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 Testing the CAPM with Time-Varying
 Risks and Returns

 JAMES N. BODURTHA, JR. and NELSON C. MARK*

 ABSTRACT

 This paper draws on Engle's autoregressive conditionally heteroskedastic modeling

 strategy to formulate a conditional CAPM with time-varying risk and expected
 returns. The model is estimated by generalized method of moments. A CAPM that

 allows mean excess returns to shift in January survives generalized method of
 moments specification tests for a number of omitted variables. However, a residual

 dividend yield component is found to remain in the excess returns of smaller firms.
 We find significant monthly and quarterly components in the risk premia and beta
 estimates.

 RECENT EMPIRICAL WORK IN financial economics has attempted to determine
 the importance of changing risk premia and returns variability over time.'
 This paper models, estimates, and tests for the importance of time-varying
 risk premia and returns variability within the context of a conditional

 version of the Sharpe-Linter-Mossin CAPM.
 The main contribution of this paper is its demonstration of how the

 generalized method of moments (GMM) can serve as a convenient alternative
 to maximum likelihood estimation of simultaneous equation systems of

 autoregressive conditionally heteroskedasticity (ARCH) models. The GMM is
 attractive in these applications because it allows the econometrician to avoid
 estimating a potentially large number of nuisance parameters. The opportu-
 nities for misspecification are also diminished because it is unnecessary to
 -parameterize and estimate many features of the model that are only of
 incidental interest.

 *School of Business, The University of Michigan and Department of Economics, The Ohio
 State University, respectively. For useful comments on earlier versions of this paper, we thank
 John Abowd, Steve Cecchetti, Joel Hasbrouck, Dick Jefferis, Stan Kon, Roger Kormendi, Paul

 Richardson, Jay Shanken, Rene Stulz, and seminar participants at Cornell, the Federal Reserve

 Banks of Atlanta and Cleveland, Ohio State, and Michigan. The comments of an anonymous

 referee also led to improvements in the paper. Bodurtha acknowledges financial support from a

 University of Michigan School of Business summer grant and Citicorp, N. A. All errors are our

 own.

 'Research on a changing risk premia begins with Fama and Macbeth (1974). Work on the
 importance of changing returns variability includes Merton (1980), Christie (1982), Hasbrouck

 (1986), Bollerslev (1987), Fama and French (1988a), Lo and MacKinlay (1988), and Schwert

 (1989). Engle, Lilien, and Robins (1987), French, Schwert, and Stambaugh (1987), Campbell

 (1987), Genotte and Marsh (1987), and Bollerslev, Engle, and Wooldridge (1988) relate a market

 risk premium to changing returns variability.

 1485

This content downloaded from 
������������129.74.250.206 on Tue, 24 Nov 2020 01:22:29 UTC������������� 

All use subject to https://about.jstor.org/terms



 1486 The Journal of Finance

 The conditional CAPM provides a convenient way to incorporate the time-
 varying conditional variances and covariances that other researchers have
 found to be important in financial time series. An asset's beta in the
 conditional CAPM can be expressed as the ratio of the conditional variance
 between the forecast error in the asset's return and the forecast error of the
 market return and the conditional variance of the forecast error of the
 market return. We incorporate conditioning information by modeling these
 two components of the asset's beta as ARCH processes introduced by Engle
 (1982). Hansen and Richard (1987) have demonstrated that omission of
 conditioning information, as is done in tests of constant beta versions of the
 CAPM,2 can lead to erroneous conclusions regarding the conditional mean-
 variance efficiency of a portfolio. Although a large literature reports the
 statistical violations of the unconditional CAPM, these results do not neces-
 sarily imply that the conditional CAPM is false. We adopt a pragmatic view
 regarding the usefulness of the CAPM. Most financial economists would
 agree that the CAPM is not literally true. One problem with the model is
 that it was originally derived in a static framework and can be shown to hold
 in an intertemporal setting only under restrictive assumptions.3 No theory
 can provide an exact description of the real world, but in our view the CAPM
 might serve as a useful benchmark model of relative asset returns if it can be
 shown to be generally consistent with the data. Because the CAPM is both a
 simple and a practical theory, an investigation of the extent to which the
 conditional CAPM explains the data seems worthwhile.

 We summarize our main results here. First, we find that the conditional
 CAPM and a purely statistical representation of conditional first and second
 moments cannot adequately explain the data. The GMM specification tests of
 orthogonality conditions not used in estimation find evidence of omitted
 variables in a model where the conditional second moments are modeled as
 ARCH processes and the market excess return is modeled as an autoregres-

 sion. Current and lagged Treasury bill returns, dividend yields, low-grade
 corporate bond yields, lagged low-grade bond default premia, and lagged
 market conditional variances are likely to be important variables omitted

 2This research is typified by Black, Jensen, and Scholes (1972), Blume and Friend (1973), and
 Fama and MacBeth (1974) and is elegantly summarized and critiqued in Roll (1977). Frankel
 and Dickens (1984), Frankel (1985a,b), Rayner (1985), Gibbons and Ferson (1985), and Ferson,
 Kandel, and Stambaugh (1987) have investigated the CAPM by relaxing the assumption of
 constant expected returns while maintaining the constant variance and covariance assumption.
 Engel and Rodrigues (1987), Bollerslev, Engle, and Wooldridge (1988), Mark (1988), Harvey
 (1989), Huang (1990), Shanken (1990), and Ng (1991) have further relaxed the assumption of
 constant covariances.

 3The traditional CAPM can be shown to be consistent with optimal intertemporal investment
 decision making under any of the following three conditions: i) investors have logarithmic
 utility, ii) the return on the market portfolio and the riskless rate of interest are observable and
 conditionally efficient, and iii) the return on the market matches the r* of Hansen, Richard, and
 Singleton (1982), which is equal to m /(E(m2 I), where m is the marginal rate of intertemporal
 substitution and I, is the information set. Also see Merton (1973), Long (1974), Rubinstein
 (1976), and Breeden (1979).
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 from this statistical representation of the conditional CAPM. We find, how-
 ever, that incorporating a January dummy variable in the mean excess
 returns goes a long way in accounting for the effects of the omitted variables.
 Allowing the means to shift in this fashion is admittedly not implied by the
 CAPM. Nevertheless, this ad hoc specification obviates the need to embark
 on a potentially exhausting specification search. We find, in our final specifi-
 cation of the conditional CAPM augmented by shifting mean excess returns
 in January, significant ARCH components in the betas and a previously
 undocumented quarterly component in the volatility of the market portfolio.
 We are also left with an unexplained dividend yield component in the smaller
 firm's mean excess returns.

 The remainder of the paper is structured as follows. The conditional CAPM
 is presented in the first section. The econometric specification is discussed in
 Section II, and the empirical methodology is discussed in Section III. Section
 IV describes the data. The empirical results are reported in Section V, and
 some concluding remarks are contained in Section VI.

 I. The Conditional CAPM

 Let R t be the date t nominal return on asset i, (i = 1, 2,**, n), Rm, t the
 date t nominal return on the market portfolio, and let ri t and rm, t denote
 their returns in excess of the U.S. Treasury bill return. We begin by stating
 the conditional CAPM in excess returns form as

 E(rit I It-,) = fiIt_iE(rmt I It-,) (1)
 where,

 cov(Rit 9 Rmt I It-,) cov(rit S rmt I It-,) 2
 var(Rmtl It-,) var(rmt II-l) (2)

 and E( I It_ 1) is the mathematical expectation conditioned on the information
 set available to investors at time t - 1, It-,. Expectations are rational in the
 sense of Muth (1961) so that mathematical expectations are interpreted as
 investor's subjective expectations. The second equality in equation (2) follows
 because the Treasury bill return (or the nominal risk-free rate) during period
 t is known at time t - 1 and hence is included in It- . The conditional
 CAPM allows asset i risk premium to vary over time as a result of time-
 variation in three components: the market's conditional variance, the condi-
 tional covariance between the asset's return and the market's return, and/or
 the market's risk premium.

 Let J be the information available to the econometrician. Most likely, J
 will contain less information than I. Our analysis draws on Hansen, Richard,
 and Singleton (1982) who show that if the CAPM holds conditioned on a
 subset J of the information set I, then the CAPM holds conditioned on I.
 This result implies that evidence in favor of the CAPM conditioned on I is
 obtained if the CAPM conditioned on J is not rejected. Unless additional
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 assumptions are made (e.g., constant betas), however, the implication does
 not go in the other direction so that we need not reject the CAPM conditioned
 on I if the model conditioned only on J is rejected. For example, the
 unconditional CAPM obtains when J is the null set, but one cannot use the
 evidence against the unconditional CAPM to claim that the data also rejects
 the conditional CAPM.4 For the remainder of the paper, the null hypothesis
 will be that the model conditioned on J is true. That is,

 E(rit I Jt- 1) = Oijt_E(rmtI JIt-1), (3)
 where,

 cov(Rit, Rmt I Jt-1) cov(rit, rmt I Jt- 1) (3,
 Jt var( Rmt I Jt- 1 ) var( rmt I Jt- 1 )

 Now decompose the return on asset i and the market into their fore-
 castable and unforecastable components, to obtain

 rit = Oijt_,E(rmt I Jt- 1) + uit = 1,***, n (4)
 rmt = E(rmt IJt1) + umt. (5)

 The forecast errors uit and umt are orthogonal to the information set Jt-1.
 Notice that the sequences { u itumt} and { uJ2 t can themselves be decomposed
 into forecastable and unforecastable components as

 uitumt = E(uitumt I Jt-1) + nit' i = 1,*** , n, (6)

 2 = E(u2 t I Jt-1) + ?imt. (7)
 The forecastable part of the sequence {uitumt} is the conditional covariance
 between rit and rmt, and the forecastable part of the sequence { U2 t} is the
 conditional variance of rmt

 cov(rit, rmtI Jt-1) = E(uitumt I Jt-1), (8)

 var(rmtl Jt-1) = E(u2 t I Jt_1). (9)

 Now, substitute equations (2), (8), and (9) into equation (4) to obtain

 r = E(u I J ) [ E(rmt I Jt-1)] + uit (10)

 Once the conditional expectations have been parameterized, equations (5),
 (6), (7), and (10) form an estimable system of four equations for any asset
 i = 1, *, n. For any n assets considered simultaneously, the model implies a
 system of 2(n + 1) equations.

 4This is not to say that inferences based on the unconditional CAPM necessarily lead to
 erroneous inferences regarding the validity of the conditional CAPM. If the data did not reject
 the unconditional CAPM, this could be evidence in support of the conditional CAPM. However,
 the unconditional CAPM has been rejected in the literature, and we find conditioning informa-
 tion to be important. See also Hansen and Richard (1987).
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 Testing the CAPM with Time-Varying Risks and Returns 1489

 II. An Econometric Model

 A. Modeling the Conditional Variance and Conditional Covariances

 To proceed with estimation and inference, we must parameterize the
 conditional expectations appearing in equations (5), (6), (7), and (10). In
 general, these conditional expectations will be nonlinear functions of the
 information set, but the theory is vague on the functional form of the
 conditional expectations. The parameter set we work with, while necessarily
 ad hoc, is guided by a concern for computational feasibility and the ability of
 the chosen specifications to fit the data. To keep the estimation problem
 tractable, we first assume that the sequence of squares and cross products of
 the return forecast errors { u'} and { uitumt} can be represented by autore-
 gressions of low order. That is,

 s

 E(u It I Jt- 1) = -Yo + E -yj 2 (1 1)
 j=1

 k

 E(uitumt t-1) = aJt + E aX -U- Umt_j (12)
 J=1

 This assumption reflects the idea that own past observations on a random
 variable provide useful information for predicting future observations and
 is in the spirit of the ARCH modeling strategy of Engle (1982). To reduce
 our estimation load, we set the order of the market excess return's vari-
 ance process s equal to the order of the covariance process k and test for
 the appropriate k in a step-wise manner. This specification conforms to
 Bollerslev's (1986) generalized ARCH (GARCH) (0, k).

 B. Modeling the Market Excess Return

 A natural process governing the market excess return also is a finite-order
 -autoregression. The implied prediction formula is simply

 h

 E(rmt I jh-1) = 7ro + E 7rjrmt-j. (13)
 j=1

 We estimated an autoregression (3) for the market excess return and found
 the first and third lags to be significant at the 5% level. The residuals from
 the autoregression did not appear to be serially correlated, suggesting the
 appropriateness of the model.

 An alternative representation for the market excess return is the ARCH
 in the mean (ARCH-M) specification that has been used in the work of
 Campbell (1987), Engle, Lilien, and Robins (1987), French, Schwert, and
 Stambaugh (1987), Engel and Rodrigues (1987), and Bollerslev, Engle, and
 Wooldridge (1988). These representations attempt to exploit the tradeoff
 between conditional mean returns with their conditional variability. The
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 ARCH-M model can be expressed as

 E(rmt I Jt-1) = I0 + I1 ff[var(rmt I Jt-1)]. (14)
 Merton (1980) provides a theoretical motivation for these ARCH-M processes.
 Three variants for the function f have appeared in the literature. First, f
 has appeared as an affine function. This specification would be appropriate if
 the market price of risk, which is defined as the ratio of the expected excess
 return to its conditional variance, is constant. Second, f has been specified as
 the square root function, which is implied if the ratio of the expected market
 excess return to its conditional standard deviation, or the Sharpe risk meas-
 ure, is constant. Third, the logarithmic function has also been investigated.5

 To choose among these models for the market risk premium, we rely on
 Davidson and MacKinnon's (1981) C-test to discriminate between two non-
 nested alternatives. Elaboration on this test and the results is deferred until
 after we have discussed the estimation methodology.

 III. Estimation Methodology

 Let there be n assets under consideration, which implies p = 2(n + 1)
 equations. There are n equations for the mean of each asset return, n
 covariance equations, plus an equation for the market excess return process
 and the market's conditional variance. Denote the q-dimensional parameter
 vector to be estimated by f, its true value by 0, and the p-dimensional
 innovation vector by Et(fOl). Let zi t- 1(l0) C Jt-l serve as instrumental
 variables for equation j = 1, 2,- , p. We allow the instruments to vary
 across equations by including in z t- 1(fl) only the variables appearing on the
 right hand side of the jth equation. The variables include lagged market
 excess returns, lagged square residuals, and lagged cross-products of residu-
 als. We selected the instruments in this way for two reasons. First, the actual
 regressors appearing in a particular equation are natural choices for instru-
 ments. Restricting the instruments in this way allows us to keep the estima-
 tion problem manageable. Second, we wanted to attenuate the bias in the
 GMM estimates that results in a proliferation of instrumental variables.
 Tauchen (1986) and Ferson and Foerster (1990) find in Monte Carlo experi-
 ments that the GMM estimator tends to be biased when the instrument set
 becomes large in samples of that size that we encounter in practice.

 Since it(Go) is a vector of forecast errors, it follows that E[ ft(fO)]= 0,
 where

 b[t(aGo) Zl, t- 1(lo0)

 f(t3o) = 62t(f0) Z2, t- l(Oo)

 _M O zi, t- , \O

 5See French, Schwert, and Stambaught (1987).

This content downloaded from 
������������129.74.250.206 on Tue, 24 Nov 2020 01:22:29 UTC������������� 

All use subject to https://about.jstor.org/terms



 Testing the CAPM with Time-Varying Risks and Returns 1491

 The GMM estimator bT of f0, is the minimizer of the quadratic criterion
 function

 k(bT) = glT(/) Sll,TglT(/), (15)

 where g1T(f) = 1/TEt=Ifit(tl) Si,T = 1/TEt=1fit(b)fit(b)', and b is a
 consistent estimate of f0. A consistent estimate of the bT covariance matrix

 is given by 1/T(D' S11D,T), where DT= (a/ab)g1T(bT). We used the
 two-step procedure suggested by Hansen and Singleton (1982) to arrive at our
 estimates.6

 We test restrictions implied by the theory using Hansen's (1982) test of the
 orthogonality conditions used in estimation. He shows that T[min 4(bT)] is
 asymptotically (central) chi-square distributed with N-q degrees of freedom
 under the null hypothesis that the model is correctly specified. N =

 dim[ f1t(f)] is the number of orthogonality conditions used in estimation, and
 q is the number of parameters estimated.

 Since Hansen's test is a test against an unspecified alternative, it can have
 low power against specific alternatives. Also, the test could fail to reject
 because of its selective use of information. That is, the theory implies many
 more orthogonality conditions than those used in estimation. We address
 these concerns by also subjecting the model to GMM tests of orthogonality
 conditions not used in estimation following a suggestion by Newey (1985).

 Let f2t(j) be an (s x 1) vector of orthogonality conditions not used in
 estimation but implied by the model. We form f2t(t) by multiplying
 the residual by variables in the information set at date t - 1, say

 Z l (j - 1, 2,*, p), not used as instrumental variables. Now, consider
 the statistic

 CS = T[LTgT(bT)]'QT [ LTgT(bT)] (16)
 where

 lT

 g2T(O) = E f2t()T gT() = [glT()g2T(3)']',
 T t=1

 iT

 LT= [OSX(k1p+s):Is], Sij, T - E ft(b) fjt(b)', (i -1 2; j 1 2),
 T

 BT = (Hl,TS11,TH1,T)H2,T' Hi,T Z f fb)f T(bT), (i = 1,2),

 QT = S22 T- S21, TS2 TH,,TBT - B+H{ TS TS12 + 2,T T
 and bT is the minimizer of equation (15).

 6Ferson and Foerster (1990) computed Monte Carlo distributions of Hansen's statistic for
 models estimated by the two-step procedure and by continued iteration on the weighting matrix
 S1l until convergence. There is no theoretical reason to continue iterating in this way, but
 Ferson and Foerster find for the examples they studied that the test will reject the null more
 often in the two-step procedure. Altbough these results cannot be directly applied to our
 problem, they suggest that we may be accepting a larger probability of committing a type I
 error.
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 Using the results in Newey (1985), the statistics CS can be shown to have
 an asymptotic central chi-square distribution with s degrees of freedom
 under the null. The vector gT(f) stacks all the orthogonality conditions
 together, while the design matrix LT selects those orthogonality conditions
 used for testing. If we take the functional form of the model as a maintained
 hypothesis, these tests can be viewed as specification tests for omitted
 variables.

 IV. Data

 We take monthly observations on total equity returns for firms listed on
 NYSE and monthly Treasury bill yields. The estimation period covers
 1926-1985. In addition, the GMM tests on orthogonality conditions not used
 in estimation (the omitted variables tests) exploit data on both the excess
 yield and the default premium of low-grade corporate bonds over Treasury
 bonds and the dividend yield on the CRSP NYSE value-weighted index in
 excess of the Treasury bill return. The sources for this data are the CRSP
 tapes for the equity return and dividend series, Fama's U.S. Government
 issue file for the Treasury bill time series, and Ibbotson Associates for the
 corporate and Treasury bond series.

 The model is highly nonlinear, and the computational burden involved in
 estimation is potentially quite high. We therefore restrict to five the number
 of equity returns that we model. We create time-series returns for five
 value-weighted portfolios as the assets priced by the CAPM. These portfolios
 are created by value-ranking the traded equity returns in each month,
 splitting these returns into value-ranked quintiles, and then forming five
 portfolio returns based on value weights within a quintile.7 The benchmark
 or market return that we use is the CRSP value-weighted market return.

 V. Empirical Results

 A. An AR(3) Conditional CAPM

 Our first task is to select a model for the market risk premium. We seek to
 choose between a third-order autoregression and an ARCH-M with a third-
 order ARCH process. We estimate each of the three variants of the ARCH-M
 model discussed in Section II.B. by GMM using a constant and three lags of
 the squared residual as instrumental variables.

 Table I reports the estimation results and Davidson and MacKinnon's
 (1981) C-test in comparing the third-order autoregression against each of the
 three variants of the ARCH-M model. As can be seen, all of the ARCH-M
 models are rejected in favor of the autoregressive representation. The table

 7To the extent that large returns in terms of absolute value cause shifts in particular equities
 across the value-weighted portfolios, we will miss some of the variability in actual returns due to
 our weighting procedure (Fama and French (1988a)).
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 Testing the CAPM with Time-Varying Risks and Returns 1493

 Table I

 Estimates of AR and ARCH-M Models
 Estimates of an AR(3) and a third order ARCH-M for monthly CRSP value-weighted NYSE
 excess returns rmt 1926-1985. The two models are as follows:

 3

 AR: rmt = iro + E irjrmt-j + Umt and ARCH-M: rmt = to + Ii f [o + jU2 t_j + Umt.
 j=1 j=l

 Asymptotic standard errors are in parentheses. The three specifications of the function f

 estimated are, the identity, the square root, and the natural log functions. The ARCH-M models

 were estimated by GMM with a constant and three lags of u2 forming the instrument vector.
 The AR model was estimated by OLS. The test of non-nested alternatives is the C-test suggested

 by Davidson and MacKinnon (1981) which involves computing the t-ratio from a composite
 regression. Robust standard errors for the OLS estimates and the C-test statistics were computed
 using White's (1980) correction for conditional heteroskedasticity.

 ARCH-M f [Var] AR (3)

 Var (Var) ln (Var)

 *0 0.0053 - 0.0001 0.0044 1r0 0.0066
 (0.0043) (0.0013) (0.0069) (0.0023)

 '1 0.3410 0.1430 0.0006 Irn 0.1138
 (1.464) (0.2667) (0.0011) (0.0668)

 'Yo 0.0017 0.0016 0.0016 Ir2 - 0.0046
 (5.3 x 10-4) (5.3 x 10-4) (5.3 x 10-4) (0.0596)

 'Yi 0.1283 0.1392 0.1169 Ir3 - 0.1243
 (0.0956) (0.0961) (0.0981) (0.0641)

 'Y2 0.1047 0.1392 0.1169
 (0.0950) (0.0098) (0.0963)

 'Y 3 0.2264 0.2541 0.2579
 (0.1570) (0.1537) (0.1465)

 R 2 0.0004 0.0027 0.0031 0.0286

 Tests of the null against a non-nested alternative: C-Test Statistic.

 Null Hypothesis

 ARCH-M 2.428 2.548 2.521

 AR (3) 0.072 0.182 0.165

 also shows the ratio of the variance of the one-step-ahead prediction to the
 variance of the actual market excess returns (denoted by R2 =

 var[ E(rmt I Jt- 1)]var[ rmt]) as a measure of the model's goodness of fit. Al-
 though the autoregressive model explains less than 3% of the variation in the
 data, the explanatory power of the ARCH-M models are modest by compari-
 son. Based on these results, we adopt the autoregressive representation for
 the market excess return for the remainder of the empirical analysis.8

 8A referee has pointed out that these results are consistent with the findings of Campbell
 (1987) and Harvey (1989) who reject that the market premium is proportional or linear in the
 market volatility.
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 We now move on to estimate the full model. The following instrumental
 variables were used to estimate the model. For each of the mean equations
 (i.e., the u residuals), a constant and three lags of the market excess return

 were used. For each of the conditional covariance equations and the condi-
 tional variance equation, a constant and k lags of the dependent variable

 were used. Using Hansen's test of the overidentifying restrictions, both k = 1
 and k = 2 for these equations are rejected at very small significance levels.
 Setting k = 3, on the other hand, works much better, and these results are
 reported in Table II.

 We make a number of comments in regard to Table II. First, the parameter
 estimates appear to be reasonable both in magnitude and in sign. The first

 lag on the market excess return, 7r,, is significant and positive, while the
 third lag, 7r3, is negative and marginally significant. These estimates are
 consistent with the estimated autoregression reported in Table I. Second,
 each of the lags in the estimate of the market excess return's conditional
 variance are significantly different from zero. The estimate for the third
 order lag, 'Y , is 0.2617 and suggests the presence of a quarterly component in
 market volatility. To our knowledge, this result has not previously been

 discussed in the literature. Third, estimates of the constant terms and the

 first and third order lag coefficients in the conditional covariance equations
 are all positive and estimated with a fair amount of precision.

 Hansen's test of the orthogonality conditions used in estimation yields a
 chi-square statistic of 32.85. With 20 degrees of freedom, the p-value is
 0.035.9 Given that the model appears, loosely speaking, to fit the data, we
 proceed to investigate a number of additional features of the estimates.

 First, a CAPM with constant betas is strongly rejected by the data. A Wald

 test of the restriction that the lag coefficients in the conditional covariance,

 conditional variance, and market excess return equations are jointly zero,

 (i.e., *rl. , al . . . 9af53, Yi' ., Y3)Y = 0) yields a Wald Statistic of 98.7.
 With 18 degrees of freedom, the null hypothesis of no time variation in the
 CAPM is rejected at any reasonable significance level. We also investigate
 whether there is significant time variation of the market price of risk. A test
 that the lag coefficients in the market's excess return and conditional vari-
 ance are jointly zero also rejects the null (x2) = 14.4, p-value = 0.026).

 B. Residual Diagnostics

 In this section, we study properties of the model's residuals by applying
 Newey's GMM tests of orthogonality conditions implied by the model but not
 imposed in estimation. The computed values of the CS statistic are reported
 in Table III. The orthogonality conditions for each equation are examined
 individually.

 First, we test whether the residuals of each equation are orthogonal to six

 9Since we have a system of 12 equations, this instrument set results in 48 orthogonality
 conditions. Because there are 28 parameters to estimate, there are 20 overidentifying restric-

 tions and hence 20 degrees of freedom in the test of the orthogonality conditions.
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 Table II

 AR(3) Conditional CAPM
 Estimates of the conditional CAPM for monthly excess returns on five sized ranked NYSE

 portfolios (rt, i = 1,2,, 5), 1926-1985. The value-weighted CRSP index less the Treasury bill
 return rmt serves as the market excess return.

 [ 3 33
 r a a[ct o+ a ^tJ_it-jUmtJ/O+ Ju2t-1j[ o + Z wJrmt-j + ud

 3 3

 UitUmt = jtiO + E 5 ijuit_jumt-j + 7t, rmt = iro + E wjrmt-j + umt,
 j=1j=1

 3

 UMt = 'y0 + E _yjUtj +?1mt
 j=l

 The model is estimated by GMM. Hansen's (1982) statistic is used to test the orthogonality

 conditions used in estimation, and Wald statistics are constructed to test cross equation restric-
 tions implied by the conditional CAPM. Numbers in parentheses are asymptotic standard errors.
 The instrumental variables used to estimate the model are as follows: for equations with the u

 residuals, a constant and three lags of the market excess return; for each of the conditional
 covariance equations and the conditional variance equation, a constant and 3 lags of the
 dependent variable.

 Market Process Parameters

 1r 0 1rl 1r2 7r 3

 Conditional 0.0089* 0.0806* 0.0183 - 0.0817
 mean (0.0016) (0.0023) (0.0022) (0.0045)

 'Yo Y i 7Y2 7Y3

 Conditional 0.0012* 0.2842* 0.1113* 0.2617*

 variance (2.4 x 10-4) (0.0544) (0.0463) (0.0686)

 Conditional Covariance Parameters

 Portfolio o a 1 ? 2 3

 1 0.0031* 0.5369* - 0.2579* 0.1671*
 (4.0 x 10-4) (0.0818) (0.0568) (0.0739)

 2 0.0021* 0.4698* - 0.1139* 0.2357*
 (3.0 x 10-4) (0.0565) (0.0421) (0.0689)

 3 0.0018* 0.4228* - 0.2013 0.2437*

 (2.8 x 10-4) (0.0503) (0.0450) (0.0648)
 4 0.0016* 0.4425* 0.0000 0.2175*

 (2.3 x 10-4) (0.0634) (0.0483) (0.0698)
 5 0.0011* 0.3474* 0.0729 0.2688*

 (2.3 x 10-5) (0.0561) (0.0484) (0.0727)

 Test of x2 (d.f.) d.f. p-value
 Orthogonality conditions 32.9* 20 0.035
 Constant beta 98.7* 18 0.000
 Constant market price of risk 14.4* 6 0.026

 *Significant at the 5% level.
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 Table III

 AR(3) Conditional CAPM Diagnostic Tests
 GMM tests of the hypothesis that residuals from the AR (3) conditional CAPM are orthogonal to
 observations not used in estimation. The observations are, six lags of the own portfolio's excess
 return, six lags of the residual, the current and two lags of the T-bill return, low-grade corporate
 bond yield, dividend yield, three lags of the low-grade corporate bond default premium, one
 lagged market conditional variance, and monthly dummy variables. We use monthly observa-
 tions for 1926-1985. The sources for this data are the CRSP tapes for the equity return and
 dividend series, Fama's U.S. Government issue file for the Treasury bill time series, and
 Ibbotson Associates for the corporate and Treasury bond series. The test statistic is distributed
 as a chi-square variate under the null hypothesis.

 Orthogonality Conditions

 (1) (2) (3) (4) (5) (6) (7) (8)
 Lag Lag Default Low-grade Dividend Market Monthly

 Residual return residuals T-bill premium yield yield variance dummies

 returns

 ul 3.664 4.123 9.678 4.579 5.429 18.020 3.660 28.425
 U2 3.373 3.347 9.889 4.050 4.815 13.101 2.436 23.208
 U3 3.369 3.842 8.716 3.637 4.581 9.031 1.539 20.771
 U4 4.956 5.132 9.489 2.860 3.594 5.542 1.219 17.248
 U .5 6.612 7.071 10.489 1.749 2.424 4.685 0.126 18.171
 um 5.986 6.468 10.801 1.891 2.741 4.997 0.304 17.585

 covariances

 71 13.715 9.872 15.374 5.676 4.079 4.090 0.902 20.933

 12 16.188 9.575 11.326 5.624 5.960 3.111 0.764 26.634
 '13 12.591 14.840 10.112 4.464 6.425 1.832 5.857 29.736
 '4 11.405 9.867 8.470 4.042 7.339 1.686 6.197 29.641
 775 9.819 17.110 6.015 4.357 6.831 1.422 7.805 27.832

 variance

 ,qm 13.319 16.861 6.107 4.720 6.645 1.650 4.998 27.768
 degrees

 of freedom 6 6 3 3 3 3 1 12

 critical values

 5% 12.59 12.59 7.81 7.81 7.81 7.81 3.84 21.03
 1% 16.81 16.81 11.3 11.3 11.3 11.3 6.63 26.22

 lags of that portfolio's excess return. That is, we ask whether the residual on

 the return of portfolio j, ujt, is orthogonal to six lags of portfolio j excess
 return, rjt, and whether the residual from the conditional covariance between
 portfolio j and the market, -jt, is orthogonal to six lags of the excess return
 on portfolio j. Column 1 of Table III reports CS statistics for the test of these
 six orthogonality conditions. It can be seen that marginal rejections of the
 null occur for the conditional covariances between the first three portfolios
 and the market.

 Second, we investigate whether residuals from each equation are orthogo-
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 Testing the CAPM with Time-Varying Risks and Returns 1497

 nal to six of their own lags. CS statistics for this test are reported in col-

 umn 2. Again, there is only mild evidence that the residuals are serially
 correlated.

 A number of variables have been shown in the literature to help predict
 excess stock returns and returns volatility. The variables include Treasury
 bill returns (Fama and Schwert (1977)), dividend yields (Fama and French
 (1988b)), low-grade corporate bond yield premia (Keim and Stambaugh (1986))
 and default premia (Fama (1990)), and lagged conditional second moments
 (Bollerslev, Engel, and Wooldridge (1988) and Giovannini and Jorion (1989).1o
 The evidence from these studies raises the possibility that important infor-
 mation has been omitted from our conditioning set.

 We investigate the significance of omitting these variables from our model
 by testing the orthogonality of each residual to the following variables: the
 current and two lags of the Treasury bill return, low-grade corporate bond
 yield premia, the market's dividend yield, three lags of low-grade corporate

 bond default premia, and one lag of the market's conditional variance.11

 These test results appear in columns 3 through 7. The default and yield
 premia on the low-grade corporate bonds do not appear to contain informa-

 tion beyond our conditional CAPM for predicting excess returns. However,
 there is evidence that each of the residuals is correlated with the Treasury
 bill returns. The residuals of the mean return equations for portfolios 1

 through 3, (u1, U2, U3), appear to be correlated with dividend yields, and the
 test rejects the orthogonality of the lagged market conditional variance to

 residuals of the covariance and market variance equations (p73, 74, '75, VIm).
 Finally, we investigate the possibility that a deterministic component

 remains in the data. It is important to do so because deterministic parts of

 the return series should be removed or otherwise accounted for in order to
 draw correct inference. Column 8 reports statistics that test whether each
 residual is orthogonal to a constant and 11 monthly dummies. These results
 strongly suggest the presence of a deterministic component in the data not

 captured by the model.
 To summarize, this section finds evidence that the simple autoregression

 (3) model is misspecified. Current and lagged Treasury bill returns and
 dividend yields and lagged conditional second moments appear to contain
 information for predicting returns beyond that in our conditional CAPM. In

 addition, a deterministic component also appears to remain in the data.
 These results suggest that we augment the conditioning set of our model with
 some of these variables. However, the nonlinear nature of our conditional
 CAPM renders it an inconvenient vehicle for conducting a specification
 search among the potential omitted variables. Instead, we pursue an analysis
 that focuses on accounting for the deterministic component of the data.
 Beginning with Banz (1981), a large amount of attention has been devoted to

 l0See also, Campbell (1987), Harvey (1989), and Huang (1990).
 "lDate t values of the Treasury bill return, the dividend and corporate bond yields, are in

 Jt-1.
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 the month of January, and it is this aspect of the deterministic part of the
 returns that we concentrate on. Incorporating a January effect in the model
 may be an efficient way to explain the apparent omission of economic
 variables from the model of this section. In addition, failure to remove any
 deterministic components from the data may lead to a violation of the
 regularity conditions assumed in the statistical theory that we draw on.12

 C. Accounting for Omitted Variables with a January Dummy Variable

 This section introduces a variable that assumes a value of unity during
 January and zero otherwise. We are first confronted with deciding where in
 the model to include the January dummy. One possibility that preserves the
 basic CAPM structure is to incorporate a monthly shift in the conditional
 covariances, the market excess return, and the market conditional variance.
 Modeling a monthly shift in the excess return separate from the beta and/or
 the expected market excess return, on the other hand, is ad hoc and is
 inconsistent with the CAPM. We leave it to the data to determine the
 appropriate placement of the January dummy in the model by estimating a
 system of equations that introduces a January dummy in each of the afore-
 mentioned equations for the basic autoregression (3) model and testing
 exclusion restrictions on the different sets of dummy variables. The instru-
 mental variables used to compute the values reported in Table IV are slightly
 different. For each of the equations, the constant was replaced by the
 January dummy. The remaining instruments are the same as those used in
 computing Table I.13

 A Wald test that all the January coefficients in the conditional covari-
 ances, the market's excess return process, and the market's conditional
 variance are jointly zero yields a chi-square statistic (with 7 degrees of
 freedom) of 1.465. This result suggests that a January shift in these equa-
 tions appears not to be an important characteristic of the data. A Wald test
 that the ad hoc January coefficients in the asset return equations are jointly
 zero yields a Wald statistic of 11.039 (p-value = 0.0506). These results
 suggest that the monthly shifting of returns in the data is better modeled by
 introducing an ad hoc January dummy that shifts mean returns than by
 allowing January shifts in the components of the beta or in the market risk
 premium. Although these results provide evidence against the model, it may
 still be of interest to examine the model with only the ad hoc January shifts
 in mean returns, even though these shifts are not implied by the CAPM. The
 estimates of this model are reported in Table IV.

 12Specifically, the distribution theory assumes that the observations are indeterministic and
 covariance stationary. A referee has pointed out that the returns processes may fail to be
 stationary if the seasonal component is not properly accounted for. There is another form of
 nonstationarity that we do not investigate, that is, a switch in the probability law governing the
 observations during the sample period. While it is possible that we would obtain significantly
 different estimates across different sample periods, we did not pursue a subsample analysis.

 13A set of 48 orthogonality condition still results; there are 33 parameters to estimate, which
 implies 15 degrees of freedom in the test of the orthogonality conditions.
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 Table IV

 January Dummy Augmented AR(3) Conditional CAPM
 Estimates of the conditional CAPM augmented by a January shift (Jant, i = 1,2,, 5) in the

 means for monthly excess returns on five size ranked NYSE portfolios (rit, i= 1,2,--, 5),
 1926-1985. The value-weighted CRSP index less the Treasury bill return rmt serves as the
 market excess return.

 3 33

 rit= Jani + [cut0 + E ()j!Ut jUmt-j/'O + E j [7o + E >rirmti] + jt,
 J=j = J=1

 3 3

 UitUmt = 'rio + E OtjUit jUmt-j + 7t, rmt = rO + S rjrmt-j + Umt0
 j=l ~~~~~~~j=l

 3

 uMt = yO + Z YjUmtj+71mt
 j=1

 The model is estimated by GMM. Hansen's (1982) statistic is used to test the orthogonality
 conditions used in estimation, and Wald statistics are constructed to test cross equation restric-
 tions implied by the conditional CAPM. Numbers in parentheses are asymptotic standard errors.
 The instrumental variables used to estimate the model are as follows: for equations with the u

 residuals, the January dummy and three lags of the market excess return; for each of the
 conditional covariance equations and the conditional variance equation, a constant and three
 lags of the dependent variable.

 Market Process Parameters

 1r o 1r 1 7r 2 7r 3
 Conditional 0.0073 0.0227 0.0237 - 0.1062*

 mean (0.0018) (0.0235) (0.0321) (0.0466)

 'Yo Y i 7Y2 'Y3
 Conditional 0.0015* 0.3228* 0.0645 0.1773*
 variance (3.0 x 10-4) (0.0607) (0.0594) (0.0836)

 Conditional Covariance Parameters

 Portfolio ae c a a2 o3 JAN
 1 0.0027* 0.4036* - 0.0735 0.0843 0.0756*

 (4.9 x 10-4) (0.0842) (0.0494) (0.0724) (0.0125)
 2 0.0022* 0.3759* - 0.0451 0.1510 0.0419*

 (3.9 x 10-4) (0.0648) (0.0503) (0.0849) (0.0089)
 3 0.0018* 0.4032* - 0.0119 0.1700* 0.0267*

 (3.6 x 10-4) (0.0597) (0.0567) (0.0784) (0.0071)
 4 0.0016* 0.4707* 0.0078 0.1533 0.0112

 (3.9 x 10-4) (0.0761) (0.0553) (0.0815) (0.0059)
 5 0.0013* 0.3680* 0.0583 0.1861* - 0.0018

 (3.0 x 10-4) (0.0676) (0.0616) (0.0863) (0.0043)

 Test of x2 (d.f.) d.f. p-value
 Orthogonality conditions: 13.8 15 0.542
 January coefficients zero: 15.5 5 0.009
 Constant beta: 73.3 18 0.000

 Constant market price of risk: 10.9 6 0.092

 *Significant at the 5 percent level.
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 1500 The Journal of Finance

 We find that Table IV is qualitatively not much different from Table II.
 The parameter estimates appear largely unchanged but are less precise. The
 test of the orthogonality conditions used in estimation has a much lower
 marginal significance level, indicating that inclusion of the January dum-
 mies leads statistically to a better fit. The coefficients on the January dummy
 are largest for the smallest firm portfolio, as expected a priori. The coeffi-
 cients are significantly different from zero only for the first three portfolios.
 The Wald test that the coefficients on the January dummies are jointly zero
 yields a Wald statistic of 15.5 (p-value 0.085). As was found in Table II, a
 CAPM with constant betas can still easily be rejected (X(28) = 73.3). The
 hypothesis that the market price of risk is constant is not strongly rejected

 (x2) = 10.9, p-value = 0.092). We decided not to restrict the model any
 further, however, because the absolute size of the t-ratios for the estimates of

 r3, 1yl, and 73 indicate that they are individually significant.
 The GMM test results on the residuals are reported in Table V. As in

 Table III, we continue to find little evidence that the residuals are serially
 correlated. Nor do they appear correlated with past returns, the low-grade
 corporate bond yield premia, or the bond default premia. The January
 dummy appears to have accounted for the deterministic monthly component
 in returns, as none of the statistics in column 8 are significant at the 5%
 level. In addition, we no longer find evidence that the residuals are corre-
 lated with the Treasury bill returns or the lagged market conditional vari-
 ance. The January-augmented CAPM leads to a significant improvement in
 fit, and goes a long way in explaining the data. It does not, however, fully
 explain the data, as it appears that dividend yields still contain information
 beyond the January-augmented CAPM for predicting the excess returns of
 portfolios 1 through 3.

 We conclude this section by comparing the fit between the models with and
 without the January dummy variable as well as with the fit of a constant
 beta model. We continue to model the market risk premium as AR(3) in the
 constant beta model, and unconditional estimates were used to compute the
 betas. In this model, the variation in the one-step ahead forecasts of the
 model arise solely due to variations in the predicted market excess return.
 We compute pseudo R2 values (var{ E[rit i Jt 1 ]} /var[ rit]) as the measure of
 the goodness of fit provided by the three models. Monthly asset returns are
 difficult to forecast. Although the proportion of the variation explained is
 somewhat modest, modeling time variation of the betas is an improvement
 over the constant beta model. A large improvement in prediction for the
 smaller firms is obtained with the January dummy variables (see Table VI).

 VI. Conclusion

 In the conditional CAPM, an asset's beta is the ratio of the conditional
 covariance between the asset and market returns and the conditional vari-
 ance of the market return. This paper modeled these conditional covariances
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 Table V

 January Dummy Augmented AR(3) Conditional CAPM
 Diagnostic Tests

 GMM tests of the hypothesis that residuals from the January dummy augmented AR(3)

 conditional CAPM are orthogonal to observations not used in estimation. The observations are,
 six lags of the own portfolio's excess return, six lags of the residual, the current and two lags of
 the T-bill return, low-grade corporate bond yield, dividend yield, three lags of the low-grade
 corporate bond default premium, one lagged market conditional variance, and monthly dummy
 variables. We use monthly observations for 1926-1985. The sources for this data are the CRSP
 tapes for the equity return and dividend series, Fama's U.S. Government issue file for the
 Treasury bill time series, and Ibbotson Associates for the corporate and Treasury bond series.
 The test statistic is distributed as a chi-square variate under the null hypothesis.

 Orthogonality Conditions

 (1) (2) (3) (4) (5) (6) (7) (8)
 Lag Lag Default Low-grade Dividend Market Monthly

 Residual return residuals T-bill premium yield yield variance dummies

 returns

 ul 5.508 5.158 4.907 3.313 5.210 18.074 2.415 10.028
 U2 5.924 6.181 6.248 3.018 4.015 12.418 1.869 9.788
 U3 6.219 6.544 5.038 2.626 3.841 8.904 1.630 10.541
 U4 6.296 6.793 5.174 1.909 3.208 6.171 1.620 11.439
 U5 8.202 8.316 7.456 0.962 1.794 5.587 0.595 14.586
 Um 7.791 7.983 7.350 1.172 2.108 6.228 0.800 14.072

 covariances

 771 12.472 3.653 8.569 5.889 5.735 5.182 0.942 14.714

 772 13.675 3.352 7.471 5.515 5.717 4.986 0.519 17.288

 ?13 11.022 3.998 6.425 4.381 4.626 3.497 0.714 17.836
 ?14 9.830 6.328 5.574 3.850 5.719 2.494 3.171 19.428
 ?15 9.207 5.616 5.121 4.469 5.092 2.464 2.804 19.071

 variance

 71m 11.091 4.393 5.250 4.609 4.872 2.829 1.202 19.067

 degrees

 of freedom 6 6 3 3 3 3 1 12

 critical values

 5% 12.59 12.59 7.81 7.81 7.81 7.81 3.84 21.03

 1% 16.81 16.81 11.3 11.3 11.3 11.3 6.63 26.22

 and variances as ARCH processes and the market risk premium as an
 autoregression. We showed how a large system of equations with ARCH
 features can be estimated in a straightforward way by GMM. The estimation
 strategy offers some concrete advantages over maximum likelihood methods
 in that it frees the investigator from having to parameterize and estimate

 many features of the ARCH model that are of only incidental interest. In
 addition to reducing the computational burden, the danger of misspecifica-
 tion is lessened.
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 Table VI

 Proportion of Total Excess Returns Variation Explained by
 Fitted Values

 This table reports the proportion of portfolio i excess return variability explained by the fitted

 values, var{E[rit I Jt_l]}/var[rLt]. We estimate E[rit I Jt-l] by rit - uit from each of the follow-
 ing three models. First, the January-augmented AR(3) CAPM is

 rit = Jani + [ctio + EXijUit-jUmtj/Yo + E YjUmtj] H_ o + E 7jrmt-j] + uit,
 j=l j=l j=l

 3 3

 UitUmt = Clio + 3 ?aijUit_jUmt-j + 'q1, (i = 1,2,t,5), rmt = iro + 53 lrjrmt-j + Umt
 j=1 j=1

 3

 U t = 'yo + ZYjUmt_j + 1mt.
 j=1

 Second, the conditional AR (3) CAPM is obtained by setting Jane = 0, (i = 1,2, 5). Third, a

 constant beta CAPM is obtained by setting yj = a ij= 0, (i = 1,2, - ,5; j = 1,2,3). These
 CAPM's were estimated by GMM using monthly observations for 1926-1985 on five size ranked
 portfolio returns in excess of the Treasury bill return (rit, i = 1, 2, .-, 5). The value-weighted
 CRSP index less the Treasury bill return rmt serves as the market excess return.

 Conditional

 AR(3) CAPM

 Conditional with January Constant
 Portfolio AR(3) CAPM dummies beta CAPM

 1 0.0205 0.0469 0.0094
 2 0.0167 0.0281 0.0111
 3 0.0159 0.0212 0.0122

 4 0.0170 0.0140 0.0129

 5 0.0148 0.0124 0.0135

 Relative to other recent tests of models with time-varying risk and/or
 returns, our results appear to be more supportive of the conditional CAPM.

 There are important differences between our paper and others that have
 appeared in the literature that give rise to the differing results. Our model
 also differs from Ng (1991), which appears in this volume, in a number of
 important respects.

 We note first that both our model and Ng's extend the literature by
 allowing the market price of risk to vary over time. Since Ng models the
 market risk premium as an ARCH-M process while we model it as an
 autoregression, the two papers place different restrictions on the allowable
 dynamics for the market price of risk. Second, Ng uses market value weights
 as data and nests the model of Bollerslev, Engle, and Wooldridge (1988) and
 Harvey (1989), which assume a constant market price of risk, as a special
 case. In our model, we are unable to test the restrictions regarding how the
 model aggregates. The market return for each observation is a value-weighted
 average of observations of the five portfolio returns that we investigate. The
 effect of changing market-value weights is incorporated in the conditional
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 Testing the CAPM with Time-Varying Risks and Returns 1503

 covariance and market variance equations by construction. Introducing the
 associated weighting terms into the market excess return equation requires
 complicated recursions. Our approach leaves no tractable way to implement
 and, hence, test these additional value-weight restrictions. Third, Ng as-
 sumes that the innovations from her model follow a GARCH(1, 1) process
 while we adopt a third order ARCH process. The fourth major difference
 concerns the estimation strategy; Ng estimates her model by maximum
 likelihood while we adopt the GMM methodology.

 As we have argued above, our approach is relatively parsimonious. How-
 ever, our test results may be driven by a lack of power. This lack of power
 could arise from the limits that we set on the information set and the
 relatively small cross-section of assets considered. We accept these con-
 straints for three reasons. First, because we simultaneously model time-
 varying covariances, market excess returns, and market variance, the result-
 ing estimation problem is highly nonlinear and computationally intensive.
 Second, we supplement the usual GMM tests with residual diagnostics for
 alternatives that have been suggested in previous research. Third, the Monte
 Carlo analysis of Tauchen (1986) and Ferson and Foerster (1990) indicates
 that small-sample properties of the GMM estimator are better for smaller
 cross-sections and information sets.

 We detected the presence of a deterministic component in returns and
 modeled it with a January dummy variable. Based on the test of the
 orthogonality conditions used in estimation, this model was found to fit the
 data relatively well. We found strong evidence of time variation in the
 conditional first and second moments of excess stock returns. The first- and
 third-order lags in the conditional variance of the market risk premium, as
 well as in the conditional covariance between the returns of five value-
 weighted portfolios and the market were found to be significant. These
 results suggest that monthly and quarterly variability components are priced
 in equity excess returns. The quarterly component may be evidence of an
 information effect corresponding to quarterly release of news in corporate
 and governmental statistical reporting. For example, the government makes
 GNP figures available on a quarterly basis. Corporation and investment
 managers may adjust their financial decisions for purposes of affecting their
 quarterly reports. Expected returns and returns variability might be affected
 to the extent that these factors influence market information and liquidity.
 The implications of our model held up relatively well under hypothesis
 testing. We temper our conclusions, however, as analyses of the residuals
 indicated that current and lagged dividend yields contain significant predic-
 tive information for the smaller sized firms beyond that contained in our
 conditional CAPM.

 REFERENCES

 Banz, Rolf, 1981, The relationship between return and market value of common stocks, Journal
 of Financial Economics 9, 3-18.

 Black, Fischer, Michael C. Jensen, and Myron Scholes, 1972, The capital asset pricing model:

This content downloaded from 
������������129.74.250.206 on Tue, 24 Nov 2020 01:22:29 UTC������������� 

All use subject to https://about.jstor.org/terms



 1504 The Journal of Finance

 Some empirical tests, in Michael C. Jensen, ed.: Studies in the Theory of Capital Markets
 (Praeger, New York).

 Blume, Marshall E. and Irwin Friend, 1973, A new look at the capital asset pricing model,
 Journal of Finance 28, 19-34.

 Bollerslev, Tim P., 1986, Generalized autoregressive conditional heteroskedasticity, Journal of
 Econometrics 31, 307-327.

 - 1987. A conditionally heteroskedastic time-series model for speculative prices and rates

 of return, Review of Economics and Statistics 69, 542-647.

 , Robert F. Engle, and Jeffrey M. Wooldridge, 1988, A capital asset pricing model with
 time-varying covariances, Journal of Political Economy 96, 116-131.

 Breeden, Douglas T., 1979, An intertemporal asset pricing model with stochastic consumption
 and investment opportunities, Journal of Financial Economics 7, 265-296.

 Campbell, John Y., 1987, Stock returns and the term structure, Journal of Financial Economics
 18, 373-400.

 Christie, Andrew A., 1982, The stochastic behavior of common stock variances, Journal of
 Financial Economics 10, 407-432.

 Davidson, Russel, and James G. MacKinnon, 1981, Several tests for model specification in the
 presence of alternative hypotheses, Econometrica 49, 781-793.

 Engel, Charles and Anthony Rodrigues, 1987, Tests of international CAPM with time-varying
 covariances, Unpublished manuscript, University of Virginia.

 Engle, Robert F., 1982, Autoregressive conditional heteroscedasticity with estimates of the
 variance of United Kingdom inflation, Econometrica 50, 987-1007.

 , David M. Lilien and Russel P. Robins, 1987, Estimating time-Varying risk premia in the
 term structure: The arch-m model, Econometrica 55, 391-408.

 Fama, Eugene F., 1990, Stock returns, expected returns and real activity, Journal of Finance 45,
 1089-1108.

 and James D. MacBeth, 1974, Tests of the multiperiod two parameter model, Journal of
 Financial Economics 1, 43-66.

 and G. William Schwert, 1977, Asset returns and inflation, Journal of Financial
 Economics 5, 115-146.

 and Kenneth R. French, 1988a, Permanent and temporary components of stock prices,
 Journal of Political Economy 96, 246-273.

 and Kenneth R. French, 1988b, Dividend yields and expected stock returns, Journal of
 Financial Economics 22, 3-25.

 Ferson, Wayne, E. and Stephen R. Foerster, 1990, Finite sample properties of methods of
 moments in latent variable tests of asset pricing models, Working paper no. 90-21, Western
 Business School, University of Western Ontario.

 , Shmuel Kandel and Robert F. Stambaugh, 1987, Tests of the asset pricing with
 time-varying risk premiums and market betas, Journal of Finance 42, 201-220.

 Frankel, Jeffrey A., 1985a, Portfolio shares as 'beta breakers', Journal of Portfolio Management,
 11, 18-23.

 , 1985b, Portfolio crowding-out, empirically estimated, Quarterly Journal of Economics
 100, 1041-1065.

 and William Dickens, 1984, Are asset-demand functions determined by CAPM?, Unpub-
 lished manuscript, University of California, Berkeley.

 French, Kenneth R., G. William Schwert, and Robert F. Stambaugh, 1987, Expected stock

 returns and volatility, Journal of Financial Economics 19, 3-20.
 Genotte, Gerard, and Terry A. Marsh, 1987, Variations in economic and uncertainty and risk

 premiums on capital assets, Unpublished manuscript, University of California, Berkeley.
 Gibbons, Michael R. and Wayne Ferson, 1985, Testing asset pricing models with changing

 expectations and an unobservable market portfolio, Journal of Financial Economics 14,
 217-236.

 Giovannini, Alberto, and Philippe Jorion, 1989, The time variation of risk and return in the
 foreign exchange and stock markets, Journal of Finance 44, 307-326.

 Hansen, Lars P., 1982, Large sample properties of generalized method of moments estimators,
 Econometrica 50, 1029-1054.

This content downloaded from 
������������129.74.250.206 on Tue, 24 Nov 2020 01:22:29 UTC������������� 

All use subject to https://about.jstor.org/terms



 Testing the CAPM with Time-Varying Risks and Returns 1505

 and Scott F. Richard, 1987, The role of conditioning information in deducing testable
 restrictions implied by dynamic asset pricing models, Econometrica 55, 587-614.

 and Kenneth J. Singleton, 1982, Generalized instrumental variables estimation of
 non-linear rational expectations models, Econometrica 50, 1029-54.

 Scott F. Richard and Kenneth J. Singleton, 1982, Econometric implications of the capital
 asset pricing model, Unpublished working paper, Carnegie-Mellon University.

 Harvey, Campbell R., 1989, Time-varying conditional covariances in tests of asset pricing
 models, Journal of Financial Economics 24, 289-317.

 Hasbrouck, Joel, 1986, A note on estimation of linear heteroskedasticity models, Economic
 Letters 22, 349-351.

 Huang, Roger D., 1990, Tests of conditional capital asset pricing model without constancy
 assumptions, Unpublished manuscript, Vanderbilt University.

 Keim, Donald B. and Robert F. Stambaugh, 1986, Predicting returns in the bond and stock
 markets, Journal of Financial Economics 17, 357-90.

 Lo, Andrew W. and A. Craig MacKinlay, 1988, Stock prices do not follow random walks, Review
 of Financial Studies 1, 41-66.

 Long, Jr., John B., 1974, Stock prices, inflation, and the term structure of interest rates, Journal
 of Financial Economics 1, 131-170.

 Mark, Nelson C., 1988, Time-varying betas and risk premia in the pricing of forward foreign
 exchange contracts, Journal of Financial Economics 22, 335-354.

 Merton, Robert C., 1973, An equilibrium capital asset pricing model, Econometrica 41, 867-887.
 , 1980, On estimating the expected return on the market: An explanatory investigation,

 Journal of Financial Economics 8, 323-361.
 Muth, John F., 1961, Rational expectations and the theory of price movements, Econometrica 29,

 1-23.

 Newey, Whitney K., 1985, Generalized method of moments specification testing, Journal of
 Econometrics 29, 227-256.

 Ng, Lilian, 1991, Tests of the CAPM with time-varying covariances: A multivariate GARCH
 approach, Journal of Finance 46, 1507-1521.

 Rayner, Robert K., 1985, Rational expectations and the capital asset pricing model, Working
 paper 85-111, College of Business, Ohio State University.

 Roll, Richard, 1977, A critique of the asset pricing theory's tests. Part I: On past and potential
 testability of the theory, Journal of Financial Economics 4, 129-176.

 Rubinstein, Mark, 1976, The valuation of uncertain income streams and the pricing of options,
 Bell Journal of Economics 7, 407-425.

 Schwert, G. William, 1989, Why does stock market volatility change over time? Journal of
 Finance 44, 1115-1153.

 Shanken, Jay, 1990, The intertemporal capital asset pricing model: An empirical investigation,
 Journal of Econometrics 45, 99-120.

 Tauchen, George, 1986, Statistical properties of generalized method moments estimates of
 structural parameters using financial data, Journal of Business and Economic Statistics 4,
 397-416.

 White, Halbert, 1980, A heteroskedasticity-consistent covariance matrix estimator and a direct
 test for heteroskedasticity, Econometrica 48, 817-838.

This content downloaded from 
������������129.74.250.206 on Tue, 24 Nov 2020 01:22:29 UTC������������� 

All use subject to https://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15
	image 16
	image 17
	image 18
	image 19
	image 20
	image 21

	Issue Table of Contents
	Journal of Finance, Vol. 46, No. 4, Sep., 1991
	Front Matter
	A Theory of Workouts and the Effects of Reorganization Law [pp.  1189 - 1222]
	The Losses Realized in Bank Failures [pp.  1223 - 1242]
	The Relative Signalling Power of Dutch-Auction and Fixed-Price Self-Tender Offers and Open-Market Share Repurchases [pp.  1243 - 1271]
	Convertible Debt: Corporate Call Policy and Voluntary Conversion [pp.  1273 - 1289]
	Tax Shields, Sample-Selection Bias, and the Information Content of Conversion-Forcing Bond Calls [pp.  1291 - 1324]
	Disclosure, Liquidity, and the Cost of Capital [pp.  1325 - 1359]
	Insider Trading around Dividend Announcements: Theory and Evidence [pp.  1361 - 1389]
	Capital Structure and the Market for Corporate Control: The Defensive Role of Debt Financing [pp.  1391 - 1409]
	Liquidity, Maturity, and the Yields on U.S. Treasury Securities [pp.  1411 - 1425]
	Seasonality in Stock Price Mean Reversion: Evidence from the U.S. and the U.K [pp.  1427 - 1444]
	Stock Markets, Growth, and Tax Policy [pp.  1445 - 1465]
	Shorter Papers
	Structural and Return Characteristics of Small and Large Firms [pp.  1467 - 1484]
	Testing the CAPM with Time-Varying Risks and Returns [pp.  1485 - 1505]
	Tests of the CAPM with Time-Varying Covariances: A Multivariate GARCH Approach [pp.  1507 - 1521]
	An Investigation of Market Microstructure Impacts on Event Study Returns [pp.  1523 - 1536]
	The Intra-Industry Effects of Going-Private Transactions [pp.  1537 - 1550]
	S&P 100 Index Option Volatility [pp.  1551 - 1561]

	Book Reviews
	untitled [pp.  1563 - 1564]
	untitled [pp.  1564 - 1567]
	untitled [pp.  1567 - 1570]
	untitled [pp.  1570 - 1572]

	Miscellanea [pp.  1573 - 1574]
	Back Matter [pp.  1 - 17]



