally, under the null hypothesis H,, the Wald statistic has an asymptotic XQ( q)
distribution, where ¢ is the number of restrictions under H, .

For the textbook case of a linear regression model,
= XB+e (24.14)
and linear restrictions:

Hy: RB-r =0, (24.15)

where R is a known ¢ x k matrix, and r is a g-vector, respectively. The Wald statistic in
Equation (24.12) reduces to:

1 -1
W = (Rb—r)’(Rsz(X’X) R'Y (Rb-1), (24.16)
which is asymptotically distributed as x2(q) under H,.

If we further assume that the errors € are independent and identically normally distributed,
we have an exact, finite sample F-statistic:
(v'w—u'u)/q

F‘q WO (T-F)’

(24.17)
where 7 is the vector of residuals from the restricted regression. In this case, the F-statistic
compares the residual sum of squares computed with and without the restrictions imposed.

We remind you that the expression for the finite sample F-statistic in (24.17) is for standard
linear regression, and is not valid for more general cases (nonlinear models, ARMA specifi-
cations, or equations where the variances are estimated using other methods such as
Newey-West or White). In non-standard settings, the reported F-statistic (which EViews
always computes as W/ ¢q), does not possess the desired finite-sample properties. In these
cases, while asymptotically valid, F*statistic (and corresponding #-statistic) results should be
viewed as illustrative and for comparison purposes only.
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Omitted Variables

This test enables you to add a set of variables to an existing equation and to ask whether the
set makes a significant contribution to explaining the variation in the dependent variable.
The null hypothesis H, is that the additional set of regressors are not jointly significant.

The output from the test is an F-statistic and a likelihood ratio (LR) statistic with associated
p-values, together with the estimation results of the unrestricted model under the alterna-
tive. The F-statistic is based on the difference between the residual sums of squares of the
restricted and unrestricted regressions and is only valid in linear regression based settings.
The LR statistic is computed as:

LR = -2(1,— 1) (24.18)

where [, and /, are the maximized values of the (Gaussian) log likelihood function of the
unrestricted and restricted regressions, respectively. Under H,, the LR statistic has an
asymptotic x2 distribution with degrees of freedom equal to the number of restrictions (the
number of added variables).

Bear in mind that:

e The omitted variables test requires that the same number of observations exist in the
original and test equations. If any of the series to be added contain missing observa-
tions over the sample of the original equation (which will often be the case when you
add lagged variables), the test statistics cannot be constructed.

¢ The omitted variables test can be applied to equations estimated with linear LS, ARCH
(mean equation only), binary, ordered, censored, truncated, and count models. The
test is available only if you specify the equation by listing the regressors, not by a for-
mula.

¢ Equations estimated by Two-Stage Least Squares and GMM offer a variant of this test

based on the difference in J-statistics.

To perform an LR test in these settings, you can estimate a separate equation for the unre-
stricted and restricted models over a common sample, and evaluate the LR statistic and p-
value using scalars and the @cchisq function, as described above.

How to Perform an Omitted Variables Test

To test for omitted variables, select View/Coefficient Diagnostics/Omitted Variables-Like-
lihood Ratio... In the dialog that opens, list the names of the test variables, each separated
by at least one space. Suppose, for example, that the initial regression specification is:

log(q) c log(l) log (k)
If you enter the list:

log(1)*2 log (k) "2



190—Chapter 24. Specification and Diagnostic Tests

in the dialog, then EViews reports the results of the unrestricted regression containing the
two additional explanatory variables, and displays statistics testing the hypothesis that the
coefficients on the new variables are jointly zero. The top part of the output depicts the test
results (the bottom portion shows the estimated test equation):

Omitted Variables Test

Equation: EQ1

Specification: LOG(Q) C LOG(L) LOG(K)
Omitted Variables: LOG (L)*2 LOG(K)"2

Value df Probability
F-statistic 2.490982 (2, 20) 0.1082
Likelihood ratio 5.560546 2 0.0620
F+test summary:

Mean
Sum of Sq. df Squares

Test SSR 0.008310 2 0.004155
Restricted SSR 0.041669 22 0.001894
Unrestricted SSR 0.033359 20 0.001668
Unrestricted SSR 0.033359 20 0.001668
LR test summary:

Value df
Restricted LogL 44.48746 22
Unrestricted LogL 47.26774 20

The F-statistic has an exact finite sample F-distribution under H,, for linear models if the
errors are independent and identically distributed normal random variables. The numerator
degrees of freedom is the number of additional regressors and the denominator degrees of
freedom is the number of observations less the total number of regressors. The log likeli-
hood ratio statistic is the LR test statistic and is asymptotically distributed as a X2 with
degrees of freedom equal to the number of added regressors.

In our example, neither test rejects the null hypothesis that the two series do not belong to
the equation at a 5% significance level.

Redundant Variables

The redundant variables test allows you to test for the statistical significance of a subset of
your included variables. More formally, the test is for whether a subset of variables in an
equation all have zero coefficients and might thus be deleted from the equation. The redun-
dant variables test can be applied to equations estimated by linear LS, TSLS, ARCH (mean
equation only), binary, ordered, censored, truncated, and count methods. The test is avail-
able only if you specify the equation by listing the regressors, not by a formula.

How to Perform a Redundant Variables Test

To test for redundant variables, select View/Coefficient Diagnostics/Redundant Variables-
Likelihood Ratio... In the dialog that appears, list the names of each of the test variables,
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separated by at least one space. Suppose, for example, that the initial regression specifica-
tion is:

log(g) c log(l) log(k) log(l)"2 log(k)"2
If you type the list:

log(l) "2 log(k)"2

in the dialog, then EViews reports the results of the restricted regression dropping the two
regressors, followed by the statistics associated with the test of the hypothesis that the coef-
ficients on the two variables are jointly zero. The top portion of the output is:

Redundant Variables Test

Equation: EQ1

Specification: LOG(Q) C LOG(L) LOG(K) LOG(L)*2 LOG(K)"2
Redundant Variables: LOG(L)"2 LOG(K)*2

Value df Probability
F-statistic 2.490982 (2, 20) 0.1082
Likelihood ratio 5.560546 2 0.0620
F-test summary:

Mean
Sum of Sq. df Squares

Test SSR 0.008310 2 0.004155
Restricted SSR 0.041669 22 0.001894
Unrestricted SSR 0.033359 20 0.001668
Unrestricted SSR 0.033359 20 0.001668
LR test summary:

Value df
Restricted LogL 44.48746 22
Unrestricted LogL 47.26774 20

The reported test statistics are the F-statistic and the Log likelihood ratio. The F-statistic has
an exact finite sample F-distribution under H,, if the errors are independent and identically
distributed normal random variables and the model is linear. The numerator degrees of free-
dom are given by the number of coefficient restrictions in the null hypothesis. The denomi-
nator degrees of freedom are given by the total regression degrees of freedom. The LR test is
an asymptotic test, distributed as a X2 with degrees of freedom equal to the number of
excluded variables under H, . In this case, there are two degrees of freedom.

Factor Breakpoint Test

The Factor Breakpoint test splits an estimated equation's sample into a number of subsam-
ples classified by one or more variables and examines whether there are significant differ-
ences in equations estimated in each of those subsamples. A significant difference indicates
a structural change in the relationship. For example, you can use this test to examine
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whether the demand function for energy differs between the different states of the USA. The
test may be used with least squares and two-stage least squares regressions.

By default the Factor Breakpoint test tests whether there is a structural change in all of the
equation parameters. However if the equation is linear EViews allows you to test whether
there has been a structural change in a subset of the parameters.

To carry out the test, we partition the data by splitting the estimation sample into subsam-
ples of each unique value of the classification variable. Each subsample must contain more
observations than the number of coefficients in the equation so that the equation can be
estimated. The Factor Breakpoint test compares the sum of squared residuals obtained by fit-
ting a single equation to the entire sample with the sum of squared residuals obtained when
separate equations are fit to each subsample of the data.

EViews reports three test statistics for the Factor Breakpoint test. The F-statistic is based on
the comparison of the restricted and unrestricted sum of squared residuals and in the sim-
plest case involving two subsamples, is computed as:
(00— (uy g + uy' uy))/ k
T (uyuy + uyuy) /(T = 2k)

(24.19)

where %' is the restricted sum of squared residuals, u,’u; is the sum of squared residuals
from subsample i, T is the total number of observations, and & is the number of parame-
ters in the equation. This formula can be generalized naturally to more than two subsam-
ples. The F-statistic has an exact finite sample F-distribution if the errors are independent
and identically distributed normal random variables.

The log likelihood ratio statistic is based on the comparison of the restricted and unrestricted
maximum of the (Gaussian) log likelihood function. The LR test statistic has an asymptotic
X2 distribution with degrees of freedom equal to (m — 1)k under the null hypothesis of no
structural change, where m is the number of subsamples.

The Wald statistic is computed from a standard Wald test of the restriction that the coeffi-
cients on the equation parameters are the same in all subsamples. As with the log likelihood
ratio statistic, the Wald statistic has an asymptotic Xz distribution with (m — 1)k degrees of
freedom, where m is the number of subsamples.
For example, suppose we have estimated an equation specification of

lwage c¢ grade age high

using data from the “Cps88.WF1” workfile.
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From this equation we can investigate whether Factor Breakpoint Test X
the coefficient estimates on the wage equation
differ by union membership and marriage status
by using the UNION and MARRIED variables in a
factor breakpoint test. To apply the breakpoint
test, push View/Coefficient Diagnostics/Factor B e ey e leelyahis
Breakpoint Test... on the equation toolbar. In the < grade age high

dialog that appears, list the series that will be
used to classify the equation into subsamples.
Since UNION contains values representing either
union or non-union and MARRIED contains val-
ues for married and single, entering “union mar-
ried” will specify 4 subsamples: non-union/
married, non-union/single, union/married, and union/single. In the bottom portion of the
dialog we indicate the names of the regressors that should be allowed to vary across break-
points. By default, all of the variables will be allowed to vary.

Enter one or more breakpoint Factors

union married

This test yields the following result:

Factor Breakpoint Test: UNION MARRIED

Null Hypothesis: No breaks at specified breakpoints
Varying regressors: All equation variables

Equation Sample: 1 1000

F-statistic 6.227078 Prob. F(12,984) 0.0000
Log likelihood ratio 73.19468 Prob. Chi-Square(12) 0.0000
Wald Statistic 74.72494 Prob. Chi-Square(12) 0.0000
Factor values: UNION = non-union, MARRIED = single

UNION = non-union, MARRIED =

married

UNION = union, MARRIED = single
UNION = union, MARRIED = married

Note all three statistics decisively reject the null hypothesis.

Residual Diagnostics

EViews provides tests for serial correlation, normality, heteroskedasticity, and autoregressive
conditional heteroskedasticity in the residuals from your estimated equation. Not all of these
tests are available for every specification.

Correlograms and Q-statistics Corelogram - Qstatistcs..
Correlogram Squared Residuals...

This view displays the autocorrelations and partial autocor- Histogram - Normality Test

relations of the equation residuals up to the specified number SetiallcanelationlTMiTe-t2

Heteroskedasticity Tests...
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of lags. Further details on these statistics and the Ljung-Box (J-statistics that are also com-
puted are provided in “Q-Statistics” on page 422 in User’s Guide I.

This view is available for the residuals from least squares, two-stage least squares, nonlinear
least squares and binary, ordered, censored, and count models. In calculating the probability
values for the @)-statistics, the degrees of freedom are adjusted to account for estimated
ARMA terms.

To display the correlograms and ()-statistics, push View/Residual Diagnostics/Correlo-
gram-Q-statistics on the equation toolbar. In the Lag Specification dialog box, specify the
number of lags you wish to use in computing the correlogram.

Correlograms of Squared Residuals

This view displays the autocorrelations and partial autocorrelations of the squared residuals
up to any specified number of lags and computes the Ljung-Box @-statistics for the corre-
sponding lags. The correlograms of the squared residuals can be used to check autoregres-
sive conditional heteroskedasticity (ARCH) in the residuals; see also “ARCH LM Test” on
page 198, below.

If there is no ARCH in the residuals, the autocorrelations and partial autocorrelations should
be zero at all lags and the @)-statistics should not be significant; see “Q-Statistics” on
page 422 of User’s Guide I, for a discussion of the correlograms and ()-statistics.

This view is available for equations estimated by least squares, two-stage least squares, and
nonlinear least squares estimation. In calculating the probability for @-statistics, the degrees
of freedom are adjusted for the inclusion of ARMA terms.

To display the correlograms and @)-statistics of the squared residuals, push View/Residual
Diagnostics/Correlogram Squared Residuals on the equation toolbar. In the Lag Specifica-
tion dialog box that opens, specify the number of lags over which to compute the correlo-
grams.

Histogram and Normality Test

This view displays a histogram and descriptive statistics of the residuals, including the
Jarque-Bera statistic for testing normality. If the residuals are normally distributed, the histo-
gram should be bell-shaped and the Jarque-Bera statistic should not be significant; see “His-
togram and Stats” on page 402 of User’s Guide I, for a discussion of the Jarque-Bera test.

To display the histogram and Jarque-Bera statistic, select View/Residual Diagnostics/Histo-
gram-Normality. The Jarque-Bera statistic has a X2 distribution with two degrees of free-
dom under the null hypothesis of normally distributed errors.
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Serial Correlation LM Test

This test is an alternative to the @-statistics for testing serial correlation. The test belongs to
the class of asymptotic (large sample) tests known as Lagrange multiplier (LM) tests.

Unlike the Durbin-Watson statistic for AR(1) errors, the LM test may be used to test for
higher order ARMA errors and is applicable whether there are lagged dependent variables or
not. Therefore, we recommend its use (in preference to the DW statistic) whenever you are
concerned with the possibility that your errors exhibit autocorrelation.

The null hypothesis of the LM test is that there is no serial correlation up to lag order p,
where p is a pre-specified integer. The local alternative is ARMA(r, q) errors, where the
number of lag terms p =max(7, ¢). Note that this alternative includes both AR(p) and
MA(p) error processes, so that the test may have power against a variety of alternative
autocorrelation structures. See Godfrey (1988), for further discussion.

The test statistic is computed by an auxiliary regression as follows. First, suppose you have
estimated the regression;

Yy = X6 +e¢ (24.20)

where b are the estimated coefficients and e are the errors. The test statistic for lag order p
is based on the auxiliary regression for the residuals e = y— X :

P
e, = Xy + [ > ozsets] + v, (24.21)

s=1

Following the suggestion by Davidson and MacKinnon (1993), EViews sets any presample
values of the residuals to 0. This approach does not affect the asymptotic distribution of the
statistic, and Davidson and MacKinnon argue that doing so provides a test statistic which
has better finite sample properties than an approach which drops the initial observations.

This is a regression of the residuals on the original regressors X and lagged residuals up to
order p . EViews reports two test statistics from this test regression. The F*statistic is an
omitted variable test for the joint significance of all lagged residuals. Because the omitted
variables are residuals and not independent variables, the exact finite sample distribution of
the [Fstatistic under H, is still not known, but we present the F*statistic for comparison
purposes.

The Obs*R-squared statistic is the Breusch-Godfrey LM test statistic. This LM statistic is

computed as the number of observations, times the (uncentered) R2 from the test regres-

sion. Under quite general conditions, the LM test statistic is asymptotically distributed as a
2

x (p).

The serial correlation LM test is available for residuals from either least squares or two-stage
least squares estimation. The original regression may include AR and MA terms, in which
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case the test regression will be modified to take account of the ARMA terms. Testing in 2SLS
settings involves additional complications, see Wooldridge (1990) for details.

To carry out the test, push View/Residual Diagnostics/Serial [ — X
Correlation LM Test... on the equation toolbar and specify the

highest order of the AR or MA process that might describe the Lags ta include: | 2
serial correlation. If the test indicates serial correlation in the

residuals, LS standard errors are invalid and should not be used

for inference.

To illustrate, consider the macroeconomic data in our
“Basics.WF1” workfile. We begin by regressing money supply M1 on a constant, contempo-
raneous industrial production IP and three lags of IP using the equation specification

ml ¢ ip(0 to -3)

The serial correlation LM test results for this equation with 2 lags in the test equation
strongly reject the null of no serial correlation:

Breusch-Godfrey Serial Comelation LM Test:

F-statistic 25280.60 Prob. F(2,353) 0.0000
Obs*R-squared 357.5040 Prob. Chi-Square(2) 0.0000
Test Equation:

Dependent Variable: RESID

Method: Least Squares

Date: 08/10/09 Time: 14:58

Sample: 1960M01 1989M12

Included observations: 360

Presample missing value lagged residuals set to zero.

Variable Coefficient ~ Std. Error t-Statistic Prob.
Cc -0.584837 1294016  -0.451955 0.6516
P -11.36147 0599613  -18.94800 0.0000
IP(-1) 17.13281 1.110223 15.43187 0.0000
IP(-2) -5.029158 1241122 -4.052107 0.0001
IP(-3) -0.717490 0.629348  -1.140054 0.2550
RESID(-1) 1.158582 0.051233 2261410 0.0000
RESID(-2) -0.156513 0.051610  -3.032587 0.0026
R-squared 0.993067 Mean dependent var -6.00E-15
Adjusted R-squared 0.992949 S.D. dependent var 76.48159
S.E. of regression 6.422212  Akaike info criterion 6.576655
Sum squared resid 1455942 Schwarz criterion 6.652218
Log likelihood -1176.798 Hannan-Quinn criter. 6.6067 00
F-statistic 8426.868 Durbin-Watson stat 1582614

Prob(F-statistic) 0.000000
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Heteroskedasticity Tests

This set of tests allows you to test for a range of specifications of heteroskedasticity in the
residuals of your equation. Ordinary least squares estimates are consistent in the presence of
heteroskedasticity, but the conventional computed standard errors are no longer valid. If you
find evidence of heteroskedasticity, you should either choose the robust standard errors
option to correct the standard errors (see “Heteroskedasticity Consistent Covariances” on
page 33) or you should model the heteroskedasticity to obtain more efficient estimates using
weighted least squares.

EViews lets you employ a number of different heteroskedasticity tests, or to use our custom
test wizard to test for departures from heteroskedasticity using a combination of methods.
Each of these tests involve performing an auxiliary regression using the residuals from the
original equation. These tests are available for equations estimated by least squares, two-
stage least squares, and nonlinear least squares. The individual tests are outlined below.

Breusch-Pagan-Godfrey (BPG)

The Breusch-Pagan-Godfrey test (see Breusch-Pagan, 1979, and Godfrey, 1978) is a Lagrange
multiplier test of the null hypothesis of no heteroskedasticity against heteroskedasticity of

the form af = o”h( z,/'a), where z, is a vector of independent variables. Usually this vec-
tor contains the regressors from the original least squares regression, but it is not necessary.

The test is performed by completing an auxiliary regression of the squared residuals from
the original equation on (1, z,) . The explained sum of squares from this auxiliary regres-
sion is then divided by 26~ to give an LM statistic, which follows a X2 -distribution with
degrees of freedom equal to the number of variables in z under the null hypothesis of no
heteroskedasticity. Koenker (1981) suggested that a more easily computed statistic of Obs*R-
squared (where R2 is from the auxiliary regression) be used. Koenker's statistic is also dis-
tributed as a x2 with degrees of freedom equal to the number of variables in z. Along with
these two statistics, EViews also quotes an F-statistic for a redundant variable test for the
joint significance of the variables in z in the auxiliary regression.

As an example of a BPG test suppose we had an original equation of
log(ml) = c(l) + c(2)*log(ip) + c(3)*tb3

and we believed that there was heteroskedasticity in the residuals that depended on a func-
tion of LOG(IP) and TB3, then the following auxiliary regression could be performed

resid”2 = c (1) + c(2)*log(ip) + c(3)*tb3
Note that both the ARCH and White tests outlined below can be seen as Breusch-Pagan-God-

frey type tests, since both are auxiliary regressions of the squared residuals on a set of
regressors and a constant.
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Harvey

The Harvey (1976) test for heteroskedasticity is similar to the Breusch-Pagan-Godfrey test.
However Harvey tests a null hypothesis of no heteroskedasticity against heteroskedasticity
of the form of 07 = exp(z a), where, again, z, is a vector of independent variables.

To test for this form of heteroskedasticity, an auxiliary regression of the log of the original
equation's squared residuals on (1, z,) is performed. The LM statistic is then the explained
sum of squares from the auxiliary regression divided by ¢'(0.5), the derivative of the log
gamma function evaluated at 0.5. This statistic is distributed as a x2 with degrees of free-
dom equal to the number of variables in z. EViews also quotes the Obs*R-squared statistic,
and the redundant variable F-statistic.

Glejser

The Glejser (1969) test is also similar to the Breusch-Pagan-Godfrey test. This test tests
against an alternative hypothesis of heteroskedasticity of the form 0? = (a2 + 7/ a)m with
m = 1, 2. The auxiliary regression that Glejser proposes regresses the absolute value of
the residuals from the original equation upon (1, z,) . An LM statistic can be formed by
dividing the explained sum of squares from this auxiliary regression by ((1 -2/ 7r)&2) . As
with the previous tests, this statistic is distributed from a chi-squared distribution with
degrees of freedom equal to the number of variables in z. EViews also quotes the Obs*R-
squared statistic, and the redundant variable F-statistic.

ARCH LM Test

The ARCH test is a Lagrange multiplier (LM) test for autoregressive conditional heteroske-
dasticity (ARCH) in the residuals (Engle 1982). This particular heteroskedasticity specifica-
tion was motivated by the observation that in many financial time series, the magnitude of
residuals appeared to be related to the magnitude of recent residuals. ARCH in itself does not
invalidate standard LS inference. However, ignoring ARCH effects may result in loss of effi-
ciency; see Chapter 25. “ARCH and GARCH Estimation,” on page 243 for a discussion of esti-
mation of ARCH models in EViews.

The ARCH LM test statistic is computed from an auxiliary test regression. To test the null
hypothesis that there is no ARCH up to order ¢ in the residuals, we run the regression:

q
e = By+ ( ) 6563_,} + v, (24.22)

s=1

where e is the residual. This is a regression of the squared residuals on a constant and
lagged squared residuals up to order q. EViews reports two test statistics from this test
regression. The F-statistic is an omitted variable test for the joint significance of all lagged
squared residuals. The Obs*R-squared statistic is Engle’s LM test statistic, computed as the
number of observations times the R’ from the test regression. The exact finite sample distri-
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bution of the F-statistic under H,, is not known, but the LM test statistic is asymptotically
distributed as a X2(q) under quite general conditions.

White's Heteroskedasticity Test

White’s (1980) test is a test of the null hypothesis of no heteroskedasticity against heteroske-
dasticity of unknown, general form. The test statistic is computed by an auxiliary regression,
where we regress the squared residuals on all possible (nonredundant) cross products of the
regressors. For example, suppose we estimated the following regression:

Y, = b+ byx, + byz, + e (24.23)

where the b are the estimated parameters and e the residual. The test statistic is then based
on the auxiliary regression:

2 2 2
€, = gt o T+ oyt ol oy ATz + v, (24.24)

Prior to EViews 6, White tests always included the level values of the regressors (i.e. the
cross product of the regressors and a constant) whether the original regression included a
constant term. This is no longer the case—level values are only included if the original
regression included a constant.

EViews reports three test statistics from the test regression. The F-statistic is a redundant
variable test for the joint significance of all cross products, excluding the constant. It is pre-
sented for comparison purposes.

The Obs*R-squared statistic is White’s test statistic, computed as the number of observa-
tions times the centered R” from the test regression. The exact finite sample distribution of
the Fstatistic under H, is not known, but White’s test statistic is asymptotically distributed
asa X2 with degrees of freedom equal to the number of slope coefficients (excluding the
constant) in the test regression.

The third statistic, an LM statistic, is the explained sum of squares from the auxiliary regres-
sion divided by 284 . This, too, is distributed as chi-squared distribution with degrees of
freedom equal to the number of slope coefficients (minus the constant) in the auxiliary
regression.

White also describes this approach as a general test for model misspecification, since the
null hypothesis underlying the test assumes that the errors are both homoskedastic and
independent of the regressors, and that the linear specification of the model is correct. Fail-
ure of any one of these conditions could lead to a significant test statistic. Conversely, a non-
significant test statistic implies that none of the three conditions is violated.

When there are redundant cross-products, EViews automatically drops them from the test
regression. For example, the square of a dummy variable is the dummy variable itself, so
EViews drops the squared term to avoid perfect collinearity.
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Performing a test for Heteroskedasticity in EViews

To carry out any of the heteroskedasticity tests, select View/Residual Diagnostics/Het-
eroskedasticity Tests. This will bring you to the following dialog:

Heteroskedasticity Tests g|
Specification
Tesk bype:
Ereusch-Pagan-Godrey Dependent: variable: RESID"Z
Harwvey
Glejser The Breusch-Pagan-Godfrey Test
ARCH regresses the squared residuals on the
‘white original regressors by default,

Custom Test Wizard. .

Regressors:
Add equation
regressors

You may choose which type of test to perform by clicking on the name in the Test type box.
The remainder of the dialog will change, allowing you to specify various options for the
selected test.

The BPG, Harvey and Glejser tests allow you to specify which variables to use in the auxil-
iary regression. Note that you may choose to add all of the variables used in the original
equation by pressing the Add equation regressors button. If the original equation was non-
linear this button will add the coefficient gradients from that equation. Individual gradients
can be added by using the @grad keyword to add the ¢-th gradient (e.g., “@grad(2)”).

The ARCH test simply lets you specify the number of lags to include for the ARCH specifica-
tion.

The White test lets you choose whether to include cross terms or no cross terms using the
Include cross terms checkbox. The cross terms version of the test is the original version of
White's test that includes all of the cross product terms. However, the number of cross-prod-
uct terms increases with the square of the number of right-hand side variables in the regres-
sion; with large numbers of regressors, it may not be practical to include all of these terms.
The no cross terms specification runs the test regression using only squares of the regres-
SOrS.

The Custom Test Wizard lets you combine or specify in greater detail the various tests. The
following example, using EQ1 from the “Basics.WF1” workfile, shows how to use the Cus-
tom Wizard. The equation has the following specification:

log(ml) = c(l) + c(2)*log(ip) + c(3)*tb3
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The first page of the wizard allows you to choose which transformation of the residuals you
want to use as the dependent variable in the auxiliary regression. Note this is really a choice
between doing a Breusch-Pagan-Godfrey, a Harvey, or a Glejser type test. In our example we
choose to use the LOG of the squared residuals:

Heteroskedasticity Test Wizand g|

Specify dependent variable
-Step 1 of 5

‘Welcome to the Heteroskedasticity Test Wizard

This wizard will help vou set up a custom test For heteroskedasticity from
the class of tests based upon auxiliary residual regressions,

To beqin, please specify a transformation of the Dependent variable
residual series which will be used as the
dependent variable in the regression, RESID#2

Make this is a choice between Breusch-
Pagan-Godfrey, Harvey and Glejser bype tests,
The standard White and ARCH tests use
RESID™Z as the dependent variable,

[ ek ][ Cancel ]

Once you have chosen a dependent variable, click on Next. Step two of the wizard lets you
decide whether to include a White specification. If you check the Include White specifica-
tion checkbox and click on Next, EViews will display the White Specification page which

lets you specify options for the test. If you do not elect to include a White specification and
click on Next, EViews will skip the White Specification page, and continue on to the next

section of the wizard.
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Heteroskedasticity Test Wizand g|

Specify White terms
-Step 2 of 5

Type of White Test

Custom Test A4
Specification

. Enter the list of variables to be
« loglip) th3 included as White regressors in
the auxiliary regression. The
keyword @REGS may be used
to specify every variable in the
original regression,

Use cross kerms

[ < Back ” ek ][ Cancel ]

There are two parts to the dialog. In the upper section you may use the Type of White Test
dropdown menu to select the basic test.

You may choose to include cross terms or not, whether to run  [Standard Test (cross terms)
. . . Standard Test {no cross terms)
an EViews 5 compatible test (as noted above, the auxiliary V5 Compatible Test (cross terms)
. . . . . . Y5 Compatible Test (no cross terms)
regression run by EViews differs slightly in Version 6 and Custom Test

later when there is no constant in the original equation), or,

by choosing Custom, whether to include a set of variables not identical to those used in the
original equation. The custom test allows you to perform a test where you include the
squares and cross products of an arbitrary set of regressors. Note if you when you provide a
set of variables that differs from those in the original equation, the test is no longer a White
test, but could still be a valid test for heteroskedasticity. For our example we choose to
include C and LOG(IP) as regressors, and choose to use cross terms.

Click on Next to continue to the next section of the wizard. EViews prompts you for whether
you wish to add any other variables as part of a Harvey (Breusch-Pagan-Godfrey/Harvey/
Glejser) specification. If you elect to do so, EViews will display a dialog prompting you to
add additional regressors. Note that if you have already included a White specification and
your original equation had a constant term, your auxiliary regression will already include
level values of the original equation regressors (since the cross-product of the constant term
and those regressors is their level values). In our example we choose to add the variable Y to
the auxiliary regression:
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Heteroskedasticity Test Wizard R

Specify functional terms
-Step 3of 5

Enter a list of regressors for the auxiliary regression in the box below, This
list mavy include regressors not in the original regression. The keyword
@REGS may be used ko specify every variable in the original regression,

Add equation
regressors

Mote: Some of the original equation regressors may have been included in
the White Specification,

[ < Back ” ek ][ Cancel ]

Next we can add ARCH terms to the auxiliary regression. The ARCH specification lets you
specify a lag structure. You can either specify a number of lags, so that the auxiliary regres-
sion will include lagged values of the squared residuals up to the number you choose, or
you may provide a custom lag structure. Custom structures are entered in pairs of lags. In
our example we choose to include lags of 1, 2, 3 and 6:

Heteroskedasticity Test Wizand g|

Specify ARCH terms
- Step 4 of 5

‘fou can specify a lag structure in the boxes below, To specify lags from 1
to M, simply enter "N" in the Mumber of lags box, For more complex lag
structures, enter lags in pairs in the custom box,

(O Number of lags:

(®) Custom lag pairs: | 1366

Example: To select lags 1,2,3,6 you could enter a lag
structure of "1 3 6 6" into the box

[ < Back ” ek ][ Cancel ]

The final step of the wizard is to view the final specification of the auxiliary regression, with
all the options you have previously chosen, and make any modifications. For our choices,
the final specification looks like this:
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Heteroskedasticity Test Wizard ﬁ

Final specification confirmation
-Step S5 of 5

The auxiliary regression you have specified regresses
LOG(RESID2) on the Following regressors {and a constant):

@arch(l 3 6 6) @whitelc loglip) tb3) v

‘fou can modify the auxiliary regressors using the box above, Once
wou are finished you can return to the main dialog by pressing the
Finish button. Your specification will be entered into that dialog,

[ < Back ” Finish ][ Cancel ]

Our ARCH specification with lags of 1, 2, 3, 6 is shown first, followed by the White specifica-
tion, and then the additional term, Y. Upon clicking Finish the main Heteroskedasticity
Tests dialog has been filled out with our specification:

Heteroskedasticity Tests g|
Specification
Tesk bype:
Breusch-Paian-GodFre Dependent variable: logiRESID2)
Glejser The Harvey Test regresses the logs of
ARCH the squared residuals on the original
‘white regressors by default,

Custom Test Wizard. .

[Jinclude White cross terms

Add equ.
regressors

Regressors:
@arch(l 3 6 6) @whitelc loglip) tb3) v

Note, rather than go through the wizard, we could have typed this specification directly into
the dialog.

This test results in the following output:
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Heteroskedasticity Test: Harvey

F-statistic 203.6910 Prob. F(10,324) 0.0000
Obs*R-squared 289.0262 Prob. Chi-Square(10) 0.0000
Scaled explained SS 160.8560 Prob. Chi-Square(10) 0.0000

Test Equation:

Dependent Variable: LRESID2

Method: Least Squares

Date: 08/10/09 Time: 15:06

Sample (adjusted): 1959M07 1989M12
Included observations: 335 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
Cc 2.320248 10.82443 0.214353 0.8304
LRESID2(-1) 0.875599 0.055882 15.66873 0.0000
LRESID2(-2) 0.061016 0.074610 0.817805 04141
LRESID2(-3) -0.035013 0.061022  -0.573768 0.5665
LRESID2(-6) 0.024621 0.036220 0.679761 04971
LOG(IP) -1.622303 5792786  -0.280056 0.7796
(LOG(IP))*2 0.255666 0.764826 0.334280 0.7384
(LOG(IP))*TB3 -0.040560 0.154475  -0.262566 0.7931
TB3 0.097993 0.631189 0.155252 08767
TB3"2 0.002845 0.005380 0.528851 05973
Y -0.023621 0.039166  -0.603101 0.5469
R-squared 0.862765 Mean dependent var -4.046849
Adjusted R-squared 0.858529 S.D. dependent var 1.659717
S.E. of regression 0.624263 Akaike info criterion 1.927794
Sum squared resid 126.2642 Schwarz criterion 2.053035
Log likelihood -311.9056 Hannan-Quinn criter. 1.977724
F-statistic 203.6910 Durbin-Watson stat 2130511

Prob(F-statistic) 0.000000

This output contains both the set of test statistics, and the results of the auxiliary regression
on which they are based. All three statistics reject the null hypothesis of homoskedasticity.

Stability Diagnostics

EViews provides several test statistic views that examine whether the parameters of your
model are stable across various subsamples of your data.

One common approach is to split the T observations in your data set of observations into
T, observations to be used for estimation, and 7, = 71— T observations to be used for
testing and evaluation. In time series work, you will usually take the first 7', observations
for estimation and the last T, for testing. With cross-section data, you may wish to order
the data by some variable, such as household income, sales of a firm, or other indicator vari-
ables and use a subset for testing.
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Note that the alternative of using all available sample observations for estimation promotes
a search for a specification that best fits that specific data set, but does not allow for testing
predictions of the model against data that have not been used in estimating the model. Nor
does it allow one to test for parameter constancy, stability and robustness of the estimated
relationship.

There are no hard and fast rules for determining the relative sizes of T, and T),. In some
cases there may be obvious points at which a break in structure might have taken place—a
war, a piece of legislation, a switch from fixed to floating exchange rates, or an oil shock.
Where there is no reason a priori to expect a structural break, a commonly used rule-of-
thumb is to use 85 to 90 percent of the observations for estimation and the remainder for

testing.
EViews provides built-in procedures which facilitate vari- Chow Breakpoint Test...
ations on this type of analysis. Quandt-Andrews Breakpoint Test..
Multiple Breakpoint Test...
Chow's Breakpoint Test
p Chow Forecast Test...
Ramsey RESET Test...

The idea of the breakpoint Chow test is to fit the equation
separately for each subsample and to see whether there
are significant differences in the estimated equations. A
significant difference indicates a structural change in the
relationship. For example, you can use this test to examine whether the demand function for
energy was the same before and after the oil shock. The test may be used with least squares
and two-stage least squares regressions; equations estimated using GMM offer a related test
(see “GMM Breakpoint Test” on page 96).

Recursive Estimates (OLS only) ...
Leverage Plots...

Influence Statistics...

By default the Chow breakpoint test tests whether there is a structural change in all of the
equation parameters. However if the equation is linear EViews allows you to test whether
there has been a structural change in a subset of the parameters.

To carry out the test, we partition the data into two or more subsamples. Each subsample
must contain more observations than the number of coefficients in the equation so that the
equation can be estimated. The Chow breakpoint test compares the sum of squared residu-
als obtained by fitting a single equation to the entire sample with the sum of squared residu-
als obtained when separate equations are fit to each subsample of the data.

EViews reports three test statistics for the Chow breakpoint test. The F-statistic is based on

the comparison of the restricted and unrestricted sum of squared residuals and in the sim-

plest case involving a single breakpoint, is computed as:
(v —(uy up + uy'ug))/ k

F = )
(uy"uqg + uy'uy) /(T - 2k)

(24.25)

where %'% is the restricted sum of squared residuals, u,"u; is the sum of squared residuals
from subsample ¢, 7' is the total number of observations, and % is the number of parame-
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ters in the equation. This formula can be generalized naturally to more than one breakpoint.
The F-statistic has an exact finite sample F-distribution if the errors are independent and
identically distributed normal random variables.

The log likelihood ratio statistic is based on the comparison of the restricted and unrestricted
maximum of the (Gaussian) log likelihood function. The LR test statistic has an asymptotic
x2 distribution with degrees of freedom equal to (m — 1)k under the null hypothesis of no
structural change, where m is the number of subsamples.

The Wald statistic is computed from a standard Wald test of the restriction that the coeffi-
cients on the equation parameters are the same in all subsamples. As with the log likelihood
ratio statistic, the Wald statistic has an asymptotic x2 distribution with (m — 1)k degrees of
freedom, where m is the number of subsamples.

One major drawback of the breakpoint test is that each subsample requires at least as many
observations as the number of estimated parameters. This may be a problem if, for example,
you want to test for structural change between wartime and peacetime where there are only
a few observations in the wartime sample. The Chow forecast test, discussed below, should
be used in such cases.

To apply the Chow breakpoint test, push View/ P— X
Stability Diagnostics/Chow Breakpoint Test...

on the equation toolbar. In the dialog that
appears, list the dates or observation numbers for
the breakpoints in the upper edit field, and the
regressors that are allowed to vary across break- B e ey e leelyahis
points in the lower edit field. ¢ log(l} log(k)

Enter one or more breakpoint dates

1960

For example, if your original equation was esti-
mated from 1950 to 1994, entering:

1960

in the dialog specifies two subsamples, one from
1950 to 1959 and one from 1960 to 1994. Typing:

1960 1970

specifies three subsamples, 1950 to 1959, 1960 to 1969, and 1970 to 1994.

The results of a test applied to EQ1 in the workfile “Coef_test. WF1”, using the settings
above are:
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Chow Breakpoint Test: 1960M01 1970M01

Null Hypothesis: No breaks at specified breakpoints
Varying regressors: All equation variables

Equation Sample: 1959M01 1989M12

F-statistic 186.8638 Prob. F(6,363) 0.0000
Log likelihood ratio 523.8566 Prob. Chi-Square(6) 0.0000
Wald Statistic 1121.183 Prob. Chi-Square(6) 0.0000

Indicating that the coefficients are not stable across regimes.

Quandt-Andrews Breakpoint Test

The Quandt-Andrews Breakpoint Test tests for one or more unknown structural breakpoints
in the sample for a specified equation. The idea behind the Quandt-Andrews test is that a
single Chow Breakpoint Test is performed at every observation between two dates, or obser-
vations, 7; and 7,. The £k test statistics from those Chow tests are then summarized into
one test statistic for a test against the null hypothesis of no breakpoints between 7, and 7,.

By default the test tests whether there is a structural change in all of the original equation
parameters. For linear specifications, EViews also allows you to test whether there has been
a structural change in a subset of the parameters.

From each individual Chow Breakpoint Test two statistics are retained, the Likelihood Ratio
F-statistic and the Wald F-statistic. The Likelihood Ratio F*statistic is based on the compar-
ison of the restricted and unrestricted sums of squared residuals. The Wald F-statistic is
computed from a standard Wald test of the restriction that the coefficients on the equation
parameters are the same in all subsamples. Note that in linear equations these two statistics
will be identical. For more details on these statistics, see “Chow's Breakpoint Test” on

page 206.

The individual test statistics can be summarized into three different statistics; the Sup or
Maximum statistic, the Exp Statistic, and the Ave statistic (see Andrews, 1993 and Andrews
and Ploberger, 1994). The Maximum statistic is simply the maximum of the individual Chow

Fstatistics:
MaxF = max  (F(7)) (24.26)
TISTSTy
The Exp statistic takes the form:
Ty
1 1
ExpF = In 7 Z exp (5 F(T)) (24.27)
T=T

The Ave statistic is the simple average of the individual F-statistics:
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AveF = % > F(r) (24.28)

T=17T

The distribution of these test statistics is non-standard. Andrews (1993) developed their true
distribution, and Hansen (1997) provided approximate asymptotic p-values. EViews reports
the Hansen p-values. The distribution of these statistics becomes degenerate as 7
approaches the beginning of the equation sample, or 7, approaches the end of the equation
sample. To compensate for this behavior, it is generally suggested that the ends of the equa-
tion sample not be included in the testing procedure. A standard level for this “trimming” is
15%, where we exclude the first and last 15% of the observations. EViews sets trimming at
15% by default, but also allows the user to choose other levels. Note EViews only allows
symmetric trimming, i.e. the same number of observations are removed from the beginning
of the estimation sample as from the end.

The Quandt-Andrews Break- Quandt-Andrews Test X
point Test can be evaluated

. . Breakpoint variables Series names
for an equation by selecting Enter the variablas you wish ba vary IF vau wish ko save the individual test
View/Stability Diagnostics/ ccross breskpares: e senct e s oo
Quandt-Andrews Break- e oall) 163 LR Fstot name:
point Test... from the equa- T —
tion toolbar. The resulting
dialog allows you to choose S——
el Il i
and, if your original equa-

tion was linear, which vari-

ables you wish to test for the unknown break point. You may also choose to save the
individual Chow Breakpoint test statistics into new series within your workfile by entering a
name for the new series.

As an example we estimate a consumption function, EQ02 in the workfile “DEMO.WF1”,
using quarterly data from 1952Q1 to 1992Q4. To test for an unknown structural break point
amongst all the original regressors we run the Quandt-Andrews test with 15% trimming.
This test gives the following results:

Note all three of the summary statistic measures fail to reject the null hypothesis of no struc-
tural breaks at the 1% level within the 113 possible dates tested. The maximum statistic was
in 1982Q2, and that is the most likely breakpoint location. Also, since the original equation
was linear, note that the p-value for the LR F-statistic is identical to the Wald F-statistic.
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Multiple Breakpoint Tests

Tests for parameter instability and structural change in regression models have been an
important part of applied econometric work dating back to Chow (1960), who tested for
regime change at a priori known dates using an F-statistic. To relax the requirement that the
candidate breakdate be known, Quandt (1960) modified the Chow framework to consider
the F-statistic with the largest value over all possible breakdates. Andrews (1993) and
Andrews and Ploberger (1994) derived the limiting distribution of the Quandt and related
test statistics. The EViews tools for performing these tests are described in “Chow's Break-
point Test” on page 206 and “Quandt-Andrews Breakpoint Test” on page 208.

More recently, Bai (1997) and Bai and Perron (1998, 2003a) provide theoretical and compu-
tational results that further extend the Quandt-Andrews framework by allowing for multiple
unknown breakpoints. The remainder of this section offers a brief outline of the Bai and Bai-
Perron approach to structural break testing as implemented in EViews. Perron (2006) offers

a useful survey of the literature and provides references for those requiring additional dis-

cussion.
Background
We consider a standard multiple linear regression model with T periods and m potential
breaks (producing m + 1 regimes). For the observations 7, T;+ 1, ..., T;,; -1 in
regime j we have the regression model

y, = X,/B+ Zt'6j+ €, (24.29)
for the regimes 5 = 0, ..., m. Note that the regressors are divided into two groups. The X

variables are those whose parameters do not vary across regimes, while the Z variables
have coefficients that are regime specific.

While it is slightly more convenient to define breakdates to be the last date of a regime, we
follow EViews’s convention in defining the breakdate to be the first date of the subsequent
regime. We tie down the endpoints by setting 7y = 1 and T,,,; = T+1.

m +

The multiple breakpoint tests that we consider may broadly be divided into three categories:
tests that employ global maximizers for the breakpoints, test that employ sequentially deter-
mined breakpoints, and hybrid tests, which combine the two approaches.

Global Maximizer Tests

Bai and Perron (1998) describe global optimization procedures for identifying the m multi-
ple breaks which minimize the sums-of-squared residuals of the regression model
Equation (24.29).

Briefly, for a specific set of m breakpoints, say {1'},, = (T, ..., T,,), we may minimize
the sum-of-squared residuals:
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m | T 1

J+1T

S(B,6|{T}) = Z Z Y= X,/'B—-2/9; (24.30)

j=0 t=1T;
using standard least squares regression to obtain estimates (j3, §) . The global m -break
optimizers are the set of breakpoints and corresponding coefficient estimates that minimize
sum-of-squares across all possible sets of m -break partitions.

Note that the number of comparison models increases rapidly in both m and T so that effi-
cient algorithms for computing the optimizers are required. Practical algorithms for comput-
ing the global optimizers for multiple breakpoint models are outlined in Bai and Perron
(2003a).

These global breakpoint estimates are then used as the basis for several breakpoint tests.
EViews supports both the Bai and Perron (1998) tests of [-breaks versus none test (along
with the double maximum variants of this test in which [ is determined as part of the test-
ing procedure), and information criterion methods (Yao, 1988 and Liu, Wi, and Zidek, 1997)
for determining the number of breaks.

Global L Breaks vs. None

Bai and Perron (1998) describe a generalization of the Quandt-Andrews test (Andrews,
1993) in which we test for equality of the 6, across multiple regimes. For a test of the null of
no breaks against an alternative of [ breaks, we employ an F-statistic to evaluate the null

hypothesis that §, = 6, = ...= 0;, . The general form of the statistic (Bai-Perron 2003a)
is:
F($) = %F(%;)q—p) (R8)(RV(8)R") ' RS (24.31)

where § is the optimal [-break estimate of &, (R8)' = (8,' = 8,’, ..., 8, —8,,,'), and
7/(8) is an estimate of the variance covariance matrix of & which may be robust to serial
correlation and heteroskedasticity, whose form depends on assumptions about the distribu-
tion of the data and the errors across segments. (We do not reproduce the formulae for the
estimators of the variance matrices here as there are a large number of cases to consider;
Bai-Perron (2003a) offer detailed descriptions of the various cases.)

A single test of no breaks against an alternative of [ breaks assumes that the alternative
number of breakpoints [ is pre-specified. In cases where [ is not known, we may test the
null of no structural change against an unknown number of breaks up to some upper-
bound, m* . This type of testing is termed double maximum since it involves maximization
both for a given [ and across various values of the test statistic for .

The equal-weighted version of the test, termed UDmax chooses the alternative that maxi-
mizes the statistic across the number of breakpoints. An alternative approach, denoted
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W Dmax applies weights to the individual statistics so that the implied marginal p -values
are equal prior to taking the maximum.

The distributions of these test statistics are non-standard, but Bai and Perron (2003b) pro-
vide critical value and response surface computations for various trimming parameters
(minimum sample sizes for estimating a break), numbers of regressors, and numbers of
breaks.

Information Criteria

Yao (1988) shows that under relatively strong conditions, the number of breaks 1 that mini-
mizes the Schwarz criterion is a consistent estimator of the true number of breaks in a
breaking mean model.

More generally, Liu, Wu, and Zidek (1997) propose use of modified Schwarz criterion for
determining the number of breaks in a regression framework. LWZ offer theoretical results
showing consistency of the estimated number of breakpoints, and provide simulation results
to guide the choice of the modified penalty criterion.

Sequential Testing Procedures

Bai (1997) describes an intuitive approach for detecting more than one break. The procedure
involves sequential application of breakpoint tests.

¢ Begin with the full sample and perform a test of parameter constancy with unknown
break.

e I[f the test rejects the null hypothesis of constancy, determine the breakdate, divide the
sample into two samples and perform single unknown breakpoint tests in each subsa-
mple. Each of these tests may be viewed as a test of the alternative of [+ 1 = 2 ver-
sus the null hypothesis of [ = 1 breaks. Add a breakpoint whenever a subsample
null is rejected. (Alternately, one could test only the single subsample which shows
the greatest improvement in the sum-of-squared residuals.)

e Repeat the procedure until all of the subsamples do not reject the null hypothesis, or
until the maximum number of breakpoints allowed or maximum subsample intervals
to test is reached.

If the number of breakpoints is pre-specified, we simply estimate the specified number of
breakpoints using the one-at-a-time method.

Once the sequential breakpoints have been determined, Bai recommends a refinement pro-
cedure whereby breakpoints are re-estimated if they are obtained from a subsample contain-
ing more than one break. This procedure is required so that the breakpoint estimates have
the same limiting distribution as those obtained from the global optimization procedure.

Note that EViews uses the (potentially robust) F-statistic in Equation (24.31) for the test in
place of the difference in sums-of-squared residuals described in Bai (1997) and Bai and Per-
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ron (1998). Critical value and response surface computations are again provided by Bai and
Perron (2003b).

Global Plus Sequential Testing

Bai and Perron (1998) describe a modified Bai (1997) approach in which, at each test step,
the [ breakpoints under the null are obtained by global minimization of the sum-of-squared
residuals. We may therefore view this approach as an [+ 1 versus [ test procedure that
combines the global and sequential testing approaches.

Each test begins with the set of | global optimizing breakpoints and performs a single test of
parameter constancy using the subsample break that most reduces the-sum-of-squared
residuals. Note that in this case, we only test for constancy in a single subsample.

Computing Multiple Breakpoint Tests in EViews

To use the EViews tools for testing for multiple breaks, you must use an equation that is
specified by list and estimated by least squares. Note in particular that this latter restriction
means that models with AR and MA terms are not eligible for multiple break testing.

From an estimated equation, bring up the multiple break testing dialog, by clicking on
View/Stability Diagnostics/Multiple Breakpoint Test...

Multiple Breakpoints Tests @
Test spedification Options
Method: [Sequenﬁal L+1breaks vs. L v] Mayimum breaks: 5
(Bai-Perron tests of L+1vs. L Trimming percentage: |15 -

sequentially determined breaks)
Significance level:

FrmanieEIas Allow error distributions to

Regressors to vary across breakpoints: ] differ across breaks
c

The dialog is divided into the Test specification, Breakpoint variables, and Options sec-
tions.

Test Specification
The Test specification section contains a Method drop- Test specification
down where you may specify the type of test you wish to Method: |Sequential L+1breaksvs. L ~
eguential L+1 breaks vs. L
perform. You may choose between: Sequential test oll subsets g
Global L breaks vs. none
. L+1 breaks vs. global L
* Sequentlal L+1 breaks vs. L Global information criteria

e Sequential tests all subsets
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e Global L breaks vs. none
e L+1 breaks vs. global L
¢ Global information criteria

The two sequential tests are based on the Bai sequential methodology as described in
“Sequential Testing Procedures” on page 212 above. The methods differ in whether, for a
given [ breakpoints, we test for an additional breakpoint in each of the [+ 1 segments
(Sequential tests all subsets), or whether we test for the single added breakpoint that most
reduces the sum-of-squares (Sequential L + 1 breaks vs. L).

The Global L breaks vs. none choice implements the Bai-Perron tests of [ globally opti-
mized breaks against the null of no structural breaks, along with the corresponding
UDmax and WDmax tests (“Global L Breaks vs. None” on page 211).

The L + 1 breaks vs. global L choice implements the Bai-Perron [ vs. [+ 1 testing proce-
dure outlined in “Global Plus Sequential Testing” on page 213.

The Global information criteria uses the information criteria computed from the global
optimizers to determine the number of breaks (“Information Criteria” on page 212).

Breakpoint Variables

EViews supports the testing of partial structural change models in which only a subset of the
variables in the regression are subject to change across regimes. The variables which have
regime specific coefficients should be listed in the Regressors to vary across breakpoints
edit field.

By default, all of the variables in your specification will be included in this list. To treat some
of these variables as non-varying X ‘s, you may simply delete them from the list. Note that
there must be at least one variable in the list.

Options

The Options section of the dialog allow you to specify the maxi- e

mum number of breaks or break levels to consider, the trimming | Vammbresks: | ®
percentage of the sample, the significance level for any test com-
putations (if relevant), and assumptions regarding the computa-

tion of the variance matrices used in testing (if relevant): Allow errar distributions to
differ across breaks

Trimming percentage: |15 -

Significance level: 005 -

¢ The Maximum breaks limits the number of breakpoints
allowed via global testing and in sequential or mixed [ vs.
[+ 1 testing. If you have selected the Sequential tests all
subsets method, the edit field will be labeled Maximum levels to indicate that the
restriction is on the maximum number of break levels allowed. This change in label-
ing reflects the fact that the Bai all subsets approach potentially adds [+ 1 breaks for
a given set of [ breaks.
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e The Trimming percentage, e = 100(h/ T) implicitly determines A, the minimum
segment length permitted when constructing a test. Small values of the trimming per-
centage can lead to estimates of coefficients and variances which are based on very
few observations.

In testing settings, you will be prompted to specify a test size, and to make assumptions
about the distribution of the errors across segments which determine the form for the esti-
mator ¥(§) in Equation (24.31) on page 211.

¢ The Significance level drop-down menu should be used to choose between test size
values of (0.01, 0.025, 0.05, and 0.10). This menu is not relevant for tests which select
between models using information criteria.

e The Allow error distributions to differ across breaks lets you specify different error
distributions for different regimes (which in turn implies using different estimators for
¥(8) ; see Bai and Perron, 2003b for details). Selecting this option will provide
robustness of the test to error distribution variation at the cost of power if the error
distributions are the same across regimes.

We remind you that EViews will employ the coefficient covariance settings in the original
equation when determining whether to allow for heteroskedasticity alone or heteroskedas-
ticity and serial correlation. Thus, if you estimated your original equation using White stan-
dard errors, EViews will compute the breakpoint tests using an statistic which is robust to
heteroskedasticity. Similarly, if you estimated your original equation with Newey-West stan-
dard errors, EViews will compute the breakpoint tests using a HAC robust test statistic.

One final note. EViews will, by default, estimate the robust specification assuming heteroge-
neous distributions for the Z,. Bai and Perron (2003a) who, with one exception, do not
impose the restriction that the distribution of the Z, is the same across regimes. In cases
where you are testing using robust variances, EViews will offer you a choice of whether to
assume a common distribution for the data across regimes.

Bai and Perron do impose the homogeneity data restriction when EEEE
computing heteroskedasticity and HAC robust variances estima- Maximum breaks: °
tors assuming homogeneous errors. To match the Bai-Perron
common error assumptions, you will have to select the Assume

common data distribution checkbox. Allow error distributions to
differ across breaks

Trimming percentage: |15 -

Significance level: 005 -

Assume common data

(Note that EViews does not allow you to specify heterogeneous e
error distributions and robust covariances in partial switching
models.)

Examples

To illustrate the use of these tools in practice, we consider a simple model of the U.S. ex-post
real interest rate from Garcia and Perron (1996) that is used as an example by Bai and Perron
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(2003a). The data, which consist of observations for the three-month treasury rate deflated
by the CPI for the period 1961q1-1983q3, are provided in the series RATES in the workfile
“realrate. WF1”. The regression model consists of a constant regressor, and allows for serial
correlation that differs across regimes through the use of HAC covariance estimation. We
allow up to 5 breaks in the model, and employ a trimming percentage of 15% (e = 15).
Since there are 103 observations in the sample, the trimming value implies that regimes are
restricted to have at least 15 observations.

FOHOWng Bai and Perron Equation Estimation @
(2003a), we begin by estimat- Specification | Options

ing the equation specification T e

USiIlg least squares. Our equa- Dependent variable followed by list of regressors induding ARMA

K . . . and POL terms, OR an explicit equation like ¥ =c{1)+c{2)*X.
tion specification consists of

the dependent variable and a
single (constant) regressor, so
we enter

rates c

rate c
Estimation settings

in the spec1flcat10n dlalog Method: |15 - |east Squares (NLS and ARMA) v

Since we wish to allow for Sample: [ 196 1q1 198593
serial correlation in the errors,
we specify a quadratic spectral
kernel based HAC covariance [ ok | cancel |
estimation using prewhitened
residuals. The kernel bandwith is determined automatically using the Andrews AR(1)
method.

The covariance options may be specified in the Equation Estimation dialog by selecting the
Options tab, clicking on the HAC options button and filling out the dialog as shown:



Stability Diagnostics—217

HAC Options (=23
Whitening options
Lag spedification: Fixed v]
Mumber of lags: 1

Kernel options

Kernel: lQuadraﬁc—Spech’al - I
Bandwidth method: la‘-\ndrews Automatic ']
Offset: 1]

|:| Truncate to integer

Eook I Cancel I

Click on OK to accept the HAC settings, and then on OK to estimate the equation. The esti-
mation results should be as depicted below:

Dependent Variable: RATES

Method: Least Squares

Date: 12/03/12 Time: 14:09

Sample: 1961Q1 1986Q3

Included observations: 103

HAC standard errors & covariance (Prewhitening with lags = 1,
Quadratic-Spectral kernel, Andrews bandwidth = 1.9610)

Variable Coefficient Std. Error t-Statistic Prob.

C 1.375142 0.599818 2.292600 0.0239
R-squared 0.000000 Mean dependent var 1.375142
Adjusted R-squared 0.000000 S.D. dependent var 3.451231
S.E. of regression 3.451231 Akaike info criterion 5.325001
Sum squared resid 1214.922 Schwarz criterion 5.350580
Log likelihood -273.2375 Hannan-Quinn criter. 5.335361
Durbin-Watson stat 0.745429

To construct multiple breakpoint tests for this equation, select View/Stability Diagnostics/
Multiple Breakpoint Test... from the equation dialog. We consider examples for three differ-
ent approaches for multiple breakpoint testing with this equation.

Sequential Bai-Perron

The default Method setting (Sequential L + 1 breaks vs. L) instructs EViews to perform
sequential testing of [+ 1 versus [ breaks using the methods outlined by Bai (1997) and Bai
and Perron (1998).
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Multiple Breakpoints Tests @
Test spedification Options
Method: [Sequenﬁal L+1breaks vs. L v] Mayimum breaks: 5
(Bai-Perron tests of L+1vs. L Trimming percentage: |15 -

sequentially determined breaks)

Significance level:

Allow error distributions to
differ across breaks

Breakpoint variables
Regressors to vary across breakpoints:

C

There is a single regressor “C” which we require to be in the list of breaking variables.

By default, the tests allow for a maximum number of 5 breaks, employ a trimming percent-
age of 15%, and use the 0.05 significance level for the sequential testing. We will leave these
options at their default settings. We do, however, select the Allow error distributions to dif-
fer across breaks checkbox to allow for error heterogeneity.

Click on OK to accept the test specification and display the test results. The top portion of
the dialog shows the test settings, including the test method, breakpoint variables, test
options, and method of computing test covariances. Note that the test employs the same
HAC covariance settings used in the original equation but assume regime specific error dis-
tributions:

Multiple breakpoint tests

Bai-Perron tests of L+1 vs. L sequentially determined
breaks

Date: 12/03/12 Time: 14:09

Sample: 1961Q1 1986Q3

Included observations: 103

Breakpoint variables: C

Break test options: Trimming 0.15, Max. breaks 5, Sig. level
0.05

Test statistics employ HAC covariances (Prewhitening with
lags = 1, Quadratic-Spectral kernel, Andrews
bandwidth)

Allow heterogeneous error distributions across breaks

The middle section of the table presents the actual sequential test results:
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Sequential F-statistic determined breaks: 3
Scaled Critical
Break Test F-statistic F-statistic Value**
Ovs.1* 57.90582 57.90582 8.58
1vs.2* 33.92749 33.92749 10.13
2vs.3* 14.72464 14.72464 11.14
3vs. 4 0.033044 0.033044 11.83

* Significant at the 0.05 level.
** Bai-Perron (Econometric Journal, 2003) critical values.

EViews displays the F*statistic, along with the F-statistic scaled by the number of varying
regressors (which is the same in this case, since we only have the single, varying regressor),
and the Bai-Perron critical value for the scaled statistic. The sequential test results indicate
that there are three breakpoints: we reject the nulls of 0, 1, and 2 breakpoints in favor of the
alternatives of 1, 2, and 3 breakpoints, but the test of 4 versus 3 breakpoints does not reject
the null.

The bottom portion of the output shows the estimated breakdates:

Break dates:

Sequential Repartition
1 1980Q4 1967Q1
2 1972Q4 1972Q4
3 1967Q1 1980Q4

EViews displays both the breakdates obtained from the original sequential procedure, and
those obtained following the repartition procedure. In this case, the dates do not change.
Again bear in mind that the results follow the EViews convention in defining breakdates to
be the first date of the subsequent regime.

Global Bai-Perron L Breaks vs. None

To perform the Bai-Perron tests of [ globally optimized breaks against the null of no struc-
tural breaks, along with the corresponding UDmax and W Dmax tests, simply call up the
dialog and change the Method drop-down to Global L breaks vs. none:
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Multiple Breakpoints Tests @
Test spedification Options
Method: [Global L breaks vs. none - Mayimum breaks: 5
(Bai-Perron tests of 1 to M globally Trimming percentage: |15 -

determined breaks)

Significance level:

Allow error distributions to
differ across breaks

Breakpoint variables
Regressors to vary across breakpoints:

C

We again leave the remaining settings at their default values with the exception of the Allow
error distributions to differ across breaks checkbox which is selected. Click on OK to per-
form the test.

The top portion of the output, which shows the test settings, is almost identical to the out-
put for the previous example. The only difference is a line identifying the test method as
being “Bai-Perron tests of 1 to M globally determined breaks.”

The middle portion of the output contains the test results:

Sequential F-statistic determined breaks:
Significant F-statistic largest breaks:
UDmax determined breaks:

WDmax determined breaks:

a2 a o m

Scaled Weighted Critical
Breaks F-statistic F-statistic F-statistic Value

1* 57.90582 57.90582 57.90582 8.58
2* 43.01429 43.01429 51.11671 7.22
3* 33.32281 33.32281 47.97143 5.96
4 24.77054 24.77054 42.59143 4.99
5* 18.32587 18.32587 40.21381 3.91
UDMax statistic* 57.90582 UDMax critical value** 8.88
WDMax statistic* 57.90582 WDMax critical value** 9.91

* Significant at the 0.05 level.
** Bai-Perron (Econometric Journal, 2003) critical values.

The first four lines summarize the results for different approaches to determining the num-
ber of breaks. The “Sequential” result is obtained by performing tests from 1 to the maxi-
mum number until we cannot reject the null; the “Significant” result chooses the largest
statistically significant breakpoint. In both cases, the multiple breakpoint test indicates that
there are 5 breaks. The “UDmax” and “WDmax” results show the number of breakpoints as
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determined by application of the unweighted and weighted maximized statistics. The maxi-
mized statistics both indicate the presence of a single break.

The remaining lines show the individual test statistics (original, scaled, weighted) along
with the critical values for the scaled statistics. In each case, the statistics far exceed the crit-
ical value so that we reject the null of no breaks. Note that the values corresponding to the
UDmax and WDmax statistics are shaded for easy identification.

The last two lines of output show the test results for double maximum statistics. In both
cases, the maximized value clearly exceeds the critical value, so that we reject the null of no
breaks in favor of the alternative of a single break.

The bottom of the portion shows the global optimizers for the breakpoints for each number
of breaks:

Estimated break dates:

1: 1980Q4

2: 1972Q4, 1980Q4

3: 1967Q1, 1972Q4, 1980Q4

4: 1967Q1, 1972Q4, 1977Q1, 1980Q4

5: 1965Q1, 1968Q4, 1972Q4, 1977Q1, 1980Q4

Note that the three-break global optimizers are the same as those obtained in the sequential
testing example (“Sequential Bai-Perron” on page 217). This equivalence will not hold in
general.

Global Information Criteria

Lastly, we consider using information criteria to select the number of breaks.

Multiple Breakpoints Tests @
Test spedification Options
Method: [Global information criteria v] Mayimum breaks: 5
(Compare information criteria for 0 Trimming percentage: |15 -

to M globally determined breaks)

Breakpoint variables

Regressors to vary across breakpoints:

C

Here we see the dialog when we select Global information criteria in the Method drop-
down menu. Note that there are no options for computing the coefficient covariances since
this method does not require their calculation. Click on OK to construct the table of results.
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The top and bottom portions of the output are similar to the results seen previously so we
focus only on the test summaries themselves:

Schwarz criterion selected breaks: 2
LW?Z criterion selected breaks: 2
Sum of Schwarz* Lwz*

Breaks # of Coefs. Sq. Resids. Log-L Criterion Criterion
0 1 1214922  -273.2375 2.512703 2.550154
1 3 644.9955  -240.6282 1.969506 2.082148
2 5 455.9502  -222.7649 1.712641 1.900875
3 7 4451819  -221.5340 1.778735 2.042977
4 9 4448797  -221.4990 1.868051 2.208735
5 11 449.6395  -222.0471 1.968688 2.386267

* Minimum information criterion values displayed with shading

The two summary rows show that both the Schwarz and the LWZ information criteria select
2 breaks. The remainder of the output shows, for each break, the number of estimated coef-
ficients, the optimized sum-of-squared residuals and likelihood, and the values of the infor-
mation criteria. The minimized Schwarz and LWZ values are shaded for easy identification.

Chow's Forecast Test

The Chow forecast test estimates two models—one using the full set of data 7', and the
other using a long subperiod T . Differences between the results for the two estimated
models casts doubt on the stability of the estimated relation over the sample period. The
Chow forecast test can be used with least squares and two-stage least squares regressions.

EViews reports two test statistics for the Chow forecast test. The F-statistic is computed as
(v'w—-v'u)/T,

= T (24.32)

where @' is the residual sum of squares when the equation is fitted to all 7' sample obser-
vations, u'u is the residual sum of squares when the equation is fitted to 7', observations,
and k is the number of estimated coefficients. This F-statistic follows an exact finite sample
F-distribution if the errors are independent, and identically, normally distributed.

The log likelihood ratio statistic is based on the comparison of the restricted and unrestricted
maximum of the (Gaussian) log likelihood function. Both the restricted and unrestricted log
likelihood are obtained by estimating the regression using the whole sample. The restricted
regression uses the original set of regressors, while the unrestricted regression adds a
dummy variable for each forecast point. The LR test statistic has an asymptotic x2 distribu-
tion with degrees of freedom equal to the number of forecast points 7, under the null
hypothesis of no structural change.
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To apply Chow’s forecast test, push View/Stability Diagnostics/Chow Forecast Test... on
the equation toolbar and specify the date or observation number for the beginning of the
forecasting sample. The date should be within the current sample of observations.

As an example, using the “Coef_test2.WF1” workfile, suppose we estimate a consumption
function, EQ1, using quarterly data from 1947q1 to 1994g4 and specify 197391 as the first
observation in the forecast period. The test reestimates the equation for the period 1947q1 to
1972g4, and uses the result to compute the prediction errors for the remaining quarters, and
the top portion of the table shows the following results:

Chow Forecast Test

Equation: EQ1

Specification: LOG(CS) C LOG(GDP)
Test predictions for observations from 1973Q1 to 1994:4

Value df Probability
F statistic 0.708348 (88, 102) 0.9511
Likelihood ratio 91.57087 88 0.3761
Ftest summary:

Mean
Sum of Sq. df Squares

Test SSR 0.061798 88 0.000702
Restricted SSR 0.162920 190 0.000857
Unrestricted SSR 0.101122 102 0.000991
Unrestricted SSR 0.101122 102 0.000991
LR test summary:

Value df
Restricted LogL 406.4749 190
Unrestricted LogL 452.2603 102

Unrestricted log likelihood adjusts test equation results to account
for observations in forecast sample

Neither of the forecast test statistics reject the null hypothesis of no structural change in the
consumption function before and after 1973q1.

If we test the same hypothesis using the Chow breakpoint test, the result is:

Chow Breakpoint Test: 1973Q1

Null Hypothesis: No breaks at specified breakpoints
Varying regressors: All equation variables

Equation Sample: 1947Q1 1994Q4

F-statistic 38.39198 Prob. F(2,188) 0.0000
Log likelihood ratio 65.75466 Prob. Chi-Square(2) 0.0000
Wald Statistic 76.78396 Prob. Chi-Square(2) 0.0000

Note that the breakpoint test statistics decisively reject the hypothesis from above. This
example illustrates the possibility that the two Chow tests may yield conflicting results.
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Ramsey's RESET Test

RESET stands for Regression Specification Error Test and was proposed by Ramsey (1969).
The classical normal linear regression model is specified as:

y = XB+e, (24.33)

where the disturbance vector ¢ is presumed to follow the multivariate normal distribution
N(O, 021) . Specification error is an omnibus term which covers any departure from the
assumptions of the maintained model. Serial correlation, heteroskedasticity, or non-normal-
ity of all violate the assumption that the disturbances are distributed N(0, 021) . Tests for
these specification errors have been described above. In contrast, RESET is a general test for
the following types of specification errors:

e Omitted variables; X does not include all relevant variables.

¢ Incorrect functional form; some or all of the variables in ¥ and X should be trans-
formed to logs, powers, reciprocals, or in some other way.

e Correlation between X and e, which may be caused, among other things, by mea-
surement error in X, simultaneity, or the presence of lagged y values and serially
correlated disturbances.

Under such specification errors, LS estimators will be biased and inconsistent, and conven-
tional inference procedures will be invalidated. Ramsey (1969) showed that any or all of
these specification errors produce a non-zero mean vector for €. Therefore, the null and
alternative hypotheses of the RESET test are:

Hy: e~ N(O, 02])

(24.34)
H: e~ N(p, 021) pw#0
The test is based on an augmented regression:
y = XB+Zy+e. (24.35)

The test of specification error evaluates the restriction y = 0. The crucial question in con-
structing the test is to determine what variables should enter the Z matrix. Note that the Z
matrix may, for example, be comprised of variables that are not in the original specification,
so that the test of y = 0 is simply the omitted variables test described above.

In testing for incorrect functional form, the nonlinear part of the regression model may be
some function of the regressors included in X . For example, if a linear relation,

y = By+BX+e, (24.36)

is specified instead of the true relation:

y = By+B X+ X +e (24.37)
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the augmented model has Z = X* and we are back to the omitted variable case. A more
general example might be the specification of an additive relation,

y = By+ B X +B,X,+e (24.38)

instead of the (true) multiplicative relation:

y = B X0 XD v e (24.39)

A Taylor series approximation of the multiplicative relation would yield an expression
involving powers and cross-products of the explanatory variables. Ramsey's suggestion is to
include powers of the predicted values of the dependent variable (which are, of course, lin-
ear combinations of powers and cross-product terms of the explanatory variables) in Z:

A2 A3 A4
Z=1y,9,9%,..1 (24.40)

where ) is the vector of fitted values from the regression of y on X. The superscripts indi-
cate the powers to which these predictions are raised. The first power is not included since it
is perfectly collinear with the X matrix.

Output from the test reports the test regression and the F-statistic and log likelihood ratio for
testing the hypothesis that the coefficients on the powers of fitted values are all zero. A
study by Ramsey and Alexander (1984) showed that the RESET test could detect specifica-
tion error in an equation which was known a priori to be misspecified but which nonethe-
less gave satisfactory values for all the more traditional test criteria—goodness of fit, test for
first order serial correlation, high ¢-ratios.

To apply the test, select View/Stability Diagnostics/Ramsey RESET Test... and specify the
number of fitted terms to include in the test regression. The fitted terms are the powers of
the fitted values from the original regression, starting with the square or second power. For
example, if you specify 1, then the test will add @2 in the regression, and if you specify 2,
then the test will add @2 and @3 in the regression, and so on. If you specify a large number
of fitted terms, EViews may report a near singular matrix error message since the powers of
the fitted values are likely to be highly collinear. The Ramsey RESET test is only applicable
to equations estimated using selected methods.

Recursive Least Squares

In recursive least squares the equation is estimated repeatedly, using ever larger subsets of
the sample data. If there are k coefficients to be estimated in the b vector, then the first &
observations are used to form the first estimate of b. The next observation is then added to
the data set and &k + 1 observations are used to compute the second estimate of b . This pro-
cess is repeated until all the 7" sample points have been used, yielding 7 — k+ 1 estimates
of the b vector. At each step the last estimate of b can be used to predict the next value of
the dependent variable. The one-step ahead forecast error resulting from this prediction,
suitably scaled, is defined to be a recursive residual.
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More formally, let X,_, denote the (£ — 1) x k matrix of the regressors from period 1 to
period ¢t — 1, and y,_, the corresponding vector of observations on the dependent variable.
These data up to period ¢ — 1 give an estimated coefficient vector, denoted by b,_, . This
coefficient vector gives you a forecast of the dependent variable in period ¢. The forecast is
z,'b,_,, where z," is the row vector of observations on the regressors in period ¢. The
forecast error is y, — z,"b, _, , and the forecast variance is given by:

C(l+z/ (X, /X, ) 'z). (24.41)

The recursive residual w, is defined in EViews as:
’
(y,—z,_1"b)
w, =

= . (24.42)
) ) 12
(I+z/(X,_'X,_1) =)

These residuals can be computed for ¢ = k+ 1, ..., T". If the maintained model is valid,
the recursive residuals will be independently and normally distributed with zero mean and
constant variance o~ .

To calculate the recursive residuals, press N —— X
View/Stability Dlagnostlcs/Recursw.e output P
Estimates (OLS only)... on the equation (5 Recursive Residusls o{1) ef2) of3)

toolbar. There are six options available for O cusumTest

() CUSUM of Squares Test

the recursive estimates view. The recursive S ———

estimates view is only available for equa- O W-Step Forecast Test

tions estimated by ordinary least squares # R it

without AR and MA terms. The Save [ save Results as Series

Results as Series option allows you to save
the recursive residuals and recursive coeffi-
cients as named series in the workfile; see “Save Results as Series” on page 229.

Recursive Residuals

This option shows a plot of the recursive residuals about the zero line. Plus and minus two
standard errors are also shown at each point. Residuals outside the standard error bands
suggest instability in the parameters of the equation.

CUSUM Test

The CUSUM test (Brown, Durbin, and Evans, 1975) is based on the cumulative sum of the
recursive residuals. This option plots the cumulative sum together with the 5% critical lines.
The test finds parameter instability if the cumulative sum goes outside the area between the
two critical lines.

The CUSUM test is based on the statistic:
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t

W, = Y w/s, (24.43)
r=k+1
for t = k+1, ..., T, where w is the recursive residual defined above, and s is the stan-

dard deviation of the recursive residuals w, . If the 8 vector remains constant from period to
period, E(W,) = 0, butif 8 changes, W, will tend to diverge from the zero mean value
line. The significance of any departure from the zero line is assessed by reference to a pair of
5% significance lines, the distance between which increases with ¢. The 5% significance
lines are found by connecting the points:

[k, £-0.948( T - k)""*] and [T,+3 % 0.948( T - k)""?

1. (24.44)

Movement of W, outside the critical lines is suggestive of coefficient instability. A sample
CUSUM is given below:

300

250

200

150

100

50

-50

l —— CUSUM  ---- 5% Signiﬁcance]

The test clearly indicates instability in the equation during the sample period.

CUSUM of Squares Test
The CUSUM of squares test (Brown, Durbin, and Evans, 1975) is based on the test statistic:
t 1
S, = ( Y wﬂ /( 3 wf] : (24.45)
r=k+1 r=k+1
The expected value of S, under the hypothesis of parameter constancy is:
E(S) = (t-k)y/(T-k) (24.46)

which goes from zero at ¢ = k to unity at ¢ = T'. The significance of the departure of S
from its expected value is assessed by reference to a pair of parallel straight lines around the

expected value. See Brown, Durbin, and Evans (1975) or Johnston and DiNardo (1997, Table
D.8) for a table of significance lines for the CUSUM of squares test.
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The CUSUM of squares test provides a plot of .S, against ¢ and the pair of 5 percent critical
lines. As with the CUSUM test, movement outside the critical lines is suggestive of parame-
ter or variance instability.

The cumulative sum of squares is generally 12
within the 5% significance lines, suggest- 104 )
ing that the residual variance is somewhat o5 o
stable.
0.6+ -7
One-Step Forecast Test 0.4
If you look back at the definition of the 02
recursive residuals given above, you will 00 ]
see that each recursive residual is the error
in a one-step ahead forecast. To test A A A A
whether the value of the dependent vari-  CUSUM of Squares - 5% Significance

able at time ¢ might have come from the
model fitted to all the data up to that point,
each error can be compared with its standard deviation from the full sample.

The One-Step Forecast Test option produces a plot of the recursive residuals and standard
errors and the sample points whose probability value is at or below 15 percent. The plot can
help you spot the periods when your equation is least successful. For example, the one-step
ahead forecast test might look like this:

The upper portion of the plot (right verti- - 08

cal axis) repeats the recursive residuals T T N T
and standard errors displayed by the ﬂ/}vwm
Recursive Residuals option. The lower w .
portion of the plot (left vertical axis) 0004 TN 04
shows the probability values for those 0257 S
sample points where the hypothesis of e I .

parameter constancy would be rejected 100
at the 5, 10, or 15 percent levels. The s ° .
points with p-values less the 0.05 corre- s
spond to those points where the recur- oo s

sive residuals go outside the two

standard error bounds.

For the test equation, there is evidence of instability early in the sample period.

N-Step Forecast Test

This test uses the recursive calculations to carry out a sequence of Chow Forecast tests. In
contrast to the single Chow Forecast test described earlier, this test does not require the



Stability Diagnostics—229

specification of a forecast period— it automatically computes all feasible cases, starting with
the smallest possible sample size for estimating the forecasting equation and then adding
one observation at a time. The plot from this test shows the recursive residuals at the top
and significant probabilities (based on the F'statistic) in the lower portion of the diagram.

Recursive Coefficient Estimates

This view enables you to trace the evolution of estimates for any coefficient as more and
more of the sample data are used in the estimation. The view will provide a plot of selected
coefficients in the equation for all feasible recursive estimations. Also shown are the two
standard error bands around the estimated coefficients.

If the coefficient displays significant variation as more data is added to the estimating equa-
tion, it is a strong indication of instability. Coefficient plots will sometimes show dramatic
jumps as the postulated equation tries to digest a structural break.

To view the recursive coefficient estimates, click the Recursive Coefficients option and list
the coefficients you want to plot in the Coefficient Display List field of the dialog box. The
recursive estimates of the marginal propensity to consume (coefficient C(2)), from the sam-
ple consumption function are provided below:

The estimated propensity to consume rises 13
steadily as we add more data over the sam- 12
ple period, approaching a value of one.

Save Results as Series

The Save Results as Series checkbox will do
different things depending on the plot you
have asked to be displayed. When paired

with the Recursive Coefficients option, S
Save Results as Series will instruct EViews 0% 60657075 8890
to save all recursive coefficients and their - Reoursive B1(2) Estimates

standard errors in the workfile as named

series. EViews will name the coefficients

using the next available name of the form, R_C1, R_C2, ..., and the corresponding standard
errors as R_C1SE, R_C2SE, and so on.

If you check the Save Results as Series box with any of the other options, EViews saves the
recursive residuals and the recursive standard errors as named series in the workfile. EViews
will name the residual and standard errors as R_RES and R_RESSE, respectively.

Note that you can use the recursive residuals to reconstruct the CUSUM and CUSUM of
squares series.
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Leverage Plots

Leverage plots are the multivariate equivalent of a simple residual plot in a univariate
regression. Like influence statistics, leverage plots can be used as a method for identifying
influential observations or outliers, as well as a method of graphically diagnosing any poten-
tial failures of the underlying assumptions of a regression model.

Leverage plots are calculated by, in essence, turning a multivariate regression into a collec-
tion of univariate regressions. Following the notation given in Belsley, Kuh and Welsch 2004
(Section 2.1), the leverage plot for the k-th coefficient is computed as follows:

Let X, be the k-th column of the data matrix (the k-th variable in a linear equation, or the
k-th gradient in a non-linear), and X[k] be the remaining columns. Let u, be the residuals
from a regression of the dependent variable, y on X[k], and let v, be the residuals from a
regression of X; on X[k]. The leverage plot for the k-th coefficient is then a scatter plot of
Uy, ON Uy,

It can easily be shown that in an auxiliary regression of u, on a constant and v,,, the coeffi-
cient on v, will be identical to the k-th coefficient from the original regression. Thus the
original regression can be represented as a series of these univariate auxiliary regressions.

In a univariate regression, a plot of the residuals against the explanatory variable is often
used to check for outliers (any observation whose residual is far from the regression line), or
to check whether the model is possibly mis-specified (for example to check for linearity).
Leverage plots can be used in the same way in a multivariate regression, since each coeffi-
cient has been modelled in a univariate auxiliary regression.

To display leverage plots in EViews select View/ Leverage Plots X
Stability Diagnostics/Leverage Plots.... EViews Ve st

will then dlsplay ad dlalog which lets you choose Enter a list of regressors or any other variable

some simple options for the leverage plots. C SALES PROFMARG

The Variables to plot box lets you enter which
variables, or coefficients in a non-linear equation,
you Wlsh to p‘lo.t. By default this box will be fll.led (2] e it s
in with the original regressors from your equation. ]Paxtia ok varizbles
Note that EViews will let you enter variables that By & FEmiTE S o sz
. .. . . . the variables as series:
were not in the original equation, in which case
the plot will simply show the original equation
residuals plotted against the residuals from a
regression of the new variable against the original
regressors.

Opkions

Ok ] [ Cancel
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To add a regression line to each scatter plot, select the Add fit lines checkbox. If you do not
wish to create plots of the partialed variables, but would rather plot the original regression
residuals against the raw regressors, unselect the Partial out variables checkbox.

Finally, if you wish to save the partial residuals for each variable into a series in the work-
file, you may enter a naming suffix in the Enter a naming suffix to save the variables as a
series box. EViews will then append the name of each variable to the suffix you entered as
the name of the created series.

We illustrate using an example taken from Wooldridge (2000, Example 9.8) for the regres-
sion of R&D expenditures (RDINTENS) on sales (SALES), profits (PROFITMARG), and a
constant (using the workfile “Rdchem.WF1”). The leverage plots for equation E1 are dis-
played here:

H Equation: E1 Workfile: RDCHEM::Rdcheml

ViewProcObject PrintNameFreeze EstimateForecastStatsResids

ROINTEMS vs Yariables (Parislled on Regressors)
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Influence Statistics

Influence statistics are a method of discovering influential observations, or outliers. They are
a measure of the difference that a single observation makes to the regression results, or how
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different an observation is from the other observations in an equation’s sample. EViews pro-
vides a selection of six different influence statistics: RStudent, DRResid, DFFITS, CovRatio,
HatMatrix and DFBETAS.

e RStudent is the studentized residual; the residual of the equation at that observation
divided by an estimate of its standard deviation:

— e

where e, is the original residual for that observation, s(z) is the variance of the resid-
uals that would have resulted had observation ¢ not been included in the estimation,
and h; is the ¢-th diagonal element of the Hat Matrix, i.e. :vi(X'X)_1 ;. The RStudent
is also numerically identical to the ¢-statistic that would result from putting a dummy
variable in the original equation which is equal to 1 on that particular observation
and zero elsewhere. Thus it can be interpreted as a test for the significance of that
observation.

(24.47)

e DFFITS is the scaled difference in fitted values for that observation between the origi-
nal equation and an equation estimated without that observation, where the scaling is
done by dividing the difference by an estimate of the standard deviation of the fit:

h, e;
(24.48)

i 1/2
1- hj s(i) /1 - h,

¢ DRResid is the dropped residual, an estimate of the residual for that observation had
the equation been run without that observation’s data.

DFFITS, = [

e COVRATIO is the ratio of the determinant of the covariance matrix of the coefficients
from the original equation to the determinant of the covariance matrix from an equa-
tion without that observation.

¢ HatMatrix reports the i-th diagonal element of the Hat Matrix: z,( X' X )711’2-.

e DFBETAS are the scaled difference in the estimated betas between the original equa-
tion and an equation estimated without that observation:

8, B,(i)
(1) Jvar(B;)

where 3; is the original equation’s coefficient estimate, and 8,(¢) is the coefficient
estimate from an equation without observation 7.

DFBETAS, ; = (24.49)
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To display influence statistics in Dialog 3]
EViews select View/Stability Output statistics : Output bype
Diagnostics/Influence Statis- o Wlaraph  [JTable
tics. EViews will bring up a dia- [¥]RStudent
log where you can Choose hOW [#]oFFITS Table observation selection
you wish to display the statis- [ JDrapped Resids
tics. The Output statistics box [Vl CovRATIO
lets you choose which statistics [ Hat Matrix
you would like to calculate, and
Ent i liih

whether to store them as a to store mworktle

i 1 i i DFBETAS
series in your workfile. Simply O Cox ] (o)
check the check box next to the

statistics you would like to cal-

culate, and, optionally, enter the name of the series you would like to be created. Note that
for the DFBETAS statistics you should enter a naming suffix, rather than the name of the
series. EViews will then create the series with the name of the coefficient followed by the
naming suffix you provide.

The Output type box lets you select whether to display the statistics in graph form, or in
table form, or both. If both boxes are checked, EViews will create a spool object containing
both tables and graphs.

If you select to display the statistics in tabular form, then a new set of options will be
enabled, governing how the table is formed. By default, EViews will only display 100 rows
of the statistics in the table (although note that if your equation has less than 100 observa-
tions, all of the statistics will be displayed). You can change this number by changing the
Number of obs to include dropdown menu. EViews will display the statistics sorted from
highest to lowest, where the Residuals are used for the sort order. You can change which sta-
tistic is used to sort by using the Select by dropdown menu. Finally, you can change the sort
order to be by observation order rather than by one of the statistics by using the Display in
observation order check box.

We illustrate using the equation E1 from the “Rdchem.WF1” workfile. A plot of the DFFITS
and COVRATIOs clearly shows that observation 10 is an outlier.
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EH Equation: E1 Workfile: RDCHEM::Rdcheml

ViewProcObject PrintNameFreeze EstimateForecastStatsResids

Influence Statistics
DFFITS

COWVRATIO

Applications

For illustrative purposes, we provide a demonstration of how to carry out some other speci-
fication tests in EViews. For brevity, the discussion is based on commands, but most of these
procedures can also be carried out using the menu system.

A Wald Test of Structural Change with Unequal Variance

The F-statistics reported in the Chow tests have an F-distribution only if the errors are inde-
pendent and identically normally distributed. This restriction implies that the residual vari-
ance in the two subsamples must be equal.

Suppose now that we wish to compute a Wald statistic for structural change with unequal
subsample variances. Denote the parameter estimates and their covariance matrix in subsa-
mple ¢ as b; and V, for ¢ = 1, 2. Under the assumption that b, and b, are independent
normal random variables, the difference b, — b, has mean zero and variance V; + V.
Therefore, a Wald statistic for the null hypothesis of no structural change and independent
samples can be constructed as:

W = (b= by)(Vy + Vo) (b = by), (24.50)

which has an asymptotic x2 distribution with degrees of freedom equal to the number of
estimated parameters in the b vector.
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To carry out this test in EViews, we estimate the model in each subsample and save the esti-
mated coefficients and their covariance matrix. For example, consider the quarterly workfile
of macroeconomic data in the workfile “Coef_test2.WF1” (containing data for 1947q1-
1994q4) and suppose wish to test whether there was a structural change in the consumption
function in 1973q1. First, estimate the model in the first sample and save the results by the
commands:

coef (2) bl
smpl 19479l 197294
equation eq 1l.1s log(cs)=bl(1)+bl(2)*1log(gdp)

sym vl=eq 1.@cov

The first line declares the coefficient vector, B1, into which we will place the coefficient esti-
mates in the first sample. Note that the equation specification in the third line explicitly
refers to elements of this coefficient vector. The last line saves the coefficient covariance
matrix as a symmetric matrix named V1. Similarly, estimate the model in the second sample
and save the results by the commands:

coef (2) b2
smpl 1973gl 1994qg4
equation eq 2.1s log(cs)=b2(1)+b2(2)*1log(gdp)

sym v2=eq 2.@cov
To compute the Wald statistic, use the command:

matrix wald=@transpose (bl-b2) *@inverse (v1i+v2) * (bl-b2)

The Wald statistic is saved in the 1 x 1 matrix named WALD. To see the value, either dou-
ble click on WALD or type “show wald”. You can compare this value with the critical values
from the X2 distribution with 2 degrees of freedom. Alternatively, you can compute the p-
value in EViews using the command:

scalar wald p=1-@cchisqg(wald(1l,1),2)

The p-value is saved as a scalar named WALD_P. To see the p-value, double click on
WALD_P or type “show wald_p”. The WALD statistic value of 53.1243 has an associated p-
value of 2.9e-12 so that we decisively reject the null hypothesis of no structural change.

The Hausman Test

A widely used class of tests in econometrics is the Hausman test. The underlying idea of the
Hausman test is to compare two sets of estimates, one of which is consistent under both the
null and the alternative and another which is consistent only under the null hypothesis. A
large difference between the two sets of estimates is taken as evidence in favor of the alter-
native hypothesis.

Hausman (1978) originally proposed a test statistic for endogeneity based upon a direct
comparison of coefficient values. Here, we illustrate the version of the Hausman test pro-
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posed by Davidson and MacKinnon (1989, 1993), which carries out the test by running an
auxiliary regression.

The following equation in the “Basics. WF1” workfile was estimated by OLS:

Dependent Variable: LOG(M1)

Method: Least Squares

Date: 08/10/09 Time: 16:08

Sample (adjusted): 1959M02 1995M04
Included observations: 435 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
C -0.022699 0.004443  -5.108528 0.0000
LOG(IP) 0.011630 0.002585 4499708 0.0000
DLOG(PPI) -0.024886 0.042754  -0.582071 0.5608
TB3 -0.000366 9.91E-05 -3.692675 0.0003
LOG(M1(-1)) 0.996578 0.001210 823.4440 0.0000
R-squared 0.999953 Mean dependent var 5.844581
Adjusted R-squared 0.999953 S.D. dependent var 0.670596
S.E. of regression 0.004601 Akaike info criterion -7.913714
Sum squared resid 0.009102 Schwarz criterion -7.866871
Log likelihood 1726.233 Hannan-Quinn criter. -7.895226
F-statistic 2304897. Durbin-Watson stat 1.265920

Prob(F-statistic) 0.000000

Suppose we are concerned that industrial production (IP) is endogenously determined with
money (M1) through the money supply function. If endogeneity is present, then OLS esti-
mates will be biased and inconsistent. To test this hypothesis, we need to find a set of instru-
mental variables that are correlated with the “suspect” variable IP but not with the error
term of the money demand equation. The choice of the appropriate instrument is a crucial
step. Here, we take the unemployment rate (URATE) and Moody’s AAA corporate bond
yield (AAA) as instruments.

To carry out the Hausman test by artificial regression, we run two OLS regressions. In the
first regression, we regress the suspect variable (log) IP on all exogenous variables and
instruments and retrieve the residuals:

equation eq test.ls log(ip) c dlog(ppi) tb3 log(ml(-1)) urate aaa

eq test.makeresid res ip

Then in the second regression, we re-estimate the money demand function including the
residuals from the first regression as additional regressors. The result is:
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Dependent Variable: LOG(M1)

Method: Least Squares

Date: 08/10/09 Time: 16:11

Sample (adjusted): 1959M02 1995M04
Included observations: 435 after adjustments

Variable Coefficient ~ Std. Error t-Statistic Prob.
o] -0.007145 0.007473  -0.956158 0.3395
LOG(IP) 0.001560 0.004672 0.333832 0.7387
DLOG(PPI) 0.020233 0.045935 0.440465 0.6598
TB3 -0.000185 0.000121  -1.527775 0.1273
LOG(M1(-1)) 1.001093 0.002123 471.4894 0.0000
RES_IP 0.014428 0.005593 2.579826 0.0102
R-squared 0.999954 Mean dependent var 5.844581
Adjusted R-squared 0.999954 S.D. dependent var 0.670596
S.E. of regression 0.004571 Akaike info criterion -7.924511
Sum squared resid 0.008963 Schwarz criterion -7.868300
Log likelihood 1729.581 Hannan-Quinn criter. -7.902326
F-statistic 1868171. Durbin-Watson stat 1.307838

Prob(F-statistic) 0.000000

If the OLS estimates are consistent, then the coefficient on the first stage residuals should
not be significantly different from zero. In this example, the test rejects the hypothesis of
consistent OLS estimates at conventional levels.

Note that an alternative form of a regressor endogeneity test may be computed using the
Regressor Endogeneity Test view of an equation estimated by TSLS or GMM (see “Regressor
Endogeneity Test” on page 93).

Non-nested Tests

Most of the tests discussed in this chapter are nested tests in which the null hypothesis is
obtained as a special case of the alternative hypothesis. Now consider the problem of choos-
ing between the following two specifications of a consumption function:

H,: CS, = a;+ayGDP,+ a3;GDP,_, +¢,

(24.51)
H,: CS; = B1+ByGDP+B305,_ | +¢

for the variables in the workfile “Coef_test2.WF1”. These are examples of non-nested mod-
els since neither model may be expressed as a restricted version of the other.

The J-test proposed by Davidson and MacKinnon (1993) provides one method of choosing

between two non-nested models. The idea is that if one model is the correct model, then the
fitted values from the other model should not have explanatory power when estimating that
model. For example, to test model H, against model H,, we first estimate model H, and

retrieve the fitted values:

equation eq cs2.1ls cs c gdp cs(-1)



238—Chapter 24. Specification and Diagnostic Tests

eq cs2.fit (f=na) cs2

The second line saves the fitted values as a series named CS2. Then estimate model H,;
including the fitted values from model H, . The result is:

Dependent Variable: CS

Method: Least Squares

Date: 08/10/09 Time: 16:17

Sample (adjusted): 1947Q2 1994Q4
Included observations: 191 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
Cc 7.313232 4.391305 1.665389 0.0975
GDP 0.278749 0.029278 9.520694 0.0000
GDP(-1) -0.314540 0.029287 -10.73978 0.0000
Cs2 1.048470 0.019684 53.26506 0.0000
R-squared 0.999833 Mean dependent var 1953.966
Adjusted R-squared 0.999830 S.D. dependent var 848.4387
S.E. of regression 11.05357 Akaike info criterion 7664104
Sum squared resid 2284793 Schwarz criterion 7.732215
Log likelihood -727.9220 Hannan-Quinn criter. 7.691692
F-statistic 3730744 Durbin-Watson stat 2.253186

Prob(F-statistic) 0.000000

The fitted values from model H, enter significantly in model H, and we reject model H, .

We may also test model H, against model H, . First, estimate model A, and retrieve the
fitted values:

equation eq csla.ls cs gdp gdp(-1)

eq csla.fit (f=na) csl
Then estimate model H, including the fitted values from model H, . The results of this
“reverse” test regression are given by:
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Dependent Variable: CS

Method: Least Squares

Date: 08/10/09 Time: 16:46

Sample (adjusted): 1947Q2 1995Q1
Included observations: 192 after adjustments

Variable Coefficient ~ Std. Error t-Statistic Prob.
o] -1413.901 130.6449  -10.82247 0.0000
GDP 5.131858 0472770 10.85486 0.0000
CS(-1) 0.977604 0.018325 53.34810 0.0000
CS1F -7.240322 0.673506  -10.75020 0.0000
R-squared 0.999836 Mean dependent var 1962.779
Adjusted R-squared 0.999833 S.D. dependent var 854.9810
S.E. of regression 11.04237  Akaike info criterion 7.661969
Sum squared resid 22923.56 Schwarz criterion 7.720833
Log likelihood -731.5490 Hannan-Quinn criter. 7.689455
F-statistic 381618.5 Durbin-Watson stat 2.2607 86

Prob(F-statistic) 0.000000

The fitted values are again statistically significant and we reject model H, .

In this example, we reject both specifications, against the alternatives, suggesting that
another model for the data is needed. It is also possible that we fail to reject both models, in
which case the data do not provide enough information to discriminate between the two
models.
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Part VI. Advanced Single Equation Analysis

The following sections describe EViews tools for the estimation and analysis of advanced
single equation models and time series analysis:

Chapter 25. “ARCH and GARCH Estimation,” beginning on page 243, outlines the
EViews tools for ARCH and GARCH modeling of the conditional variance, or volatility,
of a variable.

Chapter 26. “Cointegrating Regression,” on page 267 describes EViews’ tools for esti-
mating and testing single equation cointegrating relationships. Multiple equation tests
for cointegration are described in Chapter 40. “Vector Autoregression and Error Cor-
rection Models,” on page 687.

Chapter 27. “Autoregressive Distributed Lag (ARDL) Models,” beginning on page 295
describes the specification and estimation 0f Autoregressive Distributed Lag (ARDL)
models.

Chapter 28. “Midas Regression,” on page 313 documents EViews tools for Mixed Data
Sampling (MIDAS) regression, an estimation technique which allows for data sampled
at different frequencies to be used in the same regression.

Chapter 29. “Discrete and Limited Dependent Variable Models,” on page 331 docu-
ments EViews tools for estimating qualitative and limited dependent variable models.
EViews provides estimation routines for binary or ordered (probit, logit, gompit), cen-
sored or truncated (tobit, etc.), Heckman selection models, and integer valued (count
data).

Chapter 30. “Generalized Linear Models,” on page 391 documents describes EViews
tools for the class of Generalized Linear Models.

Chapter 31. “Robust Least Squares,” beginning on page 421 describes tools for robust
least squares estimation which are designed to be robust, or less sensitive, to outliers.

Chapter 32. “Least Squares with Breakpoints,” beginning on page 441 outlines the
EViews estimator for equations with one or more structural breaks.

Chapter 33. “Discrete Threshold Regression,” beginning on page 461 describes the
analysis of discrete threshold regressions and autoregressions.

Chapter 34. “Smooth Transition Regression,” beginning on page 477 describes the
analysis of smooth threshold regressions and autoregressions.

Chapter 35. “Switching Regression,” beginning on page 505 describes estimation of
regression models with nonlinearities arising from discrete changes in unobserved
regimes.
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¢ Chapter 36. “Quantile Regression,” beginning on page 541 describes the estimation of
quantile regression and least absolute deviations estimation in EViews.

¢ Chapter 37. “The Log Likelihood (LogL) Object,” beginning on page 565 describes
techniques for using EViews to estimate the parameters of maximum likelihood mod-
els where you may specify the form of the likelihood.

¢ Chapter 38. “Univariate Time Series Analysis,” on page 589 describes tools for univar-
iate time series analysis, including unit root tests in both conventional and panel data
settings, variance ratio tests, and the BDS test for independence.



Chapter 25. ARCH and GARCH Estimation

Most of the statistical tools in EViews are designed to model the conditional mean of a ran-
dom variable. The tools described in this chapter differ by modeling the conditional vari-
ance, or volatility, of a variable.

There are several reasons that you may wish to model and forecast volatility. First, you may
need to analyze the risk of holding an asset or the value of an option. Second, forecast con-
fidence intervals may be time-varying, so that more accurate intervals can be obtained by
modeling the variance of the errors. Third, more efficient estimators can be obtained if het-
eroskedasticity in the errors is handled properly.

Autoregressive Conditional Heteroskedasticity (ARCH) models are specifically designed to
model and forecast conditional variances. The variance of the dependent variable is mod-
eled as a function of past values of the dependent variable and independent, or exogenous
variables.

ARCH models were introduced by Engle (1982) and generalized as GARCH (Generalized
ARCH) by Bollerslev (1986) and Taylor (1986). These models are widely used in various
branches of econometrics, especially in financial time series analysis. See Bollerslev, Chou,
and Kroner (1992) and Bollerslev, Engle, and Nelson (1994) for surveys.

In the next section, the basic ARCH model will be described in detail. In subsequent sec-
tions, we consider the wide range of specifications available in EViews for modeling volatil-
ity. For brevity of discussion, we will use ARCH to refer to both ARCH and GARCH models,
except where there is the possibility of confusion.

Basic ARCH Specifications

In developing an ARCH model, you will have to provide three distinct specifications—one
for the conditional mean equation, one for the conditional variance, and one for the condi-
tional error distribution. We begin by describing some basic specifications for these terms.
The discussion of more complicated models is taken up in “Additional ARCH Models” on

page 256.
The GARCH(1, 1) Model
We begin with the simplest GARCH(1,1) specification:
Y, = X0 +e¢, (25.1)
0? = w+ aeffl + Boffl (25.2)

in which the mean equation given in (25.1) is written as a function of exogenous variables
. . 2% . . .
with an error term. Since o} is the one-period ahead forecast variance based on past infor-
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mation, it is called the conditional variance. The conditional variance equation specified in
(25.2) is a function of three terms:

® A constant term: w.

¢ News about volatility from the previous period, measured as the lag of the squared
residual from the mean equation: 6?71 (the ARCH term).

e Last period’s forecast variance: 0?71 (the GARCH term).

The (1, 1) in GARCH(1, 1) refers to the presence of a first-order autoregressive GARCH term
(the first term in parentheses) and a first-order moving average ARCH term (the second term
in parentheses). An ordinary ARCH model is a special case of a GARCH specification in
which there are no lagged forecast variances in the conditional variance equation—i.e., a
GARCH(0, 1).

This specification is often interpreted in a financial context, where an agent or trader pre-
dicts this period’s variance by forming a weighted average of a long term average (the con-
stant), the forecasted variance from last period (the GARCH term), and information about
volatility observed in the previous period (the ARCH term). If the asset return was unexpect-
edly large in either the upward or the downward direction, then the trader will increase the
estimate of the variance for the next period. This model is also consistent with the volatility
clustering often seen in financial returns data, where large changes in returns are likely to be
followed by further large changes.

There are two equivalent representations of the variance equation that may aid you in inter-
preting the model:

e If we recursively substitute for the lagged variance on the right-hand side of
Equation (25.2), we can express the conditional variance as a weighted average of all
of the lagged squared residuals:

(&)

(1-p)

+ o z Bj_leij. (25.3)
j=1

2_
o, =

We see that the GARCH(1,1) variance specification is analogous to the sample vari-
ance, but that it down-weights more distant lagged squared errors.

. S 2 2 N .
¢ The error in the squared returns is given by v, = €, — 0, . Substituting for the vari-
ances in the variance equation and rearranging terms we can write our model in
terms of the errors:
2 2
€, = o+ (a+B)e_+v,—Br,_,. (25.4)

Thus, the squared errors follow a heteroskedastic ARMA(1,1) process. The autoregres-
sive root which governs the persistence of volatility shocks is the sum of « plus 3. In
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many applied settings, this root is very close to unity so that shocks die out rather
slowly.

The GARCH(q, p) Model

Higher order GARCH models, denoted GARCH( ¢, p ), can be estimated by choosing either ¢
or p greater than 1 where ¢ is the order of the autoregressive GARCH terms and p is the
order of the moving average ARCH terms.

The representation of the GARCH( ¢, p) variance is:

q »

2 2 2

0p = w+ Yy B0+ D ae (25.5)
j=1 i=1

The GARCH-M Model

The X, in equation Equation (25.2) represent exogenous or predetermined variables that
are included in the mean equation. If we introduce the conditional variance or standard
deviation into the mean equation, we get the GARCH-in-Mean (GARCH-M) model (Engle,
Lilien and Robins, 1987):

Y, = X,0+\o’ +e¢,. (25.6)
The ARCH-M model is often used in financial applications where the expected return on an

asset is related to the expected asset risk. The estimated coefficient on the expected risk is a
measure of the risk-return tradeoff.

Two variants of this ARCH-M specification use the conditional standard deviation or the log
of the conditional variance in place of the variance in Equation (25.6).

Y, = X,/0+No, +¢,. (25.7)
Y, = X0+ \og(c}) +e, (25.8)

Regressors in the Variance Equation

Equation (25.5) may be extended to allow for the inclusion of exogenous or predetermined
regressors, z, in the variance equation:

q P
0? = w+ 26j0f7j+ Zaiefﬁv+ Z/'m. (25.9)
j=1 i=1
Note that the forecasted variances from this model are not guaranteed to be positive. You

may wish to introduce regressors in a form where they are always positive to minimize the
possibility that a single, large negative value generates a negative forecasted value.
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Distributional Assumptions

To complete the basic ARCH specification, we require an assumption about the conditional
distribution of the error term e . There are three assumptions commonly employed when
working with ARCH models: normal (Gaussian) distribution, Student’s ¢-distribution, and
the Generalized Error Distribution (GED). Given a distributional assumption, ARCH models
are typically estimated by the method of maximum likelihood.

For example, for the GARCH(1, 1) model with conditionally normal errors, the contribution
to the log-likelihood for observation ¢ is:

1 1 1 =
I, = —élog(Qw)—élogai—é(yt—Xt 0) /o), (25.10)

2 . e o
where o} is specified in one of the forms above.
For the Student’s ¢-distribution, the log-likelihood contributions are of the form:

2 _ ’
I, = —hog(———————w(y — 2)1‘(1;/22) j - 1loga?—(————y ki 1)log(l + (_____%2 ad G)j (25.11)
2 T'((v+1)/2) 2 2 o} (v—2)

where the degree of freedom » > 2 controls the tail behavior. The #-distribution approaches
the normal as v — .

For the GED, we have:

L1 ( r(1/ )’ J 1 2[r<3/r><yf—xt'0)j”
2 \r@3/r(r/2) o, T(1/7)

5 (25.12)

where the tail parameter > 0. The GED is a normal distribution if 7 = 2, and fat-tailed if
r<2.

By default, ARCH models in EViews are estimated by the method of maximum likelihood
under the assumption that the errors are conditionally normally distributed.

Estimating ARCH Models in EViews

To estimate an ARCH or GARCH model, open the equation specification dialog by selecting
Quick/Estimate Equation..., by selecting Object/New Object.../Equation.... Select ARCH
from the method dropdown menu at the bottom of the dialog. Alternately, typing the key-
word arch in the command line both creates the object and sets the estimation method.

The dialog will change to show you the ARCH specification dialog. You will need to specify
both the mean and the variance specifications, the error distribution and the estimation
sample.
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The Mean Equation

In the dependent variable Equation Estimation
edit box, you should enter
the specification of the

Spedfication | Options

Mean equation

mean equation. You can Dependent followed by regressors & ARMA terms OR. explicit equation:
ARCH-M:
e ps . . . dioa(spx) ¢ it
enter the specification in list Fez | w
form by listing the depen-
: Variance and distribution specification
dent variable followed by - R
the regressors. You should —°de' GARCH/TARCH
o Order:
add the C to your Spele]C&- ARCH: |1 Threshold order: | 0
tion if you wish to include a GARCH: 1 -
constant. If you have a more Restrictions: | None v|  |Normal (Gaussian) v
complex mean specifica-
. Estimation settings
tion, you can enter your
) . Method: | ARCH - Autoregressive Conditional Heteroskedasticity W
mean equation using an
. . Sample: | 1/01/1990 13/31/1999
explicit expression.
If your specification o

includes an ARCH-M term,

you should select the appro-

priate item of the dropdown menu in the upper right-hand side of the dialog. You may
choose to include the Std. Dev., Variance, or the Log(Var) in the mean equation.

The Variance Equation

Your next step is to specify your variance equation.

Class of models

To estimate one of the standard GARCH models as described above, select the GARCH/
TARCH entry in the Model dropdown menu. The other entries (EGARCH, PARCH, and
Component ARCH(1, 1)) correspond to more complicated variants of the GARCH specifica-
tion. We discuss each of these models in “Additional ARCH Models” on page 256.

In the Order section, you should choose the number of ARCH and GARCH terms. The
default, which includes one ARCH and one GARCH term is by far the most popular specifi-
cation.

If you wish to estimate an asymmetric model, you should enter the number of asymmetry
terms in the Threshold order edit field. The default settings estimate a symmetric model
with threshold order 0.
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Variance regressors

In the Variance regressors edit box, you may optionally list variables you wish to include in
the variance specification. Note that, with the exception of IGARCH models, EViews will
always include a constant as a variance regressor so that you do not need to add C to this
list.

The distinction between the permanent and transitory regressors is discussed in “The Com-
ponent GARCH (CGARCH) Model” on page 259.

Restrictions

If you choose the GARCH/TARCH model, you may restrict the parameters of the GARCH
model in two ways. One option is to set the Restrictions dropdown to IGARCH, which
restricts the persistent parameters to sum up to one. Another is Variance Target, which
restricts the constant term to a function of the GARCH parameters and the unconditional
variance:

q p
© = &2[1— LIRSS ozlj (25.13)

j=1 i=1

A2 . - . .
where ¢ is the unconditional variance of the residuals.

The Error Distribution

To specify the form of the conditional distribution for your errors, you should select an entry
from the Error Distribution dropdown menu.You may choose between the default Normal
(Gaussian), the Student’s t, the Generalized Error (GED), the Student’s t with fixed d.f.,
or the GED with fixed parameter. In the latter two cases, you will be prompted to enter a
value for the fixed parameter. See “Distributional Assumptions” on page 245 for details on
the supported distributions.

Estimation Options

EViews provides you with access to a number of optional estimation settings. Simply click
on the Options tab and fill out the dialog as desired.
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Backcasting

By default, both the innova- Equation Estimation
tions used in initializing MA
estimation and the initial

Spedification | Options

. . d f th Estimation Options Starting values
variance require or € ggmﬁéﬁon BFGS W Starting coefficent values:
GARCH terms are computed o melihod' — > Eviews supplied
using backcasting methods. . — P e

. ax [terations:

Details on the MA backcast- c : Backecast with parameter = 0.7 v

. . onyergence: 1e-08

ing procedure are provided .

in “Initializi g MA 1 [ pisplay iteration settings Coefficient name: | ¢

1n Initializin; nnova-

tions” on page 144. Coeffident covariance Derivatives
Covariance T =

. method:
When computing backcast Information | opg ™
initial variances for GARCH, et L

EViews first uses the coeffi-

cient values to compute the

residuals of the mean equa-

tion, and then computes an
exponential smoothing esti-

mator of the initial values,

Cancel

T
o = =N+A-NINTTE, (25.14)
j=0

A . . A2 . - . .
where € are the residuals from the mean equation, ¢~ is the unconditional variance esti-
mate:

T
o= S &/T (25.15)
t=1

and the smoothing parameter A = 0.7 . However, you have the option to choose from a
number of weights from 0.1 to 1, in increments of 0.1, by using the Presample variance
drop-down list. Notice that if the parameter is set to 1, then the initial value is simply the
unconditional variance, e.g. backcasting is not calculated:
A2

o, = 5. (25.16)
Using the unconditional variance provides another common way to set the presample vari-
ance.

Our experience has been that GARCH models initialized using backcast exponential smooth-
ing often outperform models initialized using the unconditional variance.
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Heteroskedasticity Consistent Covariances

Click on the check box labeled Heteroskedasticity Consistent Covariance to compute the
quasi-maximum likelihood (QML) covariances and standard errors using the methods
described by Bollerslev and Wooldridge (1992). This option is only available if you choose
the conditional normal as the error distribution.

You should use this option if you suspect that the residuals are not conditionally normally
distributed. When the assumption of conditional normality does not hold, the ARCH param-
eter estimates will still be consistent, provided the mean and variance functions are correctly
specified. The estimates of the covariance matrix will not be consistent unless this option is
specified, resulting in incorrect standard errors.

Note that the parameter estimates will be unchanged if you select this option; only the esti-
mated covariance matrix will be altered.

Derivative Methods

EViews uses both numeric and analytic derivatives in estimating ARCH models. Fully ana-
lytic derivatives are available for GARCH(p, q) models with simple mean specifications
assuming normal or unrestricted #-distribution errors.

Analytic derivatives are not available for models with ARCH in mean specifications, complex
variance equation specifications (e.g. threshold terms, exogenous variance regressors, or
integrated or target variance restrictions), models with certain error assumptions (e.g. errors
following the GED or fixed parameter ¢-distributions), and all non-GARCH(p, q) models (e.g.
EGARCH, PARCH, component GARCH).

Some specifications offer analytic derivatives for a subset of coefficients. For example, sim-
ple GARCH models with non-constant regressors allow for analytic derivatives for the vari-
ance coefficients but use numeric derivatives for any non-constant regressor coefficients.

You may control the method used in computing numeric derivatives to favor speed (fewer
function evaluations) or to favor accuracy (more function evaluations).

Iterative Estimation Control

The likelihood functions of ARCH models are not always well-behaved so that convergence
may not be achieved with the default estimation settings. You can use the options dialog to
select the iterative algorithm (Marquardt, BHHH/Gauss-Newton), change starting values,
increase the maximum number of iterations, or adjust the convergence criterion.

Starting Values

As with other iterative procedures, starting coefficient values are required. EViews will sup-
ply its own starting values for ARCH procedures using OLS regression for the mean equa-
tion. Using the Options dialog, you can also set starting values to various fractions of the
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OLS starting values, or you can specify the values yourself by choosing the User Specified
option, and placing the desired coefficients in the default coefficient vector.

GARCH(1,1) examples

To estimate a standard GARCH(1,1) model with no regressors in the mean and variance
equations:

R, = c+e

) (25.17)
0y

2 2
w+ae,_+00;_,

you should enter the various parts of your specification:

e Fill in the Mean Equation Specification edit box as
r C
e Enter 1 for the number of ARCH terms, and 1 for the number of GARCH terms, and
select GARCH/TARCH.
¢ Select None for the ARCH-M term.

¢ Leave blank the Variance Regressors edit box.

To estimate the ARCH(4)-M model:

R, = vo+ v DUM,+v,0,+¢

2 2 2 2 2 (25.18)
= DUM
(Tt 0J+0116t_1+0126t_2+0136t_3+0146t_4+’)/3 t

you should fill out the dialog in the following fashion:
e Enter the mean equation specification “R C DUM”.

e Enter “4” for the ARCH term and “0” for the GARCH term, and select GARCH (sym-
metric).

e Select Std. Dev. for the ARCH-M term.

¢ Enter DUM in the Variance Regressors edit box.

Once you have filled in the Equation Specification dialog, click OK to estimate the model.
ARCH models are estimated by the method of maximum likelihood, under the assumption
that the errors are conditionally normally distributed. Because the variance appears in a
non-linear way in the likelihood function, the likelihood function must be estimated using
iterative algorithms. In the status line, you can watch the value of the likelihood as it
changes with each iteration. When estimates converge, the parameter estimates and conven-
tional regression statistics are presented in the ARCH object window.

As an example, we fit a GARCH(1,1) model to the first difference of log daily S&P 500
(DLOG(SPX)) in the workfile “Stocks.WF1”, using backcast values for the initial variances
and computing Bollerslev-Wooldridge standard errors. The output is presented below:
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Dependent Variable: DLOG(SPX)

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)
Date: 03/09/15 Time: 13:23

Sample: 1/02/1990 12/31/1999

Included observations: 2528

Convergence achieved after 26 iterations

Presample variance: backcast (parameter = 0.7)

GARCH = C(2) + C(3)*RESID(-1)"2 + C(4)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.

C 0.000597 0.000149 4.013882 0.0001

Variance Equation

C 5.83E-07 1.37E-07 4.261215 0.0000
RESID(-1)"2 0.053317 0.005152 10.34861 0.0000
GARCH(-1) 0.939955 0.006125 153.4702 0.0000

R-squared -0.000014 Mean dependent var 0.000564
Adjusted R-squared -0.000014  S.D. dependent var 0.008888
S.E. of regression 0.008889 Akaike info criterion -6.807476
Sum squared resid 0.199649 Schwarz criterion -6.798243
Log likelihood 8608.650 Hannan-Quinn criter. -6.804126
Durbin-Watson stat 1.964029

By default, the estimation output header describes the estimation sample, and the methods
used for computing the coefficient standard errors, the initial variance terms, and the vari-
ance equation. Also noted is the method for computing the presample variance, in this case
backcasting with smoothing parameter A = 0.7.

The main output from ARCH estimation is divided into two sections—the upper part pro-
vides the standard output for the mean equation, while the lower part, labeled “Variance
Equation”, contains the coefficients, standard errors, z-statistics and p-values for the coeffi-
cients of the variance equation.

The ARCH parameters correspond to o and the GARCH parameters to 8 in Equation (25.2)
on page 243. The bottom panel of the output presents the standard set of regression statis-
tics using the residuals from the mean equation. Note that measures such as R may not be
meaningful if there are no regressors in the mean equation. Here, for example, the R is
negative.

In this example, the sum of the ARCH and GARCH coefficients (o + 3) is very close to one,
indicating that volatility shocks are quite persistent. This result is often observed in high fre-
quency financial data.



Working with ARCH Models—253

Working with ARCH Models

Once your model has been estimated, EViews provides a variety of views and procedures for
inference and diagnostic checking.

Views of ARCH Models

The Representations view displays the estimation command as well as the estimation
and substituted coefficients equations for the mean and variance specifications.

The Actual, Fitted, Residual view displays the residuals in various forms, such as
table, graphs, and standardized residuals. You can save the residuals as a named
series in your workfile using a procedure (see “ARCH Model Procedures” on

page 254).

GARCH Graph/Conditional Standard Deviation and GARCH Graph/Conditional
Variance plots the one-step ahead standard deviation o, or variance 03 for each
observation in the sample. The observation at period ¢ is the forecast for £ made
using information available in ¢ — 1. You can save the conditional standard deviations
or variances as named series in your workfile using a procedure (see below). If the
specification is for a component model, EViews will also display the permanent and
transitory components.

Covariance Matrix displays the estimated coefficient covariance matrix. Most ARCH
models (except ARCH-M models) are block diagonal so that the covariance between
the mean coefficients and the variance coefficients is very close to zero. If you include
a constant in the mean equation, there will be two C’s in the covariance matrix; the
first C is the constant of the mean equation, and the second C is the constant of the
variance equation.

Coefficient Diagnostics produces standard diagnostics for the estimated coefficients.
See “Coefficient Diagnostics” on page 176 for details. Note that the likelihood ratio
tests are not appropriate under a quasi-maximum likelihood interpretation of your
results.

Residual Diagnostics/Correlogram-Q-statistics displays the correlogram (autocor-
relations and partial autocorrelations) of the standardized residuals. This view can be
used to test for remaining serial correlation in the mean equation and to check the
specification of the mean equation. If the mean equation is correctly specified, all ¢-
statistics should not be significant. See “Correlogram” on page 420 of User’s Guide I
for an explanation of correlograms and @)-statistics.

Residual Diagnostics/Correlogram Squared Residuals displays the correlogram
(autocorrelations and partial autocorrelations) of the squared standardized residuals.
This view can be used to test for remaining ARCH in the variance equation and to
check the specification of the variance equation. If the variance equation is correctly
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specified, all @)-statistics should not be significant. See “Correlogram” on page 420 of
User’s Guide I for an explanation of correlograms and ()-statistics. See also Residual
Diagnostics/ARCH LM Test.

¢ Residual Diagnostics/Histogram—Normality Test displays descriptive statistics and a
histogram of the standardized residuals. You can use the Jarque-Bera statistic to test
the null of whether the standardized residuals are normally distributed. If the stan-
dardized residuals are normally distributed, the Jarque-Bera statistic should not be
significant. See “Descriptive Statistics & Tests,” beginning on page 402 of User’s Guide
I for an explanation of the Jarque-Bera test. For example, the histogram of the stan-
dardized residuals from the GARCH(1,1) model fit to the daily stock return looks as
follows:

[=] Equation: GARCHSPX Workfile: STOCKS:Undated\ [ = | & |[=5]
[V\ewIPmcIObject] [PrmtINameIFreeze] [EstimateIFmecastlStat;]Resid;]
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-7.074283
01555305
0452021
5. 458823

300

200

Jarqus-Bera T4 8002
Probability 0000000

The standardized residuals are leptokurtic and the Jarque-Bera statistic strongly
rejects the hypothesis of normal distribution.

¢ Residual Diagnostics/ARCH LM Test carries out Lagrange multiplier tests to test
whether the standardized residuals exhibit additional ARCH. If the variance equation
is correctly specified, there should be no ARCH left in the standardized residuals. See
“ARCH LM Test” on page 198 for a discussion of testing. See also Residual Diagnos-
tics/Correlogram Squared Residuals.

ARCH Model Procedures

Various ARCH equation procedures allow you to produce results based on you estimated
equation. Some of these procedures, for example the Make Gradient Group and Make Deriv-
ative Group behave the same as in other equations. Some of the procedures have ARCH spe-
cific elements:
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e Forecast uses the estimated ARCH model to compute static and dynamic forecasts of
the mean, its forecast standard error, and the conditional variance. To save any of
these forecasts in your workfile, type a name in the corresponding dialog box. If you
choose the Forecast Graph option, EViews displays the graphs of the forecasts and
two standard deviation bands for the mean forecast.

Note that the squared residuals e? may not be available for presample values or when
computing dynamic forecasts. In such cases, EViews will replaced the term by its
expected value. In the simple GARCH(p, q) case, for example, the expected value of
the squared residual is the fitted variance, e.g., E(e?) = 03 . In other models, the
expected value of the residual term will differ depending on the distribution and, in
some cases, the estimated parameters of the model.

For example, to construct dynamic forecasts of SPX using the previously estimated
model, click on Forecast and fill in the Forecast dialog, setting the sample to
“2001m01 @last” so the dynamic forecast begins immediately following the estima-
tion period. Unselect the Forecast Evaluation checkbox and click on OK to display
the forecast results.

It will be useful to display these results in two columns. Right-mouse click then select
Position and align graphs..., enter “2” for the number of Columns, and select Auto-
matic spacing. Click on OK to display the rearranged graph:
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The first graph is the forecast of SPX (SPXF) from the mean equation with two stan-
dard deviation bands. The second graph is the forecast of the conditional variance a? .

¢ Make Residual Series saves the residuals as named series in your workfile. You have
the option to save the ordinary residuals, €,, or the standardized residuals, €,/ o, .
The residuals will be named RESID1, RESID2, and so on; you can rename the series
with the name button in the series window.
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¢ Make GARCH Variance Series... saves the conditional variances af as named series
in your workfile. You should provide a name for the target conditional variance series
and, if relevant, you may provide a name for the permanent component series. You
may take the square root of the conditional variance series to get the conditional stan-
dard deviations as displayed by the View/GARCH Graph/Conditional Standard
Deviation.

Additional ARCH Models

In addition to the standard GARCH specification, EViews has the flexibility to estimate sev-
eral other variance models. These include IGARCH, TARCH, EGARCH, PARCH, and compo-
nent GARCH. For each of these models, the user has the ability to choose the order, if any, of
asymimetry.

The Integrated GARCH (IGARCH) Model

If one restricts the parameters of the GARCH model to sum to one and drop the constant

term
q P
0? = Z B]-(Tgf,fj'f' Z aiEQtfi (25.19)
j=1 i=1
such that
q P
z Bj+ Z o, =1 (25.20)
j=1 i=1

then we have an integrated GARCH. This model was originally described in Engle and
Bollerslev (1986). To estimate this model, select IGARCH in the Restrictions drop-down
menu for the GARCH/TARCH model.

The Threshold GARCH (TARCH) Model

TARCH or Threshold ARCH and Threshold GARCH were introduced independently by
Zakoian (1994) and Glosten, Jaganathan, and Runkle (1993). The generalized specification
for the conditional variance is given by:
q P r
2 2 2 2
oy = @+ Y Biop_ i+ Y e+ D vpe Ly (25.21)
j=1 i=1 k=1

where I, = 1 if ¢, <0 and 0 otherwise.

In this model, good news, €, ;> 0, and bad news. €,_, < 0, have differential effects on the
conditional variance; good news has an impact of «;, while bad news has an impact of
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o, + ;. 1f v;> 0, bad news increases volatility, and we say that there is a leverage effect for
the ¢-th order. If v, # 0, the news impact is asymmetric.

Note that GARCH is a special case of the TARCH model where the threshold term is set to
zero. To estimate a TARCH model, specify your GARCH model with ARCH and GARCH order
and then change the Threshold order to the desired value.

The Exponential GARCH (EGARCH) Model

The EGARCH or Exponential GARCH model was proposed by Nelson (1991). The specifica-
tion for the conditional variance is:
q
log(a,) = w+ Z G log(at D+ z o,

j=1

€

+ Z Vi — Sk, (25.22)

O

Note that the left-hand side is the log of the conditional variance. This implies that the lever-
age effect is exponential, rather than quadratic, and that forecasts of the conditional vari-
ance are guaranteed to be nonnegative. The presence of leverage effects can be tested by the
hypothesis that v, < 0. The impact is asymmetric if 7, # 0.

There are two differences between the EViews specification of the EGARCH model and the
original Nelson model. First, Nelson assumes that the €, follows a Generalized Error Distri-
bution (GED), while EViews offers you a choice of normal, Student’s #-distribution, or GED.
Second, Nelson's specification for the log conditional variance is a restricted version of:

) z ,kat k

Ly

€| _

»
log(ot = w+ Z B log(ot DAY 0‘7:(

j=1 i=1

Oi—i
which is an alternative parameterization of the specification above. Estimating the latter
model will yield identical estimates to those reported by EViews except for the intercept
term w, which will differ in a manner that depends upon the distributional assumption and
the order p. For example, ina p = 1 model with a normal distribution, the difference will
be oy A2/ 7.

To estimate an EGARCH model, simply select the EGARCH in the model specification drop-
down menu and enter the orders for the ARCH, GARCH and the Asymmetry order.
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Equation Estimation
Spedfication | Options

Mean equation
Dependent followed by regressors & ARMA terms OR. explicit equation:

dioglibm) = (1) + c(2)=dlog(spx) GEREE
Std. Dev., v

Variance and distribution specification

Variance regressors:
Model: | EGARCH A

Order:
ARCH: | 1 Asymmetric order: | 1

GARCH:| 1 Error distribution:

Mone Generalized Error (GED) W

Estimation settings
Method: | ARCH - Autoregressive Conditional Heteroskedasticity W

Sample: | 1/01/1990 12/31/1999

Notice that we have specified the mean equation using an explicit expression. Using the
explicit expression is for illustration purposes only; we could just as well entered “dlog(ibm)
c dlog(spx)” as our specification.

The Power ARCH (PARCH) Model

Taylor (1986) and Schwert (1989) introduced the standard deviation GARCH model, where
the standard deviation is modeled rather than the variance. This model, along with several
other models, is generalized in Ding et al. (1993) with the Power ARCH specification. In the
Power ARCH model, the power parameter 6 of the standard deviation can be estimated
rather than imposed, and the optional y parameters are added to capture asymmetry of up
to order r:

8 (25.23)

q P
‘7? =w+ ) Bjof—j_" > ale, ] —vie,_ o)
j=1 i=1

where 6 >0,

vi<lfori=1,...,r,y;, =0 forall i>r,and r<p.

The symmetric model sets y; = 0 for all ¢. Note thatif 6 = 2 and v, = 0 for all 7, the
PARCH model is simply a standard GARCH specification. As in the previous models, the
asymmetric effects are present if y = 0.

To estimate this model, simply select the PARCH in the model specification dropdown menu
and input the orders for the ARCH, GARCH and Asymmetric terms. EViews provides you
with the option of either estimating or fixing a value for § . To estimate the Taylor-Schwert's
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model, for example, you will to set the order of the asymmetric terms to zero and will set &
to 1.

Equation Estimation

Spedfication | Options

Mean equation
Dependent followed by regressors & ARMA terms OR. explicit equation:

dlog(spx) c ARCH-M:
MNone W
Variance and distribution specification
Variance regressors:
Model: | PARCH Y]
Order:
ARCH: | 1 Asymmetric order:| 1
GARCH:| 1 Error distribution:
Fix power parameter: | 1 Student's t W
Estimation settings
Method: | ARCH - Autoregressive Conditional Heteroskedasticity W
Sample: | 1/01/1990 12/31/1999
The Component GARCH (CGARCH) Model
The conditional variance in the GARCH(1, 1) model:
2 _ - 2 - 2 -
0, = wt+oale;,_;—w)+B(o;_,-w). (25.24)

shows mean reversion to w , which is a constant for all time. By contrast, the component
model allows mean reversion to a varying level m,, modeled as:
2 2 2
op—my = al(e;_y—m;_1)+B(o;_;—my_,)
(25.25)

2 2
w+p(m,_;—w)+o(e;_1—0;_1).

my

Here a? is still the volatility, while m, takes the place of w and is the time varying long-run
volatility. The first equation describes the transitory component, af — m,, which converges
to zero with powers of (a + ). The second equation describes the long run component
m,, which converges to w with powers of p. p is typically between 0.99 and 1 so that m,
approaches w very slowly. We can combine the transitory and permanent equations and
write:

o) = (1—a=B)(1-p)o+(a+d)e —(ap+(a+B)d)e , (25.26)
+(B=-¢)o, - (Bo—(a+B))o, o

which shows that the component model is a (nonlinear) restricted GARCH(2, 2) model.
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To select the Component ARCH model, simply choose Component ARCH(1,1) in the Model
dropdown menu. You can include exogenous variables in the conditional variance equation
of component models, either in the permanent or transitory equation (or both). The vari-
ables in the transitory equation will have an impact on the short run movements in volatil-
ity, while the variables in the permanent equation will affect the long run levels of volatility.

An asymmetric Component ARCH model may be estimated by checking the Include thresh-
old term checkbox. This option combines the component model with the asymmetric
TARCH model, introducing asymmetric effects in the transitory equation and estimates mod-
els of the form:

_ ’
Yp = oyt €

2 2
m, = o+p(m_—w)+o(e,_1—0,_1)+0,2, (25.27)

2 2 2 2

o—my = ale;_y—my_)+y(e_y—my_)dy_y +B(o;_y—m;_y)+ 0,2,

where z are the exogenous variables and d is the dummy variable indicating negative
shocks. v > 0 indicates the presence of transitory leverage effects in the conditional vari-

ance.

Equation Estimation
Spedfication | Options

Mean equation
Dependent followed by regressors & ARMA terms OR. explicit equation:

dioglibm) = (1) + c(2)=dlog(spx) GEREE
Std. Dev., v

Variance and distribution specification
ariance regressors: (enter components
Model: | Component ARCH{1,1) + as "permanent @ transitory”)

[Jincude threshold term @d(tbond)

Error distribution:
Generalized Error (GED) W

Estimation settings
Method: | ARCH - Autoregressive Conditional Heteroskedasticity W

Sample: | 1/01/1990 12/31/1999

User Specified Models

In some cases, you might wish to estimate an ARCH model not mentioned above, for exam-
ple a special variant of PARCH. Many other ARCH models can be estimated using the logl
object. For example, Chapter 37. “The Log Likelihood (LogL) Object,” beginning on

page 565 contains examples of using logl objects for simple bivariate GARCH models.
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Examples

As an illustration of ARCH modeling in

EViews, we estimate a model for the DLOG(SPX)
daily S&P 500 stock index from 1990 to 67
1999 (in the workfile “Stocks.WF1”). 04|

The dependent variable is the daily
continuously compounding return,
log(s,/ s;,_1), where s, is the daily

.02

.00

close of the index. A graph of the return -024
series clearly shows volatility cluster- m
ing.

-.06 -

We will specify our mean equation with 8
a simple constant: 90 91 92 93 94 95 96 97 98 99

log(s,/8,_1) = ¢, +¢€
For the variance specification, we employ an EGARCH(1, 1) model:

€1

01

€
+y=1 (25.28)

log(o)) = w+ Blog(o-_,) + -~
t—1

When we previously estimated a GARCH(1,1) model with the data, the standardized resid-
ual showed evidence of excess kurtosis. To model the thick tail in the residuals, we will
assume that the errors follow a Student's ¢-distribution.

To estimate this model, open the GARCH estimation dialog, enter the mean specification:
dlog(spx) c

select the EGARCH method, enter 1 for the ARCH and GARCH orders and the Asymmetric
order, and select Student’s t for the Error distribution. Click on OK to continue.

EViews displays the results of the estimation procedure. The top portion contains a descrip-
tion of the estimation specification, including the estimation sample, error distribution
assumption, and backcast assumption.

Below the header information are the results for the mean and the variance equations, fol-
lowed by the results for any distributional parameters. Here, we see that the relatively small
degrees of freedom parameter for the ¢-distribution suggests that the distribution of the stan-
dardized errors departs significantly from normality.
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Dependent Variable: DLOG(SPX)

Method: ML ARCH - Student's t distribution (BFGS / Marquardt steps)
Date: 03/09/15 Time: 14:01

Sample: 1/02/1990 12/31/1999

Included observations: 2528

Convergence achieved after 71 iterations

Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)

LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1) /
@SQRT(GARCH(-1))) + C(4)*RESID(-1) / @SQRT(GARCH(-

1)) + C(5)*LOG(GARCH(-1))

Variable Coefficient Std. Error  z-Statistic Prob.

C 0.000513 0.000135 3.810600 0.0001

Variance Equation

C(2) -0.196710 0.039150  -5.024490 0.0000

C(3) 0.113675 0.017550 6.477203 0.0000

C(4) -0.064068 0.011575  -5.535009 0.0000

C(5) 0.988584 0.003360 294.2102 0.0000

T-DIST. DOF 6.703688 0.844702 7.936156 0.0000

R-squared -0.000032 Mean dependent var 0.000564

Adjusted R-squared -0.000032 S.D. dependent var 0.008888

S.E. of regression 0.008889 Akaike info criterion -6.871798

Sum squared resid 0.199653 Schwarz criterion -6.857949

Log likelihood 8691.953 Hannan-Quinn criter. -6.866773
Durbin-Watson stat 1.963994

To test whether there any remaining ARCH effects in the residuals, select View/Residual
Diagnostics/ARCH LM Test... and specify the order to test. EViews will open the general
Heteroskedasticity Tests dialog opened to the ARCH page. Enter “7” in the dialog for the
number of lags and click on OK.
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Heteroskedasticity Tests
Spedification
Test type:
Breusch-Pagan-Godfrey Dependent variable: RESID 2
Harvey
Glejser The ARCH Test regresses the squared
residuals on lagged squared residuals
White and a constant.
Custom Test Wizard. ..

Mumber of lags:

Cancel

The top portion of the output from testing up-to an ARCH(7) is given by:

Heteroskedasticity Test: ARCH

F-statistic 0.398895 Prob. F(7,2513) 0.9034
Obs*R-squared 2.798042 Prob. Chi-Square(7) 0.9030

so there is little evidence of remaining ARCH effects.

One way of further examining the distribution of the residuals is to plot the quantiles. First,
save the standardized residuals by clicking on Proc/Make Residual Series..., select the
Standardized option, and specify a name for the resulting series. EViews will create a series
containing the desired residuals; in this example, we create a series named RESID02. Then
open the residual series window and select View/Graph... and Quantile-Quantile/Theoret-
ical from the list of graph types on the left-hand side of the dialog.
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If the residuals are normally distrib- 'G5 geries: RESIDO2 Workfile: STOCKS:Undat... | = | = [zl

UtEd’ the pOthS in the QQ'PIOtS [ViewlProcIObjectIProperties] [PrintINameIFreeze] Default W W
should lie alongside a straight line; a-
see “Quantile-Quantile (Theoreti- 2]
cal)” on page 699 of User’s Guide I 5

for details on QQ-plots. The plot
indicates that it is primarily large
negative shocks that are driving the
departure from normality. Note that 5
we have modified the QQ-plot

Quantiles of Normal

ad R %
slightly by setting identical axes to o
facilitate comparison with the diag- £ 6 4 2 0 2 4
onal line. Quantiles of RESIDG2
1021990 [ ] 42211000

We can also plot the residuals
against the quantiles of the ¢-distribution. Instead of using the built-in QQ-plot for the ¢-dis-
tribution, you could instead simulate a draw from a #-distribution and examine whether the
quantiles of the simulated observations match the quantiles of the residuals (this technique
is useful for distributions not supported by EViews). The command:

series tdist = @gtdist(rnd, 6.7)

simulates a random draw from the ¢-distribution with 6.7 degrees of freedom. Then, create a
group containing the series RESID02 and TDIST. Select View/Graph... and choose Quantile-
Quantile from the left-hand side of the dialog and Empirical from the Q-Q graph dropdown
on the right-hand side.

The large negative residuals more closely fol- [&] Group: UNTITLED Workfile: STOC... = || &[]
low a straight line. On the other hand, one [view proc] Object] [prnt] ame [Freeze | | Defaut v [ Options
can see a slight deviation from ¢-distribution .
for large positive shocks. This is expected, as o
the previous QQ-plot suggested that, with the H
exception of the large negative shocks, the

residuals were close to normally distributed.

Cuartiles of TDIST
=
I

To see how the model might fit real data, we

examine static forecasts for out-of-sample ]
data. Click on the Forecast button on the 5] &
equation toolbar, type in “SPX_VOL” in the s

GARCH field to save the forecasted condi-
tional variance, change the sample to the
post-estimation sample period “1/1/2000 1/1/ | 021990 [ & 12311990
2002~ and click on Static to select a static

forecast.

Quantiles of RESIDO2
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Since the actual volatility is unobserved, we will use the squared return series
(DLOG(SPX)”2) as a proxy for the realized volatility. A plot of the proxy against the fore-
casted volatility for the years 2000 and 2001 provides an indication of the model’s ability to
track variations in market volatility.

.0040
.0035 -

.0030

2000 2001

— DLOG(SPX)2
-== SPX VOL
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Chapter 26. Cointegrating Regression

This chapter describes EViews’ tools for estimating and testing single equation cointegrating
relationships. Three fully efficient estimation methods, Fully Modified OLS (Phillips and
Hansen 1992), Canonical Cointegrating Regression (Park 1992), and Dynamic OLS (Saik-
konen 1992, Stock and Watson 1993) are described, along with various cointegration testing
procedures: Engle and Granger (1987) and Phillips and Ouliaris (1990) residual-based tests,
Hansen’s (1992b) instability test, and Park’s (1992) added variables test.

Notably absent from the discussion is Johansen’s (1991, 1995) system maximum likelihood
approach to cointegration analysis and testing, which is supported using Var and Group
objects, and fully documented in Chapter 40. “Vector Autoregression and Error Correction
Models,” on page 687 and Chapter 48. “Cointegration Testing,” on page 1023. Also excluded
are single equation error correction methods which may be estimated using the Equation
object and conventional OLS routines (see Phillips and Loretan (1991) for a survey).

The study of cointegrating relationships has been a particularly active area of research. We
offer here an abbreviated discussion of the methods used to estimate and test for single
equation cointegration in EViews. Those desiring additional detail will find a wealth of
sources. Among the many useful overviews of literature are the textbook chapters in Hamil-
ton (1994) and Hayashi (2000), the book length treatment in Maddala and Kim (1999), and
the Phillips and Loretan (1991) and Ogaki (1993) survey articles.

Background

It is well known that many economic time series are difference stationary. In general, a
regression involving the levels of these I(1) series will produce misleading results, with con-
ventional Wald tests for coefficient significance spuriously showing a significant relationship
between unrelated series (Phillips 1986).

Engle and Granger (1987) note that a linear combination of two or more I(1) series may be
stationary, or I(0), in which case we say the series are cointegrated. Such a linear combina-
tion defines a cointegrating equation with cointegrating vector of weights characterizing the
long-run relationship between the variables.

We will work with the standard triangular representation of a regression specification and
assume the existence of a single cointegrating vector (Hansen 1992b, Phillips and Hansen
1990). Consider the n + 1 dimensional time series vector process (y,, X,"), with cointe-
grating equation

yp = X/B+ Dyvy + uy, (26.1)

where D, = (D,,/, D,,")" are deterministic trend regressors and the n stochastic regres-
sors X, are governed by the system of equations:
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X,
A€y,

LoD+ 93Dy, + €5y (262

Upy

The p, -vector of D, regressors enter into both the cointegrating equation and the regres-
sors equations, while the p, -vector of D,, are deterministic trend regressors which are
included in the regressors equations but excluded from the cointegrating equation (if a non-
trending regressor such as the constant is present, it is assumed to be an element of D;, so
itis notin D,,).

Following Hansen (1992b), we assume that the innovations u, = (u;,, uy,")" are strictly
stationary and ergodic with zero mean, contemporaneous covariance matrix X, one-sided
long-run covariance matrix A, and covariance matrix €, each of which we partition con-
formably with u,

£ = Bluu)) = |70 70
0y Ly
i Ay A
A=Y Bluwu,_j) = | 1" (26.3)
iz0 Ny Ay
Q=3 Buu_ )= U2 = A+
= o Wy gy

In addition, we assume a rank n long-run covariance matrix @ with non-singular sub-
matrix {2,, . Taken together, the assumptions imply that the elements of y, and X, are I(1)
and cointegrated but exclude both cointegration amongst the elements of X, and multi-
cointegration. Discussions of additional and in some cases alternate assumptions for this
specification are provided by Phillips and Hansen (1990), Hansen (1992b), and Park (1992).

It is well-known that if the series are cointegrated, ordinary least squares estimation (static
OLS) of the cointegrating vector § in Equation (26.1) is consistent, converging at a faster
rate than is standard (Hamilton 1994). One important shortcoming of static OLS (SOLS) is
that the estimates have an asymptotic distribution that is generally non-Gaussian, exhibit
asymptotic bias, asymmetry, and are a function of non-scalar nuisance parameters. Since
conventional testing procedures are not valid unless modified substantially, SOLS is gener-
ally not recommended if one wishes to conduct inference on the cointegrating vector.

The problematic asymptotic distribution of SOLS arises due to the presence of long-run cor-
relation between the cointegrating equation errors and regressor innovations and(w;,) , and
cross-correlation between the cointegrating equation errors and the regressors (\,) . In the
special case where the X, are strictly exogenous regressors so that w;, = 0 and A, = 0,
the bias, asymmetry, and dependence on non-scalar nuisance parameters vanish, and the
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SOLS estimator has a fully efficient asymptotic Gaussian mixture distribution which permits
standard Wald testing using conventional limiting x2 -distributions.

Alternately, SOLS has an asymptotic Gaussian mixture distribution if the number of deter-
ministic trends excluded from the cointegrating equation p, is no less than the number of
stochastic regressors 7. Let m, = max(n — p,, 0) represent the number of cointegrating
regressors less the number of deterministic trend regressors excluded from the cointegrating
equation. Then, roughly speaking, when m, = 0, the deterministic trends in the regressors
asymptotically dominate the stochastic trend components in the cointegrating equation.

While Park (1992) notes that these two cases are rather exceptional, they are relevant in
motivating the construction of our three asymptotically efficient estimators and computation
of critical values for residual-based cointegration tests. Notably, the fully efficient estimation
methods supported by EViews involve transformations of the data or modifications of the
cointegrating equation specification to mimic the strictly exogenous X, case.

Estimating a Cointegrating Regression

EViews offers three methods for estimating a single cointegrating vector: Fully Modified OLS
(FMOLS), Canonical Cointegrating Regression (CCR), and Dynamic OLS (DOLS). Static OLS
is supported as a special case of DOLS. We emphasize again that Johansen’s (1991, 1995)
system maximum likelihood approach is discussed in Chapter 40. “Vector Autoregression
and Error Correction Models,” on page 687.
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The equation object is used to
estimate a cointegrating equa-
tion. First, create an equation
object, select Object/New
Object.../Equation or Quick/
Estimate Equation... then
select COINTREG - Cointe-
grating Regression in the
Method dropdown menu. The
dialog will show settings
appropriate for your cointe-
grating regression. Alter-
nately, you may enter the
cointreg keyword in the
command window to perform
both steps.

There are three parts to speci-
fying your equation. First, you
should use the first two sec-
tions of the dialog (Equation

Equation Estimation

Spedfication | Options

Equation spedification
Dependent variable followed by list of cointegrating regressors

Trend specification Deterministic regressors

Constant (Level) -

Cointegrating regressors spedification
Additional trends Additional deterministic regressors

[ Estimate using differenced data

Monstationary estimation settings
Method: | Fully-modified OLS (FMOLS) -

Long-run variance calculation: Options

Estimation settings

Method: | COINTREG - Cointegrating Regression

Sample: | 1947Q1 1985Q3

[ oK ] [ Cancel

specification and Cointegrating regressors specification) to specify your triangular system
of equations. Second, you will use the Nonstationary estimation settings section to specify
the basic cointegrating regression estimation method. Lastly, you should enter a sample
specification, then click on OK to estimate the equation. (We ignore, for a moment, the
options settings on the Options tab.)

Specifying the Equation

The first two sections of the dialog (Equation specification and Cointegrating regressors
specification) are used to describe your cointegrating and regressors equations.

Equation Specification

The cointegrating equation is
described in the Equation
specification section. You
should enter the name of the
dependent variable, y, fol-
lowed by a list of cointegrating
regressors, X, in the edit field,
then use the Trend specifica-
tion dropdown to choose from

Equation Estimation

Spedfication | Options

==l

Equation spedification
Dependent variable followed by list of cointegrating regressors

lcly

Trend specification Deterministic regressors

Cointegrating regressors spedification

MNone
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a list of deterministic trend variable assumptions (None, Constant (Level), Linear Trend,
Quadratic Trend). The dropdown menu selections imply trends up to the specified order so
that the Quadratic Trend selection depicted includes a constant and a linear trend term
along with the quadratic.

If you wish to add deterministic regressors that are not offered in the pre-specified list to
D, , you may enter the series names in the Deterministic regressors edit box.

Cointegrating Regressors Specification

Cointegrating Regressors Specification section of the dialog completes the specification of
the regressors equations.

First, if there are any D, deterministic regressors (regressors that are included in the regres-
sors equations but not in the cointegrating equation), they should be specified here using
the Additional trends dropdown menu or by entering regressors explicitly using the Addi-
tional deterministic regressors edit field.

Second, you should indicate whether you wish to estimate the regressors innovations u,,
indirectly by estimating the regressors equations in levels and then differencing the residuals
or directly by estimating the regressors equations in differences. Check the box for Estimate
using differenced data (which is only relevant and only appears if you are estimating your
equation using FMOLS or CCR) to estimate the regressors equations in differences.

Specifying an Estimation Method

Once you specify your cointegrating and regressor equations you are ready to describe your
estimation method. The EViews equation object offers three methods for estimating a single
cointegrating vector: Fully Modified OLS (FMOLS), Canonical Cointegrating Regression
(CCR), and Dynamic OLS (DOLS). We again emphasize that Johansen’s (1991, 1995) system
maximum likelihood approach is described elsewhere(“Vector Error Correction (VEC) Mod-
els” on page 726).

The Nonstationary estimation settings section is used to describe your estimation method.
First, you should use the Method dropdown menu to choose one of the three methods. Both
the main dialog page and the options page will change to display the options associated
with your selection.

Fully Modified OLS

Phillips and Hansen (1990) propose an estimator which employs a semi-parametric correc-
tion to eliminate the problems caused by the long run correlation between the cointegrating
equation and stochastic regressors innovations. The resulting Fully Modified OLS (FMOLS)
estimator is asymptotically unbiased and has fully efficient mixture normal asymptotics
allowing for standard Wald tests using asymptotic Chi-square statistical inference.
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The FMOLS estimator employs preliminary estimates of the symmetric and one-sided long-
run covariance matrices of the residuals. Let #,, be the residuals obtained after estimating
Equation (26.1). The #,, may be obtained indirectly as @,, = A€,; from the levels regres-
sions

X, = T9iDy+ T8 Doy + &y, (26.4)
or directly from the difference regressions

AX, = T9{AD;;+ TosADo; + 11y, (26.5)

Let @ and A be the long-run covariance matrices computed using the residuals
%, = (@, 0,,")" . Then we may define the modified data

+ ~ -1
Yy = Y= @1yt (26.6)
and an estimated bias correction term
+ N 1.
Ko = Ria— 019 Qoo Asy (26.7)

The FMOLS estimator is given by

T -1 T

~ +

o= P - [Z 2, Zt’j S Zy, - T| Mo (26.8)
28! t=2 t=2 0

where Z, = (X,/, D,")". The key to FMOLS estimation is the construction of long-run
covariance matrix estimators & and A .

Before describing the options available for computing € and A , it will be useful to define
the scalar estimator

A—1 ~

Wip = @1 — @12 Q22 wa1 (26.9)

which may be interpreted as the estimated long-run variance of u,, conditional on u,,. We
may, if desired, apply a degree-of-freedom correction to @; 5.

Hansen (1992) shows that the Wald statistic for the null hypothesis R§ = r

W = (RO—7)'(RV(O)R) (RO 1) (26.10)
with
T -1
V(o) = 5)1.2( > Z,,Z,,’J (26.11)
t=2

has an asymptotic xz -distribution, where ¢ is the number of restrictions imposed by R.
(You should bear in mind that restrictions on the constant term and any other non-trending
variables are not testable using the theory underlying Equation (26.10).)
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To estimate your equation using
FMOLS, select Fully-modified OLS
(FMOLS) in the Nonstationary esti-
mation settings dropdown menu.
The main dialog and options pages will change to show the available settings.

Monstationary estimation settings
Method: Fully-modified OLS (FMOLS) hd

Long-run variance calculation:

To illustrate the FMOLS esti- D S =
mator, we employ data for (100 [‘Specification | Optins |
times) log real quarterly aggre- R ——
gate persona] disposable Dependent variable followed by list of cointegrating regressors
income (LY) and personal con- lely
sumption expenditures (LC) Determinste regressors
for the U.S. from 1947q1 to
1989q3 as described in i;z;ir;h;j:nr;sgressms spec.-;zcdai_:sgal deterministic regressors
Hamilton (2000, p. 600, 610)
and contained in the workfile [ Estimate using differenced data
“Hamilton_coint.WFl ~ Monstationary estimation settings
] ] Method: | Fully-modified OLS (FMOLS) -

We wish to estimate a model :

. . . Long-run variance calculation:
that includes an intercept in
the cointegrating equation, has Estimation settings
no additional deterministics in Hethod: | EONNRESeaenalion Remeson —
the regressors equations, and Sampl: | 194741 158943
estimates the regressors equa-
tions in non-differenced form. [ o [ concel |

By default, EViews will esti-

mate @ and A using a (non-prewhitened) kernel approach with a Bartlett kernel and
Newey-West fixed bandwidth. To change the whitening or kernel settings, click on the Long-
run variance calculation: Options button and enter your changes in the sub-dialog.
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Here we have specified that the long-run variances e~ ==
be computed using a nonparametric method with Whitening options
the Bartlett kernel and a real-valued bandwidth lsgspecification:  [None ]
chosen by Andrews’ automatic bandwidth selec-
tion method.

Kernel options
In addition, you may use the Options tab of the Kemel: _
Equation Estimation dialog to modify the compu- S
tation of the coefficient covariance. By default,
EViews computes the coefficient covariance by res-
caling the usual OLS covariances using the @ 5 L= 0
obtained from the estimated Q after applying a e T e
degrees-of-freedom correction. In our example, we
will use the checkbox on the Options tab (not ok | [ concel

depicted) to remove the d.f. correction.

The estimates for this specification are given by:

Dependent Variable: LC

Method: Fully Modified Least Squares (FMOLS)

Date: 08/11/09 Time: 13:19

Sample (adjusted): 1947Q2 1989Q3

Included observations: 170 after adjustments

Cointegrating equation deterministics: C

Long-run covariance estimate (Bartlett kernel, Andrews bandwidth =
14.9878)

No df. adjustment for standard errors & covariance

Variable Coefficient Std. Error t-Statistic Prob.
LY 0.987548 0.009188 107.4880 0.0000
C -0.035023 6.715362  -0.005215 0.9958
R-squared 0.998171 Mean dependent var 720.5078
Adjusted R-squared 0.998160 S.D. dependent var 41.74069
S.E. of regression 1.790506 Sum squared resid 538.5929
Durbin-Watson stat 0.406259 Long-run variance 25.46653

The top portion of the results describe the settings used in estimation, in particular, the
specification of the deterministic regressors in the cointegrating equation, the kernel non-
parametric method used to compute the long-run variance estimators Q and A, and the no-
d.f. correction option used in the calculation of the coefficient covariance. Also displayed is
the bandwidth of 14.9878 selected by the Andrews automatic bandwidth procedure.

The estimated coefficients are presented in the middle of the output. Of central importance
is the coefficient on LY which implies that the estimated cointegrating vector for LC and LY
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(1, -0.9875). Note that we present the standard error, ¢-statistic, and p-value for the constant
even though they are not, strictly speaking, valid.

The summary statistic portion of the output is relatively familiar but does require a bit of
comment. First, all of the descriptive and fit statistics are computed using the original data,
not the FMOLS transformed data. Thus, while the measures of fit and the Durbin-Watson
stat may be of casual interest, you should exercise extreme caution in using these measures.
Second, EViews displays a “Long-run variance” value which is an estimate of the long-run
variance of u,, conditional on wu,,. This statistic, which takes the value of 25.47 in this
example, is the @; , employed in forming the coefficient covariances, and is obtained from
the  and A used in estimation. Since we are not d.f. correcting the coefficient covariance
matrix the @, o reported here is not d.f. corrected.

Once you have estimated your equation using FMOLS you may use the various cointegrating
regression equation views and procedures. We will discuss these tools in greater depth in
(“Working with an Equation” on page 291), but for now we focus on a simple Wald test for
the coefficients. To test for whether the cointegrating vector is (1, -1), select View/Coeffi-
cient Diagnostics/Wald Test - Coefficient Restrictions and enter “C(1) =1” in the dialog.
EViews displays the output for the test:

Wald Test:
Equation: FMOLS
Null Hyp othesis: C(1)=1

Test Statistic Value df Probability
t-statistic -1.355362 168 0.1771
F-statistic 1.837006 (1, 168) 0.1771
Chi-square 1.837006 1 0.1753

Null Hyp othesis Summary:

Normalized Restriction (= 0) Value Std. Err.

-1+C(1) -0.012452 0.009188

Restrictions are linear in coefficients.

The t¢-statistic and Chi-square p-values are both around 0.17, indicating that the we cannot
reject the null hypothesis that the cointegrating regressor coefficient value is equal to 1.

Note that this Wald test is for a simple linear restriction. Hansen points out that his theoret-
ical results do not directly extend to testing nonlinear hypotheses in models with trend
regressors, but EViews does allow tests with nonlinear restrictions since others, such as Phil-
lips and Loretan (1991) and Park (1992) provide results in the absence of the trend regres-
sors. We do urge caution in interpreting nonlinear restriction test results for equations
involving such regressors.
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Canonical Cointegrating Regression

Park’s (1992) Canonical Cointegrating Regression (CCR) is closely related to FMOLS, but
instead employs stationary transformations of the (y,,, X,’) data to obtain least squares
estimates to remove the long run dependence between the cointegrating equation and sto-
chastic regressors innovations. Like FMOLS, CCR estimates follow a mixture normal distri-
bution which is free of non-scalar nuisance parameters and permits asymptotic Chi-square
testing.

As in FMOLS, the first step in CCR is to obtain estimates of the innovations

w, = (m,, u,/)" and corresponding consistent estimates of the long-run covariance matri-
ces Q and A . Unlike FMOLS, CCR also requires a consistent estimator of the contempora-
neous covariance matrix £ .

Following Park, we extract the columns of A corresponding to the one-sided long-run cova-
riance matrix of @, and (the levels and lags of) .,

Ay = Az (26.12)
Ay
and transform the (y,;,, X,') using
X = X,— (£ Ay,
o 0 (26.13)
yt* = yt_ 2 AZB"' el A ’ﬂ’f,
Q22 wo1

where the 3 are estimates of the cointegrating equation coefficients, typically the SOLS esti-
mates used to obtain the residuals @, .

The CCR estimator is defined as ordinary least squares applied to the transformed data
T 1T
AB = ( z Z¥ Z,/*’j Z ZXy* (26.14)
Y1

t=1 t=1
k EY oy’
where Z* = (2% D,})’.

Park shows that the CCR transformations asymptotically eliminate the endogeneity caused
by the long run correlation of the cointegrating equation errors and the stochastic regressors
innovations, and simultaneously correct for asymptotic bias resulting from the contempora-
neous correlation between the regression and stochastic regressor errors. Estimates based on
the CCR are therefore fully efficient and have the same unbiased, mixture normal asymptot-
ics as FMOLS. Wald testing may be carried out as in Equation (26.10) with Z,* used in
place of Z, in Equation (26.11).
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Monstationary estimation settings

To estimate your equation using
CCR, select Canonical Cointegrat-
ing Regression (CCR) in the Non-
stationary estimation settings
dropdown menu. The main dialog and options pages for CCR are identical to those for
FMOLS.

Method: | Canonical Cointeqrating Regression (CCR) %

Long-run variance calculation: Options

To continue with our consumption and disposable e~ ==

income example, suppose we wish to estimate the Whitening options

same specification as before by CCR, using pre- lsgspecification:  [Fxed ¥

whitened Quadratic-spectral kernel estimators of Number of lags: .

the long-run covariance matrices. Fill out the

equation specification portion of the dialog as Kernel options

before, then click on the Long-run variance cal- et |Quacratic Spectral -]

culation: Options button to change the calcula- Bandwidth method:  [Newey-West Automatic _~ |

tion method. Here, we have specified a (fixed lag) Lag selection = (Use=toindiate
parameter: obs-based selection)

VAR(1) for the prewhitening method and have Offset: 0

changed our kernel shape to quadratic spectral.
Click on OK to accept the covariance options

Truncate to integer

Once again go to the Options tab to turn off d.f. Lok ] [ concl |
correction for the coefficient covariances so that
they match those from FMOLS. Click on OK again to accept the estimation options.

The results are presented below:

Dependent Variable: LC

Method: Canonical Cointegrating Regression (CCR)

Date: 08/11/09 Time: 13:25

Sample (adjusted): 1947Q2 1989Q3

Included observations: 170 after adjustments

Cointegrating equation deterministics: C

Long-run covariance estimate (Prewhitening with lags = 1, Quadratic
-Spectral kernel, Andrews bandwidth = 1.5911)

No d.f. adjustment for standard errors & covariance

Variable Coefficient Std. Error t-Statistic Prob.
LY 0.988975 0.007256 136.3069 0.0000
Cc -1.958828 5298819  -0.369673 07121
R-squared 0.997780 Mean dependent var 720.5078
Adjusted R-squared 0.997767 S.D. dependent var 41.74069
S.E. of regression 1.972481 Sum squared resid 653.6343

Durbin-Watson stat 0.335455 Long-run variance 15.91571
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The first thing we note is that the VAR prewhitening has a strong effect on the kernel part of
the calculation of the long-run covariances, shortening the Andrews optimal bandwidth
from almost 15 down to 1.6. Furthermore, as a result of prewhitening, the estimate of the
conditional long-run variance changes quite a bit, decreasing from 25.47 to 15.92. This
decrease contributes to estimated coefficient standard errors for CCR that are smaller than
their FMOLS counterparts. Differences aside, however, the estimates of the cointegrating
vector are qualitatively similar. In particular, a Wald test of the null hypothesis that the
cointegrating vector is equal to (1, -1) yields a p-value of 0.1305.

Dynamic OLS

A simple approach to constructing an asymptotically efficient estimator that eliminates the
feedback in the cointegrating system has been advocated by Saikkonen (1992) and Stock
and Watson (1993). Termed Dynamic OLS (DOLS), the method involves augmenting the
cointegrating regression with lags and leads of AX, so that the resulting cointegrating equa-
tion error term is orthogonal to the entire history of the stochastic regressor innovations:

,

y, = X/B+ D,/ v, + Z AX,/ 6+ vy, (26.15)

t+7
j=-q
Under the assumption that adding ¢ lags and r leads of the differenced regressors soaks up
all of the long-run correlation between u,, and u,,, least-squares estimates of
0 = (B', ")’ using Equation (26.15) have the same asymptotic distribution as those
obtained from FMOLS and CCR.

An estimator of the asymptotic variance matrix of # may be computed by computing the
usual OLS coefficient covariance, but replacing the usual estimator for the residual variance
of v, with an estimator of the long-run variance of the residuals. Alternately, you could
compute a robust HAC estimator of the coefficient covariance matrix.

To estimate your equation using DOLS, first fill out the equation specification, then select
Dynamic OLS (DOLS) in the Nonstationary estimation settings dropdown menu. The dia-
log will change to display settings for DOLS.

By default, the Lag & lead method Monstationary estimation settings

is Fixed with Lags and Leads each Method: | Dynamic OLS (DOLS) v
. . Lag &lead [
set to 1. You may specify a different pic A L ¥ Lagsi |1 | Leads: |1

number of lags or leads or you can

use the dropdown to elect auto-

matic information criterion selection of the lag and lead orders by selecting Akaike,
Schwarz, or Hannan-Quinn. If you select None, EViews will estimate SOLS.
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If you select one of the info crite- Monstationary estimation settings
rion selection methods, you will be Method: | Dynamic OLS (DOLS) v

. Lag & lead . {Use * for obs-based
prompted for a maximum lag and method: L3 V] Maxlagilead: |* | [ engthe)

lead length. You may enter a value,
or you may retain the default entry
“*” which instructs EViews to use an arbitrary observation-based rule-of-thumb:

int(min(( T - k)/3, 12) - (T/100)""*

) (26.16)
to set the maximum, where k£ is the number of coefficients in the cointegrating equation.
This rule-of-thumb is a slightly modified version of the rule suggested by Schwert (1989) in
the context of unit root testing. (We urge careful thought in the use of automatic selection
methods since the purpose of including leads and lags is to remove long-run dependence by
orthogonalizing the equation residual with respect to the history of stochastic regressor
innovations; the automatic methods were not designed to produce this effect.)

For DOLS estimation we may also specify the method used to compute the coefficient cova-
riance matrix. Click on the Options tab of the dialog to see the relevant options.

The dropdown menu allows you to choose between the e .
Default (rescaled OLS), Ordinary Least Squares, White, or [ Speciication] Options |
HAC - Newey West. The default computation method re-

Coeffident covariance matrix

scales the ordinary least squares coefficient covariance using [Default (rescaled OLS) =)
an estimator of the long-run variance of DOLS residuals —

(multiplying by the ratio of the long-run variance to the ordi-
nary squared standard error). Alternately, you may employ a
sandwich-style HAC (Newey-West) covariance matrix esti-
mator. In both cases, the HAC Options button may be used to override the default method
for computing the long-run variance (non-prewhitened Bartlett kernel and a Newey-West
fixed bandwidth). In addition, EViews offers options for estimating the coefficient covari-
ance using the White covariance or Ordinary Least Squares methods. These methods are
offered primarily for comparison purposes.

| d.f. Adjustment

Lastly, the Options tab may be used to remove the degree-of-freedom correction that is
applied to the estimate of the conditional long-run variance or robust coefficient covariance.
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We illustrate the technique by Equation Estimation ==
estimating an example from Specification | Options
Hamilton (19.3.31, p. 611) T e
using the COHSUmptiOH and Dependent variable followed by list of cointegrating regressors
. . . Il
income data discussed earlier. -
. Trend specification Deterministic regressors
The model employs an inter-

cept-trend specification for the
cointegrating equation, with

Cointegrating regressors spedification

no additional deterministics in None

the regressors equations, and

four lags and leads of the dif- Nonstationary estimation settings

ferenced cointegrating regres- Method: | Dynamic LS (0OLS) b

sor to eliminate long run b lags: |4  Leads:|4

correlation between the inno- Estimation settings

vations. Method: | COINTREG - Cointegrating Regression -

Sample: | 19471 198493
Here, we have entered the =eE

cointegrating equation specifi-
cation in the top portion of the ok || cancel
dialog, and chosen Dynamic

OLS (DOLS) as our estimation
method, and specified a Fixed lag and lead length of 4.

In computing the covariance matrix, Hamilton computes the long-run variance of the resid-
uals using an AR(2) whitening regression with no d.f. correction. To match Hamilton’s com-
putations, we click on the Options tab to display the covariance. First, turn off the
adjustment for degrees of freedom by unchecking the d.f. Adjustment box. Next, with the
dropdown set to Default (rescaled OLS), click on the HAC Options button to display the
Long-run Variance Options dialog. Select a Fixed lag specification of 2, and choose the
None kernel. Click on OK to accept the HAC settings, then on OK again to estimate the
equation.

The estimation results are given below:
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Dependent Variable: LC

Method: Dynamic Least Squares (DOLS)

Date: 08/11/09 Time: 13:37

Sample (adjusted): 1948Q2 1988Q3

Included observations: 162 after adjustments

Cointegrating equation deterministics: C @TREND

Fixed leads and lags specification (lead=4, lag=4)

Long-run variance estimate (Prewhitening with lags =2, None kernel)
No d.f. adjustment for standard errors & covariance

Variable Coefficient Std. Error t-Statistic Prob.
LY 0.681179 0.071981 9.463267 0.0000
Cc 199.1406 47.20878 4.218297 0.0000
@TREND 0.268957 0.062004 4.337740 0.0000
R-squared 0.999395 Mean dependent var 720.5532
Adjusted R-squared 0.999351 S.D. dependent var 39.92349
S.E. of regression 1.017016 Sum squared resid 155.1484
Durbin-Watson stat 0.422921 Long-run variance 10.19830

The top portion describes the settings used in estimation, showing the trend assumptions,
the lag and lead specification, and method for computing the long-run variance used in
forming the coefficient covariances. The actual estimate of the latter, in this case 10.198, is
again displayed in the bottom portion of the output (if you had selected OLS as your coeffi-
cient covariance methods, this value would be simply be the ordinary S.E. of the regression;
if you had selected White or HAC, the statistic would not have been computed).

The estimated coefficients are displayed in the middle of the output. First, note that EViews
does not display the results for the lags and leads of the differenced cointegrating regressors
since we cannot perform inference on these short-term dynamics nuisance parameters. Sec-
ond, the coefficient on the linear trend is statistically different from zero at conventional lev-
els, indicating that there is a deterministic time trend common to both LC and LY. Lastly, the
estimated cointegrating vector for LC and LY is (1, -0.6812), which differs qualitatively from
the earlier results. A Wald test of the restriction that the cointegrating vector is (1, -1) yields
a t-statistic of -4.429, strongly rejecting that null hypothesis.

While EViews does not display the coefficients for the short-run dynamics, the short-run
coefficients are used in constructing the fit statistics in the bottom portion of the results view
(we again urge caution in using these measures). The short-run dynamics are also used in
computing the residuals used by various equation views and procs such as the residual plot
or the gradient view.

The short-run coefficients are not included in the representations view of the equation,
which focuses only on the estimates for Equation (26.1). Furthermore, forecasting and
model solution using an equation estimated by DOLS are also based on the long-run rela-
tionship. If you wish to construct forecasts that incorporate the short-run dynamics, you
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may use least squares to estimate an equation that explicitly includes the lags and leads of
the cointegrating regressors.

Testing for Cointegration

In the single equation setting, EViews provides views that perform Engle and Granger (1987)
and Phillips and Ouliaris (1990) residual-based tests, Hansen’s instability test (Hansen
1992b), and Park’s H(p, q) added variables test (Park 1992).

System cointegration testing using Johansen’s methodology is described in “Johansen
Cointegration Test” on page 1023.

Note that the Engle-Granger and Phillips-Perron tests may also be performed as a view of a
Group object.

Residual-based Tests

The Engle-Granger and Phillips-Ouliaris residual-based tests for cointegration are simply
unit root tests applied to the residuals obtained from SOLS estimation of Equation (26.1).
Under the assumption that the series are not cointegrated, all linear combinations of

(y, X,'), including the residuals from SOLS, are unit root nonstationary. Therefore, a test
of the null hypothesis of no cointegration against the alternative of cointegration corresponds
to a unit root test of the null of nonstationarity against the alternative of stationarity.

The two tests differ in the method of accounting for serial correlation in the residual series;
the Engle-Granger test uses a parametric, augmented Dickey-Fuller (ADF) approach, while
the Phillips-Ouliaris test uses the nonparametric Phillips-Perron (PP) methodology.

The Engle-Granger test estimates a p -lag augmented regression of the form
P
Ay, = (p—-Doy, |+ zajAu1t7j+ v, (26.17)
i=1
The number of lagged differences p should increase to infinity with the (zero-lag) sample
. 1/3
size T but at a rate slower than 7" .

We consider the two standard ADF test statistics, one based on the ¢-statistic for testing the
null hypothesis of nonstationarity (o = 1) and the other based directly on the normalized
autocorrelation coefficient p — 1 :

A

;= 2l
se(p)
,_ TG-1) (26.18)

(1 - 26,)
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where se(p) is the usual OLS estimator of the standard error of the estimated p

-1/2
se(p) = 3, (Zui_l) (26.19)
t

(Stock 1986, Hayashi 2000). There is a practical question as to whether the standard error
estimate in Equation (26.19) should employ a degree-of-freedom correction. Following com-
mon usage, EViews standalone unit root tests and the Engle-Granger cointegration tests both
use the d.f.-corrected estimated standard error 3, , with the latter test offering an option to
turn off the correction.

v’

In contrast to the Engle-Granger test, the Phillips-Ouliaris test obtains an estimate of p by
running the unaugmented Dickey-Fuller regression

Awy, = (p-1D)oy, | +w, (26.20)

and using the results to compute estimates of the long-run variance w,, and the strict one-
sided long-run variance A, of the residuals. By default, EViews d.f.-corrects the estimates
of both long-run variances, but the correction may be turned off. (The d.f. correction
employed in the Phillips-Ouliaris test differs slightly from the ones in FMOLS and CCR esti-
mation since the former applies to the estimators of both long-run variances, while the latter
apply only to the estimate of the conditional long-run variance).

The bias corrected autocorrelation coefficient is then given by

. . -1
3*-1) = (- 1= Th (302, ) (26.21)
t
The test statistics corresponding to Equation (26.18) are
A
po ]
se(p™®) (26.22)
2 = T(p*-1)
where
N ~1/2 -1/2
se(p*) = &, (Zuiq) (26.23)

t

As with ADF and PP statistics, the asymptotic distributions of the Engle-Granger and Phil-
lips-Ouliaris z and 7 statistics are non-standard and depend on the deterministic regressors
specification, so that critical values for the statistics are obtained from simulation results.
Note that the dependence on the deterministics occurs despite the fact that the auxiliary
regressions themselves exclude the deterministics (since those terms have already been
removed from the residuals). In addition, the critical values for the ADF and PP test statistics
must account for the fact that the residuals used in the tests depend upon estimated coeffi-
cients.
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MacKinnon (1996) provides response surface regression results for obtaining critical values
for four different assumptions about the deterministic regressors in the cointegrating equa-
tion (none, constant (level), linear trend, quadratic trend) and values of & = m, + 1 from
1 to 12. (Recall that m, = max(n — p,, 0) is the number of cointegrating regressors less
the number of deterministic trend regressors excluded from the cointegrating equation.)
When computing critical values, EViews will ignore the presence of any user-specified deter-
ministic regressors since corresponding simulation results are not available. Furthermore,
results for £ = 12 will be used for cases that exceed that value.

Continuing with our consumption and income example from Hamilton, we construct Engle-
Granger and Phillips-Ouliaris tests from an estimated equation where the deterministic
regressors include a constant and linear trend. Since SOLS is used to obtain the first-stage
residuals, the test results do not depend on the method used to estimate the original equa-
tion, only the specification itself is used in constructing the test.

To perform the Engle-Granger test, open an estimated equation and select View/Cointegra-
tion and select Engle-Granger in the Test Method dropdown. The dialog will change to dis-
play the options for this specifying the number p of augmenting lags in the ADF regression.

By default, EViews uses automatic lag-length selection e e i ==
using the Schwarz information criterion. The default i

number of lags is the observation-based rule given in e
Equation (26.16). Alternately you may specify a Fixed

(User-specified) lag-length, select a different informa- Test spedification

tion criterion (Akaike, Hannan-Quinn, Modified Lag method: [Scwer Info Criterin__~ |
Akaike, Modified Schwarz, or Modified Hannan- Maximumlag: | = {se “foindcate
Quinn), or specify sequential testing of the highest e

order lag using a t-statistic and specified p-value V]d.£. Adjustment

threshold. For our purposes the default settings suffice

so simply click on OK. Eagel

The Engle-Granger test results are divided into three
distinct sections. The first portion displays the test specification and settings, along with the
test values and corresponding p-values:
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Cointegration Test - Engle-Granger

Date: 04/21/09 Time: 10:37

Equation: EQ_DOLS

Specification: LC LY C @TREND

Cointegrating equation deterministics: C @TREND

Null hypothesis: Series are not cointegrated

Automatic lag specification (lag=1 based on Schwarz Info Criterion,

maxlag=13)
Value Prob.*
Engle-Granger tau-statistic -4.536843 0.0070
Engle-Granger z-statistic -33.43478 0.0108

*MacKinnon (1996) p-values.

The probability values are derived from the MacKinnon response surface simulation results.
In settings where using the MacKinnon results may not be appropriate, for example when
the cointegrating equation contains user-specified deterministic regressors or when there are
more than 12 stochastic trends in the asymptotic distribution, EViews will display a warning
message below these results.

Looking at the test description, we first confirm that the test statistic is computed using C
and @TREND as deterministic regressors, and note that the choice to include a single lagged
difference in the ADF regression was determined using automatic lag selection with a
Schwarz criterion and a maximum lag of 13.

As to the tests themselves, the Engle-Granger tau-statistic (¢-statistic) and normalized auto-
correlation coefficient (which we term the z-statistic) both reject the null hypothesis of no
cointegration (unit root in the residuals) at the 5% level. In addition, the tau-statistic rejects
at a 1% significance level. On balance, the evidence clearly suggests that LC and LY are
cointegrated.

The middle section of the output displays intermediate results used in constructing the test
statistic that may be of interest:

Intermediate Results:

Rho -1 -0.241514
Rho S.E. 0.053234
Residual variance 0.642945
Long-run residual variance 0.431433
Number of lags 1
Number of observations 169
Number of stochastic trends™* 2

*Number of stochastic trends in asymptotic distribution.

Most of the entries are self-explanatory, though a few deserve a bit of discussion. First, the
“Rho S.E.” and “Residual variance” are the (possibly) d.f. corrected coefficient standard
error and the squared standard error of the regression. Next, the “Long-run residual vari-
ance” is the estimate of the long-run variance of the residual based on the estimated para-
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metric model. The estimator is obtained by taking the residual variance and dividing it by
the square of 1 minus the sum of the lag difference coefficients. These residual variance and
long-run variances are used to obtain the denominator of the z-statistic (Equation (26.18)).
Lastly, the “Number of stochastic trends” entry reports the k = m, + 1 value used to
obtain the p-values. In the leading case, k is simply the number of cointegrating variables
(including the dependent) in the system, but the value must generally account for determin-
istic trend terms in the system that are excluded from the cointegrating equation.

The bottom section of the output depicts the results for the actual ADF test equation:

Engle-Granger Test Equation:

Dependent Variable: D(RESID)

Method: Least Squares

Date: 04/21/09 Time: 10:37

Sample (adjusted): 1947Q3 1989Q3
Included observations: 169 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
RESID(-1) -0.241514 0.053234  -4.536843 0.0000
D(RESID(-1)) -0.220759 0.071571  -3.084486 0.0024
R-squared 0.216944 Mean dependent var -0.024433
Adjusted R-squared 0.212255 S.D. dependent var 0.903429
S.E. of regression 0.801838 Akaike info criterion 2407945
Sum squared resid 107.3718 Schwarz criterion 2444985
Log likelihood -201.4713 Hannan-Quinn criter. 2422976
Durbin-Watson stat 1.971405

Alternately, you may compute the Phillips-Ouliaris test statistic. Simply select View/Cointe-
gration and choose Phillips-Ouliaris in the Test Method dropdown.

The dialog changes to show a single Options button e e i ==
for controlling the estimation of the long-run variance ]
w,, and the strict one-sided long-run variance A, .

The default settings instruct EViews to compute these
long-run variances using a non-prewhitened Bartlett
kernel estimator with a fixed Newey-West bandwidth. [ optons |
To change these settings, click on the Options button
and fill out the dialog. Since the default settings are
sufficient for our needs, simply click on the OK button
to compute the test statistics.

Long-run variance

o

As before, the output may be divided into three parts;
we will focus on the first two. The test results are given
by:
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Cointegration Test - Phillips-Ouliaris

Date: 02/08/13 Time: 13:11

Equation: EQ_19_3_29

Specification: LC LY C @TREND

Cointegrating equation deterministics: C @ TREND

Null hypothesis: Series are not cointegrated

Long-run variance estimate (Bartlett kernel, Newey-West fixed bandwidth =
5.0000)

No d.f. adjustment for variances

Value Prob.*
Phillips-Ouliaris tau-statistic -5.138345 0.0009
Phillips-Ouliaris z-statistic -43.62100 0.0010

At the top of the output EViews notes that we estimated the long-run variance and one-sided
long run variance using a Bartlett kernel and an number of observations based bandwidth of
5.0. More importantly, the test statistics show that, as with the Engle-Granger tests, the Phil-
lips-Ouliaris tests reject the null hypothesis of no cointegration (unit root in the residuals) at
roughly the 1% significance level.

The intermediate results are given by:

Intermediate Results:

Rho - 1 -0.279221
Bias corrected Rho - 1 (Rho* - 1) -0.256594
Rho* S.E. 0.049937
Residual variance 0.730377
Long-run residual variance 0.659931
Long-run residual autocovariance -0.035223
Number of observations 170
Number of stochastic trends** 2

**Number of stochastic trends in asymptotic distribution.

There are a couple of new results. The “Bias corrected Rho - 1” reports the estimated value
of Equation (26.21) and the “Rho* S.E.” corresponds to Equation (26.23). The “Long-run
residual variance” and “Long-run residual autocovariance” are the estimates of w,, and
N, > Tespectively. It is worth noting that the ratio of &}U/Q to the S.E. of the regression,
which is a measure of the amount of residual autocorrelation in the long-run variance, is the
scaling factor used in adjusting the raw ¢-statistic to form tau.

The bottom portion of the output displays results for the test equation.

Hansen'’s Instability Test

Hansen (1992) outlines a test of the null hypothesis of cointegration against the alternative
of no cointegration. He notes that under the alternative hypothesis of no cointegration, one
should expect to see evidence of parameter instability. He proposes (among others) use of



288—Chapter 26. Cointegrating Regression

the L, test statistic, which arises from the theory of Lagrange Multiplier tests for parameter
instability, to evaluate the stability of the parameters.

The L, statistic examines time-variation in the scores from the estimated equation. Let 3,
be the vector of estimated individual score contributions from the estimated equation, and
define the partial sums,

T
5= Y3, (26.24)
t=2

where 5§, = 0 by construction. For FMOLS, we have

+,
5, = (Z,0)) - A2 (26.25)
0

where ﬁ;r = y:r — X,'0 is the residual for the transformed regression. Then Hansen
chooses a constant measure of the parameter instability G and forms the statistic
T

L, =Y 8'G'S (26.26)
t=2

For FMOLS, the natural estimator for G is

T
G = &12[ > ZtZt'J (26.27)

t=2

The 3, and G may be defined analogously to least squares for CCR using the transformed
data. For DOLS 3, is defined for the subset of original regressors Z;, and G' may be com-
puted using the method employed in computing the original coefficient standard errors.

The distribution of L, is nonstandard and depends on m, = max(n — p,, 0), the number
of cointegrating regressors less the number of deterministic trend regressors excluded from
the cointegrating equation, and p the number of trending regressors in the system. Hansen
(1992) has tabulated simulation results and provided polynomial functions allowing for
computation of p-values for various values of m, and p. When computing p-values,
EViews ignores the presence of user-specified deterministic regressors in your equation.

In contrast to the residual based cointegration tests, Hansen’s test does rely on estimates
from the original equation. We continue our illustration by considering an equation esti-
mated on the consumption data using a constant and trend, FMOLS with a Quadratic Spec-
tral kernel, Andrews automatic bandwidth selection, and no d.f. correction for the long-run
variance and coefficient covariance estimates. The equation estimates are given by:
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Dependent Variable: LC

Method: Fully Modified Least S quares (FMOLS)

Date: 08/11/09 Time: 13:45

Sample (adjusted): 1947Q2 1989Q3

Included observations: 170 after adjustments

Cointegrating equation deterministics: C @TREND

Long-run covariance estimate (Quadratic-Spectral kernel, Andrews
bandwidth = 10.9793)

No d.f. adjustment for standard errors & covariance

Variable Coefficient Std. Error t-Statistic Prob.
LY 0.651766 0.057711 11.29361 0.0000
Cc 220.1345 37.89636 5.808855 0.0000
@TREND 0.289900 0.049542 5.851627 0.0000
R-squared 0.999098 Mean dependent var 720.5078
Adjusted R-squared 0.999087 S.D. dependent var 41.74069
S.E. of regression 1.261046 Sum squared resid 2655695
Durbin-Watson stat 0.514132 Long-run variance 8.223497

There are no options for the Hansen test so you may simply click on View/Cointegration
Tests..., select Hansen Instability in the dropdown menu, then click on OK.

Cointegration Test - Hansen Parameter Instability
Date: 08/11/09 Time: 13:48

Equation: EQ_19_3_31

Series: LC LY

Null hypothesis: Series are cointegrated
Cointegrating equation deterministics: C
@TREND

No d.f. adjustment for score variance

Stochastic  Deterministic =~ Excluded
Lc statistic Trends (m) Trends (k) Trends (p2) Prob.*
0.575537 1 1 0 0.0641

*Hansen (1992b) Lc(m2=1, k=1) p-values, where m2=m-p2is the
number of stochastic trends in the asymptotic distribution

The top portion of the output describes the test hypothesis, the deterministic regressors, and
any relevant information about the construction of the score variances. In this case, we see
that the original equation had both C and @TREND as deterministic regressors, and that the
score variance is based on the usual FMOLS variance with no d.f. correction.

The results are displayed below. The test statistic value of 0.5755 is presented in the first col-
umn. The next three columns describe the trends that determine the asymptotic distribution.
Here there is a single stochastic regressor (LY) and one deterministic trend (@ TREND) in the
cointegrating equation, and no additional trends in the regressors equations. Lastly, we see

from the final column that the Hansen test does not reject the null hypothesis that the series
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are cointegrated at conventional levels, though the relatively low p-value are cause for some
concern, given the Engle-Granger and Phillips-Ouliaris results.

Park’s Added Variables Test

Park’s H(p, q) testis an added variable test. The test is computed by testing for the signifi-
cance of spurious time trends in a cointegrating equation estimated using one of the meth-
ods described above.

Suppose we estimate equation Equation (26.1) where, to simplify, we let D;, consist solely
of powers of trend up to order p . Then the Park test estimates the spurious regression model
including from p + 1 to ¢ spurious powers of trend

P q
y= X/B+ Y v+ S Uyt (26.28)
s=0 s=p+1
and tests for the joint significance of the coefficients (v, , y, ..., v,) . Under the null hypoth-

esis of cointegration, the spurious trend coefficients should be insignificant since the resid-
ual is stationary, while under the alternative, the spurious trend terms will mimic the

remaining stochastic trend in the residual. Note that unless you wish to treat the constant as
one of your spurious regressors, it should be included in the original equation specification.

Since the additional variables are simply deterministic regressors, we may apply a joint Wald

test of significance to (v, ¢, ..., v,) - Under the maintained hypothesis that the original
specification of the cointegrating equation is correct, the resulting test statistic is asymptoti-
cally sz -

While one could estimate an equation with spurious trends and then to test for their signifi-
cance using a Wald test, EViews offers a view which performs these steps for you. First esti-
mate an equation where you include all trends that are assumed to be in the cointegrating
equation. Next, select View/Cointegration Test... and choose Park Added Variables in the
dropdown menu. The dialog will change to allow you to specify the spurious trends.
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There are two parts to the dialog. The dropdown menu
allows you to specify a trend polynomial. By default,
the dropdown will be set to two orders higher than the
trend order in the original equation. In our example
equation which includes a linear trend, the default set-
ting will include quadratic and cubic trend terms in the
test equation and test for the significance of the two
coefficients. You may use the edit field to enter non
power-of-trend deterministic regressors.

We will use the default settings to perform a Park test
on the FMOLS linear trend consumption equation con-
sidered previously. The results are presented in two

Cointegration Test @

Test method

Park Added Variables -

Deterministics to add

Trends: | Cubic trend -

(add trend terms up to specified order)

Regressors

o

parts: the test specification and test results are displayed at the top of the output, and the
results for the test equation (not depicted) are displayed at the bottom:

Cointegration Test - Park Added Variables
Date: 08/11/09 Time: 13:49

Equation: EQ_19_3_31

Series: LC LY

Null hypothesis: Series are cointegrated
Original trend specification: Linear trend
Added trends: Powers of trend up to 3

Added deteministics to test: @TREND*2 (@QTREND/170)"3

Value df Probability

Chi-square 12.72578 2 0.0017

The null hypothesis is that the series are cointegrated. The original specification includes a
constant and linear trend and the test equation will include up to a cubic trend. The Park
test evaluates the statistical significance of the @ TREND/2 and the (@ TREND/170)”3 terms
using a conventional Wald test. (You may notice that the latter cubic trend term—and any
higher order trends that you may include—uses the trend scaled by the number of observa-

tions in the sample.)

The test results reject the null hypothesis of cointegration, in direct contrast to the results for
the Engle-Granger, Phillips-Ouliarias, and Hansen tests (though the latter, which also tests
the null of cointegration, is borderline). Note however, adding a quadratic trend to the origi-
nal equation and then testing for cointegration yields results that, for all four tests, point to

cointegration between LC and LY.

Working with an Equation

Once you estimate your equation, EViews offers a variety of views and procedures for exam-
ining the properties of the equation, testing, forecasting, and generating new data. For the
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most part, these views and procedures are a subset of those available in other estimation
settings such as least squares estimation. (The one new view, for cointegration testing, is
described in depth in “Testing for Cointegration,” beginning on page 282.) In some cases
there have been modifications to account for the nature of cointegrating regression.

Views

For the most part, the views of a cointegrating equation require lit- REDIEs SO
tle discussion. For example, the Representations view offers text Estimation Output
descriptions of the estimated cointegrating equation, the Covari-
ance Matrix displays the coefficient covariance, and the Residual
Diagnostics (Correlogram - Q-statistics, Correlogram Squared
Residuals, Histogram - Normality Test) offer statistics based on
pooled residuals. That said, a few comments about the construc-
tion of these views are in order.

Actual Fitted,Residual b
Gradients 3
Covariance Matrix
Cointegration Tests...
Coefficient Diagnastics ¥
Besidual Diagnostics b
Label

First, the Representations and Covariance Matrix views of an

equation only show results for the cointegrating equation and the long-run coefficients. In
particular, the short-run dynamics included in a DOLS equation are not incorporated into
the equation. Similarly, Coefficient Diagnostics and Gradients views do not include any of
the short-run coefficients.

Second, the computation of the residuals used in the Actual, Fitted, Residual views and the
Residual Diagnostics views differs depending on the estimation method. For FMOLS and
CCR, the residuals are derived simply by substituting the estimated coefficients into the
cointegrating equation and computing the residuals. The values are not based on the trans-
formed data. For DOLS, the residuals from the cointegrating equation are adjusted for the
estimated short-run dynamics. In all cases, the test statistics results in the Residual Diag-
nostics should only be viewed is illustrative as they are not supported by asymptotic theory.

Note that standardized residuals are simply the residuals divided through by the long-run
variance estimate.

The Gradient (score) views are based on the moment conditions implied by the particular

estimation method. For FMOLS and CCR, these moment conditions are based on the trans-
formed data (see Equation (26.25) for the expression for FMOLS scores). For DOLS, these val-
ues are simply proportional (-2 times) to the residuals times the regressors.
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Procedures

The procs for an equation estimated using cointegrating regres- Specify/Estimate..

sion are virtually identical to those found in least squares esti- Eotec sk

mation. Make Residual Series...
Make Regressor Group

Most of the relevant issues were discussed previously (e.g., Make Gradient Group

construction of residuals and gradients), however you should Make Model

also note that forecasts constructed using the Forecast... proce- (e S e

dure and models created using Make Model procedure follow

the Representations view in omitting DOLS short-run dynamics. Furthermore, the forecast
standard errors generated by the Forecast... proc and from solving models created using the
Make Model... proc both employ the “S.E. of the regression” reported in the estimation out-
put. This may not be appropriate.

Data Members

The summary statistics results in the bottom of the equation output may be accessed using
data member functions (see “Equation Data Members” on page 37 for a list of common data
members). For equations estimated using DOLS (with default standard errors), FMOLS, or
CCR, EViews computes an estimate of the long-run variance of the residuals. This statistic
may be accessed using the @1rvar member function, so that if you have an equation named
FMOLS,

scalar mylrvar = fmols.@lrvar

will store the desired value in the scalar MYLRVAR.
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Chapter 27. Autoregressive Distributed Lag (ARDL) Models

EViews offers powerful time-saving tools for estimating and examining the properties of
Autoregressive Distributed Lag (ARDL) models. ARDLs are standard least squares regres-
sions that include lags of both the dependent variable and explanatory variables as regres-
sors (Greene, 2008). Although ARDL models have been used in econometrics for decades,
they have gained popularity in recent years as a method of examining cointegrating relation-
ships between variables through the work of Pesaran and Shin (1998, PS(1998)) and Pesa-
ran, Shin and Smith (2001, PSS(2001)).

While it is possible to use a standard least squares procedure to estimate an ARDL, the spe-
cialized ARDL estimator in EViews offers a number of useful features including model selec-
tion and the computation of post-estimation diagnostics.

Background
Specification

ARDL models are linear time series models in which both the dependent and independent
variables are related not only contemporaneously, but across historical (lagged) values as
well. In particular, if y, is the dependent variable and z,, ..., z; are & explanatory vari-
ables, a general ARDL(p, ¢, .., qk) model is given by:

q;

Yp = ag+ayt+ Z¢yf,l+z Y Bt (27.1)

i=1 Jj=11=0

where €, are the usual innovations, q, is a constant term, and ay, ¥;, and 8, , are respec-
tively the coefficients associated with a linear trend, lags of y,, and lags of the é regressors
z;, forj=1,.., k. Alternatively, let L denote the usual lag operator and define /(L)
and B,(L) as the lag polynomials:
p ' 4 .
Y(L) = 1- z ¥,L' and B, (L) = 1- z B le’

i=1 l]=1

Equation (27.1) above can then be rewritten as:
k

V(D)y, = ag+ ayt+ Z B, (L):v € (27.2)
j=1
Following this general formulation, three alternative representations can be made. While all

three can be used for parameter estimation, the first is typically used for intertemporal
dynamic estimation, the second for post-estimation derivation of the long-run (equilibrium)
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relationship, while the third is a reduction of (27.1) to the conditional error correction (CEC)
representation in the PSS(2001) bounds test. All three alternative representations make use
of the Beveridge-Nelson decomposition.

Representation 1: Intertemporal Dynamics Regression

The typical starting point for most ARDL applications is the estimation of intertemporal
dynamics. In this form, one is interested in estimating the relationship between ¥, on both
its own lags as well as the contemporaneous and lagged values of the % regressors T .
This in fact the basis of the ARDL model studied in PS(1998). In particular, we cast (27.1)
into the following representation:
P k
Yo = ag+ agt+ Y Yy i+ Y B(L)x;  +e (27.3)
;‘: 1 j=1

ag+art+ Y Yy, i+ > (B(L) +(1- L)B(L))z; + e,

i=1 =1
P Jk’ k

= ag+ a;t+ Z Yy, i+ z Bz ,+ z B.,'(L)Azj’,/-i-e,/

i=1 j=1 j=1

where we have used the Beveridge-Nelson result to decompose (L) into
B, (L) = B;(1)+(1- L)B;(L) . Since this equation does not solve for y,, it is typically
interpreted as a regression for the intertemporal dynamics of the model.

Representation 2: Post-Regression Derivation of Long-Run Dynamics

The second representation is in essence an attempt to derive the long-run relationship
between y, and the k regressors. As such, the representation solves for y, in terms of z; , .
k k

y, = ¢1(1)£a*0+ at+ Y Bz, + Y B*]-(L)Amj,,& e*tj (27.4)

i=1 i=1
‘ J ) J

= oy +ot+ Z 0,(1)z; ,+ ZGJ(L) Az, + &,
j=1 j=1
where
a'y = ag- V(D)W (L)g
= - Y)Y (D
BAL) = BL)~ WLy (L)B,(L)
¢ = e - WD (D)Ae,

and
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oy = ‘//71(% - 1}(1)0{1)

a; = ¢i(1)g

6,(1) = v 1(1)B,(1)

-1
B(L) = ¥ (DBL) - UL (L)BL(L))
-1 -1

g = (0 (e, -¥D)Y (DajAe)
where we have again used the Beveridge-Nelson decomposition to express
Y(L) = ¥(1)+ (1 - L)Y(L). Furthermore, from (27.1) we are typically interested in the
long-run (trend) parameters captured by o4 and 6,(1), for j = 1, ..., k. In fact, given the
one-to-one correspondence between the parameter estimates obtained in (27.1) and (27.5),
it is possible to derive estimates of the long-run parameters post-estimation. In particular, if

Gy, 7)0, Ty wees ?)07 9 b1, ..., by denote the relevant subset of estimated coefficients from the
regression model corresponding to the model in (27.4), in particular,

P k k q]'_l
Yo = ag+apt+ N by iyt Y by x+ Yy Cj AT gt e
i=1 j=1 j=1l=1

then, a post-regression estimate of the long-run parameters is derived as follows:

~ 1
o1 = 7
1- bo, i
-l (27.5)
~ b]
0,(1) =

p
1= by,
i=1

Representation 3: Conditional Error Correction Form and the Bounds Test

The final representation is arguably the most interesting and one that typically receives the
most attention in applied work. The objective here is to test for cointegration by reducing a
typical vector autoregression framework to its corresponding conditional error correction
(CEC) form. This CEC model is in fact an ARDL model with a one-to-one correspondence
with the model in (27.1).

In particular, Equation (27.1) may be re-written as:
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k
Ay, = ay+ ait—y(1)y,_, + Z B,(Dz; 4 (27.6)

k =1 k
+ [J/*(L)AyH + Y Bi(L)Az, “j + Y B(L)ATL,  +e,
j=1 j=1

where we have used the convention
P

p
YL = YL = [z W_le = (W () +(1- LY (L)L
i=1 i=1

relying once again on the Beveridge-Nelson decomposition.

Equation (27.7) above is the CEC form derived from the ARDL model in (27.1). Rewriting
this equation as:
k

Ay, = ay+ alt—tp(l)[yt_l— > 5,7(1)5?7,7:—1] (27.7)

i=1
k J k

. [J/*(L)Ayt_l + 3 Bj(L)ijvt_J + 3 BAL)AT,  + ¢

j=1 j=1
J J &

= ay+at—y(1)EC,_, +(¢*(L)Aytl +y Bj(L)ij,tJ

j=1
f J

+ z BJ(L)ijﬁt+ €,
j=1

it is readily verified that the error correction term, typically denoted as E C,, is also the

cointegrating relationship when y, and z, 4, ..., z; , are cointegrated. PSS(2001) demon-
strate that (27.7) is in fact (abstracting from differing lag values) the CEC of the VAR(p)
model:

S(L)(z—p—vt) = €

where z, is the (k +1)-vector (y, z; , ..., T, t)T and p and vy are respectively the (k
+1)-vectors of intercept and trend coefficients, and ®(L) = I, - Z <I>iL’ is the (k +
1) square matrix lag polynomial. iz 1

Traditionally, the cointegration tests of Engle-Granger (1987), Phillips and Ouliaris (1990),
Park (1990), or Johansen (1991; 1995), typically require all variables in the VAR to be I(1).
This clearly requires a battery pre-testing for the presence of a unit root in each of the vari-
ables under consideration, and is subject to misclassification. In contrast, PSS(2001) propose
a test for cointegration that is robust to whether variables of interest are I(0), I(1), or mutu-
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ally cointegrated. In this regard, PSS(2001) discuss a bounds test for cointegration as a test
on parameter significance in the cointegrating relationship of the CEC model (27.7). In other
words, the test is a standard F. or Wald test for the following null and alternative hypothe-
ses:

Hy: (W(1) n B} ) = 0 (27.8)
Hy: (1) A (B} ) #0

Once the test statistic is computed, it is compared to two asymptotic critical values corre-
sponding to polar cases of all variables being purely 1(0) or purely I(1). When the test statis-
tic is below the lower critical value, one fails to reject the null and concludes that
cointegration is not possible. In contrast, when the test statistic is above the upper critical
value, one rejects the null and concludes that cointegration is indeed possible. In either of
these two cases, knowledge of the cointegrating rank is not necessary.

Alternatively, should the test statistic fall between the lower and upper critical values, test-
ing is inconclusive, and knowledge of the cointegrating rank is required to proceed further.

Here it is also important to highlight that PSS(2001) offer five alternative interpretations of
the CEC model (27.7), distinguished by whether deterministic terms integrate into the error
correction term. When deterministic terms contribute to the error correction term, they are
implicitly projected onto the span of the cointegrating vector. This implies that a,; and a, in
(27.7) must be restricted. Below are summaries of the regression (REG) models, for each of
the five interpretations along with the appropriate cointegrating relationship EC, and the
bounds test null-hypothesis H, .

Case 1:
k
Ay, = byy,_, + Z bz 4 (27.9)
j=1
p-1 Eog-1 k
+ Z o Ay, + Z z ¢ Z,ij,r/flﬂ' Z dAT;  + €,
i=1 j=1L=1 j=1
k
b;
EC, = y, - b_oxj’t
j=1

Case 2:
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k
Ay, = ay+byy, 1 + Z biz; 1

Jj=1
p-1 Eog-1

(27.10)

k

+ z Co, Ay, i+ z z ¢ l}A:I:];t_lj+ z de:vj’t—i-et

i=1 j=14=1 j=1

Case 3:

Ay, = ag+byy, 1 + z bix; 1

j=1
Eog-1 k

p-1
+ z Co, Ay, + z Z ¢ l]ijvt_l]+ Z dezj7t+et
i=1 j=1l=1

(27.11)

i=1

Case 4:

Ay, = ag+ byy,_y+ D0 (27.12)
j=1
p-1 k qj—l

k
+ z ¢ Ay, + Z Z ¢ lemj,f,—l]_F Z dAT; , + €

i=1 j=15=1 j=1

Case 5:
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k

Ay, = gy+ a;t+ boyt_1+ Z b.i‘Tylt—l (27.13)
j=1
p-1 kog-1 k
+ z o, DAY+ z z ¢ lexj,t_lj+ z dAz; , +¢€
i=1 j=15=1 j=1
k
BC b a,
t = Y~ z Ez)xl’f_b—ot
j=1

Estimating ARDL Models in EViews

Since ARDL models are least squares regressions using lags of the dependent and indepen-
dent variables as regressors, they can be estimated in EViews using an equation object with
the Least Squares estimation method.

However, EViews also offers a specialized estimator for handling ARDL models. This estima-
tor offers built-in lag-length selection methods, as well as post-estimation views. To estimate
an ARDL model using the ARDL estimator, open the equation dialog by selecting Quick/
Estimate Equation..., or by selecting Object/New Object.../Equation and then selecting
ARDL from the Method dropdown menu. EViews will then display the ARDL estimation
dialog:
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Spedfication  Options

Dynamic Specification
Dependent variable followed by list of dynamic regressors

(®) Automatic Selection Dependent Variable: Regressors:
O Fixed Max lags: |4 Max lags: |4  ~

Fixed regressors
Trend specification List of fixed regressors

Rest. constant ~
Estimation settings

Method: | ARpL - Auto-regressive Distributed Lag Models i

Sample: | 1950Q1 2000Q4

oK Cancel

The Specification tab allows you to specify the variables used in the regression, and
whether to let EViews automatically detect the appropriate number of lags for each variable.

To begin, enter the name of the dependent variable, followed by a space delimited list of
dynamic regressors (i.e., variables which will have lag terms in the model) in the Dynamic
Specification edit box. You may then select whether you wish EViews to automatically
select the number of lags for all variables by selecting the Automatic Selection radio button,
fixing the independent variable and the regressors to a uniform fixed length by selecting the
Fixed radio buttons, or by taking full control of granularity and specifying a specific lag for
each of the independent and regressors variables. The latter can be specified via command
in the Dynamic Specification edit box by replacing each variable by the Fixed Lag command
@FL(VARIABLE, LAG). For instance, if the variable z, should possess 3 lags, then one
would specify this by writing @FL(z,, 3). One can do this for all variables in order to esti-
mate a specific structure, or specify some variables using the @FL command, and others
without. In the latter case, if the Automatic Selection radio button is selected, EViews will fix
the lags of the variables specified with @FL, and automatically select the lags for the vari-
ables which were not specified using the @FL function. Alternatively, if the Fixed radio but-
ton is selected, any variables not specified with @FL will have the specified fixed number.

If you choose automatic selection, you must then select the maximum number of lags to test
for the dependent variable and regressors using the Max lags dropdowns. If you select to
use a fixed number of lags, the same dropdowns can be used to select the number of lags for
the dependent variable and regressors. Note that when using fixed lags for regressors, each
regressor will be given the same number of lags.
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The Fixed regressors area lets you specify any fixed/static variables (regressors without
lags). The Trend specification dropdown may be used to specify which of the five cases for
the trend and intercept should be included. Any other static regressors can be specified by
entering their name in the List of fixed regressors box.

The Options tab allows you to specify the type of model selection to be used if you chose
automatic selection on the Specification tab. You may choose between the Akaike Informa-
tion Criterion (AIC), Schwarz Criterion (SC), Hannan-Quinn Criterion (HQ), or the Adjusted
R-squared.

You may also select the type of covariance matrix to use in the final estimates, using the
Coefficient covariance matrix dropdown. Note that this selection does not affect the model
selection criteria.

ARDL Post-Estimation Views and Procedures

Since ARDL models are estimated by simple least squares, all of the views and procedures
available to equation objects estimated by least squares are also available for ARDL models.
In addition, there are a few ARDL specific views.

The Model Selection Summary item on the View menu allows you to view either a Criteria
Graph or a Criteria Table. The graph shows the model selection value for the twenty “best”
models. If you use either the Akaike Information Criterion (AIC), the Schwarz Criterion
(BIC), or the Hannan-Quinn (HQ) criterion, the graph will show the twenty models with the
lowest criterion value. If you choose the Adjusted R-squared as the model selection criteria,
the graph will show the twenty models with the highest Adjusted R-squared. The table form
of the view shows the log-likelihood value, the AIC, BIC and HQ values, and the Adjusted R-
squareds of the top twenty models in tabular form.

The View/Coefficient Diagnostics menu offers the new item Long Run Form and Bounds
Test. Every ARDL model is associated with a CEC model. This view displays a table of least
squares estimates corresponding to this CEC regression. Note that the lag of the dependent
variable in this regression will always be suffixed by a single asterisk while some other vari-
ables will be suffixed by a double asterisk. As summarized in notes below the regression
output, the single asterisk indicates that the p-value associated with the relevant variable is
incompatible with the t-Bounds distribution in Theorem 3.2 in PSS(2001). Moreover, any
variables suffixed by a double asterisk indicates a dynamic regressor with an optimal lag of
zero. As such, EViews does not include lags and differences of such variables, but estimates
them contemporaneously. Accordingly, such variables should be reinterpreted in the context
of the decomposition 2, = z,_; + Az, so that they can be included in the EC,_, term
which arises in each of the CEC regressions. In particular, least squares estimates of coeffi-
cients associated with such variables are simultaneously estimates of the coefficients associ-
ated with z, _; as well as Az,. When this is the case, EViews augments the table of
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regression estimates with a note that such variables should be interpreted as Z = Z(-1) +
D(Z).

There are also several tables provided in this view. The first table is titled Levels Equation
and displays the estimates of long-run variables, their standard errors computed using the
delta method as in PS(98), their ¢-statistics, as well as the appropriate p -values. Moreover,
just below this table is a line starting with £ C'. This expression lists the name of the depen-
dent variable minus an expression enclosed in brackets. This is the long run, otherwise
known as the error correction equation.

Below the table of long run coefficient estimates are two additional tables, respectively titled
as the F'-Bounds Test and the ¢-Bounds Test. These tables respectively display the the the
F- and t- statistics along with their associated I(0) (lower) and I(1) (upper) critical value
bounds for the null hypotheses of no levels relationship between the dependent variable and
the regressors in the CEC model. The critical values are provided for significance levels 10%,
5%, 2.5%, and 1%, respectively. The ¢-Bounds test in particular is a parameter significance
test on the lagged value of the dependent variable. Since the distribution of this test is non-
standard, the p-value provided in the regression output of the CEC regression is not compat-
ible with this distribution, although the % -statistic is valid. Accordingly, any inference must
be conducted using the ¢-Bounds test critical values provided.

We also mention here that the F'- critical value tables now present the critical values com-
puted under an asymptotic regime (sample size equal to 1000) and referenced from
PSS(2001), in addition to providing cirtical values for finite sample regimes (sample sizes
running from 30 to 80 in increments of 5) and referenced from Narayan (2005).

Another view that is offered after estimation is View/ Coefficient Diagnostics/Error Cor-
rection Form. In this view, an error correction model which estimates the speed of adjust-
ment to equilibrium in a cointegrating relationship. Here, the error correction term derived
as the Levels Equation earlier, is included among the regressors and is denoted as CointEq.
The coefficient associated with this regressor is typically the speed of adjustment to equilib-
rium in every period. If variables are indeed cointegrated, we typically expect this coefficient
to be negative and highly significant. Here as well we find the the F'-Bounds Test and the ¢-
Bounds Test tables below the regression output. While the the F'-Bounds Test will not have
changed from the Long Run Form and Bounds Test view, the ¢-Bounds Test here reflects
the t- statistic associated with the CointEq regressor. Again, since the distribution of this test
is non-standard, the p -value provided in the regression output is not compatible with this
distribution and any inference must be conducted using the the ¢-Bounds test critical values
provided.

Issues with ARDL Model Selection

The ARDL model selection process will use the same sample for each estimation. Since the
selection is over the number of lags, this means that observations will be dropped from each



An Example—305

estimation based on the maximum number of lags in the selection procedure. However the
final estimation output will use all observations available for the selected model. Conse-
quently, unless the selected model happens to be the model with the maximum number of
lags, the final estimation will have more observations than when that model was estimated
during selection, and will have different estimated results.

An Example

Greene (2008, page 685) uses an ARDL model on data from a number of quarterly US mac-
roeconomic variables between 1950 and 2000. In particular, he estimates an ARDL model
using the log of real consumption as the dependent variable, and the log of real GDP as a
single regressor (along with a constant).

We can open the Greene data with the following EViews command:
wfopen http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF5-
2.txt

Next we bring up the ARDL estimation dialog by clicking on Quick/Estimate Equation and
using the Method combo to change the estimation method to ARDL.

Following Greene's example, we estimate an ARDL model with the log of real consumption
as the dependent variable, and log GDP as the regressor, by entering:

log(realcons) log(realgdp)

in the Dynamic Specification area. We choose to perform Automatic Selection, with a
maximum of 8 lags (two years) for both the dependent variable and dynamic regressors.

Greene includes a full set of quarterly dummies as fixed regressors, which we can include by
choosing Constant (Level) as the trend specification, and then adding the expression
“@expand(@quarter, @droplast)” in the Fixed regressors box.
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Equation Estimation

Spedfication  Options

Dynamic Specification
Dependent variable followed by list of dynamic regressors

log{realcons) log{realgdp)

(®) Automatic Selection Dependent Variable: Regressors:
O Fixed Max lags: |8 Max lags: |8  ~

Fixed regressors
Trend specification List of fixed regressors

@expand(@quarter, @dropfirst)

Rest. constant ~

Estimation settings
Method: | aARplL - Auto-regressive Distributed Lag Models il
Sample:

1950Q1 2000Q4

We do not make any changes to the Options tab, leaving all settings at their default value.
The results are shown below:
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Dependent Variable: LOG(REALCONS)

Method: ARDL

Date: 03/10/15 Time: 23:38

Sample (adjusted): 1951Q2 2000Q4

Included observations: 199 after adjustments

Maximum dependent lags: 8 (Automatic selection)

Model selection method: Akaike info criterion (AIC)
Dynamic regressors (8 lags, automatic): LOG(REALGDP)
Fixed regressors: @EXPAND(@QUARTER, @DROPLAST) C
Number of models evalulated: 72

Selected Model: ARDL(5, 1)

Note: final equation sample is larger than selection sample

Variable Coefficient Std. Error t-Statistic Prob.*

LOG(REALCONS(-1))  0.854510  0.064428  13.26300  0.0000
LOG(REALCONS(-2))  0.258776  0.082121  3.151153  0.0019
LOG(REALCONS(-3)) -0.156598  0.071521  -2.189542  0.0298
LOG(REALCONS(-4)) -0.194069  0.070465 -2.754106  0.0065
LOG(REALCONS(-5))  0.169457  0.048486  3.494951  0.0006
LOG(REALGDP) 0547615  0.048246  11.35042  0.0000
LOG(REALGDP(-1))  -0.475684  0.051091  -9.310547  0.0000

@QUARTER=1 -0.000348 0.001176  -0.295813 0.7677
@QUARTER=2 -0.000451 0.001165  -0.386775 0.6994
@QUARTER=3 0.000854 0.001171 0.729123 0.4668
C -0.058209 0.027842  -2.090705 0.0379
R-squared 0.999873 Mean dependent var 7.902158
Adjusted R-squared 0.999867 S.D. dependent var 0.502623
S.E. of regression 0.005805 Akaike info criterion -7.406420
Sum squared resid 0.006336 Schwarz criterion -7.224378
Log likelihood 747.9388 Hannan-Quinn criter. -7.332743
F-statistic 148407.0  Durbin-Watson stat 1.865392
Prob(F-statistic) 0.000000

*Note: p-values and any subsequent tests do not account for model
selection.

The first part of the output gives a summary of the settings used during estimation. Here we
see that automatic selection (using the Akaike Information Criterion) was used with a maxi-
mum of 8 lags of both the dependent variable and the regressor. Out of the 72 models evalu-
ated, the procedure has selected an ARDL(5,1) model - 5 lags of the dependent variable,
LOG(REALCONS), and a single lag (along with the level value) of LOG(REALGDP).

EViews also notes that since the selected model has fewer lags than the maximum, the sam-
ple used in the final estimation will not match that used during selection.

The rest of the output is standard least squares output for the selected model. Note that each
of the regressors (with the exception of the quarterly dummies) is significant, and that the
coefficient on the one period lag of the dependent variable, LOG(REALCONS), is quite high,
at 0.85.

To view the relative superiority of the selected model against alternatives, we click on View/
Model Selection Summary/Criteria Graph to view a graph of the AIC of the top twenty
models.



308—Chapter 27. Autoregressive Distributed Lag (ARDL) Models
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The selected ARDL(5,1) model was only slightly better than an ARDL(5,2) model, which
was in turn only slightly better than an ARDL(5,3). It is notable that the top three models all
use five lags of the dependent variable.

Rather than using automatic selection to choose the best model, Greene (Example 20.4) ana-
lyzes these data with a fixed ARDL(3,3) model. We can replicate this by pressing the Esti-
mate button to bring up the Equation Estimation dialog again. We change the number of
lags on both dependent and regressors to 3, and then select the Fixed radio button to switch
off automatic selection.
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Spedfication  Options

Dynamic Specification
Dependent variable followed by list of dynamic regressors
LOG(REALCONS) LOG(REALGDF)
(®) Automatic Selection Dependent Variable: Regressors:
(O Fixed Maxlags: |3 ~ Max lags: |3~
Fixed regressors
Trend specification List of fixed regressors
Rest. constant ~ @EXPAND{@QUARTER, @DROPFIRST)
Estimation settings
Method: | ARpL - Auto-regressive Distributed Lag Models w
Sample: | 195091 200094
Cancel

The results of this estimation are:
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ARDL Cointegrating Form and Bounds Test
Original dep. variable: LOG(REALCONS)
Selected Model: ARDL(3, 3)

Date: 31/03/17 Time: 11:04

Sample: 1950Q1 2000Q4

Included observations: 201

Cointegrating Form

Variable Coefficient Std. Error t-Statistic Prob.

C -0.110221 0.029258  -3.767248 0.0002
LOG(REALCONS(-1))  -0.118944 0.030474  -3.903191 0.0001
LOG(REALGDP(-1)) 0.126497 0.032281 3.918624 0.0001
DLOG(REALCONS(-1)) -0.157714 0.069795  -2.259665 0.0250
DLOG(REALCONS(-2))  0.233653 0.068672 3.402444 0.0008
DLOG(REALGDP) 0.565088 0.051953 10.87699 0.0000
DLOG(REALGDP(-1)) 0.047706 0.063725 0.748631 0.4550
DLOG(REALGDP(-2))  -0.190243 0.058922  -3.228753 0.0015

@QUARTER=2 4.66E-07 0.001270 0.000367 0.9997
@QUARTER=3 0.001174 0.001263 0.929288 0.3539
@QUARTER=4 0.000259 0.001266 0.204677 0.8380
Bounds Test Null Hypothesis: No cointegrating relationships exist
Test Statistic Value Signif. 1(0) I(1)
F-statistic 10.45256 10% 3.02 3.51
k 1 5% 3.62 4.16
2.5% 4.18 4.79

1% 4.94 5.58

EC = LOG(REALCONS) - (1.0635*LOG(REALGDP) + 0.0000
*(@QUARTER=2) + 0.0099*(@QUARTER=3) + 0.0022
*(@QUARTER=4) -0.9267 )

Long Run Coefficients

Variable Coefficient Std. Error t-Statistic Prob.
LOG(REALGDP) 1.063498 0.007908 134.4805 0.0000
@QUARTER=2 3.92E-06 0.010680 0.000367 0.9997
@QUARTER=3 0.009869 0.010947 0.901557 0.3684
@QUARTER=4 0.002178 0.010645 0.204601 0.8381

C -0.926656 0.065892  -14.06325 0.0000

The one-period lag on the dependent variable remains high, at 0.72, and again all coeffi-
cients are significant (with the exception of the dummies).
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We can then examine the long-run coefficients by selecting View/Coefficient Diagnostics/
Cointegration Form and Bounds Test.

The long-run coefficients, at the bottom of the output, show that the long-run impact of a
change in log(REALGDP) on log(REALCONS) has essentially no lagged-effects. The long-run
change is very close to being equal to the initial change (the coefficient is close to one).

In a second example, Example 20.5, Greene examines an ARDL(1,1) model's cointegrating
form. To perform this in EViews, we again bring up the Equation Estimation dialog and
change the number of lags to 1 for both dependent and regressors, remove the quarterly
dummies, and then click OK.

Equation Estimation X

Spedfication  Options

Dynamic Specification
Dependent variable followed by list of dynamic regressors

LOG(REALCONS) LOG(REALGDF)

(®) Automatic Selection Dependent Variable: Regressors:
O Fixed Max lags: |1~ Max lags: |1~

Fixed regressors
Trend specification List of fixed regressors

Rest. constant ~

Estimation settings
Method: | ARplL - Auto-regressive Distributed Lag Models il

Sample: | 195091 200094

Following estimation, we click on View/Coefficient Diagnostics/Cointegration Form and
Bounds Test to bring up the cointegrating relationship view:
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ARDL Cointegrating Form and Bounds Test
Original dep. variable: LOG(REALCONS)
Selected Model: ARDL(1, 1)

Date: 31/03/17 Time: 11:05

Sample: 1950Q1 2000Q4

Included observations: 203

Cointegrating Form

Variable Coefficient Std. Error t-Statistic Prob.

C -0.085331 0.029285 -2.913823 0.0040
LOG(REALCONS(-1))  -0.095416 0.030589  -3.119291 0.0021
LOG(REALGDP(-1)) 0.101173 0.032371 3.125408 0.0020
DLOG(REALGDP) 0.584210 0.051411 11.36351 0.0000

Bounds Test Null Hypothesis: No cointegrating relationships exist
Test Statistic Value Signif. 1(0) I(1)
F-statistic 17.24754 10% 3.02 3.51
k 1 5% 3.62 4.16
2.5% 4.18 4.79

1% 4.94 5.58

EC = LOG(REALCONS) - (1.0603*LOG(REALGDP) -0.8943 )

Long Run Coefficients

Variable Coefficient Std. Error t-Statistic Prob.
LOG(REALGDP) 1.060339 0.010630 99.75379 0.0000
C -0.894307 0.089041  -10.04381 0.0000
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Chapter 28. Midas Regression

Mixed Data Sampling (MIDAS) regression is an estimation technique which allows for data
sampled at different frequencies to be used in the same regression.

More specifically, the MIDAS methodology (Ghysels, Santa-Clara, and Valkanov, (2002) and
Gyhsels, Santa-Clara, and Valkanaov (2006), and Andreou, Ghysels, and Kourtellos (2010))
addresses the situation where the dependent variable in the regression is sampled at a lower
frequency than one or more of the regressors. The goal of the MIDAS approach is to incorpo-
rate the information in the higher frequency data into the lower frequency regression in a
parsimonious, yet flexible fashion.

The following discussion describes EViews’ easy-to-use tools for single equation MIDAS
regression estimation. We begin by offering background on the approach. Next, we describe
how to estimate a MIDAS regression in EViews. We conclude with examples.

Background

Standard regression models require the regressor data to follow the same frequency and
structure as the dependent variable in the regression. This restriction is not always met in
practice—as in economics, where major statistical releases occur on annual, quarterly,
monthly and even daily frequencies.

Traditionally, there have been two approaches to estimation in mixed frequency data set-
tings:

¢ The first approach involves introducing the sum or average of the higher frequency
data into the lower frequency regression. This approach adds a single coefficient for
each high frequency variable, implicitly applying equal weighting to each value in the
sum.

¢ Alternately, the individual components of the higher frequency data may be added to
the regression, allowing for a separate coefficient for each high frequency component.
For example, in estimating an annual regression with monthly high frequency regres-
sors, one could add each of the monthly components as a regressor. Note that this
approach adds a large number of coefficients to the regression.

MIDAS estimation occupies the middle ground between these approaches, allowing for non-
equal weights but reducing the number of coefficients by fitting functions to the parameters
of the higher frequency data. Thus, MIDAS offers an approach to mixed frequency estima-
tion featuring a flexible, parsimonious parameterization of the response of the lower fre-
quency dependent variable to the higher frequency data.

Specifically, the model under consideration is:
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v, = X/B+ [({X1s) 0,N) + ¢ (28.1)

where
¢ y, is the dependent variable, sampled at a low frequency, at date ¢,
e X, is the set of regressors sampled at the same low frequency as y,,

o {Xf; g} 1s a set of regressors sampled at a higher frequency with S values for each
low frequency value. Note that { X,, ¢} is not restricted to the .S values associated
with the current ¢ as it may include values corresponding to lagged low frequency
values.

e fis a function describing the effect of the higher frequency data in the lower fre-
quency regression

e (3, N\, and 0 vectors of parameters to be estimated.

The individual coefficients approach adds each of the higher frequency components as a
regressor in the lower frequency regression. In the simple case where we only include high
frequency data corresponding to the current low frequency observation, we have:
5-1
’ H ’
y, = X/B+ z X780, +¢€ (28.2)
7=0

where Xg _r)/g are the data 7 high frequency periods prior to ¢ (we will refer to these
data as the 7-th high frequency lag at ¢). Notice that this approach estimates a distinct 0
for each of the S high frequency lag regressors.

Alternately, the simple aggregation approach adds an equally weighted sum (or average) of
the high frequency data as a regressor in the low frequency regression:
S5-1

y, = Xt’6+(z X{;’_,)/S]'met (28.3)
7=0

The approach estimates a single N associated with the new regressor. Viewed differently,
the aggregation approach may be thought of as one in which the component higher fre-
quency lags all enter the low frequency regression with a common coefficient A .

For a quarterly regression with a higher frequency monthly series, there are three months in
each quarter so the individual coefficients approach adds three regressors to the low fre-
quency regression. The first regressor contains values for the first month in the correspond-
ing quarter (January, April, July, or October), the second regressor has values for the second
month in the corresponding quarter (February, May, August, or November), and the third
regressor contains values for the third month in the relevant quarter (March, June, Septem-
ber, December).
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The aggregation approach adds the single regressor containing the sum of the monthly val-
ues over the corresponding quarter. For first quarter observations, the regressor will contain
the sum of the higher frequency January, February, and March monthly values for that quar-
ter. Similarly, the regressor will contain the sum of the October, November, and December
values in fourth quarter observations.

We may think of these two approaches as polar extremes. The individual coefficients
approach offers the greatest flexibility but requires large numbers of coefficients. The aggre-
gation approach is parsimonious, but places quite significant equal weighting restrictions on
the lagged high frequency data.

In contrast, MIDAS estimation offers several different weighting functions which occupy the
middle ground between the unrestricted and the equally weighted aggregation approaches.
The MIDAS weighting functions reduce the number of parameters in the model by placing
restrictions on the effects of high frequency variables at various lags.

Step Weighting
The simplest weighting method employs the step function:
k-1
’ H ’
Y= X8+ Y X n/s'e, e (28.4)
7=0

where

e [ is a chosen number of lagged high frequency periods to use (where £ may be less
than or greater than 5).

® 7 is a step length

* ¢, = 0, for k = int(m/n)
In this approach, the coefficients on the high frequency data are restricted using a step func-
tion, with high frequency lags within a given step sharing values for ¢ . For example, with

n = 3, the first three lagged high frequency lags Xg_ NS T = 0, 1, 2, employ the same
coefficient 6, the next three lags use 6, , and so on up to the maximum lag of %.

Notably, the number of high frequency coefficients in the step weighting model increases
with the number of high frequency lags, but in comparison to an individual coefficient
approach, the number of coefficients is reduced by a factor of roughly 1/7.

Almon (PDL) Weighting

Almon lag weighting (also called polynomial distributed lag or PDL weighting) is widely
used to place restrictions on lag coefficients in autoregressive models, and is a natural candi-
date for the mixed frequency weighting.
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For each high frequency lag up to %, the regression coefficients are modeled as a p dimen-
sional lag polynomial in the MIDAS parameters 6 . We may write the resulting restricted
regression model as:

k-1 »
' H ' J
Yy = XtB+ Z X(fT)/S(Z TJGJJ +6t (28.5)
T= j=0
where p is the Almon polynomial order, and the chosen number of lags k¥ may be less than
or greater than S.

Importantly, the number of coefficients to be estimated depends on the polynomial order
and not the number of high frequency lags. We can see this more clearly after rearranging
terms and rewriting the model using a constructed variable:
ya
¥y, = X/B+ z ZZ-, S0, +¢€,
i=0
k-1
i H
Zi, t = Z T X(z—f)/s
7=0

(28.6)

It is easy to see the distinct coefficient 0, associated with each of the p sets of constructed
variables Z; ,.

Exponential Almon Weighting

The normalized exponential Almon weighting approach uses exponential weights and a lag
polynomial of degree 2, yielding:

k-1 (r6, + 2 )
exp (7 T
Yy = X/B+ Y Xg—f)/s'[ - 1. 22 ]k+et (28.7)
7=0 Zj:OGXp(]01+] 02)
o (70, + 7°0,)
’ , exp(7 T
y, = X/B+ Z Xgr)/S[ T 1. 22 ])\+et (28.8)
7=0 z‘jzoexp(jol"'] 02)

where k£ is a chosen number of lags, A\ is a slope coefficient that is common across lags,
and the differential response comes via the exponential weighting function and the lag poly-
nomial which depends on the two MIDAS coefficients 6, and 0, .

In constructed variable form, we have
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k
= X/B+ 3 Z, 'N+e
i=0
{ exp (i, + i°0,) ] "
g ) 3 (t-i)/8
Zj: o exp(j0, +570)

(28.9)

it =

Note that this regression model is highly nonlinear in the parameters of the model.

Beta Weighting

Beta weighting was introduced by Ghysels, Santa-Clara and Valkanov and is based on the
normalized beta weighting function. The corresponding regression model is given by

k-1 0,-1 0,-1
_xpy x| e (doe) 40, N+ (28.10)
Yy = t z t—7 k 0, -1 0,-1 3 € :

7=0 z]':owj (1_wj)_

where £ is a number of lags, N is a slope coefficient that is common across lags, and

5 i=0
w, = {i/(k-1) i=1,.. k-2 (28.11)
1-6 i=k

where 6 is a small number (in practice, approximately equal to 2.22 6716).

In constructed variable form, we have

k
= X8+ Y Z N+e
i=0
- b (28.12)
7 = o, (1-w) 0. | xt
it = k o1 -1 Vs A-iys
Zj:(]wj (1-w)

The beta function is extremely flexible and can take many shapes, including gradually
increasing or decreasing, flat, humped, or U-shaped, depending on the values of the three
MIDAS parameters (6, 0, 05) .

In practice the parameters of the beta function are restricted further by imposing 6, = 1,
0, = 0,0orf;, =1andf; = 0.

e The restriction §; = 1 implies that the shape of the weight function depends on a
single parameter, exhibiting slow decay when 6, > 1 and slow increase when 6, < 1.
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* The restriction 6; = 0 implies that there are zero weights at the high frequency lag
endpoints (when 7 = 0 and 7 = k-1).

* The restriction #; = 1 and 6; = 0 imposes both the shape and the zero endpoint
weight restrictions.

(Please note that for specifications with a small number of MIDAS lags the zero endpoint
restrictions is quite restrictive and may generate significant bias.)

Lastly, while the number of parameters of the beta weighting model is at most 3 so that it
does not increase with the number of lags, estimation does involve optimization of a highly
non-linear objective.

U-MIDAS

The U-MIDAS weighting method is simply the individual coefficients technique given by
Equation (28.2).

U-MIDAS does not alleviate the issue of requiring a large number of coefficients, but can be
used in cases where a small number of lags are required, and is often used for comparative
purposes.

MIDAS Estimation in EViews

With built-in tools for working with multi-frequency data and an intrinsic understanding of
the relationship between various time series frequencies, EViews offers an ideal platform for
MIDAS estimation.

To perform MIDAS estimation in EViews, open the equation dialog by selecting Quick/Esti-
mate Equation..., or by selecting Object/New Object.../Equation and then selecting
MIDAS from the Method dropdown menu to bring up the MIDAS estimation dialog:
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Equation Estimation
Spedfication | Options

Spedification
Dependent variable followed by list of quarterly regressors

Higher frequency regressors

Enter list of regressors of a higher frequency, using the syntax
pagename \seriesname

() Automatic lag selection

= Lags: | 4
(@) Fixed lags =g
Estimation settings
Method: |MIDAS - Mixed Data Sampling Regression b4

Sample: | 19851 2009q1

Specification

The Specification tab is used to specify the variables of and form of the MIDAS equation
and to set the estimation sample.

The Specification edit field is used to specify the low frequency dependent variable followed
by a list of low frequency regressors from the same page as the dependent variable. The low
frequency regressors should include any desired lags of the dependent variable. Note that
explicit ARMA terms are not permitted in this estimation method.

The Higher frequency regressors edit field is used to specify the higher-frequency regres-
sors. The syntax for these variable is pagename\seriesname where pagename is the name of
the page containing the series, and seriesname is the name of the series. Note also that
series expressions are allowed, e.g. “mypage\log(x)”.

You may specify more than one higher-frequency series, and those series may be of different
frequencies from different pages. However, we caution you that using more than one high
frequency regressor oftens leads to multicollinearity issues and, in the case of the non-linear
weighting, increases the complexity of estimation dramatically. An alternative approach sug-
gested by Andreou, et al. (2013) would be to estimate several univariate models and then
use forecast combination to produce a final forecast.
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Date Timing

When specifying your high frequency variable, care should must be taken to ensure that you
refer to the correct observations from the higher frequency page.

To illustrate, let’s assume our dependent variable, Y, is quarterly, and our regressor, X, is
monthly. We would like to use 4 lags (months) of X to explain each quarter of Y. EViews will
use the 4 months up to, and including, the last month of the corresponding quarter. Quarter
1 will thus be explained by March, February, January and December. Quarter 2 will be
explained by June, May, April and March.

If you wish to use different sets of months, you can use the lag operator when specifying the
regressor. In our example, if we want Quarter 1 to be explained by January, December,
November and October, and Quarter 2 to be explained by April, March, February and Janu-
ary, we would specify the regressor as “monthlypage\x(-2)”; i.e., using the second lagged
values of X.

Lag Selection

All of the MIDAS estimation methods require a value for k, the number of high frequency
lags to be included in the low frequency regression equation.

Just below the Higher frequency regressors edit field are radio buttons that control the
number of lags. You may provide a fixed number of lags by selecting the appropriate radio
button and entering a value, or you can elect to determine the number of lags using minimal
sum-of-squared residuals as the selection criterion. If you select the latter radio button, you
will prompted to enter a value for the maximum number of lags. Note that automatic selec-
tion is only available for the Almon and Step weighting methods.

If you have entered more than one high frequency regressor you may enter a single lag or
maximum lag value or you may enter a space delimited list of lags. If you enter a single
value, it will be applied to all of the regressors.

As you make your choice, keep in mind that the maximum number of lags and selected lags
from automatic selection will apply to all of the high frequency series.

Estimation Options

The Options tab of the dialog lets you specify some the MIDAS weighting function along
with other estimation options:
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Equation Estimation
Spedification | Options
MIDAS weights Coeffident name
PDL/AlImon W C

Polynomial degree: | 3
Frequency Conversion
QOptions
Coeffident covariance
Ordinary
Hessian - observed

d.f. Adjustment

The MIDAS weighting method dropdown menu controls specification of the MIDAS weight-
ing. By default the Almon weighting method is selected, but Step, Exponential Almon and
Beta may also be chosen.

If you select the Almon method, you must specify p, the degree of the Almon polynomial. If
Step is selected, you must specify the stepsize 7. If Beta is selected, you can, if desired,
impose restrictions on ¢, , 65, or both 6, and 0.

Since the Beta and Exponential Almon weighting methods involve non-linear estimation,
selecting either of these methods will enable the Optimization and Covariance method
options:
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Equation Estimation
Spedification | Options
MIDAS weights Coeffident name
Exponential Almon W C
Optimization
Optimization "
Frequency Conversion mgﬁma: Hybrid ~
Options Step method: | Marquardt W
Maximum jterations: 500
Coeffident covariance
Covariance T v Conyergence tolerance: 1e-08
method: . .
i Starting coeffident values:
Information | jecgian - gbserved v - -
matrix: EViews supplied W

d.f. Adjustment |:| Display settings in output

The Optimization method dropdown menu offers standard EViews optimization settings,
with the exception of the default Hybrid Optimization method. This method is a combina-
tion of the OPG and BFGS methods, where OPG is used for an initial 50 iterations, then
BFGS is used until convergence. We have found that the hybrid method often reaches con-
vergence more successfully than OPG or BFGS alone.

For the nonlinear models, you may elect to have EViews obtain starting values, or you may
specify your own.

For the exponential Almon method, EViews sets §; = —1 and 6, = 0, then runs OLS with
those values to obtain the remaining starting values. For beta weighting, EViews sets

6, = 1,0, = 5,and §; = 0, then runs OLS to obtain the remaining values. Then, if not
performing shape restricted estimation, EViews updates the starting values by estimating a
shape restricted beta weight model.

The Frequency Conversion Options button produces a secondary dialog that allows you to
change the way the different frequencies of the variables are matched. By default, EViews
uses the last observation in the higher frequency periods as the oth lag in the regression. You
can change this to instruct EViews to use the first observation, or to use arbitrary date series
from each page to perform the date matching.
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An Example

As an example of using MIDAS regression in EViews, we analyze data used by Armesto,
Engemann, and Owyang (2010). The data consists of log-differenced, seasonally adjusted
quarterly real GDP between 1947 and 2011 and log-differenced monthly total non-farm pay-
roll employment from 1939 to 2011. These data are in the workfile “Midas.WF1” with the
real GDP data in series REALGDP on page “QuarterlyPage”, and the employment data in
series EMP on page “MonthlyPage”.

Beta Weighting

We estimate a MIDAS model with real GDP as the dependent variable and a lagged value of
real GDP as a regressor. Only data between 1985 and 2009q1 are used. Monthly employment
with 9 lags is used as a set of higher-frequency regressors. The employment data lags are off-
set by 5 months (i.e., to explain Quarter 1 real GDP, employment data from the previous
year’s February through October are used).

We use the beta weighting method, while restricting the endpoints coefficient 04 to be zero.
The following dialog settings reflect this equation specification:

Equation Estimation
Spedfication | Options
Spedification
Dependent variable followed by list of quarterly regressors

realgdp c realgdp(-1)

Higher frequency regressors

Enter list of regressors of a higher frequency, using the syntax
pagename \seriesname

monthlypageemp(-5)

) Automatic lag selection

= Lags: | 9
(@) Fixed lags =g
Estimation settings
Method: |MIDAS - Mixed Data Sampling Regression b4

Sample: | 19851 2009q1

and the associated options
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Equation Estimation

Spedification | Options

MIDAS weights

Beta W

Restriction: |Endpoint W

Coeffident covariance
Covariance "

Ordinar W
method: ¥

Information | jeggian - gbserved v
matrix:

d.f. Adjustment

The results of this estimation are given by

Coeffident name

C

Optimization
Optimization
method:

Step method: | Marquardt

Hybrid

Maximum jterations: 5000

Conyergence tolerance: 1e-08

Starting coeffident values:

EViews supplied

|:| Display settings in output

Cancel
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[Z) Equation: EQO1 Workfile: MIDAS::QuarterlyPage\, IEI@

[ViewlProclObject] [PrintINameIFreeze] [EstimateIForecastIStatisesids]

Dependent Variable: REALGDP

Method: MIDAS

Date: 03/08M16 Time: 15:40

Sample: 1985Q11 2009Q1

Included observations: 97

Method: Beta (restricted endpoints)

Optimization method: initial OPG iterations followed by BFGS
Coefficient covariance computed using observed Hessian
Convergence achieved after 2 iterations

Wariable Coefficient Std. Error t-Statistic Frob.
c 0.665560 0.138964 4789442 0.0000
REALGDP(-1) 0.284700 0.118813 2.396208 0.0186

Page: MONTHLYPAGE Series: EMP(-5) Lags: 9

SLOPE 1.912065 0.574790 3.326545 0.0013
BETAO1 0.990377 0.073333 13.50516 0.0000
BETAO2 6.615724 10.51712 0.629043 0.5309
R-squared 0.337155 Mean dependentvar 1.274925
Adjusted R-squared 0.330178 5.D. dependentvar 0.682517
S.E. of regression 0.558580 Akaike info criterion 1.755456
Sum squared resid 2964215 Schwarz criterion 1.888173
Log likelihood -80.13963 Hannan-Quinn criter. 1.809120
Durbin-Watson stat 2047218
MONTHLYPAGEEMP... Lag Coefficient Distribution
0 1.232185
1 0.419821
2 0.175474
3 0.062785
4 0.017883
5 0.003547
6 0.000363
7 7.40E-06
8 1.08E-88

The top portion of the output describes the estimation sample, MIDAS method, and other
estimation settings. Here we see that beta weighting with restricted endpoints (605 = 0).
Estimation uses the hybrid method of initial OPG iterations followed by BFGS estimation,
with the coefficient covariance computed using the inverse of the negative Hessian.

The first section displays coefficients, standard errors, and ¢-statistics for the low frequency
regressors. These results show standard regression output.

Next, we display the results for the high frequency variables. First, we describe the page and
name of the variable and the number lags & used in the low frequency regression. Here, we
are using EMP(-5) from the “monthlypage” and allowing for 9 high frequency lags of this
variable in the low frequency regression.

The coefficient results for the common SLOPE coefficient (A ) and the free MIDAS beta
weight coefficients (6 ) are displayed directly below.
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First, we see that monthly EMP(-5) has an overall positive effect on REALGDP as the SLOPE
coefficient is a statistically significant 1.91.

The actual lag coefficients are obtained by applying weights to this overall slope. The shape
of the weight function is determined by the remaining MIDAS coefficients. The 6, coeffi-
cient, labeled BETAO]1, is very close to 1, so that the lag pattern depends primarily on
BETAO2 (6,).

The large positive estimate of 0, , is statistically different from 1, and value of 6.62, implies
that the lag pattern is sharply decreasing as shown in the lag coefficient graph at the bottom
of the output. We conclude that the coefficient that the zero high frequency lag of employ-
ment has a large impact on real GDP, but the effect dies off pretty quickly.

The endpoint coefficient 6, has been restricted to be zero so that it does not appear in the
output.

The remaining output consists of the standard summary statistics and diagnostics.

To continue our example, we wish to perform a static forecast over the period after the esti-
mation sample (2009q2) to the end of the workfile (2011g2). To forecast from our MIDAS
equation, we do so in the usual manner, by first clicking the Forecast button:

Forecast
Forecast of
Equation: EQO1 Series: REALGDP
Series names Method
Forecast name: | realgdpf () Dynamic forecast

(®) Static forecast

| Coef uncertainty in 5.E. calc

Forecast sample Qutput
2009q2 @last Forecast graph
Forecast evaluation

Insert actuals for out-of-sample observations

Cancel

and filling out the resulting dialog with the appropriate settings. Clicking on OK performs
the forecast:
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=] Equation: EQ01 Workfile: MIDAS::QuarterlyPage\ EI@

[ViawIPro(] Obje:t] [PrintINamaIFreaze] [Estimata]Fora(astlStats[Rasids]

81 Forecast: REALGDPF
iz Actual: REALGDP
Forecast sample: 200902 201102
0 Included observations: %
Root Mean Squared Error 0.564953
0.4 Mean Absolute Error 0.490809
Mean Abs. Percent Error 7141411
004 Theil Ineguality Coefficient  0.303078
Bias Proportion 0.265524
0.4 Variance Proportion 0.145474
Covariance Proportion 0.589002
0, . } . . . } . . | Theil Uz Coefficient 1234218
i n “" ! n m v ! n Symmetric MAPE 69.24185
2009 2010 2m

Almon Weighting

As a second example we will estimate the same model, but this time using the Almon
weighting method, with a second degree polynomial, and we instruct EViews to select the
most appropriate number of lags for employment (up to a maximum of 12):

Equation Estimation
Spedfication | Options

Spedification
Dependent variable followed by list of quarterly regressors

realgdp c realgdp(-1)

Higher frequency regressors
Enter list of regressors of a higher frequency, using the syntax
pagename \seriesname

monthlypageemp(-5)

) Automatic lag selection

May lags: | 12
Fixed lags B
Estimation settings
Method: |MIDAS - Mixed Data Sampling Regression b4

Sample: | 19851 2009q1

and
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Equation Estimation
Spedification | Options
MIDAS weights Coeffident name
PDL/AlImon W C

Polynomial degree: | 2
Coeffident covariance
Ordinary
Hessian - observed

d.f. Adjustment

Clicking on OK estimates the specified equation, and displays the results:
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(= Equation: EQ01 Workfile: MIDAS:QuarterlyPa... [ = || & [[z3]

[ViewlProclObject] [PrintINameIFreeze] [EstimateIForecastIStatisesids]

Method: MIDAS

Chosen selection: 7

Dependent Variable: REALGDP

Date: 03/08M16 Time: 16:45
Sample: 1985Q11 2009Q1
Included observations: 97
Method: PDL/AImMon (polynomial degree: 2)
Automatic lag selection, max lags: 12

Wariable Coefficient Std. Error t-Statistic Frob.
c 0722293 0.138304 5222492 0.0000
REALGDP(-1) 0.263092 0.114505 2297643 0.0238
Page: MONTHLYPAGE Series: EMP(-5) Lags:7
POLO1 1.673965 0.488421 3.427299 0.0009
POLO2 -0.354906 0117500  -3.020477 0.0033
R-squared 0.362509 Mean dependentvar 1.274925
Adjusted R-squared 0.355798 5.D. dependentvar 0.682517
S.E. of regression 0.547803 Akaike info criterion 1.695838
Sum squared resid 2850836 Schwarz criterion 1.802011
Log likelihood -78.24812 Hannan-Quinn criter. 1.738769
Durbin-Watson stat 2.065393
MONTHLYPAGEEMP... Lag Coefficient Distribution
0 1.319059
1 0.964153
2 0.609246
3 0.254340
4 -0.100566
5 -0.455472
6 -0.810378

As with the beta weighting model estimated above, the overall effect of high frequency
EMP(-5) on REALGDP is positive and decreasing in the lags. However, in contrast with the
beta weights estimates, the Almon weights lag coefficients do not decline sharply; in fact,
the pattern appears to be roughly linear.

Note that the MIDAS variable description line shows that EViews chose 7 as the most appro-
priate high frequency lag length. Clicking on View/Model Selection/Criteria Graph dis-
plays a graph of the sum of squared residuals from each of the different lag selections:
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= Equation: EQOT Workfile: MIDAS:QuarterlyPage\ [ = [ = |[=5]
[ViewlProclObject] [PrintINameIFreeze] [EstimateIForecastIStatisesids]
Sum of Squared Residuals
3054
I
|
|
|
3004 |
|
E} ® l
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I I I : l
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offering clear evidenced that 7 is the optimal lag.
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Chapter 29. Discrete and Limited Dependent Variable
Models

The regression methods described in Chapter 19. “Basic Regression Analysis” require that
the dependent variable be observed on a continuous and unrestricted scale. It is quite com-
mon, however, for this condition to be violated, resulting in a non-continuous, or a limited
dependent variable. We will distinguish between three types of these variables:

e (ualitative (observed on a discrete or ordinal scale)
e censored or truncated

* integer valued

In this chapter, we discuss estimation methods for several qualitative and limited dependent
variable models. EViews provides estimation routines for binary or ordered (probit, logit,
gompit), censored or truncated (tobit, etc.), and integer valued (count data) models.

EViews offers related tools for estimation of a number of these models under the GLM
framework (see Chapter 30. “Generalized Linear Models,” beginning on page 391). In some
cases, the GLM tools are more general than those provided here; in other cases, they are
more restrictive.

Standard introductory discussion for the models presented in this chapter may be found in
Greene (2008), Johnston and DiNardo (1997), and Maddala (1983). Wooldridge (1997) pro-
vides an excellent reference for quasi-likelihood methods and count models.

Binary Dependent Variable Models

In this class of models, the dependent variable, ¥ may take on only two values— y might
be a dummy variable representing the occurrence of an event, or a choice between two alter-
natives. For example, you may be interested in modeling the employment status of each
individual in your sample (whether employed or not). The individuals differ in age, educa-
tional attainment, race, marital status, and other observable characteristics, which we
denote as x. The goal is to quantify the relationship between the individual characteristics
and the probability of being employed.

Background

Suppose that a binary dependent variable, ¥, takes on values of zero and one. A simple lin-
ear regression of ¥ on z is not appropriate, since among other things, the implied model of
the conditional mean places inappropriate restrictions on the residuals of the model. Fur-
thermore, the fitted value of y from a simple linear regression is not restricted to lie
between zero and one.
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Instead, we adopt a specification that is designed to handle the specific requirements of
binary dependent variables. Suppose that we model the probability of observing a value of
one as:

Pr(y,=1|2,8) = 1-F(-z/8), (29.1)

where F' is a continuous, strictly increasing function that takes a real value and returns a
value ranging from zero to one. In this, and the remaining discussion in this chapter follows
we adopt the standard simplifying convention of assuming that the index specification is lin-
ear in the parameters so that it takes the form z,'3 . Note, however, that EViews allows you
to estimate models with nonlinear index specifications.

The choice of the function F' determines the type of binary model. It follows that:
Pr(y,=0]z, B) = F(-z;/B). (29.2)

Given such a specification, we can estimate the parameters of this model using the method
of maximum likelihood. The likelihood function is given by:

n
IB) = > yilog(l— F(-z;"8))+ (1 - y)log(F(-z;B)). (29.3)
i=0

The first order conditions for this likelihood are nonlinear so that obtaining parameter esti-
mates requires an iterative solution. By default, EViews uses a second derivative method for
iteration and computation of the covariance matrix of the parameter estimates. As discussed
below, EViews allows you to override these defaults using the Options dialog (see “Second
Derivative Methods” on page 1095 for additional details on the estimation methods).

There are two alternative interpretations of this specification that are of interest. First, the
binary model is often motivated as a latent variables specification. Suppose that there is an
unobserved latent variable y* that is linearly related to z:

y* = 2B+ (29.4)

where u; is a random disturbance. Then the observed dependent variable is determined by
whether y* exceeds a threshold value:

ok
_ 1 ify*>0 (29.5)

0 if y*<0.

In this case, the threshold is set to zero, but the choice of a threshold value is irrelevant, so
long as a constant term is included in z;. Then:

Pr(y,=1|z,B8) = Pr(y*>0) = Pr(z/8+u;>0) = 1-F (-z/B) (29.6)
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where F, is the cumulative distribution function of «. Common models include probit
(standard normal), logit (logistic), and gompit (extreme value) specifications for the F
function.

In principle, the coding of the two numerical values of y is not critical since each of the
binary responses only represents an event. Nevertheless, EViews requires that you code y
as a zero-one variable. This restriction yields a number of advantages. For one, coding the
variable in this fashion implies that expected value of y is simply the probability that
y=1:

E(y;| 2, 8) = 1-Pr(y; = 1|z, §) + 0 Pr(y; = 0|, f)

(29.7)
Pr(y; = 1|, B).

This convention provides us with a second interpretation of the binary specification: as a
conditional mean specification. It follows that we can write the binary model as a regression
model:

Yy, = (1= F(-1/B)) +¢;, (29.8)

where €, is a residual representing the deviation of the binary y, from its conditional mean.
Then:

E(ei|xi, B)=0
var(e,[, B) = F(-z/8)(1 - F(~z,B)).

(29.9)

We will use the conditional mean interpretation in our discussion of binary model residuals
(see “Make Residual Series” on page 345).

Estimating Binary Models in EViews

To estimate a binary dependent variable model, choose Object/New Object... from the main
menu and select the Equation object from the main menu. From the Equation Specification
dialog, select the BINARY - Binary Choice (Logit, Probit, Extreme Value) estimation
method. The dialog will change to reflect your choice. Alternately, enter the keyword
binary in the command line and press ENTER.

There are two parts to the binary model specification. First, in the Equation Specification
field, you may type the name of the binary dependent variable followed by a list of regres-
soTs Oor you may enter an explicit expression for the index. Next, select from among the three
distributions for your error term:
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Probit Pr(y, = 1|z, 8) = 1-&(-2/8) = &(z/B)
where @ is the cumulative distribution function of the stan-
dard normal distribution.

Logit B

1=/ + )

Pr(y; = 1|z;, B)

em/B/(l +e" B)

which is based upon the cumulative distribution function for
the logistic distribution.

Extreme value
(Gompit)

1-(1-exp(—¢ "))
= exp(-¢ ")

which is based upon the CDF for the Type-I extreme value dis-
tribution. Note that this distribution is skewed.

Pr(y; = 1|z, B)

For example, consider the probit specification example described in Greene (2008, p. 781-
783) where we analyze the effectiveness of teaching methods on grades. The variable
GRADE represents improvement on grades following exposure to the new teaching method
PSI (the data are provided in the workfile “Binary.WF1”). Also controlling for alternative

measures of knowledge (GPA and TUCE), we have the specification:

Equation Estimation

Spedfication | Options

Equation specification

Binary dependent variable followed by list of regressors, OR a

linear explicit equation like ¥ =c(1)+c(2)*X.

grade ¢ gpa tuce psi

Binary estimation method: (@) Probit ()logit () Extreme value

Estimation settings

Method: | BINARY - Binary Choice (Logit, Probit, Extreme Value)

Sample: | 132

Once you have specified the model, click OK. EViews estimates the parameters of the model
using iterative procedures, and will display information in the status line. EViews requires

Cancel
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that the dependent variable be coded with the values zero-one with all other observations
dropped from the estimation.

Following estimation, EViews displays results in the equation window. The top part of the
estimation output is given by:

Dependent Variable: GRADE

Method: ML - Binary Probit (BFGS / Marquardt steps)
Date: 03/09/15 Time: 15:54

Sample: 1 32

Included observations: 32

Convergence achieved after 23 iterations

Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.
C -7.452320 2.542472  -2.931131 0.0034
GPA 1.625810 0.693882 2.343063 0.0191
TUCE 0.051729 0.083890 0.616626 0.5375
PSI 1.426332 0.595038 2.397045 0.0165

The header contains basic information regarding the estimation technique (ML for maxi-
mum likelihood) and the sample used in estimation, as well as information on the number
of iterations required for convergence, and on the method used to compute the coefficient
covariance matrix.

Displayed next are the coefficient estimates, asymptotic standard errors, z-statistics and cor-
responding p-values.

Interpretation of the coefficient values is complicated by the fact that estimated coefficients
from a binary model cannot be interpreted as the marginal effect on the dependent variable.
The marginal effect of z; on the conditional probability is given by:
OE(y;|;, B)
ox: :

1]

= f(=z/B)B;, (29.10)

where f(z) = dF(z)/dz is the density function corresponding to F'. Note that 3; is
weighted by a factor f that depends on the values of all of the regressors in . The direction
of the effect of a change in z; depends only on the sign of the 8; coefficient. Positive values
of Bj imply that increasing ; will increase the probability of the response; negative values
imply the opposite.

While marginal effects calculation is not provided as a built-in view or procedure, in “Fore-
cast” on page 345, we show you how to use EViews to compute the marginal effects.

An alternative interpretation of the coefficients results from noting that the ratios of coeffi-
cients provide a measure of the relative changes in the probabilities:
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B; OE(y,|z;, B)/ 0z

= = . 29.11

In addition to the summary statistics of the dependent variable, EViews also presents the fol-
lowing summary statistics:

McFadden R-squared 0.377478 Mean dependent var 0.343750

S.D. dependent var 0.482559 S.E. of regression 0.386128
Akaike info criterion 1.051175 Sum squared resid 4174660
Schwarz criterion 1.234392 Log likelihood -12.81880
Hannan-Quinn criter. 1.111907 Restr. log likelihood -20.59173
LR statistic 15.54585 Avg. log likelihood -0.400588
Prob(LR statistic) 0.001405

First, there are several familiar summary descriptive statistics: the mean and standard devia-
tion of the dependent variable, standard error of the regression, and the sum of the squared
residuals. The latter two measures are computed in the usual fashion using the ordinary
residuals:

€ = yi—E(yi‘Ii, B) = y,— (1 - F(-z/B)). (29.12)

Additionally, there are several likelihood based statistics:

Log likelihood is the maximized value of the log likelihood function ().

Avg. log likelihood is the log likelihood () divided by the number of observations
n.

Restr. log likelihood is the maximized log likelihood value, when all slope coeffi-
cients are restricted to zero, I(B). Since the constant term is included, this specifica-
tion is equivalent to estimating the unconditional mean probability of “success”.

The LR statistic tests the joint null hypothesis that all slope coefficients except the
constant are zero and is computed as —2(I(B8) — I(B)) . This statistic, which is only
reported when you include a constant in your specification, is used to test the overall
significance of the model. The degrees of freedom is one less than the number of coef-
ficients in the equation, which is the number of restrictions under test.

Probability (LR stat) is the p-value of the LR test statistic. Under the null hypothesis,
the LR test statistic is asymptotically distributed as a X2 variable, with degrees of free-
dom equal to the number of restrictions under test.

McFadden R-squared is the likelihood ratio index computed as 1 — I(8)/(B),
where [(B) is the restricted log likelihood. As the name suggests, this is an analog to
the R reported in linear regression models. It has the property that it always lies
between zero and one.
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e The various information criteria are detailed in Appendix E. “Information Criteria,”
beginning on page 1111. For additional discussion, see Grasa (1989).
Estimation Options

The iteration limit, convergence criterion, and coefficient name may be set in the usual fash-
ion by clicking on the Options tab in the Equation Estimation dialog. In addition, there are
options that are specific to binary models. These options are described below.

Optimization

By default, EViews uses Newton-Raphson with Marquardt steps to obtain parameter esti-
mates.

If you wish, you can use the Optimization method dropdown menu to select a different
method. In addition to Newton-Raphson, you may select BFGS, OPG - BHHH, or EViews
legacy.

For non-legacy estimation, the Step method may be chosen between Marquardt, Dogleg,
and Line search. For legacy estimation the Legacy method is set to the default Quadratic
hill climbing (Marquardt steps) or BHHH (line search).

Note that for legacy estimation, the default optimization algorithm does influence the
default method of computing coefficient covariances.

See “Optimization Method” on page 1090 and “Technical Notes” on page 387 for discussion.

Coefficient Covariances

For binary dependent variable models, EViews allows you to estimate the standard errors
using the default (inverse of the estimated information matrix), quasi-maximum likelihood
(Huber/White) or generalized linear model (GLM) methods.

In addition, for ordinary and GLM covariances, you may choose to compute the information
matrix estimate using the outer-product of the gradients (OPG) or using the negative of the
matrix of log-likelihood second derivatives (Hessian - observed).

You may elect to compute your covariances with or without a d.f. Adjustment.

Note that for legacy estimation, the default algorithm does influence the default method of
computing coefficient covariances.

See “Technical Notes” on page 387 for discussion.

Starting Values

As with other estimation procedures, EViews allows you to specify starting values. In the
options menu, select one of the items from the dropdown menu. You can use the default
EViews values, or you can choose a fraction of those values, zero coefficients, or user sup-
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plied values. To employ the latter, enter the coefficients in the C coefficient vector, and select
User Supplied in the dropdown menu.

The EViews default values are selected using a algorithm that is specialized for each type of
binary model. Unless there is a good reason to choose otherwise, we recommend that you
use the default values.

Estimation Problems

In general, estimation of binary models is quite straightforward, and you should experience
little difficulty in obtaining parameter estimates. There are a few situations, however, where
you may experience problems.

First, you may get the error message “Dependent variable has no variance.” This error
means that there is no variation in the dependent variable (the variable is always one or
zero for all valid observations). This error most often occurs when EViews excludes the
entire sample of observations for which y takes values other than zero or one, leaving too
few observations for estimation.

You should make certain to recode your data so that the binary indicators take the values
zero and one. This requirement is not as restrictive at it may first seem, since the recoding
may easily be done using auto-series. Suppose, for example, that you have data where y
takes the values 1000 and 2000. You could then use the boolean auto-series, “y=1000", or
perhaps, “y<1500”, as your dependent variable.

Second, you may receive an error message of the form “[xxxx] perfectly predicts binary
response [success/failure]”, where xxxx is a sample condition. This error occurs when one
of the regressors contains a separating value for which all of the observations with values
below the threshold are associated with a single binary response, and all of the values above
the threshold are associated with the alternative response. In this circumstance, the method
of maximum likelihood breaks down.

For example, if all values of the explanatory variable z > 0 are associated with y = 1, then
x is a perfect predictor of the dependent variable, and EViews will issue an error message
and stop the estimation procedure.

The only solution to this problem is to remove the offending variable from your specifica-

tion. Usually, the variable has been incorrectly entered in the model, as when a researcher
includes a dummy variable that is identical to the dependent variable (for discussion, see

Greene, 2008).

Thirdly, you may experience the error, “Non-positive likelihood value observed for observa-
tion [xxxx].” This error most commonly arises when the starting values for estimation are
poor. The default EViews starting values should be adequate for most uses. You may wish to



Binary Dependent Variable Models—339

check the Options dialog to make certain that you are not using user specified starting val-
ues, or you may experiment with alternative user-specified values.

Lastly, the error message “Near-singular matrix” indicates that EViews was unable to invert
the matrix required for iterative estimation. This will occur if the model is not identified. It

may also occur if the current parameters are far from the true values. If you believe the latter
to be the case, you may wish to experiment with starting values or the estimation algorithm.
The BHHH and quadratic hill-climbing algorithms are less sensitive to this particular prob-

lem than is Newton-Raphson.

Views of Binary Equations

EViews provides a number of standard views and procedures for binary models. For exam-
ple, you can easily perform Wald or likelihood ratio tests by selecting View/Coefficient
Diagnostics, and then choosing the appropriate test. In addition, EViews allows you to
examine and perform tests using the residuals from your model. The ordinary residuals used
in most calculations are described above—additional residual types are defined below. Note
that some care should be taken in interpreting test statistics that use these residuals since
some of the underlying test assumptions may not be valid in the current setting.

There are a number of additional specialized views Representations

and procedures which allow you to examine the Estimation Output

properties and performance of your estimated binary Actual Fitted,Residual »

model. Gradients and Derivatives 3
Covariance Matrix

Dependent Variable Frequencies Coefficient Diagnostics .

This view displays a frequency and cumulative fre- Residual Diagnostics '

quency table for the dependent variable in the binary Dependent Variable Fraquencies

model. Categorical Regressor Stats

Expectation-Prediction Evaluation
Categorica| Regl’essor Stats Goodness-of-Fit Test (Hosmer-Lemeshow)

This view displays descriptive statistics (mean and Label

standard deviation) for each regressor. The descrip-
tive statistics are computed for the whole sample, as well as the sample broken down by the
value of the dependent variable y:
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Categorical Descriptive Statistics for Explanatory Variables
Equation: EQ_PROBIT
Date: 03/09/15 Time: 16:14

Mean
Variable Dep=0 Dep=1 All
C 1.000000 1.000000 1.000000
GPA 2.951905 3.432727 3.117188
TUCE 21.09524 23.54545 21.93750
PSI 0.285714 0.727273 0.437500
Standard
Deviation
Variable Dep=0 Dep=1 All
C 0.000000 0.000000 0.000000
GPA 0.357220 0.503132 0.466713
TUCE 3.780275 3.777926 3.901509
PSI 0.462910 0.467099 0.504016
Observations 21 11 32

Expectation-Prediction (Classification) Table

This view displays 2 x 2 tables of correct and incorrect classification based on a user speci-
fied prediction rule, and on expected value calculations. Click on View/Expectation-Predic-
tion Table. EViews opens a dialog prompting you to specify a prediction cutoff value, p,
lying between zero and one. Each observation will be classified as having a predicted proba-
bility that lies above or below this cutoff.

After you enter the cutoff value and click on OK, EViews will display four (bordered) 2 x 2
tables in the equation window. Each table corresponds to a contingency table of the pre-
dicted response classified against the observed dependent variable. The top two tables and
associated statistics depict the classification results based upon the specified cutoff value:
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Expectation-Prediction Evaluation for Binary
Specification

Equation: EQ_PROBIT

Date: 03/09/15 Time: 16:15

Success cutoff: C = 0.5

Estimated Equation Constant Probability
Dep=0 Dep=1 Total Dep=0 Dep=1 Total

P(Dep=1)<=C 18 3 21 21 11 32
P(Dep=1)>C 3 8 11 0 0 0
Total 21 11 32 21 11 32
Correct 18 8 26 21 0 21

% Correct 85.71 72.73 81.25 100.00 0.00 65.63

% Incorrect 14.29 27.27 18.75 0.00 100.00 34.38
Total Gain* -14.29 72.73 15.63

Percent

Gain** NA 72.73 45.45

In the left-hand table, we classify observations as having predicted probabilities

p, = 1 — F(—z;/B) that are above or below the specified cutoff value (here set to the
default of 0.5). In the upper right-hand table, we classify observations using p, the sample
proportion of ¥y = 1 observations. This probability, which is constant across individuals, is
the value computed from estimating a model that includes only the intercept term, C.

“Correct” classifications are obtained when the predicted probability is less than or equal to
the cutoff and the observed y = 0, or when the predicted probability is greater than the
cutoff and the observed y = 1. In the example above, 18 of the Dep =0 observations and 8
of the Dep =1 observations are correctly classified by the estimated model.

It is worth noting that in the statistics literature, what we term the expectation-prediction
table is sometimes referred to as the classification table. The fraction of y = 1 observations
that are correctly predicted is termed the sensitivity, while the fraction of y = 0 observa-
tions that are correctly predicted is known as specificity. In EViews, these two values,
expressed in percentage terms, are labeled “% Correct”. Overall, the estimated model cor-
rectly predicts 81.25% of the observations (85.71% of the Dep=0 and 72.73% of the Dep =1
observations).

The gain in the number of correct predictions obtained in moving from the right table to the
left table provides a measure of the predictive ability of your model. The gain measures are
reported in both absolute percentage increases (Total Gain), and as a percentage of the
incorrect classifications in the constant probability model (Percent Gain). In the example
above, the restricted model predicts that all 21 individuals will have Dep = 0. This prediction
is correct for the 21 y = (0 observations, but is incorrect for the 11 y = 1 observations.

The estimated model improves on the Dep =1 predictions by 72.73 percentage points, but
does more poorly on the Dep =0 predictions (-14.29 percentage points). Overall, the esti-



342—Chapter 29. Discrete and Limited Dependent Variable Models

mated equation is 15.62 percentage points better at predicting responses than the constant
probability model. This change represents a 45.45 percent improvement over the 65.62 per-
cent correct prediction of the default model.

The bottom portion of the equation window contains analogous prediction results based
upon expected value calculations:

Estimated Equation Constant Probability
Dep=0  Dep=1 Total Dep=0 Dep=1 Total

E(# of Dep=0) 16.89 4.14 21.03 13.78 7.22 21.00

E(# of Dep=1) 411 6.86 10.97 722 3.78 11.00

Total 21.00 11.00 32.00 21.00 11.00 32.00

Correct 16.89 6.86 2374 13.78 3.78 17.56

% Correct 8042 62.32 74.20 65.63 34.38 54.88

% Incorrect 19.58 37.68 25.80 34.38 65.63 4512
Total Gain* 14.80 27.95 19.32
Percent Gain™ 43.05 42.59 42.82

In the left-hand table, we compute the expected number of ¥y = 0 and y = 1 observa-
tions in the sample. For example, E(# of Dep = 0) is computed as:

> Pr(y; = 0|z, 8) = Y F(-z/B), (29.13)

where the cumulative distribution function F' is for the normal, logistic, or extreme value
distribution.

In the lower right-hand table, we compute the expected numberof y = 0 and y = 1
observations for a model estimated with only a constant. For this restricted model, E(# of
Dep =0) is computed as n(1 — p), where p is the sample proportion of y = 1 observa-
tions. EViews also reports summary measures of the total gain and the percent (of the incor-
rect expectation) gain.

Among the 21 individuals with y = 0, the expected number of y = 0 observations in the
estimated model is 16.89. Among the 11 observations with y = 1, the expected number of
y = 1 observations is 6.86. These numbers represent roughly a 19.32 percentage point
(42.82 percent) improvement over the constant probability model.

Goodness-of-Fit Tests

This view allows you to perform Pearson x2 -type tests of goodness-of-fit. EViews carries out
two goodness-of-fit tests: Hosmer-Lemeshow (1989) and Andrews (1988a, 1988b). The idea
underlying these tests is to compare the fitted expected values to the actual values by group.
If these differences are “large”, we reject the model as providing an insufficient fit to the
data.



Binary Dependent Variable Models—343

Details on the two tests are described in the “Tech- Goodness-of-Fit Test
nical Notes” on page 387. Briefly, the tests differ
in how the observations are grouped and in the
asymptotic distribution of the test statistic. The
Hosmer-Lemeshow test groups observations on
the basis of the predicted probability that y = 1.
The Andrews test is a more general test that Group observations by

groups observations on the basis of any series or elecas 10
series EXPFESSiOH Randomize ties to balance cell sizes

Form cells based upon
(®) Predicted risk (Hosmer-Lemeshow test)

() Series or series expression:

() Distinct values

To carry out the test, select View/Goodness-of-Fit Maximum # of cells: | 100
Test...
Gonce

You must first decide on the grouping variable.

You can select Hosmer-Lemeshow (predicted prob-

ability) grouping by clicking on the corresponding radio button, or you can select series
grouping, and provide a series to be used in forming the groups.

Next, you need to specify the grouping rule. EViews allows you to group on the basis of
either distinct values or quantiles of the grouping variable.

If your grouping variable takes relatively few distinct values, you should choose the Distinct
values grouping. EViews will form a separate group for each distinct value of the grouping

variable. For example, if your grouping variable is TUCE, EViews will create a group for each
distinct TUCE value and compare the expected and actual numbers of ¥ = 1 observations
in each group. By default, EViews limits you to 100 distinct values. If the distinct values in

your grouping series exceeds this value, EViews will return an error message. If you wish to
evaluate the test for more than 100 values, you must explicitly increase the maximum num-
ber of distinct values.

If your grouping variable takes on a large number of distinct values, you should select
Quantiles, and enter the number of desired bins in the edit field. If you select this method,
EViews will group your observations into the number of specified bins, on the basis of the
ordered values of the grouping series. For example, if you choose to group by TUCE, select
Quantiles, and enter 10, EViews will form groups on the basis of TUCE deciles.

If you choose to group by quantiles and there are ties in the grouping variable, EViews may
not be able to form the exact number of groups you specify unless tied values are assigned
to different groups. Furthermore, the number of observations in each group may be very
unbalanced. Selecting the randomize ties option randomly assigns ties to adjacent groups in
order to balance the number of observations in each group.
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Since the properties of the test statistics require that the number of observations in each
group is “large”, some care needs to be taken in selecting a rule so that you do not end up
with a large number of cells, each containing small numbers of observations.

By default, EViews will perform the test using Hosmer-Lemeshow grouping. The default
grouping method is to form deciles. The test result using the default specification is given
by:

Goodness-of-Fit Evaluation for Binary Specification
Andrews and Hosmer-Lemeshow Tests

Equation: EQ_PROBIT

Date: 03/09/15 Time: 16:16

Grouping based upon predicted risk (randomize ties)

Quantile of Risk Dep=0 Dep=1 Total H-L

Low High Actual Expect  Actual Expect Obs Value

1 0.0161 0.0185 3 2.94722 0 0.05278 3 0.05372

2 0.0186 0.0272 3 2.93223 0 0.06777 3 0.06934

3 0.0309 0.0457 3 2.87888 0 0.12112 3 0.12621

4 0.0531 0.1088 3 2.77618 0 0.22382 3 0.24186

5 0.1235 0.1952 2 3.29779 2 0.70221 4 290924

6 0.2732 0.3287 3 2.07481 0 0.92519 3 1.33775

7 0.3563 0.5400 2 1.61497 1 1.38503 3 0.19883

8 0.5546 0.6424 1 1.20962 2 1.79038 3 0.06087

9 0.6572 0.8342 0 0.84550 3 2.15450 3 1.17730

10 0.8400 0.9522 1 0.45575 3 3.54425 4 0.73351

Total 21 21.0330 11 10.9670 32 6.90863
H-L Statistic 6.9086 Prob. Chi-Sq(8) 0.5465
Andrews Statistic 20.6045 Prob. Chi-Sq(10) 0.0240

The columns labeled “Quantiles of Risk” depict the high and low value of the predicted
probability for each decile. Also depicted are the actual and expected number of observa-
tions in each group, as well as the contribution of each group to the overall Hosmer-Leme-
show (H-L) statistic—large values indicate large differences between the actual and
predicted values for that decile.

The x2 statistics are reported at the bottom of the table. Since grouping on the basis of the
fitted values falls within the structure of an Andrews test, we report results for both the H-L
and the Andrews test statistic. The p-value for the HL test is large while the value for the
Andrews test statistic is small, providing mixed evidence of problems. Furthermore, the rela-
tively small sample sizes suggest that caution is in order in interpreting the results.
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Procedures for Binary Equations

In addition to the usual procedures for equations, EViews allows you to forecast the depen-
dent variable and linear index, or to compute a variety of residuals associated with the
binary model.

Forecast

EViews allows you to compute either the fitted probability, p, = 1 - F(-z, B), or the fit-
ted values of the index z;3 . From the equation toolbar select Proc/Forecast (Fitted Proba-
bility/Index)..., and then click on the desired entry.

As with other estimators, you can select a forecast sample, and display a graph of the fore-
cast. If your explanatory variables, z,, include lagged values of the binary dependent vari-
able y,, forecasting with the Dynamic option instructs EViews to use the fitted values
p,_, > to derive the forecasts, in contrast with the Static option, which uses the actual

(lagged) y,_, .

Neither forecast evaluations nor automatic calculation of standard errors of the forecast are
currently available for this estimation method. The latter can be computed using the vari-
ance matrix of the coefficients obtained by displaying the covariance matrix view using
View/Covariance Matrix or using the @covariance member function.

You can use the fitted index in a variety of ways, for example, to compute the marginal
effects of the explanatory variables. Simply forecast the fitted index and save the results in a
series, say XB. Then the auto-series @dnorm (-xb), @dlogistic (-xb), or @dextreme (-
xb) may be multiplied by the coefficients of interest to provide an estimate of the deriva-
tives of the expected value of y, with respect to the j-th variable in z,:
OE(y,|2, B)
ox.:

vy

= f(_wi'ﬁ)ﬁj- (29.14)

Make Residual Series

Proc/Make Residual Series gives you the option of generating one of the following three
types of residuals:

Ordinary € = Y~ D,
Standardized Y;— D,
12 1
e Tiaaa—— |
’ Pl(l - pz)
Generalized (y; = p)f(=z/B)
€hi = T
gr pi(1-p)
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where p, = 1 - F(-z,;$8) is the fitted probability, and the distribution and density func-
tions F' and f, depend on the specified distribution.

The ordinary residuals have been described above. The standardized residuals are simply
the ordinary residuals divided by an estimate of the theoretical standard deviation. The gen-
eralized residuals are derived from the first order conditions that define the ML estimates.
The first order conditions may be regarded as an orthogonality condition between the gener-
alized residuals and the regressors x.

N

oUB) _ <« W= (1= Fa/BNf-z'8)
W - Z F(-z;/B8)(1 - F(-z,B)) t ;= z €, T

i=1 i=1

(29.15)

This property is analogous to the orthogonality condition between the (ordinary) residuals
and the regressors in linear regression models.

The usefulness of the generalized residuals derives from the fact that you can easily obtain
the score vectors by multiplying the generalized residuals by each of the regressors in z.
These scores can be used in a variety of LM specification tests (see Chesher, Lancaster and
Irish (1985), and Gourieroux, Monfort, Renault, and Trognon (1987)). We provide an exam-
ple below.

Demonstrations

You can easily use the results of a binary model in additional analysis. Here, we provide
demonstrations of using EViews to plot a probability response curve and to test for het-
eroskedasticity in the residuals.

Plotting Probability Response Curves

You can use the estimated coefficients from a binary model to examine how the predicted
probabilities vary with an independent variable. To do so, we will use the EViews built-in
modeling features. (The following discussion skims over many of the useful features of
EViews models. Those wishing greater detail should consult Chapter 42. “Models,” begin-
ning on page 781.)

For the probit example above, suppose we are interested in the effect of teaching method
(PSI) on educational improvement (GRADE). We wish to plot the fitted probabilities of
GRADE improvement as a function of GPA for the two values of PSI, fixing the values of
other variables at their sample means.
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First, we create a model out )
M Model: UNTITLED Workfile: BINARY:undate..[ = | & |[==a]

Of the eStimatEd equation by [\-‘iewlProclObjectl [PrintINameIFreeze] [CompilelSoI\reIScenariosl [Equations[
selecting Proc/Make Model R Baseline

from the equation toolbar. = eq_probit Eqt: grade = F(gpa, psi, tuce )
EViews will create an untitled
model object linked to the
estimated equation and will
open the model window.

What we will do is to use the
model to solve for values of
the probabilities for various values of GPA, with TUCE equal to the mean value, and PSI
equal to 0 in one case, and PSI equal to 1 in a second case. We will define scenarios in the
model so that calculations are performed using the desired values. Click on the Scenarios
button on the model toolbar to display the Scenario Specification dialog and click on Sce-
nario 1 to define the settings for that scenario.

Scenario Specification

Select Scenario | Overrides | Excudes | Aliasing

Select Active Scenario

Actuals
Baseline
Scenario 1

Create New Scenario
Copy Scenario
Apply Selected to Baseline
Delete Selected

Rename Selected

|:| Write protect active scenario

The Scenario Specification dialog allows us to define a set of assumptions under which we
will solve the model. Click on the Overrides tab and enter “GPA PSI TUCE”. Defining these
overrides tells EViews to use the values in the series GPA_1, PSI_1, and TUCE_1 instead of
the original GPA, PSI, and TUCE when solving for GRADE under Scenario 1.

Having defined the first scenario, we must create the series GPA_1, PSI_1 and TUCE_1 in
our workfile. We wish to use these series to evaluate the GRADE probabilities for various
values of GPA holding TUCE equal to its mean value and PSI equal to 0.
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First, we will use the command line to fill GPA_1 with a grid of values ranging from 2 to 4.
The easiest way to do this is to use the @trend function:

series gpa 1 = 2+(4-2)*@trend/ (Gobs (@trend)-1)

Recall that @trend creates a series that begins at 0 in the first observation of the sample,
and increases by 1 for each subsequent observation, up through cobs-1.

Next we create series TUCE_1 containing the mean values of TUCE and a series PSI_1 which
we set to zero:

series tuce 1 = @mean (tuce)

series psi 1 =0

Having prepared our data for the first scenario, we will now use the model object to define
an alternate scenario where PSI= 1. Return to the Select Scenario tab, select Copy Scenario,
then select Scenario 1 as the Source, and New Scenario as the Destination. Copying Sce-
nario 1 creates a new scenario, Scenario 2, that instructs EViews to use the values in the
series GPA_2, PSI_2, and TUCE_2 when solving for GRADE. These values are initialized
from the corresponding Scenario 1 series defined previously. We then set PSI_2 equal to 1 by
issuing the command

series psi 2 =1

We are now ready to solve the model under the two scenarios. Click on the Solve button and
set the Active solution scenario to Scenario 1 and the Alternate solution scenario to Sce-
nario 2. Be sure to click on the checkbox Solve for Alternate along with Active so that
EViews knows to solve for both. You can safely ignore the remaining solution settings and
simply click on OK.

EViews will report that your model has solved successfully and will place the solutions in
the series GRADE_1 and GRADE_2, respectively. To display the results, select Object/New
Object.../Group, and enter:

gpa_ 1 grade 1 grade 2
EViews will open an untitled group window containing these three series. Select View/
Graph/XY line to display a graph of the fitted GRADE probabilities plotted against GPA for

those with PSI=0 (GRADE_1) and with PSI=1 (GRADE_2), both computed with TUCE
evaluated at means.
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Il Graph: GRAPH_MARGINAL EFFECT Workfile: BINAR...[ = || & |[=3]
[ViewlProclObject] [PrintINameIFreeze] [Options] [AddTex‘tILine)’ShadelRemova] [Templi

.24 With P31

Probabilty of Grade Improvement

Without PSI

Student's GPA

We have annotated the graph slightly so that you can better judge the effect of the new
teaching methods (PSI) on the probability of grade improvement for various values of the
student’s GPA.

Testing for Heteroskedasticity

As an example of specification tests for binary dependent variable models, we carry out the
LM test for heteroskedasticity using the artificial regression method described by Davidson
and MacKinnon (1993, section 15.4). We test the null hypothesis of homoskedasticity
against the alternative of heteroskedasticity of the form:

var(u;) = exp(2z/'y), (29.16)
where v is an unknown parameter. In this example, we take PSI as the only variable in z.
The test statistic is the explained sum of squares from the regression:
(y;i—p) -/ -z B) (=}
= fCz/B) "b +f( /BX Zﬁ)z.’b2+vi, (29.17)

/\/pi(l_pi) - th(l_pt)wl ' A,pt(l_pt) '

which is asymptotically distributed as a x2 with degrees of freedom equal to the number of
variables in z (in this case 1).

To carry out the test, we first retrieve the fitted probabilities p, and fitted index z;’ B . Click
on the Forecast button and first save the fitted probabilities as P_HAT and then the index as
XB (you will have to click Forecast twice to save the two series).
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Next, the dependent variable in the test regression may be obtained as the standardized
residual. Select Proc/Make Residual Series... and select Standardized Residual. We will
save the series as BRMR_Y.

Lastly, we will use the built-in EViews functions for evaluating the normal density and
cumulative distribution function to create a group object containing the independent vari-
ables:

series fac=@dnorm(-xb)/@sqrt (p_hat* (l-p hat))

group brmr x fac (gpa*fac) (tuce*fac) (psi*fac)

Then run the artificial regression by clicking on Quick/Estimate Equation..., selecting
Least Squares, and entering:

brmr y brmr x (psi*(-xb)*fac)

You can obtain the fitted values by clicking on the Forecast button in the equation toolbar of
this artificial regression. The LM test statistic is the sum of squares of these fitted values. If
the fitted values from the artificial regression are saved in BRMR_YF, the test statistic can be
saved as a scalar named LM_TEST:

scalar 1lm test=@sumsqg(brmr yf)

which contains the value 1.5408. You can compare the value of this test statistic with the
critical values from the chi-square table with one degree of freedom. To save the p-value as
a scalar, enter the command:

scalar p val=1l-Qcchisqg(lm test,1)

To examine the value of LM_TEST or P_VAL, double click on the name in the workfile win-
dow; the value will be displayed in the status line at the bottom of the EViews window. The
p-value in this example is roughly 0.21, so we have little evidence against the null hypothe-
sis of homoskedasticity.

Ordered Dependent Variable Models

EViews estimates the ordered-response model of Aitchison and Silvey (1957) under a variety
of assumptions about the latent error distribution. In ordered dependent variable models,
the observed y denotes outcomes representing ordered or ranked categories. For example,
we may observe individuals who choose between one of four educational outcomes: less
than high school, high school, college, advanced degree. Or we may observe individuals
who are employed, partially retired, or fully retired.

As in the binary dependent variable model, we can model the observed response by consid-
ering a latent variable y;* that depends linearly on the explanatory variables z;:

y* = /B +¢ (29.18)
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where is €; are independent and identically distributed random variables. The observed y;
is determined from y,;* using the rule:

0 ifyr<y,
1 if vy <y*<wv,y

Y, (29.19)

Il
N

if vy <y* <7,

M if vy <y®

It is worth noting that the actual values chosen to represent the categories in y are com-
pletely arbitrary. All the ordered specification requires is for ordering to be preserved so that
y;* <y;* implies that y, <y;.

It follows that the probabilities of observing each value of y are given by

Pr(y; = 0|z, B,v) = F(v, - z/B)
Pr(y; = 1|z, B, v) = Flyy - #/8)-F(v, — 2/B)
Pr(y; = 2|z, B, v) = F(y3 - 2/8)-F(vy - 2/B) (29.20)

Pr(y, = M|z, B,7v) = 1-F(yy - z/B)
where F' is the cumulative distribution function of €.

The threshold values vy are estimated along with the 3 coefficients by maximizing the log
likelihood function:
N M
B.7) =3 3 log(Pr(y; = jlz; B,7)) * 1(y; = j) (29.21)
i=1j=0
where 1(.) is an indicator function which takes the value 1 if the argument is true, and 0 if
the argument is false. By default, EViews uses analytic second derivative methods to obtain

parameter and variance matrix of the estimated coefficient estimates (see “Quadratic hill-
climbing (Goldfeld-Quandt)” on page 1096).

Estimating Ordered Models in EViews

Suppose that the dependent variable DANGER is an index ordered from 1 (least dangerous
animal) to 5 (most dangerous animal). We wish to model this ordered dependent variable as
a function of the explanatory variables, BODY, BRAIN and SLEEP. Note that the values that
we have assigned to the dependent variable are not relevant, only the ordering implied by
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those values. EViews will estimate an identical model if the dependent variable is recorded
to take the values 1, 2, 3, 4, 5 or 10, 234, 3243, 54321, 123456.

(The data, which are from Allison, Truett, and D.V. Cicchetti (1976).“Sleep in Mammals:
Ecological and Constitutional Correlates,” Science, 194, 732-734, are available in the
“Order.WF1” dataset. A more complete version of the data may be obtained from StatLib:
http://lib.stat.cmu.edu/datasets/sleep).

To estimate this model, select Quick/Estimate Equation... from the main menu. From the
Equation Estimation dialog, select estimation method ORDERED. The standard estimation
dialog will change to match this specification.

There are three parts to specifying an ordered variable model: the equation specification, the
error specification, and the sample specification. First, in the Equation specification field,
you should type the name of the ordered dependent variable followed by the list of your
regressors, or you may enter an explicit expression for the index. In our example, you will
enter:

danger body brain sleep
Also keep in mind that:

* A separate constant term is not separately identified from the limit points vy, so

EViews will ignore any constant term in your specification. Thus, the model:
danger ¢ body brain sleep

is equivalent to the specification above.

¢ EViews requires the dependent variable to be integer valued, otherwise you will see
an error message, and estimation will stop. This is not, however, a serious restriction,

since you can easily convert the series into an integer using @round, @floor Or
@ceil in an auto-series expression.

Next, select between the ordered logit, ordered probit, and the ordered extreme value mod-
els by choosing one of the three distributions for the latent error term.

Lastly, specify the estimation sample.

You may click on the Options tab to set the iteration limit, convergence criterion, optimiza-
tion algorithm, and most importantly, method for computing coefficient covariances. See
“Technical Notes” on page 387 for a discussion of these methods.

Now click on OK, EViews will estimate the parameters of the model using iterative proce-
dures.

Once the estimation procedure converges, EViews will display the estimation results in the
equation window. The first part of the table contains the usual header information, includ-
ing the assumed error distribution, estimation sample, iteration and convergence informa-
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tion, number of distinct values for y, and the method of computing the coefficient
covariance matrix.

Dependent Variable: DANGER

Method: ML - Ordered Probit (Quadratic hill climbing)
Date: 08/12/09 Time: 00:13

Sample (adjusted): 1 61

Included observations: 58 after adjustments

Number of ordered indicator values: 5

Convergence achieved after 7 terations

Covariance matrix computed using second derivatives

Varable Coefficient Std. Error  z-Statistic Prob.

BODY 0.000247 0.000421 0.587475 0.5569
BRAIN -0.000397 0.000418  0.950366 0.3419
SLEEP -0.199508 0.041641  4.791138 0.0000

Below the header information are the coefficient estimates and asymptotic standard errors,
and the corresponding z-statistics and significance levels. The estimated coefficients of the
ordered model must be interpreted with care (see Greene (2008, section 23.10) or Johnston
and DiNardo (1997, section 13.9)).

The sign of 8; shows the direction of the change in the probability of falling in the endpoint
rankings (y = 0 or y = 1) when z;; changes. Pr(y = 0) changes in the opposite direc-
tion of the sign of 3 j and Pr(y = M) changes in the same direction as the sign of ;. The
effects on the probability of falling in any of the middle rankings are given by:

obPr(y=k) _ OF(vj1— 'B) _OF(y - z;'B)
08; 0B, aB;

for k = 1,2, ..., M—1.Itis impossible to determine the signs of these terms, a priori.

(29.22)

The lower part of the estimation output, labeled “Limit Points”, presents the estimates of the
v coefficients and the associated standard errors and probability values:

Limit Points
LIMIT_2:C(4) -2.798449 0514784 5436166 0.0000
LIMIT_3:C(5) -2.038945 0.492198  4.142527 0.0000
LIMIT_4:C(6) -1.434567 0473679  -3.028563 0.0025
LIMIT_5:C(7) -0.601211 0.449109  -1.338675 0.1807
Pseudo Rsquared 0.147588 Akaike info criterion 2.890028
Schwarz criterion 3.138702 Loglikelihood -76.81081
Hannan-Quinn criter. 2.986891 Restr. log likelihood -90.10996
LR statistic 26.59830 Avg.log likelihood -1.324324

Prob(LR statistic) 0.000007
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Note that the coefficients are labeled both with the identity of the limit point, and the coeffi-
cient number. Just below the limit points are the summary statistics for the equation.

Estimation Problems

Most of the previous discussion of estimation problems for binary models (“Estimation
Problems” on page 338) also holds for ordered models. In general, these models are well-
behaved and will require little intervention.

There are cases, however, where problems will arise. First, EViews currently has a limit of
750 total coefficients in an ordered dependent variable model. Thus, if you have 25 right-
hand side variables, and a dependent variable with 726 distinct values, you will be unable to
estimate your model using EViews.

Second, you may run into identification problems and estimation difficulties if you have
some groups where there are very few observations. If necessary, you may choose to com-
bine adjacent groups and re-estimate the model.

EViews may stop estimation with the message “Parameter estimates for limit points are non-
ascending”, most likely on the first iteration. This error indicates that parameter values for
the limit points were invalid, and that EViews was unable to adjust these values to make
them valid. Make certain that if you are using user defined parameters, the limit points are
strictly increasing. Better yet, we recommend that you employ the EViews starting values
since they are based on a consistent first-stage estimation procedure, and should therefore
be quite well-behaved.

Views of Ordered Equations

EViews provides you with several views of an ordered equation. As with other equations,
you can examine the specification and estimated covariance matrix as well as perform Wald
and likelihood ratio tests on coefficients of the model. In addition, there are several views
that are specialized for the ordered model:

¢ Dependent Variable Frequencies — computes a one-way frequency table for the
ordered dependent variable for the observations in the estimation sample. EViews
presents both the frequency table and the cumulative frequency table in levels and
percentages.

¢ Prediction Evaluation— classifies observations on the basis of the predicted
response. EViews performs the classification on the basis of the category with the
maximum predicted probability.

The first portion of the output shows results for the estimated equation and for the
constant probability (no regressor) specifications.
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Prediction Evaluation for Ordered Specification
Equation: EQ_ORDER
Date: 08/12/09 Time: 00:20

Estimated Equation

Dep. Value Obs. Correct Incorrect % Correct % Incorrect
1 18 10 8 55.556 44 444

2 14 6 8 42.857 57.143

3 10 0 10 0.000 100.000

4 9 3 6 33.333 66.667

5 7 6 1 85.714 14.286

Total 58 25 33 43.103 56.897

Constant Probability Spec.

Dep. Value Obs. Correct Incorrect % Correct % Incorrect
1 18 18 0 100.000 0.000

2 14 0 14 0.000 100.000

3 10 0 10 0.000 100.000

4 9 0 9 0.000 100.000

5 7 0 7 0.000 100.000

Total 58 18 40 31.034 68.966

Each row represents a distinct value for the dependent variable. The “Obs” column
indicates the number of observations with that value. Of those, the number of “Cor-
rect” observations are those for which the predicted probability of the response is the
highest. Thus, 10 of the 18 individuals with a DANGER value of 1 were correctly spec-
ified. Overall, 43 % of the observations were correctly specified for the fitted model
versus 31% for the constant probability model.

The bottom portion of the output shows additional statistics measuring this improve-
ment

Gain over Constant Prob. Spec.

Equation  Constant

Dep. Value Obs. % Incorrect % Incorrect Total Gain* Pct. Gain**
1 18 44 444 0.000 -44.444 NA

2 14 57.143 100.000 42.857 42.857

3 10 100.000 100.000 0.000 0.000

4 9 66.667 100.000 33.333 33.333

5 7 14.286 100.000 85.714 85.714

Total 58 56.897 68.966 12.069 17.500

Note the improvement in the prediction for DANGER values 2, 4, and especially 5
comes from refinement of the constant only prediction of DANGER = 1.
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Procedures for Ordered Equations

Make Ordered Limit Vector/Matrix

The full set of coefficients and the covariance matrix may be obtained from the estimated
equation in the usual fashion (see “Working With Equation Statistics” on page 16). In some
circumstances, however, you may wish to perform inference using only the estimates of the
v coefficients and the associated covariances.

The Make Ordered Limit Vector and Make Ordered Limit Covariance Matrix procedures
provide a shortcut method of obtaining the estimates associated with the v coefficients. The
first procedure creates a vector (using the next unused name of the form LIMITSO01, LIM-
ITS02, etc.) containing the estimated vy coefficients. The latter procedure creates a symmet-
ric matrix containing the estimated covariance matrix of the 4 . The matrix will be given an
unused name of the form VLIMITS01, VLIMITSO02, etc., where the “V” is used to indicate
that these are the variances of the estimated limit points.

Forecasting using Models

You cannot forecast directly from an estimated ordered model since the dependent variable
represents categorical or rank data. EViews does, however, allow you to forecast the proba-
bility associated with each category. To forecast these probabilities, you must first create a
model. Choose Proc/Make Model and EViews will open an untitled model window contain-
ing a system of equations, with a separate equation for the probability of each ordered
response value.

To forecast from this model, simply click the Solve button in the model window toolbar. If
you select Scenario 1 as your solution scenario, the default settings will save your results in
a set of named series with “_1” appended to the end of the each underlying name. See
Chapter 42. “Models,” beginning on page 781 for additional detail on modifying and solving
models.

For this example, the series _DANGER_1 will contain the fitted linear index ;'8 . The fitted
probability of falling in category 1 will be stored as a series named DANGER_1_1, the fitted
probability of falling in category 2 will be stored as a series named DANGER_2_1, and so on.
Note that for each observation, the fitted probability of falling in each of the categories sums
up to one.

Make Residual Series

The generalized residuals of the ordered model are the derivatives of the log likelihood with
respect to a hypothetical unit- = variable. These residuals are defined to be uncorrelated
with the explanatory variables of the model (see Chesher and Irish (1987), and Gourieroux,
Monfort, Renault and Trognon (1987) for details), and thus may be used in a variety of spec-
ification tests.
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To create a series containing the generalized residuals, select View/Make Residual
Series..., enter a name or accept the default name, and click OK. The generalized residuals
for an ordered model are given by:

f(’}/yHl - IZ’B) - f(’y'y[ - IZ,B)

e, = , — (29.23)
TRy, - a/B) - Fly, - a/B)

where vy, = —0,and vy, ; = .

Censored Regression Models

In some settings, the dependent variable is only partially observed. For example, in survey
data, data on incomes above a specified level are often top-coded to protect confidentiality.
Similarly desired consumption on durable goods may be censored at a small positive or zero
value. EViews provides tools to perform maximum likelihood estimation of these models
and to use the results for further analysis.

Background
Consider the following latent variable regression model:
y* = z/B + o, (29.24)

where o is a scale parameter. The scale parameter ¢ is identified in censored and truncated
regression models, and will be estimated along with the (3.

In the canonical censored regression model, known as the tobit (when there are normally dis-
tributed errors), the observed data y are given by:

if y*<
Y = 0 y*=0 (29.25)

g iy >0

In other words, all negative values of y;* are coded as 0. We say that these data are left cen-
sored at 0. Note that this situation differs from a truncated regression model where negative
values of y* are dropped from the sample. More generally, EViews allows for both left and
right censoring at arbitrary limit points so that:

if y*<g¢,
Vi =1 y* if ¢;<y*<ce (29.26)

_ - "
¢ if ¢, <y,
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where ¢;, ¢, are fixed numbers representing the censoring points. If there is no left censor-
ing, then we can set ¢; = —oo. If there is no right censoring, then ¢, = . The canonical
tobit model is a special case with ¢, = 0 and ¢; = oo.

The parameters 3, o are estimated by maximizing the log likelihood function:

N
(B,0) = 3 logf((y;—z/B)/0) 1(c;<y;<¢) (29.27)
TN
+ 3 log(F((¢;—z/8)/0)) - 1(y; = ¢,)

i=1
N

+ Y log(1 - F((2,- 2/8)/0)) - 1(y, = &)
i=1

where f, F' are the density and cumulative distribution functions of €, respectively.

Estimating Censored Models in EViews
Suppose that we wish to estimate the model:
HRS, = B, + 8,AGE,; + 8,EDU, + 8,KID1, +¢,, (29.28)

where hours worked (HRS) is left censored at zero. To estimate this model, select Quick/
Estimate Equation... from the main menu. Then from the Equation Estimation dialog,
select the CENSORED - Censored or Truncated Data (including Tobit) estimation method.
Alternately, enter the keyword censored in the command line and press ENTER. The dialog
will change to provide a number of different input options.

Specifying the Regression Equation

In the Equation specification field, enter the name of the censored dependent variable fol-
lowed by a list of regressors or an explicit expression for the equation. In our example, you
will enter:

hrs c age edu kidl
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Equation Estimation

Spedfication | Options

Equation spedification Distribution
Dependent variable followed by list of regressors, OR _
a linear explict equation like ¥=c(1)+c(2)*X.

hrs c age educ kid1

Dependent variable censoring points

Enter a number, a series, a series Left & right points entered as:
expression, or blank for no censoring Actual censaring value
Left: |0 Zerofone censoring indicator
Right: [ Truncated sample

Estimation settings

Method: | CENSORED - Censored or Truncated Data (induding Tobit) W

sample: | @all

Next, select one of the three distributions for the error term. EViews allows you three possi-
ble choices for the distribution of e :

Standard normal E(e) 1

0, var(e)

Logistic E(e) = 0, var(e) = 7°/3

Extreme value (Type I) E(e) = -0.5772 (Euler’s constant),

var(e) = /6

Bear in mind that the extreme value distribution is asymmetric.

Specifying the Censoring Points

You must also provide information about the censoring points of the dependent variable.
There are two cases to consider: (1) where the limit points are known for all individuals,
and (2) where the censoring is by indicator and the limit points are known only for individ-
uals with censored observations.

Limit Points Known

You should enter expressions for the left and right censoring points in the edit fields as
required. Note that if you leave an edit field blank, EViews will assume that there is no cen-
soring of observations of that type.
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For example, in the canonical tobit model the data are censored on the left at zero, and are
uncensored on the right. This case may be specified as:
Left edit field: 0

Right edit field: [blank]

Similarly, top-coded censored data may be specified as,
Left edit field: [blank]
Right edit field: 20000

while the more general case of left and right censoring is given by:
Left edit field: 10000
Right edit field: 20000

EViews also allows more general specifications where the censoring points are known to dif-
fer across observations. Simply enter the name of the series or auto-series containing the
censoring points in the appropriate edit field. For example:

Left edit field: lowinc

Right edit field: vcens1+10

specifies a model with LOWINC censoring on the left-hand side, and right censoring at the
value of VCENS1 + 10.

Limit Points Not Known

In some cases, the hypothetical censoring point is unknown for some individuals (¢; and ¢,
are not observed for all observations). This situation often occurs with data where censoring
is indicated with a zero-one dummy variable, but no additional information is provided
about potential censoring points.

EViews provides you an alternative method of describing data censoring that matches this
format. Simply select the Field is zero/one indicator of censoring option in the estimation
dialog, and enter the series expression for the censoring indicator(s) in the appropriate edit
field(s). Observations with a censoring indicator of one are assumed to be censored while
those with a value of zero are assumed to be actual responses.

For example, suppose that we have observations on the length of time that an individual has

been unemployed (U), but that some of these observations represent ongoing unemploy-

ment at the time the sample is taken. These latter observations may be treated as right cen-

sored at the reported value. If the variable RCENS is a dummy variable representing

censoring, you can click on the Field is zero/one indicator of censoring setting and enter:
Left edit field: [blank]

Right edit field: rcens
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in the edit fields. If the data are censored on both the left and the right, use separate binary
indicators for each form of censoring:
Left edit field: 1cens

Right edit field: rcens
where LCENS is also a binary indicator.

Once you have specified the model, click OK. EViews will estimate the parameters of the
model using appropriate iterative techniques.

A Comparison of Censoring Methods

An alternative to specifying index censoring is to enter a very large positive or negative
value for the censoring limit for non-censored observations. For example, you could enter
“1e-100” and “1e100” as the censoring limits for an observation on a completed unemploy-
ment spell. In fact, any limit point that is “outside” the observed data will suffice.

While this latter approach will yield the same likelihood function and therefore the same
parameter values and coefficient covariance matrix, there is a drawback to the artificial limit
approach. The presence of a censoring value implies that it is possible to evaluate the condi-
tional mean of the observed dependent variable, as well as the ordinary and standardized
residuals. All of the calculations that use residuals will, however, be based upon the arbi-
trary artificial data and will be invalid.

If you specify your censoring by index, you are informing EViews that you do not have infor-
mation about the censoring for those observations that are not censored. Similarly, if an
observation is left censored, you may not have information about the right censoring limit.
In these circumstances, you should specify your censoring by index so that EViews will pre-
vent you from computing the conditional mean of the dependent variable and the associated
residuals.

Interpreting the Output

If your model converges, EViews will display the estimation results in the equation window.
The first part of the table presents the usual header information, including information
about the assumed error distribution, estimation sample, estimation algorithms, and number
of iterations required for convergence.

EViews also provides information about the specification for the censoring. If the estimated
model is the canonical tobit with left-censoring at zero, EViews will label the method as a
TOBIT. For all other censoring methods, EViews will display detailed information about form
of the left and/or right censoring.

Here, we see an example of header output from a left censored model (our Fair’s (1978) tobit
model described below) where the censoring is specified by value:
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Dependent Variable: Y_PT

Method: ML - Censored Normal (TOBIT) (Newton-Raphson /
Marquardt steps)

Date: 03/09/15 Time: 16:23

Sample: 1 601

Included observations: 601

Left censoring (value) at zero

Convergence achieved after 8 iterations

Coefficient covariance computed using observed Hessian

Below the header are the usual results for the coefficients, including the asymptotic standard
erTors, 2-statistics, and significance levels. As in other limited dependent variable models,
the estimated coefficients do not have a direct interpretation as the marginal effect of the
associated regressor j for individual 7, z;;. In censored regression models, a change in z;;
has two effects: an effect on the mean of y, given that it is observed, and an effect on the
probability of y being observed (see McDonald and Moffitt, 1980).

In addition to results for the regression coefficients, EViews reports an additional coefficient
named SCALE, which is the estimated scale factor o . This scale factor may be used to esti-
mate the standard deviation of the residual, using the known variance of the assumed distri-
bution. For example, if the estimated SCALE has a value of 0.4766 for a model with extreme
value errors, the implied standard error of the error term is 0.5977 = 0.4766 7/ Jé .

Most of the other output is self-explanatory. As in the binary and ordered models above,
EViews reports summary statistics for the dependent variable and likelihood based statistics.
The regression statistics at the bottom of the table are computed in the usual fashion, using
the residuals ¢; = y;— E(y;|; 8, 0) from the observed y.

Views of Censored Equations

Most of the views that are available for a censored regression are familiar from other set-
tings. The residuals used in the calculations are defined below.

The one new view is the Categorical Regressor Stats view, which presents means and stan-
dard deviations for the dependent and independent variables for the estimation sample.
EViews provides statistics computed over the entire sample, as well as for the left censored,
right censored and non-censored individuals.

Procedures for Censored Equations

EViews provides several procedures which provide access to information derived from your
censored equation estimates.

Make Residual Series

Select Proc/Make Residual Series, and select from among the three types of residuals. The
three types of residuals for censored models are defined as:
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Ordinary e, = yi—B(y;|z, B, &) f'((y; - /B)/ )
Standardized y;— E(y;| 7, B, 0)
€si = ~
var(yl-]% B, o)
Generalized f((¢;—z/B)/d)
€y = — Iy <¢)

GF((c;- z/B)/ &)
F- 5B/ %)
6f((y,-/B)/ &)
f(e-2/8)/6)
o(1-F((¢,— x;B)/0))

“1(¢;<y;<¢)

I(y; 2 ¢)

where f, F' are the density and distribution functions, and where 1 is an indicator function
which takes the value 1 if the condition in parentheses is true, and 0 if it is false. All of the
above terms will be evaluated at the estimated 3 and o . See the discussion of forecasting
for details on the computation of E(yi| z;, B8, 0).

The generalized residuals may be used as the basis of a number of LM tests, including LM
tests of normality (see Lancaster, Chesher and Irish (1985), Chesher and Irish (1987), and
Gourioux, Monfort, Renault and Trognon (1987); Greene (2008), provides a brief discussion
and additional references).

Forecasting

EViews provides you with the option of forecasting the expected dependent variable,
E(yi‘ z;, 8, 0) , or the expected latent variable, E(y* ‘ z;, 8, o) . Select Forecast from the
equation toolbar to open the forecast dialog.

To forecast the expected latent variable, click on Index - Expected latent variable, and enter
a name for the series to hold the output. The forecasts of the expected latent variable
E(y* | x;, B, 0) may be derived from the latent model using the relationship:

v* = E(y*|e, B, 6) = o/B-dy. (29.29)
where « is the Euler-Mascheroni constant (y = 0.5772156649 ).

To forecast the expected observed dependent variable, you should select Expected depen-
dent variable, and enter a series name. These forecasts are computed using the relationship:
v, = E(yi|xi7 B,0) = ¢  Pr(y, = —Ci|xi7 B, o) (29.30)
+ E(yi*|gi< y* <5z, B,0) Pr(e;<y*< ai’Iiv B.d)
+¢ - Pr(y, = —Ci’Iia B, o)
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Note that these forecasts always satisfy ¢; < ¢, < ¢;. The probabilities associated with being
in the various classifications are computed by evaluating the cumulative distribution func-
tion of the specified distribution. For example, the probability of being at the lower limit is

given by:

Pr(y, = Qz’% B,0) = Pr(y*< Qi‘$i7 B,0) = F((¢,—z/'B)/6).

Censored Model Example

(29.31)

As an example, we replicate Fair’s (1978) tobit model that estimates the incidence of extra-
marital affairs (“Tobit_Fair. WF1). The dependent variable, number of extramarital affairs
(Y_PT), is left censored at zero and the errors are assumed to be normally distributed. The
top portion of the output was shown earlier; bottom portion of the output is presented

below:

Variable Coefficient Std. Error  z-Statistic Prob.
C 7.608487 3.905987 1.947904 00514
Z1 0.945787 1.062866 0.889847 0.3735
2 -0.192698 0.080968  -2.379921 00173
Z3 0.533190 0.146607 3.636852 0.0003
Z4 1.019182 1.279575 0.796500 04257
Z5 -1.699000 0405483  -4.190061 0.0000
Z6 0.025361 0.227667 0.111394 09113
z7 0.212983 0.321157 0.663173 05072
Z8 -2.273284 0415407  -5.472429 0.0000
Error Distribution

SCALE:C(10) 8.258432 0.554581 14.89131 0.0000
Mean dependent var 1.455907 S.D. dependent var 3.298758
S.E. of regression 3.058957 Akaike info criterion 2378473
Sum squared resid 5539472 Schwarz criterion 2451661
Log likelihood -704.7311  Hannan-Quinn criter. 2406961

Avg. log likelihood -1.172597
Left censored obs 451  Right censored obs 0
Uncensored obs 150 Total obs 601

Tests of Significance

EViews does not, by default, provide you with the usual likelihood ratio test of the overall
significance for the tobit and other censored regression models. There are several ways to
perform this test (or an asymptotically equivalent test).

First, you can use the built-in coefficient testing procedures to test the exclusion of all of the
explanatory variables. Select the redundant variables test and enter the names of all of the
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explanatory variables you wish to exclude. EViews will compute the appropriate likelihood
ratio test statistic and the p-value associated with the statistic.

To take an example, suppose we wish to test whether the variables in the Fair tobit, above,
contribute to the fit of the model. Select View/Coefficient Diagnostics/Redundant Vari-
ables - Likelihood Ratio... and enter all of the explanatory variables:

z1 z2 z3 z4 z5 z6 z7 z8

EViews will estimate the restricted model for you and compute the LR statistic and p-value.
In this case, the value of the test statistic is 80.01, which for eight degrees of freedom, yields
a p-value of less than 0.000001.

Alternatively, you could test the restriction using the Wald test by selecting View/Coeffi-
cient Diagnostics/Wald - Coefficient Restrictions..., and entering the restriction that:

c(2)=c(3)=c(4)=c(5)=c(6)=c(7)=c(8)=c(9)=0

The reported statistic is 68.14, with a p-value of less than 0.000001.

Lastly, we demonstrate the direct computation of the LR test. Suppose the Fair tobit model
estimated above is saved in the named equation EQ_TOBIT. Then you could estimate an
equation containing only a constant, say EQ_RESTR, and place the likelihood ratio statistic
in a scalar:

scalar lrstat=-2*(eq restr.@logl-eq tobit.@logl)

Next, evaluate the chi-square probability associated with this statistic:

scalar lrprob=1l-@cchisg(lrstat, 8)

with degrees of freedom given by the number of coefficient restrictions in the constant only
model. You can double click on the LRSTAT icon or the LRPROB icon in the workfile win-
dow to display the results.

A Specification Test for the Tobit

As a rough diagnostic check, Pagan and Vella (1989) suggest plotting Powell’s (1986) sym-
metrically trimmed residuals. If the error terms have a symmetric distribution centered at
zero (as assumed by the normal distribution), so should the trimmed residuals. To construct
the trimmed residuals, first save the forecasts of the index (expected latent variable): click
Forecast, choose Index-Expected latent variable, and provide a name for the fitted index,
say “XB”. The trimmed residuals are obtained by dropping observations for which ;'8 <0,
and replacing y, with 2(x,'3) for all observations where y, < 2(x;'3) . The trimmed residu-
als RES_T can be obtained by using the commands:

series res t=(y pt<=2*xb)*(y pt-xb) +(y pt>2*xb)*xb
smpl if xb<O0

series res_ t=na
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smpl @all

The histogram of the trimmed residual is depicted below.

This example illustrates the pos- oy ¢ o res T Workfile: TOBIT_FAIR:Tobit fair\ [-= || & )
Slblhty that the number Of [ViewlProcIObjectIProperties] [PrintINameIFreeze] [SamplelGeanSheetIGraphIS
observations that are lost by

trimming can be quite large; out
of the 601 observations in the il
sample, only 47 observations Dpservations 47
are left after trimming.

Mzan 0117278

Median 0.233840

Mazgimum 5.633563

. . Minimum -5.244357

The tobit model imposes the Std. Dev.  2.083A41
. .. Skawr.ass -{).'52;4\?7
restriction that the coefficients Kurosis 4003285

Jarque-Bera 2232038
Probability 0.327582

that determine the probability of
being censored are the same as
those that determine the condi-
tional mean of the uncensored
observations. To test this restric-
tion, we carry out the LR test by comparing the (restricted) tobit to the unrestricted log like-
lihood that is the sum of a probit and a truncated regression (we discuss truncated
regression in detail in the following section). Save the tobit equation in the workfile by
pressing the Name button, and enter a name, say EQ_TOBIT.

To estimate the probit, first create a dummy variable indicating uncensored observations by
the command:

series y ¢ = (y pt>0)

Then estimate a probit by replacing the dependent variable Y_PT by Y_C. A simple way to
do this is to press Object/Copy Object... from the tobit equation toolbar. From the new unti-
tled equation window that appears, press Estimate, edit the specification, replacing the
dependent variable “Y_PT” with “Y_C”, choose Method: BINARY and click OK. Save the
probit equation by pressing the Name button, say as EQ_BIN.

To estimate the truncated model, press Object/Copy Object... again from the tobit equation
toolbar again. From the new untitled equation window that appears, press Estimate, mark
the Truncated sample option, and click OK. Save the truncated regression by pressing the
Name button, say as EQ_TR.

Then the LR test statistic and its p-value can be saved as a scalar by the commands:
scalar lr test=2*(eq bin.@logl+eq tr.@logl-eqg tobit.@logl)
scalar 1lr pval=1-Q@cchisqg(lr test,eq tobit.@ncoef)
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Double click on the scalar name to display the value in the status line at the bottom of the
EViews window. For the example data set, the p-value is 0.066, which rejects the tobit
model at the 10% level, but not at the 5% level.

For other specification tests for the tobit, see Greene (2008, 23.3.4) or Pagan and Vella
(1989).

Truncated Regression Models

A close relative of the censored regression model is the truncated regression model. Suppose
that an observation is not observed whenever the dependent variable falls below one thresh-
old, or exceeds a second threshold. This sampling rule occurs, for example, in earnings func-
tion studies for low-income families that exclude observations with incomes above a
threshold, and in studies of durables demand among individuals who purchase durables.

The general two-limit truncated regression model may be written as:

y* = x/B + oe,; (29.32)
where y; = y;* is only observed if:
¢, <y*<e,;. (29.33)
If there is no lower truncation, then we can set ¢, = —oo. If there is no upper truncation,

then we set ¢, = .

The log likelihood function associated with these data is given by:
N

(B, 0) = > logf((y;—x/B)/0) 1(¢;<y;<t) (29.34)

i=1
N

- z log(F((¢;—z/B)/0)-F((¢;,— z;'6)/0)).
i=1

The likelihood function is maximized with respect to 8 and ¢, using standard iterative
methods.

Estimating a Truncated Model in EViews

Estimation of a truncated regression model follows the same steps as estimating a censored
regression:

e Select Quick/Estimate Equation... from the main menu, and in the Equation Specifi-
cation dialog, select the CENSORED estimation method. The censored and truncated
regression dialog will appear.
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¢ Enter the name of the truncated dependent variable and the list of the regressors or
provide explicit expression for the equation in the Equation Specification field, and
select one of the three distributions for the error term.

¢ Indicate that you wish to estimate the truncated model by checking the Truncated
sample option.

¢ Specify the truncation points of the dependent variable by entering the appropriate
expressions in the two edit fields. If you leave an edit field blank, EViews will assume
that there is no truncation along that dimension.

You should keep a few points in mind. First, truncated estimation is only available for mod-
els where the truncation points are known, since the likelihood function is not otherwise
defined. If you attempt to specify your truncation points by index, EViews will issue an error
message indicating that this selection is not available.

Second, EViews will issue an error message if any values of the dependent variable are out-
side the truncation points. Furthermore, EViews will automatically exclude any observations
that are exactly equal to a truncation point. Thus, if you specify zero as the lower truncation
limit, EViews will issue an error message if any observations are less than zero, and will
exclude any observations where the dependent variable exactly equals zero.

The cumulative distribution function and density of the assumed distribution will be used to
form the likelihood function, as described above.

Procedures for Truncated Equations

EViews provides the same procedures for truncated equations as for censored equations.
The residual and forecast calculations differ to reflect the truncated dependent variable and
the different likelihood function.

Make Residual Series

Select Proc/Make Residual Series, and select from among the three types of residuals. The
three types of residuals for censored models are defined as:

Ordinary

01

€oi = yi_E(@/i*|§i<yi*<_Ci; ;, B, 0)

Standardized Y- E(y* ‘ ¢;<yF<t; T, B, 0)

Jvar(y*|e;< y* < ;5 3, 8, 6)

st
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Generalized F((y.— 7,B)/5)

R (V)

_ f(&i-w'B) /o) - f(¢; - /B)/a)
o(F((¢;—z/B)/06)-F((c,— z/B)/6))

where f, F', are the density and distribution functions. Details on the computation of
E(yi| ¢; <yX<ze; x, B, 0) are provided below.

The generalized residuals may be used as the basis of a number of LM tests, including LM
tests of normality (see Chesher and Irish (1984, 1987), and Gourieroux, Monfort and Trog-
non (1987); Greene (2008) provides a brief discussion and additional references).

Forecasting

EViews provides you with the option of forecasting the expected observed dependent vari-
able, E(y,| z;, B, 0), or the expected latent variable, E(yi*’ z;, B, 0).

To forecast the expected latent variable, select Forecast from the equation toolbar to open
the forecast dialog, click on Index - Expected latent variable, and enter a name for the
series to hold the output. The forecasts of the expected latent variable E(y* | z, B, 0) are
computed using:

yx o= E(y1*| z, B,0) = z'B-0. (29.35)
where v is the Euler-Mascheroni constant (y = 0.5772156649 ).

To forecast the expected observed dependent variable for the truncated model, you should
select Expected dependent variable, and enter a series name. These forecasts are computed
using:

¥ = E(y*|¢;<y*<tesz,B,0) (29.36)
so that the expectations for the latent variable are taken with respect to the conditional (on

being observed) distribution of the y* . Note that these forecasts always satisfy the inequal-
ity ¢; < Y, <¢.

It is instructive to compare this latter expected value with the expected value derived for the
censored model in Equation (29.30) above (repeated here for convenience):
yi = E(y1| mia Y a) = _Cl‘ : Pr(yi = §i| xﬁ 187 6-) (2937)
+ E(yi*|§i <y <ces T, B, 0) - Pr(_ci <yk< &i| Z; B, 0)
+ ai ' Pr(yz’ = _Cj| ‘7:7'7 67 8)
The expected value of the dependent variable for the truncated model is the first part of the

middle term of the censored expected value. The differences between the two expected val-
ues (the probability weight and the first and third terms) reflect the different treatment of
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latent observations that do not lie between ¢; and ¢;. In the censored case, those observa-
tions are included in the sample and are accounted for in the expected value. In the trun-
cated case, data outside the interval are not observed and are not used in the expected value
computation.

An lllustration

As an example, we reestimate the Fair tobit model from above, truncating the data so that
observations at or below zero are removed from the sample. The output from truncated esti-
mation of the Fair model is presented below:

Dependent Variable: Y_PT

Method: ML - Censored Normal (TOBIT) (Newton-Raphson /
Marquardt steps)

Date: 03/09/15 Time: 16:26

Sample (adjusted): 452 601

Included observations: 150 after adjustments

Truncated sample

Left censoring (value) at zero

Convergence achieved after 11 iterations

Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.
C 12.37287 5.178533 2.389261 0.0169
Z1 -1.336854 1.451426  -0.921063 0.3570
Z2 -0.044791 0.116125  -0.385719 0.6997
Z3 0.544174 0.217885 2.497527 0.0125
Z4 -2.142868 1.784389  -1.200897 0.2298
z5 -1.423107 0.594582  -2.393459 0.0167
Z6 -0.316717 0.321882  -0.983953 0.3251
z7 0.621418 0.477420 1.301618 0.1930
Z8 -1.210020 0.547810  -2.208833 0.0272

Error Distribution

SCALE:C(10) 5.379485 0.623787 8.623910 0.0000
Mean dependent var 5.833333 S.D. dependent var 4.255934
S.E. of regression 4.013126  Akaike info criterion 5.344456
Sum squared resid 2254.725 Schwarz criterion 5.545165
Log likelihood -390.8342 Hannan-Quinn criter. 5.425998
Avg. log likelihood -2.605561
Left censored obs 0 Right censored obs 0
Uncensored obs 150 Total obs 150

Note that the header information indicates that the model is a truncated specification with a
sample that is adjusted accordingly, and that the frequency information at the bottom of the
screen shows that there are no left and right censored observations.
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Heckman Selection Model

The Heckman (1976) selection model, sometimes called the Heckit model, is a method for
estimating regression models which suffer from sample selection bias. Under the Heckman
selection framework, the dependent variable y, is only observable for a portion of the data.
A classic example, in economics, of the sample selection problem is the wage equation for
women, whereby a woman’s wage is only observed if she makes the decision to enter the
work place, and is unobservable if she does not. Heckman’s (1976) paper that introduced
the Heckman Selection model worked on this very problem.

EViews provides an estimator for the simple linear Heckman Selection Model. This model is
specified as:

y, = X/'B+e, (29.38)
z, = Wy+u, (29.39)
where is z; a binary variable, with y, only observed when z; = 1. ¢, and u, are error

terms which follow a bivariate normal distribution:

‘7} (29.40)

with scale parameter ¢ and correlation coefficient p . Note that we have normalized the
variance of u, to 1 since this variance is not identified in this model.

Equation Equation (29.38) is generally referred to as the response equation, with y, the
variable of interest. Equation Equation (29.39) is termed the selection equation and deter-
mines whether is gy, observed or not.

EViews offers two different methods of estimating this model: Heckman’s original two-step
method and a Maximum Likelihood method.

The Heckman Two-Step Method

The Heckman two-step method is based around the observation that:
E(%:| Z.=1) = X,/'B+poN(Wyy) (29.41)

where AN(X) = ¢(X)/®(z) is the Inverse Mills Ratio (Greene, 2008), and ¢ and ¢ are
the standard normal density and cumulative distribution function, respectively. Then we
may specify a regression model:

y, = X/B+poN(Wyy)+ v, (29.42)
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The two-step method proceeds by first estimating a Probit regression for Equation (29.39) to
obtain an estimate of 7 , from which Ai( Wﬁ/) may be calculated. A least squares regres-
sion of y, on X,'8 and A;

y, = X/B+poki+v, (29.43)

is then computed, yielding consistent estimates of 8 and § = po. An estimator for the
error standard deviation ¢ may be obtained from the usual standard error of the regression
s, and the ratio estimator ,f) = 0/ s follows.

The estimator of the coefficient covariance matrix of the two-step method is given by:

0 = & (X0 X% (X (T=p A)X* + Q)X+ X*) (29.44)
where X* = (X,,X;)’, A is a diagonal matrix with §; = X;(X; = W,7) on the diago-
nals, I is an identity matrix, Q = ﬁQ(X*’A W) V(X*'AW), and V is the coefficient

covariance matrix from the Probit estimation of Equation (29.39).

Maximum Likelihood

The maximum likelihood method of estimating the Heckman Selection Model is performed
using the log-likelihood function given by:

logL(B, v, p, 0| X, W) = z (logl — ®(Wyy)) + (29.45)

i)2;=0
yi— X, )
(W o(*5)

> —log(o) + 1og(q>(yi%(ﬁ)) +log|1- @ —

iz =1

where the first summation is over observations for which z; = 0 (i.e., when y; is unob-
served), and the second for observations for which z; = 1 (i.e., when y; is observed).

It is straightforward to maximize this log-likelihood function with respect to the parameters,
B, v, p, 0. However, this maximization is unrestricted with regards to p and ¢, when, in
fact, there are restrictions of the form —(1 < p < 1) and ¢ > 1 imposed on the parameters.
EViews optimizes the model using transformed versions of the parameters:

o = exp(o*) (29.46)
o = arctan(p*)(2/7) (29.47)

to impose the restrictions.

Starting values for the optimization can be obtained using the Heckman two-step method
outlined above.
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As with most maximum likelihood estimations, the covariance matrix of the estimated
parameters can be calculated as either (—H)_1 (where H is the Hessian matrix, the infor-
mation matrix), (GG‘Y1 (where G is the matrix of gradients), or as "' GG'H_1 (the
Huber/White matrix).

Estimating the Heckman Selection Model in EViews

To estimate the Heckman Selection Model, open the equation dialog by selecting Quick/
Estimate Equation... or Object/New Object.../Equation in the main EViews menu and
selecting Heckit from the Method dropdown menu. Alternately, you may enter the com-
mand heckit in the command line.

The first page of the dialog, the D S (=
Specification tab, lets you [ Specication |options|
specify both the response T BT

equation Equation (29.38) and Dependent variable followed by list of regressors
the selection equation
Equation (29.39). Both equa-
tions should be specified as the Salecion Eqation

dependent variable followed Binary dependent variable followed by list of regressors
by a space delimited list of
regressors. Note that the
dependent variable for the
selection equation should be

Estimation settings

. .. Method: |HECKIT - Heckman Selection (Generalized Tobit) -
series COHtalHng only Zeros
and ones. @ Maximum likelihood _ Heckman two-step
Sample: | 1753

The Specification page also
lets you select the type of esti-
mation method by selecting ok | [ cance
one of the two radio buttons;

either Maximum Likelihood or Heckman two-step.

If you have chosen to estimate via maximum likelihood, the Options tab of the dialog lets
you specify the type of covariance matrix, by using the Coefficient covariance matrix drop-
down menu. You may choose from Outer Product of Gradients, Information Matrix, and
Huber/White. You may also choose starting values for the maximum likelihood procedure.
You may select EViews Supplied to perform the Heckman two-step procedure to obtain
starting values, or you can down-weight those starting values by choosing a multiple of
them. The User Supplied option will use the specified coefficient vector in the workfile to
obtain starting values.
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Equation Estimation

Spedification | Options

Coeffident i

oeffident covariance Starting values
Covariance Ordi "
method: rdinary EViews supplied W
Information 3
e Hessian - observed v

Derivatives

Optimization [ use numeric derivatives anly
Optimization | yewton-Raphson v
method:
Step method: | Marguardt W Coeffident name
Max Iterations: | 500 c
Convergence: 1e-08

|:| Display settings in output

An Example

As an example of the estimation of the Heckman Selection model, we take one of the results
from Econometric Analysis by William H. Greene (6™ Edition, p. 888, Example 24.8), which
uses data from the Mroz (1987) study of the labor supply of married women to estimate a
wage equation for women. Only 428 of the 753 women studied participated in the labor
force, so a selection equation is provided to model the sample selection behavior of married
women.

The wage equation is given by:
Wage = B, + B,Exper + B3Exper2 + B,Educ + 6;City + € (29.48)

where EXPER is a measure of each woman’s experience, EDUC is her level of education, and
CITY is a dummy variable for whether she lives in a city or not.

The selection equation is given by:
LFP = v, +y,Age + 73Age2 + v,Faminc + y;Educ + v4Kids + u (29.49)

where LFP is a binary variable taking a value of 1 if the woman is in the labor force, and 0
otherwise, AGE is her age, FAMINC is the level of household income not earned by the
woman, and KIDS is a dummy variable for whether she has children.

You can bring the Mroz data directly into EViews from Greene’s website, using the following
EViews command:
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wfopen http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF5-
1.txt

In this data, the wage data are in the series WW, experience is AX, education is in WE, the
city dummy is CIT, labor force participation is LFP, age is WA, and family income is FAM-
INC. There is no kids dummy variable, but there are two variables containing the number of
children below K6 education (KL6), and the number of kids between K6 education and 18
(K618). We can create the dummy variable simply by testing whether the sum of those two
variables is greater than 0.

To estimate this equation in EViews, we click on Quick/Estimate Equation..., and then
change the equation method to Heckit. In the Response Equation box we type:

ww C ax ax”"2 we cit
And in the Selection Equation box we type:

1fp ¢ wa wa”2 faminc we (k16+k618)>0

To begin we select the Heckman two-step estimation method. After clicking OK, the estima-
tion results show and replicate the results in the first pane of Table 24.3 in Greene (note that
Greene only shows the estimates of the Wage equation, plus p and o).
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Dependent Variable: WW

Method: Two-Step Heckman Selection

Date: 03/09/15 Time: 16:31

Sample: 1753

Included observations: 753

Selection Variable: LFP

Coefficient covariance computed using two-step Heckman

method
Variable Coefficient Std. Error t-Statistic Prob.
Response Equation - WW
C -0.971200 2.132849  -0.455353 0.6490
AX 0.021061 0.062532 0.336804 0.7364
AXA2 0.000137 0.001882 0.072842 0.9420
WE 0.417017 0.104157 4.003746 0.0001
CIT 0.443838 0.316531 1.402194 0.1613
Selection Equation - LFP
C -4.156807 1402086  -2.964730 0.0031
WA 0.185395 0.065967 2.810436 0.0051
WA2 -0.002426 0.000774  -3.136096 0.0018
FAMINC 4.58E-06 4.21E-06 1.088918 0.2765
WE 0.098182 0.022984 4.271744 0.0000
(KL6+K618)>0 -0.448987 0.130911  -3.429697 0.0006
Mean dependent var 4177682 S.D. dependent var 3.310282
S.E. of regression 2.418304 Akaike info criterion 6.017314
Sum squared resid 4327.663 Schwarz criterion 6.084863
Log likelihood -2254.519 Hannan-Quinn criter. 6.043337

We can modify our equation to use as the estimation method. Click on the Estimate button
to bring up the estimation dialog and change the method to Maximum Likelihood. Next,
click on the Options tab and change the Information matrix to OPG and click on OK to esti-
mate the equation. The results match the second pane of Table 24.3 in Greene.
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Dependent Variable: WW

Method: ML Heckman Selection (Newton-Raphson / Marquardt

steps)

Date: 03/09/15 Time: 16:34
Sample: 1753

Included observations: 753
Selection Variable: LFP

Convergence achieved after 6 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.
Response Equation - WW
C -1.963024 1.680330  -1.168237 0.2431
AX 0.027868 0.075614 0.368562 0.7126
AX"2 -0.000104 0.002341  -0.044369 0.9646
WE 0.457005 0.096271 4.747067 0.0000
CIT 0.446529 0.426937 1.045889 0.2960
Selection Equation - LFP
C -4.119692 1410456  -2.920822 0.0036
WA 0.184015 0.065841 2.794837 0.0053
WAR2 -0.002409 0.000773  -3.114124 0.0019
FAMINC 5.68E-06 3.89E-06 1.460278 0.1446
WE 0.095281 0.023999 3.970163 0.0001
(KL6+K618)>0 -0.450615 0.136668  -3.297155 0.0010
Interaction terms

@LOG(SIGMA) 1.134100 0.026909 42.14565 0.0000
TFORM(RHO) -0.210301 0.367061  -0.572931 0.5669
SIGMA 3.108376 0.083644 37.16219 0.0000
RHO -0.131959 0.223781  -0.589676 0.5556
Mean dependent var 4.177682 S.D. dependent var 3.310282
S.E. of regression 2.361759 Akaike info criterion 4.234416
Sum squared resid 4127.650 Schwarz criterion 4.314247
Log likelihood -15681.258 Hannan-Quinn criter. 4.265171

Count Models

Count models are employed when y takes integer values that represent the number of
events that occur—examples of count data include the number of patents filed by a com-
pany, and the number of spells of unemployment experienced over a fixed time interval.

EViews provides support for the estimation of several models of count data. In addition to
the standard poisson and negative binomial maximum likelihood (ML) specifications,
EViews provides a number of quasi-maximum likelihood (QML) estimators for count data.
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Estimating Count Models in EViews

To estimate a count data model, select Quick/Estimate Equation... from the main menu,
and select COUNT - Integer Count Data as the estimation method. EViews displays the
count estimation dialog into which you will enter the dependent and explanatory variable
regressors, select a type of count model, and if desired, set estimation options.

Equation Estimation

Spedfication | Options

Equation spedification

Integer count dependent variable followed by list of regressors, OR.
a linear explict equation like ¥ =c{1) +c{2)*X.

Count estimation method:
(@) Poisson (ML and QML) () Mormal/NLS (QML)
Negative Binomial (ML) (") Megative Binomial (QML)
(") Exponential (QML) 1

Estimation settings
Method: | COUNT - Integer Count Data w

Sample: | 1103

There are three parts to the specification of the count model:

e In the upper edit field, you should list the dependent variable and the independent
variables or you should provide an explicit expression for the index. The list of
explanatory variables specifies a model for the conditional mean of the dependent
variable:

m(z;, B) = E(y;|z;, B) = exp(z;/B). (29.50)

¢ Next, click on Options and, if desired, change the default estimation algorithm, con-
vergence criterion, starting values, and method of computing the coefficient covari-
ance.

e Lastly, select one of the entries listed under count estimation method, and if appropri-
ate, specify a value for the variance parameter. Details for each method are provided
in the following discussion.

Poisson Model

For the Poisson model, the conditional density of y,; given z; is:
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-m(z, B)

fyi|z. B) = e m(z;, 6)"/ ;! (29.51)

where ¥, is a non-negative integer valued random variable. The maximum likelihood esti-
mator (MLE) of the parameter 8 is obtained by maximizing the log likelihood function:
N

IB) = > ylogm(z;, B) — m(z; B) —log(y!). (29.52)

i=1

Provided the conditional mean function is correctly specified and the conditional distribu-
tion of y is Poisson, the MLE B is consistent, efficient, and asymptotically normally distrib-
uted, with coefficient variance matrix consistently estimated by the inverse of the Hessian:

N -1
V = var(B) = [Z mﬁm’] (29.53)
i=1

where m, = m(z;, B) . Alternately, one could estimate the coefficient covariance using the
inverse of the outer-product of the scores:

N -1
2
V = var(B) = (Z (y;,—m™m,) mf-m/j (29.54)
i=1
The Poisson assumption imposes restrictions that are often violated in empirical applica-
tions. The most important restriction is the equality of the (conditional) mean and variance:

oz, B) = var(y|z, 8) = E(y|z ) = m(z, B). (29.55)

If the mean-variance equality does not hold, the model is misspecified. EViews provides a
number of other estimators for count data which relax this restriction.

We note here that the Poisson estimator may also be interpreted as a quasi-maximum likeli-
hood estimator. The implications of this result are discussed below.

Negative Binomial (ML)

One common alternative to the Poisson model is to estimate the parameters of the model
using maximum likelihood of a negative binomial specification. The log likelihood for the
negative binomial distribution is given by:

N

1B, m) = 3 ylog(n m(z, B)) - (y,+ 1/n)log(1+ 1" m(z, B)) (29.56)

i=1

+1ogT(y, + 1/1°)-log(y,)-logT'(1/1%)
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where n2 is a variance parameter to be jointly estimated with the conditional mean param-
eters 3. EViews estimates the log of n2 , and labels this parameter as the “SHAPE” parame-
ter in the output. Standard errors are computed using the inverse of the information matrix.

The negative binomial distribution is often used when there is overdispersion in the data, so
that v(z;, B) > m(z;, B), since the following moment conditions hold:

E(y,|z;, B) = m(z; B)

var(y,|z, 8) = m(z; B)(1+ 7’ m(z,, B))

(29.57)

2 . . o . .
1~ is therefore a measure of the extent to which the conditional variance exceeds the condi-
tional mean.

Consistency and efficiency of the negative binomial ML requires that the conditional distri-
bution of y be negative binomial.

Quasi-maximum Likelihood (QML)

We can perform maximum likelihood estimation under a number of alternative distribu-
tional assumptions. These quasi-maximum likelihood (QML) estimators are robust in the
sense that they produce consistent estimates of the parameters of a correctly specified condi-
tional mean, even if the distribution is incorrectly specified.

This robustness result is exactly analogous to the situation in ordinary regression, where the
normal ML estimator (least squares) is consistent, even if the underlying error distribution is
not normally distributed. In ordinary least squares, all that is required for consistency is a

correct specification of the conditional mean m(z,, 8) = z;/6. For QML count models, all
that is required for consistency is a correct specification of the conditional mean m(z,, 8).

The estimated standard errors computed using the inverse of the information matrix will not
be consistent unless the conditional distribution of y is correctly specified. However, it is
possible to estimate the standard errors in a robust fashion so that we can conduct valid
inference, even if the distribution is incorrectly specified.

EViews provides options to compute two types of robust standard errors. Click Options in
the Equation Specification dialog box and mark the Robust Covariance option. The Huber/
White option computes QML standard errors, while the GLM option computes standard
errors corrected for overdispersion. See “Technical Notes” on page 387 for details on these
options.

Further details on QML estimation are provided by Gourioux, Monfort, and Trognon (1994a,
1994b). Wooldridge (1997) provides an excellent summary of the use of QML techniques in
estimating parameters of count models. See also the extensive related literature on General-
ized Linear Models (McCullagh and Nelder, 1989).
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Poisson

The Poisson MLE is also a QMLE for data from alternative distributions. Provided that the
conditional mean is correctly specified, it will yield consistent estimates of the parameters 3
of the mean function. By default, EViews reports the ML standard errors. If you wish to com-
pute the QML standard errors, you should click on Options, select Robust Covariances, and
select the desired covariance matrix estimator.

Exponential

The log likelihood for the exponential distribution is given by:
N

IB) = Y. ~logm(z, B) - y,/ m(z B). (29.58)

1=1

As with the other QML estimators, the exponential QMLE is consistent even if the condi-
tional distribution of y, is not exponential, provided that m; is correctly specified. By
default, EViews reports the robust QML standard errors.

Normal

The log likelihood for the normal distribution is:

N
1(yi—m(z; B)* 1
® = 35" -3

i=1

log (o) - %log(%r). (29.59)

For fixed o’ and correctly specified m,, maximizing the normal log likelihood function pro-
vides consistent estimates even if the distribution is not normal. Note that maximizing the
normal log likelihood for a fixed o is equivalent to minimizing the sum of squares for the
nonlinear regression model:

y, = m(z;, B) +e,. (29.60)

EViews sets o° = 1 by default. You may specify any other (positive) value for o by
changing the number in the Fixed variance parameter field box. By default, EViews reports
the robust QML standard errors when estimating this specification.

Negative Binomial

If we maximize the negative binomial log likelihood, given above, for fixed 772 , We obtain
the QMLE of the conditional mean parameters (3. This QML estimator is consistent even if
the conditional distribution of y is not negative binomial, provided that m, is correctly
specified.

EViews sets n2 = 1 by default, which is a special case known as the geometric distribu-
tion. You may specify any other (positive) value by changing the number in the Fixed vari-
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ance parameter field box. For the negative binomial QMLE, EViews by default reports the
robust QMLE standard errors.

Views of Count Models

EViews provides a full complement of views of count models. You can examine the estima-
tion output, compute frequencies for the dependent variable, view the covariance matrix, or
perform coefficient tests. Additionally, you can select View/Actual, Fitted, Residual... and
pick from a number of views describing the ordinary residuals e,; = y,— m(z;, 8), or you
can examine the correlogram and histogram of these residuals. For the most part, all of these
views are self-explanatory.

Note, however, that the LR test statistics presented in the summary statistics at the bottom of
the equation output, or as computed under the View/Coefficient Diagnostics/Redundant
Variables - Likelihood Ratio... have a known asymptotic distribution only if the conditional
distribution is correctly specified. Under the weaker GLM assumption that the true variance
is proportional to the nominal variance, we can form a quasi-likelihood ratio,

QLR = LR/o , where & is the estimated proportional variance factor. This QLR statis-
tic has an asymptotic x2 distribution under the assumption that the mean is correctly speci-
fied and that the variances follow the GLM structure. EViews does not compute the QLR
statistic, but it can be estimated by computing an estimate of ¢~ based upon the standard-
ized residuals. We provide an example of the use of the QLR test statistic below.

If the GLM assumption does not hold, then there is no usable QLR test statistic with a
known distribution; see Wooldridge (1997).

Procedures for Count Models

Most of the procedures are self-explanatory. Some details are required for the forecasting
and residual creation procedures.

¢ Forecast... provides you the option to forecast the dependent variable y, or the pre-
dicted linear index z;' . Note that for all of these models the forecasts of y, are given
by 9, = m(xz,;, B) where m(z;, 8) = exp(x;/B).

¢ Make Residual Series... provides the following three types of residuals for count
models:

Ordinary € = Y—m(z;, B)

Standardized (Pearson) y—m(z; )
1 (2

T fu(z 8. 7)

ey = (varies)

Generalized
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where the v represents any additional parameters in the variance specification. Note
that the specification of the variances may vary significantly between specifications.
For exiimple, the PoAiss,Qon model has v(z;, B) = m(z;, ), while the exponential has
v(z, B) = m(z, B) .

The generalized residuals can be used to obtain the score vector by multiplying the
generalized residuals by each variable in x. These scores can be used in a variety of
LM or conditional moment tests for specification testing; see Wooldridge (1997).

Demonstrations

A Specification Test for Overdispersion
Consider the model:

NUMB, = B, + 8,IP, + B,FEB, +¢,, (29.61)

where the dependent variable NUMB is the number of strikes, IP is a measure of industrial
production, and FEB is a February dummy variable, as reported in Kennan (1985, Table 1)
and provided in the workfile “Strike. WF1”.

The results from Poisson estimation of this model are presented below:

Dependent Variable: NUMB

Method: ML/QML - Poisson Count (Newton-Raphson / Marquardt
steps)

Date: 03/09/15 Time: 16:43

Sample: 1 103

Included observations: 103

Convergence achieved after 3 iterations

Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.

C 1.725630 0.043656 39.52764 0.0000

IP 2.775334 0.819104 3.388254 0.0007

FEB -0.377407 0.174520  -2.162539 0.0306
R-squared 0.064502 Mean dependent var 5.495146
Adjusted R-squared 0.045792 S.D. dependent var 3.653829
S.E. of regression 3.569190 Akaike info criterion 5.583421
Sum squared resid 1273.912 Schwarz criterion 5.660160
Log likelihood -284.5462 Hannan-Quinn criter. 5.614503
Restr. log likelihood -292.9694 LR statistic 16.84645
Avg. log likelihood -2.762584  Prob(LR statistic) 0.000220

Cameron and Trivedi (1990) propose a regression based test of the Poisson restriction

v(z;, B) = m(z;, B). To carry out the test, first estimate the Poisson model and obtain the
fitted values of the dependent variable. Click Forecast and provide a name for the forecasted
dependent variable, say NUMB_F. The test is based on an auxiliary regression of e?”; -y, on
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y? and testing the significance of the regression coefficient. For this example, the test regres-
sion can be estimated by the command:

equation testeqg.ls (numb-numb f)”*2-numb numb f"2

yielding the following results:

Dependent Variable: (NUMB-NUMB_F)*2-NUMB
Method: Least Squares

Date: 03/09/15 Time: 16:38

Sample: 1 103

Included observations: 103

Variable Coefficient Std. Error t-Statistic Prob.

NUMB_F"2 0.238874 0.052115 4.583571 0.0000
R-squared 0.043930 Mean dependent var 6.872929
Adjusted R-squared 0.043930 S.D. dependent var 17.65726
S.E. of regression 17.26506 Akaike info criterion 8.544908
Sum squared resid 30404.41 Schwarz criterion 8.570488
Log likelihood -439.0628 Hannan-Quinn criter. 8.555269
Durbin-Watson stat 1.711805

The t-statistic of the coefficient is highly significant, leading us to reject the Poisson restric-
tion. Moreover, the estimated coefficient is significantly positive, indicating overdispersion
in the residuals.

An alternative approach, suggested by Wooldridge (1997), is to regress e, — 1, on §,. To
perform this test, select Proc/Make Residual Series... and select Standardized. Save the
results in a series, say SRESID. Then estimating the regression specification:

sresid”2-1 numbf
yields the results:

Dependent Variable: SRESID*2-1
Method: Least Squares

Date: 08/12/09 Time: 10:55
Sample: 1103

Included observations: 103

Variable Coefficient Std. Error t-Statistic Prob.

NUMB_F 0.221238 0.055002 4.022326 0.0001
R-squared 0.017556 Mean dependent var 1161573
Adjusted R-squared 0.017556 S.D. dependent var 3.138974
S.E. of regression 3.111299 Akaike info criterion 5117619
Sum squared resid 987.3785 Schwarz criterion 5.143199
Log likelihood -262.5574 Hannan-Quinn criter. 5.127980

Durbin-Watson stat 1.764537
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Both tests suggest the presence of overdispersion, with the variance approximated by
roughly v = m(1 + 0.23m).

Given the evidence of overdispersion and the rejection of the Poisson restriction, we will re-
estimate the model, allowing for mean-variance inequality. Our approach will be to estimate
the two-step negative binomial QMLE specification (termed the quasi-generalized pseudo-
maximum likelihood estimator by Gourieroux, Monfort, and Trognon (1984a, 1984b)) using
the estimate of ?72 from the Wooldridge test derived above. To compute this estimator, sim-
ply select Negative Binomial (QML) and enter “0.221238” in the edit field for Fixed vari-
ance parameter.

We will use the GLM variance calculations, so you should click on Option in the Equation
Specification dialog and choose the GLM option in the Covariance method dropdown
menu. The estimation results are shown below:

Dependent Variable: NUMB

Method: QML - Negative Binomial Count (Newton-Raphson /
Marquardt steps)

Date: 03/09/15 Time: 16:48

Sample: 1 103

Included observations: 103

QML parameter used in estimation: 0.22124

Convergence achieved after 4 iterations

Coefficient covariance computed using observed Hessian

GLM adjusted covariance (variance factor =0.961161659819)

Variable Coefficient Std. Error  z-Statistic Prob.

C 1.724906 0.064023 26.94197 0.0000

IP 2.833103 1.198416 2.364039 0.0181

FEB -0.369558 0.235617  -1.568474 0.1168
R-squared 0.064374 Mean dependent var 5.495146
Adjusted R-squared 0.045661 S.D. dependent var 3.653829
S.E. of regression 3.569435 Akaike info criterion 5.174385
Sum squared resid 1274.087 Schwarz criterion 5.251125
Log likelihood -263.4808 Hannan-Quinn criter. 5.205468
Restr. log likelihood -522.9973 LR statistic 519.0330
Avg. log likelihood -2.558066 Prob(LR statistic) 0.000000

The negative binomial QML should be consistent, and under the GLM assumption, the stan-
dard errors should be consistently estimated. It is worth noting that the coefficient on FEB,
which was strongly statistically significant in the Poisson specification, is no longer signifi-
cantly different from zero at conventional significance levels.
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Quasi-likelihood Ratio Statistic

As described by Wooldridge (1997), specification testing using likelihood ratio statistics
requires some care when based upon QML models. We illustrate here the differences
between a standard LR test for significant coefficients and the corresponding QLR statistic.

From the results above, we know that the overall likelihood ratio statistic for the Poisson
model is 16.85, with a corresponding p-value of 0.0002. This statistic is valid under the
assumption that m(z;, ) is specified correctly and that the mean-variance equality holds.

We can decisively reject the latter hypothesis, suggesting that we should derive the QML
estimator with consistently estimated covariance matrix under the GLM variance assump-
tion. While EViews currently does not automatically adjust the LR statistic to reflect the
QML assumption, it is easy enough to compute the adjustment by hand. Following Wool-
dridge, we construct the QLR statistic by dividing the original LR statistic by the estimated
GLM variance factor. (Alternately, you may use the GLM estimators for count models
described in Chapter 30. “Generalized Linear Models,” on page 391, which do compute the
QLR statistics automatically.)

Suppose that the estimated QML equation is named EQ1 and that the results are given by:

Dependent Variable: NUMB

Method: ML/QML - Poisson Count (Newton-Raphson / Marquardt steps)
Date: 03/09/15 Time: 21:42

Sample: 1 103

Included observations: 103

Convergence achieved after 3 iterations

Coefficient covariance computed using observed Hessian

GLM adjusted covariance (variance factor =2.22642047526)

d.f. adjustment for standard errors & covariance

Variable Coefficient Std. Error z-Statistic Prob.

C 1.725630 0.065140 26.49094 0.0000

P 2.775334 1.222202 2.270766 0.0232

FEB -0.377407 0.260405  -1.449307 0.1473
R-squared 0.064502 Mean dependent var 5.495146
Adjusted R-squared 0.045792  S.D. dependent var 3.653829
S.E. of regression 3.569190 Akaike info criterion 5.583421
Sum squared resid 1273.912  Schwarz criterion 5.660160
Log likelihood -284.5462 Hannan-Quinn criter. 5.614503
Restr. log likelihood -292.9694 LR statistic 16.84645
Avg. log likelihood -2.762584  Prob(LR statistic) 0.000220

Note that when you select the GLM robust standard errors, EViews reports the estimated,
here d.f. corrected, variance factor. Then you can use EViews to compute p-value associated
with this statistic, placing the results in scalars using the following commands:

scalar glr = eql.@lrstat/2.226420477

scalar gpval = 1-@cchisq(glr, 2)
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You can examine the results by clicking on the scalar objects in the workfile window and
viewing the results. The QLR statistic is 7.5666, and the p-value is 0.023. The statistic and p-
value are valid under the weaker conditions that the conditional mean is correctly specified,
and that the conditional variance is proportional (but not necessarily equal) to the condi-
tional mean.

Technical Notes

Default Standard Errors

The default standard errors are obtained by taking the inverse of the estimated information
matrix. If you estimate your equation using a Newton-Raphson or Quadratic Hill Climbing
method, EViews will use the inverse of the Hessian, ﬁf1 , to form your coefficient covari-
ance estimate. If you employ BHHH, the coefficient covariance will be estimated using the
inverse of the outer product of the scores (gg')’l , where g and H are the gradient (or
score) and Hessian of the log likelihood evaluated at the ML estimates.

Huber/White (QML) Standard Errors

The Huber/White options for robust standard errors computes the quasi-maximum likeli-
hood (or pseudo-ML) standard errors:

VarQML(B) = (—H)J@@’(—HTI ) (29.62)

Note that these standard errors are not robust to heteroskedasticity in binary dependent vari-
able models. They are robust to certain misspecifications of the underlying distribution of

Y.
GLM Standard Errors

Many of the discrete and limited dependent variable models described in this chapter belong
to a class of models known as generalized linear models (GLM). The assumption of GLM is
that the distribution of the dependent variable y, belongs to the exponential family and that
the conditional mean of y; is a (smooth) nonlinear transformation of the linear part z;'3:

E(y;|z;, 8) = M(z/B). (29.63)

Even though the QML covariance is robust to general misspecification of the conditional dis-
tribution of y,, it does not possess any efficiency properties. An alternative consistent esti-

mate of the covariance is obtained if we impose the GLM condition that the (true) variance
of y, is proportional to the variance of the distribution used to specify the log likelihood:

var(y;|z;, B) = ozvaur]v“(yi‘:z’i7 B). (29.64)

. . . . 2
In other words, the ratio of the (conditional) variance to the mean is some constant ¢~ that
is independent of z. The most empirically relevant case is ¢~ > 1, which is known as
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overdispersion. If this proportional variance condition holds, a consistent estimate of the
GLM covariance is given by:

var g (B) = 32varML(B), (29.65)

where the d.f. corrected variance factor estimator is
2

2 N .
_ 1 5 (vi-9) 1 » U,
N-K = Joe,8,4) N-K = [, 8,49)
If you do not choose to d.f. correct, the leading term in Equation (29.66) is 1/ N. When you

. . . A2, .
select GLM standard errors, the estimated proportionality term ¢~ is reported as the vari-
ance factor estimate in EViews.

5 (29.66)

(Note that the EViews legacy estimator always estimates a d.f. corrected variance factor,
while the other estimators permit you to choose whether to override the default of no cor-
rection. Since the default behavior has changed, you will need to explicitly request d.f. cor-
rection to match the legacy covariance results.)

For detailed discussion on GLMs and the phenomenon of overdispersion, see McCullaugh
and Nelder (1989).

The Hosmer-Lemeshow Test

Let the data be grouped into j = 1, 2, ..., J groups, and let n; be the number of observa-
tions in group j. Define the number of y, = 1 observations and the average of predicted
values in group j as:

y(y) = z Y;

ey (29.67)
PG) = Y p/n = 3 (L= F(=a/B)/n,

i€y i€j

The Hosmer-Lemeshow test statistic is computed as:

J . N2
(y(5) = n;p(9))
L = y L2 P
Z 00T - 30)

J=

(29.68)

The distribution of the HL statistic is not known; however, Hosmer and Lemeshow (1989,
p.141) report evidence from extensive simulation indicating that when the model is correctly
specified, the distribution of the statistic is well approximated by a x2 distribution with

J— 2 degrees of freedom. Note that these findings are based on a simulation where J is
closeto n.
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The Andrews Test

Let the data be grouped into 7 = 1, 2, ..., J groups. Since y is binary, there are 2J cells
into which any observation can fall. Andrews (1988a, 1988b) compares the 2.J vector of the
actual number of observations in each cell to those predicted from the model, forms a qua-
dratic form, and shows that the quadratic form has an asymptotic x2 distribution if the
model is specified correctly.

Andrews suggests three tests depending on the choice of the weighting matrix in the qua-
dratic form. EViews uses the test that can be computed by an auxiliary regression as
described in Andrews (1988a, 3.18) or Andrews (1988b, 17).

Briefly, let A be an n x J matrix with element ;= 1(7 € j) = p,, where the indicator
function 1(¢ € j) takes the value one if observation ¢ belongs to group j with y, = 1,
and zero otherwise (we drop the columns for the groups with y = 0 to avoid singularity).
Let B be the n x K matrix of the contributions to the score 0I(3)/ 983’ . The Andrews test
statistic is n times the R’ from regressing a constant (one) on each column of A and B.
Under the null hypothesis that the model is correctly specified, nR*is asymptotically dis-
tributed x2 with J degrees of freedom.
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Chapter 30. Generalized Linear Models

Nelder and McCullagh (1972) describe a class of Generalized Linear Models (GLMs) that
extends linear regression to permit non-normal stochastic and non-linear systematic compo-
nents. GLMs encompass a broad and empirically useful range of specifications that includes
linear regression, logistic and probit analysis, and Poisson models.

GLMs offer a common framework in which we may place all of these specification, facilitat-
ing development of broadly applicable tools for estimation and inference. In addition, the
GLM framework encourages the relaxation of distributional assumptions associated with
these models, motivating development of robust quasi-maximum likelihood (QML) estima-
tors and robust covariance estimators for use in these settings.

The following discussion offers an overview of GLMs and describes the basics of estimating
and working with GLMs in EViews. Those wishing additional background and technical
information are encouraged to consult one of the many excellent summaries that are avail-
able (McCullagh and Nelder 1989, Hardin and Hilbe 2007, Agresti 1990).

Overview

Suppose we have ¢ = 1, ..., N independent response variables Y, each of whose condi-
tional mean depends on k-vectors of explanatory variables X, and unknown coefficients
(. We may decompose Y, into a systematic mean component, u,, and a stochastic compo-
nent e,

Y, = p+e (30.1)

7

The conventional linear regression model assumes that the p; is a linear predictor formed
from the explanatory variables and coefficients, u; = X,'8, and that €, is normally distrib-
2

uted with zero mean and constant variance V, = o".

The GLM framework of Nelder and McCullagh (1972) generalizes linear regression by allow-
ing the mean component p; to depend on a linear predictor through a nonlinear function,
and the distribution of the stochastic component €, be any member of the linear exponen-
tial family. Specifically, a GLM specification consists of:

* A linear predictor or index n;, = X,'8 + o, where o, is an optional offset term.
¢ A distribution for Y, belonging to the linear exponential family.

* A smooth, invertible link function, g(pu,;) = 7,, relating the mean p, and the linear
predictor ;.

A wide range of familiar models may be cast in the form of a GLM by choosing an appropri-
ate distribution and link function. For example:
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Model Family Link
Linear Regression Normal Identity: g(p) = u
Exponential Regression Normal Log: g(pn) = log(uw)
Logistic Regression Binomial Logit: g(pn) = log(p/(1—p))
Probit Regression Binomial Probit: g(pu) = q;‘l(u)
Poisson Count Poisson Log: g(pn) = log(uw)

For a detailed description of these and other familiar specifications, see McCullagh and
Nelder (1981) and Hardin and Hilbe (2007). It is worth noting that the GLM framework is
able to nest models for continuous (normal), proportion (logistic and probit), and discrete
count (Poisson) data.

Taken together, the GLM assumptions imply that the first two moments of Y, may be writ-
ten as functions of the linear predictor:

pi=g (n)
V= (¢/w) V(g (n)

where V, (p) is a distribution-specific variance function describing the mean-variance rela-
tionship, the dispersion constant ¢ > 0 is a possibly known scale factor, and w,; > 0 is a
known prior weight that corrects for unequal scaling between observations.

(30.2)

Crucially, the properties of the GLM maximum likelihood estimator depend only on these
two moments. Thus, a GLM specification is principally a vehicle for specifying a mean and
variance, where the mean is determined by the link assumption, and the mean-variance
relationship is governed by the distributional assumption. In this respect, the distributional
assumption of the standard GLM is overly restrictive.

Accordingly, Wedderburn (1974) shows that one need only specify a mean and variance
specification as in Equation (30.2) to define a quasi-likelihood that may be used for coeffi-
cient and covariance estimation. Not surprisingly, for variance functions derived from expo-
nential family distributions, the likelihood and quasi-likelihood functions coincide.
McCullagh (1983) offers a full set of distributional results for the quasi-maximum likelihood
(QML) estimator that mirror those for ordinary maximum likelihood.

QML estimators are an important tool for the analysis of GLM and related models. In partic-
ular, these estimators permit us to estimate GLM-like models involving mean-variance spec-
ifications that extend beyond those for known exponential family distributions, and to
estimate models where the mean-variance specification is of exponential family form, but
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the observed data do not satisfy the distributional requirements (Agresti 1990, 13.2.3 offers
a nice non-technical overview of QML).

Alternately, Gourioux, Monfort, and Trognon (1984) show that consistency of the GLM max-
imum likelihood estimator requires only correct specification of the conditional mean. Mis-
specification of the variance relationship does, however, lead to invalid inference, though
this may be corrected using robust coefficient covariance estimation. In contrast to the QML
results, the robust covariance correction does not require correction specification of a GLM
conditional variance.

How to Estimate a GLM in EViews

To estimate a GLM model in EViews you must first create an equation object. You may select
Object/New Object.../Equation or Quick/Estimate Equation... from the main menu, or
enter the keyword equation in the command window. Next select GLM - Generalized Lin-
ear Model in the Method dropdown menu. Alternately, entering the keyword glm in the
command window will both create the object and automatically set the estimation method.
The dialog will change to show settings appropriate for specifying a GLM.

Speciﬁcation Equation Estimation @

The main page of the dialog Specficafon | e
. . . GLM Equation spedification
is used to describe the basic Dependent variable followed by list of regressors, OR. an explicit

GLM speciﬁcation. linear specification like ¥ = o1)+c(2)*x

We will focus attention on
the GLM Equation specifica-

tion section since the Estima- Eamily: Normal -
tion settings section in the Link function: | Identity -

bottom of the dialog is
should be self-explanatory.

Estimation settings

Method: IGLM - Generalized Linear Models -
Dependent Variable and Sample: | 174
Linear Predictor
In the main edit field you
should specify your depen- o ][ cancel

dent variable and the linear
predictor.

There are two ways in which you may enter this information. The easiest method is to list
the dependent response variable followed by all of the regressors that enter into the predic-
tor. PDL specifications are permitted in this list, but ARMA terms are not. If you wish to
include an offset in your predictor, it should be entered on the Options page (see “Specifica-
tion Options” on page 395).
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Alternately, you may enter an explicit linear specification like “Y=C(1) + C(2)*X”. The
response variable will be taken to be the variable on the left-hand side of the equality (“Y”)
and the linear predictor will be taken from the right-hand side of the expression

(“C(1) + C(2)*X”). Offsets may be entered directly in the expression or they may be entered
on the Options page. Note that this specification should not be taken as a literal description
of the mean equation; it is merely a convenient syntax for specifying both the response and
the linear predictor.

Family

Next, you should use the Family dropdown to specify your distribu- Normal

tion. The default family is the Normal distribution, but you are free to Binomial Count
choose from the list of linear exponential family and quasi-likelihood  |tiegstive Binorisl 9
distributions. Note that the last three entries (Exponential Mean, Inverse Gaussian
Power Mean (p), Binomial Squared) are for quasi-likelihood specifi-  |Power Mean (p)

cations not associated with exponential families.

If the selected distribution requires
specification of an ancillary parame-
ter, you will be prompted to provide
the values. For example, the Binomial
Count and Binomial Proportion distributions both require specification of the number of
trials n;, while the Negative Binomial requires specification of the excess-variance parame-
ter k;.

Family: Binomial Count | Mumber of trials: 1

Link. function; | Logik w

For descriptions of the various exponential and quasi-likelihood families, see “Distribution,”
beginning on page 409.

Link

Identity
Log
Log-Complement

EViews will initialize the Link setting to the default for to the selected ~ |toat,

family. In general, the canonical link is used as the default link, how-  [Loa-Lea

Complementary Log-Log

ever, the Log link is used as the default for the Negative Binomial Inverse

Lastly, you should use the Link dropdown to specify a link function.

Power {p}
family. The Exponential Mean, Power Mean (p), and Binomial gggecfogd(‘;i Ratia (p)
Squared quasi-likelihood families will default to use the Identity, Ba-Cox Odds Ratio (p)

Log, and Logit links, respectively.

If the link that you select requires specification of parameter values, you will be prompted to
enter the values.

For detailed descriptions of the link functions, see “Link,” beginning on page 411.
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Options

Click on the Options tab to display additional settings for the GLM specification. You may
use this page to augment the equation specification, to choose a dispersion estimator, to
specify the estimation algorithm and associated settings, or to define a coefficient covariance
estimator.

Specification Options

The Specification Options section of the Options tab allows you Spedification
to augment the GLM specification. Offset:

Frequency
To include an offset in your linear predictor, simply enter a weights:
series name or expression in the Offset edit field. Weights: | None v

The Frequency weights edit field should be used to specify rep-
licates for each observation in the workfile. In practical terms,

the frequency weights act as a form of variance weighting and

inflate the number of “observations” associated with the data records.

EViews default

You may also specify prior variance weights in the using the Weights dropdown and associ-
ated edit fields. To specify your weights, simply select a description for the form of the
weighting series (Inverse std. dev., Inverse variance, Std. deviation, Variance), then enter
the corresponding weight series name or expression. EViews will translate the values in the
weighting series into the appropriate values for w,. For example, to specify w; directly, you
should select Inverse variance then enter the series or expression containing the w, values.
If you instead choose Variance, EViews will set w; to the inverse of the values in the weight
series. “Weighted Least Squares” on page 47 for additional discussion.

Dispersion Options

The Method dropdown may be used to select the dispersion computation E:;?;itn i

method. You will always be given the opportunity to choose between the Deviance
Default setting or Pearson Chi-Sq., Fixed at 1, and User-Specified. Addi-  [User-pedfied
tionally, if the specified distribution is in the linear exponential family, you

may choose to use the Deviance statistic.

The Default entry instructs EViews to use the default method for Dispersion

computing the dispersion, which will depend on the specified Method: | Defauit Y
family. For families with a free dispersion parameter, the default (Pesrson Cvsa.)
is to use the Pearson Chi-Sq. statistic, otherwise the default is

Fixed at 1. The current default setting will be displayed directly below the dropdown.



396—Chapter 30. Generalized Linear Models

Coefficient Covariance Options

The Covariance method dropdown specifies the estimator O e

for the coefficient covariance matrix. You may choose Sﬂoevi;:glg:jce Crdnany e
between the Ordinary method, which uses the inverse of Information | opg J
the estimated information matrix, or you may elect to use

Huber/White sandwich estimator, or the heteroskedastic-
ity and auto-correlation consistent HAC (Newey-West)

approach.

d.f. Adjustment

If you select the HAC covariance method, a HAC options button will appear prompting so
that you may customize the whitening and kernel settings. By default, EViews HAC estima-
tion will employ a Bartlett kernel with fixed Newey-West sample-size based bandwidth and
no pre-whitening (see “HAC Consistent Covariances (Newey-West)” on page 45 for addi-
tional discussion).

The Information matrix dropdown allows you to specify the method for estimating the
information matrix. For covariances computed in the standard fashion, you may choose
between the default Hessian - observed, Hessian - expected, and OPG - BHHH. If you are
computing Huber/White covariances, only the two Hessian based selections will be dis-
played.

(Note that in some earlier versions of EViews, the information matrix default method was
tied in with the optimization method. This default dependence has been eliminated.)

Lastly you may use the d.f. Adjustment checkbox choose whether to apply a degree-of-free-
dom correction to the coefficient covariance. By default, EViews will perform this adjust-
ment.

Estimation Options

The Estimation section of the page lets you specify the Estimation
o s . . . . Optimizati
optimization algorithm, starting values, and other estima- Aortom: | |NewtonRaphson v
tion settings_ Step method: Marquardt v
P . . Starting Values: | EViews supplied W
The Optimization Algorithm and Step method dropdown
menus control your estimation method. Ma [terations: | 500 _
Convergence: 1e-08 O g:t?:;.’s

¢ The default Optimization Algorithm is Newton-
Raphson, but you may instead select BFGS, OPG -
BHHH, Fisher Scoring (IRLS), or EViews legacy.

IRLS Iterations: |0

¢ The default Step method is Marquardt, but you may use the menu to select Dogleg
or Line search.

If you select optimization using EViews legacy, you will be prompted to select a legacy
method in place of a step method. The Legacy method dropdown offers the choice of the
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default Quadratic Hill Climbing (Newton-Raphson with Marquardt steps), Newton-Raph-
son with line search, IRLS - Fisher Scoring, and BHHH (OPG with line search).

By default, the Starting Values dropdown is set to EViews Supplied. The EViews default
starting values for 3 are obtained using the suggestion of McCullagh and Nelder to initialize
the IRLS algorithm at p; = (n;y,+0.5)/(n;+ 1) for the binomial proportion family, and
; = (y,+ y)/2 otherwise, then running a single IRLS coefficient update to obtain the ini-
tial 3. Alternately, you may specify starting values that are a fraction of the default values,
or you may instruct EViews to use your own values.

You may use the IRLS iterations edit field to instruct EViews to perform a fixed number of
additional IRLS updates to refine coefficient values prior to starting the specified estimation
algorithm.

The Max Iterations and Convergence edit fields are self-explanatory. Selecting the Display
settings checkbox instructs EViews to show detailed information on tolerances and initial
values in the equation output.

Coefficient Name

You may use the Coefficient name section of the dialog to change the coefficient vector from
the default C. EViews will create and resize the vector if necessary.

Examples

In this section, we offer three examples illustrating GLM estimation in EViews.

Exponential Regression

Our first example uses the Kennen (1983) dataset (“Strike.WF1”) on number of strikes
(NUMB), industrial production (IP), and dummy variable representing the month of Febru-
ary (FEB). To account for the non-negative response variable NUMB, we may estimate a
nonlinear specification of the form:

NUMB, = exp(B, + B,IP, + B,FEB,) + ¢, (30.3)

where €, ~ N(O, 02) . This model falls into the GLM framework with a log link and normal
family. To estimate this specification, bring up the GLM dialog and fill out the equation spec-
ification page as follows:

numb ¢ ip feb
then change the Link function to Log. For the moment, we leave the remaining settings and

those on the Options page at their default values. Click on OK to accept the specification
and estimate the model. EViews displays the following results:
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Dependent Variable: NUMB

Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Included observations: 103

Family: Normal

Link: Log

Dispersion computed using Pearson Chi-Square

Convergence achieved after 6 iterations

Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error  z-Statistic Prob.

C 1.727368 0.066206 26.09097 0.0000

P 2.664874 1.237904 2.152732 0.0313

FEB -0.391015 0.313445  -1.247476 0.2122

Mean dependent var 5.495146 S.D. dependent var 3.653829

Sum squared resid 1273.783 Log likelihood -275.6964

Akaike info criterion 5.411580 Schwarz criterion 5.488319

Hannan-Quinn criter. 5.442662 Deviance 1273.783

Deviance statistic 12.73783 Restr. deviance 1361.748

LR statistic 6.905754 Prob(LR statistic) 0.031654

Pearson SSR 1273.783 Pearson statistic 12.73783
Dispersion 12.73783

The top portion of the output displays the estimation settings and basic results, in particular
the choice of algorithm (Newton-Raphson with Marquardt steps), distribution family (Nor-
mal), and link function (Log), as well as the dispersion estimator, coefficient covariance esti-
mator, and estimation status. We see that the dispersion estimator is based on the Pearson
X2 statistic and the coefficient covariance is computed using the inverse of the (negative of
the) observed Hessian.

The coefficient estimates indicate that IP is positively related to the number of strikes, and
that the relationship is statistically significant at conventional levels. The FEB dummy vari-
able is negatively related to NUMB, but the relationship is not statistically significant.

The bottom portion of the output displays various descriptive statistics. Note that in place of
some of the more familiar statistics, EViews reports the deviance, deviance statistic (devi-
ance divided by the degrees-of-freedom) restricted deviance (for the model with only a con-
stant), and the corresponding LR test statistic and probability. The test indicates that the IP
and FEB variables are jointly significant at roughly the 3% level. Also displayed are the sum-
of-squared Pearson residuals and the estimate of the dispersion, which in this example is the
Pearson statistic.
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It may be instructive to examine (=) Equation: EQL Workfile: STRIKE:Strike\ - B Xx
the representatlons view Of thlS [ViewlProclObject] [PrintINameIFreeze] [EstimateIForecastIStatisesids]
equation. Simply go to the equa- Estimation Command:

tion toolbar or the main menu GLM(LINK=LOG) NUMB C IP FEB

and click on View/Representa-
tions to display the view.

Estimation Equation:

I_NUMB = C(1) + C(2)"IP + C(3F'FEB
Notably, the representations Forecasting Equation:

view displays both the specifica- I_NUME = C(1) + C(2)*IP + C(3)*FEB
tion of the linear predictor
(I_NUMB) as well as the mean
specification (EXP(I_NUMB)) in
terms of the EViews coefficient
names, and in terms of the esti-
mated values. These are the
expressions used when forecast-
ing the index or the dependent variable using the Forecast procedure (see “Forecasting” on
page 400).

MUMB = EXP({I_NUMB)

Substituted Coeflicients:

I_NUMB = 1.72736819473 + 2. 66487435337*IP - 0.3910146303858*FEB

MUMB = EXP({I_NUMB)

Binomial

We illustrate the estimation of GLM binomial logistic regression using a simple example
from Agresti (2007, Table 3.1, p. 69) examining the relationship between snoring and heart
disease. The data in the first page of the workfile “Snoring.WF1” consist of grouped bino-
mial response data for 2,484 subjects divided into four risk factor groups for snoring level
(SNORING), coded as 0, 2, 4, 5. Associated with each of the four groups is the number of
individuals in the group exhibiting heart disease (DISEASE) as well as a total group size
(TOTAL).

SNORING DISEASE TOTAL
0 24 1379
2 35 638
4 21 213
5 30 254

We may estimate a logistic regression model for these data in either raw frequency or pro-
portions form.

To estimate the model in raw frequency form, bring up the GLM equation dialog, enter the
linear predictor specification:

disease c snore
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select Binomial Count in the Family dropdown, and enter “TOTAL” in the Number of trials
edit field. Next switch over to the Options page and turn off the d.f. Adjustment for the
coefficient covariance. Click on OK to estimate the equation.

Dependent Variable: DISEASE
Method: Generalized Linear Model (Newton-Raphson / Marquardt
steps)

Date: 03/10/15 Time: 15:19

Sample: 14

Included observations: 4

Family: Binomial Count (n = TOTAL)

Link: Logit

Dispersion fixed at 1

Summary statistics are for the binomial proportions and implicit
variance weights used in estimation

Convergence achieved after 2 iterations

Coefficient covariance computed using observed Hessian

No d.f. adjustment for standard errors & covariance

The output header shows relevant information for the estimation procedure. Note in particu-
lar the EViews message that summary statistics are computed for the binomial proportions
data. This message is a hint at the fact that EViews estimates the binomial count model by
scaling the dependent variable by the number of trials, and estimating the corresponding
proportions specification.

Accordingly, you could have specified the model in proportions form. Simply enter the linear
predictor specification:

disease/total ¢ snoring

with Binomial Proportions specified in the Family dropdown and “TOTAL” entered in the
Number of trials edit field.
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Dependent Variable: DISEASE/TOTAL
Method: Generalized Linear Model (Newton-Raphson / Marquardt

steps)

Date: 03/10/15 Time: 15:21

Sample: 14

Included observations: 4

Family: Binomial Proportion (trials = TOTAL)

Link: Logit
Dispersion fixed at 1

Convergence achieved after 2 iterations
Coefficient covariance computed using observed Hessian
No d.f. adjustment for standard errors & covariance

Variable Coefficient Std. Error  z-Statistic Prob.

C -3.866248 0.166214  -23.26061 0.0000

SNORING 0.397337 0.050011 7.945039 0.0000

Mean dependent var 0.023490 S.D. dependent var 0.001736

Sum squared resid 0.000357 Log likelihood -11.53073

Akaike info criterion 6.765367 Schwarz criterion 6.458514

Hannan-Quinn criter. 6.092001 Deviance 2.808912

Deviance statistic 1.404456 Restr. deviance 65.90448

LR statistic 63.09557 Prob(LR statistic) 0.000000

Pearson SSR 2.874323 Pearson statistic 1.437162
Dispersion 1.000000

SNORING DISEASE N
0 1 24
2 1 35
4 1 21
5 1 30
0 0 1355

The top portion of the output changes to show the different settings, but the remaining out-
put is identical. In particular, there is strong evidence that SNORING is related to heart dis-
ease in these data, with the estimated probability of heart disease increasing with the level

It is worth mentioning that data of this form are sometimes represented in a frequency
weighted form in which the data each group is divided into two records, one for the bino-
mial successes, and one for the failures. Each each record contains the number of repeats in
the group and a binary indicator for success (the total number of records is G, where G is
the number of groups) The FREQ page of the “Snoring. WF1” workfile contains the data rep-
resented in this fashion:
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2 0 603
4 0 192
5 0 224

In this representation, DISEASE is an indicator for whether the record corresponds to indi-
viduals with heart disease or not, and N is the number of individuals in the category.

Estimation of the equivalent GLM model specified using the frequency weighted data is
straightforward. Simply enter the linear predictor specification:

disease c snoring

with either Binomial Proportions or Binomial Count specified in the Family dropdown.
Since each observation corresponds to a binary indicator, you should enter “1” enter as the
Number of trials edit field. The multiple individuals in the category are handled by entering
“N” in the Frequency weights field in the Options page.

Dependent Variable: DISEASE

Method: Generalized Linear Model (Newton-Raphson / Marquardt
steps)

Date: 03/10/15 Time: 15:16

Sample: 18

Included cases: 8

Total observations: 2484

Family: Binomial Count (n = 1)

Link: Logit

Frequency weight series: N

Dispersion fixed at 1

Convergence achieved after 6 iterations

Coefficient covariance computed using observed Hessian

No d.f. adjustment for standard errors & covariance

Variable Coefficient Std. Error z-Statistic Prob.

C -3.866248 0.166214  -23.26061 0.0000

SNORING 0.397337 0.050011 7.945039 0.0000

Mean dependent var 0.044283 S.D. dependent var 0.205765

Sum squared resid 102.1917 Log likelihood -418.8658

Akaike info criterion 0.338861 Schwarz criterion 0.343545

Hannan-Quinn criter. 0.340562 Deviance 837.7316

Deviance statistic 0.337523 Restr. deviance 900.8272

LR statistic 63.09557 Prob(LR statistic) 0.000000

Pearson SSR 2412.870 Pearson statistic 0.972147
Dispersion 1.000000

Note that while a number of the summary statistics differ due to the different representation
of the data (notably the Deviance and Pearson SSRs), the coefficient estimates and LR test
statistics in this case are identical to those outlined above. There will, however, be substan-
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tive differences between the two results in settings when the dispersion is estimated since
the effective number of observations differs in the two settings.

Lastly the data may be represented in individual trial form, which expands observations for
each trial in the group into a separate record. The total number of records in the data is
Zni, where n, is the number of trials in the ¢-th (of G') group. This representation is the
traditional ungrouped binary response form for the data. Results for data in this representa-
tion should match those for the frequency weighted data.

Binomial Proportions

Papke and Wooldridge (1996) apply GLM techniques to the analysis of fractional response
data for 401K tax advantaged savings plan participation rates (“401kjae.WF1”). Their analy-
sis focuses on the relationship between plan participation rates (PRATE) and the employer
matching contribution rates (MRATE), accounting for the log of total employment
(LOG(TOTEMP), LOG(TOTEMP)A2), plan age (AGE, AGE"2), and a binary indicator for
whether the plan is the only pension plan offered by the plan sponsor (SOLE).

We focus on two of the equations estimated in the paper. In both, the authors employ a GLM
specification using a binomial proportion family and logit link. Information on the binomial
group size n, is ignored, but variance misspecification is accounted for in two ways: first
using a binomial QMLE with GLM standard errors, and second using the robust Huber-
White covariance approach.

To estimate the GLM standard error specification, we first call up the GLM dialog and enter
the linear predictor specification:

prate mprate log(totemp) log(totemp)”2 age age”2 sole
Next, select the Binomial Proportion family, and enter the sample description

@all if mrate<=1

Lastly, we leave the Number of trials edit field at the default value of 1, but correct for het-
erogeneity by going to the Options page and specifying Pearson Chi-Sq. dispersion esti-
mates. Click on OK to continue.

The resulting estimates correspond the coefficient estimates and first set of standard errors
in Papke and Wooldridge (Table II, column 2):
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Dependent Variable: PRATE

Method: Generalized Linear Model (Newton-Raphson / Marquardt
steps)

Date: 03/10/15 Time: 15:26

Sample: 14735 IF MRATE<=1

Included observations: 3784

Family: Binomial Proportion (trials = 1) Quasi-likelihood

Link: Logit

Dispersion computed using Pearson Chi-Square

Convergence achieved after 4 iterations

Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error  z-Statistic Prob.
MRATE 1.390080 0.100368 13.84981 0.0000
LOG(TOTEMP) -1.001875 0.111222  -9.007914 0.0000
LOG(TOTEMP)A2 0.052186 0.007105 7.345545 0.0000
AGE 0.050113 0.008710 5.753136 0.0000
AGE"2 -0.000515 0.000211  -2.444532 0.0145
SOLE 0.007947 0.046785 0.169860 0.8651
C 5.057998 0.426942 11.84703 0.0000
Mean dependent var 0.847769 S.D. dependent var 0.169961
Sum squared resid 92.69516 Quasi-log likelihood -8075.397
Deviance 765.0353 Deviance statistic 0.202551
Restr. deviance 895.5505 Quasi-LR statistic 680.4838
Prob(Quasi-LR stat) 0.000000 Pearson SSR 724.4200
Pearson statistic 0.191798 Dispersion 0.191798

Papke and Wooldridge offer a detailed analysis of the results (p. 628-629), which we will
not duplicate here. We will point out that the estimate of the dispersion (0.191798) taken
from the Pearson statistic is far from the restricted value of 1.0.

The results using the QML with GLM standard errors rely on validity of the GLM assumption
for the variance given in Equation (30.2), an assumption that may be too restrictive. We may
instead estimate the equation without imposing a particular conditional variance specifica-
tion by computing our estimates using a robust Huber-White sandwich method. Click on
Estimate to bring up the equation dialog, select the Options tab, then change the Covari-
ance method from Default to Huber/White. Click on OK to estimate the revised specifica-
tion:
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Dependent Variable: PRATE

Method: Generalized Linear Model (Newton-Raphson / Marquardt
steps)

Date: 03/10/15 Time: 15:27

Sample: 14735 IF MRATE<=1

Included observations: 3784

Family: Binomial Proportion (trials = 1)

Link: Logit

Dispersion fixed at 1

Convergence achieved after 5 iterations

Coefficient covariance computed using the Huber-White method with

observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.
MRATE 1.390080 0.107792 12.89596 0.0000
LOG(TOTEMP) -1.001875 0.110524  -9.064757 0.0000
LOG(TOTEMP)A2 0.052186 0.007134 7.315681 0.0000
AGE 0.050113 0.008852 5.661091 0.0000
AGE"2 -0.000515 0.000212  -2.432326 0.0150
SOLE 0.007947 0.050242 0.158172 0.8743
C 5.057998 0.421199 12.00858 0.0000
Mean dependent var 0.847769 S.D. dependent var 0.169961
Sum squared resid 92.69516 Log likelihood -1179.279
Akaike info criterion 0.626997 Schwarz criterion 0.638538
Hannan-Quinn criter. 0.631100 Deviance 765.0353
Deviance statistic 0.202551 Restr. deviance 895.5505
LR statistic 130.5153 Prob(LR statistic) 0.000000
Pearson SSR 724.4200 Pearson statistic 0.191798

Dispersion 1.000000

EViews reports the new method of computing the coefficient covariance in the header. The
coefficient estimates are unchanged, since the alternative computation of the coefficient
covariance is a post-estimation procedure, and the new standard estimates correspond the
second set of standard errors in Papke and Wooldridge (Table II, column 2). Notably, the use
of an alternative estimator for the coefficient covariance has little substantive effect on the
results.

Working with a GLM Equation

EViews offers various views and procedures for a estimated GLM equation. Some, like the
Gradient Summary or the coefficient Covariance Matrix view are self-explanatory. In this
section, we offer relevant comment on the remaining views.

Residuals

The main equation output offers summary statistics for the sum-of-squared response residu-
als (“Sum squared resid”), and the sum-of-squared Pearson residuals (“Pearson SSR”).
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The Actual, Fitted, Residual views and Residual Diagnostics allow you to examine proper-
ties of your residuals. The Actual, Fitted, Residual Table and Graph, show the fit of the
unweighted data. As the name suggests, the Standardized Residual Graph displays the
standardized (scaled Pearson) residuals.

The Residual Diagnostics show Histograms of the standardized residuals and Correlo-
grams of the standardized residuals and the squared standardized residuals.

The Make Residuals proc allows you to save the Ordi- Make Residuale ==
nary (response), Standardized (scaled Pearson), or Gen- e

eralized (score) residuals into the workfile. The latter @ Ordinary

may be useful for constructing test statistics (note, how- it:n”:r:i‘:::d
ever, that in some cases, it may be more useful to com- —

pute the gradients of the model directly using Proc/Make Name for resid series [ goncel |
Gradient Group). resido1

Given standardized residuals SRES for equation EQ1, the
unscaled Pearson residuals may be obtained using the command

series pearson = sres * (@sqgrt(egl.@dispersion)
Forecasting

EViews offers built-in tools for producing in and out-of-sample forecasts (fits) from your
GLM estimated equation. Simply click on the Forecast button on your estimated equation to
bring up the forecast dialog, then enter the desired settings.

You should first use the radio but- Forecast =
tons to specify whether you wish to Y
forecast the expected dependent ELlE
variable p; or the linear index 7;. Series to forecast
'@ Expected dependent var. Index - where E(Dep) = exp(Index )

Next, enter the name of the series to )

Series names Method
hold the forecast output, and set the Forecast name: | numbf e
forecast Sample {no dynamics in equation)

Structural (ignore ARMA)
Coef uncertainty in 5.E. calc

Lastly, specify whether you wish to

produce a forecast graph and Forecast sample Output
. . b
whether you wish to fill non-fore- 1103 g Porecastaraen
Forecast evaluation
cast values in the workfile with
actual VaerS or to fill them Wlth | Insert actuals for out-of-sample observations
NAs. For most cross-section applica- Cancel

tions, we recommend that you
uncheck this box.

Click on OK to produce the forecast.
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Note that while EViews does not presently offer a menu item for saving the fitted GLM vari-
ances or scaled variances, you can easily obtain results by saving the ordinary and standard-
ized residuals and taking ratios (“Residuals” on page 418). If ORESID are the ordinary and
SRESID are the standardized residuals for equation EQ1, then the commands

series glmsvar = (oresid / sresid) "2

series glmvar = glmvar * eqgl.@dispersion
produce the scaled variance and unscaled variances, respectively.

Lastly, you should use Proc/Make Model to create a model object for more complicated
simulation from your GLM equation.

Testing

You may perform Wald tests of coefficient restrictions. Simply select View/Coefficient Diag-
nostics/Wald - Coefficient Restrictions, then enter your restrictions in the edit field. For the
Papke-Wooldridge example above with Huber-White robust covariances, we may use a Wald
test to evaluate the joint significance of AGE”2 and SOLE by entering the restriction

“C(5) =C(6) =0” and clicking on OK to perform the test.

Wald Test:
Equation: EQ2_QMLE_R
Null Hyp othesis: C(5)=C(6)=0

Test Statistic Value df Probability
F-statistic 2.970226 (2, 3777) 0.0514
Chi-square 5.940451 2 0.0513

Null Hyp othesis Summary:

Normalized Restriction (= 0) Value Std. Err.
C(5) -0.000515 0.000212
C(6) 0.007947 0.050242

Restrictions are linear in coefficients.

The test results show joint-significance at just above the 5% level. The Confidence Inter-
vals and Confidence Ellipses... views will also employ the robust covariance matrix esti-
mates.

The Omitted Variables... and Redundant Variables... views and the Ramsey RESET Test...
views are likelihood ratio based tests. Note that the RESET test is a special case of an omit-
ted variables test where the omitted variables are powers of the fitted values from the origi-
nal equation.
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We illustrate these tests by performing the RESET test on the first Papke-Wooldridge QMLE
equation with GLM covariances. Select View/Stability Diagnostics/Ramsey Reset Test...
and change the default to include 2 fitted terms in the test equation.

Ramsey RESET Test

Equation: EQ2_QMLE

Specification: PRATE MRATE LOG(TOTEMP) LOG(TOTEMP)"2 AGE
AGE”2 SOLE C

Omitted Variables: Powers of fitted values from 2 to 3

Value df Probability
Fstatistic 0.311140 (2, 3775) 0.7326
QLR* statistic 0.622280 2 0.7326
F+test summary:
Mean
Sum of Sq. df Squares
Test Deviance 0.119389 2 0.059694

Restricted Deviance 765.0353 3777 0.202551
Unrestricted Deviance  764.9159 3775 0.202627
Dispersion SSR 724.2589 3775 0.191857

QLR* test summary:

Value df
Restricted Deviance 765.0353 3777
Unrestricted Deviance  764.9159 3775
Dispersion 0.191857

The top portion of the output shows the test settings, and the test summaries. The bottom
portion of the output shows the estimated test equation. The results show little evidence of
nonlinearity.

Notice that in contrast to LR tests in most other equation views, the likelihood ratio test sta-
tistics in GLM equations are obtained from analysis of the deviances or quasi-deviances.
Suppose D, is the unscaled deviance under the null and D, is the corresponding statistic
under the alternative hypothesis. The usual asymptotic x2 likelihood ratio test statistic may
be written in terms of the difference of deviances with common scaling,

D,- D

% ~x (30.4)
as N — o, where ¢ is an estimate of the dispersion and r is the fixed number of restric-
tions imposed by the null hypothesis. @ is either a specified fixed value or an estimate
under the alternative hypothesis using the specified dispersion method. When D, and D,
contain the quasi-deviances, the resulting statistic is the quasi-likelihood ratio (QLR) statis-
tic (Wooldridge, 1997).

If ¢ is estimated, we may also employ the F-statistic variant of the test statistic:
(Dy-D))/r

5 F.yn_, (30.5)
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where N — p is the degrees-of-freedom under the alternative and ¢ is an estimate of the
dispersion. EViews will estimate ¢ under the alternative hypothesis using the method spec-
ified in your equation.

We point out that the Ramsey test results (and all other GLM LR test statistics) presented
here may be problematic since they rely on the GLM variance assumption, Papke and Wool-
dridge offer a robust LM formulation for the Ramsey RESET test. This test is not currently
built-into EViews, but which may be constructed with some effort using auxiliary results
provided by EViews (see Papke and Wooldridge, p. 625 for details on the test construction).

Technical Details

The following discussion offers a brief technical summary of GLMs, describing specification,
estimation, and hypothesis testing in this framework. Those wishing greater detail should
consult the McCullagh and Nelder’s (1989) monograph or the book-length survey by Hardin
and Hilbe (2007).

Distribution

A GLM assumes that Y, are independent random variables following a linear exponential

family distribution with density:

[0, ¢, w) = exp(w+ (6. v,) (30.6)
2 7 ’ 2 ¢/wZ ) ) 2 °
where b and c¢ are distribution specific functions. 6, = 6(u;), which is termed the canon-

ical parameter, fully parameterizes the distribution in terms of the conditional mean, the dis-
persion value ¢ is a possibly known scale nuisance parameter, and w; is a known prior
weight that corrects for unequal scaling between observations with otherwise constant ¢ .

The exponential family assumption implies that the mean and variance of Y. may be writ-

ten as 1
E(Y,) = 0b'(0) =,
(30.7)
Var(Y;) = (¢/w) b"(0;) = (¢/wy) V (1)

where b'(6,) and b"(8;) are the first and second derivatives of the b function, respectively,
and VM is a distribution-specific variance function that depends only on u;.

EViews supports the following exponential family distributions:

Family 0 b(8,) Vv ¢

Normal Wi 6, /2 1 o

Gamma -1/p, —log(-9,) M2 v
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Inverse Gaussian -1 /(21"12‘ ) _(=20)"? 2 N

Poisson log(u;) 6‘9' U 1

Binomial Proportion D,
log( )

(n; trials) log (1 + 601) p(l—p;) 1

p(l+ kp) 1

Negative Binomial ki, ~log(1 - 60’)
(k; is known) Og(l + ki”i) k.

13

The corresponding density functions for each of these distributions are given by:

e Normal
2 2 -1/2 —(y?_QyiMi+Mi2)
Sl 0, w) = (2mo” /w; ex .
fys ps 02 w) = (210 /w)) | exp _ (30.8)
207/ w;
for —oo < y,; < o0.
® Gamma
T
(yﬂ“i/ﬂ-i) ‘exp(-y;/(n;/ 1)
My 7)) = 30.9
f(yg M’z Tz) yZF(TZ) ( )
for y,> 0 where r;, = w,;/v.
* Inverse Gaussian
1/2 ~(y; - 1)’
fys wp N, w;) = (27ry‘:-’)\/ w;) exp(%j (30.10)
2yp; (N w;)
for y;> 0.
® Poisson
[ exp (—p)
Sy my = L (30.11)
Y
for y, = 0,1, 2, ... The dispersion is restricted to be 1 and prior weighting is not
permitted.
e Binomial Proportion
n; n;y; n(1-y;)
i ngs ) = ( jl‘z’ (1-p) (30.12)
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for 0 <y,<1 where n, = 1, 2, ... is the number of binomial trials. The dispersion

is restricted to be 1 and the prior weights w;, = n,.

¢ Negative Binomial

1 U'(y; +1/k;) ( kip; )y( 1 )1//‘9 (30.13)
Mo ko 7) = Fo P/ By \ T k) \T5Fom, '
for y, = 0,1, 2, ... The dispersion is restricted to be 1 and prior weighting is not
permitted.

In addition, EViews offers support for the following quasi-likelihood families:

Quasi-Likelihood Family VM
Poisson
Binomial Proportion w(l—p)
Negative Binomial (k) w(l + kp)
Power Mean () u
Exponential Mean e
Binomial Squared 121 = p)?

The first three entries in the table correspond to overdispersed or prior weighted versions of
the specified distribution. The last three entries are pure quasi-likelihood distributions that
do not correspond to exponential family distributions. See “Quasi-likelihoods,” beginning on
page 413 for additional discussion.

Link

The following table lists the names, functions, and associated range restrictions for the sup-
ported links:

Name Link Function g(u) Range of u
Identity s (=00, )
Log log(p) (0, )
Log-Complement log(1 - p) (=, 1)
Logit log (/ (1 - ) (0, 1)
Probit 3 () (0,1)
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Log-Log —log(-log(n)) (0, 1)
Complementary
Lo Los log(~log(1 - )) (0, 1)
Inverse 1/p (—o0, )
P if p#0
Power (p) H 1 P (0, o)
log () ifp=0
—u))? ip#0
Power Odds Ratio (p) /(1= p) 1 P 0, 1)
log(p/(1-p)) ifp=0
P_ if p=0
Box-Cox (p) (W -1)/p 1 P (0, o)
log(p)  fp=0
Box-Cox Odds Ratio | ((p/(1-p))’-1)/p ifp#0 0.1)
(p) log(u/(1-p))  Hp=0 ’

EViews does not restrict the link choices associated with a given distributional family. Thus,
it is possible for you to choose a link function that returns invalid mean values for the spec-
ified distribution at some parameter values, in which case your likelihood evaluation and
estimation will fail.

One important role of the inverse link function is to map the real number domain of the lin-
ear index into the range of the dependent variable. Consequently the choice of link function
is often governed in part by the desire to enforce range restrictions on the fitted mean. For
example, the mean of a binomial proportions or negative binomial model must be between 0
and 1, while the Poisson and Gamma distributions require a positive mean value. Accord-
ingly, the use of a Logit, Probit, Log-Log, Complementary Log-Log, Power Odds Ratio, or
Box-Cox Odds Ratio is common with a binomial distribution, while the Log, Power, and Box-
Cox families are generally viewed as more appropriate for Poisson or Gamma distribution
data.

EViews will default to use the canonical link for a given distribution. The canonical link is
the function that equates the canonical parameter 6 of the exponential family distribution
and the linear predictor = g(u) = 0(p). The canonical links for relevant distributions
are given by:

Family Canonical Link
Normal Identity
Gamma Inverse

Inverse Gaussian Power (p = -2)
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Poisson Log

Binomial Proportion Logit

The negative binomial canonical link is not supported in EViews so the log link is used as
the default choice in this case. We note that while the canonical link offers computational
and conceptual convenience, it is not necessarily the best choice for a given problem.

Quasi-likelihoods

Wedderburn (1974) proposed the method of maximum quasi-likelihood for estimating
regression parameters when one has knowledge of a mean-variance relationship for the
response, but is unwilling or unable to commit to a valid fully specified distribution func-
tion.

Under the assumption that the Y are independent with mean u; and variance

Var(Y;) = V,(p)(¢/ w,), the function,

Yi— Ky
CT e e @) = G )
has the properties of an individual contribution to a score. Accordingly, the integral,
By "
Yi—
s bw) = [ —— it 30.15
Qris Y &, w;) j(q&/wi)vu(t) (30.15)
y

if it exists, should behave very much like a log-likelihood contribution. We may use to the
individual contributions (), to define the quasi-log-likelihood, and the scaled and unscaled
quasi-deviance functions

N

Z Q(Mﬂ Ui O, wi)
i=1 (30.16)
D*(p, y, ¢, w) = =2q(p, y, ¢, w)

D(p, y, w) = =20 D*(n, y, ¢, w)

We may obtain estimates of the coefficients by treating the quasi-likelihood ¢(p, y, ¢, w)
as though it were a conventional likelihood and maximizing it respect to 3. As with conven-
tional GLM likelihoods, the quasi-ML estimate of 3 does not depend on the value of the dis-
persion parameter ¢ . The dispersion parameter is conventionally estimated using the
Pearson x2 statistic, but if the mean-variance assumption corresponds to a valid exponen-
tial family distribution, one may also employ the deviance statistic.

Q(l’(" y’ ¢7 w)

For some mean-variance specifications, the quasi-likelihood function corresponds to an ordi-
nary likelihood in the linear exponential family, and the method of maximum quasi-likeli-
hood is equivalent to ordinary maximum likelihood. For other specifications, there is no
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corresponding likelihood function. In both cases, the distributional properties of the maxi-
mum quasi-likelihood estimator will be analogous to those obtained from maximizing a
valid likelihood (McCullagh 1983).

We emphasize the fact that quasi-likelihoods offer flexibility in the mean-variance specifica-
tion, allowing for variance assumptions that extend beyond those implied by exponential
family distribution functions. One important example occurs when we modify the variance
function for a Poisson, Binomial Proportion, or Negative Binomial distribution to allow a
free dispersion parameter.

Furthermore, since the quasi-likelihood framework only requires specification of the mean
and variance, it may be used to relax distributional restrictions on the form of the response
data. For example, while we are unable to evaluate the Poisson likelihood for non-integer
data, there are no such problems for the corresponding quasi-likelihood based on mean-vari-
ance equality.

A list of common quasi-likelihood mean-variance assumptions is provided below, along with
names for the corresponding exponential family distribution:

V,.(n) Restrictions Distribution
1 None Normal
w w>0,920 Poisson
M2 w>0,y>0 Gamma
' p>0,7r#0,1,2
e None
w(l-p) 0<pu<1,0<y<1 | Binomial Proportion
W1 -p) O<p<1,0<y<1
w(l+ kp) w>0,92>20 Negative Binomial

Note that the power-mean ", exponential mean exp (u), and squared binomial proportion
M2(1 - ;L)2 variance assumptions do not correspond to exponential family distributions.

Estimation

Estimation of GLM models may be divided into the estimation of three basic components:
the 8 coefficients, the coefficient covariance matrix ¥, and the dispersion parameter ¢ .
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Coefficient Estimation

The estimation of § is accomplished using the method of maximum likelihood (ML). Let
vy = (y,..,yy) and u = (py, ..., py)’ . We may write the log-likelihood function as
N

i=1

Differentiating I(u, y, ¢, w) with respect to 3 yields

(%l _ 3 1010gfkyg(;7;a P, W;) (Z_‘:;)
N 4 . . . .
S

g =

=) %(yi_“ij(%)x
¢ \V,(p)/\Non/ !
where the last equality uses the fact that 66,/ 0p = V,(n z')_l . Since the scalar dispersion

parameter ¢ is incidental to the first-order conditions, we may ignore it when estimating 3 .
In practice this is accomplished by evaluating the likelihood function at ¢ = 1.

=

It will prove useful in our discussion to define the scaled deviance D* and the unscaled
deviance D as

D*(,U., Y, ¢7 w) = —2{[(,[4, Y, ¢, w) - l(ya Y, ¢7 ’U})}
D(/'Lv Y, w) = ¢D*(/~'L7 Y, @, w)

respectively. The scaled deviance D* compares the likelihood function for the saturated
(unrestricted) log-likelihood, I(y, y, ¢, w) , with the log-likelihood function evaluated at an

arbitrary p, l(p, y, &, w).

(30.19)

The unscaled deviance D is simply the scaled deviance multiplied by the dispersion, or
equivalently, the scaled deviance evaluated at ¢ = 1. It is easy to see that minimizing
either deviance with respect to 8 is equivalent to maximizing the log-likelihood with
respect to the .

In general, solving for the first-order conditions for 8 requires an iterative approach. EViews
offers three different algorithms for obtaining solutions: Newton-Raphson, BHHH, and IRLS
- Fisher Scoring. All of these methods are variants of Newton’s method but differ in the
method for computing the gradient weighting matrix used in coefficient updates (see “Opti-
mization Algorithms” on page 1095).

IRLS, which stands for Iterated Reweighted Least Squares, is a commonly used algorithm for
estimating GLM models. IRLS is equivalent to Fisher Scoring, a Newton-method variant that
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employs the Fisher Information (negative of the expected Hessian matrix) as the update
weighting matrix in place of the negative of the observed Hessian matrix used in standard
Newton-Raphson, or the outer-product of the gradients (OPG) used in BHHH.

In the GLM context, the IRLS-Fisher Scoring coefficient updates have a particularly simple
form that may be implemented using weighted least squares, where the weights are known
functions of the fitted mean that are updated at each iteration. For this reason, IRLS is partic-
ularly attractive in cases where one does not have access to custom software for estimating
GLMs. Moreover, in cases where one’s preference is for an observed-Hessian Newton
method, the least squares nature of the IRLS updates make the latter well-suited to refining
starting values prior to employing one of the other methods.

Coefficient Covariance Estimation

You may choose from a variety of estimators for I, the covariance matrix of (3. In describ-
ing the various approaches, it will be useful to have expressions at hand for the expected
Hessian (1), the observed Hessian ( H), and the outer-product of the gradients (J) for GLM
models. Let X = (X;, X, ..., Xy)'. Then given estimates of 3 and the dispersion & (See
“Dispersion Estimation,” on page 417), we may write

1= —E(%} ; = X'A/X
I = _(%) - X'ApX (30.20)
N

N

= X'A;X

-3

i=1

B

where A;, Ay, and A are diagonal matrices with corresponding i-th diagonal elements

_1/0p N2
Ao = (w/9) VG0 (5)
. . _2(0uN2OV, (i) N
Ay i = )\L,;+(wl-/@>)(yz—uz){ V(i) (%) (—aﬂ )— V,(pi) (5_772j} (30.21)
2
A~ AN 0 i
i = {(w/@)(m—m) V, () 1(%)}

Given correct specification of the likelihood, asymptotically consistent estimators for the ¥
may be obtained by taking the inverse of one of these estimators of the information matrix.
In practice, one typically matches the covariance matrix estimator with the method of esti-
mation (i.e., using the inverse of the expected information estimator £; = I ' when esti-
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mation is performed using IRLS) but mirroring is not required. By default, EViews will pair
the estimation and covariance methods, but you are free to mix and match as you see fit.

If the variance function is incorrectly specified, the GLM inverse information covariance esti-

mators are no longer consistent for ¥ . The Huber-White Sandwich estimator (Huber 1967,

White 1980) permits non GLM-variances and is robust to misspecification of the variance

function. EViews offers two forms for the estignatorl; you may choose between one that

employs the expected information (X¥;; = 7" JT ) or one that uses the observed Hessian
2 —1 -1

(Xgs=H JH ).

Lastly, you may choose to estimate the coefficient covariance with or without a degree-of-
freedom correction. In practical terms, this computation is most easily handled by using a
non d.f.-corrected version of ¢ in the basic calculation, then multiplying the coefficient
covariance matrix by N/ (N — k) when you want to apply the correction.

Dispersion Estimation

Recall that the dispersion parameter ¢ may be ignored when estimating 3. Once we have
obtained B, we may turn attention to obtaining an estimate of ¢ . With respect to the esti-
mation of ¢, we may divide the distribution families into two classes: distributions with a
free dispersion parameter, and distributions where the dispersion is fixed.

For distributions with a free dispersion parameter (Normal, Gamma, Inverse Gaussian), we
must estimate ¢ . An estimate of the free dispersion parameter ¢ may be obtained using the
generalized Pearson x2 statistic (Wedderburn 1972, McCullagh 1983),

N A 2
1 w(y; — i)
dp = Nk > (30.22)
i=1

V, (i)

where k£ is the number of estimated coefficients. In linear exponential family settings, ¢
may also be estimated using the unscaled deviance statistic (McCullagh 1983),
D(p, y, w)
= —25 2 30.23
dp N_F& ( )
For distributions where the dispersion is fixed (Poisson, Binomial, Negative Binomial), ¢ is
naturally set to the theoretically proscribed value of 1.0.

In fixed dispersion settings, the theoretical restriction on the dispersion is sometimes vio-
lated in the data. This situation is generically termed overdispersion since ¢ typically
exceeds 1.0 (though underdispersion is a possibility). At a minimum, unaccounted for
overdispersion leads to invalid inference, with estimated standard errors of the 3 typically
understating the variability of the coefficient estimates.

The easiest way to correct for overdispersion is by allowing a free dispersion parameter in
the variance function, estimating ¢ using one of the methods described above, and using
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the estimate when computing the covariance matrix as described in “Coefficient Covariance
Estimation,” on page 416. The resulting covariance matrix yields what are sometimes
termed GLM standard errors.

Bear in mind that estimating ¢ given a fixed dispersion distribution violates the assump-
tions of the likelihood so that standard ML theory does not apply. This approach is, how-
ever, consistent with a quasi-likelihood estimation framework (Wedderburn 1974), under
which the coefficient estimator and covariance calculations are theoretically justified (see
“Quasi-likelihoods,” beginning on page 413). We also caution that overdispersion may be
evidence of more serious problems with your specification. You should take care to evaluate
the appropriateness of your model.

Computational Details

The following provides additional details for the computation of results:

Residuals
There are several different types of residuals that are computed for a GLM specification:
e The ordinary or response residuals are defined as
€oi = (y;— i) (30.24)

The ordinary residuals are simply the deviations from the mean in the original scale of
the responses.

¢ The weighted or Pearson residuals are given by

&pi = [/ w) V(2] (i - o) (30.25)

The weighted residuals divide the ordinary response variables by the square root of
the unscaled variance. For models with fixed dispersion, the resulting residuals should
have unit variance. For models with free dispersion, the weighted residuals may be
used to form an estimator of ¢ .

e The standardized or scaled Pearson residuals) are computed as
e = 1@/ w) V(2] (9, - ) (30.26)
The standardized residuals are constructed to have approximately unit variance.
¢ The generalized or score residuals are given by

eoi = [(8/w) V, (k)] B/ 0n)(y: - o) (30.27)

The scores of the GLM specification are obtained by multiplying the explanatory vari-
ables by the generalized residuals (Equation (30.18)). Not surprisingly, the general-
ized residuals may be used in the construction of LM hypothesis tests.
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Sum of Squared Residuals

EViews reports 2two different sums-of-squared residualsQ: a basic sum of squared residuals,
SSR = Zf-:m- , and the Pearson SSR, SSR, = Z@m-

Dividing the Pearson SSR by (/N — k) produces the Pearson X2 statistic which may be used
as an estimator of ¢, (“Dispersion Estimation” on page 417) and, in some cases, as a mea-
sure of goodness-of-fit.

Log-likelihood and Information Criteria

EViews always computes GLM log-likelihoods using the full specification of the density
function: scale factors, inessential constants, and all. The likelihood functions are listed in
“Distribution,” beginning on page 409.

If your dispersion specification calls for a fixed value for ¢, the fixed value will be used to
compute the likelihood. If the distribution and dispersion specification call for ¢ to be esti-
mated, ¢ will be used in the evaluation of the likelihood. If the specified distribution calls
for a fixed value for ¢ but you have asked EViews to estimate the dispersion, or if the spec-
ified value is not consistent with a valid likelihood, the log-likelihood will not be computed.

The AIC, SIC, and Hannan-Quinn information criteria are computed using the log-likelihood
value and the usual definitions (Appendix E. “Information Criteria,” on page 1111).

It is worth mentioning that computed GLM likelihood value for the normal family will differ
slightly from the likelihood reported by the corresponding LS estimator. The GLM likelihood
follows convention in using a degree-of-freedom corrected estimator for the dispersion while
the LS likelihood uses the uncorrected ML estimator of the residual variance. Accordingly,
you should take care not compare likelihood functions estimated using the two methods.

Deviance and Quasi-likelihood

EViews reports the unscaled deviance D(u, y, w) or quasi-deviance. The quasi-deviance
and quasi-likelihood will be reported if the evaluation of the likelihood function is invalid.
You may divide the reported deviance by (/N — k) to obtain an estimator of the dispersion,
or use the deviance to construct likelihood ratio or F-tests.

In addition, you may divide the deviance by the dispersion to obtain the scaled deviance. In
some cases, the scaled deviance may be used as a measure of goodness-of-fit.
Restricted Deviance and LR Statistic

The restricted deviance and restricted quasi-likelihood reported on the main page are the
values for the constant only model.

The entries for “LR statistic” and “Prob(LR statistic)” reported in the output are the corre-
sponding xzf 1 likelihood ratio tests for the constant only null against the alternative given
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by the estimated equation. They are the analogues to the “F-statistics” results reported in
EViews least squares estimation. As with the latter F-statistics, the test entries will not be
reported if the estimated equation does not contain an intercept.
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Chapter 31. Robust Least Squares

Ordinary least squares estimators are sensitive to the presence of observations that lie
outside the norm for the regression model of interest. The sensitivity of conventional
regression methods to these outlier observations can result in coefficient estimates that
do not accurately reflect the underlying statistical relationship.

Robust least squares refers to a variety of regression methods designed to be robust, or
less sensitive, to outliers. EViews offers three different methods for robust least
squares: M-estimation (Huber, 1973), S-estimation (Rousseeuw and Yohai, 1984), and
MM-estimation (Yohai 1987). The three methods differ in their emphases:

e M-estimation addresses dependent variable outliers where the value of the
dependent variable differs markedly from the regression model norm (large
residuals).

e S-estimation is a computationally intensive procedure that focuses on outliers in
the regressor variables (high leverages).

e MM-estimation is a combination of S-estimation and M-estimation. The proce-
dure starts by performing S-estimation, and then uses the estimates obtained
from S-estimation as the starting point for M-estimation. Since MM-estimation is
a combination of the other two methods, it addresses outliers in both the depen-
dent and independent variables.

Least squares diagnostics for outlier detection are described in greater detail in “Lever-
age Plots” on page 230 and “Influence Statistics” on page 231.

Background

Before describing the mechanics of estimating robust regression models in EViews, it
will be useful to review the basics of the three estimation methods and to outline alter-
native approaches for computing the covariance matrix of the coefficient estimates.

M-estimation

The traditional 