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Abstract

An overlapping generations model featuring stochastic birth and death rates is

solved in general equilibrium. I provide su¢ cient conditions for the interest rate to be

decreasing in the birth rate and increasing in the death rate. If preferences are recursive,

demographic uncertainty is priced in �nancial markets, and the equity premium is

higher during periods characterized by a high birth rate and low mortality than in

times of a low birth and high death rate. Demographic changes explain substantial

parts of the time variation in the real interest rate, equity premium and conditional

stock price volatility.
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1 Introduction

In the developed world there is a substantial demographic transition in progress caused

by the post World War II baby boom and declining mortality rates. The demographic

change is likely to have a signi�cant impact on the global economy, including GDP growth

prospects, wealth redistributions between generations, the solvency of social security systems,

and �nancial markets. An often discussed hypothesis is that the past baby boom caused a

stock market run-up in the 1980s and 1990s and may cause an asset market meltdown as

baby boomers retire over the next two decades.

Most related literature asks how retirement of the baby boomers a¤ects asset prices. In

the long-run there is a time variation in asset prices as baby boomers proceed through the

life-cycle and the "average savings behavior" across the population slowly and predictably

changes. Empirical studies suggest that in the long-run asset prices, price-dividend ratios,

the interest rate and equity premia are linked to various demographic quantities (Mankiw

and Weil (1989), Yoo (1994), Bakshi and Chen (1994), Erb, Harvey and Viskanta (1997),

Bergantino (1998), Poterba (2001), Geanakoplos et al. (2004), Goyal (2004), Ang and Mad-

daloni (2005), Huynh et al. (2006), Favero et al. (2007), Acemoglu and Johnson (2007),

Hanewald (2010) and Takats (2010)). A major problem of empirical studies is that available

data samples are limited and estimates are noisy (Poterba (2001)).

Given the limitations of empirical tests, it is useful to study the implications of demo-

graphic changes in a stylized theoretical model. Calibrations by Brooks (2000, 2004) and

Geanakoplos et al. (2004) suggest that predictable baby booms and busts cause the interest

rate and equity prices to vary over time as the baby boomers live through the life-cycle.

Most of the results are driven by the assumption that consumption-to-wealth ratios di¤er

across cohorts because agents face a �xed lifetime horizon. Abel (2001, 2003) shows in an

analytically tractable model that the price of a unit of capital is increasing in the birth rate

and follows a mean reverting process. Unfortunately, the risk-free rate and the equity pre-

mium cannot be disentangled in his model. Auerbach and Kotliko¤ (1987), Kotliko¤ et al.

(2001), Fehr et al. (2003), and Fehr et al. (2004a, 2004b) use dynamic general equilibrium

simulation models to explore the possible impact of deterministic trends in birth and death
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rates on long-run economic and �scal conditions.

I contribute in several ways to the literature. First, I explore how asset prices are a¤ected

by demographic transitions and by uncertainty about the timing of future demographic

changes. We did not know how long the post-war baby boom was going to last and neither

do we know the timing of another large demographic transition. Investors do not know

whether and when there will be a war, an epidemic outbreak or a major advancement in

(medical) research and technology which could substantially a¤ect life expectancy.

Second, the main economic mechanism in my model is the redistribution risk of wealth

and consumption within the population induced by shocks to birth or death rates. Re-

distributions of consumption within the population are important because pricing depends

solely on consumption growth of existing agents in an OLG model.1 In contrast, in Brooks

(2000, 2004) and Geanakoplos et al. (2004) it is not the consumption growth of existing

agents which drives the results, but baby booms and busts cause changes in the average

life expectancy in the population and hence, changes in the representative agent�s marginal

propensity to consume or consumption-to-wealth ratio.2

Third, I solve in general equilibrium an analytically tractable overlapping generations

(OLG) model with stochastic birth and mortality rates. A key contribution is the tractability

which allows me to derive novel qualitative results. I am able to disentangle and study various

o¤setting economic channels through which birth and death rates a¤ect the level of and the

time variation in the interest rate and the equity premium. In contrast, most of the literature

heavily relies on numerical solutions, which makes it di¢ cult to understand the underlying

economics. In addition, my model explains some of the long-run time variations in the

interest rate and stock market excess returns which are not explained in previous work.

Fourth, I model births and deaths as Poisson events and stochastic changes in birth

and death rates have no e¤ect on the instantaneous variation in the population size, labor

supply and aggregate production output. Ignoring total factor productivity (TFP) shocks

1Existing agents are agents which were already alive at time t and survive over the next dt time period.
2The major di¤erence is the channel of consumption growth of existing agents (my model) versus changes

in the marginal propensity to consume (Brooks (2000, 2004) and Geanakoplos et al. (2004), where an
agent�s life expectancy is decreasing in age). In my model I assume latter mechanism away by assuming age-
independent mortality. This is essential to keep the model analytically tractable. In reality both channels
are important but for tractability reasons and in oder to better isolate my channel from previous work I
focus on only the �rst mechanism. My results should be viewed as a complement to previous �ndings.
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for now, population and production output growth are locally deterministic processes. Since

changes in the population size are perfectly predictable over a small instant in time, shifts in

the consumption distribution are also perfectly forecast over a short horizon. Demographic

shocks do not introduce any instantaneous risk to the economy but only long-run risk, that

is, shocks to the expected consumption growth rate of existing agents. A smooth growth

in the population size as assumed in the model is close to what is observed in the data.

In reality, birth and death rates are subject to unpredictable changes but in the short run

the population grows gradually and growth is highly predictable. Finally, I model birth and

death rate changes simultaneously, while previous studies usually focus on either birth or

death rates.

In my theoretical model the interest rate is decreasing in the birth rate and increasing in

the death rate, given a moderate level of relative risk aversion (RRA) and a small enough

elasticity of intertemporal substitution (EIS). A linear regression analysis con�rms this

pattern in the data. The key driving forces for the result are the following. A high birth

rate implies that large new born cohorts are expected to enter the economy in the future. A

large new born cohort claims a big share of aggregate consumption and growth in consump-

tion of existing agents is expected to be moderate. In equilibrium, a drop in the expected

consumption growth rate of existing agents corresponds to a decline in the interest rate.

It is important to understand that the driving force is not a change in expected aggregate

consumption growth but the shift in the distribution of aggregate consumption within the

population from existing agents to new born cohorts.

In contrast, a high death rate implies a short life expectancy, a high discount of future

utility and few savings. In addition, aggregate consumption has to be split among only few

survivors if the death rate is high, and consumption growth of existing agents is large. In

equilibrium, both channels imply a high interest rate.

Because birth and death rates a¤ect the interest rate through not identical channels,

they have to be modelled separately and not as one general state variable that determines

total population growth or the average age of the population. This insight is important but

mostly neglected in empirical studies.

The stock price volatility exceeds the variation in aggregate consumption growth because
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of demographic uncertainty. Stock prices respond to demographic changes through two chan-

nels. First, expected growth in labor supply, production output and dividends are sensitive

to birth and death rate changes (Barsky and De Long (1993)). Second, demographic changes

have a similar e¤ect on the discount rate of stocks as on the real interest rate. Because stock

prices instantly incorporate information about changes in future dividend growth and the

discount rate, there is instantaneous volatility in stock prices due to demographic shocks.

If agents maximize utility functions of the power utility family, then an immediate impli-

cation of a locally deterministic consumption process is that the stochastic discount factor

(SDF) has no quadratic variation. As demographic uncertainty only adds long-run risk to

the economy, it has an impact on the interest rate and the stock price volatility but the

equity premium is not a¤ected.

In the case of recursive utilities pricing depends on the covariation of asset returns and

instantaneous and future consumption growth (Bansal and Yaron (2004)). The variation in

the current consumption-to-wealth ratio is a su¢ cient statistic for the variation in future

consumption growth. As the consumption-to-wealth ratio is a function of time discounting

of future utility and the interest rate (or expected consumption growth of existing agents),

it instantly responds to changes in birth and death rates. Accordingly, demographic shocks

induce a covariation between stock returns and the consumption-to-wealth ratio, and are

priced in �nancial markets. The equity premium is time varying and I provide su¢ cient

conditions for it to be positive and increasing in the birth rate and decreasing in the death

rate. Consistent with the model, I show that US stock market excess returns are positively

related to the birth rate and negatively related to the mortality rate.

Shocks to the expected consumption growth rate of existing agents are not only triggered

by shocks to expected production or aggregate consumption growth but mainly by shocks

to the aggregate consumption share of the new born generation. In other words, rather than

long-run risk in labor supply and production output, it is the redistribution risk of aggregate

endowment and consumption between new born and old agents which is the main channel for

pricing. This is in stark contrast to the long-run risk literature initiated by Bansal and Yaron

(2004) where shocks to expected production or aggregate consumption growth generate their

results. Given the insight that the economic importance of demographic changes does not
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stem from changes in future labor supply and production output, I argue that ignoring

endogenous capital accumulation in the model is not a severe problem.

My model suggests that demographic transitions explain substantial parts of the time

variation in the interest rate, market price of risk, equity premium and conditional stock

price volatility. A large body of empirical literature explores stock return predictability.

Returns are found to be more predictable at low frequencies than over the short run, and

most of the predictable variation is due to variation in discount rates rather than changes

in expected dividend growth (e.g. Keim and Stambaugh (1986), Fama and French (1988a,

1988b), Ammer and Campbell (1993), Goetzman and Jorion (1993), and Cochrane (2011)

as an overview). Moreover, Ferson and Harvey (1991) suggest that the time variation in the

market price of risk rather than the time variation in the exposure of stocks to systemic risk

is the driving force causing a time variation in discount rates. According to my qualitative

and quantitative results, these facts may be (partly) explained by demographic changes.

My results require preferences with a low EIS, which is consistent with a large body of

empirical studies. Hall (1988), Campbell and Mankiw (1989), Yogo (2004), and Pakos (2007)

use aggregate consumption and �nancial data to estimate the EIS from the Euler equation

in a representative agent model. They get estimates close to zero. Vissing-Jorgensen (2002)

disentangles asset holders from non-asset holders and estimates an EIS coe¢ cient of 0:3

for stockholders. Hasanov (2007) and Bonaparte (2008) use household-speci�c consumption

and portfolio choice data to take account for heterogeneity. They get an EIS of about 0:25.

A challenge of my model is that investors have to care about demographic changes when

making decisions. DellaVigna and Pollet (2007) use demographic changes to forecast future

earnings of �rms and show that an investment strategy based on demographic variables can

generate abnormal returns. Given the lack of a rational model to explain their �ndings, they

conclude that it is likely that predictable demographic changes are not well forecast by the

market.3 In contrast, Hanewald and Post (2010) provide empirical evidence in favor of my

model: (i) investors in the real world are aware of stochastic changes in mortality rates and

(ii) changes in mortality rates a¤ect investors�investment and consumption behaviors (see

3I am currently working on a rational model that appears to explain the empirical results of DellaVi-
gna and Pollet (2007), and therefore, I disagree with the conclusion that the market does not incorporate
demographic information when pricing assets.
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also empirical results by Hugonnier et al. (2012)).

Finally, my model adds in three ways to the long-run risk literature. First, the pric-

ing channel in my model does not work through shocks to expected aggregate consumption

growth but demographic uncertainty triggers shocks to the wealth and consumption dis-

tribution within the population, which e¤ectively implies shocks to expected consumption

growth of existing agents.

Second, I show that a long-run risk source can have positive e¤ects on the equity premium

even if the EIS is small (EIS < 1). This result is important because the long-run risk

literature is often criticized because estimates of the EIS appear to be less than 1 in the

data but the literature assumes EIS > 1. In Bansal and Yaron (2004) and my model

a risk source must cause a negative relation between stock prices and the consumption-

to-wealth ratio to be compensated with a positive risk premium.4 EIS < (>) 1 implies

that the interest rate and consumption-to-wealth ratio are positively (negatively) related to

each other because the income (substitution) e¤ect dominates. Clearly, shocks to expected

aggregate consumption growth necessarily cause stock prices and the interest rate to move

in the same direction. EIS > 1 is required for a negative relation between stock prices

and the consumption-to-wealth ratio, and shocks to aggregate consumption growth to be

compensated with a positive premium. In contrast, demographic shocks cause stock prices

(or expected aggregate consumption growth) and the interest rate (or expected consumption

growth of existing agents) to move in opposite directions. Accordingly, I need EIS < 1 for

the consumption-to-wealth ratio and stock prices to be negatively related and demographic

shocks to carry a positive risk premium.

Third, the long-run risk literature is heavily criticized because shocks to expected ag-

gregate consumption growth are unobservable and the models are not testable. In contrast,

birth and death rates are observable in the data, which makes my approach more appealing.

In the following I present my results in three steps. First, I discuss the simplest version

of the model with constant birth and death rates and use comparative statics analysis to

gain a �rst intuition about the economic mechanisms. Second, I prove that the intuition

4In Bansal and Yaron (2004) and my model the consumption-to-wealth ratio is positively related to
marginal utility.
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from the constant case carries over to a dynamic two state Markov switching model and I

derive further qualitative results. Third, I generalize the model to include TFP shocks and

Brownian uncertainty and show numerically the quantitative importance of my analytical

results. Finally, I conclude. In the appendix are details about US birth and death rates, a

discussion on limitations and extensions of my model, an additional calibration, and all the

proofs.

2 The Economy

2.1 Demographics and Uncertainty

I consider a continuous time OLG model that generalizes the Blanchard (1985) model. I

disentangle birth and death rates and let them change stochastically over time.

The economy is populated with a continuum of agents of measure Nt. The birth rate is

denoted by nt and the new born cohort at time t is of the size ntNtdt.5 Each agent faces

an instantaneous probability of death �tdt. Conditional on being alive at time t1, an agent�s

survival probability until time t2 > t1 is e
�
R t2
t1
�vdv.

To keep the model tractable, I do not allow for heterogeneity in the arrival rate of death.

Imposing mortality rates to be age-independent is restrictive and counterfactual, but it is

a small price to pay when one is interested in the common time variation in death rates.

According to the much celebrated Lee and Carter (1992) approach, time variation in age

speci�c death rates is mostly due to one across cohorts common stochastic time component.6

The main general equilibrium implication of age-independent mortality is that the marginal

propensity to consume is independent of age. Arguably the most interesting life-cycle e¤ects

on age-dependent consumption and savings behavior do not come from the time variation

in the marginal propensity to consume but from the hump-shaped pattern of earnings over

the life-cycle, and my model accounts for this feature.

5The instantaneous probability of an existing agent to give birth to a new agent at time t is ntdt.
6The Lee and Carter (1992) model is widely used in demographic research and has also gained much

attention in other �elds of research. In asset pricing and household �nance literature many papers employ
it (Cox et al., 2006; Chen and Cox, 2009; Cocco and Gomes, 2009; DeNardi et al., 2009; Maurer, 2011;
Hanewald and Post, 2010).
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The necessity of age-independent mortality for tractability becomes clear when looking at

the dynamics in the population size. Suppose the death rate was age-dependent and agents

of cohort s face at time t mortality �s;tdt. Population growth is characterized by

dNt = ntNtdt� dt

Z t

�1
�s;tnsNse

�
R t
s �s;ududs

The last term depends on the entire history of birth and death rates and dNt and the entire

model solution are not Markov in my demographic variables. If �s;t = �t (age-independent

mortality rates), then the above integral adds up to dNt = (nt � �t)Ntdt and the model will

be Markov. Similar problems arise with age-dependent mortality when aggregating labor

supply and once I impose market clearing and aggregate consumption (equations (4), (23)).

Timing of death is uncertain to the individual, but on the aggregate the size of a

cohort declines non-stochastically over the next instant in time because the economy is

populated by a continuum rather than a �nite number of agents. The size of cohort s

(agents born at time s) shrinks to nsNse
�
R t
s �vdvds until time t > s. The population size is

Nt =
R t
�1 nuNue

�
R t
u �vdvdu = Nse

R t
s nv��vdv.7 dNt

Nt
= (nt � �t) dt is a term in only dt, and pop-

ulation size Nt follows a locally deterministic process (zero quadratic variation). A smooth

growth in the population size as assumed in the model is close to what is observed in the

data. In reality, birth and death rates are subject to unpredictable changes but in the short

run the population grows gradually and growth is highly predictable.

In contrast, it is common in literature to model a baby boom and bust in discrete time

(with one time period being equivalent to about 25 to 35 years) as a sudden increase re-

spectively decrease in the size of the new born generation. A shortcoming of this approach

is that an unpredictable, sudden shock to the population size has an equivalent impact on

production as a TFP shock, and assets are compensated with a risk premium. If trading

takes place more frequent than every 25 to 35 years, then we mistake long run risk for in-

stantaneous uncertainty in a discrete time model and we price demographic shocks falsely.

A discrete time model with sudden shocks to the population size may approximate the un-

conditional long run variation of production output, the interest rate and asset prices, but

7I need the technical assumption that the economy already exists for an in�nite amount of time.
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the implications for the equity premium seem spurious.

In the USA the birth plus immigration rate, denoted by nt in the model, declined from

about 3.5% in 1910 to 1.8% in 2006.8 Annual changes are subject to an unconditional

standard deviation of 3.58%. Shocks are persistent and nt appears to follow a process

integrated of order 1. In addition to "short-term" uncertainty (annual volatility), there

are major "long-term" transitions. Statistics from other developed countries reveal similar

patterns. Mankiw and Weil (1988) illustrate the randomness in the birth rate process by

pointing out the problems the USA census bureau has to forecast the future evolution of

the birth rate. Most of the bureau�s projections turned out to be far from actual future

realizations (�gure 2 in their paper).9

The age-independent death rate, denoted by �t in the model, can be approximated by

the stochastic time component estimated in the Lee and Carter (1992) model.10 It is mostly

decreasing and changes are subject to a yearly unconditional standard deviation of 5.1%.

Shocks to the death rate are persistent and �t is well described by a geometric Brownian

motion (Lee and Carter (1992)). US population statistics are representative for the developed

world.

2.2 Production

The supply side in the consumption goods market is constituted by a representative �rm

which is endowed with capital stock Kt and has access to a technology described by a

Cobb-Douglas production function Yt = At (Gt)
a (Kt)

1�a. At denotes TFP, Gt the employed

amount of labor and Yt determines the quantity of consumption goods produced by the �rm.

Except for the last section, I assume At to grow at an exogenously given deterministic rate
dAt
At
= �(A)dt. The �rm is assumed to do not face any economic decision, and I presume for

8Birth rate statistics are provided by the Department of Health and Human Services, National Center
for Health Statistics, USA, and The Human Mortality Database, University of California, Berkeley and Max
Planck Institute. The birth rate is adjusted for infant mortality (see appendix for details).

9Similar di¢ culties to predict the fertility rate in Japan are reported in the Opening Remark by Masaaki
Shirakawa at 2012 BOJ-IMES Conference hosted by the Institute for Monetary and Economic Studies, the
Bank of Japan (Chart 6).
10Data on the central death rate are provided by the National Center for Health Statistics, USA, and The

Human Mortality Database, University of California, Berkeley and Max Planck Institute.
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the capital stock Kt a deterministic growth path according to dKt

Kt
= �(K)dt.11 ;12

Labor E¢ ciency Units over the Life-cycle, G (s; t)
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Figure 1: Double exponential function G (s; t) =

P2
i=1Bie

��i
R t
s nudu with the parame-

terisation (B1; B2; �1; �2) = (31:25;�30; 2:65; 2:95) (left panel), and (B1; B2; �1; �2) =
(1:75; 0; 1:3; 0) (right panel).

I suppose full employment in the economy. An agent born at time s supplies G (s; t) labor

e¢ ciency units at time t. To match the hump-shaped pro�le of life-cycle earnings in Hubbard

et al. (1993), I let G (s; t) =
P2

i=1Bie
��i

R t
s nudu with the technical assumption of �i > �1.13

G (s; t) generates the desired hump-shape pattern if B1 > jB2j > B2 and �1 < �2. For some

derivations I use a simpler speci�cation withB2 = 0 (or �1 = �2). Aggregation yields the total

amount of labor e¢ ciency units employed by the �rm, Gt =
R t
�1G (s; t)nsNse

�
R t
s �ududs =

Nt

P2
i=1

Bi
1+�i

. Gt is locally deterministic, dGtGt
= (nt � �t) dt, but has long-run risk inherent.

If there are no TFP shocks, the supply of consumption goods follows a locally deterministic

process with the growth rate dYt
Yt
= �

(Y )
t dt =

�
�(A) + (1� a)�(K) + a (nt � �t)

�
dt.

Labor is paid according to its marginal productivity yt = a Yt
Gt
. An agent of cohort s earns

11No economic decision in the sense that the �rm does not invest, employs all supplied labor at a com-
petitive wage equal to the marginal productivity of labor, and pays out all remaining earnings as dividends.
Capital growth is understood as a byproduct of production (for free) as is technological progress. I may set
�(K) = 0 without altering any of my results.
12The results do not essentially change if I assume an exogenous capital accumulation process and tech-

nological progress which are dependent on population growth, i.e. dKt
Kt

=
h
�(K) + �(K) (nt � �t)

i
dt and

dAt
At

=
h
�(A) + �(A) (nt � �t)

i
dt+ �(A)dfWt, as long as �

(K) and �(A) are not too large.
13�i > �1 must hold in order to ensure aggregate supply of labor to stay �nite, jGtj =���R t�1G (s; t)nsNse

�
R t
s
�ududs

��� <1. See also Garleanu and Panageas (2010) for a similar speci�cation.
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in exchange for his labor yst = aYt
G(s;t)
Gt
. The �rm does not invest and pays the remaining

fraction of output (1� a)Yt as dividends Dt to the shareholders of the �rm.

In the model newborn cohorts immediately supply labor but in reality there is roughly

a 15 to 20 year lag between birth rate and labor supply changes. Accordingly, I assume

a too weak response in capital accumulation to population growth but on the other hand,

a too strong response in labor supply growth. In sum the two stylistic and counterfactual

assumptions approximately wash out.

2.3 Financial Markets: Equities, Bonds, and Insurance Contracts

Financial markets are assumed to be dynamically complete. � denotes the (unique) SDF

in the economy and is determined in equilibrium. Agents are born without any �nancial

wealth but are endowed with labor. Financial wealth at time t of an agent of cohort s is

denoted by W s
t , and cW s

t describes total wealth (�nancial and human wealth). An agent of

cohort s consume cst and allocates the remaining part of his �nancial wealth to equities and

bonds. Equities are claims on the stream of aggregate dividends Dt paid out by the represen-

tative �rm. Given there are d independent sources of uncertainty driving demographic and

technological changes, dynamic completeness requires d distinct types of equity contracts.

Contract j is a claim to the dividend stream D
(j)
t and each process D(j)

t is non-redundant

and
Pd

j=1D
(j)
t = Dt. The price of equity j is denoted by P

(j)
t and the value of the entire

stock market is Pt =
Pd

j=1 P
(j)
t . The supply of equities is normalized to one. Xs

j;t denotes

the number of equities j purchased by an agent of cohort s.14 Bonds are instantaneously

risk-free and pay interest rt. Bonds are in zero supply. The part of an agent�s �nancial

wealth that is not used to buy stocks, W s
t �

Pd
j=1X

s
j;tP

(j)
t is invested in bonds.

Agents have access to annuity contracts supplied by a large, competitive insurance com-

pany as in Blanchard (1985). A claim (long position) on an insurance contract pays o¤ as

follows: if the agent survives the next time period dt he receives the premium �tdt from the

insurer, and if he dies he pays 1. Agents have an incentive to fully annuitize because their

14To do not permit arbitrage opportunities I restrict trading activities according to the standard technical

assumption
Xsj;tP

(j)
t

W s
t

2 L2, where L2 �
n
x 2 L :

R T
0
x2tdt <1 a:s:

o
and L is the set of processes adapted

to the �ltration FP generated by asset prices, FPt � � fPs : s � tg.
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objective functions are strictly increasing in consumption and they do not draw utility from

bequest. The insurer breaks even almost surely (earnings and liabilities coincide).

2.4 Agents�Objective Functions and Budget Constraints

An agent�s �nancial wealth W s
t evolves according to the dynamics

dW s
t = W s

t �tdt| {z }
insurance premium

+ W s
t rtdt| {z }

risk-free return

+

dX
j=1

Xs
j;t

�
dP

(j)
t +D

(j)
t dt� P

(j)
t rtdt

�
| {z }

stock market excess return

+ ystdt|{z}
labor income

� cstdt|{z}
consumption

(1)

with the initial condition W s
s = 0. As in Blanchard (1985) I impose the transversality

condition (given the agent is still alive at time u) limu!1 e
�
R u
s �vdv �u

�s
W s
u = 0. This ensures

that agents do not borrow without limit, accumulate an in�nite amount of debt, and protect

themselves by buying annuity contracts.

The set of feasible cash �ows is (M + ys +W s
s ) �

n
xs : F

(�)
s (xs)� F

(�)
s (ys)�W s

s 2M
o
.

F
(�)
s is a discount function such that F (�)s (xt) = e�

R t
s �uduxt, and M denotes the set of all

marketable cash �ows.15 The set of admissible cash �ows is = � (M + ys +W s
s ) \ L+. L+

includes all non-negative processes adapted to FP (�ltration generated by asset prices). An

agent�s consumption process cs has to be an element of the set of admissible cash �ows =.

Agents are assumed to feature homogeneous preferences and the only heterogeneity in the

model is timing of birth and death and wealth between agents across cohorts (but not within

the same cohort). Preferences are described by a stochastic di¤erential utility function of the

Kreps and Porteus (1978) type introduced by Du¢ e and Epstein (1992a, 1992b). Following

Du¢ e and Epstein (1992a) and adding the feature of lifetime uncertainty (for the formal

derivation see appendix), the utility speci�cation is

V s
t = Et

�Z 1

t

f (csu; V
s
u ) du

�
(2)

15A cash �ow is marketable if it is �nanced by a trading strategy Xs 2 L2.
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with the aggregator function f (:) given by

f (csu; V
s
u ) =

� (csu)
� �

�
� + �

1�
�u

�
[(1� 
)V s

u ]
�

1�


� [(1� 
)V s
u ]

�
1�
�1

(3)

The term 1
1�� equals the EIS, 
 controls risk aversion, and � speci�es time discounting.

The term �
1�
�u discounts future utility due to risk aversion towards uncertainty about

the timing of death. Intuitively, the probability of dying early creates an incentive to save

less than an in�nitely-lived agent (or an agent with a �xed lifetime) because there is no

bequest motive. In contrast, the possibility of surviving longer than life expectancy (state of

high marginal utility) creates an incentive for precautionary savings. The former intuition

corresponds to a positive discount of utility from future consumption, while the latter one

implies that the agent cares relatively more about future consumption. It depends on the

preference parameters whether the �rst or the second e¤ect dominates and the discount is

positive or negative. Under time additive utility only the �rst intuition matters while the

second intuition is irrelevant. In the case of power utility agents are risk neutral towards

uncertainty about the timing of death (Bommier (2003), Hugonnier et al. (2012)).

An agent�s objective is to maximize the value function subject to the dynamic or equiv-

alently the static budget constraint,

sup
fcs;Xsg2(=�L2)

�
V s
s (c

s) = Es

�Z 1

s

f (csu; V
s
u ) du

��
; s:t: d�s; dns (P1)

3 The Equilibrium

3.1 De�nition of Equilibrium

An equilibrium is de�ned by a set of adapted processes fc;X; �g such that (i) for every agent

utility is maximized subject to the dynamic budget constraint, problem (P1) is solved 8s,

(ii) consumption markets clear, Yt = Ct =
R t
�1 c

s
tnsNse

�
R t
s �ududs, and (iii) �nancial markets

clear, 1 =
R t
�1
Pd

j=1X
s
j;tnsNse

�
R t
s �ududs and 0 =

R t
�1

�
W s
t �

Pd
j=1X

s
j;tP

(j)
t

�
nsNse

�
R t
s �ududs.
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3.2 General Remarks about the Equilibrium Analysis

The optimal consumption-to-wealth ratio is given by the function  t (�; n) =
cstcW s
t

, which

is constant across cohorts. The functions F y;t;(i) (�; n; t), 8i 2 f1; 2g de�ne the present

value of labor income of a new born agent, cW t
t =

Yt
Nt

P2
i=1 F

y;t;(i) (�; n; t). These quan-

tities are essential to determine the aggregate consumption share of the new born cohort,

nt
P2

i=1 F
y;t;(i) t =

cttntNt
Ct

. In equilibrium, the interest rate depends crucially on cttntNt
Ct

. More-

over, the variation in  t (�; n) is a su¢ cient statistic for the variation in future consumption

growth, which is needed for pricing risky assets.

To understand what a¤ects the SDF �, I provide a short sketch of its derivation. I employ

the market clearing condition in the consumption goods market, which must hold almost

surely at all times and implies dYt = dCt. Growth in aggregate consumption depends on

three terms: aggregation of optimal consumption growth of individuals, dying agents who

abruptly stop their stream of consumption, and consumption of the new born cohort,

dCt =

Z t

�1

dcst
cst
cstnsNse

�
R t
s �ududs� �tCtdt+ cttntNtdt (4)

Applying Ito�s lemma to the �rst order condition of the optimal consumption choice problem

(P1) implies that the dynamics of an individual�s optimal consumption are independent of

his cohort but dependent on the current birth and death rates and the dynamics of the SDF,
dcst
cst
= �

�
d�t
�t
; nt; �t; dnt; d�t

�
.16 Plugging into (4), I can solve for the dynamics of the SDF,

d�t
�t

= ��1

0@dYt
Yt
+ �tdt�

cttntNt

Yt
dt| {z }; nt; �t; dnt; d�t

1A
consumption growth of existing agents

(5)

According to (5), it is the Euler equation of existing agents that matters for pricing. Because

shocks to birth and death rates cause a redistribution of aggregate consumption within the

population (which a¤ects the consumption growth rate of existing agents), they are crucial

for pricing. It is important to understand that shocks to the distribution of consumption

within the population is a pricing channel which di¤ers from shocks to expected labor supply

16Function �
�
d�t
�t
; nt; �t; dnt; d�t

�
represents the left hand side of equation (24) combined with (20).
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and aggregate production/ consumption growth dYt, that is, the usual shocks in the long-run

risk literature. I show below in more detail that my results are driven by this consumption

redistribution mechanism which implies changes to the expected consumption growth rate

of existing agents. This is also in contrast to the mechanism in Brooks (2000, 2004) and

Geanakoplos et al. (2004), where baby booms and busts imply changes in the average life

expectancy and the representative agent�s marginal propensity to consume.

Lemma 1 In equilibrium the stock price Pt is given by

Pt =
Yt

 t (�; n)| {z }
aggregate total wealth

� Yt

2X
i=1

F y;t;(i) (�; n; t)

1 + �i| {z }
aggregated present value of labor income

Proof. See appendix.

The stock price is determined in �nancial market clearing and is equal to aggregate

�nancial wealth (total wealth minus present value of labor income).

Lemma 2 The expected excess return of an asset paying the stream of dividends Dt is

Et

�
dPt +Dtdt

Pt

�
� rtdt = �

dPt
Pt

d�t
�t

Proof. See appendix.

An asset is compensated with a positive (negative) risk premium if its instantaneous

returns are negatively (positively) correlated with the marginal utility process.

3.3 Constant Birth and Mortality Rates

As a benchmark, I consider the case of no demographic changes and no TFP shocks. I explore

the di¤erences in the dependence of the interest rate on birth and death rates. Comparative

statics analyses help to get an intuition of how demographic changes a¤ect the economy.

Proposition 1 Consider an economy as described. Suppose that the birth rate and the

mortality rate are constant over time and the two assumptions (i) �(Y ) � (1 + �i)n < r
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8i 2 f1; 2g and (ii) �

1�
�+� > �r hold. There exists an equilibrium with a constant interest

rate r which is a root to the equation

r = �|{z}
time

discounting

+ (1� �)| {z }
= 1
EIS

�
�(Y ) + �� nNtc

t
t (r)

Ct

�
| {z }

consumption growth
of existing agents

� �|{z}
annuity
payo¤

+
�

1� 

�| {z }

time discounting due
to uncertain lifetime

(6)

with ctt (r) speci�ed in the appendix. The SDF is non-stochastic and the return on equities is

constant and equal to the risk-free interest rate r.

Proof. See appendix.

Conditions (i) and (ii) are required to ensure total wealth and the consumption-to-wealth

ratio to be �nite. The equity premium and the volatility of asset prices are zero because

there is no uncertainty on the aggregate. The focus lies on the interest rate.

The interest rate in an equivalent economy populated by an in�nitely-lived representative

agent is r� = � + (1� �)�
(Y )
� with �(Y )� = �(A) + (1� a)�(K). It di¤ers from the rate in the

OLG economy by the term

r � r� = (1� �)

�
�� nNtc

t
t (r)

Ct

�
| {z }

(I)

+ (1� �) a (n� �)| {z }
(II)

� �|{z}
(III)

+
�

1� 

�| {z }

(IV )

(7)

(I) Following equation (5), r 6= r� holds because aggregate consumption growth (con-

sumption of the in�nitely-lived agent) di¤ers from consumption growth of existing agents in

the OLG economy. Deaths of existing agents have a positive e¤ect on consumption growth

of surviving agents because survivors have to share total production output with less peers.

Births of new agents mean a decline in the older cohorts�share of aggregate consumption

and their consumption growth because new agents claim a fraction of aggregate consump-

tion. The death rate increases and the birth rate decreases the interest rate compared to

the rate found in the in�nitely-lived agent economy. This channel captures the consumption

distribution within the population and its e¤ects on consumption growth of existing agents,

which is the essence of this paper.
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(II) In an OLG economy the growth rate of total output depends on population and

labor supply growth (nt � �t) dt. A high birth rate causes total output to grow fast which

positively a¤ects the interest rate. A high death rate results the opposite. In reality this

labor supply channel is expected to be weaker than in my stylized model because newborns

do not enter the workforce immediately but only many years after birth. Since (II) works

into the opposite direction of (I), many of my results would be even stronger if the labor

supply channel was assumed to be negligible.

(III) The insurance premium has the same impact on an agent�s wealth dynamics (equa-

tion (1)) and optimal consumption path as the risk-free interest rate. As the insurance

premium works as a substitute to the interest rate, in equilibrium the interest rate is not

required to be as high as in a world without insurance payments. Accordingly, the interest

rate in an OLG economy is lower than the rate in an in�nitely-lived agent economy due to

annuity contracts.

(IV ) In an OLG economy an agent faces risk aversion towards uncertainty about the

length of his life. There is a trade-o¤ between how much savings an agent requires for

consumption until death and how much he is willing to risk when facing the probability of

an early death. The �rst reason tells that an agent saves more under lifetime uncertainty

than if he knew the exact time of death because there is a chance that he will live an

unexpectedly long life and his marginal utility is high in future (precautionary savings). The

latter reason says that an agent consumes bigger parts of his wealth early in time under

lifetime uncertainty because he faces a probability that he will not be alive to consume his

savings in future and draw utility from it. In an OLG economy agents save more (less) and

the interest rate is smaller (larger) than in an in�nitely-lived agent economy, if the discount

of future utility due to agents�risk aversion towards uncertainty about the timing of death

is negative (positive) and �
1�
� < (>) 0 holds (see section 2.4).

Lemma 3 Suppose (i) 
 > 1, (ii) B1+B2
B1
1+�1

+
B2
1+�2

> 1� 1+ 1�a
a



1�

�
n
, and the technical conditions in

the appendix hold. There exists a cut-o¤ value EIS
(r)
such that the condition EIS < EIS

(r)

su¢ ces for the interest rate in an OLG economy to be smaller than the rate in an equivalent

economy populated by an in�nitely-lived representative agent (r < r�).
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Proof. See appendix.17

Condition (ii) requires life-cycle earnings to be su¢ ciently decreasing in age. For B2 = 0,

the condition is �1 > �
1+ 1�a

a



1�

�
n
. Agents have to save for retirement if life-cycle earnings are

decreasing in age, and a big supply in savings implies a low interest rate (Blanchard, 1985).

Under a strong motive for consumption smoothing (small �, EIS), an agent seeks to

�atten his consumption path over the life-cycle, which corresponds to a large consumption-

to-wealth ratio and few savings (few �nancial wealth).18 Given a large consumption-to-wealth

ratio, the new born cohort claims a big fraction of aggregate consumption and nNtctt
Ct

is large

enough to ensure expression (7) to be negative and r < r� to hold.

To get an intuition how a change in the birth rate a¤ects the interest rate I take the �rst

derivative of r with respect to n,

@r

@n
= (1� �)

faster growth
in total outputz}|{

a �

increase in new
born generationz}|{

Ntc
t
t

Ct
+

decrease in consumption share
of individual new born agent

nNt

z }| {
@

@n

�
� ctt
Ct

�
1 + (1� �)nNt

@
@r

�
ctt(r)

Ct

� (8)

with @
@n

�
� ctt
Ct

�
= 1

Nt

P2
i=1

�a+1+�i
r��(Y )+(1+�i)n

F y;(i) (F y;(i) and  are speci�ed in the appendix).

To ensure that the denominator in equation (8) is positive, I let f (r) (x) = �x + � +

(1� �)
h
�(Y ) + �� nNtctt(x)

Ct

i
� 1�
��

1�
 � and suppose f (r) (x) to be decreasing at x = r. The

requirement on the slope of f (r) (:) is not a strong assumption. For instance, under the

conditions in Lemma 3 there exists r � r� that satis�es the requirement.

There are three o¤setting e¤ects of the birth rate on the interest rate. First, the workforce

and production output grow faster as the birth rate increases, which has a positive impact

on the consumption growth of existing agents (r %). As mentioned earlier, this labor supply

channel is expected to be weaker in reality than in my stylized model.

Second, holding ctt constant, an increase in the size of the new born generation causes the

new born cohort�s claim on aggregate consumption to rise. The interest rate is negatively

17The conditions are su¢ cient but not necessary. The technical conditions in the appendix are easy to
satisfy and I do not worry about them. The same is true for all Lemmas that follow.
18I suppose that an agent�s consumption grows with age ( c

s
t

css
> 1, for 8 s < t). This is a natural assumption

and is true for a large enough growth in GDP. c
s
t

css
> 1 implies @

@(��)

�
cst
css

�
< 0, 8 s < t.
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a¤ected by an increase in the aggregate consumption share of the new born cohort as it slows

down consumption growth of existing agents (r &).

Third, labor income is declining in the birth rate.19 A boost in the workforce causes the

marginal productivity of labor and wages to drop. A new born agent�s total wealth is equal

to the present value of his life-cycle earnings, which is sensitive to changes in labor income.

In contrast, total wealth of an old agent is less prone to labor income shocks because a large

fraction of his endowment consists of �nancial wealth. A negative shock to labor income

implies a relatively stronger decline in total wealth of a new born agent than in total wealth

of an old agent. Since the consumption-to-wealth ratio remains unchanged, the aggregate

consumption share of a new born agent declines, and the consumption growth of existing

agents increases as the birth rate rises (r %).

Lemma 4 Suppose 
 > 1 and the technical conditions in the appendix hold. There exists a

cut-o¤ value EIS
(n)
such that the condition EIS < EIS

(n)
su¢ ces for @r

@n
< 0.

Proof. See appendix.

Intuitively, if I decrease the EIS, agents save less �nancial wealth. An old agent�s total

wealth becomes more sensitive to labor income shocks, and the relative di¤erence in a drop

of total wealth of old versus young agents due to an increase in the birth rate and a decline

in labor income gets smaller. Accordingly the magnitude of @
@n

�
� ctt
Ct

�
is small if the EIS is

small.

A strong motive for consumption smoothing implies a large consumption-to-wealth ratio

and ctt (much consumption at birth). A large c
t
t ensures that (on the margin) the additional

new born agent consumes more than what he "produces" (a Yt
Nt
� ctt =

h
a� Ntctt

Ct

i
Yt
Nt
< 0).

As a result, if the EIS is small enough, there is one key channel through which a change

in the birth rate a¤ects the interest rate. A rise in the birth rate causes more new born agents

to enter the economy and to claim a bigger fraction of aggregate consumption. Accordingly,

consumption growth of existing agents slows down and the interest rate declines.

19I assume that 1+ �1 > a, so that the positive e¤ect of an increase in output and aggregate labor income
(due to an increase in n) is dominated by the negative e¤ect of a decrease in marginal productivity of labor
and productivity of agents. This is satis�ed for a decreasing life-cycle earnings pro�le. For now I ignore
feedback e¤ects through the interest rate.
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Taking the �rst derivative of r with respect to � yields,

@r

@�
=

(1� �) [

slower growth
in outputz}|{
�a +

surviving agents share
aggregate consump-
tion with less peersz}|{

1 �

change in con-
sumption share of
new born cohortz }| {
nNt

@

@�

�
ctt
Ct

�
]�

higher pay-
ments from
annuitiesz}|{
1 +

time discounting
due to lifetime
uncertaintyz }| {

�

1� 


1 + (1� �)nNt
@
@r

�
ctt(r)

Ct

� (9)

with @
@�

�
ctt
Ct

�
= � 1

Nt

P2
i=1

a
r��(Y )+(1+�i)n

F y;(i) + 1
Nt

�
1��



1�

P2

i=1 F
y;(i).

The expression (1� �) (�a+ 1) � 1 + �
1�
 summarizes the following four e¤ects. An

increase in mortality (i) decreases the workforce and production output (r &), (ii) increases

the growth in consumption of survivors (r %), (iii) implies a high insurance premium (r &),

and (iv) increases the magnitude of time discounting of future utility due to risk aversion

towards lifetime uncertainty (if �
1�
 > (<) 0, then r % (&)).

Keeping the interest rate constant, the consumption share of the new born cohort changes

with �uctuations in the death rate for two reasons. First, an increase in the death rate

causes production output and the present value of labor income to decline. Following

the argument in the discussion of a change in the birth rate, the new born cohort�s ag-

gregate consumption share decreases because of the negative labor income shock (term

�
P2

i=1
an

r��(Y )+(1+�i)n
F y;(i) , r %). Second, as mortality increases agents discount future

utility more positively (negatively) and increase (decrease) their consumption-to-wealth ra-

tio, if �
1�
 > (<) 0. Accordingly, the consumption level at birth and the aggregate consump-

tion share of the new born cohort increase (decline) (term n �
1��



1�

P2

i=1 F
y;(i), r & (%)).

Lemma 5 Suppose 
 > 1 and the technical conditions in the appendix hold. There exists a

cut-o¤ value EIS
(�)
such that the condition EIS < EIS

(�)
su¢ ces for @r

@�
> 0.

Proof. See appendix.

Intuitively, the term (1� �) (�a+ 1)� 1 is positive if the EIS is small enough.

As I shrink the EIS, the aggregate consumption share of the new born cohort becomes

less sensitive to changes in mortality. The intuition is similar to the discussion on changes

in the birth rate.
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For 
 > 1 and EIS < 1, agents (positively) discount future utility because of risk aversion

towards lifetime uncertainty. The discount and the (positive) e¤ect on the interest rate are

large if the EIS is small.

As a result, for a small enough EIS, I end up with the following two key driving forces

that causes the interest rate to be increasing in mortality. As the death rate increases,

agents face a higher probability of dying early and discount future utility stronger. As a

consequence they consume more of their wealth early in life and save less �nancial wealth,

which causes the interest rate to increase in equilibrium. In addition, aggregate consumption

has to be split among less survivors and the consumption growth of existing agents and the

interest rate increase.

For the remaining discussion I use the results: @r
@n
< 0 and @r

@�
> 0.

From Lemma 1 and 2 it is straightforward to derive the Gordon growth model

Pt =
Dt

r � �(Y )
(10)

The stock price is increasing in the birth rate. More agents enter the workforce and

growth in total output and future stock dividends increase. In addition, the discount rate

declines.20

@P

@n
=

increase in growth
of future dividendsz}|{

a �

decrease in
discount ratez}|{

@r

@n
r � �(Y )

Pt (11)

The stock price is decreasing in the death rate. An increase in mortality causes growth

in output and future dividends to decline and the discount rate to increase.

@P

@�
=

decrease in growth
of future dividendsz}|{

�a �

increase in
discount ratez}|{

@r

@�
r � �(Y )

Pt

20Equivalently, the stock price increases because the demand for stocks hikes driven (i) by an increase
in aggregate savings (boost in present value of aggregate labor income) and (ii) by a drop in interest paid
by the risk-free asset, which makes stocks more attractive as an alternative investment to the riskless bond
market.
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The consumption-to-wealth ratio  depends crucially on agents�preferences. Time dis-

counting of future utility has a positive impact on  . Depending on the dominance of either

income or substitution e¤ect (EIS < 1 or EIS > 1), the rate of return on wealth (from

bonds and annuities)21 is positively or negatively related to  .

 =

=EISz }| {
1

1� �
[

time
discountingz}|{

� +

discounting due to
uncertain lifetimez }| {

�

1� 

� �

trade o¤ between income
and substitution e¤ectz }| {
�( r|{z}
interest
rate

+ �|{z}
annuity
payo¤

) ] (12)

The consumption-to-wealth ratio is decreasing in the birth rate if EIS < 1. As the

interest rate declines the agent experiences a negative income shock, savings grow slower and

the agent can a¤ord less consumption in future. If the agent cares enough about consumption

smoothing, he will save more and consume less today to compensate for the negative shock

to future endowment/ consumption (income e¤ect dominates substitution e¤ect).

@ 

@n
= � �

1� �

@r

@n

The consumption-to-wealth ratio is increasing in the death rate if EIS < 1 and 
 > 1.

Agents discount utility from future consumption stronger due to an increase in mortality

( �
1�
 > 0) and prefer to consume a larger part of their wealth early in life. In addition, future

consumption becomes cheaper as the interest rate and the insurance premium increase and

agents instantly consume part of the "newly gained income" (income e¤ect).

@ 

@�
=

1

1� �

�
�

1� 

� �

�
@r

@�
+ 1

��

3.4 Regime Shifts in the Birth Rate: Two State Markov Switching

Model

I keep mortality constant and let the birth rate randomly jump between two levels. For

illustrative purposes I still assume no TFP shocks. Random switches capture the long-run

21Or equivalently the inverse of the price of future consumption.
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pro�le of baby boom and bust transitions found in US birth rate data. Once the birth rate

process is stochastic, long-run risk is introduced in the economy and I can explore the impact

of demographic uncertainty on pricing stocks.

I let the birth rate process be dnt = s(n)dS
(n)
t , with s(n) = nH � nL. S(n)t 2 f1; 0g follows

a two state, continuous time Markov switching process with transition probability matrix

between time t and t+� given by �(S;n) (�) =

0@ 1� �
(n)

H � �
(n)

H �

�
(n)

L � 1� �
(n)

L �

1A. The birth rate
switches between the two values nt 2 fnL; nHg. Because the model has only two states, key

variables, which depend on the birth rate, switch between two distinct values.

There are minor changes to the utility speci�cation as described in the appendix. Agents�

objectives stay the same.

Proposition 2 Suppose an economy as described. In general, there exists an equilibrium

with a SDF � that follows a stochastic process driven by the same two state Markov switching

process S(n) as the birth rate. The equilibrium interest rate rt switches between two distinct

levels, rt 2
n
r
(n)
L ; r

(n)
H

o
de�ned by

r
(n)
j = � + (1� �)

"
�
(Y;n)
j + �� nj

2X
i=1

F
y;(i);(n)
j  

(n)
j

#
� 1� 
 � �

1� 

�

��(n)j

0@  (n)k

 
(n)
j

!� 1�
��
�

� 1

1A+ 1� 
 � �

1� 

�
(n)

j

0@  (n)k

 
(n)
j

!� 1�

�

� 1

1A
8 (j; k) 2 f(L;H) ; (H;L)g, with rtj [nt = nL] = r

(n)
L and rtj [nt = nH ] = r

(n)
H . The market

price of risk jumps between two distinct values, �t 2
n
�
(n)
L ; �

(n)
H

o
given by

�j = �

0@  (n)k

 
(n)
j

!� 1�
��
�

� 1

1A
8 (j; k) 2 f(L;H) ; (H;L)g, with �tj [nt = nL] = �

(n)
L and �tj [nt = nH ] = �

(n)
H . Demographic

uncertainty is priced in equilibrium and the equity premium is non-zero. In the special case

of power utility, the SDF follows a locally deterministic process and the equity premium dis-

appears. The functions F y;(1);(n)
L , F y;(2);(n)

L , F y;(1);(n)
H , F y;(2);(n)

H ,  (n)L , and  
(n)
H are determined
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in a system of 6 non-linear equations provided in the appendix.

Proof. See appendix.

To understand why the market price of risk is non-zero in the general case of recursive

utility and zero in the special case of CRRA preferences, it is best to look at the optimal

consumption path for an individual agent

cst
css|{z}

variation in current
consumption growth

= e
1

1��
R t
s

@
@V su

f(csu;V
s
u )+�udu

0@ V s
t ( t; �t)

V s
s ( s; �s)| {z }

1A
1�
��

(1�
)(1��)

variation in future
consumption growth

0@ �t
�s|{z}
1A

� 1
1��

variation in marginal
utility process

(13)

Suppose that the SDF had zero quadratic variation. Because the value function V s

features a discontinuity at the time of a regime shift, optimal consumption must jump as

a regime shift occurs. As each agent is a¤ected the same (dynamics of the value function

are independent of the cohort), the aggregate consumption process features jumps. But,

the aggregate supply of consumption goods has no discontinuities and markets could not

possibly clear (dYt 6= dCt). To resolve the problem it must be that the SDF is driven by a

jump process such that all discontinuities in V s are exactly o¤set and optimal consumption

of the individual follows a locally deterministic process (compare equation (27)).

In other words, the SDF is de�ned as a deterministic multiple of the marginal utility

process (Gateau derivative of the utility function), which depends on current and future

consumption. As current consumption follows a locally deterministic process it does not

introduce any stochastics in the marginal utility process and its dynamics are irrelevant for

the derivation of the equity premium. The variation in the consumption-to-wealth ratio is

a su¢ cient statistic of the variation in future consumption growth. As a result the market

price of risk is a non-linear function of the ratio  H
 L
.

In the case of CRRA preferences optimal consumption does not depend on the agent�s

value function, cst = csse
� 1


�(t�s)

�
�t
�s

�� 1


. The consumption path of an individual agent, who

survives over the next instant in time, is locally deterministic, and the SDF must not be

stochastic to ensure market clearing. The market price of risk is zero and pricing of risky
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assets is not a¤ected by stochastic changes in the birth rate.22

Lemma 6 Suppose 
 2 (1; 1� �) (� < 0) and the technical conditions in the appendix hold.

There exists a cut-o¤ value EIS
(n)

1 such that the condition EIS < EIS
(n)

1 su¢ ces for the

interest rate during a period characterized by a high birth rate (baby boom) to be lower than

the rate during times of a low birth rate (baby bust), r(n)L > r
(n)
H . The consumption-to-wealth

ratio is decreasing and the magnitude of the market price of risk is increasing in the birth

rate,  (n)L >  
(n)
H and

����(n)L

��� < ����(n)H

���.
Proof. See appendix.

The intuition for r(n)L > r
(n)
H and  (n)L >  

(n)
H is equivalent to the argument provided in

the static case.

The stock price is a state dependent multiple of GDP (Lemma 1),

P
(nj)
t = Ptj [nt = nj] = Yt

"
1

 
(n)
j

�
2X
i=1

F
y;(i);(n)
j

1 + �i

#

8j 2 fL;Hg. The growth rate is stochastic and conditional on the state of the world

dPt
Pt

���� [nt = nj] = �
(Y;n)
j dt+

Yt

P
(nj)
t

"
1

 
(n)
k

� 1

 
(n)
j

�
2X
i=1

F
y;(i);(n)
k � F

y;(i);(n)
j

1 + �i

# ���dS(n)t

���
8 (j; k) 2 f(L;H) ; (H;L)g. GDP follows a locally deterministic process because demographic

uncertainty introduces only long-run risk in the economy. In contrast, the stock price has

non-zero quadratic variation since stocks are forward looking and incorporate changes in

growth prospects of the economy (information about future growth in dividends and future

changes in the discount rate). Demographic uncertainty introduces in a natural way excess

volatility in asset returns over the variation in aggregate consumption growth.

22Another way to understand that the SDF is locally deterministic is by noticing that in case of time
additive utilities, marginal utility depends solely on current consumption but not future consumption.
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Following Lemma 2, the equity premium is

1

dt
Et

�
dPt +Dtdt

Pt

�
� rt

���� [nt = nj] = �
(n)

j

Yt
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(nj)
t
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+
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F
y;(i);(n)
k � F
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j

1 + �i

#

8 (j; k) 2 f(L;H) ; (H;L)g. Demographic uncertainty is priced in equilibrium and the equity

premium switches between two distinct values. In the special case of power utility with

1� 
 � � = 0 the equity premium is zero.

Lemma 7 Suppose 1�
��
�

< 0 and the technical conditions in the appendix hold. There

exists a cut-o¤ value EIS
(n)

2 such that the condition EIS < EIS
(n)

2 su¢ ces for the equity

premium to be positive in both states of the world.

Proof. See appendix.

A key result is the inequality

���� 1

 
(n)
H

� 1

 
(n)
L

����� ����P2
i=1

F
y;(i);(n)
H �F y;(i);(n)L

1+�i

���� > 0. The stock price
moves into the opposite (same) direction as the consumption-to-wealth ratio (total wealth).

This is consistent with the developed intuition from the comparative statics analyses in the

previous section.

By equation (18) and (27), (1� 
)V s
t is decreasing (increasing) in the consumption-to-

wealth ratio if 1�

�
> (<) 0. Combining equations (3) and (14), marginal utility is decreasing

(increasing) in (1� 
)V s
t if

1�
��
1�
 < (>) 0. Accordingly, condition 1�
��

�
< 0 is necessary for

changes in the stock price and the SDF to be negatively correlated. The payo¤ of stocks is

low (high) in states of the world when marginal utility is high (low) and more (less) wealth

is desired, and investors require a positive compensation for holding stocks.

Lemma 8 Suppose �
(n)

H > (<) �
(n)

L , and the conditions in Lemma 6 and 7 hold. There exists

a cut-o¤ value EIS
(n)

3 such that the condition EIS < EIS
(n)

3 ensures that the equity premium

is larger (lower) during a baby boom than the premium during times of a low birth rate.

Proof. See appendix.
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The parameters �
(n)

L and �
(n)

H determine the probability of a regime switch conditional

on being in a low and high birth rate state. The ratio �
(n)
H

�
(n)
L

describes the ratio between the

instantaneous risk in stock returns during a high and a low birth rate state. The equity

premium is higher during a high birth rate state, if a baby boom lasts on average shorter

(the risk for a regime switch is higher) compared to a low birth rate state. US population

data over the last 100 years reveal that this seems true.

Consistent with the result in the previous section, Lemma 6 and 7 imply that the stock

price is increasing in the birth rate,

P
(nH)
t � P

(nL)
t = Yt

"
1

 
(n)
H

� 1

 
(n)
L

�
2X
i=1

F
y;(i);(n)
H � F

y;(i);(n)
L

1 + �i

#
> 0

A baby boom causes the stock market to boom and the growth rates of the stock price and

dividends are high. There is an immediate stock market bust (negative jump) as soon as

the baby boom stops (at the time of a regime shift from a high to a low birth rate). The

model implies a slow growth in asset prices and in dividends when the birth rate is low, but

it does not imply a major stock market bust as the baby boom generation "retires".23 This

follows because all key quantities are Markov processes and immediately adjust at the time

of a regime shift, when agents are surprised by a change in the economic environment.

The result that the retirement of the baby boom generation does not have an impact on

asset prices can be challenged on di¤erent grounds. First, capital accumulation (with convex

adjustment costs) is likely to alter the result because a slow-down in population growth

causes disinvestment. Because of convex adjustment costs there is not one immediate cut

in the capital stock as the birth rate drops, but disinvestment continues over a long horizon

and the desired capital stock is approached slowly (Abel, 2003).

Second, the speci�cation of the life-cycle earnings pro�le enforces by construction the

Markov property of aggregate supply of labor e¢ ciency units, which implies the consumption-

to-wealth ratio and total wealth to be Markov processes. A choice of a more general path

for life-cycle earnings (e.g. newborns do not work until age 20 or some discontinuity in

23Retirement can be de�ned as the age when an agent is endowed with less labor e¢ ciency units then some
level x, for instance the data in Hubbard et al. (1993) suggest that people at age 65 earn about 35-40% of
the maximal labor income over the lif-cycle.
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labor supply at time of retirement) causes the consumption-to-wealth ratio and total wealth

to be history-dependent functions (in particular I have to keep track which cohort enters

the workforce or retires at which point in time). The introduction of age-dependent death

rates also causes the variables to depend on the past. If the consumption-to-wealth ratio

and total wealth are not Markov processes, then asset prices depend on past observations

of the birth rate, and baby booms and busts have implications on asset prices for a long

time after a regime shift occurs. As a result the model�s answer to the question whether

the retirement of the baby boomers causes a stock market meltdown has to be treated with

caution. Brooks (2000, 2004) and Geanakoplos et al. (2004) complement my model with

respect to these issues and deliver an answer to this question. My model is setup to explore

how demographic uncertainty a¤ects asset pricing in addition to the e¤ects documented by

Brooks (2000, 2004) and Geanakoplos et al. (2004).

In the appendix I derive another Markov switching model where I �x the birth rate while

letting the mortality rate switch between a high and a low level. The analysis is equivalent

to the above discussion.

3.5 General Model with Brownian Uncertainty: Calibration

I illustrate the quantitative magnitude of my results in a calibration exercise. I model the

birth rate and the death rate as Brownian di¤usion processes,

dnt = �
(n)
t dt+ �

(n)
t dfWt = nt�

(n)dt+ nt�
(n)dfWt

d�t = �
(�)
t dt+ �

(�)
t dfWt = �t�

(�)dt+ �t�
(�)dfWt

�(i) and �(i) denote constant drift and di¤usion terms of process i 2 fn; �g, and fWt is a d

dimensional Brownian motion. Demographic literature suggests that a geometric Brownian

motion describes in particular death rate data well (Lee and Carter, 1992). I introduce TFP

shocks to the economy and let

dAt
At

= �(A)dt+ �(A)dfWt
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Proposition 3 Suppose an economy as described. In general, there exists an equilibrium

with a SDF � with the dynamics

d�t
�t

= �rtdt� �tdfWt

The interest rate rt is

rt = � + (1� �)

"
�
(Y )
t + �t � nt

2X
i=1

F y;t;(i) t

#
� 1� 
 � �

1� 

�t

+
1� 
 � �

2�

�
( )
t

 t

 
�
( )
t

 t

!T

� 
 (2� �)

2
�(A)

�
�(A)

�T � 1� 
 � �

�
�(A)

 
�
( )
t

 t

!T

| {z }
precautionary savings

and the market price of risk �t takes the form

�t =
1� 
 � �

�

�
( )
t

 t| {z }
pricing of long-run risk/
demographic uncertainty

+ 
�(A)| {z }
pricing of ins-
tantaneous risk

Demographic uncertainty is priced in equilibrium except in the special case of power utility

and �(A)
�
�(n)

�T
= �(A)

�
�(�)

�T
= 0. The functions F y;t;(1) (�; n; t), F y;t;(2) (�; n; t), and

 t (�; n) are determined in a system of 3 di¤erential equations provided in the appendix.

Proof. See appendix.

Precautionary savings induced by TFP shocks and demographic uncertainty have a nega-

tive impact on the interest rate for the parameterization considered in the calibration exercise

below.

Following Lemma 1, the stock price volatility is

�
(P )
P;t

Pt
= �(A) +

Yt
Pt

24��( )t

 2t
�

2X
i=1

�
(F y;(i))
t

1 + �i

35
The volatility is stochastically changing over time, and there is instantaneous excess volatility

of �nancial assets over consumption growth.
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The equity premium follows from Lemma 2,
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If TFP shocks are independent of the demographic variables, then the argument of the

previous discussion carries over to explain why demographic uncertainty is priced under

recursive preferences but not in case of power utility. If �(A)
�
�(n)

�T 6= 0 or �(A) ��(�)�T 6= 0,
then demographic shocks are priced even in the case of power utility. In contrast to the

conditions in the previous sections the equity premium may be positive (negative) in the

case of 1�
��
�

> (<) 0, depending on the size and sign of the correlation between TFP

and demographic shocks. The data suggests that the correlation is indeed non-zero (see

calibration below).

Lemma 9 Suppose �(A)
�
�(n)

�T
= �(A)

�
�(�)

�T
= 0 and 
 2 (1; 1� �) (� < 0). There exists

EIS (nt; �t) such that EIS < EIS (nt; �t) su¢ ces for the interest rate to be decreasing in

the birth rate and increasing in the mortality rate and the equity premium to be positive.

Proof. See appendix.

The result is similar to the �ndings in the earlier discussion, but weaker. EIS (nt; �t)

depends on the current level of the birth rate and the death rate.

For the calibration below I also want to compute 1-year, 5-year and 30-year bond yields.

The q-year bond yield at time t is given by no arbitrage,

yt;q = �
1

q
ln

�
Et

�
�t+q
�t

��

Yields are hard to compute analytically in my model but easy to approximate numerically

using Monte Carlo simulations.

I calibrate the model to illustrate the quantitative importance of demographic changes.

To match the �rst two unconditional moments of US population statistics I set �(n) =
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�0:0055, �(n) = 0:0358, �(�) = �0:0071, �(�) = 0:051, and corr
�
dnt
nt
; d�t
�t

�
= �0:225. I set

corr
�
dnt
nt
; dAt
At

�
= �0:2 and corr

�
d�t
�t
; dAt
At

�
= 0:35, which roughly matches my estimates of

the unconditional correlations between real per capita GDP growth and changes in birth

respectively death rates (see also for instance Hanewald (2010), Jones and Tertilt (2007)).

However, some parts of the literature suggest that lagged fertility is pro-cyclical (see for

instance Sobotka, Skirbekk and Philipov, 2010). As a robustness check I repeat the cali-

brations with corr
�
dnt
nt
; dAt
At

�
= 0:2; the results are essentially unchanged (see appendix).

I choose � = 0:005, �(A) + (1� a)�(K) = 2:1%, �(A) = 3:5%, a = 0:9 (see Garleanu and

Panageas (2010) as a justi�cation of the magnitude of a = 0:9). �(A)+ (1� a)�(K) and �(A)

are chosen to match the unconditional moments of US GDP growth data (see table 1). I

calibrate the model for 
 = 7:5 and two di¤erent values of the EIS 2 f0:1; 0:125g.

The calibration shows that the interest rate is increasing in the death rate and decreasing

in the birth rate, provided the current birth rate is moderate. The interest rate is increasing

in the birth rate if the current birth rate is large. Intuitively, a high birth rate implies a

low consumption-to-wealth ratio and ctt is small. An additional incremental increase in the

birth rate leads only to a slight increase in the aggregate consumption share of the new

born cohort (as ctt is small), and puts moderate downward pressure on the interest rate. On

the other side, an increase in the birth rate also a¤ects the interest rate positively due to

the acceleration in production output growth. The latter positive e¤ect is independent of

the current level in the birth rate and becomes dominant if the current birth rate is large.

Accordingly, the interest rate becomes increasing in the birth rate, given nt is large enough.

Lemma 12 is di¢ cult to be satis�ed (a lower EIS is required) if the current birth rate is

large.

The equity premium is decreasing in the death rate and increasing in the birth rate, if

the current birth rate is moderate. Similar to the equity premium, the market price of risk

compensating uncertainty in the birth rate is increasing in the birth rate. The market price

of risk compensating uncertainty in the death rate is slightly decreasing in mortality. The

exposure of the risky asset to uncertainty in the birth rate is increasing in the birth rate as

long as the current level in the birth rate is not too large, while the exposure to risk in the

death rate is almost independent of the level in the death rate.

32



Changes in the birth rate cause a variation of considerable magnitude in the market price

of birth rate risk, the exposure of the risky asset to uncertainty in the birth rate, and the

equity premium. In contrast, changes in the death rate cause less variation in the market

price of mortality risk, the exposure of the stock to uncertainty in the death rate, and the

equity premium.

Given the numerical solution of the model I can calculate model implied economic quan-

tities corresponding to any pair of birth and death rates. I compute for each data point of

historical US birth and death rates (�gure 4) the model implied annualized GDP growth rate

(ln
�
Yt+1
Yt

�
), real short rate (rt), bond yields (yt;1; yt;5; yt;30), and stock returns (ln

�
Pt+1+Dt

Pt

�
).

As a calibration input for the birth rate I use the adjusted birth rate plus the historical

immigration rate. I approximate the age-independent death rate by the stochastic time

component estimated in a Lee and Carter (1992) model. Because my model does not ac-

count for �nancial leverage, I multiply the model implied annualized stock excess returns

ln
�
Pt+1+Dt

Pt

�
�rt by a factor of 1:5 when comparing the calibration results to the data (Barro

(2006), Frank and Goyal (2008)).

Table 1 compares unconditional moments in the data to unconditional moments of model

implied quantities. E [:] denotes the unconditional average and Std [:] denotes the uncondi-

tional standard deviation. I further compare the calibration results to the quantities in an

OLG economy without demographic changes (dnt = d�t = 0) and constant birth and death

rates nt = 2% and �t = 0:9%, and to an equivalent economy populated with an in�nitely-

lived representative agent (nt = �t = 0). For the case of nt = �t = 0, I match expected

consumption growth and its volatility with the unconditional moments estimated from the

calibration with demographic uncertainty. The quantities of the economy without demo-

graphic changes are denoted with a tilde and the ones of the in�nitely-lived agent economy

with a star superscript in the bottom panel of table 1.

The data moments in table 1 are estimated from the following data sources. I have

downloaded US data on real Gross Domestic Product (GDP), Treasury In�ation Protected

Securities (TIPS), Consumer Price index (CPI) and government bond yields from the St.

Louis Fed, and 1-month Treasury Bills and stock returns from CRSP. Real GDP data is

available from 1929, CPI and 1-month Treasury Bills from 1920, TIPS from 2003, 30-year
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bond yields from 1925, 1- and 5-year bond yields from 1953, and stock returns from 1926. I

approximate the risk-free real interest rate (short rate) as follows: for the period 1920�1970

I use the di¤erence between the return on 1-month Treasury Bills and the realized in�ation,

for 1971 � 2002 the real interest rate estimates provided by Chernov and Mueller (2012),

and for 2003� 2006 TIPS data. For the estimation of the average and variance of yt;30� yt;1
(yield spread between 30- and 1-year bonds) in the pre 1950 period I use 1-month Treasury

Bills as an approximation of the 1-year yield. All returns and growth rates are annualized

and continuously compounded.24

The chosen parameterization produces reasonable unconditional moments in real GDP

growth. The expected GDP growth rate in table 1 implies an expected GDP per capita

growth rate of roughly 2%, which is also consistent with the literature (for instance Campbell

and Cochrane, 1999).

The model implied risk-free real interest rate (short rate) rt is on average close to what

I observe in the data. This means a big improvement over the large rate r� in an equiva-

lent in�nitely-lived representative agent economy. As pointed out earlier by Garleanu and

Panageas (2010) an OLG structure reduces the risk-free rate substantially compared to an

in�nitely-lived agent economy (drop from over 20% to roughly 4%). Demographic shocks

lead to an additional reduction in the risk-free rate by about 2:5%, which is more than 50% of

the 4% interest rate in an OLG model without demographic changes. An OLG structure in

combination with stochastic birth and death rates appears to resolve Weil�s (1989) risk-free

rate puzzle (given we assume a reasonably low EIS).

In an economy without demographic changes (including an in�nitely-lived agent econ-

omy) the short rate er or r� is constant and there is neither a term premium nor volatility in
bond markets. In contrast, demographic shocks give rise to a positive term premium. The

model implied premium is slightly smaller but not far from the data. The volatilities in the

short rate and in bond yields are a little lower in the model than in the data. The di¤erence

between model and data may be explained by in�ation risks. I do not model in�ation or

volatility in in�ation. Accordingly, it is reasonable to expect that the model generates a

24The presented results do not consider features like �nancial constraints and limited asset market par-
ticipation as discussed in Brooks (2004) and Geanakoplos et al. (2004) which are likely to improve the
results.
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Table 1: Unconditional Moments - Calibration vs Data

Data Model
1926-2006 1950-2006

EIS 0:1 0:125

E
h
ln
�
Yt+1
Yt

�i
3:2% 3:1% 3:1% 3:1%

Std
h
ln
�
Yt+1
Yt

�i
4:9% 2:4% 3:5% 3:5%

E [rt] 1:1% 1:7% 2:08% 1:58%
Std [rt] 3:8% 1:8% 1:67% 0:74%
E [yt;30 � yt;1] 1:3% 1:1% 0:75% 0:43%
Std [yt;30 � yt;1] 1:4% 1:5% 0:37% 0:26%
E [yt;30 � yt;5] N=A 0:5% 0:62% 0:37%
Std [yt;30 � yt;5] N=A 0:9% 0:30% 0:19%

E
h
ln
�
Pt+1+Dt+1

Pt

�i
8:5% 8:3% 5:10% 5:25%

E
h
ln
�
Pt+1+Dt+1

Pt

�
� rt

i
7:4% 6:6% 3:02% 3:66%

Std
h
ln
�
Pt+1+Dt+1

Pt

�
� rt

i
19:7% 17:2% 23:2% 17:0%

Corr
h
ln
�
Pt+1+Dt+1

Pt

�
� rt; ln

�
Yt+1
Yt

�i
0:31 0:60 0:22 0:29

Economy without demographic shocks
(nt = 2%; �t = 0:9%; dnt = d�t = 0):er 1:1% 1:7% 4:47% 4:03%

E
h
ln
� ePt+1+ eDtePt

�
� eri 8:1% 7:6% 1:38% 1:38%

Std
h
ln
� ePt+1+ eDt+1ePt

�
� eri 21:0% 18:5% 5:25% 5:25%

Corr
h
ln
� ePt+1+ eDt+1ePt

�
� er; ln� eYt+1eYt �i 0:31 0:60 1:00 1:00

In�nitely-lived representative agent
(nt = �t = 0):
r� 1:1% 1:7% 26:4% 21:2%

Table 1: Estimation of unconditional moments: E[:] denotes the unconditional average,
and Std[:] denotes the unconditional standard deviation. Quantities with a tilde or a star
superscripts are obtained in an equivalent OLG economy without demographic changes re-
spectively an economy populated with a single invinitely-lived representative agent. I have
downloaded real GDP, TIPS, CPI and government bond yield data from the St. Louis Fed,
and 1-month Treasury Bills and stock returns from CRSP. Real GDP data is available from
1929, CPI and 1-month Treasury Bills from 1920, TIPS from 2003, 30-year bond yields from
1925, 1- and 5-year bond yields from 1953, and stock returns from 1926. The model implied
moments are calculated by plugging historical US birth and death rates from 1910 to 2006
into the model. As the historical birth rate I use the adjusted birth rate plus the immigration
rate as described in the appendix and as the age-independent death rate I use the stochastic
time component estimated in a Lee-Carter model.
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lower volatility in bond markets and a smaller term premium compared to the data.

Demographic shocks appear to matter substantially for the pricing of stocks. Stochastic

birth and death rates introduce a sizeable stock price volatility in excess of the volatility

in aggregate consumption growth (and bond market returns). This is in stark contrast to

a standard Lucas economy where the volatility in stock returns (not adjusted for leverage)

is equal to the volatility in aggregate consumption growth. The equity premium is also

higher due to demographic shocks.25 Given the chosen parameter values, the model does not

explain the entire equity premium puzzle but it provides a natural explanation for a part of

it. Moreover, historical estimates of the equity premium are noisy and the calibration results

lie within a 95% con�dence interval of the estimation.

Table 1 shows that the equity premium is higher in the case of EIS = 0:125 than in the

case of EIS = 0:1. Notice that this does not contradict the result in Lemma 9. First, in

the calibration (and the data) TFP and demographic shocks are correlated, while Lemma 9

assumes that they are uncorrelated. Second, although the equity premium is continuous in

the EIS, we do not know whether it is monotonic. Third, I show that the equity premium

is positive if the EIS is small enough, but it is analytically di¢ cult to determine whether

it is positive or negative if the EIS is large. Lemma 9 only provides us with a su¢ cient

condition.

Finally, uncertainty in birth and death rates helps to resolve the low correlation puzzle

between stock market returns and GDP (or aggregate consumption) growth. This is because

prices are forward looking and adjust instantly to sudden changes in discount rates and

future expected growth rates while GDP growth does not. Demographic shocks introduce

positive quadratic variation in the asset price process, but they only cause shocks to the ex-

pected GDP growth rate. The model implied correlation is slightly lower than the estimated

correlation between real US GDP growth and US stock market returns. It is, however, close

to correlation estimates between real US consumption growth of nondurables and services

and US stock returns provided by Campbell (2003). His estimates are between 0:23 and 0:34

for the sample period 1947� 1998.
25The larger equity premium is attributed to the higher unconditional stock price volatility, rather than

an increase in the unconditional Sharpe ratio.
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Figure 2: Top left panel: Real interest rate in USA (red dashed line) versus model implied
interest rate using historical US birth and mortality data (black solid line). Top right panel:
10 year moving average of US stock market excess returns (red dased line) and 10 year
moving average of model implied stock excess returns (black solid line). Bottom left panel:
Conditional stock price volatilities approximated by an exponentially weighted moving av-
erage (EWMA) model with an exponential weighting or decay factor of 0.915. Estimated
conditional volatilities from US stock excess returns are presented by the red dased line and
volatilities of model implied stock excess returns by the black solid line.
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In �gure 2, I explore the time variations in the real interest rate and the �rst two

conditional moments in stock returns. The graphs present the calibration results with

EIS = 0:125.

The top left panel compares the real interest rate in the USA (red dashed line) with

the model implied interest rate (black solid line). The model implied interest rate is too

smooth. In particular, it deviates substantially from the data within the �rst 25 years of the

sample. This time interval includes the Great Depression with large unexpected de�ation

(1930 � 1933) and subsequent periods of large unexpected in�ation and large volatility in

in�ation (1940�1952). The large di¤erences between model and data during the two periods

may be explained by the noisy measure of the real interest rate, that is, nominal rate minus

realized in�ation. Since in�ation was extremely volatile in the two periods, it is likely that

realized in�ation is a poor approximation for expected in�ation and my estimates are subject

to large measurement errors. The model performs fairly well in the period after 1952, for

which I have more reliable data on the real interest rate.

The other two graphs attempt to capture the time variation in the equity premium and

the stock price volatility. The top right panel contrasts a 10-year moving average of US stock

market excess returns (red dashed line) with a 10-year moving average of model implied stock

excess returns (black solid line).26 The estimated correlation between the moving average

excess returns in the data versus the model is 0:44.

The bottom left panel measures conditional stock price volatilities approximated by an

exponentially weighted moving average (EWMA) model with an exponential weighting or

decay factor of 0:915. Estimated conditional volatilities from US stock excess returns are

presented by the red dashed line and volatilities of model implied stock excess returns by the

black solid line. The correlation between the conditional volatility estimates is only 0:19.

Despite many simplifying assumptions, the model does a remarkable job capturing the

long-term time variation in the �rst two moments of stock market returns. Large cycles in

expected stock market excess returns and a major decline in stock price volatility over the

past century appear to be explained by demographic transitions.

26Moving averages are centered around each point in time, that is, for year t I compute an average return
over the annual excess returns between year t� 4 and year t+ 5.
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I further explore the relation between the levels in �nancial quantities and demographic

variables. The model suggests that the interest rate is decreasing in the birth rate and

increasing in the death rate while the equity premium is increasing in the birth rate and

decreasing in mortality. I regress real interest rates, stock market excess returns and con-

ditional volatilities on demographic variables for the sample 1926 � 2006. I estimate the

linear regressions for both �nancial quantities in the data and my calibration outputs (with

EIS = 0:125) as dependent variables. I use historical US birth and death rates (�gure 4) as

the demographic regressors.

My model suggests that the �nancial quantities and demographic variables are non-

stationary processes but they are cointegrated. The linear regressions should be understood

as Engle-Granger (1987) cointegration regressions. Indeed, all regressions (for quantities in

the data and the model) suggest that the regression errors are stationary.

Table 2 suggests that in both the data and the model the interest rate is indeed decreasing

in the birth rate and increasing in the death rate. For the interest rate in the data the

regression coe¢ cient estimate on the birth rate is signi�cantly negative. The estimated slope

coe¢ cient on the death rate is only slightly positive and insigni�cantly di¤erent from zero.

Unfortunately, my data sample is short and estimates are noisy which makes it di¢ cult

to detect relatively weak relationships at all (see also Poterba, 2001). In the case of the

model implied interest rate both regression coe¢ cient estimates on birth and death rate are

signi�cantly di¤erent from zero.

Table 2: rt = �(r) + �(r)n nt + �
(r)
� �t + �

(r)
�n�nt + �

(r)
����t + �

(r)
t

�(r) �(r)n �
(r)
� �

(r)
�n �

(r)
��

Data 0:073 �3:879 0:546 �0:460 �0:044
(t-stats) (4:17) (3:76) (0:60) (4:93) (0:33)
Model 0:028 �0:927 0:415 �0:001 �0:032
(t-stats) (6:92) (3:83) (1:96) (0:06) (1:00)

Table 2: Linear regression of real interest rate on demographic variables for the sample
1926-2006. rt represents the real interest rate (either from the data or the calibration with
EIS = 0:125), a(r) is a constant term, �(r)n , �

(r)
� , �

(r)
�n and �

(r)
�� are regression coe¢ cients, nt

and �t are the birth rate and the death rate in the data, � is a lag operator, and �
(r)
t is an

error term.
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Table 3 suggests that stock market excess returns are increasing in the birth rate and

decreasing in mortality. The regression estimates in the data are noisy and not signi�cantly

di¤erent from zero with any reasonable con�dence. The estimates using model implied

returns as a dependent variable are signi�cantly di¤erent from zero with a 90% con�dence.

Although the estimates are noisy, the direction of the regression coe¢ cient are consistent

with my analytical results and support the identi�ed mechanics of the model.

Table 3: r(x)t = �(r
(x)) + �

(r(x))
n nt + �

(r(x))
� �t + �

(r(x))
t

�(r
(x)) �

(r(x))
n �

(r(x))
�

Data �0:035 7:383 �2:497
(t-stats) (0:32) (1:13) (0:43)
Model �0:059 8:593 �7:231
(t-stats) (0:57) (1:40) (1:34)

Table 3: Linear regression of stock market excess returns on demographic variables for the
sample 1926-2006. r(x)t represents the stock excess return (either from the data or the cali-

bration with EIS = 0:125), a(r
(x)) is a constant term, �(r

(x))
n , �(r

(x))
� are regression coe¢ cients,

nt and �t are the birth rate and the death rate in the data, and �
(r(x))
t is an error term.

Finally, table 4 suggest that the conditional stock market volatility is signi�cantly, posi-

tively related to both birth and death rates in the data. Model implied conditional volatility

appears positively related to the birth rate but negatively related to mortality, though the

latter relation is insigni�cant.

Table 4: �t = �(�) + �(�)n nt + �
(�)
� �t + �

(�)
t

�(�) �(�)n �
(�)
�

Data 0:109 2:898 5:362
(t-stats) (6:95) (3:13) (6:60)
Model 0:152 1:826 �0:453
(t-stats) (7:60) (1:54) (0:43)

Table 4: Linear regression of conditional stock market volatilities (EWMA with decay factor
0.925) on demographic variables for the sample 1926-2006. �t represents the stock excess
return (either from the data or the calibration with EIS = 0:125), a(�) is a constant term,
�(�)n , �

(�)
� are regression coe¢ cients, nt and �t are the birth rate and the death rate in the

data, and �(�)t is an error term.
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4 Conclusion

I answer the question how demographic transitions a¤ect the value of �nancial assets and

whether demographic uncertainty is priced in �nancial markets. I solve an analytically

tractable general equilibrium model with stochastic birth and death rates.

The interest rate is time varying due to demographic changes. For a small enough EIS

and a moderate RRA the interest rate is decreasing in the birth rate and increasing in the

death rate. The equity premium is stochastically changing over time and I provide conditions

that su¢ ce for the equity premium to be increasing in the birth rate and decreasing in the

death rate.

An important result for future empirical research is that the identi�ed asset pricing

implications of changes in death and birth rates work through not identical channels and it

is essential to model birth and death rates separately and not as one general state variable

that determines total population growth or the average age of the population.

Numerical calibrations suggest that stochastic changes in the birth rate have stronger

implications on asset pricing than changes in the death rate. Demographic uncertainty

explains part of the equity premium puzzle and the excess volatility of asset returns over

volatility in aggregate consumption growth. Demographic transitions appear to explain much

of the long-term time variation in the interest rate and stock market returns in the USA in

the 20th century.

An interesting result for the long-run risk literature is that a risk source can be compen-

sated by a positive premium even if EIS < 1. The requirement on the risk source is that a

shock causes interest rate and stock prices to move in opposite directions (see also Maurer

(2013)).
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5 Appendix

5.1 Historical Birth and Death Rates

Birth rate statistics are provided by the Department of Health and Human Services, National Center for

Health Statistics, USA, and The Human Mortality Database, University of California, Berkeley and Max

Planck Institute. Data on the central death rate are provided by the National Center for Health Statistics,

USA, and The Human Mortality Database, University of California, Berkeley and Max Planck Institute. I

adjust the birth rate for infant mortality to get a better estimate of the "birth rate of economic agents".

The adjustment is done by multiplying the observed birth rate with the expected survival probability of a

newborn child to reach age 15. The survival probability of a newborn to reach age 15 is shown in the left

panel in �gure 3. The observed birth rate from the aforementioned data providers (red dotted line) and the

adjusted birth rate (black solid line) are shown in �gure 3 in the right panel. The green dashed line shows

the sum of the adjusted birth rate and the immigration rate which arguably is the best measure of the birth/

entry of economic agents.
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Figure 3: Left panel: Survival probability of newborn to reach age 15 (in %). Source: The
Human Mortality Database, University of California, Berkeley and Max Planck Institute for
Demographic Research. Right panel: Crude birth rate (in %; red dashed line), adjusted
birth rate (in %; black solid line) and adjusted birth rate + immigration rate (green dotted
line) in the USA from 1910 until 2006. Source: Department of Health and Human Services,
National Center for Health Statistics, USA; and The Human Mortality Database, University
of California, Berkeley and Max Planck Institute for Demographic Research. The adjusted
birth rate is calculated by multiplying the crude birth rate with the survival probability of
a newborn to reach age 15.

5.2 Additional Calibration

Some parts of the literature suggest that lagged fertility is slightly pro-cyclical (see Sobotka, Skirbekk

and Philipov (2010) for an overview). As a robustness check I repeat the calibrations above but set
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Birth Rate and Lee and Carter (1992) Stochastic Time Component in Death Rates (in %)
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Figure 4: Top-left panel: Adjusted birth rate (in %; red dashed line; multiplication of crude
birth rate and survival probability of a newborn to reach age 15) and adjusted birth rate
+ immigration rate (black solid line) in the USA from 1910 until 2006 (see appendix for
details). Source: Department of Health and Human Services, National Center for Health
Statistics, USA; and The Human Mortality Database, University of California, Berkeley and
Max Planck Institute for Demographic Research. Top-right panel: Lee and Carter (1992)
model output (in %) for US mortality data from 1900 to 2006 provided by National Center
for Health Statistics. Estimation of common stochastic time component across generations.
Bottom-left panel: Percentage changes in adjusted birth rate (red dashed line) and adjusted
birth rate + immigration rate (black solid line) . Bottom-right panel: Percentage changes
in common stochastic time component of Lee and Carter (1992) model estimation.
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Table 5: Unconditional Moments - Calibration vs Data

Data Model
1926-2006 1950-2006

EIS 0:1 0:125

E
h
ln
�
Yt+1
Yt

�i
3:2% 3:1% 3:1% 3:1%

Std
h
ln
�
Yt+1
Yt

�i
4:9% 2:4% 3:5% 3:5%

E [rt] 1:1% 1:7% 2:08% 1:31%
Std [rt] 3:6% 1:8% 1:67% 0:77%
E [yt;30 � yt;1] 1:3% 1:1% 0:75% 0:85%
Std [yt;30 � yt;1] 1:4% 1:5% 0:37% 0:55%
E [yt;30 � yt;5] N=A 0:5% 0:62% 0:73%
Std [yt;30 � yt;5] N=A 0:9% 0:30% 0:44%

E
h
ln
�
Pt+1+Dt+1

Pt

�i
8:5% 8:3% 5:10% 5:60%

E
h
ln
�
Pt+1+Dt+1

Pt

�
� rt

i
7:4% 6:6% 3:02% 4:29%

Std
h
ln
�
Pt+1+Dt+1

Pt

�
� rt

i
19:7% 17:2% 23:2% 17:0%

Corr
h
ln
�
Pt+1+Dt+1

Pt

�
� rt; ln

�
Yt+1
Yt

�i
0:31 0:60 0:22 0:25

Economy without demographic shocks
(nt = 2%; �t = 0:9%; dnt = d�t = 0):er 1:1% 1:7% 4:47% 4:03%

E
h
ln
� ePt+1+ eDtePt

�
� eri 8:1% 7:6% 1:38% 1:38%

Std
h
ln
� ePt+1+ eDt+1ePt

�
� eri 21:0% 18:5% 5:25% 5:25%

Corr
h
ln
� ePt+1+ eDt+1ePt

�
� er; ln� eYt+1eYt �i 0:31 0:60 1:00 1:00

In�nitely-lived representative agent
(nt = �t = 0):
r� 1:1% 1:7% 26:4% 21:2%

Table 5: Estimation of unconditional moments: E[:] denotes the unconditional average,
and Std[:] denotes the unconditional standard deviation. Quantities with a tilde or a star
superscripts are obtained in an equivalent OLG economy without demographic changes re-
spectively an economy populated with a single invinitely-lived representative agent. I have
downloaded real GDP, TIPS, CPI and government bond yield data from the St. Louis Fed,
and 1-month Treasury Bills and stock returns from CRSP. Real GDP data is available from
1929, CPI and 1-month Treasury Bills from 1920, TIPS from 2003, 30-year bond yields from
1925, 1- and 5-year bond yields from 1953, and stock returns from 1926. The model implied
moments are calculated by plugging historical US birth and death rates from 1910 to 2006
into the model. As the historical birth rate I use the adjusted birth rate plus the immigration
rate as described in the appendix and as the age-independent death rate I use the stochastic
time component estimated in a Lee-Carter model.
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corr
�
dnt
nt
; dAtAt

�
= 0:2 instead of corr

�
dnt
nt
; dAtAt

�
= �0:2. The results are summarized in table 5 (the

graphs show the case of EIS = 0:125).

5.3 Regime Shifts in theMortality Rate: Two StateMarkov Switch-
ing Model

To analyze the impact of random changes in the death rate on �nancial markets, I �x the birth rate while

letting the mortality rate switch between a high and a low level. The results and the discussion are similar

to the previous section.

I let the death rate process be d�t = s(�)dS
(�)
t , with s(�) = �H � �L. S

(�)
t 2 f1; 0g follows a two

state, continuous time Markov switching process with transition probability matrix between time t and

t + � given by �(S;�) (�) =

 
1� �(�)H � �

(�)

H �

�
(�)

L � 1� �(�)L �

!
. The death rate switches between the two values

�t 2 f�L; �Hg.
There are minor changes to the utility speci�cation as described below. Agents� objectives stay the

same.

Proposition 4 Suppose an economy as described. In general, there exists an equilibrium with a SDF �
that follows a stochastic process driven by the same two state Markov switching process S(�) as the death

rate. The equilibrium interest rate rt switches between two distinct levels, rt 2
n
r
(�)
L ; r

(�)
H

o
de�ned by

r
(�)
j = � + (1� �)

"
�
(Y;�)
j + �j � n

2X
i=1

F
y;(i);(�)
j  

(�)
j

#
� �j +

�

1� 
 �j

��(�)j

0@  (�)k
 
(�)
j

!� 1�
��
�

� 1

1A+ 1� 
 � �
1� 
 �

(�)

j

0@  (�)k
 
(�)
j

!� 1�

�

� 1

1A
8 (j; k) 2 f(L;H) ; (H;L)g, with rtj [�t = �L] = r

(�)
L and rtj [�t = �H ] = r

(�)
H . The market price of risk also

jumps between two distinct values, �t 2
n
�
(�)
L ; �

(�)
H

o
given by

�
(�)
j = �

0@  (�)k
 
(�)
j

!� 1�
��
�

� 1

1A
8 (j; k) 2 f(L;H) ; (H;L)g, with �t j [�t = �L] = �

(�)
L and �t j [�t = �H ] = �

(�)
H . Demographic uncertainty

is priced in equilibrium and the equity premium is non-zero, except for the special case of power utility. The

functions F y;(1);(�)L , F y;(2);(�)L , F y;(1);(�)H , F y;(2);(�)H ,  (�)L , and  (�)H are determined in a system of 6 non-liner

equations provided in the appendix.

Proof. See below.

Lemma 10 Suppose 
 2 (1; 1� �) (� < 0) and the technical conditions in the appendix hold. There exists
a cut-o¤ value EIS

(�)

1 such that the condition EIS < EIS
(�)

1 su¢ ces for the interest rate during a period

characterized by a high death rate to be higher than the rate during times of low mortality, r(�)L < r
(�)
H . The

consumption-to-wealth ratio is increasing and the magnitude of the market price of risk is decreasing in the

death rate,  (�)L <  
(�)
H and

����(�)L ��� > ����(�)H ���.
Proof. See below.
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The result is equivalent to the �nding in the static case.
The stock price is a multiple of GDP (Lemma 1),

P
(�j)
t = Ptj [�t = �j ] = Yt

"
1

 
(�)
j

�
2X
i=1

F
y;(i);(�)
j

1 + �i

#

8j 2 fL;Hg and the growth rate is

dPt
Pt

���� [�t = �j ] = �
(Y;�)
j dt+

Yt

P
(�j)
t

"
1

 
(�)
k

� 1

 
(�)
j

�
2X
i=1

F
y;(i);(�)
k � F y;(i);(�)j

1 + �i

# ���dS(�)t

���
8 (j; k) 2 f(L;H) ; (H;L)g. GDP is locally deterministic, while stock returns are subject to instantaneous
volatility due to the forward looking property of the stock price.

According to Lemma 2, the equity premium is

1

dt
Et

�
dPt +Dtdt

Pt

�
� rt

���� [�t = �j ] = �
(�)

j

Yt

P
(�j)
t

0@  (�)k
 
(�)
j

!� 1�
��
�

� 1

1A
�
" 

1

 
(�)
j

� 1

 
(�)
k

!
+

2X
i=1

F
y;(i);(�)
k � F y;(i);(�)j

1 + �i

#

8 (j; k) 2 f(L;H) ; (H;L)g. In the special case of CRRA utility with 1 � 
 � � = 0, there is no equity

premium.

Lemma 11 Suppose 1�
��
� < 0 and the technical conditions in the appendix hold. There exists a cut-o¤

value EIS
(�)

2 such that the condition EIS < EIS
(�)

2 su¢ ces for the equity premium to be positive in both

states of the world.

Proof. See below.
Lemma 10 is equivalent to Lemma 7.
Consistent with the comparative statics analysis in section 3.3, the stock price is decreasing in the death

rate (under the conditions in Lemma 9 and 10),

P
(�L)
t � P (�H)t = Yt

"
1

 
(�)
L

� 1

 
(�)
H

�
2X
i=1

F
y;(i);(�)
L � F y;(i);(�)H

1 + �i

#
> 0

Lemma 12 Suppose �
(�)

L > (<) �
(�)

H and the conditions in Lemma 9 and 10 hold. There exists a cut-o¤

value EIS
(�)

3 such that the condition EIS < EIS
(�)

3 ensures that the equity premium is larger (lower) during

a period characterized by a low death rate than the premium in times of high mortality.

Proof. See below.

5.4 Extensions and Comments

I heuristically discuss three shortcomings/ extensions of the model.

1) Generalization of Birth and Death Rate Processes
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For simplicity I have modelled birth and death rates as geometric Brownian motions with constant

drifts and di¤usions. Instead I may consider for instance autoregressive processes. The US birth rate seems

to be slightly positively autocorrelated. However, it is not clear from demographic literature whether an

auto-regressive process is preferred to a geometric Brownian motion. Changes in the death rate are not

autocorrelated.

If changes in the birth rate are described by an autoregressive process rather than white noise, I expect the

consumption-to-wealth ratio and the interest rate to depend (in addition to the current level and volatility)

on recent changes in the birth rate.

The static model in section 3.1 provides a good intuition. Assume that changes in the birth rate are

positively autocorrelated. Consider a large past increase (decrease) in the birth rate. Accordingly, another

increase (decrease) in the birth rate is expected in the near future. Because the consumption-to-wealth ratio

is negatively related to the birth rate (for a small enough EIS), a large expected increase (decrease) in the

birth rate creates an incentive for a forward-looking agent to choose a low (high) current consumption-to-

wealth ratio. The property @ 
@n < 0 and the positive relation between  t and �

( )
t = 1

dtEt (d t) in equation

(20) formalizes the intuition. In equilibrium a low (high) consumption-to-wealth ratio corresponds to a low

(high) interest rate (if EIS < 1). As a result the consumption-to-wealth ratio and the interest rate are

negatively related to recent changes in the birth rate. I show in the �rst section in the appendix that there is

empirical evidence for a negative relationship between the level of the current interest rate and past changes

in the birth rate. Geanakoplos et al. (2004) document a similar relation between changes in demographic

quantities and the level in the interest rate.

2) Social Security and other Intergenerational Transfers

The simplest way to model a social security system is by letting agents pay a (possibly age-dependent)

labor income tax which is redistributed to the entire population.27 In the limit when all labor income is

collected and agents receive/ consume per capita GDP, the consumption goods allocation is identical to the

�rst best allocation in an Arrow economy with (intergenerational) market completeness.28

Other intergenerational transfers are modelled by assuming that agents care about other agents�utilities.

For instance, a parent may care about how much utility his children obtain and vice versa. In the extreme

case when agents care about other agents�utilities the same as about their own utility, the economy achieves

the �rst best allocation.

I look at the extreme case when the intergenerational wealth redistribution leads to the �rst best alloca-

tion. Noticing that under �rst best ctt =
Ct
Nt
, equation (8) and equation (9) become @r

@n = (1� �) (a� 1) and
@r
@� = (1� �) (1� a)+

�
1�
�1. The comparative statics analysis suggests that formin

n
� a(1�
)
(1�a)(1�
)�1 ; 0

o
> �

the interest rate and the consumption-to-wealth ratio are decreasing in the birth rate and increasing in the

death rate. The result is stronger than Lemma 4 and 5. The interpretation and the key driving forces for

the result remain the same: an increase in the birth rate causes a redistribution of consumption and wealth

from existing agents to the new born cohort. I expect the intuition to continue to hold in a dynamic model

with stochastic changes in birth and death rates. Because the consumption-to-wealth ratio is sensitive to

27Alternatively, I may consider a set-up as in Gertler (1997) where agents randomly switch from a working
state to retirement and social security is a transfer between workers and retirees. In that case, to keep my
model tractable I must introduce a new set of contracts to let agents hedge the new retirement risk and
to keep markets dynamically complete. However, in Gertler (1997) the results are driven by the market
incompleteness due to retirment risk.
28See also Abel (2003) for a discussion on how a social security system can be employed to approach the

Golden Rule in the eocnomy
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demographic changes, I expect demographic uncertainty to be priced and the equity premium to be time

varying.

Since my results are not a¤ected even if I impose the �rst best allocation, I do not expect that the

introduction of a (reasonable) social security system or other intergenerational transfers alter the fundamental

qualitative results of my model. Though the quantitative magnitude of the e¤ects might change. For instance,

Brooks (2004) argues that the introduction of a social security system may have important quantitative asset

pricing implications.

3) Endogenous Capital Accumulation

For simplicity I have assumed that �rms cannot invest. The assumption is to some extend justi�ed

because the main driving force of my results is the redistribution of wealth and consumption between young

and old generations in response to demographic shifts rather than changes in future labor supply and GDP

growth. Moreover, in reality there is a 15 � 20 year lag between changes in the birth rate and changes in
the size of the workforce which further complicates the relationship between the birth rate and the optimal

capital accumulation policy.

Nevertheless, demographic changes have a long-term impact on the labor supply, and it is reasonable

that a �rm optimally adjusts its capital stock in response to highly predictable long-run changes in the labor

market. One way to tackle the problem is to approximate endogenous capital accumulation by a reasonable

exogenous process like dKt
Kt

=
h
�(K) + �(K) (nt � �t)

i
dt as mentioned in section 2.2. As long as �(K) is not

too large the qualitative results in the paper remain unchanged.

Another approach is to consider endogenous capital accumulation with convex adjustment costs as in

Abel (2003). Suppose the birth rate increases (decreases) or the death rate decreases (increases). The stock

price increases (declines). In response the �rm starts to invest (disinvest) and less (more) units of production

output will be available to consumers. Under time additive utilities, a drop (increase) in current aggregate

consumption implies a high (low) marginal utility state. As a result I expect a positive correlation between

the marginal utility process and stock returns which implies a negative equity premium.

In contrast, under recursive utilities it is not clear whether capital accumulation has a negative or a

positive impact on the equity premium. It is still true that current aggregate consumption drops (increases)

due to investment (disinvestment) by the representative �rm, which has a positive (negative) e¤ect on

marginal utility. But future aggregate consumption will grow faster (slower) due to the initial investment

(disinvestment) and under certain restrictions on the parameterization of the recursive preferences, this has

a negative (positive) impact on marginal utility. The two e¤ects are o¤setting and it is not clear whether

there is a positive or negative correlation between the marginal utility process and stock returns.

I expect capital accumulation to reduce the sensitivity of the interest rate and the consumption-to-wealth

ratio towards changes in birth and death rates. Capital accumulation causes growth in production output to

react stronger in response to changes in birth and death rates because an increase (decrease) in the birth rate

or a decrease (increase) in the death rate comes with additional investment (disinvestment). Given equation

(8) and (9) I conjecture that
�� @r
@n

��, ���@ @n ���, �� @r@� �� and ���@ @� ��� are smaller in a model with endogenous capital
accumulation compared to the model above. Accordingly, a decrease in the sensitivity of the consumption-

to-wealth ratio to changes in birth and death rates causes the market price of risk and asset price volatility

to decline.
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5.5 Derivation of Kreps and Porteus (1978) Type Stochastic Dif-
ferential Utilities given Uncertain Lifetimes

Stochastic di¤erential utilities are a continuous time counterpart to the recursive utilities discussed by Epstein
and Zin (1989, 1991). Du¢ e and Epstein (1992a) restrict their derivation to the case of Brownian information.
In a model with uncertain lifetimes the dynamics of the value function include a Poisson jump term that sets
the value function to zero when the agent passes away. If information is generated by a Brownian motion
and a Poisson jump process (due to lifetime uncertainty), then I have to make some adaptations to the
utility speci�cation introduced in Du¢ e and Epstein (1992a). Following the notation in Du¢ e and Epstein
(1992a), the dynamics of the utility (given the agent is still alive at time t and will die at time �) have to be
rewritten as (given t � �)

dVt = �tdt+ �tdBt � VtdQt

B is a Brownian motion, Q is a compensated Poisson jump process with hazard rate �t. The agent dies if
Q jumps the �rst time since the agent is born and I denote the time of the �rst jump by � . The arrival rate
of death is time varying and stochastic, i.e. Q is a doubly stochastic process (Cox process). Following the
lines in Du¢ e and Epstein (1992a) this implies

�t = �f (ct; Vt)�
1

2
A (Vt)�

2
t � �t [M (Vt; Vt�)�M (Vt�; Vt�)]

= �f (ct; Vt)�
1

2
A (Vt)�

2
t � �t [M (Vt� � Vt�; Vt�)�M (Vt�; Vt�)]

= �f (ct; Vt)�
1

2
A (Vt)�

2
t + �tM (Vt�; Vt�)

M (y; x) = h(y)
h0(x) is the local gradient representation of the certainty equivalent m, i.e. rm (�x; p) =R

M (y; x) dp (y), and h (:) is de�ned as h (m (V )) = E (h (V )).
Since

Vt = Et [VT j � > T ] + Et

"Z T

t

��sds
#

it follows that as T goes to in�nity

Vt = Et

"Z T

t

f (cs; Vs) +
1

2
A (Vs)�

2
s � �sM (Vs; Vs) ds

#

I can show as in Du¢ e and Epstein (1992a) that the following transformation leads to an equivalent
utility function V t = � (Vt) with

f (ct; z) =
f (ct; � (z))

�0 (z)

m(z) = ��1 (m [� (z)])

�0 (z)M (y; z) = M (� (y) ; � (z))

A(x) = �0 (x)A (� (x)) +
�00 (x)

�0 (x)
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This follows from

dV t =

�
�0 (Vt)

�
�f (ct; Vt)�

1

2
A (Vt)�

2
t + �tM (Vt; Vt)

�
+
1

2
�00 (Vt)�

2
t

�
dt

+�0 (Vt)�tdBt � � (Vt) dQt

=

�
�f
�
ct; Vt

�
� 1
2
A
�
V t
�
�2t + �tM

�
V t; V t

��
dt+ �tdBt � V tdQt

with

�t = �0 (Vt)�t

and

� f (ct; Vt)�
1

2
A (Vt)�

2
t + �tM (Vt; Vt)

= �
f
�
ct; Vt

�
�0 (Vt)

� 1
2

A
�
V t
�

�0 (Vt)
�2t �

1

2

�00 (Vt)

�0 (Vt)
�2t + �t

M
�
V t; V t

�
�0 (Vt)

= �
f
�
ct; Vt

�
�0 (Vt)

� 1
2

�
A
�
V t
�
�0 (Vt) +

�00 (Vt)

�0 (Vt)

�
�2t + �t

M
�
V t; V t

�
�0 (Vt)

Choosing �00 (x) = �0 (x)A (x) implies A (x) = 0, and thus, m [x] = E [x].
For the speci�cation introduced in Du¢ e and Epstein (1992a), featuring the Kreps and Porteus (1978)

property of preferences over the timing of risk resolution,

f (cs; Vs) =
�

�

c�s � V �s
V ��1s

m (x) =
�
E
�
x1�


�� 1
1�


Vt = Et

�Z 1

t

f (cs; Vs) +
1

2
A (Vs)�

2
s � �sM (Vs; Vs) ds

�
= Et

�Z 1

t

�

�

c�s � V �s
V ��1s

� 1
2




Vs
�2s � �s

Vs
1� 
 ds

�
Letting � (x) = 1

1�
x
1�
 to get an equivalent utility function V t = � (Vt), I end up with

f
�
cs; V s

�
= �0

�
��1

�
V s
��
f
�
cs; �

�1 �V s��
=

�

�

c�s �
�
(1� 
)V s

� �
1�
�

(1� 
)V s
� �
1�
�1

m (x) = E [x]
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I get the utility speci�cation

V t = Et

�Z 1

t

f
�
cs; V s

�
+
1

2
A
�
V s
�
�2s � �sM

�
V s; V s

�
ds

�

= Et

"Z 1

t

�

�

c�s �
�
(1� 
)V s

� �
1�
�

(1� 
)V s
� �
1�
�1

� �sV sds
#

= Et

24Z 1

t

�c�s �
�
� + �

(1�
)�s

� �
(1� 
)V s

� �
1�


�
�
(1� 
)V s

� �
1�
�1

ds

35
= Et

�Z 1

t

bf �cs; V s� ds�

As shown in the online appendix of Garleanu and Panageas (2010) the same speci�cation can be obtained
as a continuous time limit of the discrete time recursive utility function

Vt =

�
c�t + (1� �)Et

h
(1sVt+1)

1�

i �
1�

� 1
�

=

�
c�t + (1� �)Et

h
(1� �t)V 1�
t+1

i �
1�

� 1
�

=

�
c�t + (1� �) (1� �t)

�
1�
 Et

h
V 1�
t+1

i �
1�

� 1
�

1s is an indicator function determining whether the agent survives (1s = 1) or passes away (1s = 0). The

non-linear "discounting" term (1� �t)
�

1�
 captures risk aversion towards the timing of death. This relates

to the discussion by Bommier (2003). Depending on the preference parameters, �
1�
 > (<) 0, an agent

is less (more) concerned about future consumption (utility) and wants to save less (more) than under a

certain length of life. The utility speci�cation in the paper of Garleanu and Panageas (2010) di¤ers from my

speci�cation because (opposed to my approach) they exclude risk aversion towards the timing of death.
Because the utility function is a continuous time version of the recursive utility function introduced by

Epstein and Zin (1989, 1991), in order for the agent to have a preference for early (late) resolution of risk
(in the sense of Kreps and Porteus (1978)), I need

1� 
 < (>) �

This insight becomes clear when considering the discrete time recursive utility function

Vt =

�
c�t + (1� �)Et

h
1sV

1�

t+1

i �
1�

� 1
�

I de�ne Vt = V
1
�

t and rewrite the discrete time utility speci�cation as

V t =

"
c�t + (1� �)Et

�
1sV

1�

�

t+1

� �
1�

#

For � > 0, arg supfcs;Xsg2(=�L2) fVtg = arg supfcs;Xsg2(=�L2)
�
V t
	
and by Jensen�s inequality early (late)

resolution of risk is preferred if 1�

� < (>) 1 or 1 � 
 < (>) �. For � < 0, arg supfcs;Xsg2(=�L2) fVtg =

arg supfcs;Xsg2(=�L2)max
�
�V t

	
and by Jensen�s inequality early (late) resolution is preferred if 1�
� > (<) 1

or 1� 
 < (>) �:
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The speci�cation nests the special case of a time additive expected utility function featuring a CRRA
pro�le with 
 = 1

IES . Indeed setting 
 = 1� � reduces to the familiar speci�cation for power utilities

V t = Et

�Z 1

t

�c1�
s

1� 
 � (� + �s)V sds
�

= Et

�Z 1

t

�c1�
s

1� 
 e
�
R s
t
�+�ududs

�
The condition 
 = 1� � implies indi¤erence with respect to timing of risk resolution; neither early nor late

resolution of risk is preferred. In the case of time additive utility agents also become risk neutral towards

uncertainty about the timing of death (cf. also Bommier (2003)).

There are a few comments on the speci�cation. As the utility function may be de�ned on the negative

space, it might seem that being dead is desirable. I can rule out this problem by not giving the agent the

option to commit suicide. One may also circumvent the problem of suicidal agents by adding a large enough

constant term to the aggregator function f(:), so that the agent draws utility from simply being alive. Such a

constant term does not matter in the utility maximization problem. Further, the speci�cation here excludes

bequest motives. This is restrictive, but in turn a too large bequest motive may give rise to suicidal behavior

of an agent and counter-intuitive results (for more details see Maurer, 2011).
The derivation of the utility speci�cation in the economy with regime shifts (Markov switching model)

follows the same steps. Let the state of the world be indicated by the state variable St 2 f0; 1g, which jumps
when a regime shift occurs. Adjustments have to be done with respect to the dynamics in the value function,

dVt = �tdt+ 1fSt=1gs
(V )
1 jdbStj+ 1fSt=0gs(V )0 jdbStj � VtdQt

bSt is a compensated Poisson jump process corresponding to the Markov switching process St, and s
(V )
i

denotes the change in the value function due to a jump from state i 2 f1; 0g to the other state. The drift
term is given by

�t = �f (ct; Vt) + 1fSt=1g�H
h
M
�
Vt� + s

(V )
1 Vt�

�
�M (Vt�; Vt�)

i
+1fSt=0g�L

h
M
�
Vt� + s

(V )
0 ; Vt�

�
�M (Vt�; Vt�)

i
+ �tM (Vt�; Vt�)

The remaining of the derivation follows by applying the same lines of argument as above. The speci�cation
of the SDU in case of regime shifts in the birth rate becomes
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The speci�cation in case of regime shifts in the death rate is written as

V ss = Es

�Z 1

s

f (csu; V
s
u ) du

�
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with
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5.6 Proofs of Propositions

Propositions 1 is a special cases of Proposition 4. Proposition 2 and 3 are closely related to Proposition 4.

I provide a proof for the general case and show afterwards how to get from there the other Propositions.
Proof of Proposition 4. Following Du¢ e and Skiadas (1994, Theorem 2), the Gateau derivative
(directional derivative) of the utility function in equation (2) at cs in the direction x is

rV ss (cs;x) � lim
�!0

V ss (c
s + �x)� V ss (cs)
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The Riesz representation process Rt is de�ned as

Rt = e
R t
s

@
@V su

f(csu;V
s
u )du @
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s
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Optimality implies for any agent born at time s (assuming that the optimal consumption plan cs
�
is in the

interior)
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�
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;
h
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M ,
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�
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�
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holds for all marketable cash �ows x 2 M . This implies that the Riesz representation process is a multiple
of a SDF �,

Rte
R t
s
�udu = �s�t

for some constant �s. Since markets are dynamically complete, the found pricing kernel is unique. I can
solve for the optimal consumption plan for any agent born at time s by plugging in the expression for the
Riesz representation process (from now I drop the notation indicating the optimum by a star)
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Using dynamic programming to solve the utility maximization problem of an agent born at time s, I can
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state the Hamilton-Jacobi-Bellman equation as follows
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representing the agent�s total wealth while W s indicates his

�nancial wealth. The �rst order condition with respect to optimal consumption is given by
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This holds conditional on survival. In the following I also condition on survival and although it is not written
explicitly, I keep in mind that the variables cs, W s, and V s jump to zero when the agent dies. I make the
following conjecture for the value function

V s
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Plugging the conjectured value function into the FOC yields

cst = cW s
t  t (17)

Plugging back into the conjectured value function and solving for cst , allows us to rewrite the expression for
optimal consumption as
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Combining this with the expression obtained from the martingale approach (equation (15)) and solving for
the value function leaves us with
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Solving for optimal consumption yields
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The dynamics of the utility function are given by (assuming the agent survives over the next instant of time)
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According to the de�nition of the value function, the drift term has to equal �f (cst ; V st ) dt, which boils down
to a PDE determining the function  t (�; n) and at the same time veri�es my conjecture about the value
function (given a solution for the stated PDE exists)
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The last step is equivalent to solving the HJB equation.

Next, I make use of the static budget constraint,
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to solve for the optimal consumption level of new born agents, css. Plugging in expression (19) for optimal
consumption yields
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and
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Noticing that the newly de�ned quantities, Zcs , Z
y;(1)
s and Zy;(2)s are (local) martingales and (by the tower

property of conditional expectations) their drift terms equal zero, I get PDE�s that determine the functions
F c;s (�; n; s), F y;s;(1) (�; n; s) and F y;s;(2) (�; n; s)
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Alternatively, using equation (17) I can derive F c;s (�; n; s) as follows
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Combining with the PDE determining F c;s (�; n; s) (equation (21)) I end up with
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which is the same as the PDE (20) that determines  t (�; n). This veri�es the conjecture about the value

function (16). Equation (17) also tells us that  t (�; n) describes the consumption to wealth ratio.
Market clearing in the consumption market implies

dYt = dCt
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Growth in aggregate output is exogenously given and for aggregate consumption I have
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Notice that if death rates were age-dependent then the last term in equation (23) becomes messy because
the integral over individual consumptions will not add up to aggregate consumption anymore. I can use
expression (19) to get the dynamics of the optimal consumption process
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Plugging back into the market clearing condition and solving for growth in the SDF gives
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Using (20) and (22), and plugging in the expression for the SDF, I can derive a system of 3 di¤erential
equations that determines the quantities  t and F

y;t;(i), 8i 2 f1; 2g
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By de�nition of rt = Et
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, Proposition 4 follows,
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In the following I describe how the model can be solved numerically under the assumption that
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I solve the di¤erential equations numerically using the �nite di¤erence method. To derive boundary condi-
tions I �rst set �t = nt = 0 and the model collapses to the special case of one in�nitely-lived representative
agent. The system of di¤erential equations is
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The conjectures are indeed consistent with the solution. I have boundaries at (�t; nt) = (0; 0) and (�t; nt) =

(�max; 0) with �max !1 and can numerically solve the above di¤erential equation over the space spanned

by �t and keeping nt = 0. I choose nmax small enough and solve the di¤erential equations on the space
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(grid) spanned by �t 2 (0; �max) and nt 2 (0; nmax). From the above discussion I have boundaries at nt = 0

and �t 2 (0; �max), and nt 2 (0; nmax) and �max.
Proof of Proposition 1. Proposition 1 is a special case of Proposition 4 and follows immediately
when using �(A) = 0, d�t = 0 and dnt = 0. Moreover, I rewrite
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Proof of Proposition 2 and 3. The proof of Proposition 2 and 3 are basically the same. The
main di¤erence to Proposition 4 is that the function  t (�; n) does not follow a continuous di¤usion process,
but jumps between two distinct values. The argument follows basically the same lines. The derivation from
equation (14) to equation (19) is carried over without any change. The further derivation di¤ers slightly.
To derive optimal consumption of new born agents I make use of the static budget constraint and de�ne
the functions F c;s (�; n; s), F y;s;(i) (�; n; s), Zcs and Z

y;(i)
s as before. Using the martingale property of the Z

functions and setting the drift zero yields
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where the superscript (cp) denotes the continuous part of the process (for notational details compare Shreve,
2004). Using the relation F c;s = 1

 s
gives the equation determining  t
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Given these functions, it holds
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The dynamics of the optimal consumption process for the individual agent are (using equation (19))
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is given by
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From equation (26) and the fact that on the aggregate consumption and output are smooth, Ct = Ct�
and Yt = Yt� (no discontinuities), it follows that the pricing kernel process must have a jump component
inherent, and in particular, it must hold

�t
�t�

=
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 t
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(27)
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Finally, imposing market clearing in the consumption good market as before (dYt = dCt) and solving for the
SDF yields
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Adding the jump component leaves us with the quantities
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In the qualitative analysis in the main text I assume that there are no TFP shocks (�(A)= 0) for illustrative
purposes. In this case there is no market price of risk for TFP shocks but only for demographic shocks and

I write �
(J)
t = �t to keep notation simple.

5.7 Proofs of Lemmas

Proof of Lemma 1. From market clearing in �nancial markets it follows immediately that
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Z t
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W s
t nsNse

�
R t
s
�vdvds

From the static budget constraint it follows the expression for �nancial wealth

W s
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The constraint is binding at optimum because of local non-satiation (utility is increasing in consumption).
Plugging in yields
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For the �rst term I haveZ t
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For the second term it holdsZ t
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Combining and imposing market clearing in the consumption goods market (Yt = Ct) gives

Pt = Yt

"
1

 t (�; n)
�

2X
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F y;t;(i) (�; n; t)
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#

Proof of Lemma 2. Following the de�nition of the price of an asset that pays dividends Dt, I can
write

Pt = Et
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Noticing that the Et [P0] is a martingale (according to the tower property of conditional expectations), it
follows immediately
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Proof of Lemma 3. First note that I often use the notation �t (r) =
Ntc

t
t(x)
Ct

=
P2
i=1 F

y;(i)
t  t to de-

scribe the ratio between consumption of a new born agent and per capita GDP. Let �(r) = min�2f�(r)[0g f�g
with �(r) =

�
� : �(r) (�) = 0; � < 0

	
and �(r) (�) = a (n� �)� 


1�
�� n� (r (�)). I show that the condition
� < �(r) (or EIS < EIS

(r)
= 1

1��(r) ) su¢ ces for the interest rate in an OLG economy to be smaller than
the rate in an equivalent economy populated by a representative in�nitely-lived agent (r < r�). Moreover, I
show that for B2 = 0 of �1 = �2, the function �(r) (�) is monotonically decreasing in �� (for � < 0), and if
lim �%0

�
�(r) (�)

�
< 0, then the set �(r) is single valued, and otherwise empty. It follows that for B2 = 0 or

�1 = �2 there exists no � > �(r) that satis�es �(r) (�) < 0. In the general case (B2 6= 0 and �1 6= �2) there
might exist � > �(r) that satis�es �(r) (�) < 0. I need the technical conditions r � 


1�
� � �, r � �(Y ) > 0,
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and �(Y ) � 
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6= 0. Given 
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The expression in equation (7) is negative and it holds r < r�, if the su¢ cient condition
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with  + �(Y ) � r > 0 since  + �(Y ) � r = n� (r). I look at how condition (28) behaves in the limit when
the EIS approaches zero. Taking the limit of � approaching �1, I get for my key variables
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In the limit as the EIS approaches zero condition (28) is satis�ed if B1+B2
B1
1+�1

+
B2
1+�2

> 1� 1+ 1�a
a 


1�

�
n . For B2 = 0

or �1 = �2, the condition boils down to �1 > � 1+ 1�a
a 


1�

�
n . Using 
 > 1, r �



1�
� � � and the conditions of

67



Lemma 3 (r � �(Y ) > 0), and taking the derivative of r with respect to �� gives
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it is hard to tell whether this condition is satis�ed. However, if B2 = 0 or �1 = �2, then
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increasing and approaches the limit a (1 + �1) (from below) as � approaches �1. Finally, since � (r) is a
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A similar result can be achieved following the argument in Garleanu and Panageas (2010). Provided the
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the equilibrium interest rate in the OLG economy is lower than the respective interest rate in an economy
populated by an in�nitely-lived representative agent (r < r�). I de�ne r� = (1� �)�(Y )� + � (interest rate
in in�nitely-lived representative agent economy). Let the function f (r) (x) = (1� �)�(Y ) + 
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equilibrium interest rate in the OLG economy that is larger than the growth rate in GDP but smaller than
the rate in an equivalent economy populated by an in�nitely-lived agent. As pointed out by Garleanu and
Panageas (2010), condition (29) can be interpreted as a requirement on life-cycle earnings to be su¢ ciently
strong declining in age. Assuming the special parameterization of G (0; t) = B1e
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It requires �1 to be large enough and life-cycle earnings to decrease fast enough as an agent age. Condition

(30) is implied by 
 > 1. This is because condition (30) it is implied by condition (ii) of Proposition 1 if � > 0

and r > �(Y ) (which is an implication of the just discussed intermediate value theorem), or it is satis�ed for
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�
(Y )
� > 0).

The argument of both discussed proofs are interdependent and complement each other. I need a suf-

�ciently decreasing life-cycle earnings pro�le and a strong enough consumption smoothing motive. The

di¤erence is that once I explore the magnitude of the EIS and once I focus on the labor income path.
Proof of Lemma 4. Let �(n) = min�2(�(n)[f0g) f�g with �
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su¢ ces for @r@n < 0 to hold. Moreover, I show that for B2 = 0 or �1 = �2, the function �(n) (�) is monotonically
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�
�(n) (�)

�
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�(n) is empty. It follows that for B2 = 0 or �1 = �2 there exists no � > �(n) that satis�es �(n) (�) > 0. In the
general case (B2 6= 0 and �1 6= �2) there might exist � > �(n) that satis�es �(n) (�) > 0. I need the technical
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r � �(Y ) + (1 + �1)n

r � �(Y ) + an (32)

su¢ ces for @r@n < 0 to hold. First, I look at how condition (32) behaves in the limit when the EIS approaches
zero. Following the result in Lemma 3, I get

lim
�!�1

� (r) = a
B1 +B2
B1

1+�1
+ B2

1+�2

and for B2 = 0 or �1 = �2, lim�!�1� (r) simpli�es to

lim
�!�1

� (r) = a (1 + �1)

Moreover,

lim
�!�1

a
r � �(Y ) + (1 + �1)n

r � �(Y ) + an = lim
�!�1

a

r
1�� +

��(Y )+(1+�1)n
1��

r
1�� +

��(Y )+an
1��

= a

In the limit as the EIS approaches zero condition (32) is satis�ed (lim�!�1� (r) > lim�!�1 a r��
(Y )+(1+�1)n
r��(Y )+an )

if B1+B2
B1
1+�1

+
B2
1+�2

> 1 or equivalently B1 >
1+ 1

�1

1+ 1
�2

jB2j. In the case of B2 = 0 or �1 = �2 condition B1+B2
B1
1+�1

+
B2
1+�2

> 1

boils down to �1 > 0. Next, I note that a
r��(Y )+(1+�1)n
r��(Y )+an 2 (a; 1 + �1). Using 
 > 1, r� 


1�
���, 1+ �1 > a

and the conditions of Lemma 3 (r � �(Y ) > 0), I see that the term a r��
(Y )+(1+�1)n
r��(Y )+an is strictly decreasing in
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�� until it approaches a in the limit where � approaches �1, because

@
�
a r��

(Y )+(1+�1)n
r��(Y )+an

�
@ (��) = a

@
�
1 + (1+�1)n�an

r��(Y )+an

�
@r

@r

@ (��) = �an
1 + �1 � a�

r � �(Y ) + an
�2 @r

@ (��) < 0

Following Lemma 3, I also know that @(�(r))@(��) > 0 holds and � (r) is strictly increasing in �� if

2X
i=1

F y;(i) 

r � �(Y ) + (1 + �i)n
(1 + �i � � (r)) > 0

It is hard to tell whether this condition is satis�ed in general. However, if B2 = 0 or �1 = �2, then

@ (� (r))

@ (��) =
1

1� �
1

 

r � 

1�
�� �

1 + (1� �)n�0 (r)n
� (r)

r � �(Y ) + (1 + �1)n
(1 + �1 � � (r))

and a (1 + �1) > � (r) and @(�(r))
@(��) > 0 must hold for � < 0 (as shown in Lemma 3). In conclusion, since

� (r) and a r��
(Y )+(1+�1)n
r��(Y )+an are continuous functions in � (for � < 0), � < �(n) satis�es condition (32) and

@r
@n < 0 (if B1 >

1+ 1
�1

1+ 1
�2

jB2j). Moreover, in the case of B2 = 0 or �1 = �2, if condition (32) is not satis�ed for

� % 0, then �(n) is single valued (as �(n) is monotonic), and if condition (32) is satis�ed for � % 0, then

�(n) is empty.
Proof of Lemma 5. Let �(�) = min�2(�(�)[f0g) f�g with �

(�) =
�
� : �(�) (�) = 0; � < 0

	
and

�(�) (�) = 1�a�
�
� 

1�


1
 (�) �

a
r(�)��(Y )+(1+�1)n

�
na (1 + �1)� 1�
��

(1�
)(1��) . I show that the condition � < �(�)

(or EIS < EIS
(�) � 1

1��(�) ) su¢ ces for
@r
@� > 0 to hold. Moreover, I show that for B2 = 0 or �1 = �2,

the function �(�) (�) is monotonically increasing in �� (for � < 0), and if lim �%0

�
�(�) (�)

�
< 0, then the

set �(�) is single valued, and otherwise �(�) is empty. It follows that for B2 = 0 or �1 = �2 there exists no
� > �(�) that satis�es �(�) (�) > 0. In the general case (B2 6= 0 and �1 6= �2) there might exist � > �(�)

that satis�es �(�) (�) > 0. The technical conditions needed are the same as in Lemma 4. For @r
@� > 0 to

hold, I need (1� �)
�
1� a+

P2
i=1

an
r��(Y )+(1+�i)nF

y;(i) � n �
1��



1�


P2
i=1 F

y;(i)
�
� 1�
��

1�
 > 0. Suppose

that � < 0. Using 
 > 1, and � (r) < a (1 + �1) (result of Lemma 3), I note that

(1� �)
 
1� a+

P2
i=1

an
r��(Y )+(1+�i)nF

y;(i) 

�n �
1��



1�


P2
i=1 F

y;(i)

!
� 1� 
 � �

1� 


> (1� �)
�
1� a�

�
�

1� �



1� 

1

 
� a

r � �(Y ) + (1 + �1)n

�
n� (r)

�
� 1� 
 � �

1� 


> (1� �)
�
1� a�

�
� 


1� 

1

 
� a

r � �(Y ) + (1 + �1)n

�
n� (r)

�
� 1� 
 � �

1� 


> (1� �)
�
1� a�

�
� 


1� 

1

 
� a

r � �(Y ) + (1 + �1)n

�
na (1 + �1)

�
� 1� 
 � �

1� 


Condition

(1� �)
�
1� a�

�
� 


1� 

1

 
� a

r � �(Y ) + (1 + �1)n

�
na (1 + �1)

�
� 1� 
 � �

1� 
 > 0 (33)

71



su¢ ces for @r
@� > 0. For the case when the EIS approaches zero condition (33) is satis�ed since

lim
�!�1

�
� 


1� 

1

 
� a

r � �(Y ) + (1 + �1)n

�
= 0

and

lim
�!�1

(1� �)
�
1� a�

�
� 


1� 

1

 
� a

r � �(Y ) + (1 + �1)n

�
na (1 + �1)

�
� 1� 
 � �

1� 
 > 0

The term � 1�
��
1�
 is increasing in �� (since 
 > 1). The expression � 


1�

1
 �

a
r��(Y )+(1+�1)n is decreasing

in �� if
P Fy;(i) 

r��(Y )+(1+�i)n (1 + �i � � (r)) > 0, because

@
�
� 

1�


1
 �

a
r��(Y )+(1+�1)n

�
@ (��)

=



1� 

1

 2
@ 

@ (��) +
a�

r � �(Y ) + (1 + �1)n
�2 @r

@ (��)

=



1� 

1

 2
1

(1� �)2
�
r � 


1� 
 �� �
��

1� � 1
 

r � �(Y )
1 + (1� �)n�0 (r)

�

+
a�

r � �(Y ) + (1 + �1)n
�2 1

 

�
r � �(Y )

�
1
1��

�
r � 


1�
�� �
�

1 + (1� �)n�0 (r)

=

�
r � 


1� 
 �� �
�

1

(1� �)2

24 

1�


1
 2

�
1� � 1 

r��(Y )
1+(1��)n�0(r)

�
+ a

(r��(Y )+(1+�1)n)
2 (1� �) 1 

r��(Y )
1+(1��)n�0(r)

35
<

�
r � 


1� 
 �� �
�

1

(1� �)2
1

 2

24 

1�


�
1� � 1 

r��(Y )
1+(1��)n�0(r)

�
+a (1� �) 1 

r��(Y )
1+(1��)n�0(r)

35
<




1� 


�
r � 


1� 
 �� �
�

1

(1� �)2
1

 2

24 �
1� � 1 

r��(Y )
1+(1��)n�0(r)

�
� (1� �) 1 

r��(Y )
1+(1��)n�0(r)

35
=




1� 


�
r � 


1� 
 �� �
�

1

(1� �)2
1

 2

�
1� 1

 

r � �(Y )
1 + (1� �)n�0 (r)

�

=



1� 

1

1� �
1

 3
r � 


1�
�� �
1 + (1� �)n�0 (r)n

2
2X
i=1

F y;(i) 

r � �(Y ) + (1 + �i)n
(1 + �i � � (r))

where the �rst inequality follows from  < r � �(Y ) + (1 + �1)n and the second one from
�

1�
 > a. As in

the discussion in Lemma 4, it is hard to tell whether
P Fy;(i) 

r��(Y )+(1+�i)n (1 + �i � � (r)) > 0 is satis�ed in

general. However, if B2 = 0 or �1 = �2, then a (1 + �1) > � (r) and
@(�(r))
@(��) > 0 must hold for � < 0. Since

� 

1�


1
 �

a
r��(Y )+(1+�1)n and �

1�
��
1�
 are continuous function in � (for � < 0), it follows that � < � satis�es

condition (33) and @r
@� > 0 (if B1 >

1+ 1
�1

1+ 1
�2

jB2j). Moreover, in the case of B2 = 0 or �1 = �2, if condition (33)

is not satis�ed for �% 0, then �(�) is single valued (as �(�) is monotonic), and if condition (33) is satis�ed

for �% 0, then �(�) is empty.

Proof of Lemma 6. Let �(n)1 = min
�2
n
�
(n)
1 ;0

o f�g with �(n)1 =
n
� : �

(n)
1 (�) = 0; � < 0

o
and �(n)1 (�) =

r
(n)
L (�) � r

(n)
H (�). I show that for � < �

(n)
1 (or EIS < EIS

(n)

1 = 1

1��(n)1

), the interest rate during a period

characterized by a high birth rate (baby boom) is lower than the rate during times of a low birth rate
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(baby bust), r(n)H < r
(n)
L . This is a su¢ cient condition and there might exist some � > �

(n)
1 that satis�es

r
(n)
H < r

(n)
L . I need the technical conditions B1 >

1+ 1
�1

1+ 1
�2

jB2j, �1 > 0, �(Y;n)L � 

1�
� � nLa

B1+B2
B1
1+�1

+
B2
1+�2

6= 0

and �(Y;n)H � 

1�
� � nHa

B1+B2
B1
1+�1

+
B2
1+�2

6= 0. The conditions � < 0 and 
 2 (1; 1� �) imply 1�
��
� < 0, and

 
(n)
H < (>) 

(n)
L is true if r(n)H < (>) r

(n)
L holds. I can show this using a proof by contradiction. Suppose

 
(n)
H >  

(n)
L and r(n)H < r

(n)
L . I have

 
(n)
H �  (n)L = � �

1� �

�
r
(n)
H � r(n)L

�
| {z }

<0

� �

1� ��
(n)

H

0@  (n)L

 
(n)
H

!� 1�
��
�

� 1

1A
| {z }

<0

� �

1� �



1� 
 �
(n)

H

0@  (n)L

 
(n)
H

!� 1�

�

� 1

1A
| {z }

<0

+
�

1� ��
(n)

L

0@  (n)H

 
(n)
L

!� 1�
��
�

� 1

1A
| {z }

<0

+
�

1� �



1� 
 �
(n)

L

0@  (n)H

 
(n)
L

!� 1�

�

� 1

1A
| {z }

<0

which contradicts the assumption  
(n)
H >  

(n)
L . Hence, if there exists a solution, then  

(n)
H <  

(n)
L and

r
(n)
H < r

(n)
L must hold. The same line of argument holds for r(n)H > r

(n)
L and  (n)H >  

(n)
L .

Next, I look at the di¤erence between the interest rate during a baby bust and the rate during a
baby boom. To proof the Lemma I have to �nd conditions such that the r(n)L � r

(n)
H > 0 holds. I ex-

plore the behavior of r(n)L � r
(n)
H under the limit when � approaches �1. I �rst suppose that 8j 2

fL;Hg, i 2 f1; 2g, j lim�!�1
r
(n)
j

1�� j < 1, lim�!�1
r
(n)
j

1�� 6= 0, j lim�!�1
 
(n)
j

1�� j < 1, lim�!�1
 
(n)
j

1�� 6= 0,

j lim�!�1 (1� �)F y;(i);(n)j j < 1, and lim�!�1 (1� �)F y;(i);(n)j 6= 0 hold, and verify these assumptions in
the end. For the interest rate I have 8 (j; h) 2 f(L;H) ; (H;L)g

lim
�!�1

r
(n)
j

1� � = �
(Y;n)
j � 


1� 
 �� nj lim
�!�1

 
2X
i=1

F
y;(i);(n)
j  

(n)
j

!

For the consumption to wealth ratio I get 8 (j; h) 2 f(L;H) ; (H;L)g

lim
�!�1

 
(n)
j

1� � = lim
�!�1

r
(n)
j

1� �

For the function F y;i;(n)j , 8i 2 f1; 2g, (j; h) 2 f(L;H) ; (H;L)g it holds

lim
�!�1

(1� �)F y;(i);(n)j =
1

lim�!�1
r
(n)
j

1��

aBi
B1

1+�1
+ B2

1+�2

The consumption share of the new born cohort is 8j 2 fL;Hg

nj lim
�!�1

 
2X
i=1

F
y;(i);(n)
j  

(n)
j

!
= nja

B1 +B2
B1

1+�1
+ B2

1+�2

Plugging the last expression into the equation of lim�!�1
r
(n)
j

1�� , it follows that my assumptions are indeed
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true. I can now compare how r
(n)
H and r(n)L behave in the limit,

lim
�!�1

 
r
(n)
L

1� � �
r
(n)
H

1� �

!
= a (nH � nL)

 P2
i=1Bi

B1

1+�1
+ B2

1+�2

� 1
!

As a result, in the limit as � approaches �1, lim�!�1

�
r
(n)
L � r(n)H

�
> 0 is satis�ed, if B1+B2

B1
1+�1

+
B2
1+�2

> 1 or

equivalently B1 >
1+ 1

�1

1+ 1
�2

jB2j holds. This is the same condition as in the static case (Lemma 4), and requires

that B1

jB2j is large enough and (�2 � �1) is small enough. In the case of B2 = 0 or �1 = �2, the condition

becomes �1 > 0. In conclusion, since the functions r(n)L (�) and r(n)H (�) are continuous in �, the condition

� < �
(n)
1 ensures that r(n)L > r

(n)
H holds.

It is straightforward that j�(n)L j < j�(n)H j must hold given r(n)H < r
(n)
L ,  (n)H <  

(n)
L and 1�
��

� < 0. It is
true that

0 <

��
 
(n)
H

��2 1�
��� �
�
 
(n)
L

�� 1�
��
�

�2
and rearranging yields�

 
(n)
L

�� 1�
��
�

�
 
(n)
H

�� 1�
��
� �

�
 
(n)
H

��2 1�
���

<
�
 
(n)
L

��2 1�
��� �
�
 
(n)
L

�� 1�
��
�

�
 
(n)
H

�� 1�
��
�

and dividing both sides by
�
 
(n)
L

�� 1�
��
�

�
 
(n)
H

�� 1�
��
�

gives

�

0@  (n)H

 
(n)
L

!� 1�
��
�

� 1

1A
| {z }

j�(n)L j

<

 
 
(n)
L

 
(n)
H

!� 1�
��
�

� 1| {z }
j�(n)H j

Proof of Lemma 7. Let �(n)2 = min
�2
n
�
(n)
2 ;0

o f�g with �(n)2 =
n
� : �

(n)
2 (�) = 0; � < 0

o
and �(n)2 (�) =

1

 
(n)
H (�)

� 1

 
(n)
L (�)

�
P2
i=1

F
y;(i);(n)
H (�)�Fy;(i);(n)L (�)

1+�i
. I show that for � < �

(n)
2 (or EIS < EIS

(n)

2 = 1

1��(n)2

), the

equity premium is positive in both states of the world. This is a su¢ cient condition and there might exist
some � > �

(n)
2 which is consistent with a positive equity premium in both states of the world. I need the

technical conditions �(Y;n)L � 

1�
�� nLa

B1+B2
B1
1+�1

+
B2
1+�2

6= 0 and �(Y;n)H � 

1�
�� nHa

B1+B2
B1
1+�1

+
B2
1+�2

6= 0. Condition
1�
��
� < 0 implies (independent of  (n)L >  

(n)
H or  (n)L <  

(n)
H ) 8 (i; j)2 f(L;H) ; (H;L)g

��(n)i

Yt

P
(ni)
t

1

 
(n)
i

0B@  (n)j

 
(n)
i

!� 1�
��
�

� 1

1CA
0@  (n)j

 
(n)
i

!�1
� 1

1A > 0
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To ensure that Et
h
dPt+Dtdt

Pt

i
� rtdt > 0, 8 nt 2 fnL; nHg, it is su¢ cient to show that the two inequalities

� �(n)i

Yt

P
(ni)
t

1

 
(n)
i

0B@  (n)j

 
(n)
i

!� 1�
��
�

� 1

1CA
0@  (n)j

 
(n)
i

!�1
� 1

1A

> j�(n)i

Yt

P
(ni)
t

0B@  (n)j

 
(n)
i

!� 1�
��
�

� 1

1CA 2X
k=1

F
y;(k);(n)
j � F y;(k);(n)i

1 + �k
j

8 (i; j) 2 f(L;H) ; ); (H;L)g, hold. Note that (1� �)P (nL)t and (1� �)P (nH)t are positive and �nite for
� < 0. Rewriting both inequalities yields the single condition

(1� �) j 1
 
(n)
H

� 1

 
(n)
L

j � (1� �) j
2X
i=1

F
y;(i);(n)
H � F y;(i);(n)L

1 + �i
j (34)

From Lemma 6 it follows that

lim
�!�1

(1� �) j 1
 
(n)
H

� 1

 
(n)
L

j � lim
�!�1

(1� �) j
2X
i=1

F
y;(i);(n)
H � F y;(i);(n)L

1 + �i
j

= (1� a) j 1

lim�!�1
r
(n)
H

1��

� 1

lim�!�1
r
(n)
L

1��

j > 0

In the limit as � approaches �1, condition (34) is satis�ed. Since the function �(n)2 (�) is continuous, the

condition � < �
(n)
2 ensures that condition (34) is satis�ed and Et

h
dPt+Dtdt

Pt

i
� rtdt > 0, 8 nt 2 fnL; nHg.

Proof of Lemma 8. Let �(n)3 = min
�2
n
�
(n)
1 ;�

(n)
2 ;�

(n)
3 ;0

o f�g with �(n)3 =
n
� : �
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3 (�) = 0; � < 0

o
,

�
(n)
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�
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H

�
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�
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P2
i=1

F
y;(i);(n)
H
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L
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(n)
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(�)
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(n)
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(n)
H (�)

� 1�

�

and �(n)1 and �(n)2 as de�ned in Lemma 6 and 7. I

show that the condition � < �
(n)
3 (or EIS < EIS

(n)

3 � 1

1��(n)3

) ensures that the equity premium is larger

(lower) during a period characterized by a high birth rate (baby boom) than the premium during times of
a low birth rate (baby bust). This is a su¢ cient condition and there might exist some � > �

(n)
2 which is

consistent with the result of the Lemma. To give proof I have to show that for �
(n)

H > (<) �
(n)

L , it holds

Et

�
dPt +Dtdt

Pt

�
� rtdt j [nt = nH ]� Et

�
dPt +Dtdt

Pt

�
� rtdt j [nt = nL] > (<) 0

or plugging in the expression for the equity premium
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Since  (n)H <  

(n)
L (by Lemma 6), j 1

 
(n)
H

� 1

 
(n)
L

j > j
P2
i=1

F
y;(i);(n)
H �Fy;(i);(n)L

1+�i
j (by Lemma 7), and � < 0,
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Since the function �(n)3 (�) is continuous in � < 0, the condition � < �
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Proof of Lemma 9. Let �(�)1 = min
�2
n
�
(�)
1 ;0

o f�g with �(�)1 =
n
� : �

(�)
1 (�) = 0; � < 0

o
and �(�)1 (�) =

r
(�)
H (�) � r

(�)
L (�). I show that for � < �

(�)
1 (or EIS < EIS

(�)

1 � 1

1��(�)1

), the interest rate during a period

characterized by a high death rate is higher than the rate during times of a low mortality, r(�)H > r
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This is a su¢ cient condition and there might exist some � > �
(�)
1 which is consistent with the result of

the Lemma. The proof follows the same line of argument as the proof of Lemma 6. I need the technical
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which contradicts the assumption  
(�)
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L . Hence, if there exists a solution, then  
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L and

r
(�)
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Next, I look at the di¤erence between the interest rate in a high death rate state and the rate in a low
death rate state. To proof the Lemma I have to �nd conditions such that the r(�)H � r

(�)
L > 0 holds. In the

limit as EIS goes to zero my key quantities are essentially the same as derived in Lemma 6, for j 2 fL;Hg,
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show that �(�)2 (�) > 0. Using the results of Lemma 9, I have
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It follows that in the limit as � approaches �1, the equity premium is positive in both states of the world.
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In the limit as the EIS approaches zero condition (36) is satis�ed,
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Since the function �(�)3 (�) is continuous in � < 0, the condition � < �
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