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1 Introduction

This paper studies how temperature affects GDP and how the responses vary across countries. The
response of real GDP per capita growth to temperature shocks are estimated by local projections
(Jordà, 2005). We consider the role of a country’s own temperature, and two components of
country temperature: the global (common) component and the idiosyncratic component. We are
also able to distinguish between growth and level effects from the various temperature shocks.
We then study determinants of cross-country response variation in cross-sectional regressions of
the local projection coefficients on country characteristics. Finally, we conduct a counter-factual
analysis to obtain economic benefits and damages across countries resulting from global warming
implied by our reduced form estimates.

Local projections present a flexible method for us to estimate the impulse response of real GDP
per capita growth to temperature shocks while imposing few restrictions. Studies that employ
panel regression impose extensive homogeneity restrictions across countries. Depending on the
study, they find either uniformly negative effects of higher temperature on growth or negative
effects only for poor countries. In contrast to panel regression studies, we estimate and study
the entire cross-country response distribution. Our analysis finds that the impulse responses of
rich country growth to temperature shocks are likely to be negative, while that of many poor
countries are likely to be positive. Negative growth responses are found for six of the Group of
Seven (G-7) countries (Canada being the exception). Positive responses are found for four of the
nine poorest countries. Distinguishing between level and growth effects over the short-to-medium
run, we find temperature shocks to have a significantly negative growth effect for 42 countries
and a significantly positive growth effect for 52 countries. Negative level effects are found for 34
countries and positive level effects for 13 countries.

Perhaps, the natural measure of temperature is that which pertains to the country being
examined. But, country temperature is relatively noisy, and it is also useful to examine its decom-
position into a systematic global component and the unsystematic idiosyncratic component. The
global component is conceptually attractive because it forms an association with climate change,
which is a global phenomenon. The idiosyncratic component, on the other hand, shows similari-
ties with the regressor in panel regressions with time-fixed effects. For some countries, we find the
impulse responses of growth to global and idiosyncratic temperature shocks go in opposite direc-
tions. Qualitatively, rich country impulse responses appear to be driven more by shocks to global
temperature than from the idiosyncratic component. The prominence of the global temperature
component lends support to Bansal and Ochoa (2011)’s notion that temperature is a source of
aggregate financial risk.

Having estimated country growth impulse responses, we next investigate the determinants
of cross-country response variation in cross-sectional regressions of local projection temperature
response coefficients on various country characteristics. This methodology draws on research
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strategies used in finance (e.g., Lustig and Richmond (2020) who regress the exchange rate’s
dollar-factor ‘beta’ on gravity variables). There is no ‘generated regressor’ problem in this cross-
sectional analysis because the estimated response coefficients are the dependent variable. Our
main findings here are, after controlling for latitude, the growth impulse response coefficients are
decreasing in average real GDP per capita and decreasing in long-horizon growth. Finer structural
distinctions across countries, such as average agricultural, industrial, and manufacturing shares of
GDP, have only limited explanatory power.

We use our estimated local projection dynamics to perform reduced form counterfactual anal-
yses and to construct empirical damage functions. This analysis gives a country-by-country as-
sessment of economic damage or benefit resulting from projected global warming. Under the
high-emissions SSP5-8.5 pathway, our estimates imply cumulative economic losses for most rich
countries (U.S. (-1.9%), U.K. (-1.6 percent), Germany (-0.8%), Japan (-2.3%)) but confers bene-
fits to large developing countries such as Brazil (5.3%), Nigeria (8.8%), China (9.6%), and India
(5.7%). Of course, the historical relationship between real GDP per capita growth and temperature
upon which this analysis is based, may not remain stable in the future resulting from adaptation or
environmental tipping points. However, this qualification applies to all counterfactual and damage
assessments based on historical estimates.

A central motivation for this project is to shed light on limited and conflicting conclusions in the
literature regarding impact heterogeneity of temperature variation on GDP growth. Depending on
the particular study, the empirical literature that employs panel regression, finds either an inverse
relationship between temperature and GDP for all countries, or an inverse relationship that holds
only for poor countries. A path-breaking study in this literature is Dell et al. (2012), who use
international data in estimation with country and time-fixed effects. An important motive for
their panel regression approach was to use country fixed effects to control for omitted-variables
bias that was present in an earlier generation of studies of cross-sectional regressions of time-
averaged GDP on temperature.1 Dell et al. (2012) reports that increased temperature lowers
GDP per capita growth, but only for poor countries. Leta and Tol (2019) and Henseler and
Schumacher (2019) report similar results for total factor productivity growth. Burke et al. (2015),
on the other hand, find increased temperature to have a negative effect on GDP growth but
do not find differential impacts between rich and poor countries. Bansal and Ochoa (2011) find
increasing global temperature lowers GDP growth of all countries with larger effects on low latitude
countries.2

1The most prominent candidate omitted variables may be institutional quality, which is controlled for by the
country fixed effect in panel regressions. Studies by Acemoglu et al. (2002), Easterly and Levine (2003), and Rodrik
et al. (2004) argue institutions are main drivers of long-run growth outcomes.

2The panel regression approach to study the economic effects of climate was introduced by Deschênes and
Greenstone (2007), who estimated the effect of temperature on agricultural profits in the United States. Also,
focusing on the United States, Colacito et al. (2019) reports higher summer temperatures are damaging to output
growth in southern states and the negative impacts are by geography, not income and Hsiang et al. (2017a), who
examines growth in county-level income, similarly finds income is negatively impacted by temperature in the south
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Our study differs from these panel-regression studies along three dimensions. First, our paper
studies the growth responses to actual changes in country-specific temperature. Panel regressions
with time-fixed effects estimate the response of the deviation of a country’s growth from the
global (cross-sectional) average to variation in the deviation of country temperature from the
global average. The independent variable is thus a coarsely constructed idiosyncratic component
of temperature variation while the response variable is a similarly blunt idiosyncratic component
of real GDP per capita growth. Second, we examine growth responses to global and idiosyncratic
temperature changes, whereas time-fixed effects in panel regressions remove the global component.
Third, instead of imposing extensive homogeneity restrictions typical in panel regressions, we allow
extensive response heterogeneity across countries.

Informed by the extant literature, our prior beliefs were that the time-series variation would
reveal a distribution of local projection coefficients heavily weighted with negative values and the
far left tail populated primarily by poor, low latitude countries. It was surprising to estimate the
direction of growth responses to be roughly evenly split between positive and negative and to find
the richer countries generally on the negative side of the distribution.

Some broader implications follow from this project. First, the pattern of cross-country response
heterogeneity can supplement the ethical arguments presented by Stern (2008) to incentivize rich
countries to invest in abatement strategies. The evidence that rich countries are directly eco-
nomically damaged by warming should naturally incentive them to invest in climate mitigation.3

Second, our results can provide refinements to damage function specifications in integrated as-
sessment models (IAM) that compute welfare costs and evaluate the social cost of carbon. Since
extant empirical literature finds higher temperatures to be more economically damaging to poorer
and hotter regions, regional IAMs, informed by such empirical damage estimates produce similar
regional damage projections.4 The geographical variation provided by our country-specific assess-
ments to the knowledge base can provide more detailed specifications of IAM damage functions.
Additionally, IAM welfare and social cost of carbon calculations can be sensitive depending on
whether temperature is assumed to affect GDP growth or only its level. Our estimates on which
countries have experienced growth or level effects from temperature can also contribute to IAM
damage function specification.

The remainder of the paper is organized as follows. Section 2 describes the data. Section 3
discusses substantive ways our analysis departs from panel regression. The local projection analysis

and southwest, and increases in the north.
3In the absence of a global coordinated effort, Stern (2008) appeals to two ethical considerations to get the rich,

industrialized countries to shoulder disproportionate costs of future abatement. First, industrialized countries are
responsible for most of the current stock of greenhouse gasses and have gotten rich by generating those emissions.
Second, poor countries are just beginning to overcome poverty through rapid growth and should not be forced to
slow.

4DICE, FUND, and PAGE are prominent IAMs that serve as the main policy models employed by the U.S.
Environmental Protection Agency. Regional IAMS have been developed by Hassler and Krusell (2012), Nordhaus
and Yang (1996), Tol (2019), and Ricke et al. (2018), amongst others.
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is reported in Section 4. Section 5 contains a robustness analysis. Section 6 undertakes the cross-
sectional analysis. The counterfactual and empirical damage function analysis is in Section 7 and
Section 8 concludes.

2 Data

Subsection 2.1 describes our data sources. Subsection 2.2 describes how we detrend and decompose
country-level temperature into global and idiosyncratic temperature components.

2.1 Data Sources

Real GDP per capita is from the World Bank’s, World Development Indicators. These data are
valued in constant 2010 United States dollars and have a maximal span from 1960-2017. The
empirical analysis uses only those 162 countries that have at least 20 consecutive years of observa-
tions. In the analysis of Section 6, we also use the World Bank’s, World Development Indicators
to represent country characteristics (GDP shares of agricultural, industry, and manufacturing).5

Our temperature observations are population-weighted by year and country. The source is
Terrestrial Precipitation: 1900-2017 Gridded Monthly Time Series (V 5.01) Matsuura and Will-
mott (2018). This is a monthly dataset estimated from weather station records and interpolated
to a 0.5-degree by 0.5-degree latitude/longitude grid. We aggregate the monthly data to annual
observations by node. We overlay the temperature data with population data in 2000 from the
Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 11 (Center for
International Earth Science Information Network, 2018). The data provides population counts at
a 2.5 minute by 2.5 minute latitude/longitude grid. We use the population weights to obtain
population-weighted temperatures by country and year, which is the standard approach in the
literature (Kahn et al. 2019 and Dell et al. 2012).6

2.2 Temperature

Temperatures, globally, are rising. Figure 1 shows the cross-sectional average of population-
weighted country annual temperature from 1900-2017. This average annual temperature is seen
to be reasonably stable from 1900 to 1980. After 1980, an upward trend is visually obvious, rising
by about 1oC over 40 years.

Our econometrics requires observations to be stationary. We induce stationarity by quadrati-
cally detrending population-weighted country annual temperature. Let Tj,t be population-weighted

5The full list of countries and the available sample time period for each country are listed in Appendix A.
6We do not consider precipitation since earlier empirical work finds little or no effect of precipitation on income

growth at the annual frequency.
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Figure 1: Cross-Sectional Average of Population-Weighted Country Annual Temperature

country j temperature in year t, and let ⌧j,t be quadratically detrended country temperature,

⌧j,t = Tj,t � aj � bjt� cjt
2,

where aj , bj , and cj are ordinary least squares estimates. We then decompose detrended country
temperature into a common global component and an idiosyncratic component. Global tempera-
ture (⌧t) is the cross-sectional average of ⌧j,t,

⌧t =
1

N

NX

j=1

⌧j,t.

Figure 2 shows the stationary representation of global temperature.7

Figure 2: Global Temperature

7Typically, the cross-sectional average is approximately the first principal component of the observations.
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The idiosyncratic component, ⌧ oj,t, is the residual from regressing detrended country tempera-
ture ⌧j,t on global temperature ⌧t,

⌧ oj,t = ⌧j,t � �j⌧t � ↵j , (1)

where ↵j is the country intercept and �j is the slope coefficient on ⌧t. We refer to �j as the global
temperature ‘factor loading.’

Figure 3 displays histograms of the global temperature factor loadings and the R2s from these
country-specific regressions. The figures show a good deal of heterogeneity in the exposure of coun-
try temperatures to the global component. The R2 distribution indicates that the importance of
global temperatures in accounting for the variability in country-level temperature exhibits sub-
stantial heterogeneity across countries.

Figure 3: Slope Coefficients and R2s from Regressing ⌧j,t on ⌧t.

Factor Loading R2

We note that because the global and idiosyncratic temperature series are orthogonal to each
other, they can be examined separately in the empirical analysis. We next discuss meaningful
dimensions in which our analysis departs from the panel regression approach.

3 Departures from Panel Regression

The related literature widely adopts the panel regression estimation procedure with time-fixed
effects to investigate the relationship between temperature changes and real GDP per capita
growth (hereafter, growth).8 Our analysis circumvents two features commonly associated with

8Kahn et al. (2019) is an exception, who estimate panel autoregressive-distributed lag models. They also find
negative GDP growth impacts of temperature but no differences between rich and poor.
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panel regressions. The first is the manner in which panel regression with time-fixed effects removes
the global component from growth and temperature from estimation. The result is a regression
of a coarsely constructed idiosyncratic growth variable on idiosyncratic temperature variation.
The effects of actual country-level temperature variation are not observed. The second are the
extensive homogeneity restrictions imposed on the slope coefficient of interest. While an objective
of panel regression is to exploit cross-sectional variation to shrink standard errors, the imposition
of extensive homogeneity should be imposed only when such restrictions are not rejected by the
data. We address both of these issues in this paper by employing local projections (Jordà, 2005) for
individual countries and pseudo panel local projections for limited groupings of similarly responsed
countries.

3.1 Time Fixed Effects

To illustrate the ‘behind-the-scene’ data manipulations associated with time-fixed effects, let yj,t

be log real GDP per capita of country j = 1, . . . , N in time t. Without loss of generality, we
abstract from time-invariant country-fixed effects. Consider the panel regression of growth, �yj,t =

yj,t � yj,t�1, on the country’s annual temperature, Tj,t with time fixed effects, ✓t,

�yj,t = ✓t + �Tj,t + ✏j,t. (2)

Taking the cross-sectional average of equation (2) gives

1

N

NX

j=1

�yj,t = ✓t + �
1

N

NX

j=1

Tj,t +
1

N

NX

j=1

✏j,t. (3)

Subtracting equation (3) from equation (2) elimates the time-fixed effect giving,

�yj,t �
1

N

NX

j=1

�yj,t = �

0

@Tj,t �
1

N

NX

j=1

Tj,t

1

A+

0

@✏j,t �
1

N

NX

j=1

✏j,t

1

A . (4)

The variables in equation (4) are deviations from the global average which amounts to coarsely
constructed idiosyncratic components of growth and temperature. Running the panel regression
with time-fixed effects, equation (2), is equivalent to running stacked least squares on equation (4).9

Hence, the coefficient of interest in equation (4), �, is not an estimate of the growth response to
variations in the country’s temperature, but is an estimate of the relative (to the world) growth
response to relative (to the world) variations in temperature. Since the variables are relative to
the global average, a negative panel estimate of � tells us of a lower than average growth response

9See Appendix B for reporting on how, using our data, estimates from panel regression with country and
time-fixed effects are nearly identical to stacked least-squares estimates with variables as deviations from their
cross-sectional average.
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but we are not certain this is evidence of a negative growth response. Similarly, the intervention
is not an increase in local temperature, but is of local temperature relative to the global average,
which could increase as a result of higher local temperature or lower world temperature.

3.2 Extensive Homogeneity Restrictions

In panel regression, the constrained slope is a weighted average of individual ordinary least squares
estimates with weights related to country j0s share of the sample’s temperature variation. Modest
amounts of heterogeneity can and has been allowed with dummy variable interactions on the
slope for broad classes of countries (e.g., above and below median income). If one’s interest
is to obtain a weighted average of individual country responses (or responses from broad sub-
groups), then the panel regression delivers the appropriate estimate. But if one’s interest is
to study individual country response, constrained (pooled) estimation should not proceed if the
homogeneity restrictions are rejected.

As a precursor to our main empirical work, we test the extensive homogeneity restrictions
that might typically be imposed in panel regression. Let ⌧ fj,t be the notational ‘stand-in’ for any
one of the three temperature measures ⌧ fj,t 2 {⌧j,t, ⌧t, ⌧ oj,t}. Consider the regression of growth on
temperature,

100�yj,t = �j⌧
f
j,t + x0j,t�j + ✏j,t, (5)

where x0j,t�j =
P2

k=1 �j,k�yj,t�k + cj are controls consisting of two lags of annual real GDP per
capita growth and the regression constant. We test the homogeneity restrictions as follows. First,
estimate equation (5) separately for each country, then sort countries into two groups: those
whose �̂s are positive and those whose are negative. Second, for each group, separately estimate
the constrained version of equation (5) where �j = �, for all j. Only the slope on temperature is
constrained to be equal across countries. Let the slope in the positive beta group be �p and for
the negative beta group, �n. A Wald test of the hypothesis �p = �n is �2

1 under the null, and
provides a test of the homogeneity restrictions.

Panel A of Table 1 shows the results using all countries in the sample. The growth response
variation to changes in temperature is widespread and significant. Of the 162 countries, 86 of
the slope point estimates are positive in regressions with country temperature, 65 with global
temperature and 66 with idiosyncratic temperature. The extensive (i.e., across large numbers of
countries) homogeneity restrictions are rejected by the data, as the p-values of the test statistic is
0 for each of the temperature measures.

Next, we report that the split between positive and negative betas is not simply a split between
rich and poor countries. In panel B, the test is applied only to poor countries–those whose average
real GDP per capita over the sample is below the median. Even among poor countries, many
have positive growth responses to each of the temperature measures. Of the 81 poor countries, 35
of the slope point estimates are positive in regressions with country temperature, 49 with global
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Table 1: Tests of Extensive Homogeneity Restrictions

�p t-ratio �n t-ratio �p = �n p-val
A. All Countries
Country 1.273 6.110 -1.273 -7.218 87.003 0
Global 2.735 5.496 -2.861 -6.065 66.611 0
Idiosyncratic 1.201 5.548 -1.453 -7.350 81.959 0
B. Poor Countries
Country 1.807 5.052 -1.542 -5.303 52.790 0
Global 2.923 4.527 -2.854 -3.661 32.566 0
Idiosyncratic 1.589 4.130 -1.793 -5.602 45.662 0

Notes: The slope is �p in the positive beta group and is �n in the negative beta group. A Wald test of the hypothesis
�p = �n is �2

1 under the null. Country temperature is ⌧j,t, global temperature is ⌧t, and idiosyncratic temperature
is ⌧o

j,t. Poor countries are those whose average real GDP per capita over the sample is below the median.

temperature, and 31 with idiosyncratic temperature. The estimated �p is positive and highly
significant. Here as well, the test of the homogeneity restrictions across poor countries is rejected.

The rejections of the homogeneity restrictions shown in Table 1 yields evidence that extensive
pooling is not appropriate and the presence of widespread response heterogeneity, even among
poor countries. The next section discusses our empirical methodology in more detail and presents
the associated empirical results.

4 Impulse Responses by Local Projections

This section first discusses our local projection specification. We also discuss how estimation with
limited pooling of small groups of countries with quantitatively similar responses can preserve the
individual point estimates while achieving shrinkage in standard errors. Subsection 4.2 presents
the impulse responses of real GDP per capita growth to country temperature shocks. Subsection
4.3 presents the results for global and idiosyncratic temperature shocks. Subsection 4.4 reports on
an analysis that distinguishes between level and growth effects resulting from temperature shocks.

4.1 Local-Projection by Regression and Limited Scale Pseudo-Panel Estima-

tion

Our local projections are the sequence of regressions at horizons h 2 {0, ..., 7} estimated separately
for each country j 2 {1, ..., 162},

100 (yj,t+h � yj,t�1) = �j,h⌧
f
j,t + x0j,t�j,h + ✏j,t+h, (6)

where yj,t is log real GDP per capita of country j at time t, ⌧ fj,t 2 {⌧j,t, ⌧t, ⌧ oj,t} is the temperature
measure under consideration, and x0j,t�j,h =

P2
k=1 �j,h,k�yj,t�k + cj,h are controls consisting of
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two lags of annual real GDP per capita growth and the regression constant. The sample length
for our countries ranges from 20 to 57 annual observations. The coefficient of interest is �j,h,
which measures the percent change in real GDP per capita from time t� 1 to t+ h due to a 1oC

shock in the temperature variable at time t. As shown by Jordà (2005) and Plagborg-Møller and
Wolf (2021), the local-projection coefficients are asymptotically equivalent to the impulse response
function from a vector autoregression. Since impulse responses from vector autoregressions are
colloquially referred to as responses to ‘shocks,’ we similarly refer to local projection estimates
as growth responses to temperature ‘shocks’ even though the regressor is a temperature variable
⌧ fj,t (and not a ‘shock’ per se). To further economize on terminology, we refer to these response
coefficients as ‘local-projection betas.’ At horizons h > 0, the overlapping dependent variable
observations induce serial correlation in the error terms which we address with Newey and West
(1987) standard errors.

Limited Scale Pseudo-Panel Estimation. While extensive pooling was shown to be unjustified,
limited pooling of countries with similar sized betas is supported by the data (reported in the next
subsection). We supplement the local projection estimates with joint, constrained estimates from
small sets of pseudo-panels of countries with similar sized local projection betas. By grouping lo-
cally similar countries, the point estimates from pseudo-panels remain close to the local-projection
point estimates while achieving reductions in the standard errors.

Joint pseudo-panel estimation proceeds as follows. For a given horizon h, sort countries by
their local-projection betas, then form groups of four countries. For each four-equation system,
estimate the constrained beta specification,

100 (yj,t+h � yj,t�1) = �h⌧
f
j,t + x0j,t�j,h + ✏j,t+h, (7)

where only the local-projection beta is constrained to be equal within the group. The group
membership can change from one horizon to the next, which is why we refer to these systems
as pseudo panels. Estimate each pseudo-panel by generalized method of moments (GMM), with
the regressors for the country j equation serve as instruments for that equation. This resembles a
system of constrained least squares estimates but with GMM (system-wide Newey-West) standard
errors. As a matter of terminology, we refer to these local-projection impulse response coefficients
as ‘pseudo-panel local-projection betas.’

4.2 Local Projections with Country Temperature

Our first results are for the responses of growth to country temperature shocks. The full set of
162 impulse response graphs are relegated to Appendix C, Figure C1. Here, in the main text, we
report various summaries of the results.

Figure 4 displays the histograms of the country temperature local-projection betas (in percent)
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Figure 4: Country Temperature Local-Projection Betas

Horizon 0 Horizon 7

Notes: Distribution of country temperature local-projection betas, �j,h from equation (6) for j = 1, ..., 162 and
h = 0 and h = 7.

at horizons 0 and 7. These represent the percent growth impulse responses to a 1oC country
temperature shock. For each horizon, it can be seen that there are many positive and negative
values, reflecting the wide dispersion of observed responses.10

Table 2: Country Temperature Local Projection and Pseudo Panel Local Projection Summary

Local-Projection Beta Pseudo-Panel Local-Projection Beta
Horizon 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
# neg 96 90 88 86 83 80 76 77 98 90 86 86 86 78 74 74
# pos 66 72 74 76 79 82 86 85 64 72 76 76 76 84 88 88
# sig neg 8 12 16 15 10 13 8 8 58 58 58 46 62 46 54 42
# sig pos 8 5 6 8 9 11 12 13 36 36 40 40 40 44 52 52

Notes: This table shows the count of country temperature local-projection (estimates from equation (6)) and pseudo-
panel local-projection (estimates from equation (7)) betas that are negative (neg), positive (pos), and statistically
significant at the 5 percent level (sig neg and sig pos).

Table 2 reports a summary comparison between country temperature local-projection and
pseudo-panel local-projection betas. This table lists the count of positive and negative betas and
the count of the statistically significant positive and negative betas at the 5 percent level across
horizons. At the shorter horizons, the count of negative coefficients exceeds the positives, but
this reverses in the medium run (after 5 years). Comparing between the estimation methods at
each horizon, the number of positive and negative coefficients is nearly identical. The primary

10Some of the responses are quite large in magnitude because the responses are for a 1oC increase in country
temperature, which is much larger than the normal variation in observed temperature.
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difference is that there are many more statistically significant (at the 5 percent level) coefficients
for the pseudo-panel.

Figure 5 provides visual confirmation that the pseudo-panel point estimates lie close to the
local-projection point estimates.11 The figure displays scatterplots of the pseudo-panel local-
projection betas against the local-projection betas at horizons 0 and 7. In both cases, the data
line up closely on the 45o line. The point estimates diverge only in a couple of cases with very
negative betas.

Figure 5: Country Temperature Pseudo-Panel Local-Projection Betas and Local-Projection Betas

Horizon 0 Horizon 7

Notes: The 45o line is given in red. Local-projection betas are estimates from equation (6) and pseudo-panel
local-projection betas are estimates from equation (7) for h = 0 and h = 7. For Horizon 7, two outliers not shown
and are the Solomon Islands (49,35) and Equatorial Guinea (-84,-26).

We have heuristically argued that the pseudo-panel local-projection betas are largely undis-
torted from the local-projection betas but are significant for many more countries. But are the
constrained pseudo-panel estimates econometrically justified? To answer this question, we conduct
formal tests of the homogeneity restrictions within each pseudo panel. The complete set of results
are relegated to Appendix D. Here, we note, of the 328 tests–one for each of the 41 pseudo panels
across 8 horizons–only two rejects the homogeneity restriction at the 5 percent level. The data
largely supports the limited pooling strategy and we proceed by reporting results from the pseudo
panels.

Figure 6 plots the pseudo-panel local-projection betas at horizons 0 and 7 onto a world map.
Positive real GDP per capita growth responses are indicated in green and negative responses in
red. Darker shades indicate statistical significance at the 5 percent level.

At horizon 0, negative growth responses tend to be geographically concentrated in developing
economy regions of Latin America, Africa, and Southeastern Asia. Negative (but insignificant at

11The full set of pseudo-panel local projection impulse responses are also shown in Appendix C.
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Figure 6: Pseudo-Panel Local Projection Impulse Responses to Country Temperature Shocks

Horizon 0

Horizon 7

Notes: Country temperature pseudo-panel local-projection betas, �j,h, are from equation (7) for h = 0 and h = 7.
* indicates significance at the 5 percent level.

13



the 5 percent level) point estimates are obtained for the United States, Australia, Sweden, Finland,
Germany, and Spain. Positive responses are obtained for high latitude countries such as Canada
and Russia. Somewhat surprisingly, positive short-run growth responses are estimated for several
African countries as well as India and China. Delving further into the mix between rich and poor
countries, 60 percent of statistically significant negative responses were from poor countries.12

At horizon 7, statistically significant negative responses are estimated for several rich countries,
such as the United States, United Kingdom, Italy, Japan, and Australia. On the other hand,
the large developing economies of Brazil, Nigeria, India, and China have statistically significant
positive responses. Negative responses outnumber positive responses for rich countries while two-
thirds of statistically significant positive responses are for poor countries.

Figure 7 displays the pseudo-panel impulse responses for a set of rich and poor countries.
The rich are represented by the G-7 countries plus Australia and China and the poor are the
nine poorest countries in our sample, based on average real GDP per capita over the sample.13

Amongst the rich, except for Canada and China, real GDP per capita declines following an increase
in country temperature. Amongst the poorest countries, real GDP per capita increases following
a positive country temperature shock in Ethiopia, Malawi, Nepal, and Sierra Leone.

Figure 7: Pseudo-Panel Impulse Responses of Growth to Country Temperature Shocks–Selected
Rich and Poor Countries

G-7 Plus Australia and China Nine Poorest Countries

Notes: Shaded areas are plus and minus 1.96 standard error bands.

12Here, we followed Dell et al. (2012) and classify a country as poor (rich) if its real GDP per capita in the first
year of the sample lies below (above) the global median.

13China is grouped with the rich countries, not on the basis of per capita GDP but because it is the world’s
second largest economy.
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4.3 Local Projections with Global and Idiosyncratic Temperature

This section reports results for the responses of growth to global (⌧t) and idiosyncratic (⌧ oj,t)
temperature shocks. As with the country temperature results, we also report summaries of the
results rather than showing all of the impulse response figures.14 Figure 8 displays the histograms
of the global (Panel A) and idiosyncratic (Panel B) temperature local-projection betas (in percent)
at horizons 0 and 7. Again, extensive heterogeneity is observed in the responses. At horizon 0,
both global and idiosyncratic local-projection beta distributions are slightly skewed left, as is
the horizon 7 idiosyncratic beta distribution. In contrast, the distribution of horizon 7 global
temperature local-projection betas is evidently skewed right.

Figure 8: Global and Idiosyncratic Temperature Local-Projection Betas

Horizon 0 Horizon 7

A. Global Temperature

B. Idiosyncratic Temperature

Notes: Distribution of global temperature (⌧t) and idiosyncratic temperature (⌧o
j,t) local-projection betas, �j,h, from

equation (6) for j = 1, ..., 162 and h = 0 and 7.

Table 3 reports the summary comparison between the local-projection and pseudo-panel local-
14The full set of impulse responses to global and idiosyncratic temperature shocks are shown in Appendix E.
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Table 3: Global and Idiosyncratic Temperature Local Projection and Pseudo Panel Local Projec-
tion Summary

A. Global Temperature
Local-Projection Beta Pseudo-Panel Local-Projection Beta

Horizon 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
# neg 76 74 76 75 70 62 53 51 78 74 78 74 70 62 54 50
# pos 86 88 86 87 92 100 109 111 84 88 84 88 92 100 108 112
# sig neg 5 6 9 12 15 16 13 14 38 34 38 54 42 42 42 42
# sig pos 4 7 15 18 15 30 34 42 48 56 52 48 72 68 84 88

B. Idiosyncratic Temperature
Local-Projection Beta Pseudo-Panel Local-Projection Beta

Horizon 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
# neg 97 88 86 98 100 93 92 93 98 90 86 98 102 94 90 94
# pos 65 74 76 64 62 69 70 69 64 72 76 64 60 68 72 68
# sig neg 10 13 16 17 18 16 16 18 62 66 58 58 58 62 62 66
# sig pos 8 2 4 8 6 8 9 9 36 36 40 36 36 32 32 36

Notes: This table shows the count of global (Panel A) and idiosyncratic (Panel B) temperature local-projection (es-
timates from equation (6)) and pseudo-panel local-projection (estimates from equation (7)) betas that are negative
(neg), positive (pos), and statistically significant at the 5 percent level (sig neg and sig pos).

projection betas. Panel A shows results for global temperature shocks and Panel B, for idiosyn-
cratic shocks.15 As before, comparing across estimation methods and horizons again reveals nearly
identical numbers of positive and negative point estimates but many more statistically significant
pseudo-panel estimates. Looking at responses to global temperature shocks (Panel A), positive
betas typically outnumber negative betas, whereas the opposite is the case for idiosyncratic tem-
perature shocks (Panel B). The majority of growth responses to idiosyncratic temperature shocks
are negative, which is qualitatively consistent with the panel regression studies. This makes sense
because the idiosyncratic temperature component is similar to temperature variation employed in
panel studies with common time fixed effects.

For the local-projection results, from horizons 2 through 7, the total number of significant
negative and significant positive responses to global temperature shocks substantially dominates
those for country and idiosyncratic temperature shocks. Similarly, the total number of signifi-
cant negative and positive responses from the pseudo-panel estimates dominates from horizons 3
through 7.

Here, as well, limited pooling into pseudo panels can be econometrically justified. Appendix D
reports the results of formal tests of the homogeneity restrictions within each pseudo panel. Here,
we mention that none of the 328 tests with global temperature and none of the 328 tests with
idiosyncratic temperature reject the restrictions at the 5 percent level.

Figure 9 plots the pseudo-panel local-projection betas at horizons 0 and 7 onto a world map.
15The complete set of impulse responses to global and idiosyncratic temperature shocks are shown in Appendix E.
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Figure 9: Global and Idiosyncratic Temperature Pseudo-Panel Local-Projection Betas

A. Global Temperature B. Idiosyncratic Temperature

Horizon 0 Horizon 0

Horizon 7 Horizon 7

Notes: Global (Panel A) and idiosyncratic (Panel B) temperature pseudo-panel betas, �j,h, are from equation (7)
for h = 0 and h = 7. * indicates significance at the 5 percent level.

Results for global temperature shocks are in Panel A and idiosyncratic temperature shocks in
Panel B. As before, negative responses are shown in red and positive responses in green with
darker shades indicating statistical significance at the 5 percent level.

At horizon 0, negative responses to global temperature shocks are found in both high (e.g.,
Denmark, South Korea, and Norway) and low (e.g., Algeria, Zambia, and Mozambique) income
countries. Positive responses seem to be more prevalent in the higher latitude countries, but also
by both rich and poor countries. At horizon 7, however, negative responses are more clearly seen
primarily for rich countries. In fact, six of the Group of 7 (G-7) country responses are significantly
negative (Canada being the exception). Surprisingly, a majority of the poorest countries experience
significantly positive growth responses to positive global temperature shocks.

In response to idiosyncratic temperature shocks, negative responses outnumber positive ones.
This is most apparent at horizon 7 where many of the rich countries have negative responses
although most are statistically insignificant (the exceptions are the United Kingdom, Italy, and
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Australia). While the large middle income countries of China and Brazil have positive responses,
a large share of the significantly negative responses come from the poorer countries in South
America, Africa, and Southeastern Asia.

The direction of the responses to global and idiosyncratic temperature shocks often go in oppo-
site directions. If country temperature ⌧j,t is ultimately the causal factor, global and idiosyncratic
temperature components represent two separate pathways for temperature to affect growth.

Which of these factors dominate quantitatively? Table 4 shows the correlation amongst the
alternative pseudo-panel temperature betas. As can be seen, the correlation between global and
idiosyncratic temperature betas is low at horizon 7 and is lower than the correlation between global
and country temperature betas for both horizons 0 and 7. However, the correlation between coun-
try and idiosyncratic temperature betas is higher than between country and global temperature
betas. Thus, in a general sense, the idiosyncratic temperature component can be said to domi-
nate. However, the low horizon 7 correlation between idiosyncratic and global temperature betas
indicates that the two temperature components pull in the same direction for a sizable proportion
of countries and also pull in opposite directions for a sizable proportion of countries.

Table 4: Correlations of Pseudo-Panel Local-Projection Coefficients at Horizons 0 and 7

Global Idiosyncratic
Horizon 0 Country 0.663 0.945

Global 0.450
Horizon 7 Country 0.529 0.849

Global 0.132

Figure 10 illustrates the variation in response to the alternative temperature shocks, again
for the G-7 plus Canada and China and the poorest nine countries. For each country, the figure
plots the impulse responses to the three shocks. In producing this figure, the shocks have been
standardized to convey the growth response to a typically sized shock.

For the poorest countries, responses to country and idiosyncratic temperature shocks tend to
move together. Their responses to country shocks seem to be governed mainly by the response to
the idiosyncratic component. Responses to global and idiosyncratic temperature shocks strongly
diverge for Myanmar, Rwanda, and Burkina Faso, and to a lesser extent for Mozambique and Sierra
Leone. For the rich countries, responses to idiosyncratic and global temperature generally trend
in the same direction. For Italy, the United Kingdom, and China, the directional correspondence
is generally close. At horizons 5-7, the response of Canadian real GDP per capita growth to
country temperature appears to be pulled by the global temperature component. From this limited
analysis, the large developed economy responses to country temperature shocks might be said to
be weakly dominated by the global temperature component.
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Figure 10: Impulse Response Shock Comparison

G-7 Plus Australia and China Nine Poorest Countries

We summarize three main findings for the local projection and the pseudo-panel local projection
results. First, there is substantial heterogeneity in responses to real GDP per capita growth from
temperature variation, irrespective of the source. Second, there are more negative responses to
idiosyncratic temperature increases – particularly in the developing world – which is qualitatively
in line with previous findings. Third, in response to global temperature shocks, poor countries
tend to exhibit positive growth responses while rich countries tend to exhibit negative responses,
particularly at longer horizons.

4.4 Level versus Growth Effects

Do the temperature shocks result in long-lasting effects on growth, or only in the level of GDP?
This section uses the estimated pseudo-panel local projections to distinguish between level effects
and growth effects across countries over the eight horizons (h 2 {0, ..., 7}) considered in this
analysis.

Figure 11 presents a stylized representation of alternative effects on GDP. Suppose real GDP
per capita evolves along a steady state growth path represented by the gray ‘no change’ line in
the figure. At time 0, a (say positive) temperature shock is realized. The shock could cause a
level (but not growth) response, which could be transitory (temporary) or permanent. In the
transitory (temporary) level effect, shown by the dashed red line, output falls but recovers back to
the original growth path. In the permanent level effect, shown by the blue hatched line, output falls
then resumes growth but on a permanently lower level than the initial growth path. A negative
growth effect is illustrated by the black line where the shock causes output to decline after which
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Figure 11: Stylized Negative Responses to Temperature Shock at Time 0

growth resumes but at a slower than pre-shock rate.
Our econometric evaluation of whether temperature shocks result in level or growth effects

is as follows: We say a country experiences a pure negative growth effect from a temperature
shock if conditional on the point estimate of �̂7 < 0 being negative, the hypothesis �7 = �0 is
rejected. We say a country experiences only a (permanent or transitory) negative level effect if
�̂0 is significantly negative and does not experience a negative growth effect. Tests for positive
growth and level effects are specified symmetrically in the obvious fashion.16

Table 5 shows the results for country temperature shocks. Note, it is possible for a country
to have a negative level effect and positive growth but these overlaps are infrequent (e.g., Chad
and Zimbabwe, for which �0 is significantly less than 0 and �7 is significantly larger than �0).17

Negative growth effects are widespread. Over half (94) the countries show significant growth
effects–positive or negative. Many of the 42 countries that exhibit negative growth effects are
relatively rich (e.g., Belgium, Ireland, Italy, Japan, Luxembourg, Netherlands, and the United
States), while many of the 52 countries that exhibit positive growth effects are relatively poor
(e.g., Chad, Ethiopia, and Zimbabwe).

Table 6 shows the analogous results for global temperature shocks (Panel A) and idiosyncratic
temperature shocks (Panel B). The growth effects from global temperature changes are quite ex-
tensive, with 92 of 162 countries showing significant positive growth effects. 39 countries show
negative growth effects, and many of them are relatively high income countries (Austria, Bel-
gium, Denmark, France, Germany, Ireland, Italy, Japan, Norway, Spain, and United Kingdom).

16Our analysis does not distinguish between permanent and temporary level effects, however. Since the analysis
is restricted to only eight horizons (h 2 {0, ..., 7}) we are somewhat constrained in capturing true (i.e., long-run)
level and growth effects.

17Countries are classified into experiencing only a level effect as follows. Let A be the set of countries for which
�0 is significantly less than 0, B be the set of countries for which �7 is significantly less than �0, and C be the set
for which �7 is significantly greater than 0. Then the set of countries that experience only a negative level effect is
A� {[A \B] [ [A \ C]} .
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Table 5: Level and Growth Effects from Country Temperature Shock

Negative Level

Algeria Bahamas, The Belarus Bosnia and Herzegovina
Brazil Burkina Faso Cabo Verde Chad
Gabon Iran, Islamic Rep. Jordan Kenya
Lesotho Mali Moldova Montenegro
Morocco Mozambique Myanmar Namibia
Niger Oman Panama Senegal
Slovak Republic Slovenia South Africa Tunisia
Turkey Vanuatu Venezuela, RB Vietnam
West Bank and Gaza Zimbabwe

Negative Growth

Argentina Belgium Burundi Colombia
Comoros Congo, Rep. Cuba Cyprus
Ecuador Equatorial Guinea Fiji Finland
Guatemala Guinea Guinea-Bissau Guyana
Haiti Honduras Iceland Indonesia
Ireland Italy Japan Lao PDR
Lebanon Luxembourg Malaysia Mauritania
Mexico Netherlands North Macedonia Papua New Guinea
Paraguay Philippines Rwanda Saudi Arabia
Sudan Suriname Thailand Trinidad and Tobago
United Arab Emirates United States

Positive Level

Bangladesh Benin Bulgaria Dominican Republic
Greenland Iraq Ireland Japan
Lebanon Portugal Saudi Arabia St. Vincent and the Grenadines
United Arab Emirates

Positive Growth

Albania Armenia Azerbaijan Belarus
Belize Bhutan Bolivia Botswana
Brazil Brunei Darussalam Cabo Verde Cambodia
Cameroon Chad China Cote d’Ivoire
Croatia Eswatini Ethiopia Gabon
Gambia, The Georgia Ghana Iran, Islamic Rep.
Jordan Kazakhstan Kenya Kuwait
Kyrgyz Republic Latvia Libya Lithuania
Madagascar Namibia Nicaragua Niger
Nigeria Panama Russian Federation Samoa
Sierra Leone Solomon Islands Sri Lanka Tajikistan
Tanzania Turkey Turkmenistan Uruguay
Uzbekistan Yemen, Rep. Zambia Zimbabwe

In response to idiosyncratic temperature shocks, roughly the same number of countries exhibit
negative growth (38) as do those exhibiting positive growth (36) effects from idiosyncratic tem-
perature shocks. Amongst the rich countries whose growth responds negatively to idiosyncratic
shocks are, Australia, Finland, Ireland, Italy, Luxembourg, and the Netherlands.

To summarize, temperature changes result in both short-term level effects and medium-term
growth effects in national economies. All three temperature shocks induce these effects. Many
rich countries experience negative growth effects. A majority of the countries in our sample have
historically experienced positive growth effects from changes in global temperature.
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Table 6: Level and Growth Effects from Global and Idiosyncratic Temperature Shocks

A. Global Temperature Shocks

Negative Level

Algeria Argentina Azerbaijan Belarus
Brazil Burkina Faso Ecuador Iceland
Indonesia Lebanon Lesotho Malawi
Mauritania Mozambique Panama Papua New Guinea
Sudan Suriname Tunisia Uruguay
Yemen, Rep. Zambia

Negative Growth

Austria Bahamas, The Belgium Belize
Botswana Burundi Congo, Rep. Cyprus
Denmark Egypt, Arab Rep. Equatorial Guinea Finland
France Gabon Gambia, The Germany
Greece Guinea-Bissau Ireland Italy
Iraq Japan Korea, Rep. Luxembourg
Malaysia Mexico Moldova Norway
Oman Pakistan Paraguay Portugal
Puerto Rico Spain St. Vincent and the Grenadines Thailand
United Kingdom West Bank and Gaza Zimbabwe

Positive Level
Cameroon Cyprus Eswatini Fiji
Guinea Hungary Ireland Jamaica
Slovenia Sweden Ukraine United Arab Emirates

Positive Growth

Albania Angola Argentina Armenia
Azerbaijan Bangladesh Belarus Benin
Bhutan Bolivia Bosnia and Herzegovina Brunei Darussalam
Bulgaria Burkina Faso Cabo Verde Cambodia
Central African Republic Chad Chile China
Comoros Congo, Dem. Rep. Costa Rica Croatia
Cuba Czech Republic Dominican Republic Ecuador
El Salvador Estonia Ethiopia Georgia
Ghana Greenland Guyana Honduras
India Iran, Islamic Rep. Peru Jordan
Rwanda Saudi Arabia Kyrgyz Republic Lao PDR
Latvia Libya Sri Lanka Madagascar
Suriname Switzerland Mongolia Togo
Myanmar Namibia Nepal New Zealand
Nicaragua Niger Nigeria North Macedonia
Panama Papua New Guinea Peru Philippines
Poland Romania Russian Federation Rwanda
Samoa Saudi Arabia Senegal Serbia
Sierra Leone Slovak Republic Solomon Islands South Africa
Sri Lanka Sudan Suriname Tajikistan
Tanzania Trinidad and Tobago Tunisia Turkey
Turkmenistan Uganda Ukraine Uruguay
Vanuatu Venezuela, RB Yemen, Rep. Zambia

B. Idiosyncratic Temperature Shocks

Negative Level

Bahamas, The Belarus Bhutan Bosnia and Herzegovina
Cabo Verde Cameroon Central African Republic Croatia
Gabon Iran, Islamic Rep. Jordan Lithuania
Madagascar Mali Mexico Namibia
Niger Oman Senegal Solomon Islands
Turkey Vietnam Zimbabwe

Negative Growth

Algeria Angola Argentina Australia
Benin Brunei Darussalam Burkina Faso Burundi
Chad Colombia Comoros Congo, Dem. Rep.
Congo, Rep. Cuba Cyprus Ecuador
Equatorial Guinea Fiji Finland Guatemala
Guinea-Bissau Guyana Haiti Honduras
Indonesia Ireland Italy Lao PDR
Lebanon Libya Luxembourg Malaysia
Mauritania Myanmar Netherlands North Macedonia
Papua New Guinea Paraguay

Positive Level

Botswana Colombia Greenland Iceland
Iraq Ireland Israel Nicaragua
Norway Poland Romania Russian Federation
Samoa Saudi Arabia Sierra Leone St. Vincent and the Grenadines
Uzbekistan

Positive Growth

Albania Armenia Azerbaijan Bahamas, The
Belize Bolivia Brazil Cabo Verde
Cambodia Cameroon China Cote d’Ivoire
Dominican Republic Eswatini Ethiopia Gabon
Georgia Iran, Islamic Rep. Jamaica Kazakhstan
Kuwait Kyrgyz Republic Malawi Niger
Oman Panama Portugal Puerto Rico
Solomon Islands Spain Tajikistan Turkmenistan
West Bank and Gaza Yemen, Rep. Zambia Zimbabwe
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5 Robustness

We evaluated the sensitivity of our results by performing a number of robustness checks. First, we
add lagged temperature in the local-projections regressions (as in Dell et al. (2012)). Table 7 shows
the local-projection beta and pseudo-panel local-projection beta summary on current temperature
when current and lagged temperature are both included in the regression. Comparison of Panel A
with Table 2, and Panels B and C with Table 3 shows very little overall difference in the impulse
response signs and significance from adding lagged temperature.

Table 7: Local Projection and Pseudo Panel Local Projection Summary – Adding Lagged Tem-
perature

A. Country Temperature
Local-Projection Beta Pseudo-Panel Local-Projection Beta

Horizon 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
# neg 96 93 91 89 85 79 78 73 94 86 90 86 82 82 78 78
# pos 66 69 71 73 77 83 84 89 68 76 72 76 80 80 84 84
# sig neg 8 11 13 14 14 13 9 8 55 54 54 46 58 46 47 46
# sig pos 7 4 6 9 6 5 9 10 28 40 44 32 36 44 44 48

B. Global Temperature
Local-Projection Beta Pseudo-Panel Local-Projection Beta

Horizon 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
# neg 88 72 78 81 67 64 57 52 86 74 70 78 70 62 54 54
# pos 74 90 84 81 95 98 105 110 76 88 92 84 92 100 108 108
# sig neg 6 4 6 7 12 13 10 14 43 26 26 30 34 42 42 42
# sig pos 7 4 9 9 11 26 32 39 40 40 44 40 64 68 80 76

C. Idiosyncratic Temperature
Local-Projection Beta Pseudo-Panel Local-Projection Beta

Horizon 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
# neg 97 97 83 98 99 96 90 92 94 86 82 102 98 98 86 94
# pos 65 65 79 64 63 66 72 70 68 76 80 60 64 64 76 68
# sig neg 9 10 15 15 20 16 15 14 62 58 58 58 58 58 66 66
# sig pos 6 6 6 7 7 6 6 8 32 28 28 28 32 36 32 28

Notes: This table shows the count of country (Panel A), global (Panel B), and idiosyncratic (Panel C) temperature
local-projection (estimates from equation (6) with lagged temperature in the regression) and pseudo-panel local-
projection (estimates from equation (7) with lagged temperature in the regression) betas that are negative (neg),
positive (pos), and statistically significant at the 5 percent level (sig neg and sig pos).

Additionally, we evaluated the sensitivity of our results to the following variations: We used
the first principal component of quadratically detrended temperature as global temperature. We
linearly detrended temperature. We cubically detrended temperature. We used 1990 population
weighted temperature. We detrending temperature by first differencing.

Results for these robustness checks are reported in Appendix F. Only when detrending by
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first differencing temperature do the results change, by reducing the persistence of the impulse
response. There continue to be significant positive and negative growth responses at horizons 0
through 4. This result is not unexpected, however. The reduction in persistence is typical in
vector autoregressions where stationarity is induced by first differencing instead of regressing on
time.

6 Cross-Sectional Response Heterogeneity and Country Charac-

teristics

What explains the response heterogeneity across countries? This section investigates how response
variation may be systematically related to country characteristics. We consider the role of a
country’s geography, economic structure, level of growth, and development on whether weather
positively or negatively impacts its growth. The analysis is based on a cross-sectional regression
of the local-projection betas on country characteristics.18 Although the betas are estimated, there
is no ‘second stage’ or generated regressors problem because the estimated response coefficients
are the dependent variable in the regressions.

We include the country’s (absolute value of) latitude primarily as a control variable. Coun-
try latitude is negatively correlated with its average temperature, and the inverse relationship
between temperature and growth in the cross-section is well known (Dell et al., 2009). We are
primarily interested in the explanatory power of various economic characteristics after controlling
for latitude.

In light of panel studies finding response differences for rich and poor countries, we include
average real GDP per capita in logarithmic form. Extant research would lead one to expect log
income to enter with a positive coefficient. We also consider a country’s long-horizon growth rate.
This is the growth rate of real GDP per capita from beginning to the end of the sample.

We also examine features of each country’s economic structure. Here, we include the average
GDP share of agriculture, industry, and manufacturing, all in logarithmic form. Agriculture
has long been seen as a very direct channel through which temperature affects the economy.
Agricultural workers, especially in poorer countries, are directly exposed to temperature as are
the crops themselves, and Deryugina and Hsiang (2014), Deschênes and Greenstone (2007), Nelson
et al. (2014), and Dietz and Lanz (2019) report empirical damage estimates to agriculture from
high temperatures. In industrial or manufacturing settings, Hsiang et al. (2017b), Zander et al.
(2015), Jessoe et al. (2018), Cai et al. (2018a), Zivin and Neidell (2014), Cachon et al. (2012), and
Nath (2020) find that temperature lowers productivity, either through lower labor productivity
or reduced labor supply. The effect is not only physical, but also mental. Park et al. (2020) and

18Recently, Lustig and Richmond (2020) employed the same methodology to regress exchange rate betas on
gravity variables.
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Cook and Heyes (2020) report how temperature extremes lower cognitive abilities. The economic
variables are from the World Bank’s, World Development Indicators.

Table 8 shows the correlation structure of the explanatory variables. Income is highly correlated
with latitude, uncorrelated with long-horizon growth, and negatively correlated with agricultural
share. Income is only slightly correlated with industrial share and manufacturing share.

Table 8: Correlations of Explanatory Variables

GDPPC Growth Agriculture Industy Manufacturing
Latitude 0.516 0.106 -0.509 -0.052 0.138
GDPPC -0.001 -0.609 0.143 0.055
Growth -0.120 0.104 0.282
Agriculture -0.406 -0.257
Industy 0.296

Notes: GDPPC is the logarithm of average real GDP per capita, Growth is measured from beginning to end of
the available sample, and Agriculture, Industry, and Manufacturing are logarithms of the average sectoral shares
of GDP.

Let Xj be the vector of country j0s characteristics and the regression constant. We run the
cross-sectional regression,

�̂j,h = X 0
j� + uh, (8)

for country, global, and idiosyncratic temperature local-projection betas, �̂j,h, at h = 0 and h = 7.
Results for the country temperature local-projection betas are shown in Table 9. At horizons 0

and 7, the country temperature local-projection betas are, as expected, significantly increasing in
latitude, which is consistent with the cross-sectional evidence in Dell et al. (2009). Unconditionally,
growth responses to temperature shocks tend to be lower for warmer countries. When adding
average real GDP per capita, however, this variable enters with a negative coefficient indicating
that poor countries are more likely to experience higher growth responses to country temperature
than rich countries. This conforms to the country-temperature world map (Figure 6) which showed
growth for most of the rich, northern countries responded negatively overall to country temperature
increases. Looking at the coefficient on growth, faster growing countries are more likely to be
negatively impacted by increasing country temperature.

After controlling for latitude, average real GDP per capita, and long-term growth, a country’s
average agricultural share of GDP is not significant. It does consistently enter with a positive
sign, however, which is interesting in the sense of suggesting that countries where agriculture
plays a larger economic role are more likely to have benefited from rising temperature. This seems
to go against the conventional wisdom whereby agricultural labor should be the most directly
exposed to hot temperatures and where crop yields should be damaged by heat. It is, however,
consistent with the inverse relation between response and income, since poor countries have larger
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Table 9: Cross-Sectional Regression with Country Temperature Local-Projection Betas

Nobs R2 Latitude GDPPC Growth Agriculture Industry Manufacturing
Horizon 0

162 0.048 0.031
(2.854)

162 0.065 0.045 -0.283*
(3.318) (-1.700)*

162 0.102 0.046 -0.240 -0.635
(3.465) (-1.457) (-2.525)

162 0.107 0.045 0.031 -0.667 0.375
(3.366) (0.093) (-2.628) (0.953)

161 0.105 0.048 -0.292 -0.658 0.418
(3.540) (-1.633) (-2.573) (0.768)

158 0.116 0.046 -0.206 -0.566 -0.660
(3.456) (-1.225) (-2.145) (-1.580)

158 0.132 0.049 0.052 -0.619 0.472 0.761 -0.870
(3.566) (0.156) (-2.330) (1.178) (1.289) (-1.966)

Horizon 7
162 0.009 0.068

(1.196)
162 0.083 0.215 -3.040

(3.139) (-3.593)
162 0.135 0.222 -2.776 -3.882

(3.331) (-3.349) (-3.062)
162 0.148 0.213 -0.520 -4.147 3.134

(3.195) (-0.316) (-3.259) (1.588)
161 0.156 0.260 -3.308 -3.788 4.342*

(4.001) (-3.885) (-3.112) (1.676)*
158 0.141 0.233 -2.734 -3.566 -0.541

(3.608) (-3.384) (-2.804) (-0.269)
158 0.169 0.255 -1.205 -3.899 2.897 5.154* -1.946

(3.847) (-0.752) (-3.068) (1.511) (1.825)* (-0.920)

Notes: This table shows the results from equation (8) with the country temperature local-projection betas.
Nobs is the number of observations, GDPPC is the logarithm of average real GDP per capita, Growth is
measured from beginning to end of the available sample, and Agriculture, Industry, and Manufacturing are
logarithms of the average sectoral shares of GDP. Heteroskedastic robust (White) t-ratios in parentheses.
Bold indicates significance at the 5 percent level and ‘*’ indicates significance at the 10 percent level.
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agricultural sectors.
At horizon 7, the average industry’s share of GDP is positive and significant at the 10 per-

cent level. The average manufacturing’s share of GDP enters negatively, but is not significant.
Qualitatively, the negative coefficient on the average manufacturing share of GDP is consistent
with Cachon et al. (2012) who finds excessive heat to lower productivity in United States auto
manufacturing, Cai et al. (2018b) who find extreme temperatures in China decrease manufac-
turing labor productivity, and Somanathan et al. (2021) who find higher temperatures decrease
labor productivity in Indian manufacturing. The positive sign on the average industry’s share of
GDP coefficient is unexpected. Industry, of which manufacturing is a subset, also includes value
added in mining, construction, electricity, water, and gas. One possibility is that warmer weather
extends the number of operational days in construction and mining. A thorough analysis of this
conjecture is beyond the scope of this paper and is left for future work.

Table 10 shows the results from running analogous regressions for the global temperature local-
projection betas. Qualitatively, the results are very similar to those for the country temperature
local-projection betas. However, estimation seems to be more precise. At horizon 0, the coefficients
on average real GDP per capita are now significant and both the average industrial share of GDP
and average manufacturing share of GDP are significant at horizon 7. The coefficient on the
average agriculture’s share of GDP remains positive and insignificant.

Table 11 reports estimation results for the idiosyncratic temperature local-projection betas.
Coefficient signs are generally consistent with those for country and global temperature local-
projection betas, but are overall, less precisely estimated.

To summarize, we find a high degree of consistency in the point estimates across the responses
to alternative temperature shocks. Latitude, average real GDP per capita, and long-term growth
are the most robust variables. Average GDP shares of manufacturing and industry are significant
in explaining responses to global temperature shocks, but not for country temperatures or their
idiosyncratic components. The growth response to global temperature shocks is more systemati-
cally related to country economic structure characteristics, lending to an interpretation that global
temperature represents the systematic component of country temperature.

We note that our results appear also to be consistent with long-difference regressions in Dell
et al. (2012) who find that countries that warmed faster experienced slower growth. The connection
between the two sets of results are that higher latitude countries are warming faster and they tend
to be richer.
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Table 10: Cross-Sectional Regression with Global Temperature Local-Projection Betas

Nobs R2 Latitude GDPPC Growth Agriculture Industry Manufacturing
Horizon 0

162 0.034 0.053
(2.366)

162 0.069 0.093 -0.835
(3.395) (-2.458)

162 0.135 0.097 -0.716 -1.749
(3.635) (-2.168) (-3.463)

162 0.146 0.093 0.088 -1.844 1.117
(3.508) (0.134) (-3.630) (1.417)

161 0.135 0.100 -0.755 -1.732 0.316
(3.647) (-2.103) (-3.376) (0.289)

158 0.135 0.098 -0.658* -1.579 -0.837
(3.639) (-1.946)* (-2.967) (-0.993)

158 0.149 0.100 0.075 -1.694 1.154 0.927 -1.120
(3.584) (0.110) (-3.155) (1.426) (0.777) (-1.254)

Horizon 7
162 0.010 0.217

(1.294)
162 0.090 0.665 -9.282

(3.310) (-3.737)
162 0.208 0.698 -8.105 -17.343

(3.714) (-3.469) (-4.854)
162 0.209 0.693 -6.826 -17.494 1.776

(3.661) (-1.462) (-4.840) (0.317)
161 0.324 0.895 -12.759 -19.826 36.880

(4.992) (-5.422) (-5.892) (5.149)
158 0.214 0.689 -8.009 -17.418 -3.864

(3.611) (-3.351) (-4.631) (-0.649)
158 0.352 0.937 -9.113 -18.578 5.089 43.689 -14.833

(5.180) (-2.083) (-5.354) (0.972) (5.666) (-2.569)

Notes: This table shows the results from equation (8) with the global temperature local-projection betas.
Nobs is the number of observations, GDPPC is the logarithm of average real GDP per capita, Growth is
measured from beginning to end of the available sample, and Agriculture, Industry, and Manufacturing are
logarithms of the average sectoral shares of GDP. Heteroskedastic robust (White) t-ratios in parentheses.
Bold indicates significance at the 5 percent level and ‘*’ indicates significance at the 10 percent level.
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Table 11: Cross-Sectional Regression with Idiosyncratic Temperature Local-Projection Betas

Nobs R2 Latitude GDPPC Growth Agriculture Industry Manufacturing
Horizon 0

162 0.047 0.031
(2.798)

162 0.056 0.041 -0.209
(2.985) (-1.234)

162 0.085 0.042 -0.170 -0.577
(3.103) (-1.011) (-2.241)

162 0.091 0.041 0.134 -0.612 0.422
(3.000) (0.400) (-2.360) (1.049)

161 0.086 0.043 -0.201 -0.604 0.238
(3.072) (-1.096) (-2.308) (0.427)

158 0.097 0.042 -0.151 -0.561 -0.556
(3.068) (-0.881) (-2.077) (-1.302)

158 0.109 0.043 0.181 -0.614 0.530 0.469 -0.697
(3.041) (0.527) (-2.253) (1.291) (0.774) (-1.537)

Horizon 7
162 0.025 0.127

(2.038)
162 0.052 0.225 -2.026

(2.921) (-2.124)
162 0.060 0.228 -1.909 -1.719

(2.966) (-1.994) (-1.174)
162 0.080 0.216 1.063 -2.068 4.127*

(2.816) (0.561) (-1.411) (1.814)*
161 0.071 0.242 -1.809* -1.225 -0.642

(3.211) (-1.832)* (-0.868) (-0.214)
158 0.071 0.243 -1.926 -1.425 0.739

(3.271) (-2.070) (-0.973) (0.319)
158 0.085 0.228 0.527 -1.691 3.266 -0.838 0.787

(2.959) (0.283) (-1.144) (1.466) (-0.255) (0.320)

Notes: This table shows the results from equation (8) with the idiosyncratic temperature local-projection
betas. Nobs is the number of observations, GDPPC is the logarithm of average real GDP per capita, Growth
is measured from beginning to end of the available sample, and Agriculture, Industry, and Manufacturing
are logarithms of the average sectoral shares of GDP. Heteroskedastic robust (White) t-ratios in parentheses.
Bold indicates significance at the 5 percent level and ‘*’ indicates significance at the 10 percent level.
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7 Assessing Economic Effects of Future Temperature Change: 2017-

2100

As in Kahn et al. (2019), Colacito et al. (2019), and Hsiang et al. (2017b), we combine future
temperature scenarios with our historical estimates of the effect of temperature shocks on real
GDP per capita growth to perform counterfactual analysis from 2017 to 2100, and to construct
empirical damage functions. The disaggregated nature of our estimates provides information about
the geographical incidence of the economic consequences of projected future global warming and
can be informative in IAM damage function specifications. We do caution, however, that these
projections, which are based on historical relationships, may not be a reliable guide to future
relationships, either due to a new relationship taking hold at high and previously unexperienced
temperatures, environmental tipping points, shifting population, or from adaption to higher tem-
peratures by economic agents.

7.1 Projected Temperature Changes

Our future temperature projections come from the sixth phase of the Coupled Model Intercompar-
ison Project (CMIP6) (Eyring et al., 2016).19 Using monthly temperature and global coordinates
for 25 CMIP6 models, we calculate average annual temperature by country from 2017-2100 under
two future climate scenarios.20 The first is SSP1-2.6. It is based on low emissions pathway, low
mitigation challenges, and the Representative Concentration Pathway (RCP) 2.6. This scenario
represents the lower end (most optimistic) of global climate change possibilities. The second sce-
nario is SSP5-8.5 which is based on high climate change, high mitigation challenges, and RCP-8.5.
This ‘business-as-usual’ case represents a high emissions pathway and the high end of climate
change possibilities.

Figure 12 plots the average annual temperature for the SSP1-2.6 and SSP5-8.5 pathways across
the countries in our sample.21 The shaded areas are bound from above and below by the 90th and
10th percentile of model temperature projections. While there is a range of projected temperature
changes across the models and scenarios, the average temperature increases by 2100 are close to 1
degree Celsius for the SSP1-2.6 scenario and nearly 5 degrees Celsius for SSP5-8.5.

19We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled
Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making
available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access,
and the multiple funding agencies who support CMIP6 and ESGF.

20The model list is in Appendix G.
21This only includes surface temperatures and is taken as an average across countries irrespective of geographic

size.
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Figure 12: SSP1-2.6 and SSP5-8.5 Future Temperature Scenarios

Notes: The SSP1-2.6 and SSP5-8.5 are the mean annual temperatures across the sample of countries from the 25
CMIP6 models relative to 2017. The shaded areas are the middle 80 percent of model projections for each climate
scenario.

7.2 Modeling Economic Effects of Future Temperature Change

The counterfactual analysis is conducted only with country-level projected temperature changes.
To perform this analysis, we need to make an adjustment with regard to how the temperature
projections are inputted. In estimation, we detrended temperature to induce stationarity. How-
ever, using detrended temperature projections in the counterfactual analysis would be silly because
warming would be removed by detrending. Since the country temperature local projection slopes
measure the growth response to country temperature shocks @�yj,t/@⌧j,t, we feed projected tem-
perature changes �Tj,t into our estimated equations. With global warming taking place, there
will be more positive temperature changes than negative ones. The economic effects of rising
temperatures will then be observed by cumulating these changes.

Since we have, for each country, estimated local projections at horizons 0 through 7, we want
to exploit all 8 estimates in obtaining a joint prediction for future output. To do this, note that
at horizon h, backshifting equation (6) by horizon and conditioning on lagged temperature and
lagged growth rates, gives 8 separate (although correlated) implied values of yj,t. Then taking the
appropriate differences we obtain 8 separate implied one-period growth rates. The average of these
8 values is taken as the implied growth rate. We compute these implied growth rates from 2017 to
2100 under a global warming scenario and under a ‘no temperature change’ scenario. Cumulating
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these growth rates gives, at year 2100, the damage (or benefit) implied by rising temperature.22

7.3 Projections of Future Economic Impact from Temperature Change

Figure 13 shows net economic damages (in percent) induced by temperature change from 2017 to
2100 under the lower emissions SSP1-2.6 temperature scenario. Benefits are shown in green and
damages in red. Economic gains from temperature change are projected for China, Central and
Southern Asia, Southern Africa, and Eastern Europe. Damages are projected for Southeastern
Asia and the countries in Oceania. The loss to the United States is projected to be 0.5 percent.
Gains to the large middle-income countries are projected to be 2.4 percent for China, 1.6 percent
for India, and 1.1 percent for Brazil.

Figure 14 shows net projected damages under the high emissions scenario (SSP5-8.5). Obvi-
ously, the geographical patterns of economic gains and losses are similar to the lower emissions
scenario (SSP1-2.6) but the magnitudes are amplified due to the higher temperature time-path.
Here, the projections for the United States are a loss of 1.9 percent in 2100. In a granular geo-
graphical IAM model, Alvarez and Rossi-Hansberg (2021) estimate future productivity gains in the
most northern latitudes due to rising temperatures – something we also find for countries such as
Russia and Canada. However, they estimate the largest losses to occur in tropical regions whereas
our results find gains and losses in the tropics to be country and region specific. We estimate
losses for Southeastern Asia, gains for South Asia, and varied outcomes for tropical countries in
Latin America and Africa.

Gains are projected for the large middle income countries of China, India, and Brazil, but the
pattern is not clear for the lowest income countries. The large African countries of Ethiopia and
Nigeria show output gains while others such as Uganda and D.R. Congo show projections of small
losses.

22For country j, shifting the fitted part of the horizon h local projection equation backwards h periods gives,
yj,t � yj,t�h�1 = cj,h + �j,h�Tj,t�h +

P2
k=1 �j,h,k�yj,t�h�1�k. Similarly, shifting backwards the horizon h � 1

equation h periods gives, yj,t�1 � yj,t�h�1 = cj,h�1 + �j,h�1�Tj,t�h +
P2

k=1 �j,h�1,k�yj,t�h�1�k. Subtracting the
second equation from the first gives an implied one-period growth rate from horizon h and h� 1 local projections,
�yj,t(h) = (cj,h � cj,h�1) + (�j,h � �j,h�1)�Ttj,t�h +

P2
k=1 (�j,h,k � �j,h�1,k)�yj,t�h�1,k. Using our estimates for

h = 0, ...7, we have 7 implied annual growth rates at time t, but we also have a direct implied growth rate from
the h = 0 regression. Taken together, we have 8 projected time t annual growth rates conditioned on projected
temperatures prior to t. The implied growth rate is the average implied growth rate across the 8 horizons h,

1
8

7X

h=0

�yj,t(h) =
1
8

 
cj,7 + �j,7�Tj,t�7 +

6X

h=0

�j,h (�Tj,t�h ��Tj,t�h�1) +
9X

k=1

 j,k�yj,t�k

!
,

where
 j,1 = �j,0,1,  j,2 = (�j,0,2 + �j,1,1 � �j,0,1),  j,3 = (�j,1,2 � �j,0,2 + �j,2,1 � �j,1,1),

 j,4 = (�j,2,2 � �j,1,2 + �j,3,1 � �j,2,1),  j,5 = (�j,3,2 � �j,2,2 + �j,4,1 � �j,3,1),

 j,6 = (�j,4,2 � �j,3,2 + �j,5,1 � �j,4,1),  j,7 = (�j,5,2 � �j,4,2 + �j,6,1 � �j,5,1),

 j,8 = (�j,6,2 � �j,5,2 + �j,7,1 � �j,6,1), and  j,9 = (�j,7,2 � �j,6,2).
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Figure 13: Percent Change in Real GDP Per Capita Between 2017 and 2100: SSP1-2.6 Scenario
Relative to No Temperature Change Scenario

Figure 14: Percent Change in Real GDP Per Capita Between 2017 and 2100: SSP5-8.5 Scenario
Relative to No Temperature Change Scenario
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Henseler and Schumacher (2019) finds the negative relationship between GDP per capita
growth and temperature increases to be primarily driven by poor countries. Projections in re-
gional IAM models Nordhaus and Yang (1996) and the Anthoff-Tol FUND model used in Tol
(2020) also predict that greater economic damage for hot, poor, and lower latitude countries than
cool, rich, and high latitude countries.23 These predictions generally conform to the concerns
specified in the Stern report (Stern, 2007), which argued high latitude countries such as Canada
and Russia stand to benefit from warming, while poor countries are most vulnerable due to higher
geographic exposure, fewer resources available for mitigation, and poor quality housing. Also,
Alvarez and Rossi-Hansberg (2021) estimate the greatest welfare losses (up to 15%) will occur
in hot regions such as Africa, India, and Australia but also significant welfare gains (up to 14%)
in the cold regions of Alaska, Northern Canada, and Siberia. In contrast, we project losses for
rich countries. Except for Canada, losses are projected for the G-7 under both the low and high
emissions scenarios.

Figure 15: G-7 Percent Change in Real GDP Per Capita in 2100 with Increase in Country Tem-
perature

Notes: The time path of country temperature from the SSP5-8.5 projections are scaled so that the 2100 temperature
is the degrees Celsius above 2017 indicated in the x-axis.

As a further illustration of G-7 vulnerability to rising future temperature, Figure 15 plots
empirical damage functions for each of the G-7 countries. The figure shows gains or losses for

23See also Golosov et al. (2014) and Cai and Lontzek (2019) for more recent single-decision maker IAMs.
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real GDP per capita in 2100 for increased temperature between 0 and 6 degrees Celsius from
2017. Canada will be largely unaffected, but each of the remaining countries in the G-7 will suffer
increasing losses with higher temperature.

8 Conclusion

This paper reexamines the relationship between rising temperature and real GDP per capita
growth, but from a country-specific time series perspective using local projections (Jordà, 2005).
Three measures of temperature are analyzed: country temperature, global temperature, and id-
iosyncratic temperature, where the later two are decompositions of the former. We find substantial
heterogeneity across countries, more than was previously reported in the literature, in the impulse
responses of real GDP per capita growth to shocks to our three measures of temperature. Qual-
itatively consistent with the previous literature though, there are more negative than positive
impulse responses of real GDP per capita growth to increases in idiosyncratic temperature. On
the other hand, there are more positive than negative responses to increases in global temperature,
whereas the responses vary by horizon for increases in country temperature. Richer countries, in
particular, such as the United States, tend to experience negative impulse responses of real GDP
per capita growth to increases in temperature, regardless of the temperature source.

The determinants of cross-country response variation in cross-sectional regressions of local
projection (country, global, and idiosyncratic) temperature impulse response coefficients on coun-
try characteristics are also investigated. After controlling for latitude, the real GDP per capita
growth impulse response coefficients are decreasing in average real GDP per capita and decreasing
in long-horizon growth. The cross-sectional results suggest that global temperature may have
a more systematic effect on growth than either country or idiosyncratic temperature variations.
We can only speculate at this point that the elevated dependence of economic activity on global
rather than country temperature may work through indirect effects of a world economy connnected
through trade and finance.

Counterfactual analyses and empirical damage functions are constructed to assess the economic
damage or benefit resulting from rising temperature as well. Our estimates, which are based on
the historical relationship between real GDP per capita growth and temperature, and may not
be stable in the future, suggest that future rising temperature is associated with economic losses
for many rich countries, such as the United States, and economic benefits for large developing
countries, such as India.

These results may be helpful in framing climate change policy. Stern (2008) argues, as a
matter of ethics, rich countries should pay more for greenhouse gas abatement than developing
countries, since the industrialized world is responsible for emitting most of the current stock of
greenhouse gasses. In addition to ethical considerations, our findings that temperature increases
have resulted in significant economic damages to rich countries suggests that they should also
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invest in abatement policies out of self-interest.
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